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ABSTRACT

This report examines the transformative impact of Artificial Intelligence (Al) and Machine Learning
(ML) on operations research, private industry, and government sectors, highlighting their
applications in automating processes, enhancing decision-making, and optimizing complex systems.
AI/ML technologies have revolutionized industries through predictive maintenance, supply chain
optimization, and autonomous systems, while also advancing public safety and defense operations.
However, challenges such as data integrity, model transparency, and the need for human oversight
persist, particularly in high-consequence environments. The report emphasizes the critical role of
explainable Al (XAI) and human-computer interaction models like Human-in-the-Loop (HITL) and
Human-on-the-Loop (HOTL) in fostering trust and accountability. Balancing automation with
ethical responsibility and transparency is essential for the continued successful integration of AT/ML
into operational and strategic decision-making frameworks.
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EXECUTIVE SUMMARY

Artificial Intelligence (AI) and Machine Learning (ML) have become transformative forces across
private industry and government sectors, reshaping fields like operations research, logistics, and
decision-making. In private industry, AI/ML applications have revolutionized operations
management, automating processes such as scheduling, predictive maintenance, and supply chain
optimization. Operations research, which traditionally focuses on decision support and optimization,
has increasingly integrated AI/ML techniques to enhance the scale and accuracy of complex
problem-solving tasks. Government sectors, particularly in defense and public safety, have similarly
employed AI/ML to enable real-time decision-making in high-consequence environments, although
these applications often require a balance between automation and human oversight.

Despite the advantages of AI/ML in operations research and other fields, several challenges persist.
Ensuring data integrity, such as addressing missing or incomplete data, remains critical to
maintaining the reliability of AI/ML models. This is especially important in high-stakes
environments like autonomous vehicles and air traffic control, where even small errors can have
severe consequences. Another significant challenge is the transparency and interpretability of
AI/ML models, often referred to as "black box" systems. While operations tesearch models have
traditionally emphasized explainability, many AI/ML systems lack this clarity, making it difficult for
human operators to fully trust or understand Al-driven decisions. Efforts in explainable Al (XAI)
are progressing but further development is necessary to ensure that AI models can provide
interpretable and actionable insights.

As AI/ML continues to evolve, its integration with operations research and other domains will
depend on maintaining effective human-computer interaction. Human-in-the-loop (HITL) and
human-on-the-loop (HOTL) systems are essential to preserving human oversight while leveraging
AT’s ability to process vast amounts of data and optimize decisions. For long-term success, AI/ML
systems must strike a balance between automation and human involvement, ensuring transparency,
reliability, and ethical responsibility in both high-consequence environments and broader industry
applications.
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ACRONYMS AND TERMS
Acronym/Term Definition
Al Artificial Intelligence
ANOVA Analysis of Variance
DSS Decision Support Systems
EU European Union
GBT Gradient Boosted Trees
HITL Human in the Loop
HOTL Human on the Loop
ML Machine Learning
NN Neural Network
OECD Organization for Economic Cooperation and Development
OoM Operations Management
OR Operations Research
RF Random Forest
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
VAR Vector Autoregressive
XAl Explainable Atrtificial Intelligence
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1. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) have become pivotal technologies in the 21st
century, reshaping industries by automating complex tasks, delivering actionable insights from large
datasets, and enabling more efficient decision-making processes that were once exclusively human.
The increasing availability of data, alongside advancements in computational power and algorithmic
development, has allowed AI/ML to transcend academic research and become cornerstones of
modern industry and government functions.

Al and ML are distinct yet interconnected fields, each with its own evolution and methodologies.
Traditional statistical modeling laid the groundwork for AI/ML development, with an emphasis on
descriptive and predictive modeling. Al, broadly defined as systems that can make predictions or
decisions within human-defined parameters, often incorporates machine learning as a core
mechanism. Machine learning models are designed to learn from data, adapting their decision-
making capabilities without being explicitly programmed for every scenario. This flexibility makes
ML particularly valuable in environments that involve large volumes of data or where patterns are
difficult for humans to discern unaided.

Within private industry, AI/ML applications have revolutionized fields such as operations
management, logistics, manufacturing, and finance. These technologies have enabled companies to
automate processes that humans previously conducted, such as scheduling, inventory management,
and quality control, increasing both speed and scale. Al has also been used in predictive
maintenance, allowing industries to reduce downtime by forecasting when machines are likely to fail.
More advanced applications, such as human-robot collaboration in manufacturing and
reinforcement learning in supply chain optimization, continue to push the boundaries of what
AI/ML systems can achieve.

Government sectors ate also leveraging AI/ML for vatious applications, particulatly in areas like
defense, public safety, and transportation. High-consequence systems, such as autonomous vehicles
and air traffic control, rely on AI/ML for real-time decision-making. However, the integration of
these systems comes with significant challenges, such as ensuring accuracy, maintaining human
oversight, and safeguarding critical infrastructure. The human-computer interaction in these high-
stakes environments highlights the need for explainable Al, where humans must understand and
trust the decisions being made by machines.

Despite the advantages AI/ML brings to both industry and government, challenges remain. One
critical concern is the management of missing or incomplete data, which can compromise the
accuracy and reliability of AI/ML models. Additionally, while AI systems have proven capable of
replicating many human tasks, certain high-stakes environments still require human intervention,
either to provide oversight ot to handle novel situations that AI/ML systems cannot generalize from
past experiences. This human-in-the-loop model is essential in areas where errors can have
catastrophic consequences, such as autonomous vehicles or defense systems.

The purpose of this report is to explore the current and emerging applications of AI and ML across
private industry and government. We will review both the benefits and limitations of these
technologies, with particular attention paid to the challenges of data integrity, explainability, and
human-computer teaming. By analyzing these applications, we aim to provide a comprehensive
overview of how AI/ML systems are transforming operational efficiency and decision-making
processes, while also considering the ethical and technical challenges they introduce.
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2. ARTIFICIAL INTELLIGENCE/MACHINE LEARNING
FUNDAMENTALS

The fields of artificial intelligence (AI) and machine learning (ML) have seen rapid growth in recent
decades, reshaping the landscape of data-driven decision-making across numerous sectors. Despite
their interrelated nature, AI and ML draw upon different methodologies and approaches, often in
conjunction with traditional statistical models. Understanding the distinctions and overlaps between
these fields is crucial for determining how they can be effectively applied to solve specific problems.
This section provides an overview of the evolution of AI/ML, discusses their relationship to
statistics, and outlines their respective roles in modeling, prediction, and decision-making.

2.1. Evolution of the Field and Definitions

Statistics, machine learning, and artificial intelligence bear many similarities, including foundational
theories they draw on, methods they employ, and problems they are designed to address. Each of
these fields, however, has also seen its own independent developments geared towards specific and
specialized techniques and applications. As a result, it can be difficult to delineate these disciplines
and identify what methods are most appropriate for a given problem. This section compares and
contrasts views of statistics, ML, and Al commonly seen in existing literature and considers
strengths and weaknesses of each discipline.

Broadly, statistical modeling can be grouped into two “cultures” (Breiman, 2001). The first culture is
concerned with desctiptive and/or explanatory modeling, providing insights into how events played
out, the current state of the environment, and key relationships observed in historic data (Boulesteix
& Schmid, 2014). This approach assumes that the data generating process, a unified description of
relationships between inputs and outputs and of uncertainty in data, is known to the practitioner,
though parameters of the data generating process may be unknown. Through the use of traditional
statistical methods like descriptive statistics, linear regression, and ANOVA,' practitioners can
estimate relationships between inputs and outputs and precisely describe uncertainty in those
estimates. Experimental data are clearly useful to this culture of modeling, since the conditions by
which data are generated and observed can be understood and carefully controlled for. Other
disciplines in this culture, like economics and the social sciences, leverage “quasi-experimental” data,
which is not produced in an experimental setting but has characteristics that allow it to be used as
experimental data, often following some statistical corrections. While traditional statistics models
leveraged by this culture are almost exclusively estimated using computational resources and
procedures, these methods are usually not considered to be “machine learning”.

The second culture of statistical modeling is concerned with making predictions rather than
describing or explaining phenomena. As a result, highly-structured models that include detailed
information about the data generating process are unnecessary. Instead, this culture frequently
employs highly-flexible models that very closely approximate the data they were trained on. To
ensure models are not overfitted (i.e., memorizing the data rather than learning the relationships),
split sample techniques like cross-validation are frequently used. In this approach, the dataset is
divided into two subsets: one for training the model and the other for testing its performance,
providing an unbiased estimate of the model's predictive accuracy on unseen data. Training these
models with non-experimental data may result in models that do not capture causal relationships,
which could introduce bias into predictions. Nonetheless, these approaches are frequently used on

U ANOVA, or ANalysis Of VAriance, is a statistical method used to determine whether there are significant differences
between the means of three or more independent groups.
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massive non-experimental datasets and produce predictions that have operational value. Since these
approaches do not have a predefined structure and typically include all variables that could
potentially improve predictions, techniques to reduce the dimensionality of inputs to the model are
sometimes used. Table 1 lists analytical problems and associated modeling approaches that
commonly appeared in research covered in this literature review.

“Artificial intelligence” is a broad term that has been interpreted and applied in many different ways.
For example, the Organization for Economic Cooperation and Development (OECD )provides a
very broad definition of Al: ““A machine-based system that can, for a given set of human-defined
objectives, make predictions, recommendations, or decisions influencing real or virtual
environments...Al systems are designed to operate with varying levels of autonomy” (OECD,
2016). Generally, ML and statistics models and techniques are the tools with which Al systems
automate certain aspects of decision-making that were previously delegated to humans (Molnar,
Casalicchio, & Bischl, 2020). As a result, the function of Al for a given decision-making application
and associated risks are very similar to delegating aspects of decision-making to human analysts and
actors. In particular, humans are granted some (but not full) autonomy in their roles. The level of
autonomy granted is ideally selected by superiors to grant analysts some freedom to pursue lines of
inquiry and even enact limited policies, but also to ensure that no one individual can cause
substantial impacts and that a wider range of stakeholders/decision-makers are consulted for
especially consequential decisions. For example, (Brose, 2020) considers autonomous warfighting
systems and notes that human soldiers are granted limited and carefully-defined autonomy over their
actions, allowing them to make certain decisions and take certain actions under specific
circumstances but requiring involvement of commanding officers in other situations. The author
makes the case that Al warfighting systems must be governed similarly, granting a limited level of
autonomy to perform defined actions in certain situations but requiring outside intervention
otherwise. Of course, Al systems process information differently than humans, raising concerns
about explainability and interpretability. These characteristics of Al systems and how they compare
and interact with human systems is discussed in greater detail in Section 3.3.

Table 1: Common Analytical Problems and Modeling Approaches

Problem Modeling approach Example approach(es)

Direct causal inference Statistics Regression (e.g., linear,
logistic)

Indirect causal inference (e.g., | Statistics Regression (e.g., two-stage
using quasi-experimental data) least squares)
Estimating impacts of specific | Statistics Regression (e.g., difference-in-
policies (tretrospective and/or difference), regression
prospective) discontinuity, time-series

modeling (e.g., vector
autoregression, structural

models)
Classification into discrete ML Support vector machines, k-
categories means clustering, random

forests, neural networks
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Problem Modeling approach Example approach(es)

Dimensionality reduction ML Principal component analysis,
ridge regression

Prediction (e.g., real-valued, Statistics or ML Statistics: Regression (e.g.,
categorical) linear, logistic, multinomial),
structural models

ML.: Neural networks,
Gaussian processes, support
vector machines

2.2, Applications of Al to Operations Research and Management

OR is a field of study that emerged in World War II and has seen tremendous growth through the
information age. Broadly, OR aims to support decision-making through robust data-driven analyses,
striving to be a “scientific method of providing executive departments with a quantitative basis for
decisions regarding the operations under their control” (Morse & Kimball, 1947). OR analyses can
be either descriptive (to better understand functions and dynamics of systems and processes),
predictive (predicting and estimating the future state of systems and processes given current states),
or normative (prescribing a course of action based on current states, objectives, and constraints)
(Wacker, 1998). OR analyses leverage decision support systems (IDSSs), which includes information,
computation, and knowledge infrastructure, to translate data, develop insights, and ultimately inform
actions (Sprague Jr., 1980). Generally, DSSs tend to be data-focused (relying on observational data
frequently stored in databases), knowledge-focused (relying on background and context to establish
system rules), or model-based (relying on mathematical and computational models) (Holsapple,
2008).

Al and ML techniques have offered enormous potential for improving efficiency and effectiveness
of operations management (OM). In the most successful cases, AI/ML has been leveraged to (1)
automate processes that humans formerly conducted and perform those functions more quickly and
at larger scales, (2) process large amounts of varied data to produce insights that were difficult for
humans to glean, (3) enable machines/robots that operate more efficiently/effectively than humans
and/or in environments inhospitable to humans. However, AI/ML approaches have not been able
to effectively replace critical components of human decision-making. This section reviews literature
on AI/ML applications in operations research (OR) and operations management (OM), with a focus
on enumerating tasks for which machines could provide substantial benefits vs. tasks for which
human involvement has continued to be necessary.

There is significant overlap between the capabilities of AI/ML and the needs of OR and DSSs.
(Gupta, Modgil, Bhattacharyya, & Bose, 2022) developed a taxonomy to classify Al approaches,
DSS focus, and OR analysis type, shown in Figure 1. The authors note a few general areas in which
Al has successfully contributed to DSSs and OR: (1) Development and deployment of expert
systems that synthesize knowledge bases and make information easily retrievable to researchers and
decision-makers, (2) ML techniques, especially those that can process large amounts of disparate
data to produce insights, and (3) Natural language processing and related techniques that are capable
of analyzing unstructured data. Each of these strengths is an area in which AI/ML can effectively
replicate human activities but can do so faster, at larger scales, and/or with lower error rates.
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{ Al [ DSS [ OR
| | Expert | | Data | | Structure
systems focused based
| | Machine | | Knowledge | | Purpose
learning focused based
[ Natural | [ ) [ )
- language — fModeh — Time based
| processing | ocuse )
| | Vision & | | Certainity
Speech based
Y
. Solution
— Robotics 7 type based

Figure 1: AI, DSS, and OR Taxonomy (Gupta, Modgil, Bhattacharyya, & Bose, 2022)

(Fahle, Prinz, & Kuhlenkotter, 2020) reviewed a litany of ML methods and assessed their
applicability to a number of modern manufacturing processes. The authors’ high-level summary is
replicated in Table 2. This review reveals that ML methods can be brought to many aspects of
manufacturing and OM in general. In particular, neural networks appear to be especially useful for
predictions of complex system outcomes like costs and production schedules, while clustering and
classification methods and decision trees appear especially useful for production and logistics
management. Further, most ML methods commonly used in current manufacturing processes are
supervised methods, meaning that humans must classify the data that ML algorithms are trained on.
However, reinforcement learning algorithms, which take a trial-and-error approach similar to human
learning, have seen growing interest in recent years.

Table 2: Manufacturing Applications and Algorithms (replicated from (Fahle, Prinz, &
Kuhlenkotter, 2020)

Subtopic Application Algorithm(s)
Manufacturing process Scheduling Q-learning, random forest (RF),
planning decision trees

Cost and energy prediction Neural network (NN), support

vector machine (SVM), gradient-
boosted trees (GBT), RF

System modeling Logistic regression, RF, decision
trees, Bayesian network

Quality control Quality cost reduction Decision trees, NN, SVM
Process line quality Decision trees, Bayesian network
Predictive maintenance Remaining useful life Decision tree, NN, principal
components analysis
Logistics Scheduling NN, Q-learning, RF
12
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Subtopic Application Algorithm(s)
Robotics Human-robot collaboration Hidden Markov model (HMM), K
nearest neighbors (KNN),
clustering, NN
Path planning KNN, NN
Assistance and learning Assembly assistance NN
systems
Al-training concepts in Object recognition NN
learning factories
Process control and Production line GBT
optimization
Process and tool condition forecast NN, decision trees, RF, SVM,
regression

(Woschank, Rauch, & Zsifkovits, 2020) provide a review of how AI/ML methods could be applied
to next generation “smart logistics” and “Industry 4.0”, which focus on modernizing industrial
manufacturing through increased interconnectivity, digitalization, and automation. The authors
found that the plurality of modern research (~42% of published papers) was focused on cyber-
physical systems for logistics and predictive maintenance. Other focal areas included improvement
of operational logistics and intelligent transport logistics (~24% of published papers) and strategic
and tactical process optimization (~12% of published papers). Overall, these reviews indicate that
there is significant and ongoing development of methods to bring AI/ML methods to industry and
OM of the future.

Several studies have noted the promise of AI/ML approaches for supply chain and logistics
management. (Pournader, Ghaderi, Hassanzadegan, & Fahimnia, 2021) reviewed Al applications in
supply chain management and identified several clusters of similar approaches based on their
bibliometric analysis. The authors grouped approaches into three main Al functions: Decision
making (including planning, modeling/simulation, scheduling, and optimization), learning (analyzing
frequently large and disparate data to understand behavior and/or make predictions), and hybrid
approaches (integrating learning and decision-making functions), listed in Table 3.

Table 3: AI/ML For Supply Chain Management (with info from (Pournader, Ghaderi,
Hassanzadegan, & Fahimnia, 2021))

Function Approach clusters Example method(s)
Decision making Simulation and system Discrete-event simulation,
dynamics system dynamics models
Genetic algorithms and agent- Multi-agent/game theory
based modeling models, mixed integer
programming
Stochastic programming Robust optimization, regression
Learning Time-series analysis Vector autoregressive (VAR)
models, spectral analysis
Big data analytics Deduction graphs
13
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Function Approach clusters Example method(s)

Neural networks and support
vector machines

Hybrid Al methods for sustainable SCM | Delphi method, fuzzy cognitive
maps

Al methods for supply chain risk
management

14
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3. IMPLEMENTATION CONSIDERATIONS

In the rapidly evolving field of AI/ML applications, ensuting the integtity and reliability of data is
critical to developing robust models. However, real-world data is often incomplete, leading to
challenges that can impair model performance. This section addresses these concerns by exploring
the different types of missing data, their potential impacts on AI/ML systems, and the strategies
available to mitigate these challenges. Additionally, the role of human interactions with Al and the
need for explainability in AT/ML models are highlighted, emphasizing the importance of trust and
transparency in the successful implementation of Al solutions. These discussions aim to provide a
comprehensive understanding of both technical and human-centered considerations essential for
advancing AI/ML technologies in complex environments.

3.1. Missing Data in AI/ML Applications

In AT and ML applications, the integrity and completeness of data are paramount to the
development of robust and accurate models. However, missing data is an omnipresent challenge that
can significantly impair the performance and reliability of these models. Missing data can arise from
various sources, including sensor malfunctions, human error, or limitations in data collection
processes. Addressing this issue is crucial, as the presence of incomplete data can lead to biased
estimates, reduced statistical power, and ultimately, flawed decision-making. This section delves into
the types of missing data, their potential impacts on AI/ML applications, and the strategies
employed to mitigate these challenges, ensuring the development of more resilient and effective
models.

Missing data can be broadly categorized into three classes based on the mechanism of their
occurrence: Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not
at Random (MNAR). These classifications, as detailed by (Litte & Rubin, 2002) and further
elaborated in the seminal work by (Schafer & Graham, 2002), provide a framework for
understanding the underlying patterns of missingness and inform the appropriate strategies for
handling them.

Missing Completely at Random (MCAR) occurs when the probability of data being missing is
independent of both observed and unobserved data. In other words, the missingness is entirely
random and does not depend on any variables within the dataset. For instance, if a sensor
occasionally fails to record data due to random technical glitches, the resulting missing data can be
considered MCAR. When data are MCAR, the analysis remains unbiased, although the statistical
power may be reduced due to the smaller sample size (Schafer & Graham, 2002).

When data are Missing Completely at Random (MCAR), the missingness is independent of both
observed and unobserved data, making it the simplest type of missing data to handle. One common
method to address MCAR is listwise deletion, where any record with missing values is excluded
from the analysis. This approach is straightforward and maintains the integrity of the dataset, but it
can lead to a significant reduction in sample size, potentially impacting the statistical power of the
analysis (Litte & Rubin, 2002). Another method is mean imputation, where missing values are
replaced with the mean of the observed values for that variable. While this method is easy to
implement, it can underestimate the variability and lead to biased parameter estimates (Schafer &
Graham, 2002). More sophisticated techniques, such as multiple imputation, can also be used for
MCAR data. Multiple imputation involves creating several complete datasets by imputing missing
values multiple times and then combining the results to account for the uncertainty associated with
the imputed values (Rubin, 1988).

15
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Missing at Random (MAR) describes a scenario where the probability of missing data is related to
observed data but not to the unobserved data. For example, in a medical study, if older patients are
less likely to respond to follow-up surveys, the missingness is related to the age variable, which is
observed. Under the MAR assumption, the missing data mechanism can be accounted for by
conditioning on the observed data (Litte & Rubin, 2002).

For data that are Missing at Random (MAR), the probability of missingness is related to the
observed data but not the unobserved data. This allows for more advanced imputation methods that
leverage the relationships within the observed data. Multiple imputation is particularly effective for
MAR data, as it creates multiple datasets with different imputed values based on the observed data,
and then combines the results to produce estimates that reflect the uncertainty of the missing data
(Rubin, 1988). Another method is the Expectation-Maximization (EM) algorithm, which iteratively
estimates the missing values by maximizing the likelithood function based on the observed data
(Dempster, Laird, & Rubin, 1977). Additionally, model-based approaches, such as using maximum
likelihood estimation within a structural equation modeling framework, can be employed to handle
MAR data by incorporating the missing data mechanism directly into the model (Baraldi & Enders
2010).

Missing Not at Random (MNAR) occurs when the probability of missing data is related to the
unobserved data itself. This type of missingness is particularly challenging because the missingness
mechanism is inherently tied to the missing values. For instance, in a survey on income levels,
individuals with higher incomes might be less likely to disclose their earnings, leading to a non-
random pattern of missing data.

bl

Addressing Missing Not at Random (MNAR) data is more complex, as the missingness is related to
the unobserved data itself. One approach to handle MNAR data is to use selection models or
pattern-mixture models, which explicitly model the missing data mechanism. Selection models
involve specifying a model for the missing data process and then jointly modeling the outcome and
the missing data mechanism (Litte & Rubin, 2002). Pattern-mixture models, on the other hand,
stratify the data based on the pattern of missingness and then model each stratum separately (Little,
1993). Sensitivity analysis is another crucial technique for MNAR data, where different assumptions
about the missing data mechanism are tested to assess the robustness of the results (Molenberghs,
Beunckens, Sotto, & Kenward, 2008). In some cases, external data or auxiliary variables that are
related to the missingness can be incorporated to inform the imputation process and reduce bias
(Collins, Schafer, & Kam, 2001).

In addition to the challenges posed by missing data, AI/ML applications often face the separate but
equally critical issue of incomplete utilization of available variables due to data collection or data
architecture constraints, such as siloing. Data siloing occurs when data is isolated in separate systems
or departments, preventing comprehensive analysis and integration. This fragmentation can lead to
suboptimal model performance, as key variables that could enhance predictive accuracy and insights
are excluded from the analysis. For instance, in healthcare, patient data might be dispersed across
different departments (e.g., radiology, pathology, and primary care), each maintaining its own
database with limited interoperability. As a result, crucial variables like imaging results or lab tests
may not be incorporated into predictive models, thereby reducing their effectiveness. Addressing
these issues requires robust data integration strategies, such as the implementation of data lakes or
federated learning approaches, which enable the aggregation and analysis of disparate data sources
while maintaining data privacy and security (Kambatla, Kollias, Kumar, & Grama, 2014). By
overcoming these architectural barriers, organizations can leverage the full spectrum of available
data, leading to more comprehensive and accurate AI/ML models.
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By employing these tailored methods to address MCAR, MAR, and MNAR, researchers can mitigate
the impact of missing data on their analyses, leading to more accurate and reliable AI/ML models.
Understanding the nature of the missing data and selecting appropriate techniques is essential for
maintaining the integrity and validity of the results.

3.2. Human/Al Interactions

AI/ML methods have tremendous technical potential, but it is critical that those approaches
consider and optimize coordination with human systems to make them most effective. This process
includes building and developing with human users in the short term and maintaining trust while
staving off complacency in the long term. This section discusses strategies and factors that can
improve trust in Al as well as methods to maintain quality human-Al interactions that include
human critical thinking.

Previous research has considered factors that make people more or less likely to trust and adopt Al
assistance. Multiple studies have conducted experiments looking into the relationship between
willingness to accept Al suggestions and participants’ confidence in Al and themselves (Schaffer,
O'Donovan, Michaelis, Raglin, & Hollerer, 2019). In (Chong, Zhang, Goucher-Lambert, Kotovsky,
& Cagan, 2022), study participants were presented with a chess board state and asked to either make
their own move or accept a move suggested by an Al player. Participants were also asked to assess
confidence in their own chess abilities as well as the Al player’s abilities. The study found that
individuals’ confidence in Al did not significantly affect their propensity to accept or reject Al
suggestions. Instead, participants’ decision to trust Al was driven by confidence in themselves; in
particular, participants who rated their own chess abilities highly tended not to accept Al
suggestions, independent of participants’ assessment of Al capabilities. Further, the study found that
participants who had low confidence in their own abilities tended to attribute poor Al performance
and suggestions to themselves, further reducing their self-confidence and making it more likely they
will trust Al suggestions (good or bad) in the future. The authors postulate long-term dynamic
implications where a dichotomy between those who trust Al suggestions and those who do not is
reinforced by interactions with the Al system.

These experiments illustrate the importance of thoughtful integration of AI/ML with human
systems. First, as outlined in (Jacovi, Marasovic, Miller, & Goldberg, 2021), it is critical that trust is
developed between human users and Al systems. The authors note that in both human-human and
human-Al interactions, trust is critically dependent on anticipation and vulnerability: If Party A
anticipates Party B will act in A’s interest and if A is willing to accept vulnerability to B’s actions,
then A trusts B. Thus, in order to build and maintain trust between humans and Al systems, it is
necessary that humans can expect Al to behave in predefined ways, and that humans are willing to
accept the consequences from any deviation from that expected behavior.

The European Union (EU) outlined several qualities of Al systems that can improve trust in Al
systems to both execute their intended tasks and limit negative externalities, listed in Table 4 (EU
Commission, 2020). These guidelines cover several technical requirements for trustworthy Al (e.g.,
technical robustness and safety, transparency, accountability) as well as situations with especially
high consequence of undesired behavior (e.g., human agency and oversight, diversity/non-
discrimination/fairness, societal and environmental well-being). Notably, explainability and
interpretability of Al systems are common themes across factors of trustworthy Al and will be
discussed in greater detail in the following section.
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Table 4: EU Guidelines for Trustworthy Al

Requirement for Trustworthy Al Factors

Human agency and oversight e Foster fundamental human rights
e Support users’ agency
e Enable human oversight

Technical robustness and safety Resilience to attack and security
Fallback plan and general safety
A high level of accuracy
Reliability

Reproducibility

Privacy and data governance

Ensure privacy and data protection
Ensure quality and integrity of data
Establish data access protocols

Transparency High-standard documentation
Technical explainability
Adaptable user-centered explainability

Make Al systems identifiable as non-human

Diversity, non-discrimination, and fairness e Avoid unfair bias
o Encourage accessibility and universal design
e Solicit regular feedback from stakeholders

Societal and environmental well-being ¢ Encourage sustainable and eco-friendly Al
o Assess the impact on individuals
o Assess the impact on society and democracy

Accountability Auditability of algorithms/data/design
Minimize and report negative impacts
Acknowledge and evaluate trade-offs

Ensure redress

Longer-term issues that can afflict Al system implementations include complacency and systematic
distrust. Without proper controls, individuals can gravitate towards one of these extremes, either
placing too much trust in the Al system and taking suggested actions without critical assessment or
completely refusing to engage with Al systems (Zerilli, Bhatt, & Weller, 2022). Thoughtful design of
Al systems and controls to moderate engagement with these systems maintain “algorithmic
vigilance” that lies between complacency and distrust. The ability of Al systems to explain their own
reasoning and processing can help build and maintain trust. That said, Al explainability may not
reduce complacency as trusting individuals tend to underemploy analytical thinking when presented
with Al suggestions and even take explanations (right or wrong) as a signal of AI competence
(Bansal, et al., 2021). So-called “cognitive forcing functions” have been proposed as method to
increase engagement in human-Al interactions. Specifically, human decision-making relies on a mix
of fast, heuristic-based thinking (i.e., System 1 thinking) and slow, deliberate, analytical thinking (i.e.,
System 2 thinking) (Bucinca, Malaya, & Gajos, 2021). System 1 thinking is typically very fast and can
be accurate but can be prone to systematic bias and errors especially as environments or conditions
change. By making minor changes to how Al suggestions are presented, it is possible to increase the
rate of System 2 thinking. Examples of successful cognitive forcing functions include requiring
humans to make a decision prior to seeing Al suggestions (Green & Chen, 2019), delaying the
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presentation of Al suggestions (Park, Barber, Kirlik, & Karahalios, 2019), and giving human users
the option of whether and when to see Al suggestions (Fitzsimons & Lehmann, 2004).

3.3. Al/ML Explainability

Explainability and interpretability of Al systems serves two purposes. First, as discussed in the
previous section, explanations of how the Al system arrived at its findings and recommendations is
a major factor in building and maintaining humans’ trust in those systems. Second, explainability and
interpretability provide a channel through which human users can critically assess Al outputs,
though cognitive forcing functions may be necessary to get humans to engage in System 2 thinking.
This section discusses methods that have been developed to increase the explainability and
interpretability of Al systems with the goal of improving human-Al interactions and teaming.

It is important to first define what is meant by an interpretable AI/ML model. Many AI/ML
methods are extraordinarily flexible and complex, meaning that they can approximate a wide range
of functions and behaviors. These methods can also be difficult for humans to grasp the logic
AI/ML methods used to artive at their conclusions. As a result, many AI/ML methods are
considered “black boxes” whose inner workings are largely incomprehensible to human users.
Interpretable AI/ML leverages existing context and knowledge from human users to provide
explanations that are (at the very least) more understandable than their black box counterparts
(Samek, Wiegand, & Muller, 2017). As a result, the efficacy of a given interpretable AI method
depends critically on the knowledge human users possess, which is used to contextualize Al logic.

Many traditional statistical models are inherently more interpretable than ML models because of
constraints practitioners commonly impose on model complexity (Molnar, Casalicchio, & Bischl,
2020). In particular, traditional statistical models frequently make specific assumptions over
functional forms and distributions (up to parameter values). Since these models are simpler and
more constrained, it is generally easier for human analysts to correctly interpret model logic and
results. Some models lend themselves particularly well to interpretation, including linear regression,
decision trees, and decision rules (Huysmans, Dejaeger, Mues, Vanthienen, & Baesens, 2011). For
these types of interpretable models, practitioners can often gain significant insights into the model
by investigating a relatively small number of model components (e.g., parameter estimates, decision
logic, goodness-of-fit measures). That said, more complex forms of these models (e.g., when the
number of regressors is large) can still be difficult to interpret. Dimensionality reduction techniques
(e.g., ridge regression, LASSO) can be useful in limiting the number of components practitioners
must investigate to adequately interpret a given model (Tibshirani, 1996). Finally, even for more
complex models, important interpretations can be drawn from a small number of model
components. For example, in random forest models, just two components can be sufficient for
analyzing tree structure and feature importance (Breiman L. , 2001).

Researchers have also developed and successfully used several model-agnostic methods of increasing
ML interpretability. These methods are often categorized as either local, with the ability to explain
specific model predictions, or global, with the ability to explain model behavior generally over a
range of environments and conditions (Linardatos, Papastefanopoulos, & Kotsiantis, 2020).
Counterfactual analyses are frequently used for local interpretability by permuting model inputs and
assessing whether the associated change in predictions aligns with analysts’ intuition and
understanding of the system (Miller, 2019). Shapley values, a concept from cooperative game theory
that fairly distributes payouts among players based on their contributions, can also provide local
interpretability by quantifying how much each model input/featute contributes to forming a specific
prediction (Strumbelj & Kononenko, 2014). Global interpretability methods are very similar,
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quantifying either the importance of specific features or the effect of permuting features. Feature
importance methods investigate shares of outcome variance explained by individual features or
quantify the effect of removing features (where larger impacts to predictions indicate greater
importance of features). Feature effects methods investigate the impact of augmenting a subset of
model features and assessing whether effects on predictions matches analysts’ understanding
(Molnar, Casalicchio, & Bischl, 2020).

Finally, surrogate models are another model-agnostic method of increasing ML interpretability.
Surrogate models have been used extensively in the field of uncertainty quantification, where ML
models are used to approximate (i.e., act as a surrogate for) computer simulations or real-world
experiments that are time- and resource-intensive to conduct. In that context, surrogate models can
dramatically reduce time and cost of analysis, at the downside of increasing uncertainty in
predictions (Sudret, Marelli, & Wiart, 2017). Surrogate models for interpretable ML are used to
approximate black box algorithms, and the surrogate model form is chosen to be more interpretable
than the black box algorithm it is approximating. As a result, the surrogate model behaves similarly
to the original ML model but is more digestible and comprehensible to humans. This surrogate
model approach often leverages traditional statistical models that tend to be inherently more
interpretable, such as linear regression (including generalized linear models and generalized additive
models), logistic regression, decision trees, and decision rules (Molnar, Interpretable machine
learning, 2020).
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4, REINFORCEMENT LEARNING

Reinforcement learning (RL) constitutes a set of ML algorithms that train an agent to learn to act in
an environment in a way that maximizes some long-term reward function (Wang, et al., 2022). RL
has been successfully utilized in a wide variety of applications from controlling autonomous vehicles
to beating top human players in games such as Go (Holcomb, Porter, Ault, Mao, & Wang, 2018),
and constitutes a key component of many artificial intelligence (AI) system. Ultimately, the objective
of RL is to determine a po/icy, which can be loosely described as a set of rules that define how an
agent should respond to different environment states. More precisely, a policy is a mapping of
environment states to optimal actions. A key feature of RL is that a policy’s actions maximize long-
term rewards, not myopic rewards. Therefore, a successfully trained agent will sacrifice a smaller
immediate reward in favor of a larger, long-term reward. While RL-based algorithms have been in
existence for decades, the integration of deep neural networks (DNNs) into RL frameworks has
greatly accelerated performance gains. Deep reinforcement learning (DRL) utilizes DNNs to identify
features of complex environments and to encode environment knowledge in a way that otherwise
would not be tractable to store computationally. RL algorithms can be broadly categorized
according to two different attributes. The first is whether an algorithm is on-policy or off-policy. An on-
policy algorithm interacts with the environment (i.e., collects data) using the most current learned
policy; whereas, an off-policy algorithm relies on stored environment data that has been generated
from past evolutions of the policy. The second category is whether the algorithm is value-based or
policy-based. A value-based algorithm predicts the “goodness” (i.e., the expected total future
discounted reward value) of each action in a given state and uses this goodness-value to select the
best action. In contrast policy-based algorithms directly generates an action given the observed
environment state. Many extensions of single-agent RL exist and consume much current research
focus. Multi-agent RL considers algorithms that enable a team of agents to achieve a goal under
various assumptions of information sharing and coordination. Adversarial RL seeks to train
opposing agents against one another to achieve their respective goals.

The application of RL to a complex problem is not without challenges. A key challenge in any RL
problem is the so-called credit assignment problem. Given that hundreds, or even thousands, of actions
are taken during the course of an environment episode, how does one ascertain the degree to which
a single action effected the final outcome? An extreme example of this would be a Chess game, in
which the agent receives a terminal reward of “win” or “lose” but must allocate this reward over
every past move. Another challenge is for applications that require a hierarchy of decisions spanning
disparate time horizons. For example, one could consider an autonomous vehicle application that
requires a high-level decision of planning the vehicles next way point seconds or minutes ahead but
also requires lower-level immediate control inputs to keep the vehicle within its lane and to avoid
collisions. In practice it is typically not possible to train a single RL agent to co-determine these
higher- and lower-level decisions. Other challenges for RL include devising approaches to
incorporate explainability of decisions as well as providing guarantees that the agent will not make
unsafe decisions in safety-critical applications.

41. Hierarchical Reinforcement Learning

In this section, we provide a detailed overview of hierarchical reinforcement learning (HRL). HRL is
a class of techniques developed for learning policies in complex applications where a hierarchy of
decisions is required. Consider managing a fleet of vehicles to manage real time delivery demands.
Here the higher-level problem is to assign a delivery to a vehicle based on the vehicle’s current
location and task queue as well as the locations and taskings of all other vehicles. The lower-level
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problem is to prioritize the delivery taskings of individual vehicles and to determine the route by
which they are delivered. HRL avoids the difficulty of training a single agent to make both these
decisions by training separate agents to specialize in decisions at each level of the hierarchy. In
general an HRL policy is comprised of two major components (Pateria, Subagdja, Tan, & Quek,
2021). The first is the hierarchical policy, which is a state-to-subtask-to-action mapping. In other
words, the hierarchical policy is a trace across all levels of the hierarchy that ends in a primitive
action taken by the agent. The second component is subtask discovery. This is the ability to identify
how to partition each level of the hierarchy into separate task regions. For example, a person driving
a vehicle may have different mental operating modes for driving on a smooth highway, merging
onto an interstate, and handling stop-and-go traffic. The partitioning of the overall driving
experience into these different operating modes is akin to discovering the subtasks which must be
performed.

There are three broad categorizations for classifying HRL algorithms. The first is subtask discovery;
that is, whether the algorithm automatically identifies and defines subtasks to be accomplished. If
prior knowledge of the task structure exists, subtasks can be defined a priors by human experts and
trained on their respective goals. The higher-level agent then must be trained to enable the
appropriate subtask. On the other hand, algorithms can automatically define subtasks as they create
the hierarchical policy. Regardless of whether subtasks are defined a prior, learning a hierarchical
policy is nontrivial. The two other categorizations are whether an algorithm for single or multiple
agents and whether the goal is to learn a single or multiple tasks.

Single-agent HRL algorithms have been demonstrated in a variety of complex applications. Tessler,
et al. demonstrate the capacity of HRL to create a lifelong learning system that learns skills and
retains knowledge that can be transferred between different tasks to play the computer game
Minecraft (Tessler, Givony, Zahavy, Makowitz, & Mannor, 2017). They couple a Deep Skill Module
that has been trained @ priori on various tasks, with a Hierarchical Deep Reinforcement Learning
architecture that selects to either execute a single primitive action for a single time period or an
entire skill over multiple time periods. The authors demonstrate their framework using a three-room
Minecraft environment that requires three different tasks involving a block. Gu, et al. apply HRL to
autonomous driving in a way the provides guarantees that the vehicle will not enter unsafe states
(Gu, et al., 2023). Here they use an HRL framework with two levels. The high-level agent generates
safe goals for the vehicle to navigate towards while the low-level agent navigates between adjacent
goals. A noteworthy outcome of their research is a proof-of-concept that HRL-based schemes can
ensure an agent does not execute a sequence of actions that ultimately leads to an undesirable
outcome.

b

Applications for multi-agent HRL approaches have also been explored. Jendoubi and Bouffard use
an options framework, where an upper-level agent selects amongst lower-level policies that are
executed until their respective termination conditions are met (Jendoubi & Bouffard, 2023). They
demonstrate their approach on two different scheduling problems for microgrids that require the
coordination of multiple power- and load-generating components. The problem of air traffic
management can also be addressed using multi-agent HRL (Spatharis, et al., 2023). Here agents are
individual aircrafts which must coordinate their departure delays and trajectories in a way that
satisfies airspace capacity constraints. A set of hierarchical policies operates at different levels of
temporal abstraction to coordinate the aircraft. Lastly, HRL is integrated with graph neural networks
by Yang for traffic signal control (Yang, 2023).
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4.2. Reinforcement Learning Requirements and Outcomes

In this section, we describe the general computational and data requirements for implementing RL
as well as the outcomes of the learning process. The computational requirements of RL vary
significantly based on the complexity of the application. Classical RL algorithms can be implemented
using simple data tables and elementary computers. Most modern RL applications involve Deep
Reinforcement Learning (DRL), where RL is integrated with DNNs, which are computationally
expensive. A DNN designed to discern complex environment features may be composed of
hundreds to millions of neurons, which all must be trained using the backpropagation algorithm.
Training DNNSs efficiently requires Graphical Processing Units (GPUs), which can more efficiently
perform the matrix operations required for backpropagation than a traditional Central Processing
Unit (CPU). Larger neural networks are typically trained on GPU clusters, which contain tens to
thousands of GPUs. In addition to neural networks, RL requires substantial computation to
generate training data by conducting numerous environment simulations. In practice, executing
these simulations, which are typically performed on CPUs, is often the bottleneck in the training
process. Therefore, computational implementations often involve parallel processing with high-
performance CPUs.

Unlike supervised machine learning techniques that use labeled training data, RL uses episodic data
collected from interactions with an environment. These episodic data elements are composed of
four components: (i) the current environment state, (ii) the action taken by the agent, (iii) the reward
received, and (iv) the next environment state at which the agent arrives after taking the action. Off-
policy RL algorithms can be trained using static, historical episodic data. For example, an agent
could, in principle, be trained to play chess effectively if a large database of past games were
available. However, whether using an off-policy or on-policy algorithm, an agent typically needs to
periodically generate additional data by interacting with an environment as it continues to learn and
improve its policy. This requires an accurate simulation of the environment so that the agent can
observe realistic outcomes of its actions. Therefore, a critical component of RL is the verification
and validation (V&V) of the underlying simulation environment used for generating training data.
For a military application, the V&V required for this simulation is analogous to the vetting of
wargaming or training scenarios for personnel.

The outcome of the RL process is a policy that prescribes the best action to take given the current
state of the environment. Assuming properties of the environment remain static, an agent only
needs to be trained once. In practice, most implementations of RL utilize DNNs, and the tangible
outcome is a trained neural network that can output an optimal action given an encoded observation
of the environment as an input. The energy requirements for evaluating a policy are the
computations required to evaluate the DNN. In many real-world applications, the environment
changes over time. In such cases, the agent must be periodically retrained using simulations that are
more representative of the current environment. Fine tuning an agent for differing environment
conditions is often much faster than the time required to train an agent from scratch. Much of the
knowledge acquired by the agent can be “transferred” to similar tasks. For example, an RL agent
trained to drive in good weather could utilize much of its knowledge of object recognition and
vehicle dynamics to learn to drive in inclement weather.

4.3. Explainability Approaches for Reinforcement Learning

Explainable Artificial Intelligence (XAI) is a rapidly evolving area of research. The goal is to develop
techniques that provide human-understandable explanations of what input features are most salient
to an Al-systems’ decisions and the impacts those features have. Currently there are no universally
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agreed-on metrics for defining explainability, and the XAl approaches taken tend to be very specific
to their intended audiences. The consequence is that XAl approaches are relatively inchoate and not
standardized, so it is not straightforward to pinpoint the best techniques to utilize for a given
application.

A comprehensive overview of XAl approaches for DRL is given by Heuillet, et al. (Heuillet,
Couthouis, & Diaz-Rodriguez, 2021). The authors detail numerous approaches for XAl that have
been considered to date for DRL. State representation learning is class of approaches for building a
low-dimensional representation of a complex state space so that meaningful features can be
identified. Several techniques attempt to learn explainability while learning the agent’s policy. Reward
decomposition divides an agent’s reward function into different parts so that actions can be
classified by the reward components they are intended to maximize. It is also possible to obtain
minimal sufficient explanations, the smallest set of reasons why an agent takes a particular action, as
well as construct action influence models that trace relations between actions and outcomes. An
approach specific to HRL is observing which subgoals the high-level agent determines are optimal at
a given time based on environment features. Some approaches utilize those developed for DNN
image classification, such as projecting saliency maps (i.e., heat maps) onto a visual input to highlight
the features that most influenced the DNN’s output.

That explainability only has meaning with respect to human beliefs and interpretations is explored
more deeply by Vouros (Vouros, 2022). Here different models for the explainability problem are
proposed that include various criteria for how humans may interpretate an agent’s actions with
respect to their understanding of the environment as well as the agent’s objectives and abilities.
Some more general approaches for XAl are outlined such as identifying critical state-action pairs,
where taking the wrong action causes a large decrease in future rewards. A related approach involves
constructing contrastive explanations by choosing a different action than that prescribed by the
optimal policy. Off-policy evaluation identifies influential environment state transitions by
estimating the value of a policy using data collected from a different policy.
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5. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
APPLICATIONS IN PRIVATE INDUSTRY AND GOVERNMENT

Al and ML have become central to technological advancements across both private industry and
government sectors. The ability to analyze vast amounts of data, automate processes, and improve
decision-making efficiency has made AI/ML invaluable tools in a wide range of applications. While
the private sector has leveraged AI/ML to enhance operations, logistics, manufacturing, and
customer interactions, the public sector has focused on using these technologies to improve public
services, increase safety, and streamline complex systems such as defense and transportation.
Despite the broad adoption of AI/ML, challenges such as data integrity, human-computer
interaction, and system transparency remain, particularly in high-consequence environments. This
section explores the diverse applications of AI/ML in both sectors, highlighting their impact and the
unique obstacles faced in these different contexts.

5.1. Overview of AI/ML Applications in Government and Industry

Artificial Intelligence (AI) and Machine Learning (ML) have emerged as pivotal technologies across
both government and private industry, offering substantial potential to revolutionize operations and
decision-making processes. In government, these technologies are being applied to critical areas such
as defense, public safety, healthcare, and infrastructure management, while private industry uses
AI/ML to optimize processes, enhance customer expetiences, and increase profitability. The
integration of AI/ML has led to considerable successes in both sectors, with improved efficiency,
precision, and the ability to analyze vast amounts of data more effectively than traditional methods.

Despite these successes, the adoption of AI/ML also presents significant challenges, particulatly in
areas requiring high-consequence decision-making, where errors or system failures could result in
severe harm. Issues such as data integrity, algorithmic bias, ethical concerns, and transparency often
complicate the deployment of AI/ML systems, especially when human oversight is limited or when
these technologies are applied in sensitive environments like healthcare or defense. This section
explores several real-wotld applications of AI/ML across both sectors, examining their strengths,
the opportunities they present, and the obstacles they face.

One key area of AI/ML application is in government-run traffic management systems, where cities
like Los Angeles have leveraged Al to reduce congestion and enhance public safety. For example,
Los Angeles employs an advanced adaptive traffic control system that uses real-time data from
thousands of cameras and sensors to adjust traffic signals. This Al-powered system has been shown
to reduce congestion by up to 16% during peak hours. Similar systems have been implemented in
other cities around the world, such as Hangzhou, China, where Alibaba’s City Brain uses Al to
analyze data from millions of sensors, optimizing traffic flow and reducing emergency response
times by up to 50% (PYMNTS, 2022). These systems are effective in real-time adjustments to traffic
flows, providing a clear efficiency boost compared to human-operated systems. However, challenges
such as data quality and potential biases in how traffic is prioritized can lead to uneven outcomes.
For instance, flawed sensor data or biased algorithmic designs could disproportionately affect certain
communities, highlighting the importance of accurate, unbiased data in Al-driven public systems.

In the defense sector, one of the most significant Al initiatives is the U.S. Department of Defense’s
Project Maven. This project utilizes machine learning algorithms to analyze video data collected by
drones, helping military personnel quickly identify and track objects of interest. The system greatly
enhances the speed and accuracy of intelligence gathering, allowing for faster decision-making in
combat scenarios. The key strength here is the efficiency Al brings to intelligence operations by
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sifting through massive amounts of data far more quickly than human analysts. However, this
efficiency comes with ethical concerns. Critics have raised questions about the potential for Al-
driven military operations to make decisions that could result in unintended civilian casualties. The
“black box™ nature of some machine learning algorithms further complicates matters, as the lack of
transparency makes it difficult for humans to understand the rationale behind Al-driven decisions.
This raises concerns about accountability and the potential for Al to be used in lethal operations
without proper oversight (Cummings, 2023).

Another critical defense application is the use of Al in autonomous systems, such as unmanned
aerial vehicles (UAVs) and autonomous combat drones. These systems use Al to navigate, identify
targets, and execute missions with minimal human intervention. For example, the U.S. military has
been testing Al-powered autonomous drones capable of conducting reconnaissance and even
engaging in combat scenarios. The strength of these autonomous systems lies in their ability to
operate in hazardous environments without risking human lives, improving operational efficiency
and reducing personnel exposure to danger. However, they raise significant challenges related to
accountability, control, and ethical decision-making. Critics argue that delegating life-or-death
decisions to machines, particularly in unpredictable combat environments, is fraught with risks, and
the lack of human oversight could lead to unintended consequences, including violations of
international law (RAND, 2020).

Healthcare offers another promising but complex domain for AI/ML, patrticulatly in improving
diagnostics and personalized medicine. IBM’s Watson for Oncology, for instance, uses Al to analyze
patient data and medical literature to assist doctors in determining cancer treatments. While this
application of Al can lead to more accurate and personalized care, challenges such as trust in
machine-generated recommendations and the risk of bias in the data used to train these models
remain significant obstacles. If these biases are not addressed, Al-driven healthcare systems may
unintentionally perpetuate inequalities in care (Ross & Swetlitz, 2017).

In private industry, AI/ML has been particularly successful in financial services, where companies
use these technologies to detect and prevent financial crimes such as fraud and money laundering.
For example, machine learning is being increasingly used in anti-money laundering (AML) efforts to
analyze large datasets, recognize suspicious patterns, and flag high-risk transactions for further
investigation. According to a McKinsey report, machine learning has become a game-changer in the
fight against money laundering by improving the efficiency and accuracy of detection systems. These
Al-powered systems significantly reduce false positives and help institutions comply with regulatory
requirements more effectively. However, challenges remain, particularly in the need to continuously
update these models to keep pace with evolving criminal tactics. Additionally, maintaining the
transparency and interpretability of these Al systems is critical to ensure that financial institutions
and regulators can trust the decisions being made by the models (Doppalapudi, et al., 2022).

In summary, Al and ML have demonstrated the capacity to transform both government and private
industry by increasing efficiency, enhancing decision-making, and providing innovative solutions to
complex problems. Government applications such as traffic management and defense illustrate how
Al can streamline operations and improve safety, while healthcare applications highlight the
potential for improved diagnostics and personalized care. In private industry, the use of AI/ML in
areas like financial fraud detection shows the value of these technologies in mitigating risks and
optimizing operations. However, these advancements are tempered by challenges such as data
quality, algorithmic bias, and ethical considerations, which must be addressed to ensure the
responsible and effective use of AI/ML. As these technologies continue to evolve, finding the right
balance between innovation and oversight will be critical to their successful deployment. The next
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section will delve deeper into how AI/ML is applied in high-consequence systems, where the stakes
are exceptionally high and reliability is paramount.

5.2. Planes, Train(ing)s, and Automobiles: Applications in High-Consequence
Systems

High-consequence systems are those in which failures or errors can lead to significant harm or
substantial negative outcomes, affecting safety, security, or critical operations. These systems often
operate in environments where reliability and accuracy are paramount, as the stakes involved are
exceptionally high. One notable example is self-driving vehicles, which not only have to process
large amounts of information and make real-time choices on the road but also integrate into systems
with human-driven vehicles. This application is generally seen as a “high-consequence” application
of AI/ML because errors made on the road can cause harm to drivers, passengers, pedesttians, and
property (Goodall, 2014). Additionally, these systems must be able to process and react to a large
number of possible scenarios, each of which may be novel to the system. Some of these problems
can be solved by generalizing from prior experience, while others may require novel approaches. For
example, a system trained to avoid collisions with adult humans by stopping will likely be able to
handle a novel scenario like a child in the road with the same solution—stopping the car. However,
if a car detects darker pavement in the winter and assumes it's water when it's actually black ice, the
car’s solution—braking or slowing down—may not prevent the negative outcome of skidding or
losing control.

Currently, a solution to this challenge is to have a person in the vehicle who is ready to take control
if the autonomous driving system encounters something novel or reacts incorrectly (Lin, et al.,
2021). Human oversight is framed as a way to reduce the likelihood of negative outcomes and
potentially serve as training data to teach the system how to respond better in the future. This hybrid
system of human-in-the-loop (HITL) or human-on-the-loop (HOTL) is common in AI/ML
applications where the consequences of errors are severe (Cummings, 2023). HITL systems involve
active human participation in the decision-making process, while HOTL systems place humans in a
supervisory role, monitoring the Al’s actions and intervening when necessary.

Questions have been raised about the feasibility of applying these systems to other high-
consequence environments like air traffic control and space applications. Air traffic control, which
relies on a variety of information interfaces and the complex orchestration of assets, is often cited as
a field that cannot easily be replaced by AI/ML systems. While Al can assist in managing routine
tasks, the unpredictability of human behavior and the potential for system failures make it critical
that humans remain involved in these systems.

Moreover, challenges such as explainability and interpretability further complicate the deployment of
AI/ML in these high-stakes contexts (Doshi-Velez & Kim, 2017). Humans need to understand the
rationale behind Al decisions to trust the system and intervene appropriately. In environments like
air traffic control, this need for explainability means that AI/ML systems must provide not only
accurate decisions but also transparent reasoning that can be quickly understood by human
operators. Although Al systems can operate faster and more efficiently than humans in some
scenarios, the need for oversight in high-consequence environments ensures that human
involvement will continue to be necessary for the foreseeable future (Ribeiro, Singh, & Guestrin,
2016).
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6. CONCLUSION

Al and ML have transformed both private industry and government, significantly enhancing
efficiency, automation, and decision-making. These technologies are now fundamental in sectors like
manufacturing, logistics, healthcare, and defense, enabling organizations to handle vast amounts of
data and improve operational outcomes. In private industry, AI/ML is optimizing supply chains,
predicting failures, and supporting customer engagement. Meanwhile, government applications
focus on improving public services, transportation, defense, and public safety.

Despite these benefits, challenges persist. Ensuring data integrity and handling missing or
incomplete data are crucial for maintaining model accuracy, especially in high-consequence
environments like autonomous vehicles and air traffic control, where the stakes are high. Moreover,
AI/ML models often lack transpatency, making it difficult for humans to interpret decisions, which
is vital in critical settings. The rise of explainable Al (XAI) is beginning to address this issue, but
further advancements are needed to build trust and ensure accountability.

The human-computer interface remains essential in AI/ML systems, particularly in high-stakes
applications where human oversight helps prevent catastrophic outcomes. HITL and HOTL
systems allow humans to guide or supervise Al actions, balancing the efficiency of Al with the need
for human intervention. As Al becomes more autonomous, maintaining this balance—without over-
relying on Al or slowing down operations—will be crucial for safety and trust.

Looking ahead, further research, development, and policy will be needed to overcome these
challenges. Ensuring AI/ML systems atre transpatent, reliable, and ethically deployed is vital for their
continued success. Al and ML hold vast potential to revolutionize industries and improve decision-
making, but their future hinges on responsible development that aligns automation with human
oversight, safety, and ethical considerations.
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