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Assumptions affect trustworthiness of model predictions
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Mathematical model

Assumptions

Uncertain inputs

Prediction

Assumptions in mathematical models not valid in all cases.

How can we quantify their influence on predictions?
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𝑓! + 𝑓" ≡ 𝐹 = 𝑚𝑎 ≡ 𝑚
𝑑#𝑥(𝑡)
𝑑𝑡#

Newton’s 2nd law (energy conservation):

Physics-based 
models

ℛ 𝒔; 𝒖 = 0
Reliable theory Unknowns

Hypothesis: assumptions reliable ⇒ model prediction reliable

!! ≈ −$%(')

!" ≈ −)%′(')

%(')

+

less-reliable embedded 
assumptionsreliable theory= +



For example: have to assume the form of unknown quantities
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Upscaled subsurface 
contaminant transport:

𝜕 𝑐
𝜕𝑡

+ 𝑢
𝜕 𝑐
𝜕𝑥

= 𝜈𝛥 𝑐 −
𝜕 𝑢!𝑐!

𝜕𝑥

Conservation of mass highly 
reliable, but assumption that 

dispersion term depends locally 
on concentration can be invalid.

High-velocity “streaks” cause nonlocality in contaminant transport.

𝜕 𝑢!𝑐!

𝜕𝑥
≈ −𝜈"

𝜕#⟨𝑐⟩
𝜕𝑥#



Ingredients to assess prediction trustworthiness based on assumptions
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Assumption 
important to 
prediction?

Assumption 
stress-tested in 

validation?
+



We measure assumption importance by combining model-form 
uncertainty representations with grouped sensitivity analysis
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Model-form uncertainty 
representation: 

parameterized modification to 
model assumption

Grouped sensitivity analysis:
Measures importance of group 
of parameters to model output

Importance measure for assumption



MFU representations reflect a range of plausible assumption forms
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𝜕 𝑢$𝑐$

𝜕𝑥
≈ −𝜈%

𝜕& 𝑐
𝜕&𝑥

MFU representation:

𝜕 𝑐
𝜕𝑡

+ 𝑢
𝜕 𝑐
𝜕𝑥

= 𝜈'𝛥 𝑐 −
𝜕 𝑢$𝑐$

𝜕𝑥
𝑐( 𝑥 = exp 	− 𝑥 − 𝑠 #/𝑙#

𝜈"
𝜕$𝑐
𝜕$𝑥

𝜈"
𝜕#𝑐
𝜕#𝑥
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MFU representations should be parameterized to

• respect relevant physics

• reflect range of plausible behavior

• maintain randomness after inference
• MFU representation’s form doesn’t perfectly capture true behavior 

𝑝 𝜃 𝒅
!!"#→# 𝛿(𝜃 − 𝜃$%&)Bernstein von-Mises theorem1: 

Data should not inform MFU parameters directly.

1B.J.K. Kleijn and A.W. van der Vaart. “The Bernstein-Von-Mises Theorem under Misspecification.” Electronic Journal of Statistics, vol. 6, 
no. none, Jan. 2012, pp. 354–81, https://doi.org/10.1214/12-EJS675.

https://doi.org/10.1214/12-EJS675


Grouped Sobol’ indices measure model output sensitivity to a group of 
parameters and their interactions
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𝑆𝒖 =
𝕍𝒖 𝔼𝒖𝒄 	𝑓 𝑿 𝒖]

𝕍 𝑓 𝑿

𝑿 = [𝒖, 𝒖𝒄]

𝑇𝒖 =
𝔼𝒖" 𝕍𝒖 	𝑓 𝑿 𝒖𝒄]

𝕍 𝑓 𝑿

Main effect index

If 𝒖 = 𝑥+, 𝑥# ,

𝑆𝒖 = 𝑆" + 𝑆# + 𝑆"#

Total effect index



Assumption importance measured by grouped Sobol’ index for MFU 
parameters
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𝜕 𝑢!𝑐!

𝜕𝑥
≈ −𝜈"

𝜕# 𝑐
𝜕#𝑥

𝑆 !$,#



Numerical 
example
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Goal: measure importance of dispersion assumption relative to other 
sources of uncertainty in the system
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𝜕 𝑐
𝜕𝑡

+ 𝑢
𝜕 𝑐
𝜕𝑥

= 𝜈'𝛥 𝑐 −
𝜕 𝑢$𝑐$

𝜕𝑥
𝑐( 𝑥 = exp 	− 𝑥 − 𝑠 #/𝑙#

MFU representation:

Sensitivity measures for:

𝜕 𝑢$𝑐$

𝜕𝑥
≈ −𝜈%

𝜕& 𝑐
𝜕&𝑥

𝑠, 𝑢 , 𝜈', {𝜈% , 𝛼}



How important is assumption to prediction vs. validation scenarios?
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Scenario space

Velocity 
correlation 

length

Velocity 
standard 
deviation

Prediction scenario

Validation 
scenarios



How important is assumption to prediction vs. validation scenarios?
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Nonloca
lity

Velocity fluctuations

Scenario space

Velocity 
correlation 

length

Velocity 
standard 
deviation



Quantity of interest (QoI): breakthrough time at x=2.5
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Find first time concentration exceeds 10!" at 𝑥 = 2.5.
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MFU representation parameterized to…

reflect range of plausible behavior
• vary influence and degree of nonlocality 

through 𝜈#, 𝛼

maintain randomness after inference
• data informs hyperparameters of parameter distributions vs. 

informing parameter values directly

respect relevant physics
• conserve mass
• maintain positive concentration

𝜕 𝑢!𝑐!

𝜕𝑥
≈ −𝜈+

𝜕, 𝑐
𝜕,𝑥

𝜈̂", /𝛼

Data from ensemble of detailed contaminant transport simulations



Parameter type Parameter Distribution

Other model parameters
IC mode (𝑠) 𝒰 0.8𝑠1	1.2𝑠1 , 	 𝑠1 = 1

⟨𝑢⟩ 𝒰 0.8𝑢1, 1.2𝑢1 , 𝑢1 = 1
𝜈2 𝒰 0.8𝜈2,1, 1.2𝜈2,1 , 𝜈2,1 = 0.01

Fractional derivative MFU
𝜈+ 𝒰[0.8𝜈̂+, 1.2𝜈̂+]
𝛼 Triangular( 1,2 , mode= =𝛼)

We measured sensitivity of MFU parameters relative to other 
uncertainties in the model
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𝜕 𝑐
𝜕𝑡

+ 𝑢
𝜕 𝑐
𝜕𝑥

= 𝜈+𝛥 𝑐 −
𝜕 𝑢,𝑐,

𝜕𝑥
𝑐- 𝑥 = exp 	− 𝑥 − 𝑠 ./𝑙.



Ingredients to assess prediction trustworthiness based on 
assumptions
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Assumption 
important to 
prediction?

Assumption 
stress-tested in 

validation?
+



Dispersion assumption very important to prediction
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Model valid but assumption not important → doesn’t confer confidence
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95% probability 
mass

Truth



Model valid + assumption important → confers confidence for 
prediction
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Prediction valid
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Validation scenarios: how close is “close enough”?
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How much does 
assumption’s 
parameterization 
change with scenario?

(Especially in direction 
of prediction)



Conclusions and future work

• Stress testing model assumptions is critical to assess confidence in predictions

• Combined MFU representations & grouped GSA to quantify importance of 
assumptions to model outputs

• Lets us identify which assumptions are important to prediction

• Lets us check if those assumptions were important to validation
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Future work: develop a method to measure if a validation test scenario 
is “close enough” to the prediction scenario to confer confidence
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Thanks!
Portone, Teresa, et al. “Quantifying Model Prediction Sensitivity 
to Model-Form Uncertainty.” In Preparation.

tporton@sandia.gov

mailto:tporton@sandia.gov


Bernstein-von Mises Theorem
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𝑝 𝜃 𝒅
!!"#→#𝒩 /𝜃, 𝑁()*𝐼 /𝜃

+,

As number of observations approaches infinity, the variance 
of the normal approaches zero, approximating a Dirac delta
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