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Assumptions affect trustworthiness of model predictions

Assumptions in mathematical models not valid in all cases.

Assumptions

Mathematical model Prediction

Uncertain inputs

How can we quantify their influence on predictions?




less-reliable embedded \\
assumptions

Physics-based

models o reliable theory +

W Newton's 29 law (energy conservation):
m

(/11110

fs +fa = F =ma

x(t)

Hypothesis: assumptions reliable = model prediction reliable




For example: have to assume the form of unknown quantities

Upscaled subsurface
contaminant transport:

d{c) o{c) d(u'c’)

W + (U>W = vA{c) —

Conservation of mass highly
reliable, but assumption that
dispersion term depends locally
on concentration can be invalid.

ox

Streamwise velocity [km/yr]

x [km]

High-velocity “streaks” cause nonlocality in contaminant transport.

Contaminant
concentration

ou'c’) 0%(c)
ox ™ ox?

True transport




Ingredients to assess prediction trustworthiness based on assumptions \

N\
N\

Assumption Assumption

important to stress-tested in
prediction? validation?




We measure assumption importance by combining model-form \\
uncertainty representations with grouped sensitivity analysis

Model-form uncertainty
representation:
parameterized modification to
model assumption

Grouped sensitivity analysis:
Measures importance of group
of parameters to model output

Importance measure for assumption




MFU representations reflect a range of plausible assumption forms N

Parameter uncertainty
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MFU representations should be parameterized to

* respect relevant physics
« reflect range of plausible behavior

e maintain randomness after inference
« MFU representation’s form doesn't perfectly capture true behavior

Nops—©

Bernstein von-Mises theorem:; P(9|d) > 5(9 — HMLE)

Data should not inform MFU parameters directly.

'BJ.K. Kleijn and AW. van der Vaart. “The Bernstein-Von-Mises Theorem under Misspecification.” Electronic Journal of Statistics, vol. 6,
no. none, Jan. 2012, pp. 354-81, https://doi.org/10.1214/12-E]S675.
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Grouped Sobol’ indices measure model output sensitivity to a group of \

parameters and their interactions N\
X =[uu, N
Main effect index Total effect index
4 ) 4 )
Vo (Ey, [ f(X)|ul) Ey, (Vyl f(X)]uc])
Sy = Iy =
\V(f(X)) V(f (X))

J - J

fu = [xq,x,],

Su=51 +SZ +512




Assumption importance measured by grouped Sobol’ index for MFU N\
parameters \
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Numerical

example




Goal: measure importance of relative to other \
sources of uncertainty in the system N\

N\
o) |, 3e) _
B W T A

co(x) = exp(—(x — 5)?/1%)

d“(c)
0%x

MFU representation: ~ —

Sensitivity measures for: s, (u), vp,
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How important is assumption to prediction vs. validation scenarios?

Scenario space

010 = Prediction scenario *
r* *
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How important is assumption to prediction vs. validation scenarios?

Scenario space

010 = Velocity fluctuations
P — =
Y| - _
€>l< | . —
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O 14 0 14
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Quantity of interest (Qol): breakthrough time at x=2.5

0.5 /\ | Sensor

I location

Concentration
t=0.4

0.0 j 0.01 -

0.0 4.0 0.626
x t

b
S

Find first time concentration exceeds 10™2 at x = 2.5.
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d“(c) \

MFU representation parameterized to... N TVm T, N\
\\
respect relevant physics reflect range of plausible behavior AN
e conserve mass  vary influence and degree of nonlocality
* maintain positive concentration through v,

maintain randomness after inference
 data informs hyperparameters of parameter distributions vs.
informing parameter values directly

MLE Fit— Vp,, @
0.22 A Data

Concentration

x=1.4

0.80,, Um 1.20, 1

Q)———————— 1

0.00 - .

0.0 0.2
t

‘Data from ensemble of detailed contaminant transport simulations
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We measured sensitivity of MFU parameters relative to other
uncertainties in the model

d{c) d{c) d(u'c’)

2t T Wy = wala——

co(x) = exp(—(x — 5)*/1%)

Parameter type Distribution

|IC mode (s) U[0.8s,, 1.2s,], s, =1
Other model parameters (u) U[0.8u,, 1.2u,,], U, =1
Vp U[0.8vyp, 1.2vy 0|, vpn = 0.01
Vi, U[0.87,,,, 1.20,,,]

Fractional derivative MFU |
a Triangular([1,2], mode=a)
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assumptions

Ingredients to assess prediction trustworthiness based on \\
N\
N\

Assumption Assumption

important to stress-tested in
prediction? validation?




Dispersion assumption very important to prediction
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N
AN

Model valid but assumption not important —» doesn’t confer confidence

AN

N

N\

Main Effects

Truth 8 ‘
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Breakthrough time
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Model valid + assumption important — confers confidence for

prediction
0.10 - *
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Prediction valid
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Validation scenarios: how close is “close enough”?

0.10 - /%

How much does Y
assumption’s Iz s %
parameterization /

change with scenario? *

(Especially in direction _
of prediction) 0.02

0.5 1.5
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Conclusions and future work

* Stress testing model assumptions is critical to assess confidence in predictions

«  Combined MFU representations & grouped GSA to quantify importance of
assumptions to model outputs

« Lets us identify which assumptions are important to prediction

« Lets us check if those assumptions were important to validation

Future work: develop a method to measure if a validation test scenario
s “close enough” to the prediction scenario to confer confidence
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Thanks!

Portone, Teresa, et al. “Quantifying Model Prediction Sensitivity
to Model-Form Uncertainty.” In Preparation.

tporton@sandia.gov
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Bernstein-von Mises Theorem

Nops—©

p(O1d) 5 v (8, (o1 (6)) )

As number of observations approaches infinity, the variance
of the normal approaches zero, approximating a Dirac delta
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