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ABSTRACT 
This report examines the transformative impact of Artificial Intelligence (AI) and Machine Learning 
(ML) on operations research, private industry, and government sectors, highlighting their 
applications in automating processes, enhancing decision-making, and optimizing complex systems. 
AI/ML technologies have revolutionized industries through predictive maintenance, supply chain 
optimization, and autonomous systems, while also advancing public safety and defense operations. 
However, challenges such as data integrity, model transparency, and the need for human oversight 
persist, particularly in high-consequence environments. The report emphasizes the critical role of 
explainable AI (XAI) and human-computer interaction models like Human-in-the-Loop (HITL) and 
Human-on-the-Loop (HOTL) in fostering trust and accountability. Balancing automation with 
ethical responsibility and transparency is essential for the continued successful integration of AI/ML 
into operational and strategic decision-making frameworks. 
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EXECUTIVE SUMMARY 

Artificial Intelligence (AI) and Machine Learning (ML) have become transformative forces across 
private industry and government sectors, reshaping fields like operations research, logistics, and 
decision-making. In private industry, AI/ML applications have revolutionized operations 
management, automating processes such as scheduling, predictive maintenance, and supply chain 
optimization. Operations research, which traditionally focuses on decision support and optimization, 
has increasingly integrated AI/ML techniques to enhance the scale and accuracy of complex 
problem-solving tasks. Government sectors, particularly in defense and public safety, have similarly 
employed AI/ML to enable real-time decision-making in high-consequence environments, although 
these applications often require a balance between automation and human oversight. 

Despite the advantages of AI/ML in operations research and other fields, several challenges persist. 
Ensuring data integrity, such as addressing missing or incomplete data, remains critical to 
maintaining the reliability of AI/ML models. This is especially important in high-stakes 
environments like autonomous vehicles and air traffic control, where even small errors can have 
severe consequences. Another significant challenge is the transparency and interpretability of 
AI/ML models, often referred to as "black box" systems. While operations research models have 
traditionally emphasized explainability, many AI/ML systems lack this clarity, making it difficult for 
human operators to fully trust or understand AI-driven decisions. Efforts in explainable AI (XAI) 
are progressing but further development is necessary to ensure that AI models can provide 
interpretable and actionable insights. 

As AI/ML continues to evolve, its integration with operations research and other domains will 
depend on maintaining effective human-computer interaction. Human-in-the-loop (HITL) and 
human-on-the-loop (HOTL) systems are essential to preserving human oversight while leveraging 
AI’s ability to process vast amounts of data and optimize decisions. For long-term success, AI/ML 
systems must strike a balance between automation and human involvement, ensuring transparency, 
reliability, and ethical responsibility in both high-consequence environments and broader industry 
applications. 
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ACRONYMS AND TERMS 
 

Acronym/Term Definition 

AI Artificial Intelligence 

ANOVA Analysis of Variance 

DSS Decision Support Systems  

EU European Union  

GBT Gradient Boosted Trees 

HITL Human in the Loop 

HOTL Human on the Loop 

ML Machine Learning 

NN Neural Network 

OECD Organization for Economic Cooperation and Development 

OM Operations Management 

OR Operations Research  

RF Random Forest  

SVM Support Vector Machine 

UAV Unmanned Aerial Vehicle 

VAR Vector Autoregressive 

XAI Explainable Artificial Intelligence 
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1. INTRODUCTION 
Artificial Intelligence (AI) and Machine Learning (ML) have become pivotal technologies in the 21st 
century, reshaping industries by automating complex tasks, delivering actionable insights from large 
datasets, and enabling more efficient decision-making processes that were once exclusively human. 
The increasing availability of data, alongside advancements in computational power and algorithmic 
development, has allowed AI/ML to transcend academic research and become cornerstones of 
modern industry and government functions. 

AI and ML are distinct yet interconnected fields, each with its own evolution and methodologies. 
Traditional statistical modeling laid the groundwork for AI/ML development, with an emphasis on 
descriptive and predictive modeling. AI, broadly defined as systems that can make predictions or 
decisions within human-defined parameters, often incorporates machine learning as a core 
mechanism. Machine learning models are designed to learn from data, adapting their decision-
making capabilities without being explicitly programmed for every scenario. This flexibility makes 
ML particularly valuable in environments that involve large volumes of data or where patterns are 
difficult for humans to discern unaided. 

Within private industry, AI/ML applications have revolutionized fields such as operations 
management, logistics, manufacturing, and finance. These technologies have enabled companies to 
automate processes that humans previously conducted, such as scheduling, inventory management, 
and quality control, increasing both speed and scale. AI has also been used in predictive 
maintenance, allowing industries to reduce downtime by forecasting when machines are likely to fail. 
More advanced applications, such as human-robot collaboration in manufacturing and 
reinforcement learning in supply chain optimization, continue to push the boundaries of what 
AI/ML systems can achieve. 

Government sectors are also leveraging AI/ML for various applications, particularly in areas like 
defense, public safety, and transportation. High-consequence systems, such as autonomous vehicles 
and air traffic control, rely on AI/ML for real-time decision-making. However, the integration of 
these systems comes with significant challenges, such as ensuring accuracy, maintaining human 
oversight, and safeguarding critical infrastructure. The human-computer interaction in these high-
stakes environments highlights the need for explainable AI, where humans must understand and 
trust the decisions being made by machines. 

Despite the advantages AI/ML brings to both industry and government, challenges remain. One 
critical concern is the management of missing or incomplete data, which can compromise the 
accuracy and reliability of AI/ML models. Additionally, while AI systems have proven capable of 
replicating many human tasks, certain high-stakes environments still require human intervention, 
either to provide oversight or to handle novel situations that AI/ML systems cannot generalize from 
past experiences. This human-in-the-loop model is essential in areas where errors can have 
catastrophic consequences, such as autonomous vehicles or defense systems. 

The purpose of this report is to explore the current and emerging applications of AI and ML across 
private industry and government. We will review both the benefits and limitations of these 
technologies, with particular attention paid to the challenges of data integrity, explainability, and 
human-computer teaming. By analyzing these applications, we aim to provide a comprehensive 
overview of how AI/ML systems are transforming operational efficiency and decision-making 
processes, while also considering the ethical and technical challenges they introduce. 



UNCLASSIFIED UNLIMITED RELEASE 

9 
UNCLASSIFIED UNLIMITED RELEASE 

2. ARTIFICIAL INTELLIGENCE/MACHINE LEARNING 
FUNDAMENTALS 

The fields of artificial intelligence (AI) and machine learning (ML) have seen rapid growth in recent 
decades, reshaping the landscape of data-driven decision-making across numerous sectors. Despite 
their interrelated nature, AI and ML draw upon different methodologies and approaches, often in 
conjunction with traditional statistical models. Understanding the distinctions and overlaps between 
these fields is crucial for determining how they can be effectively applied to solve specific problems. 
This section provides an overview of the evolution of AI/ML, discusses their relationship to 
statistics, and outlines their respective roles in modeling, prediction, and decision-making. 

2.1. Evolution of the Field and Definitions 
Statistics, machine learning, and artificial intelligence bear many similarities, including foundational 
theories they draw on, methods they employ, and problems they are designed to address. Each of 
these fields, however, has also seen its own independent developments geared towards specific and 
specialized techniques and applications. As a result, it can be difficult to delineate these disciplines 
and identify what methods are most appropriate for a given problem. This section compares and 
contrasts views of statistics, ML, and AI commonly seen in existing literature and considers 
strengths and weaknesses of each discipline. 

Broadly, statistical modeling can be grouped into two “cultures” (Breiman, 2001). The first culture is 
concerned with descriptive and/or explanatory modeling, providing insights into how events played 
out, the current state of the environment, and key relationships observed in historic data (Boulesteix 
& Schmid, 2014). This approach assumes that the data generating process, a unified description of 
relationships between inputs and outputs and of uncertainty in data, is known to the practitioner, 
though parameters of the data generating process may be unknown. Through the use of traditional 
statistical methods like descriptive statistics, linear regression, and ANOVA,1 practitioners can 
estimate relationships between inputs and outputs and precisely describe uncertainty in those 
estimates. Experimental data are clearly useful to this culture of modeling, since the conditions by 
which data are generated and observed can be understood and carefully controlled for. Other 
disciplines in this culture, like economics and the social sciences, leverage “quasi-experimental” data, 
which is not produced in an experimental setting but has characteristics that allow it to be used as 
experimental data, often following some statistical corrections. While traditional statistics models 
leveraged by this culture are almost exclusively estimated using computational resources and 
procedures, these methods are usually not considered to be “machine learning”. 

The second culture of statistical modeling is concerned with making predictions rather than 
describing or explaining phenomena. As a result, highly-structured models that include detailed 
information about the data generating process are unnecessary. Instead, this culture frequently 
employs highly-flexible models that very closely approximate the data they were trained on. To 
ensure models are not overfitted (i.e., memorizing the data rather than learning the relationships), 
split sample techniques like cross-validation are frequently used. In this approach, the dataset is 
divided into two subsets: one for training the model and the other for testing its performance, 
providing an unbiased estimate of the model's predictive accuracy on unseen data. Training these 
models with non-experimental data may result in models that do not capture causal relationships, 
which could introduce bias into predictions. Nonetheless, these approaches are frequently used on 

 
1 ANOVA, or ANalysis Of VAriance, is a statistical method used to determine whether there are significant differences 
between the means of three or more independent groups. 
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massive non-experimental datasets and produce predictions that have operational value. Since these 
approaches do not have a predefined structure and typically include all variables that could 
potentially improve predictions, techniques to reduce the dimensionality of inputs to the model are 
sometimes used. Table 1 lists analytical problems and associated modeling approaches that 
commonly appeared in research covered in this literature review. 

“Artificial intelligence” is a broad term that has been interpreted and applied in many different ways. 
For example, the Organization for Economic Cooperation and Development (OECD )provides a 
very broad definition of AI: “A machine-based system that can, for a given set of human-defined 
objectives, make predictions, recommendations, or decisions influencing real or virtual 
environments…AI systems are designed to operate with varying levels of autonomy” (OECD, 
2016). Generally, ML and statistics models and techniques are the tools with which AI systems 
automate certain aspects of decision-making that were previously delegated to humans (Molnar, 
Casalicchio, & Bischl, 2020). As a result, the function of AI for a given decision-making application 
and associated risks are very similar to delegating aspects of decision-making to human analysts and 
actors. In particular, humans are granted some (but not full) autonomy in their roles. The level of 
autonomy granted is ideally selected by superiors to grant analysts some freedom to pursue lines of 
inquiry and even enact limited policies, but also to ensure that no one individual can cause 
substantial impacts and that a wider range of stakeholders/decision-makers are consulted for 
especially consequential decisions. For example, (Brose, 2020) considers autonomous warfighting 
systems and notes that human soldiers are granted limited and carefully-defined autonomy over their 
actions, allowing them to make certain decisions and take certain actions under specific 
circumstances but requiring involvement of commanding officers in other situations. The author 
makes the case that AI warfighting systems must be governed similarly, granting a limited level of 
autonomy to perform defined actions in certain situations but requiring outside intervention 
otherwise. Of course, AI systems process information differently than humans, raising concerns 
about explainability and interpretability. These characteristics of AI systems and how they compare 
and interact with human systems is discussed in greater detail in Section 3.3.  

Table 1: Common Analytical Problems and Modeling Approaches 

Problem Modeling approach Example approach(es) 

Direct causal inference Statistics Regression (e.g., linear, 
logistic) 

Indirect causal inference (e.g., 
using quasi-experimental data) 

Statistics Regression (e.g., two-stage 
least squares) 

Estimating impacts of specific 
policies (retrospective and/or 
prospective) 

Statistics Regression (e.g., difference-in-
difference), regression 
discontinuity, time-series 
modeling (e.g., vector 
autoregression, structural 
models) 

Classification into discrete 
categories 

ML Support vector machines, k-
means clustering, random 
forests, neural networks 
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Problem Modeling approach Example approach(es) 

Dimensionality reduction ML Principal component analysis, 
ridge regression 

Prediction (e.g., real-valued, 
categorical) 

Statistics or ML Statistics: Regression (e.g., 
linear, logistic, multinomial), 
structural models 
ML: Neural networks, 
Gaussian processes, support 
vector machines 

2.2. Applications of AI to Operations Research and Management  
OR is a field of study that emerged in World War II and has seen tremendous growth through the 
information age. Broadly, OR aims to support decision-making through robust data-driven analyses, 
striving to be a “scientific method of providing executive departments with a quantitative basis for 
decisions regarding the operations under their control” (Morse & Kimball, 1947). OR analyses can 
be either descriptive (to better understand functions and dynamics of systems and processes), 
predictive (predicting and estimating the future state of systems and processes given current states), 
or normative (prescribing a course of action based on current states, objectives, and constraints) 
(Wacker, 1998). OR analyses leverage decision support systems (DSSs), which includes information, 
computation, and knowledge infrastructure, to translate data, develop insights, and ultimately inform 
actions (Sprague Jr., 1980). Generally, DSSs tend to be data-focused (relying on observational data 
frequently stored in databases), knowledge-focused (relying on background and context to establish 
system rules), or model-based (relying on mathematical and computational models) (Holsapple, 
2008). 

AI and ML techniques have offered enormous potential for improving efficiency and effectiveness 
of operations management (OM). In the most successful cases, AI/ML has been leveraged to (1) 
automate processes that humans formerly conducted and perform those functions more quickly and 
at larger scales, (2) process large amounts of varied data to produce insights that were difficult for 
humans to glean, (3) enable machines/robots that operate more efficiently/effectively than humans 
and/or in environments inhospitable to humans. However, AI/ML approaches have not been able 
to effectively replace critical components of human decision-making. This section reviews literature 
on AI/ML applications in operations research (OR) and operations management (OM), with a focus 
on enumerating tasks for which machines could provide substantial benefits vs. tasks for which 
human involvement has continued to be necessary. 

There is significant overlap between the capabilities of AI/ML and the needs of OR and DSSs. 
(Gupta, Modgil, Bhattacharyya, & Bose, 2022) developed a taxonomy to classify AI approaches, 
DSS focus, and OR analysis type, shown in Figure 1. The authors note a few general areas in which 
AI has successfully contributed to DSSs and OR: (1) Development and deployment of expert 
systems that synthesize knowledge bases and make information easily retrievable to researchers and 
decision-makers, (2) ML techniques, especially those that can process large amounts of disparate 
data to produce insights, and (3) Natural language processing and related techniques that are capable 
of analyzing unstructured data. Each of these strengths is an area in which AI/ML can effectively 
replicate human activities but can do so faster, at larger scales, and/or with lower error rates. 



UNCLASSIFIED UNLIMITED RELEASE 

12 
UNCLASSIFIED UNLIMITED RELEASE 

 
Figure 1: AI, DSS, and OR Taxonomy (Gupta, Modgil, Bhattacharyya, & Bose, 2022) 

 
(Fahle, Prinz, & Kuhlenkotter, 2020) reviewed a litany of ML methods and assessed their 
applicability to a number of modern manufacturing processes. The authors’ high-level summary is 
replicated in Table 2. This review reveals that ML methods can be brought to many aspects of 
manufacturing and OM in general. In particular, neural networks appear to be especially useful for 
predictions of complex system outcomes like costs and production schedules, while clustering and 
classification methods and decision trees appear especially useful for production and logistics 
management. Further, most ML methods commonly used in current manufacturing processes are 
supervised methods, meaning that humans must classify the data that ML algorithms are trained on. 
However, reinforcement learning algorithms, which take a trial-and-error approach similar to human 
learning, have seen growing interest in recent years. 

Table 2: Manufacturing Applications and Algorithms (replicated from (Fahle, Prinz, & 
Kuhlenkotter, 2020) 

Subtopic Application Algorithm(s) 

Manufacturing process 
planning 

Scheduling Q-learning, random forest (RF), 
decision trees 

 Cost and energy prediction Neural network (NN), support 
vector machine (SVM), gradient-
boosted trees (GBT), RF 

 System modeling Logistic regression, RF, decision 
trees, Bayesian network 

Quality control Quality cost reduction Decision trees, NN, SVM 

 Process line quality Decision trees, Bayesian network 

Predictive maintenance Remaining useful life Decision tree, NN, principal 
components analysis 

Logistics Scheduling NN, Q-learning, RF 
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Subtopic Application Algorithm(s) 
Robotics Human-robot collaboration Hidden Markov model (HMM), K 

nearest neighbors (KNN), 
clustering, NN 

 Path planning KNN, NN 

Assistance and learning 
systems 

Assembly assistance NN 

AI-training concepts in 
learning factories 

Object recognition NN 

Process control and 
optimization 

Production line GBT 

 Process and tool condition forecast NN, decision trees, RF, SVM, 
regression 

 

(Woschank, Rauch, & Zsifkovits, 2020) provide a review of how AI/ML methods could be applied 
to next generation “smart logistics” and “Industry 4.0”, which focus on modernizing industrial 
manufacturing through increased interconnectivity, digitalization, and automation. The authors 
found that the plurality of modern research (~42% of published papers) was focused on cyber-
physical systems for logistics and predictive maintenance. Other focal areas included improvement 
of operational logistics and intelligent transport logistics (~24% of published papers) and strategic 
and tactical process optimization (~12% of published papers). Overall, these reviews indicate that 
there is significant and ongoing development of methods to bring AI/ML methods to industry and 
OM of the future. 

Several studies have noted the promise of AI/ML approaches for supply chain and logistics 
management. (Pournader, Ghaderi, Hassanzadegan, & Fahimnia, 2021) reviewed AI applications in 
supply chain management and identified several clusters of similar approaches based on their 
bibliometric analysis. The authors grouped approaches into three main AI functions: Decision 
making (including planning, modeling/simulation, scheduling, and optimization), learning (analyzing 
frequently large and disparate data to understand behavior and/or make predictions), and hybrid 
approaches (integrating learning and decision-making functions), listed in Table 3.  

Table 3: AI/ML For Supply Chain Management (with info from (Pournader, Ghaderi, 
Hassanzadegan, & Fahimnia, 2021)) 

Function Approach clusters Example method(s) 
Decision making Simulation and system 

dynamics 
Discrete-event simulation, 
system dynamics models 

 Genetic algorithms and agent-
based modeling 

Multi-agent/game theory 
models, mixed integer 
programming 

 Stochastic programming Robust optimization, regression 

Learning Time-series analysis Vector autoregressive (VAR) 
models, spectral analysis 

 Big data analytics Deduction graphs 
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Function Approach clusters Example method(s) 
 Neural networks and support 

vector machines 
 

Hybrid AI methods for sustainable SCM Delphi method, fuzzy cognitive 
maps 

 AI methods for supply chain risk 
management 
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3. IMPLEMENTATION CONSIDERATIONS 
In the rapidly evolving field of AI/ML applications, ensuring the integrity and reliability of data is 
critical to developing robust models. However, real-world data is often incomplete, leading to 
challenges that can impair model performance. This section addresses these concerns by exploring 
the different types of missing data, their potential impacts on AI/ML systems, and the strategies 
available to mitigate these challenges. Additionally, the role of human interactions with AI and the 
need for explainability in AI/ML models are highlighted, emphasizing the importance of trust and 
transparency in the successful implementation of AI solutions. These discussions aim to provide a 
comprehensive understanding of both technical and human-centered considerations essential for 
advancing AI/ML technologies in complex environments. 

3.1. Missing Data in AI/ML Applications 
In AI and ML applications, the integrity and completeness of data are paramount to the 
development of robust and accurate models. However, missing data is an omnipresent challenge that 
can significantly impair the performance and reliability of these models. Missing data can arise from 
various sources, including sensor malfunctions, human error, or limitations in data collection 
processes. Addressing this issue is crucial, as the presence of incomplete data can lead to biased 
estimates, reduced statistical power, and ultimately, flawed decision-making. This section delves into 
the types of missing data, their potential impacts on AI/ML applications, and the strategies 
employed to mitigate these challenges, ensuring the development of more resilient and effective 
models. 

Missing data can be broadly categorized into three classes based on the mechanism of their 
occurrence: Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not 
at Random (MNAR). These classifications, as detailed by (Litte & Rubin, 2002) and further 
elaborated in the seminal work by (Schafer & Graham, 2002), provide a framework for 
understanding the underlying patterns of missingness and inform the appropriate strategies for 
handling them. 

Missing Completely at Random (MCAR) occurs when the probability of data being missing is 
independent of both observed and unobserved data. In other words, the missingness is entirely 
random and does not depend on any variables within the dataset. For instance, if a sensor 
occasionally fails to record data due to random technical glitches, the resulting missing data can be 
considered MCAR. When data are MCAR, the analysis remains unbiased, although the statistical 
power may be reduced due to the smaller sample size (Schafer & Graham, 2002). 

When data are Missing Completely at Random (MCAR), the missingness is independent of both 
observed and unobserved data, making it the simplest type of missing data to handle. One common 
method to address MCAR is listwise deletion, where any record with missing values is excluded 
from the analysis. This approach is straightforward and maintains the integrity of the dataset, but it 
can lead to a significant reduction in sample size, potentially impacting the statistical power of the 
analysis (Litte & Rubin, 2002). Another method is mean imputation, where missing values are 
replaced with the mean of the observed values for that variable. While this method is easy to 
implement, it can underestimate the variability and lead to biased parameter estimates (Schafer & 
Graham, 2002). More sophisticated techniques, such as multiple imputation, can also be used for 
MCAR data. Multiple imputation involves creating several complete datasets by imputing missing 
values multiple times and then combining the results to account for the uncertainty associated with 
the imputed values (Rubin, 1988). 
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Missing at Random (MAR) describes a scenario where the probability of missing data is related to 
observed data but not to the unobserved data. For example, in a medical study, if older patients are 
less likely to respond to follow-up surveys, the missingness is related to the age variable, which is 
observed. Under the MAR assumption, the missing data mechanism can be accounted for by 
conditioning on the observed data (Litte & Rubin, 2002). 

For data that are Missing at Random (MAR), the probability of missingness is related to the 
observed data but not the unobserved data. This allows for more advanced imputation methods that 
leverage the relationships within the observed data. Multiple imputation is particularly effective for 
MAR data, as it creates multiple datasets with different imputed values based on the observed data, 
and then combines the results to produce estimates that reflect the uncertainty of the missing data 
(Rubin, 1988). Another method is the Expectation-Maximization (EM) algorithm, which iteratively 
estimates the missing values by maximizing the likelihood function based on the observed data 
(Dempster, Laird, & Rubin, 1977). Additionally, model-based approaches, such as using maximum 
likelihood estimation within a structural equation modeling framework, can be employed to handle 
MAR data by incorporating the missing data mechanism directly into the model (Baraldi & Enders, 
2010). 

Missing Not at Random (MNAR) occurs when the probability of missing data is related to the 
unobserved data itself. This type of missingness is particularly challenging because the missingness 
mechanism is inherently tied to the missing values. For instance, in a survey on income levels, 
individuals with higher incomes might be less likely to disclose their earnings, leading to a non-
random pattern of missing data. 

Addressing Missing Not at Random (MNAR) data is more complex, as the missingness is related to 
the unobserved data itself. One approach to handle MNAR data is to use selection models or 
pattern-mixture models, which explicitly model the missing data mechanism. Selection models 
involve specifying a model for the missing data process and then jointly modeling the outcome and 
the missing data mechanism (Litte & Rubin, 2002). Pattern-mixture models, on the other hand, 
stratify the data based on the pattern of missingness and then model each stratum separately (Little, 
1993). Sensitivity analysis is another crucial technique for MNAR data, where different assumptions 
about the missing data mechanism are tested to assess the robustness of the results (Molenberghs, 
Beunckens, Sotto, & Kenward, 2008). In some cases, external data or auxiliary variables that are 
related to the missingness can be incorporated to inform the imputation process and reduce bias 
(Collins, Schafer, & Kam, 2001). 

In addition to the challenges posed by missing data, AI/ML applications often face the separate but 
equally critical issue of incomplete utilization of available variables due to data collection or data 
architecture constraints, such as siloing. Data siloing occurs when data is isolated in separate systems 
or departments, preventing comprehensive analysis and integration. This fragmentation can lead to 
suboptimal model performance, as key variables that could enhance predictive accuracy and insights 
are excluded from the analysis. For instance, in healthcare, patient data might be dispersed across 
different departments (e.g., radiology, pathology, and primary care), each maintaining its own 
database with limited interoperability. As a result, crucial variables like imaging results or lab tests 
may not be incorporated into predictive models, thereby reducing their effectiveness. Addressing 
these issues requires robust data integration strategies, such as the implementation of data lakes or 
federated learning approaches, which enable the aggregation and analysis of disparate data sources 
while maintaining data privacy and security (Kambatla, Kollias, Kumar, & Grama, 2014). By 
overcoming these architectural barriers, organizations can leverage the full spectrum of available 
data, leading to more comprehensive and accurate AI/ML models. 
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By employing these tailored methods to address MCAR, MAR, and MNAR, researchers can mitigate 
the impact of missing data on their analyses, leading to more accurate and reliable AI/ML models. 
Understanding the nature of the missing data and selecting appropriate techniques is essential for 
maintaining the integrity and validity of the results. 

3.2. Human/AI Interactions 
AI/ML methods have tremendous technical potential, but it is critical that those approaches 
consider and optimize coordination with human systems to make them most effective. This process 
includes building and developing with human users in the short term and maintaining trust while 
staving off complacency in the long term. This section discusses strategies and factors that can 
improve trust in AI as well as methods to maintain quality human-AI interactions that include 
human critical thinking. 

Previous research has considered factors that make people more or less likely to trust and adopt AI 
assistance. Multiple studies have conducted experiments looking into the relationship between 
willingness to accept AI suggestions and participants’ confidence in AI and themselves (Schaffer, 
O'Donovan, Michaelis, Raglin, & Hollerer, 2019). In (Chong, Zhang, Goucher-Lambert, Kotovsky, 
& Cagan, 2022), study participants were presented with a chess board state and asked to either make 
their own move or accept a move suggested by an AI player. Participants were also asked to assess 
confidence in their own chess abilities as well as the AI player’s abilities. The study found that 
individuals’ confidence in AI did not significantly affect their propensity to accept or reject AI 
suggestions. Instead, participants’ decision to trust AI was driven by confidence in themselves; in 
particular, participants who rated their own chess abilities highly tended not to accept AI 
suggestions, independent of participants’ assessment of AI capabilities. Further, the study found that 
participants who had low confidence in their own abilities tended to attribute poor AI performance 
and suggestions to themselves, further reducing their self-confidence and making it more likely they 
will trust AI suggestions (good or bad) in the future. The authors postulate long-term dynamic 
implications where a dichotomy between those who trust AI suggestions and those who do not is 
reinforced by interactions with the AI system. 

These experiments illustrate the importance of thoughtful integration of AI/ML with human 
systems. First, as outlined in (Jacovi, Marasovic, Miller, & Goldberg, 2021), it is critical that trust is 
developed between human users and AI systems. The authors note that in both human-human and 
human-AI interactions, trust is critically dependent on anticipation and vulnerability: If Party A 
anticipates Party B will act in A’s interest and if A is willing to accept vulnerability to B’s actions, 
then A trusts B. Thus, in order to build and maintain trust between humans and AI systems, it is 
necessary that humans can expect AI to behave in predefined ways, and that humans are willing to 
accept the consequences from any deviation from that expected behavior.  

The European Union (EU) outlined several qualities of AI systems that can improve trust in AI 
systems to both execute their intended tasks and limit negative externalities, listed in Table 4 (EU 
Commission, 2020). These guidelines cover several technical requirements for trustworthy AI (e.g., 
technical robustness and safety, transparency, accountability) as well as situations with especially 
high consequence of undesired behavior (e.g., human agency and oversight, diversity/non-
discrimination/fairness, societal and environmental well-being). Notably, explainability and 
interpretability of AI systems are common themes across factors of trustworthy AI and will be 
discussed in greater detail in the following section. 
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Table 4: EU Guidelines for Trustworthy AI 

Requirement for Trustworthy AI Factors 
Human agency and oversight • Foster fundamental human rights 

• Support users’ agency 
• Enable human oversight 

Technical robustness and safety • Resilience to attack and security 
• Fallback plan and general safety 
• A high level of accuracy 
• Reliability 
• Reproducibility 

Privacy and data governance • Ensure privacy and data protection 
• Ensure quality and integrity of data 
• Establish data access protocols 

Transparency • High-standard documentation 
• Technical explainability 
• Adaptable user-centered explainability 
• Make AI systems identifiable as non-human 

Diversity, non-discrimination, and fairness • Avoid unfair bias 
• Encourage accessibility and universal design 
• Solicit regular feedback from stakeholders 

Societal and environmental well-being • Encourage sustainable and eco-friendly AI 
• Assess the impact on individuals 
• Assess the impact on society and democracy 

Accountability • Auditability of algorithms/data/design 
• Minimize and report negative impacts 
• Acknowledge and evaluate trade-offs 
• Ensure redress 

 
Longer-term issues that can afflict AI system implementations include complacency and systematic 
distrust. Without proper controls, individuals can gravitate towards one of these extremes, either 
placing too much trust in the AI system and taking suggested actions without critical assessment or 
completely refusing to engage with AI systems (Zerilli, Bhatt, & Weller, 2022). Thoughtful design of 
AI systems and controls to moderate engagement with these systems maintain “algorithmic 
vigilance” that lies between complacency and distrust. The ability of AI systems to explain their own 
reasoning and processing can help build and maintain trust. That said, AI explainability may not 
reduce complacency as trusting individuals tend to underemploy analytical thinking when presented 
with AI suggestions and even take explanations (right or wrong) as a signal of AI competence 
(Bansal, et al., 2021). So-called “cognitive forcing functions” have been proposed as method to 
increase engagement in human-AI interactions. Specifically, human decision-making relies on a mix 
of fast, heuristic-based thinking (i.e., System 1 thinking) and slow, deliberate, analytical thinking (i.e., 
System 2 thinking) (Bucinca, Malaya, & Gajos, 2021). System 1 thinking is typically very fast and can 
be accurate but can be prone to systematic bias and errors especially as environments or conditions 
change. By making minor changes to how AI suggestions are presented, it is possible to increase the 
rate of System 2 thinking. Examples of successful cognitive forcing functions include requiring 
humans to make a decision prior to seeing AI suggestions (Green & Chen, 2019), delaying the 
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presentation of AI suggestions (Park, Barber, Kirlik, & Karahalios, 2019), and giving human users 
the option of whether and when to see AI suggestions (Fitzsimons & Lehmann, 2004). 

3.3. AI/ML Explainability 
Explainability and interpretability of AI systems serves two purposes. First, as discussed in the 
previous section, explanations of how the AI system arrived at its findings and recommendations is 
a major factor in building and maintaining humans’ trust in those systems. Second, explainability and 
interpretability provide a channel through which human users can critically assess AI outputs, 
though cognitive forcing functions may be necessary to get humans to engage in System 2 thinking. 
This section discusses methods that have been developed to increase the explainability and 
interpretability of AI systems with the goal of improving human-AI interactions and teaming. 

It is important to first define what is meant by an interpretable AI/ML model. Many AI/ML 
methods are extraordinarily flexible and complex, meaning that they can approximate a wide range 
of functions and behaviors. These methods can also be difficult for humans to grasp the logic 
AI/ML methods used to arrive at their conclusions. As a result, many AI/ML methods are 
considered “black boxes” whose inner workings are largely incomprehensible to human users. 
Interpretable AI/ML leverages existing context and knowledge from human users to provide 
explanations that are (at the very least) more understandable than their black box counterparts 
(Samek, Wiegand, & Muller, 2017). As a result, the efficacy of a given interpretable AI method 
depends critically on the knowledge human users possess, which is used to contextualize AI logic. 

Many traditional statistical models are inherently more interpretable than ML models because of 
constraints practitioners commonly impose on model complexity (Molnar, Casalicchio, & Bischl, 
2020). In particular, traditional statistical models frequently make specific assumptions over 
functional forms and distributions (up to parameter values). Since these models are simpler and 
more constrained, it is generally easier for human analysts to correctly interpret model logic and 
results. Some models lend themselves particularly well to interpretation, including linear regression, 
decision trees, and decision rules (Huysmans, Dejaeger, Mues, Vanthienen, & Baesens, 2011). For 
these types of interpretable models, practitioners can often gain significant insights into the model 
by investigating a relatively small number of model components (e.g., parameter estimates, decision 
logic, goodness-of-fit measures). That said, more complex forms of these models (e.g., when the 
number of regressors is large) can still be difficult to interpret. Dimensionality reduction techniques 
(e.g., ridge regression, LASSO) can be useful in limiting the number of components practitioners 
must investigate to adequately interpret a given model (Tibshirani, 1996). Finally, even for more 
complex models, important interpretations can be drawn from a small number of model 
components. For example, in random forest models, just two components can be sufficient for 
analyzing tree structure and feature importance (Breiman L. , 2001). 

Researchers have also developed and successfully used several model-agnostic methods of increasing 
ML interpretability. These methods are often categorized as either local, with the ability to explain 
specific model predictions, or global, with the ability to explain model behavior generally over a 
range of environments and conditions (Linardatos, Papastefanopoulos, & Kotsiantis, 2020). 
Counterfactual analyses are frequently used for local interpretability by permuting model inputs and 
assessing whether the associated change in predictions aligns with analysts’ intuition and 
understanding of the system (Miller, 2019). Shapley values, a concept from cooperative game theory 
that fairly distributes payouts among players based on their contributions, can also provide local 
interpretability by quantifying how much each model input/feature contributes to forming a specific 
prediction (Strumbelj & Kononenko, 2014). Global interpretability methods are very similar, 
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quantifying either the importance of specific features or the effect of permuting features. Feature 
importance methods investigate shares of outcome variance explained by individual features or 
quantify the effect of removing features (where larger impacts to predictions indicate greater 
importance of features). Feature effects methods investigate the impact of augmenting a subset of 
model features and assessing whether effects on predictions matches analysts’ understanding 
(Molnar, Casalicchio, & Bischl, 2020). 

Finally, surrogate models are another model-agnostic method of increasing ML interpretability. 
Surrogate models have been used extensively in the field of uncertainty quantification, where ML 
models are used to approximate (i.e., act as a surrogate for) computer simulations or real-world 
experiments that are time- and resource-intensive to conduct. In that context, surrogate models can 
dramatically reduce time and cost of analysis, at the downside of increasing uncertainty in 
predictions (Sudret, Marelli, & Wiart, 2017). Surrogate models for interpretable ML are used to 
approximate black box algorithms, and the surrogate model form is chosen to be more interpretable 
than the black box algorithm it is approximating. As a result, the surrogate model behaves similarly 
to the original ML model but is more digestible and comprehensible to humans. This surrogate 
model approach often leverages traditional statistical models that tend to be inherently more 
interpretable, such as linear regression (including generalized linear models and generalized additive 
models), logistic regression, decision trees, and decision rules (Molnar, Interpretable machine 
learning, 2020). 
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4. REINFORCEMENT LEARNING 
Reinforcement learning (RL) constitutes a set of ML algorithms that train an agent to learn to act in 
an environment in a way that maximizes some long-term reward function (Wang, et al., 2022). RL 
has been successfully utilized in a wide variety of applications from controlling autonomous vehicles 
to beating top human players in games such as Go (Holcomb, Porter, Ault, Mao, & Wang, 2018), 
and constitutes a key component of many artificial intelligence (AI) system. Ultimately, the objective 
of RL is to determine a policy, which can be loosely described as a set of rules that define how an 
agent should respond to different environment states. More precisely, a policy is a mapping of 
environment states to optimal actions. A key feature of RL is that a policy’s actions maximize long-
term rewards, not myopic rewards. Therefore, a successfully trained agent will sacrifice a smaller 
immediate reward in favor of a larger, long-term reward. While RL-based algorithms have been in 
existence for decades, the integration of deep neural networks (DNNs) into RL frameworks has 
greatly accelerated performance gains. Deep reinforcement learning (DRL) utilizes DNNs to identify 
features of complex environments and to encode environment knowledge in a way that otherwise 
would not be tractable to store computationally.  RL algorithms can be broadly categorized 
according to two different attributes. The first is whether an algorithm is on-policy or off-policy. An on-
policy algorithm interacts with the environment (i.e., collects data) using the most current learned 
policy; whereas, an off-policy algorithm relies on stored environment data that has been generated 
from past evolutions of the policy. The second category is whether the algorithm is value-based or 
policy-based. A value-based algorithm predicts the “goodness” (i.e., the expected total future 
discounted reward value) of each action in a given state and uses this goodness-value to select the 
best action. In contrast policy-based algorithms directly generates an action given the observed 
environment state.  Many extensions of single-agent RL exist and consume much current research 
focus. Multi-agent RL considers algorithms that enable a team of agents to achieve a goal under 
various assumptions of information sharing and coordination. Adversarial RL seeks to train 
opposing agents against one another to achieve their respective goals.  

The application of RL to a complex problem is not without challenges. A key challenge in any RL 
problem is the so-called credit assignment problem. Given that hundreds, or even thousands, of actions 
are taken during the course of an environment episode, how does one ascertain the degree to which 
a single action effected the final outcome? An extreme example of this would be a Chess game, in 
which the agent receives a terminal reward of “win” or “lose” but must allocate this reward over 
every past move. Another challenge is for applications that require a hierarchy of decisions spanning 
disparate time horizons. For example, one could consider an autonomous vehicle application that 
requires a high-level decision of planning the vehicles next way point seconds or minutes ahead but 
also requires lower-level immediate control inputs to keep the vehicle within its lane and to avoid 
collisions. In practice it is typically not possible to train a single RL agent to co-determine these 
higher- and lower-level decisions. Other challenges for RL include devising approaches to 
incorporate explainability of decisions as well as providing guarantees that the agent will not make 
unsafe decisions in safety-critical applications.  

4.1. Hierarchical Reinforcement Learning 
In this section, we provide a detailed overview of hierarchical reinforcement learning (HRL). HRL is 
a class of techniques developed for learning policies in complex applications where a hierarchy of 
decisions is required. Consider managing a fleet of vehicles to manage real time delivery demands. 
Here the higher-level problem is to assign a delivery to a vehicle based on the vehicle’s current 
location and task queue as well as the locations and taskings of all other vehicles. The lower-level 
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problem is to prioritize the delivery taskings of individual vehicles and to determine the route by 
which they are delivered. HRL avoids the difficulty of training a single agent to make both these 
decisions by training separate agents to specialize in decisions at each level of the hierarchy. In 
general an HRL policy is comprised of two major components (Pateria, Subagdja, Tan, & Quek, 
2021). The first is the hierarchical policy, which is a state-to-subtask-to-action mapping. In other 
words, the hierarchical policy is a trace across all levels of the hierarchy that ends in a primitive 
action taken by the agent. The second component is subtask discovery. This is the ability to identify 
how to partition each level of the hierarchy into separate task regions. For example, a person driving 
a vehicle may have different mental operating modes for driving on a smooth highway, merging 
onto an interstate, and handling stop-and-go traffic. The partitioning of the overall driving 
experience into these different operating modes is akin to discovering the subtasks which must be 
performed.  

There are three broad categorizations for classifying HRL algorithms. The first is subtask discovery; 
that is, whether the algorithm automatically identifies and defines subtasks to be accomplished. If 
prior knowledge of the task structure exists, subtasks can be defined a priori by human experts and 
trained on their respective goals. The higher-level agent then must be trained to enable the 
appropriate subtask. On the other hand, algorithms can automatically define subtasks as they create 
the hierarchical policy. Regardless of whether subtasks are defined a priori, learning a hierarchical 
policy is nontrivial. The two other categorizations are whether an algorithm for single or multiple 
agents and whether the goal is to learn a single or multiple tasks.  

Single-agent HRL algorithms have been demonstrated in a variety of complex applications. Tessler, 
et al. demonstrate the capacity of HRL to create a lifelong learning system that learns skills and 
retains knowledge that can be transferred between different tasks to play the computer game 
Minecraft (Tessler, Givony, Zahavy, Makowitz, & Mannor, 2017). They couple a Deep Skill Module, 
that has been trained a priori on various tasks, with a Hierarchical Deep Reinforcement Learning 
architecture that selects to either execute a single primitive action for a single time period or an 
entire skill over multiple time periods. The authors demonstrate their framework using a three-room 
Minecraft environment that requires three different tasks involving a block. Gu, et al. apply HRL to 
autonomous driving in a way the provides guarantees that the vehicle will not enter unsafe states 
(Gu, et al., 2023). Here they use an HRL framework with two levels. The high-level agent generates 
safe goals for the vehicle to navigate towards while the low-level agent navigates between adjacent 
goals. A noteworthy outcome of their research is a proof-of-concept that HRL-based schemes can 
ensure an agent does not execute a sequence of actions that ultimately leads to an undesirable 
outcome. 

Applications for multi-agent HRL approaches have also been explored. Jendoubi and Bouffard use 
an options framework, where an upper-level agent selects amongst lower-level policies that are 
executed until their respective termination conditions are met (Jendoubi & Bouffard, 2023). They 
demonstrate their approach on two different scheduling problems for microgrids that require the 
coordination of multiple power- and load-generating components. The problem of air traffic 
management can also be addressed using multi-agent HRL (Spatharis, et al., 2023). Here agents are 
individual aircrafts which must coordinate their departure delays and trajectories in a way that 
satisfies airspace capacity constraints. A set of hierarchical policies operates at different levels of 
temporal abstraction to coordinate the aircraft. Lastly, HRL is integrated with graph neural networks 
by Yang for traffic signal control (Yang, 2023). 
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4.2. Reinforcement Learning Requirements and Outcomes 
In this section, we describe the general computational and data requirements for implementing RL 
as well as the outcomes of the learning process. The computational requirements of RL vary 
significantly based on the complexity of the application. Classical RL algorithms can be implemented 
using simple data tables and elementary computers. Most modern RL applications involve Deep 
Reinforcement Learning (DRL), where RL is integrated with DNNs, which are computationally 
expensive. A DNN designed to discern complex environment features may be composed of 
hundreds to millions of neurons, which all must be trained using the backpropagation algorithm. 
Training DNNs efficiently requires Graphical Processing Units (GPUs), which can more efficiently 
perform the matrix operations required for backpropagation than a traditional Central Processing 
Unit (CPU). Larger neural networks are typically trained on GPU clusters, which contain tens to 
thousands of GPUs. In addition to neural networks, RL requires substantial computation to 
generate training data by conducting numerous environment simulations. In practice, executing 
these simulations, which are typically performed on CPUs, is often the bottleneck in the training 
process. Therefore, computational implementations often involve parallel processing with high-
performance CPUs. 

Unlike supervised machine learning techniques that use labeled training data, RL uses episodic data 
collected from interactions with an environment. These episodic data elements are composed of 
four components: (i) the current environment state, (ii) the action taken by the agent, (iii) the reward 
received, and (iv) the next environment state at which the agent arrives after taking the action. Off-
policy RL algorithms can be trained using static, historical episodic data. For example, an agent 
could, in principle, be trained to play chess effectively if a large database of past games were 
available. However, whether using an off-policy or on-policy algorithm, an agent typically needs to 
periodically generate additional data by interacting with an environment as it continues to learn and 
improve its policy. This requires an accurate simulation of the environment so that the agent can 
observe realistic outcomes of its actions. Therefore, a critical component of RL is the verification 
and validation (V&V) of the underlying simulation environment used for generating training data. 
For a military application, the V&V required for this simulation is analogous to the vetting of 
wargaming or training scenarios for personnel.  

The outcome of the RL process is a policy that prescribes the best action to take given the current 
state of the environment. Assuming properties of the environment remain static, an agent only 
needs to be trained once. In practice, most implementations of RL utilize DNNs, and the tangible 
outcome is a trained neural network that can output an optimal action given an encoded observation 
of the environment as an input. The energy requirements for evaluating a policy are the 
computations required to evaluate the DNN. In many real-world applications, the environment 
changes over time. In such cases, the agent must be periodically retrained using simulations that are 
more representative of the current environment. Fine tuning an agent for differing environment 
conditions is often much faster than the time required to train an agent from scratch. Much of the 
knowledge acquired by the agent can be “transferred” to similar tasks. For example, an RL agent 
trained to drive in good weather could utilize much of its knowledge of object recognition and 
vehicle dynamics to learn to drive in inclement weather. 

4.3. Explainability Approaches for Reinforcement Learning 
Explainable Artificial Intelligence (XAI) is a rapidly evolving area of research. The goal is to develop 
techniques that provide human-understandable explanations of what input features are most salient 
to an AI-systems’ decisions and the impacts those features have. Currently there are no universally 
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agreed-on metrics for defining explainability, and the XAI approaches taken tend to be very specific 
to their intended audiences. The consequence is that XAI approaches are relatively inchoate and not 
standardized, so it is not straightforward to pinpoint the best techniques to utilize for a given 
application. 

A comprehensive overview of XAI approaches for DRL is given by Heuillet, et al. (Heuillet, 
Couthouis, & Diaz-Rodriguez, 2021). The authors detail numerous approaches for XAI that have 
been considered to date for DRL. State representation learning is class of approaches for building a 
low-dimensional representation of a complex state space so that meaningful features can be 
identified. Several techniques attempt to learn explainability while learning the agent’s policy. Reward 
decomposition divides an agent’s reward function into different parts so that actions can be 
classified by the reward components they are intended to maximize. It is also possible to obtain 
minimal sufficient explanations, the smallest set of reasons why an agent takes a particular action, as 
well as construct action influence models that trace relations between actions and outcomes. An 
approach specific to HRL is observing which subgoals the high-level agent determines are optimal at 
a given time based on environment features. Some approaches utilize those developed for DNN 
image classification, such as projecting saliency maps (i.e., heat maps) onto a visual input to highlight 
the features that most influenced the DNN’s output.  

That explainability only has meaning with respect to human beliefs and interpretations is explored 
more deeply by Vouros (Vouros, 2022). Here different models for the explainability problem are 
proposed that include various criteria for how humans may interpretate an agent’s actions with 
respect to their understanding of the environment as well as the agent’s objectives and abilities. 
Some more general approaches for XAI are outlined such as identifying critical state-action pairs, 
where taking the wrong action causes a large decrease in future rewards. A related approach involves 
constructing contrastive explanations by choosing a different action than that prescribed by the 
optimal policy. Off-policy evaluation identifies influential environment state transitions by 
estimating the value of a policy using data collected from a different policy. 
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5. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 
APPLICATIONS IN PRIVATE INDUSTRY AND GOVERNMENT 

AI and ML have become central to technological advancements across both private industry and 
government sectors. The ability to analyze vast amounts of data, automate processes, and improve 
decision-making efficiency has made AI/ML invaluable tools in a wide range of applications. While 
the private sector has leveraged AI/ML to enhance operations, logistics, manufacturing, and 
customer interactions, the public sector has focused on using these technologies to improve public 
services, increase safety, and streamline complex systems such as defense and transportation. 
Despite the broad adoption of AI/ML, challenges such as data integrity, human-computer 
interaction, and system transparency remain, particularly in high-consequence environments. This 
section explores the diverse applications of AI/ML in both sectors, highlighting their impact and the 
unique obstacles faced in these different contexts. 

5.1. Overview of AI/ML Applications in Government and Industry 
Artificial Intelligence (AI) and Machine Learning (ML) have emerged as pivotal technologies across 
both government and private industry, offering substantial potential to revolutionize operations and 
decision-making processes. In government, these technologies are being applied to critical areas such 
as defense, public safety, healthcare, and infrastructure management, while private industry uses 
AI/ML to optimize processes, enhance customer experiences, and increase profitability. The 
integration of AI/ML has led to considerable successes in both sectors, with improved efficiency, 
precision, and the ability to analyze vast amounts of data more effectively than traditional methods. 

Despite these successes, the adoption of AI/ML also presents significant challenges, particularly in 
areas requiring high-consequence decision-making, where errors or system failures could result in 
severe harm. Issues such as data integrity, algorithmic bias, ethical concerns, and transparency often 
complicate the deployment of AI/ML systems, especially when human oversight is limited or when 
these technologies are applied in sensitive environments like healthcare or defense. This section 
explores several real-world applications of AI/ML across both sectors, examining their strengths, 
the opportunities they present, and the obstacles they face. 

One key area of AI/ML application is in government-run traffic management systems, where cities 
like Los Angeles have leveraged AI to reduce congestion and enhance public safety. For example, 
Los Angeles employs an advanced adaptive traffic control system that uses real-time data from 
thousands of cameras and sensors to adjust traffic signals. This AI-powered system has been shown 
to reduce congestion by up to 16% during peak hours. Similar systems have been implemented in 
other cities around the world, such as Hangzhou, China, where Alibaba’s City Brain uses AI to 
analyze data from millions of sensors, optimizing traffic flow and reducing emergency response 
times by up to 50% (PYMNTS, 2022). These systems are effective in real-time adjustments to traffic 
flows, providing a clear efficiency boost compared to human-operated systems. However, challenges 
such as data quality and potential biases in how traffic is prioritized can lead to uneven outcomes. 
For instance, flawed sensor data or biased algorithmic designs could disproportionately affect certain 
communities, highlighting the importance of accurate, unbiased data in AI-driven public systems. 

In the defense sector, one of the most significant AI initiatives is the U.S. Department of Defense’s 
Project Maven. This project utilizes machine learning algorithms to analyze video data collected by 
drones, helping military personnel quickly identify and track objects of interest. The system greatly 
enhances the speed and accuracy of intelligence gathering, allowing for faster decision-making in 
combat scenarios. The key strength here is the efficiency AI brings to intelligence operations by 
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sifting through massive amounts of data far more quickly than human analysts. However, this 
efficiency comes with ethical concerns. Critics have raised questions about the potential for AI-
driven military operations to make decisions that could result in unintended civilian casualties. The 
“black box” nature of some machine learning algorithms further complicates matters, as the lack of 
transparency makes it difficult for humans to understand the rationale behind AI-driven decisions. 
This raises concerns about accountability and the potential for AI to be used in lethal operations 
without proper oversight (Cummings, 2023). 

Another critical defense application is the use of AI in autonomous systems, such as unmanned 
aerial vehicles (UAVs) and autonomous combat drones. These systems use AI to navigate, identify 
targets, and execute missions with minimal human intervention. For example, the U.S. military has 
been testing AI-powered autonomous drones capable of conducting reconnaissance and even 
engaging in combat scenarios. The strength of these autonomous systems lies in their ability to 
operate in hazardous environments without risking human lives, improving operational efficiency 
and reducing personnel exposure to danger. However, they raise significant challenges related to 
accountability, control, and ethical decision-making. Critics argue that delegating life-or-death 
decisions to machines, particularly in unpredictable combat environments, is fraught with risks, and 
the lack of human oversight could lead to unintended consequences, including violations of 
international law (RAND, 2020). 

Healthcare offers another promising but complex domain for AI/ML, particularly in improving 
diagnostics and personalized medicine. IBM’s Watson for Oncology, for instance, uses AI to analyze 
patient data and medical literature to assist doctors in determining cancer treatments. While this 
application of AI can lead to more accurate and personalized care, challenges such as trust in 
machine-generated recommendations and the risk of bias in the data used to train these models 
remain significant obstacles. If these biases are not addressed, AI-driven healthcare systems may 
unintentionally perpetuate inequalities in care (Ross & Swetlitz, 2017). 

In private industry, AI/ML has been particularly successful in financial services, where companies 
use these technologies to detect and prevent financial crimes such as fraud and money laundering. 
For example, machine learning is being increasingly used in anti-money laundering (AML) efforts to 
analyze large datasets, recognize suspicious patterns, and flag high-risk transactions for further 
investigation. According to a McKinsey report, machine learning has become a game-changer in the 
fight against money laundering by improving the efficiency and accuracy of detection systems. These 
AI-powered systems significantly reduce false positives and help institutions comply with regulatory 
requirements more effectively. However, challenges remain, particularly in the need to continuously 
update these models to keep pace with evolving criminal tactics. Additionally, maintaining the 
transparency and interpretability of these AI systems is critical to ensure that financial institutions 
and regulators can trust the decisions being made by the models (Doppalapudi, et al., 2022). 

In summary, AI and ML have demonstrated the capacity to transform both government and private 
industry by increasing efficiency, enhancing decision-making, and providing innovative solutions to 
complex problems. Government applications such as traffic management and defense illustrate how 
AI can streamline operations and improve safety, while healthcare applications highlight the 
potential for improved diagnostics and personalized care. In private industry, the use of AI/ML in 
areas like financial fraud detection shows the value of these technologies in mitigating risks and 
optimizing operations. However, these advancements are tempered by challenges such as data 
quality, algorithmic bias, and ethical considerations, which must be addressed to ensure the 
responsible and effective use of AI/ML. As these technologies continue to evolve, finding the right 
balance between innovation and oversight will be critical to their successful deployment. The next 
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section will delve deeper into how AI/ML is applied in high-consequence systems, where the stakes 
are exceptionally high and reliability is paramount. 

5.2. Planes, Train(ing)s, and Automobiles: Applications in High-Consequence 
Systems 

High-consequence systems are those in which failures or errors can lead to significant harm or 
substantial negative outcomes, affecting safety, security, or critical operations. These systems often 
operate in environments where reliability and accuracy are paramount, as the stakes involved are 
exceptionally high. One notable example is self-driving vehicles, which not only have to process 
large amounts of information and make real-time choices on the road but also integrate into systems 
with human-driven vehicles. This application is generally seen as a “high-consequence” application 
of AI/ML because errors made on the road can cause harm to drivers, passengers, pedestrians, and 
property (Goodall, 2014). Additionally, these systems must be able to process and react to a large 
number of possible scenarios, each of which may be novel to the system. Some of these problems 
can be solved by generalizing from prior experience, while others may require novel approaches. For 
example, a system trained to avoid collisions with adult humans by stopping will likely be able to 
handle a novel scenario like a child in the road with the same solution—stopping the car. However, 
if a car detects darker pavement in the winter and assumes it's water when it's actually black ice, the 
car’s solution—braking or slowing down—may not prevent the negative outcome of skidding or 
losing control. 

Currently, a solution to this challenge is to have a person in the vehicle who is ready to take control 
if the autonomous driving system encounters something novel or reacts incorrectly (Lin, et al., 
2021). Human oversight is framed as a way to reduce the likelihood of negative outcomes and 
potentially serve as training data to teach the system how to respond better in the future. This hybrid 
system of human-in-the-loop (HITL) or human-on-the-loop (HOTL) is common in AI/ML 
applications where the consequences of errors are severe (Cummings, 2023). HITL systems involve 
active human participation in the decision-making process, while HOTL systems place humans in a 
supervisory role, monitoring the AI’s actions and intervening when necessary. 

Questions have been raised about the feasibility of applying these systems to other high-
consequence environments like air traffic control and space applications. Air traffic control, which 
relies on a variety of information interfaces and the complex orchestration of assets, is often cited as 
a field that cannot easily be replaced by AI/ML systems. While AI can assist in managing routine 
tasks, the unpredictability of human behavior and the potential for system failures make it critical 
that humans remain involved in these systems. 

Moreover, challenges such as explainability and interpretability further complicate the deployment of 
AI/ML in these high-stakes contexts (Doshi-Velez & Kim, 2017). Humans need to understand the 
rationale behind AI decisions to trust the system and intervene appropriately. In environments like 
air traffic control, this need for explainability means that AI/ML systems must provide not only 
accurate decisions but also transparent reasoning that can be quickly understood by human 
operators. Although AI systems can operate faster and more efficiently than humans in some 
scenarios, the need for oversight in high-consequence environments ensures that human 
involvement will continue to be necessary for the foreseeable future (Ribeiro, Singh, & Guestrin, 
2016). 
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6. CONCLUSION 
AI and ML have transformed both private industry and government, significantly enhancing 
efficiency, automation, and decision-making. These technologies are now fundamental in sectors like 
manufacturing, logistics, healthcare, and defense, enabling organizations to handle vast amounts of 
data and improve operational outcomes. In private industry, AI/ML is optimizing supply chains, 
predicting failures, and supporting customer engagement. Meanwhile, government applications 
focus on improving public services, transportation, defense, and public safety. 

Despite these benefits, challenges persist. Ensuring data integrity and handling missing or 
incomplete data are crucial for maintaining model accuracy, especially in high-consequence 
environments like autonomous vehicles and air traffic control, where the stakes are high. Moreover, 
AI/ML models often lack transparency, making it difficult for humans to interpret decisions, which 
is vital in critical settings. The rise of explainable AI (XAI) is beginning to address this issue, but 
further advancements are needed to build trust and ensure accountability. 

The human-computer interface remains essential in AI/ML systems, particularly in high-stakes 
applications where human oversight helps prevent catastrophic outcomes. HITL and HOTL 
systems allow humans to guide or supervise AI actions, balancing the efficiency of AI with the need 
for human intervention. As AI becomes more autonomous, maintaining this balance—without over-
relying on AI or slowing down operations—will be crucial for safety and trust. 

Looking ahead, further research, development, and policy will be needed to overcome these 
challenges. Ensuring AI/ML systems are transparent, reliable, and ethically deployed is vital for their 
continued success. AI and ML hold vast potential to revolutionize industries and improve decision-
making, but their future hinges on responsible development that aligns automation with human 
oversight, safety, and ethical considerations. 
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