

Sandia
National
Laboratories

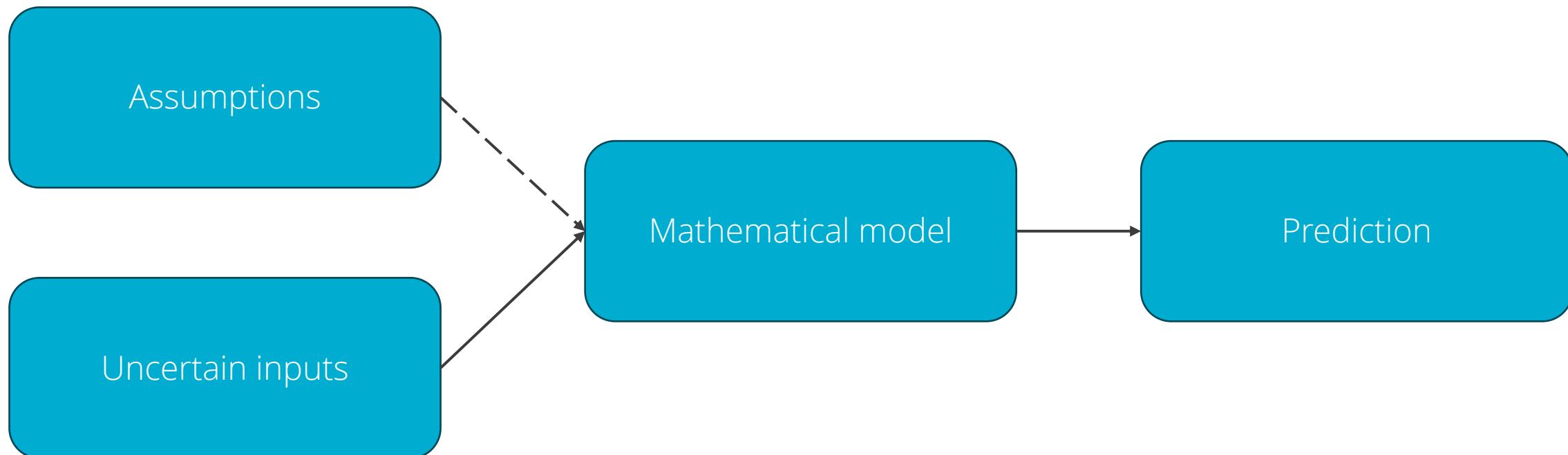
Exceptional service in the national interest

Assessing Model Prediction Trustworthiness in the Presence of Model-Form Uncertainty

Teresa Portone, Rebekah White, Joseph Hart
SIAM Conference on Uncertainty Quantification 2024
Trieste, Italy, 2/27-3/1, 2024

Assumptions affect trustworthiness of model predictions

Assumptions in mathematical models not valid in all cases.



How can we quantify their influence on predictions?

Physics-based
models

=

reliable theory

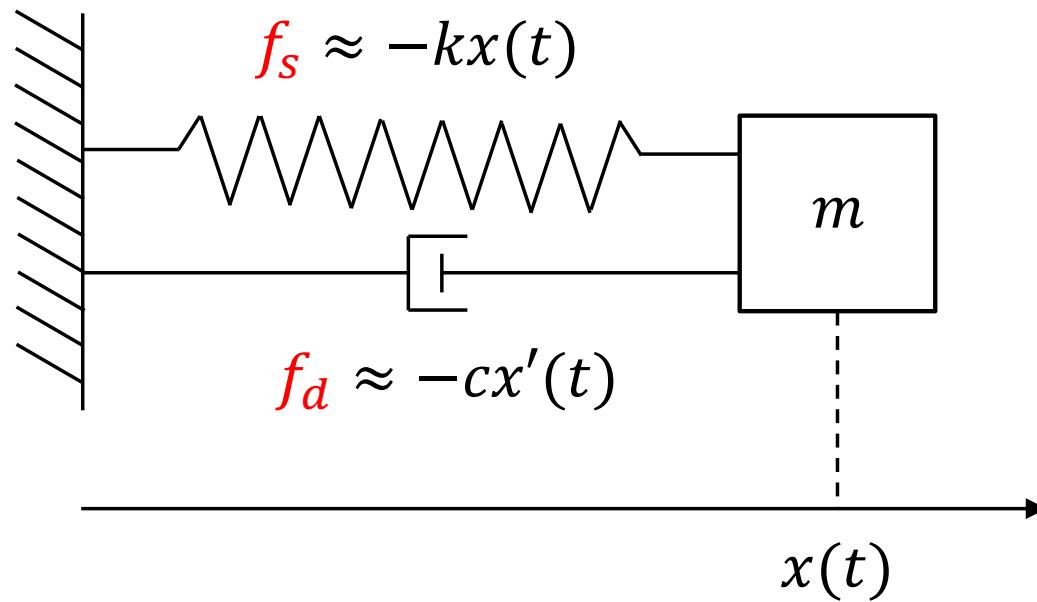
+

less-reliable embedded
assumptions

Reliable theory

Unknowns

$$\mathcal{R}(s; \mathbf{u}) = 0$$



Newton's 2nd law (energy conservation):

$$f_s + f_d \equiv F = ma \equiv m \frac{d^2 x(t)}{dt^2}$$

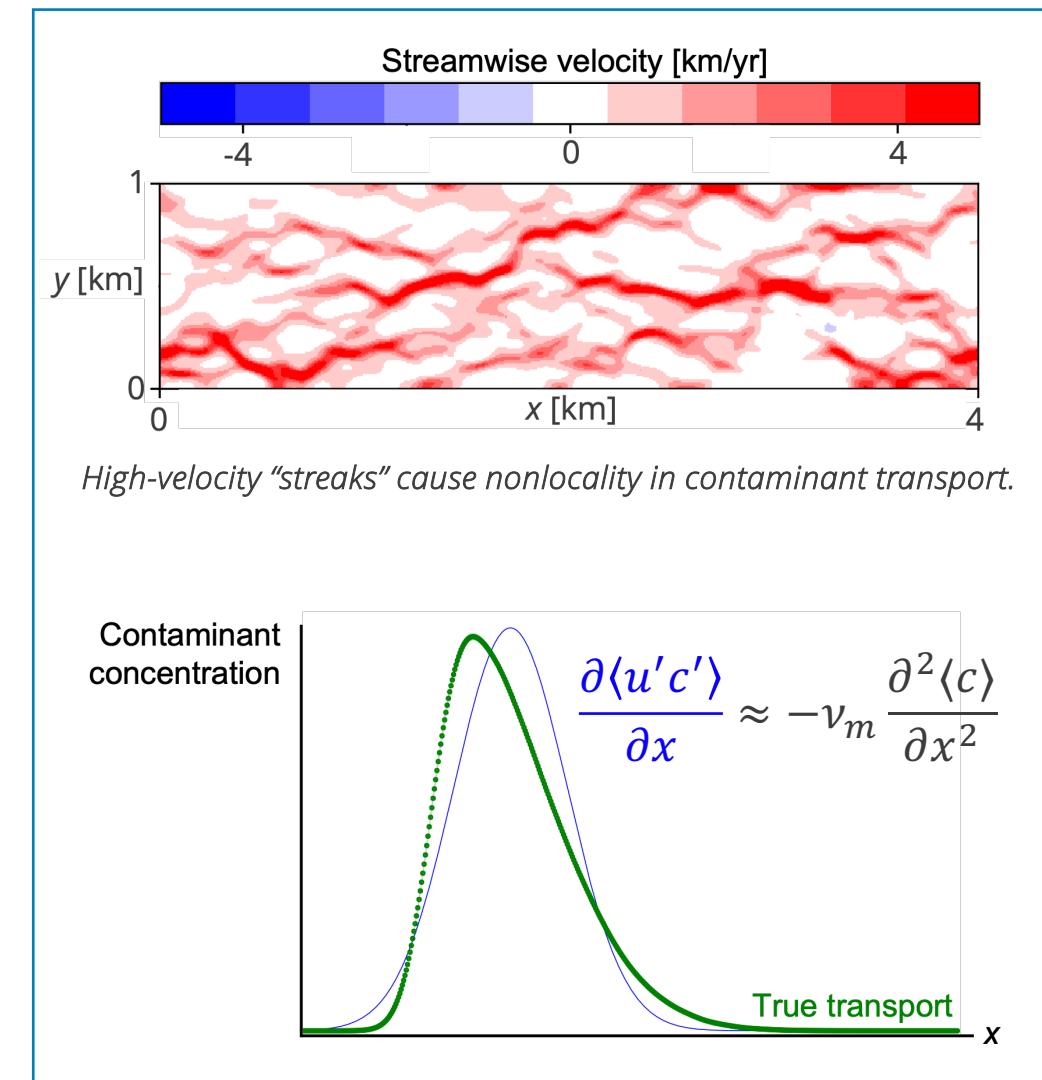
Hypothesis: assumptions reliable \Rightarrow model prediction reliable

For example: have to assume the form of unknown quantities

Upscaled subsurface
contaminant transport:

$$\frac{\partial \langle c \rangle}{\partial t} + \langle u \rangle \frac{\partial \langle c \rangle}{\partial x} = \nu \Delta \langle c \rangle - \frac{\partial \langle u' c' \rangle}{\partial x}$$

Conservation of mass highly reliable, but assumption that dispersion term depends locally on concentration can be invalid.



Ingredients to assess prediction trustworthiness based on assumptions

Assumption
important to
prediction?

Assumption
stress-tested in
validation?

We measure assumption importance by combining model-form uncertainty representations with grouped sensitivity analysis

Model-form uncertainty representation:

parameterized modification to model assumption

Grouped sensitivity analysis:

Measures importance of group of parameters to model output

Importance measure for assumption

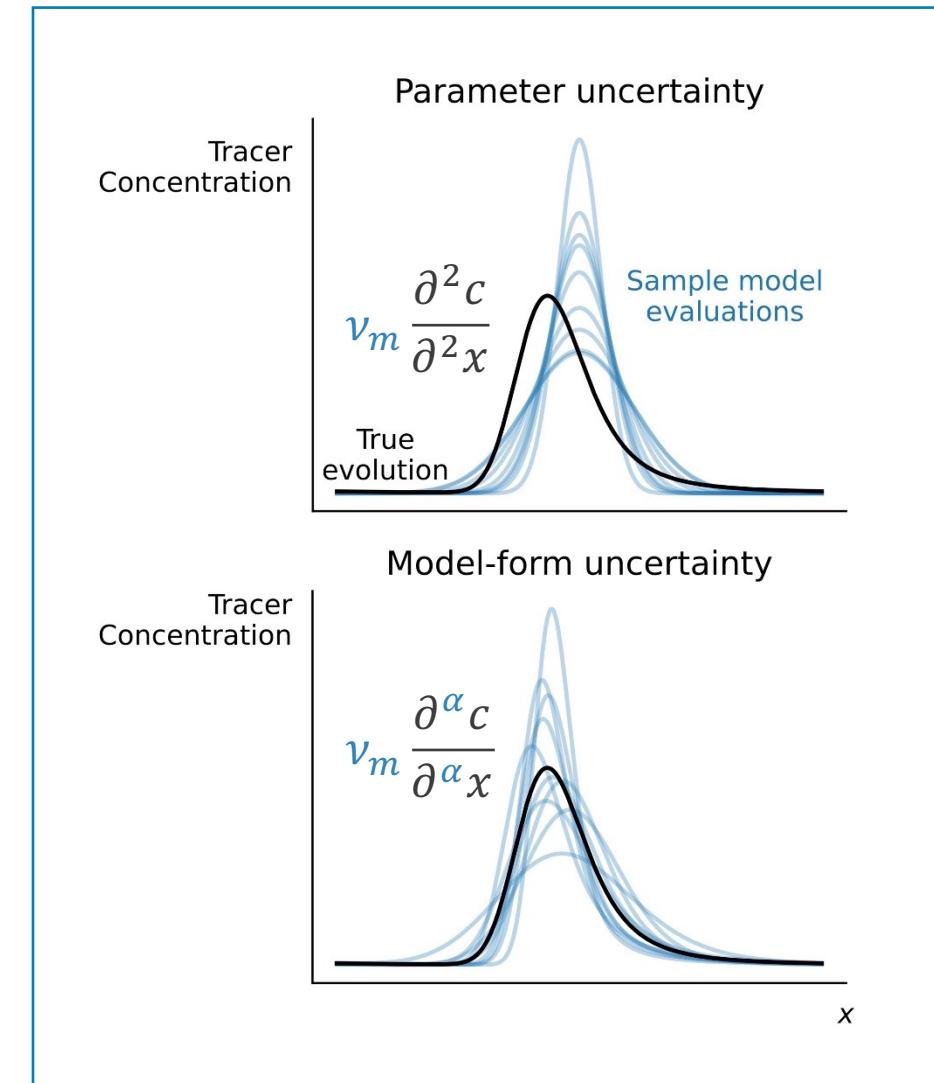
MFU representations reflect a range of plausible assumption forms

$$\frac{\partial \langle c \rangle}{\partial t} + \langle u \rangle \frac{\partial \langle c \rangle}{\partial x} = \nu_p \Delta \langle c \rangle - \frac{\partial \langle u' c' \rangle}{\partial x}$$

$$c_0(x) = \exp(-(x - s)^2/l^2)$$

MFU representation:

$$\frac{\partial \langle u' c' \rangle}{\partial x} \approx -\nu_m \frac{\partial^\alpha \langle c \rangle}{\partial^\alpha x}$$



MFU representations should be parameterized to

- respect relevant physics
- reflect range of plausible behavior
- maintain randomness after inference
 - MFU representation's form doesn't perfectly capture true behavior

Bernstein von-Mises theorem¹: $p(\theta | \mathbf{d}) \xrightarrow{N_{obs} \rightarrow \infty} \delta(\theta - \theta_{MLE})$

Data should not inform MFU parameters directly.

¹B.J.K. Kleijn and A.W. van der Vaart. "The Bernstein-Von-Mises Theorem under Misspecification." *Electronic Journal of Statistics*, vol. 6, no. none, Jan. 2012, pp. 354–81, <https://doi.org/10.1214/12-EJS675>.

Grouped Sobol' indices measure model output sensitivity to a group of parameters and their interactions

$$X = [\mathbf{u}, \mathbf{u}_c]$$

Main effect index

$$S_{\mathbf{u}} = \frac{\mathbb{V}_{\mathbf{u}}(\mathbb{E}_{\mathbf{u}_c}[f(X)|\mathbf{u}])}{\mathbb{V}(f(X))}$$

Total effect index

$$T_{\mathbf{u}} = \frac{\mathbb{E}_{\mathbf{u}_c}(\mathbb{V}_{\mathbf{u}}[f(X)|\mathbf{u}_c])}{\mathbb{V}(f(X))}$$

If $\mathbf{u} = [x_1, x_2]$,

$$S_{\mathbf{u}} = S_1 + S_2 + S_{12}$$

Assumption importance measured by grouped Sobol' index for MFU parameters

$$\frac{\partial \langle u' c' \rangle}{\partial x} \approx -v_m \frac{\partial^{\alpha} \langle c \rangle}{\partial^{\alpha} x}$$

$$S_{\{v_m, \alpha\}}$$

Numerical example

Goal: measure importance of dispersion assumption relative to other sources of uncertainty in the system

$$\frac{\partial \langle c \rangle}{\partial t} + \langle u \rangle \frac{\partial \langle c \rangle}{\partial x} = \nu_p \Delta \langle c \rangle - \frac{\partial \langle u' c' \rangle}{\partial x}$$
$$c_0(x) = \exp(-(x - s)^2/l^2)$$

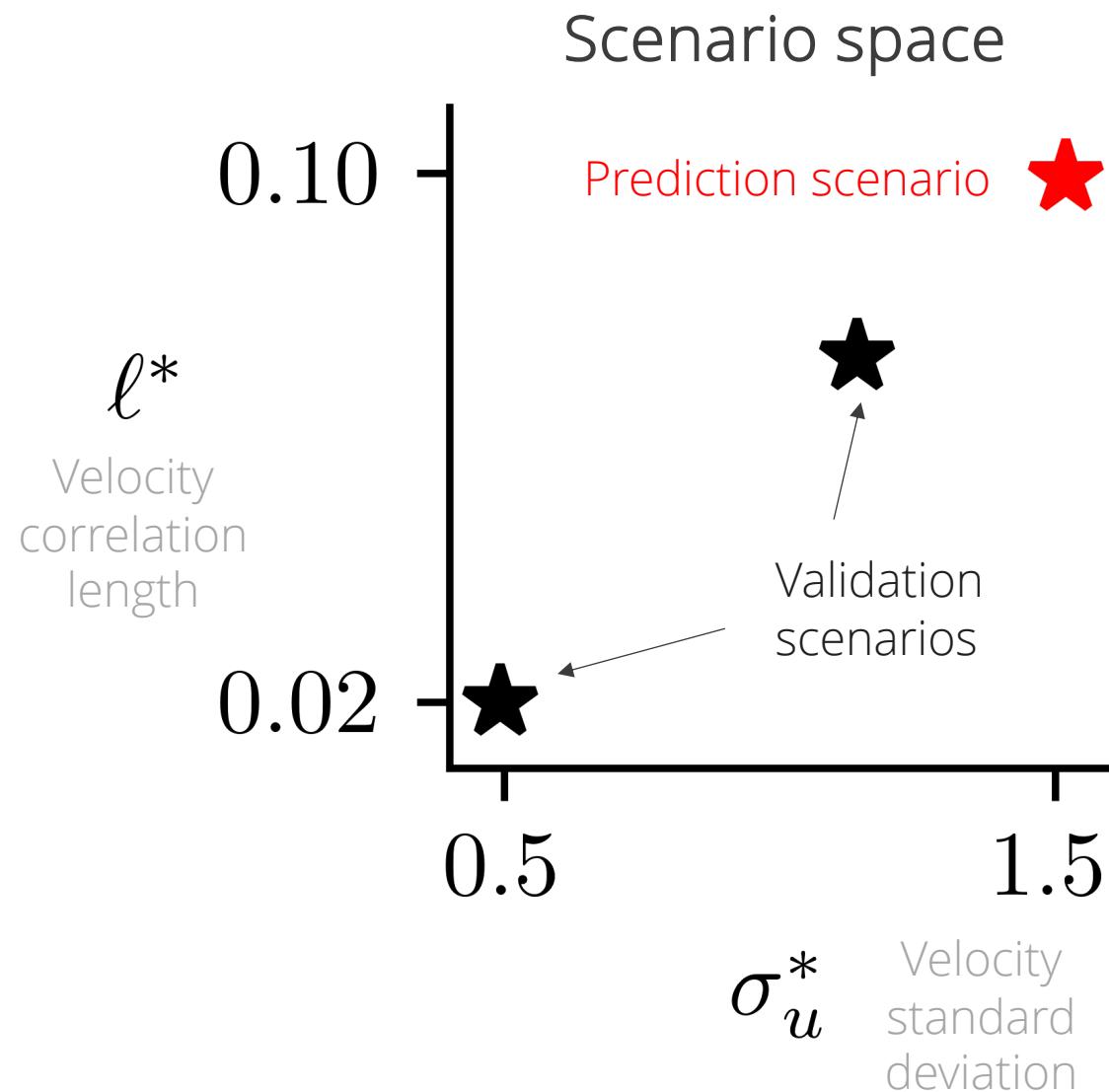
MFU representation:

$$\frac{\partial \langle u' c' \rangle}{\partial x} \approx -\nu_m \frac{\partial^\alpha \langle c \rangle}{\partial^\alpha x}$$

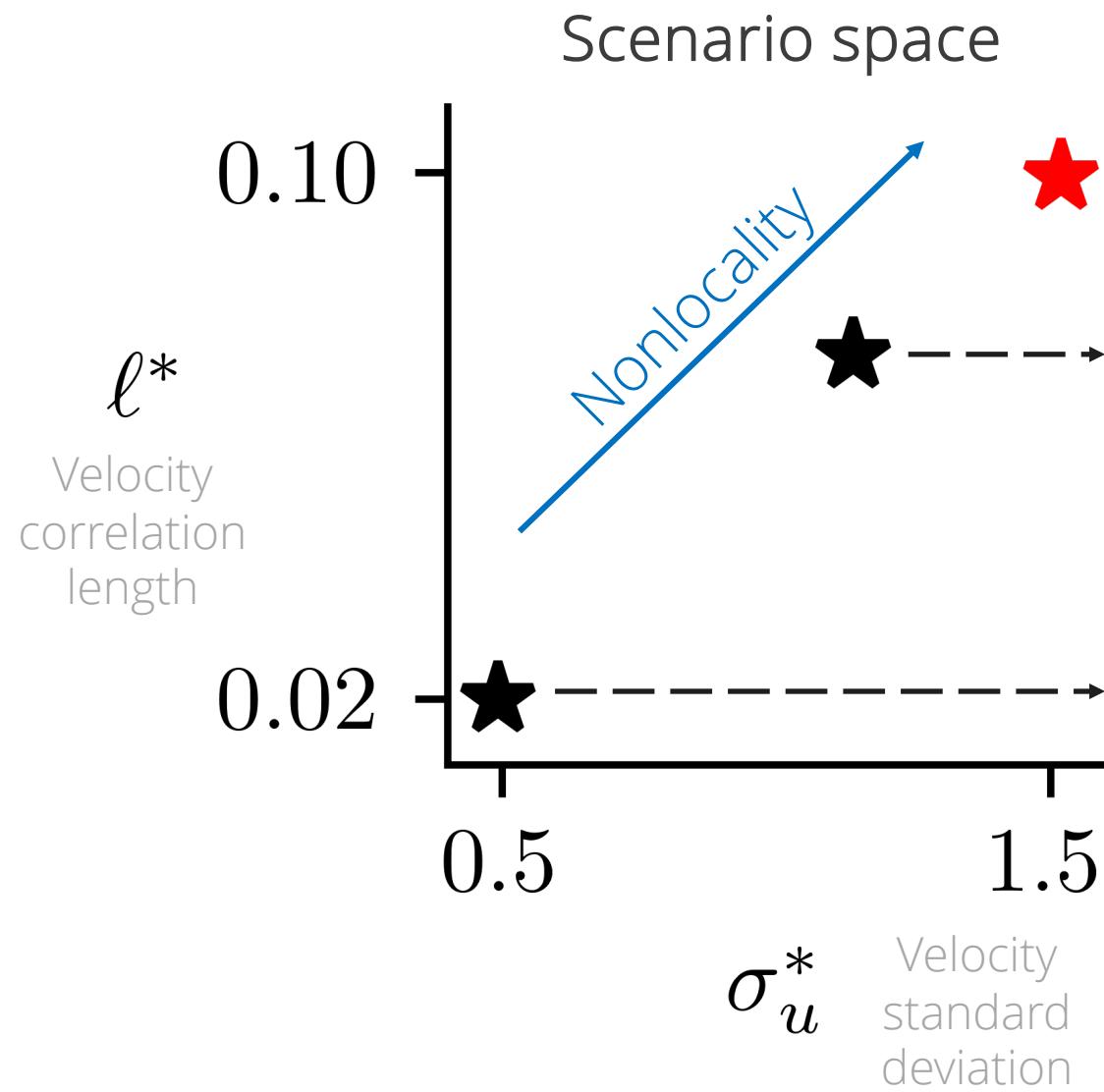
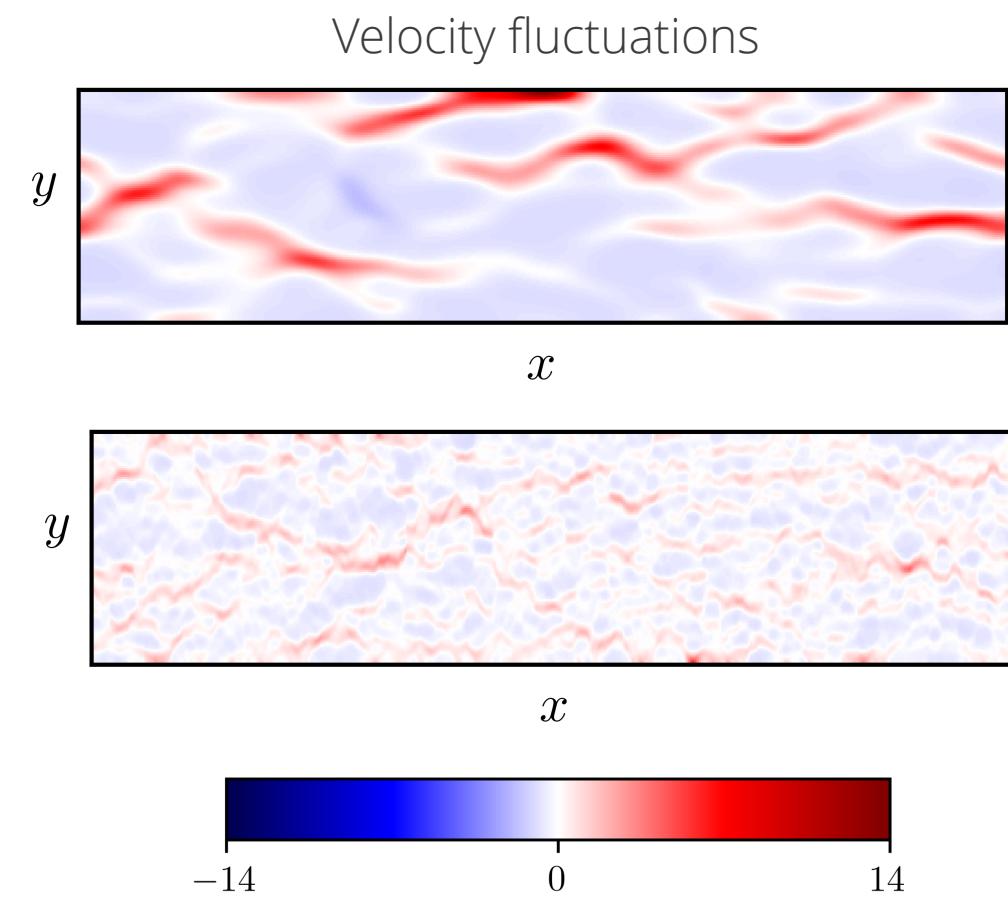
Sensitivity measures for:

$$s, \langle u \rangle, \nu_p, \{\nu_m, \alpha\}$$

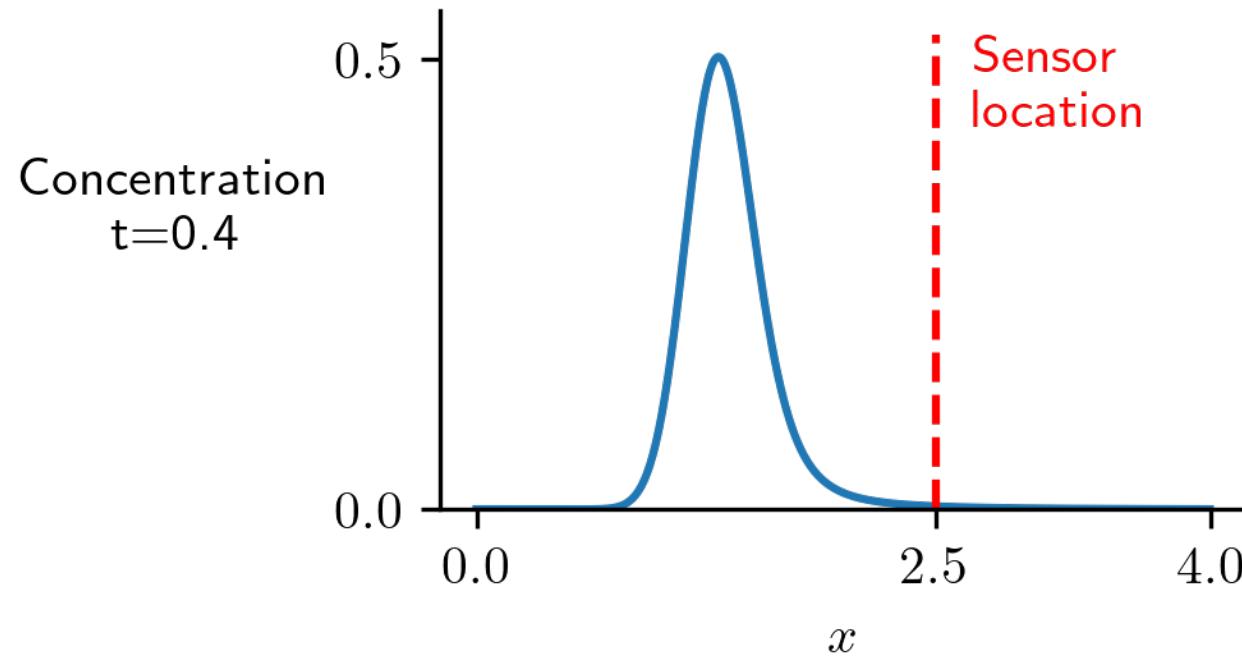
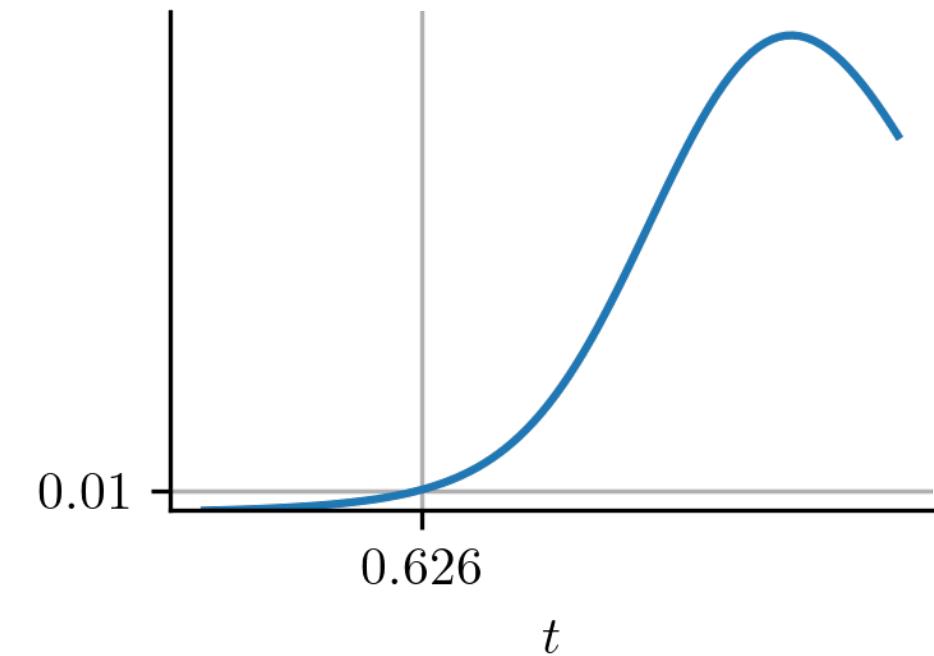
How important is assumption to prediction vs. validation scenarios?



How important is assumption to prediction vs. validation scenarios?



Quantity of interest (QoI): breakthrough time at $x=2.5$



Find first time concentration exceeds 10^{-2} at $x = 2.5$.

MFU representation parameterized to...

$$\frac{\partial \langle u' c' \rangle}{\partial x} \approx -\nu_m \frac{\partial^\alpha \langle c \rangle}{\partial^\alpha x}$$

respect relevant physics

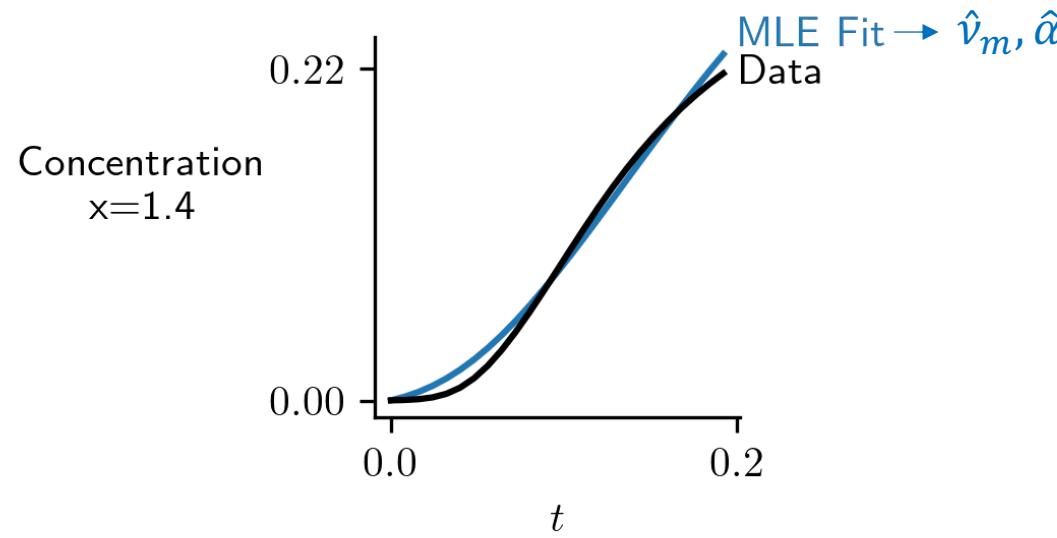
- *conserve mass*
- *maintain positive concentration*

reflect range of plausible behavior

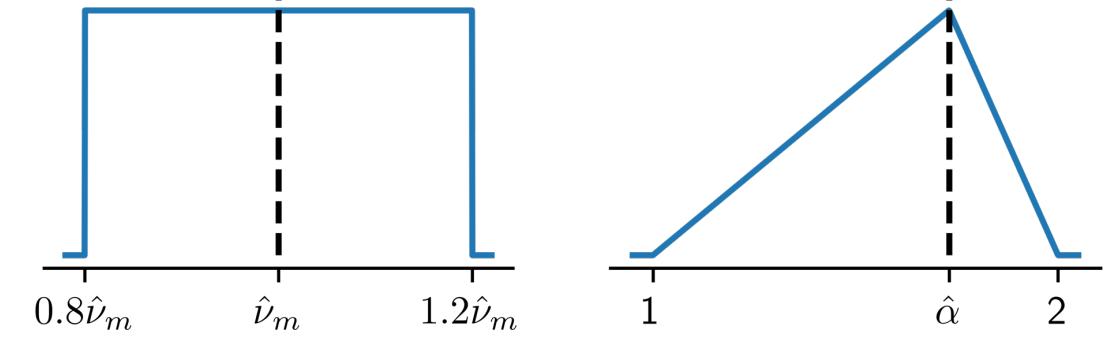
- *vary influence and degree of nonlocality through ν_m, α*

maintain randomness after inference

- *data informs hyperparameters of parameter distributions vs. informing parameter values directly*



Data from ensemble of detailed contaminant transport simulations



We measured sensitivity of MFU parameters relative to other uncertainties in the model

$$\frac{\partial \langle c \rangle}{\partial t} + \langle u \rangle \frac{\partial \langle c \rangle}{\partial x} = \nu_p \Delta \langle c \rangle - \frac{\partial \langle u' c' \rangle}{\partial x}$$

$$c_0(x) = \exp(-(x - s)^2/l^2)$$

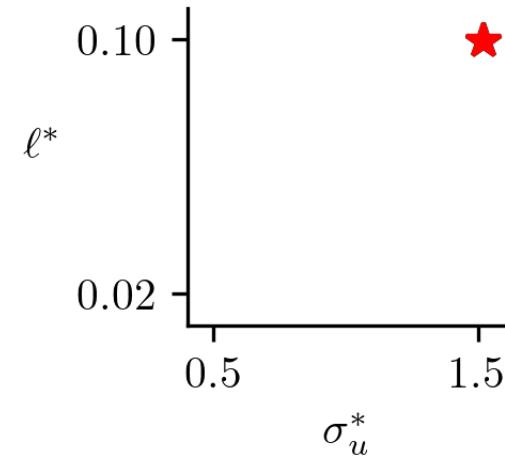
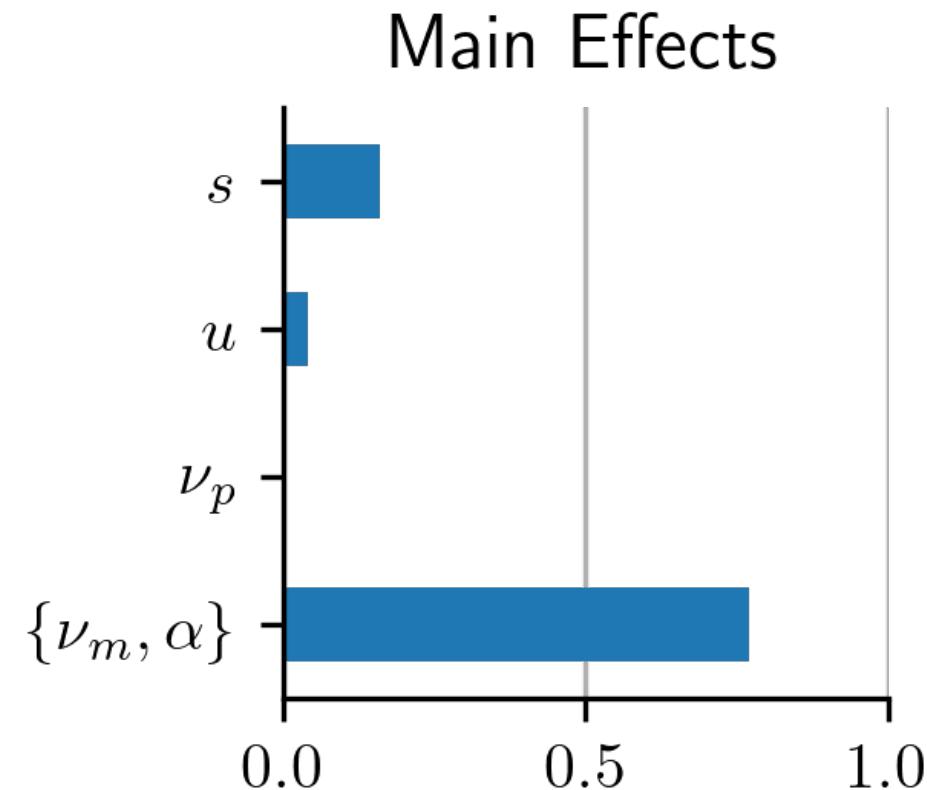
Parameter type	Parameter	Distribution
Other model parameters	IC mode (s)	$U[0.8s_n, 1.2s_n]$, $s_n = 1$
	$\langle u \rangle$	$U[0.8u_n, 1.2u_n]$, $u_n = 1$
	ν_p	$U[0.8\nu_{p,n}, 1.2\nu_{p,n}]$, $\nu_{p,n} = 0.01$
Fractional derivative MFU	ν_m	$U[0.8\hat{\nu}_m, 1.2\hat{\nu}_m]$
	α	Triangular([1,2], mode= $\hat{\alpha}$)

Ingredients to assess prediction trustworthiness based on assumptions

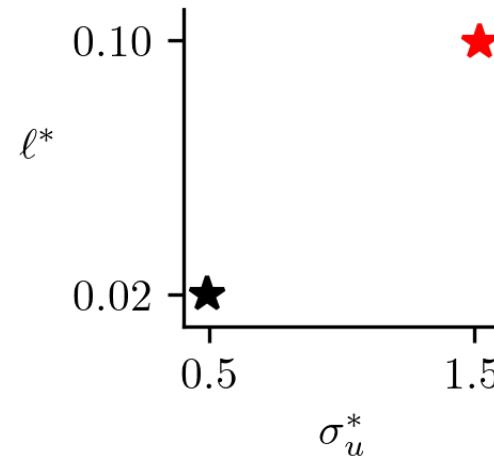
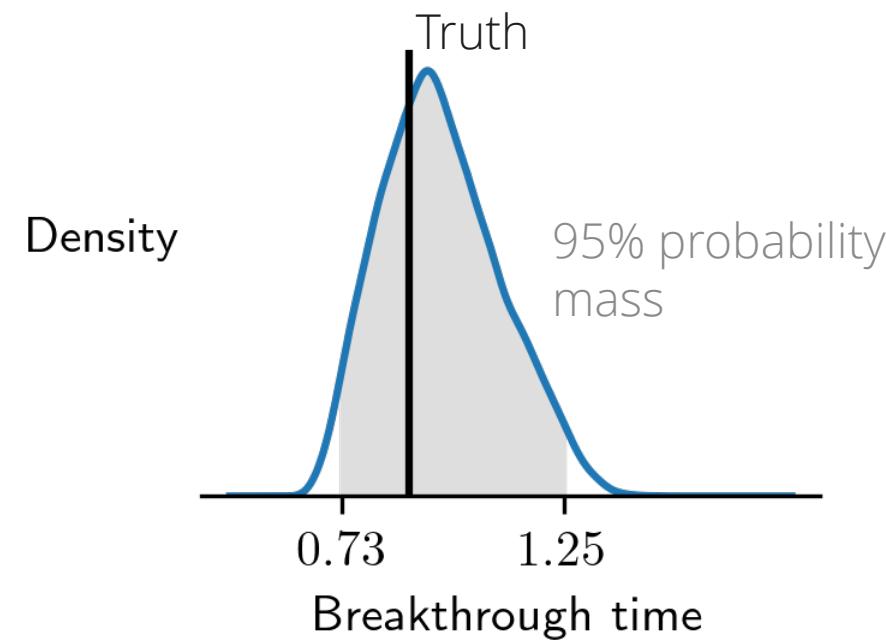
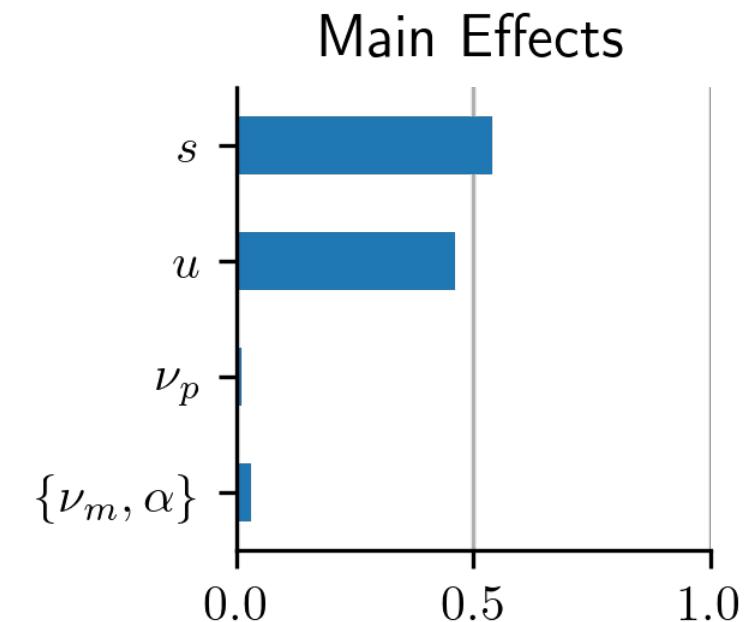
Assumption
important to
prediction?

Assumption
stress-tested in
validation?

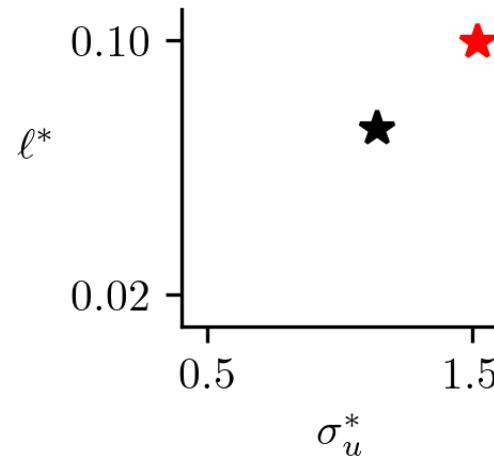
Dispersion assumption very important to prediction



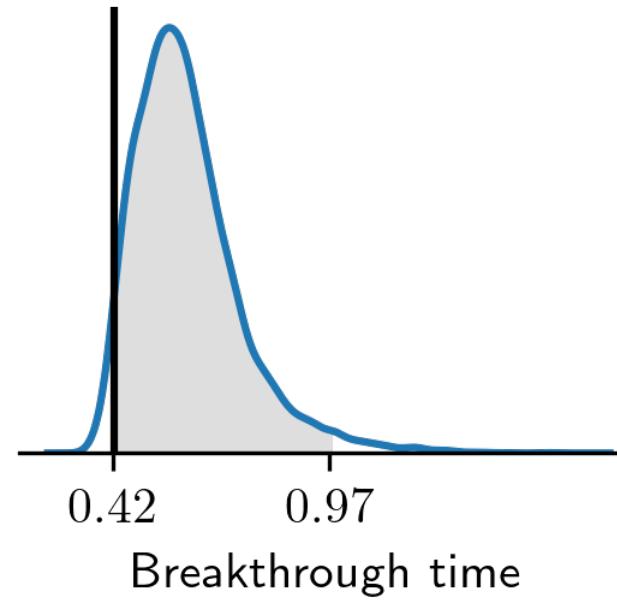
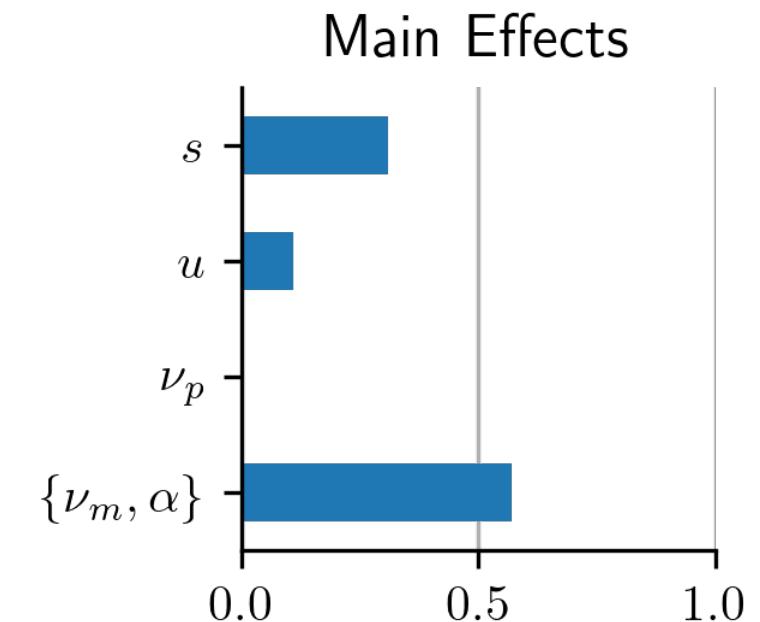
Model valid but assumption not important → doesn't confer confidence



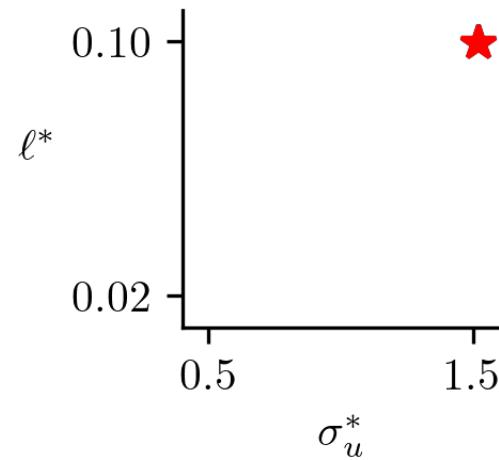
Model valid + assumption important \rightarrow confers confidence for prediction



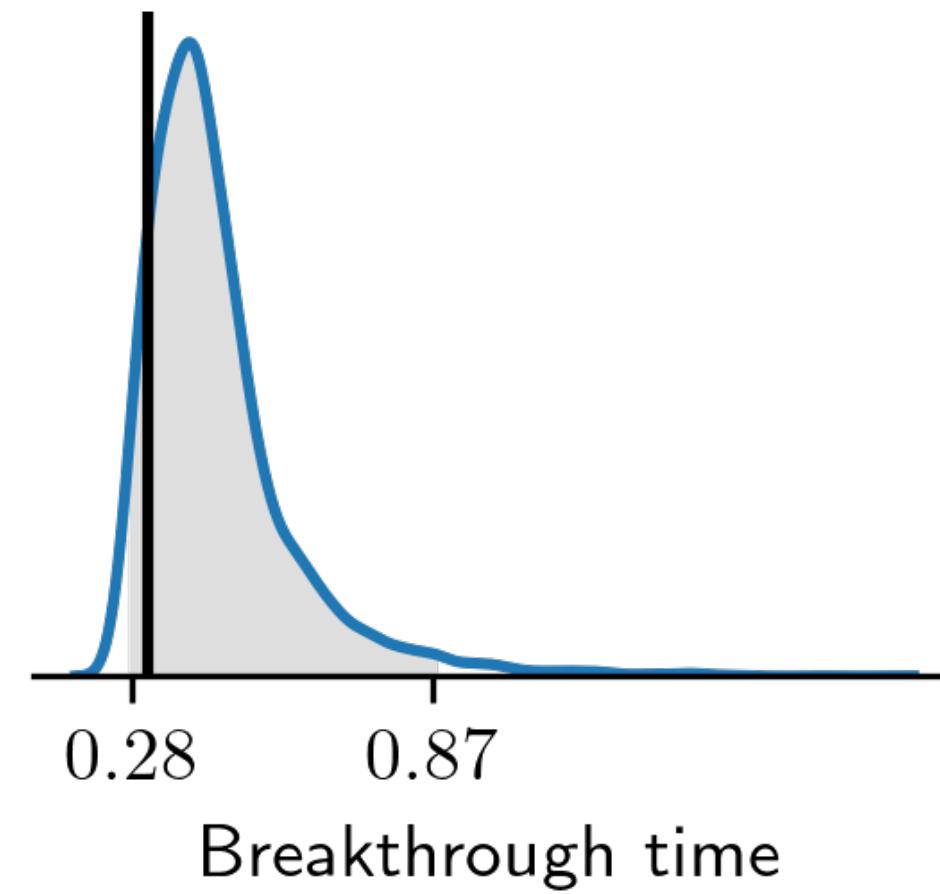
Density



Prediction valid



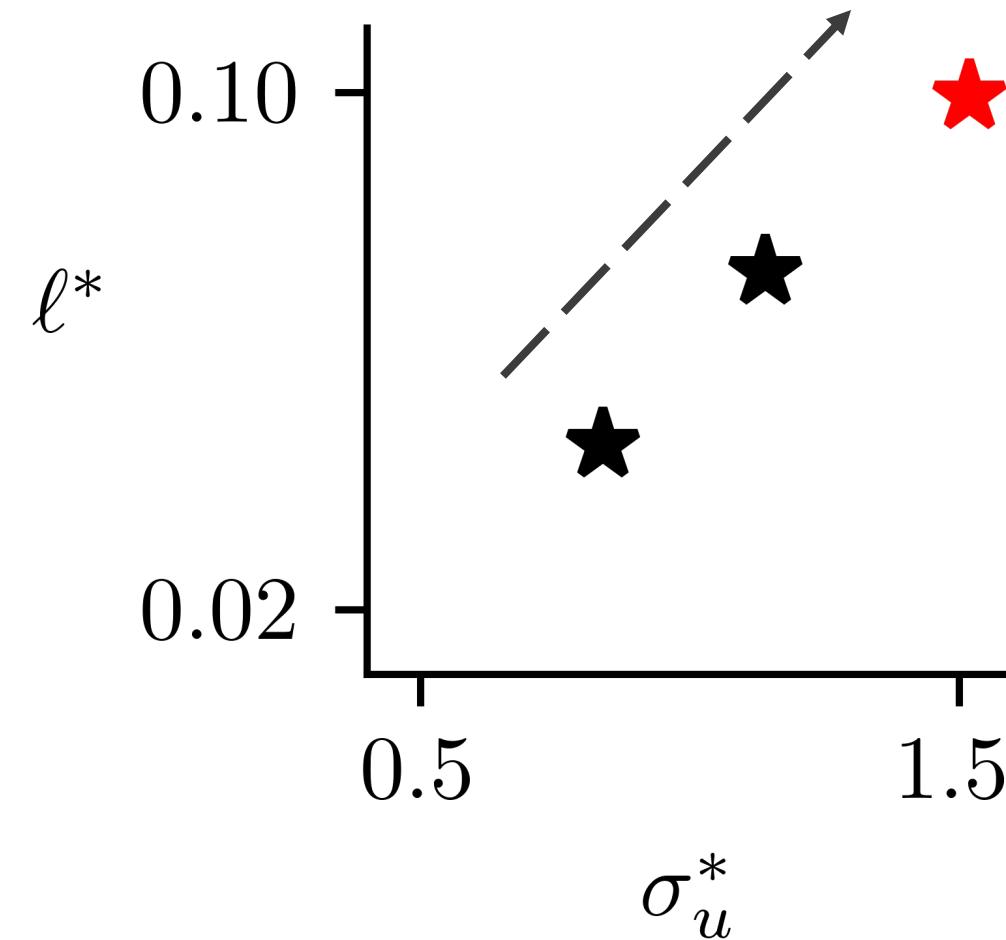
Density



Validation scenarios: how close is “close enough”?

How much does
assumption's
parameterization
change with scenario?

(Especially in direction
of prediction)



Conclusions and future work

- Stress testing model assumptions is critical to assess confidence in predictions
- Combined MFU representations & grouped GSA to quantify importance of assumptions to model outputs
- Lets us identify which assumptions are important to prediction
- Lets us check if those assumptions were important to validation

Future work: develop a method to measure if a validation test scenario is “close enough” to the prediction scenario to confer confidence

Thanks!

Portone, Teresa, et al. "Quantifying Model Prediction Sensitivity to Model-Form Uncertainty." *In Preparation.*

tporton@sandia.gov

Bernstein-von Mises Theorem

$$p(\theta|d) \xrightarrow{N_{obs} \rightarrow \infty} \mathcal{N}\left(\hat{\theta}, \left(N_{obs}I(\hat{\theta})\right)^{-1}\right)$$

As number of observations approaches infinity, the variance of the normal approaches zero, approximating a Dirac delta

References

Grouped Sobol' Indices:

Prieur, Clémentine, and Stefano Tarantola. "Variance-Based Sensitivity Analysis: Theory and Estimation Algorithms." *Handbook of Uncertainty Quantification*, edited by Roger Ghanem et al., Springer International Publishing, 2017, pp. 1217–39, https://doi.org/10.1007/978-3-319-12385-1_35.

Model-form uncertainty/inadequacy/model-form error representations:

Morrison, Rebecca E., et al. "Representing Model Inadequacy: A Stochastic Operator Approach." *SIAM/ASA Journal on Uncertainty Quantification*, vol. 6, no. 2, Jan. 2018, pp. 457–96, <https://doi.org/10.1137/16M1106419>.

Oliver, Todd A., et al. "Validating Predictions of Unobserved Quantities." *Computer Methods in Applied Mechanics and Engineering*, vol. 283, Jan. 2015, pp. 1310–35, <https://doi.org/10.1016/j.cma.2014.08.023>.

Portone, Teresa. *Representing Model-Form Uncertainty from Missing Microstructural Information*. 2019. University of Texas at Austin, <http://dx.doi.org/10.26153/tsw/10112>.