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Introduction 
The following details calibration of a material model for Al7075-T6511. This aluminum alloy is 
commonly used across a host of engineering applications. Owing to its widespread prevalence, 
there is great benefit in improving simulation predictions for this alloy. In the present effort, a 
calibration is performed of its elastic-plastic response accounting for both rate and temperature 
dependence. The calibration is informed by a series of tests that include specimens of different 
geometries tested at different rates and temperatures.  All specimens are derived from the same bar-
stock, 3.5 inches in diameter. The fitted model itself uses an anisotropic, Hill yield surface coupled 
with a Johnson-Cook hardening model. Failure predictions are had by means of a modified Wilkins 
failure criterion.  

 

Following calibration of the material model, a validation exercise is performed against plate-
puncture experiments. These experiments include multiple probe shapes, probe diameters, and plate 
thicknesses. The puncture experiments are replicated in simulation with mesh studies performed to 
assess uncertainty. Key quantities of interest, notably the absorbed energy up to failure, are 
compared between simulation and experiment providing a means to assess the suitability of the 
calibration in puncture simulations.  

Calibration:  
Material Characterization Experiments  
In gathering experimental data for the calibration, multiple tests are involved. Each test helps 
characterize a different aspect of the material response. General features of interest include the 
elastic-plastic response, failure initiation, and dependence of these two on both rate and 
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temperature. A series of tests were devised to query these effects. As essential background for the 
calibration, a brief summary of the experimental tests follows below.  

Uniaxial Tension 
The plastic response is calibrated through uniaxial tension tests. Tension tests were performed at 
room temperature as well as at 50 ºC and 100 ºC. Drawings for the uniaxial tension specimen are 
provided in Appendix B. To summarize key geometrical features, the tension specimen is a 
standard dog-bone with test section diameter of 0.25” and effective length of 0.750”. Displacements 
are measured with an extensometer of gage length 0.5”. 

As a brief digression, several comments are made on the stock material. Most importantly, all test 
specimens are cut from a single bar stock. This cylindrical bar-stock is cut into multiple smaller 
sub-lengths. From each sub-length, multiple tensile specimens are cut. Tensile specimens derive 
from both different sub-lengths as well as from different locations within a given cross-section. 
Furthermore, samples are included both with their tensile axis aligned to the axis of the bar as well 
as with their tensile axis oriented at 90 degrees to the axis of the bar. This information is 
summarized in the drawings found in Appendix B.  

Most of the tension tests are performed at a quasi-static strain rate of 1.6E-04 1/s. Several additional 
tests are run at an intermediate rate of 3.3E-02 1/s. Taken together, these tests provide information 
on the plastic behavior of the material with some limited insight into temperature and rate 
dependence. Further, the inclusion of specimens from varying regions and orientations throughout 
the stock material will aid in characterizing yield anisotropy. Plots of engineering stress vs 
engineering strain are presented in Figure 1.  
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Figure 1. Engineering stress vs engineering strain is plotted for all experimental-tension tests 
including room temperature (25 ºC), 50 ºC, and 100 ºC as well as for rates of 1.67E-04 1/s and 

3.3E-02 1/s 

 

A large spread is noted in the room-temperature tests. Specimens cut from the edge of the bar stock 
(see Appendix B) show a higher flow stress compared to those cut from the center. In contrast, 
specimens cut with their tension axis transverse to the axis of the bar stock show a much lower flow 
stress indicating yield anisotropy in the material. Despite apparent variance as regards tensile 
orientation and specimen radial location, focus is placed on those specimens cut from the center of 
the bar and with their tension axis oriented parallel to the axis of the bar. The present calibration 
will focus on these cases while taking note of the anisotropy.  

As for temperature effects, higher temperature decreases the flow-stress and extends the strain to 
failure. Compared to room-temperature, the tension tests performed at 100ºC show a 50% increase 
in failure strain. The influence of rate is less perceptible. Going from 1.67E-4 to 3.3E-2 1/s, the 
flow plastic behavior appears largely unchanged at 25 and 50oC although the failure strain is 
slightly reduced. The effect of strain rate is more significant at 100oC 

In terms of the material calibration, these tension tests serve primarily to inform the hardening 
function of the plasticity model which includes a Hill yield function that hardens isotropically. 
Failure behavior, in contrast, is better informed by notch and hat tests. Notch tests are discussed 
next.  

 



 

 4 

Notch Tension  
Tension specimens with varying notch radii are used to characterize the failure behavior of the 
material. The inclusion of several notch radii yields information on the influence of triaxiality 
where, in general, a smaller notch radius leads to a state of higher triaxiality.   

Specimens with notch radii of 0.032, 0.064, 0.128, and 0.320 inches with cross-sectional radius of 
0.125 inches, are tested. For each geometry, several tests are performed to demonstrate 
repeatability. As before, all specimen drawings are found in Appendix B.  

Experiments are performed quasi-statically with cross-head displacement rate varying depending on 
notch radii to approximate the strain-rate in the slowest uniaxial tension test. Cross-head 
displacement rates are 0.011, 0.021, 0.043, and 0.085 mil/s for specimens with notch radii of 0.032, 
0.064, 0.128 and 0.320 inches respectively.  Excepting the 0.320” notch, a 0.5” extensometer 
measures displacement across the notch. For the 0.320” specimens, a 1.0” extensometer is used. 
Experimental load displacement is plotted in Figure 2. Some variation is evident in the 
experimental results, becoming more significant for smaller notch sizes.  

 

 

Figure 2. Load vs displacement is plotted for the notch specimens, which were run at room 
temperature and at a quasi-static rate.  

Notch specimens provide a wealth of information for the failure calibration. Further 
characterization is provided via hat-compression tests discussed next.  

Hat Compression 
Hat compression tests provide additional information to characterize the failure response. As the 
reader may be unfamiliar with this experiment, Figure 3 demonstrates the essential setup. In this 
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experiment a “hat” specimen is compressed between two platens. A region of high shear develops 
in the noted ligament where failure is expected to initiate from either the top or bottom faces. 
Compared to the notch tests, the hat specimen induces a compressive hydrostatic stress alongside 
the more-obvious shear. It is the combination of compressive stress and high shear that 
differentiates the hat from the notch specimens providing a unique data point from which to 
calibrate. Drawings for the hat specimen are found in Appendix B. Load displacement results for 
the hat specimens are plotted in Figure 4. The compression rate was 0.1 mil/s oriented along the bar 
axis. Tests show good repeatability.  

 

 

 

Figure 3. The basic setup of the hat-compression test is shown 
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Figure 4. Load vs displacement is plotted for all hat tests. Experiments were conducted at room 
temperature and quasi-static rate. 

 

Kolsky Bar Tension 
Rate dependence is explored via Kolsky bar tests. Specimen dimensions are again included in the 
appendix. From a calibration perspective, the key takeaway is that three additional strain rates are 
tested, each at room temperature. The tested strain rates are 500 1/s, 1000 1/s, and 3000 1/s. Stress-
strain curves for each are presented in Figure 5. Rate dependence is limited with flow-stress 
remaining largely similar across all cases. Though the failure point is not as well defined, higher 
rate appears to fail at smaller strains as suggested by the earlier drop in load. Note all specimens are 
oriented in the axial direction.  
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Figure 5. Stress-strain curves from Kolsky bar experiments are plotted for three different strain 
rates  

Constitutive Model  
Above summarizes the material response across all the tests. Attention is now turned to modeling. 
This effort makes use of LAME’s recent work in modular constitutive models which allows for the 
mixing and matching of various plasticity and damage models. Here, a Hill yield surface is selected 
with a power-law hardening behavior. For rate dependence, a Johnson-Cook relationship is used. 
Temperature dependence is defined according to a user function. Coupled with this plasticity model 
is a Wilkins failure model which itself allows for rate and temperature dependence. A brief 
summary is provided.  

The Hill yield surface is anisotropic. For brevity, equations are not reproduced here. Equations 
defining the Hill yield surface can be found in the LAME manual [1]. Relevant to this calibration 
effort, seven parameters are needed to define the yield surface. These are a reference yield stress,  
𝜎$, plus six parameters that give the ratio between this reference yield stress and a yield stress for 
each component of the stress tensor in the axes of principal anisotropy. Notationally, these 
parameters are written 

 

𝑅!" = '

𝜎!"	
𝜎$
,																𝑖 = 𝑗

√3
𝜎!"	
𝜎$
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When all 𝑅!" equal 1.0, the Von-Mises yield criterion is recovered.  

 

Coupled with this yield surface is a Johnson-Cook hardening law following the form  

 

𝜎$ = 0𝐴(𝑇) + 𝐵(𝜖$̅)%(')9[1 + 𝐶 < ln ?)*̇
!

)̇"
@ >] 2. 

 

where 𝐴 is the initial yield stress, 𝐵 is the hardening modulus, 𝑁 the hardening constant, 𝐶 the rate 
constant, 𝜖̅̇$ a plastic strain rate, 𝜖,̇ a reference strain rate, and 𝑇 the temperature. Note 𝐴, 𝐵, and 𝑁 
are all permitted to vary with temperature. This hardening law, coupled with the Hill yield surface 
defines the plastic behavior.  

Now considering the failure model, an extended form of the Wilkins failure criteria is adopted 
[2][3] following the form  

 

𝑑 =
1

𝑑-.!/
∫ 𝑤0(𝜎1)𝑤2(𝜃)𝑤3(𝜖̅̇$)𝑤4(𝑇)𝑑𝜖̂$ 3. 

 

where 𝑑 is a dimensionless damage value, 𝑑-.!/ a critical damage parameter, and the parameters 𝑤! 
dimensionless functions of the mean-stress, lode angle, strain rate, and temperature. Integration is 
performed over the plastic strain. Failure is defined when the damage, 𝑑, equals one.  

 

The parameter 𝑤0 is calculated as  

𝑤0 = I
1

1 − 𝜎1𝐵
K

5

 
4. 

 

where 𝜎1 is the mean stress and 𝐵 and 𝛼 are parameters to be calibrated. The second parameter, 
𝑤2, implicitly accounts for lode angle dependence and takes the form  

𝑤2 = (2 − 𝐴)6 5. 
 

where 𝛽 is a calibration parameter and 𝐴 equals  
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𝐴 = max	(
𝑠2
𝑠3
,
𝑠2
𝑠0
) 6. 

 

where 𝑠! are the principal values of the deviatoric stress tensor.  

Similar to the plasticity model, rate dependence is incorporated via a Johnson cook-type form with 
𝑤3 calculated as  

𝑤3 =
1

1 + 𝐷4 ln T
𝜖̅̇$
𝜖,̇
U

 6. 

 

where 𝐷4 is a calibration parameter, 𝜖,̇ is a reference rate (the same used for the plasticity model), 
and 𝜖̅̇$ is the plastic strain rate.  

Finally, explicit temperature dependence is included through 𝑤4. In the present case, this parameter 
will be defined through user-functions of temperature. With this, the constitutive model is laid out. 
In total, four temperature dependent parameters must be defined for the plasticity model and four 
for the failure model plus a function of temperature. Ideal values for each parameter are determined 
through the calibration process described below.  

Material Calibration  
From a high-level, the calibration approach is broken into several steps. First, the plastic response is 
calibrated assuming no rate or temperature effects. From here, damage can be calibrated, again 
neglecting rate and temperature. The resulting fit is an intermediate step that serves as a base for the 
larger calibration. Having this in hand, temperature effects are built into the plasticity model 
followed by rate. Finally, the calibration concludes with temperature and rate effects worked into 
the damage model. Each of the above steps are discussed in individual detail below. Comparison 
between experiment and the calibrated material is presented across several plots in the “Calibration 
Summary” section. A full Sierra/SM input deck for the material model is included in Appendix C.  

Plasticity Calibration  
The first step in the calibration procedure aims to fit the plastic response at room temperature and 
neglecting rate dependence.  For this purpose, the essential experiments are the quasi-static, room-
temperature tensile tests on specimens oriented axially and taken from the center of the bar stock. A 
finite element model is developed mimicking the tensile experiments. An example model is shown 
in Figure 6.  
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Figure 6. A quarter symmetry model is used for simulating the tensile response 

The model uses quarter symmetry boundary conditions along the tensile axis as well as an 
additional symmetry plane perpendicular the tensile axis that further splits the geometry in half. In 
simulation, displacements are measured along a series of nodes inserted at a position to match the 
extensometer in the tests. The model itself extends beyond the gage length, including geometry up 
to the “points of tangency” where the tensile coupon transitions from a constant cross-sectional 
radius into the characteristic “dog-bone” shape.  

Assuming zero rate and temperature dependence, the plastic hardening model (equation 2) reduces 
to the following form, 

𝜎7 = 𝜎7,(𝑇) + 𝐴(𝑇)(𝜖̅8)9(')|':'#$$% 7. 

 

where 𝜎7, is the initial yield stress taken at the proportional limit,  𝐴 is the hardening constant, and 𝑛 
is the hardening exponent, all evaluated at room temperature.   

Recall the effective stress is based on a Hill yield surface which includes the constants 𝑅!". For the 
present purposes, all 𝑅!" components are set to one excepting 𝑅23 and 𝑅30 on which are imposed 
the restriction 𝑅23 equals 𝑅30. Therefore, only a single additional parameter enters into the 
calibration on account of the Hill yield surface. In total, the parameters to be calibrated at this stage 
are 𝜎$, 𝐴, 𝑛, and 𝑅30.  

The plasticity calibration takes an iterative approach. Starting with an initial guess at the material 
constants, the tensile simulation is run and the predicted load-displacement compared to that of 
experiment. Depending on fit, the material constants are adjusted, and the simulation rerun. This 
continues until an acceptable fit is achieved. 

Though tensile specimens are the primary driver for the plasticity calibration, comparison is also 
made to the hat and notch tests to ensure a reasonable fit across all cases. Initial efforts, which used 
an isotropic yield surface, found poor alignment between simulation and experiment for the notch 
and hat compression despite a good fit to the tension tests. The anisotropic yield surface was 
adopted to help alleviate this issue.   
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Following this approach, the final fitted parameters for the plasticity model are presented in Table 
1. Comparison between simulation and experiment, for both notch and tension, is shown in Figure 
7. Note, details of the notch simulation setup are deferred to the next section which focuses on the 
damage calibration. Simulation predictions show better alignment for the tensile specimen and large 
radius notch with comparison deteriorating somewhat as notch radius decreases.  

 

Table 1. Calibrated plasticity parameters 

𝝈𝒚𝟎 [MPa] 𝑨 [MPa] 𝒏 [-] 𝑹𝟑𝟏 [-] 
509 394 0.33 0.83 

 

 

Figure 7. Comparison between experiment and simulation is plotted for tension and for each of the 
notch tests. Failure is not present in the model at this stage 

Above concludes the plasticity calibration for the model at room temperature and with no rate 
dependence. Next follows the damage calibration under similar conditions.  

Damage Calibration  
As with the above plasticity calibration, this initial damage calibration will temporarily neglect any 
rate or temperature effects. For this effort, the essential experiments include both the notch 
specimens as well as the hat specimen. Simulations are constructed mimicking the experiments for 
each specimen type. The model setup for each is discussed.  
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Model Setup  
First to discuss the notch specimens, finite element models are developed for each of the four notch 
radii. Similar to the tension model, 1/8th symmetry is used as seen in Figure 8.  The geometry 
includes up to the extensometer gage length but does not extend further. The top-most surface, at 
the gauge length, is displaced upwards at quasi-static rate in accord with strain-rates detailed in the 
experiments section. Based on prior mesh studies [2], 20 elements are maintained through the 
smallest radius as shown in Figure 9.   
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Figure 8. Four notch models are developed for four different radii 

 

Figure 9. Mesh for the 0.0320 notch is shown. Across all notches, a minimum of 20 elements in 
maintained through the smallest radius 

 

Moving to the hat specimen, this model uses quarter symmetry as seen in Figure 10. The boundary 
conditions for the hat specimen are as follows: 

 

• Bottom surface is fixed for all DOF except the vertical direction 
• Top surface is fixed in all DOF 
• Bottom surface is displaced upwards, putting the specimen in compression 
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• The remaining boundaries are either free or constrained by symmetry boundary conditions.  
 

Mesh refinement is increased in the region where failure is anticipated. The element edge length in 
this region is around 0.05 mm.  

 

 

Figure 10. Hat model is shown with mesh 

Damage Calibration Procedure  
The failure calibration, which uses both hat and notch specimens, is performed with the aid of a 
Fortran script that implements the procedure in [2]. For this calibration method, each test is 
simulated first with the principal stresses and equivalent plastic strain output at every step. This 
script then sweeps through different damage-parameter combinations and, for each, calculates 
damage values for select elements on the mesh. In doing so, a failure strain is predicted based on 
the first element to reach a damage value of one. Parameter combos are ranked according to the 
error between predicted failure-displacement and experimental failure-displacement. From this 
ranking, a combo is selected which suitably minimizes error across all notch and hat specimens.  

Damage parameters selected through this process are in Table 2. Failure predictions for the notch 
and hat specimens may be seen in Figure 14 and  Figure 15 respectively, included in the 
“Calibration Summary” section.  
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Table 2. Damage calibration parameters 

Parameter Value 
𝐵 4.0e9 
𝛼 7.85 
𝛽 0.8 
𝑑-.!/ 0.5 

 

Temperature and Rate Plasticity Calibration  
At this point, the calibration includes damage and plasticity for room-temperature and quasistatic 
rate. From here, temperature dependence is worked into the plasticity calibration. The relevant 
experimental tests are the quasi-static tensile tests performed at temperatures of 50C and 100C. For 
both temperatures, a unique hardening function is calibrated following the same process as for the 
room-temperature calibration. Fitted parameters are included in Table 3 and load displacement 
plotted in Figure 11.  

 

Table 3. Calibrated plasticty parameters for temperature of 50ºC and 100ºC 

Temperate (ºC) 𝜎7, 𝐴 𝑛 

50  404.0 426.0 0.196 

100 253.0 476.0 0.131 
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Figure 11. Two additional plasticity calibrations are performed at temperatures of 50 C and 100C 

With the addition of fits to 50C and 100C, there are now three plasticity calibrations including the 
initial room temperature fit. These three are combined into a single calibration by introducing a 
linear interpolation, over temperature, for each 𝜎7,(𝑇), 𝐴(𝑇), and 𝑛(𝑇). Temperature dependence is 
ensured to be monotonic for each parameter.  

With temperature dependence incorporated, rate effects can be addressed. Recall, a Johnson-Cook 
rate dependence is used which requires calibration of the rate constant, C, as in equation 2. The 
reference rate is taken to be the quasi-static strain rate for the tensile specimens or 1.6E-04.  In 
addition to the rate constant, the Taylor-Quinney coefficient enters as a second parameter to 
calibrate. Relevant experiments are the Kolsky bar tests. A matching finite element model is 
developed with the setup shown in Figure 12. Here it is especially important that the proper 
displacement-rate be applied to the model. For this purpose, experimentally measured outputs of 
displacement, which capture the time history, are used to drive the model. Displacements are 
imposed at the top-most surface which coincides with the experimental gauge length. Remaining 
boundary conditions are simplistic employing the same symmetry planes as with the tension and 
notch models. An adiabatic assumption is adopted.  

 

 



 

 17 

 

Figure 12. Simulation setup is shown 

It should be noted that, before running any simulations, a good estimate for the rate multiplier is 
attained by simply comparing the experimental curves. The ultimate tensile stress (UTS) provides a 
useful data point for which to fit the Johnson-Cook function. Starting from this initial guess, 
simulations are run to verify the fit. Adjustments are made on a trial-and-error basis until an 
acceptable fit is achieved. Calibrated values are given in Table 4. The specific heat is included for 
reference though is not part of the calibration.   

 

Table 4. Calibrated rate constant and Taylor-Quinney coefficient 

Parameter Name Parameter Value 
C (rate-constant) [-] 0.002 

𝛽 [-] 0.8 
Specific Heat [J/kg-K] 900 

 

Temperature and Rate Dependent Damage  
Rate and temperature effects are now included in the plasticity model. The same must be done for 
the failure model. For temperature dependence, a user defined failure multiplier is defined which 
takes the place of 𝑤4 in equation 3. Calibration of this parameter is quite simple. Again, relying on 
the tension tests at 50 ºC and 100 ºC, for each temperature, a failure multiplier is set so that the 
simulated failure strain matches that in experiment. As the simulations assume constant 
temperature, the failure multiplier is easily set by considering the ratio of current to desired failure 
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strain and adjusting accordingly. As before, a linear interpolation provides a single temperature 
dependent failure multiplier. The failure multiplier for each temperature is summarized in Table 5.  

 

Table 5. Failure multiplier is listed for 25ºC, 50ºC, and 100ºC 

Temperature (ºC) 𝑤4 
50 0.93 
100 0.29 

 

Rate dependence takes a similar approach. Here we again consider the high-rate Kolsky bar tests. 
Initial simulations are run to attain the predicted failure strain. Depending on discrepancy between 
predicted and observed failure strain, a rate multiplier, this time following a Johnson-Cook law as 
in equation 6, is set to shift predictions closer to experiment. The specific parameter set here is 𝐷4. 
The reference rate is the same as the plasticity model, 1.6E-04. As with setting the temperature 
failure multiplier, this parameter is well estimated without running any simulations just by 
assuming an approximate strain rate. From here, further iterations can be made within simulation 
until the predictions are within reasonable alignment.  The calibrated 𝐷4 value is -0.015. 

With this, the full calibration is complete. The following section includes a series of plots showing 
comparison between the calibrated material model and experiment. This is included to both verify 
the calibration and to summarize its performance against the calibration experiments.  

 

Calibration Summary  
The full material card for the calibrated Al7075 model is included in Appendix C. How the model 
compares to the calibration experiments is summarized across Figure 13-Figure 16. All plots are 
generated with rate and temperature dependence turned on as verification for these portions of the 
model. Adiabatic heating is turned off for quasi-static tests and turned on only for the high rate.  
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Figure 13. All tension simulations are plotted alongside their experimental counterparts. Predicted 
failure is marked with an ‘x’ 

 

Figure 14. Load-displacement compared between simulation and experiment for each of the three 
notch radii. Predicted failure is marked with an ‘x’ 
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 Figure 15. Load-displacement is compared between simulation and experiment for the hat 
specimen. Predicted failure is marked with an ‘x’ 

 

Figure 16. Stress vs strain is plotted comparing simulation and experiment for the high-rate tests. 
Predicted failure is marked with an ‘x’ 

Late in the process, an oversight was discovered in the Hill yield surface calibration. Specifically, 
the Hill constants R11, R22, and R12 were meant to be selected so as to better fit the anisotropic 
behavior evident in Figure 1. Instead, these were mistakenly set to their default values of 1.0 and as 
such the yield surface is not well suited to capture flow behavior in the transverse direction. The 
puncture simulations, discussed below, were run prior to this discovery. Rather than rerunning all 
results, the correction is implemented and addressed in Appendix A. In this appendix section, a 
limited series of results are rerun to demonstrate sensitivity to this correction. Based on the rerun 
results, the corrected yield surface shows marginal impact. Thus, the results presented here are 
considered representative.   
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Puncture Tests 
A series of plate-puncture experiments are conducted, and corresponding simulations run. In these 
tests a probe attached to a drop table impacts a plate lying below. Given sufficient energy, the probe 
punctures the plate. The plates used here are cut from the same stock material as the calibration 
specimens described above. Hence, for simulation purposes, the material calibration applies. A 
measure of validation is provided comparing between simulation and experiment. Of particular 
interest is whether the simulations can predict the amount of energy absorbed by the plates. For 
more details on the experimental setup see [2].  

Several punches of varying size and shape are used. The three shapes involved are referred to as 
“flat”, “blunt”, and “tri-corner” with each pictured in Figure 17. For each shape, diameters of 0.5 
and 1.0 inches are tested with an additional 0.25 inch diameter for the flat punch. Plates are made in 
three different thicknesses: 0.051, 0.114, and 0.250 inches.   

An example of the simulation setup is shown in Figure 18. Included in the model is the base, which 
holds up the plate; the plate itself; the punch; and a cylinder representing the carriage mass, with its 
density adjusted to match the mass used in the drop table experiment: 138.5 kg. Symmetry is 
applied where appropriate. Specifically quarter symmetry is used across all flat punch simulations 
while 1/3rd symmetry is used for all corner punch simulations. For the blunt punch quarter 
symmetry is used with plate thicknesses of 0.250” and 0.114”. However, no symmetry is modeled 
for the thinnest plate of 0.051”. Outside of the plate, generic elastic properties for steel are assumed.  

At the start of the simulation, the probe is positioned slightly above the plate. An initial velocity is 
applied to the probe and is taken from experimental readings directly before impact. Further, an 
“effective gravity” is applied in the simulations to capture the net acceleration acting on the 
combined probe and mass. Owing to friction in the drop tower frame as well as other loss sources, 
this applied acceleration does not equal the gravitational constant. As with the initial velocity, the 
effective gravity is calculated from experimental data as the slope of the velocity vs time plot prior 
to impact.  
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Figure 17. Three different probe shapes are tested (and simulated) 

 

 

Figure 18. An example model as used in simulation is shown. Note the quarter symmetry. 

As the simulation progresses, element death is used to delete elements which have reached the 
damage criteria. Through this mechanism, “cracks” may propagate allowing the probe to puncture 
through the plate.  

Quantities of interest for these simulations are the acceleration-time history, the velocity-time 
history, and the energy absorbed by the plate during the impact. The absorbed energy is calculated 
as the difference in kinetic energy and potential energy just before and after the puncture event. For 
calculating the kinetic energy, all that is needed is the velocity before and after impact since the 
carriage and punch masses are known. Velocities are easily read from experimental or simulation 
output.  
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The change in potential energy is calculated using the “effective gravity” detailed above. As a 
simplifying assumption, the effective gravity is assumed to remain constant over the course of the 
impact. The remaining component needed to calculate the potential energy is the height change. 
This is calculated as the integral of the velocity over the duration of the puncture event and is 
computed numerically on both simulation and experimental results. The net change in energy is 
assumed to come from deformation and fracture of the plate. Hence in calculating these two values, 
we have an estimate for energy dissipated by the plate.  

This calculation depends on how the beginning and end of the puncture event are defined. The 
puncture is observed as a reasonably well-defined acceleration pulse. A qualitative assessment is 
made to pick points corresponding to the beginning and end of this pulse-feature. With several 
exceptions, both the start and end of the pulse are well defined. Several examples are provided in 
Figure 19. 

The above calculation gives an estimate for work done up to the point where the probe tip has 
completely passed through the plate. This includes all energy expended to propagate cracks and 
friction between the punch and perforated plates in the experiments. However, crack propagation is 
inevitably mesh sensitive. A more stable metric might be the work needed to initiate failure prior to 
any propagation. The initiation point, however, is not well defined. As balance between the two, an 
alternative metric is the work up to the peak acceleration. The peak-acceleration is a well-defined 
feature across simulation and experiment and occurs at a time where comparatively less crack 
propagation has transpired. Several examples are again included in Figure 19 showing how this 
point is selected. 

 

Figure 19. Absorbed energy is calculated across (1) the entire puncture event and (2) up to the 
peak-acceleration. Several cases are shown for example. Green triangles represent the beginning of 
the acceleration pulse, yellow triangles the peak acceleration and red triangles the end of the 
acceleration pulse. 
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Mesh Study  

Mesh studies are conducted for all probes with a diameter of 0.5” across all plate thicknesses. 
Results are organized according to plate thickness. Acceleration and velocity time histories are 
plotted for the thick plates (0.250”) in Figure 20. Multiple mesh sizes are compared, with each 
defined according to elements through the plate thickness.  Experimental results are plotted 
alongside simulation and are included as dashed lines. All simulation results are low-pass filtered at 
500 Hz.  The same series of plots are generated for plate thicknesses of 0.114” and 0.051” and are 
included as Figure 22 and Figure 24 respectively. Absorbed energy is summarized across all mesh 
studies in Table 6. 

 

 
Figure 20. Acceleration and velocity time histories are plotted for plates of thickness 0.250 inch 

comparing varying number of elements through the plate thickness. Elements were of nominal unit 
aspect ratio.  
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Figure 21. A qualitative comparison is made between 0.250 inch plates, post-puncture, comparing 

simulation and experiment. Flat probes are compared in (a), tri-corner probes in (b), and blunt 
probes in (c).  
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Figure 22. Acceleration and velocity time histories are plotted for plates of thickness 0.114 inch 

comparing varying number of elements through the plate thickness  
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Figure 23. A qualitative comparison is made between 0.114 inch plates, post-puncture, comparing 

simulation and experiment. Flat probes are compared in (a), tri-corner probes in (b), and blunt 
probes in (c) 
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Figure 24. Acceleration and velocity time histories are plotted for plates of thickness 0.051 inch 

comparing mesh sizes with varying number of elements through the thickness 
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Figure 25. A qualitative comparison is made between 0.051” plates, post-puncture, comparing 
simulation and experiment. Flat probes are compared in (a), tri-corner probes in (b), and blunt 

probes in (c) 
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Table 6. Energy absorbed by the plate is summarized across all mesh studies  

Plate 
Thick. 
[in.] 

Probe  
Type  

Elements 
Through 
Thickness  

Absorbed 
Energy, Peak 
Accel [J] 
(simulation) 

Absorbed 
Energy, Peak 
Accel [J]  
(experiment)  

Absorbed 
Energy, Full 
Puncture [J] 
(simulation) 

Absorbed 
Energy, Full 
Puncture [J]  
(experiment)  

0.250  Flat 10 112 66 232 167 
14 110 231 
20 106 229 
30 100 187 
40 100 171 

Tri-
Corner 
 

10 194 129 350 292 
 14 167 339 

20 127 284 
Blunt 
 

10 248 66 382 254 
 14 110 233 

20 108 213 
0.114 Flat 10 40 25 100 59 

14 39 91 
20 33 71 
30 33 82 
40 28 74 

Tri-
Corner 

5 78 50 89 78 
7 77 89 
10 81 84 
14 DNF DNF 
20 82 DNF 

Blunt 7 69 48 82 75 
10 54 67 
14 27 60 
20 24 40 

0.051 Flat 5 9 9 13 15 
7 9 13 
10 8 12 

Tri-
Corner 

5 32 11 36 20 
7 31 34 
10 29 34 

Blunt 3 5 3 36 17 
5 3 23 
7 2 DNF 
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Across all cases, clean mesh convergence trends are not generally observed. This is perhaps 
expected: with smaller elements the “crack” formed through element death becomes increasingly 
sharp facilitating an easier failure. As such, convergent results should only be expected up to the 
point of failure initiation. However, these mesh studies seek to convey the sensitivity inherent 
across mesh sizes spanning a “reasonable number of elements”. Based on prior work, a reasonable 
number is in the neighborhood of 20 elements through the thickness of the 0.250” plate and 5 
elements through the 0.051” plate. In practice, mesh size is limited by acceptable computational 
expense which for present purposes does not exceed a 50-hour run.  

Simulation results are arguably best aligned for the thickest plates (0.250”) as seen in Figure 20. 
Here, across all probe types, the peak acceleration is well approximated within the tested mesh 
sizes. For the blunt and corner tip probes, 20 elements through the thickness appears adequate. In 
contrast, the flat probe, perhaps owing to sharp gradients formed at the circumference of the probe, 
needs closer to 40 elements through the thickness. Qualitatively, the simulations correctly predict 
plugs being severed from the plate as the probe passes through. This is seen in Figure 21.  

Results for plates with a thickness of 0.114” are notably less aligned. Part of this may be attributed 
to inadequate mesh refinement: both flat and corner probe responses are overpredicted as seen in 
Figure 22. Based on observable trends, one would expect that further mesh refinement would better 
align these results. However, the computational expense quickly becomes prohibitive. To this point, 
several simulations did not finish (DNF). These were terminated on time. For the blunt probe, the 
impulse shape is wholly missed resulting in substantial error. Despite this, the qualitative behavior 
is reasonably predicted with the simulation correctly predicting four separated pieces as in Figure 
23c.  

For the 0.051” plates, the largest error is seen with the tri-corner probe where again the shape of the 
impulse is missed as seen in Figure 24. For this case, the simulation predicts that the probe tears 
through the plate as opposed to severing a plug. Experimentally, this is clearly not the case. See 
Figure 25b as evidence.  

Regarding predictions for absorbed energy, predictions show moderate mesh sensitivity with 
variations on the order of 50% across mesh sizes. An error assessment, comparing nominal mesh 
sizes to experiment, is deferred to a later section.  

Puncture Results with 1.0” Diameter Punch  
In the above section, mesh studies were conducted for probes having a diameter of 0.5 inches. 
Further experiments were conducted using a larger probe diameter of 1.0 inches. These are also 
simulated. However, instead of conducting additional mesh studies, the nominal mesh sizes from 
the existing studies, using the 0.5” diameter probes, are used. For each case, this is the mesh size 
that achieves reasonable agreement with experiment while balancing computational cost. Mesh 
sizes for these runs are tabulated in Table 7.  
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Table 7. The mesh size, in terms of elements though plate thickness, is summarized for simulations 
using a 1.0” punch 

 Flat Tri-Corner Blunt 
0.250 40 20 20 
0.114 20 14 14 
0.051 5 5 5 

 

 

Results are presented in the same fashion as before, with time histories for each plate thickness 
included in Figure 26, Figure 27, and Figure 28 respectively.  Work to failure is summarized in 
Table 8.  
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Figure 26. Acceleration and velocity time histories are plotted for all simulations using a 1.0 inch 
dimeter probe and plate thickness of 0.250 inch. 
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Figure 27. Acceleration and velocity time histories are plotted for all simulations using a 1.0 inch 
dimeter probe and plate thickness of 0.114 inch. 
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Figure 28. Acceleration and velocity time histories are plotted for all simulations using a 1.0 inch 
dimeter probe and plate thickness of 0.051inch. 

Table 8. Work-to-failure results are summarized for all simulations with a 1 inch diameter probe 

Plate 
Thick.  
[in.] 

Probe 
Type  

Elements 
Through 
Thickness 

Absorbed 
Energy, Peak 
Accel [J] 
(simulation) 

Absorbed 
Energy, Peak 
Accel [J]  
(experiment)  

Absorbed 
Energy [J] 
(simulation) 

Absorbed 
Energy [J]  
(experiment) 

0.250 Flat 40 109 146 268 384 
Tri-
Corner 

20 418 365 571 725 

Blunt 20 414 381 617 590 
0.114 Flat 20 52 42 121 99 

Tri-
Corner 

14 134 60 154 77 

Blunt  14 45 71 100 91 
0.051 Flat 5 12 15 25 28 

Tri-
Corner 

5 33 17 38 33 

Blunt 5 23 10 36 29 
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Transitioning from the 0.5” probe to the 1.0” probe, results seem reasonably aligned. Qualitatively, 
acceleration pulse shapes are generally predicted with a noteworthy exception being the corner 
probe on the 0.114” plate. Experimentally, the acceleration profile for this case shows a dual peak 
shape. This is one scenario in which the “end” of the impulse is not well defined. However, based 
on repeat experiments plotted in Figure 29, the end of the impulse is taken at the base of the first 
peak. This plot illustrates that uncertainty exists on the experimental end in addition to the 
simulations.  

 

Figure 29. Accleration pulses are plotted for three repeat experiments all run with the same probe 
and plate. For these tests, the probe is a tri-corner with diameter 1.0". The plate has a thickness of 

0.114 inch. 

Puncture Results for 0.25” Diameter Probe  
For only the flat probe shape, further experiments where run using a probe with a diameter of 0.25 
inches. As before, the “ideal” mesh size is assumed from the mesh studies performed with the 0.5” 
probes as in Table 7. Results are organized somewhat differently owing to the single probe shape 
involved. Acceleration and velocity time histories are plotted for all plate thicknesses in Figure 30. 
Work-to-failure results are summarized in Table 9.  
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Figure 30. Acceleration and velocity time histories are plotted for flat probes with diameter 0.25 
inch. 

Table 9. Work-to-failure is summarized for flat probes with diameter 0.25 inch. 

Plate 
Thickness 
[inches] 

Probe 
Type  

Elements 
Through 
Thickness 

Absorbed 
Energy, 
Peak Accel 
[J] 
(simulatio
n) 

Absorbed 
Energy, 
Peak Accel 
[J]  
(experime
nt)  

Absorbed 
Energy [J] 
(simulatio
n) 

Absorbed 
Energy [J]  
(experime
nt) 

0.250 Flat 40 35 49 57 68 
0.114 Flat 20 19 15 36 27 
0.051 Flat 5 6 5 9 7 

 

Across the three probe shapes, flat probes generally show the best agreement. With the 0.25” 
punches, agreement remains reasonable: the acceleration pulse is well captured with differences 
that might easily attribute to mesh refinement. Likewise, absorbed energy is predicted to within 
35% across all cases.  
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Error Summary  

A visual presentation of error, comparing absorbed energy predictions with experiment, is provided 
in Figure 31.  Errors are binned according to both probe type (left) and plate thickness (right). 
Differentiation is made between energy absorbed up to the peak-acceleration and energy absorbed 
over the full puncture event. Several noteworthy trends are observed. First off, the simulations more 
reliably predict absorbed energy over the full puncture event as compared to absorbed energy up to 
only the peak acceleration. This is contrary to what was initially expected considering mesh 
sensitivity to crack propagation. However, the peak acceleration may not be a good point of 
comparison between simulation and experiment. This is especially the case when the simulation 
predicts a different impulse shape compared to experiment. An obvious example is the corner probe 
in Figure 27. Generally, the impulse shape is better predicted for flat probes. Hence it comes as no 
surprise that predictions for absorbed energy, up to peak acceleration, are best for this probe shape.  

In contrast, absorbed energy over the whole puncture event is a far more stable metric for 
comparison. Considering these values, errors are within ±	50% across all cases. As regards plate 
thickness, predictions are more reliable for the thickest plate (0.250”) and worst for the middle 
thickness plate (0.114”). This might partially be attributed to inadequate mesh refinement for the 
0.114” plates. Recall further refinement becomes computationally intractable.  

 

Figure 31. The percent error of predicted energy absorbtion is summarized according to probe type (left) 
and plate thickness (right). Predictions are included for energy absorbed up to peak acceleration and for 

energy absorbed over the whole puncture event. 

Conclusion 
The question of how well the calibration performs is partially obscured by mesh sensitivity. This problem is 
complicated by the inability to further refine the mesh in instances were doing so would likely better align 
results. Within the array of current results, absorbed energy, calculated over the full puncture, is predicted to 
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within 50% for all but one outlier. In contrast, energy absorbed up to the peak acceleration is more variable 
with some errors in excess of 100%. Larger errors in this metric may indicate that the peak acceleration is 
not a good reference for comparison, particularly when the impulse shape is not well captured.  See for 
example the corner probe in Figure 28 where the experimental and simulated peak accelerations are 
separated by 5ms. The end of the impulse, however, is a more reliable reference for comparison.      

On the topic of outliers, the calibration does fail to correctly predict the mode of failure in some specific 
cases. A good example of this would be the 0.5” diameter corner probe on the thinnest plate of 0.051 inches. 
Here, it is quite obvious that in reality the probe punches out material as seen in Figure 25b. However, in 
simulation, the plate is “torn” up to the point where the probe can pass through without separating a plug. As 
a result, the predicted absorbed energy shows sizable error. More generally, the theme of overly preferencing 
this tearing mode is hinted at across several cases. See for instance the flat probe with a plate of 0.114 inches 
in Figure 23a. Cracks can be seen extending radially outward in simulation with no such features present 
experimentally.  

To summarize, absorbed energy, over the full puncture, is predicted to within 50% excepting one outlier. 
This metric is preferred over absorbed energy up to the peak failure which shows a larger spread. Not 
surprisingly, error is largest for those cases where the impulse shape is poorly predicted. In some instances, 
this occurs because the simulation predicts a different tearing behavior compared to reality. For those cases 
where the general impulse shape is captured, errors are closer to 30%.   
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Appendix 
A: Updated Hill Yield Surface   
A correction is introduced to the material model used in the above report. Specifically, the Hill anisotropic 
yield surface is adjusted to better fit the tensile behavior for the “transverse” direction. Recall the flow stress 
is lower for this orientation as seen in Figure 1. Compared to the calibration in the report, the Hill constants 
R11, R22, and R12 are adjusted to 0.86 where they were originally 1.0. This is the only change.  

The influence of this edit is most visible in Figure 32 which plots both simulation and experimental curves 
for tension in both the axial and transverse orientations. Comparison is made between earlier predictions and 
those using the updated Hill constants. Prior to the update, both the transverse and axial orientations look 
nearly identical. However, with the updated yield surface the flow stress in the transverse orientation is 
reduced better matching experiment.  

 

Figure 32. Stress-strain is plotted for tension tests in both the axial and transverse orientations. 
Predictions are plotted for both the original and updated yield surface.  

With this update, several pertinent results from the report are recreated. First, plots presented in the 
“Calibration Summary” section are redeveloped using the revised yield surface. The same format is followed 
as before with tension, notch, hat, and rate results presented in Figures Figure 33-Figure 36 respectively. 
Comparison to earlier results, in the main body of the report, shows limited influence of the updated yield 
surface.  
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Figure 33. Tension results for varying temperature are recreated with the updated yield surface. 
Simulation results are plotted atop experimental curves.  

 

Figure 34. Notch results are rerun with the updated yield surface and plotted with experiment 
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Figure 35. Hat compression is rerun with the updated yield surface and results plotted alongside 
experiment 

 

 

Figure 36. High-rate tests are resimulated with the updated yield surface and plotted against 
experiment 

In addition to the above calibration simulations, select puncture simulations for the flat probe with 
diameter 0.5” are rerun across all plate thicknesses. For each, only the “nominal” mesh size, as 
determined in the mesh studies, is simulated. These results are presented in Figure 37. Work-to-
failure metrics are compared in Table 10.  
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Figure 37. Puncture results for the flat probe with a diameter of 0.5" are rerun with the updated 
yield surface. New predictions are plotted alongside the earlier predictions with experimental 

curves also shown.  

 

Table 10. Absorbed energy is tabulated for puncture simulations and experiment. Simulation 
results for both the original and updated yield surface are included 

Plate 
Thickness 
[inches] 

Probe 
Type  

Elements 
Through 
Thickness 

Absorbed Energy Over Full 
Puncture [J] (simulation) 

Absorbed Energy Over 
Full Puncture [J]  
(experiment) 

Updated  Original  
0.250 Flat 40 174 171 167 
0.114 Flat 20 74 71 59 
0.051 Flat 5 13 13 15 

 

For the above results, the modification to the Hill yield surface shows marginal impact. Comparing the 
work-to-failure between the original and updated results, differences are on the order of 4%. This is 
negligible when compared to mesh uncertainty and other error sources.  



 

 45 

B: Specimen Drawings  
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C: Calibrated Material Input Deck  
#{psi2pa = 6894.76} 

# {ft2inch = 12} 

# {inch2m = 0.0254} 

# {lbf2n = 4.442} 

 

# NOTE: coordinate system is different for hat and notch/tension  

 

#begin rectangular coordinate system rcs 

# origin = 0. 0. 0. 

# z point = 0. 0. 1. 

# xz point = 1. 0. 1. 

#end rectangular coordinate system rcs 

 

begin property specification for material Al7075_PLH 

   density = {2.5e-4*lbf2n/(inch2m^4)} 
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          begin parameters for model hill_plasticity 

     youngs modulus = {10.4e6 * psi2pa} 

     poissons ratio = 0.33 

            coordinate system = rcs 

            r11 = 1. 

            r22 = 1. 

            r33 = 1. 

            r12 = 1. 

            r23 = 0.83 

            r31 = 0.83 

     yield stress = {73969.*psi2pa} 

     hardening model = flow_stress_parameter 

     isotropic hardening model = power_law_parameter 

            hardening constant = {57289.*psi2pa} 

            hardening exponent = 0.33 

 

     yield stress function       = f_ys 

     hardening constant function = f_hard 

     hardening exponent function = f_exp 

 

     rate multiplier = johnson_cook 

     rate constant   = 0.002 

     reference rate  = {0.125e-3/0.750} 

 

     thermal softening model = adiabatic  

     specific heat           = 900 

     beta_tq                = 0.8 

 

     failure model = modular_failure  

     critical failure parameter = 0.5 
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     #critical failure parameter function = f_fail_crit 

            temperature fail multiplier = user_defined 

            temperature fail multiplier function = f_fail_crit 

       

            rate fail multiplier = johnson_cook 

            johnson cook d4 = -0.015 

 

     pressure multiplier = wilkins 

      wilkins alpha    = 7.85 

         wilkins pressure = 4.0e9  

     lode angle multiplier = wilkins 

         wilkins beta  = 1.25 

 

   end parameters for model hill_plasticity 

 end property specification for material Al7075_PLH 

 

#begin function f_fail_crit 

# type is piecewise linear 

#        abscissa = temperature 

# begin values  

# 20.0    {0.5/0.5} 

# 50.0    {1.15/0.5} 

# 100.0   {4.1/0.5} 

# end values  

#end function f_fail_crit 

 

begin function f_fail_crit 

 type is piecewise linear 

        abscissa = temperature 

 begin values  
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 20.0    {1.0} 

 50.0    {1./1.08} 

 100.0   {1./3.5} 

 end values  

end function f_fail_crit 

 

begin function f_ys 

 type is piecewise linear 

 begin values  

 20    1.0 

 50    {404./510.}  

 100   {253./510.} 

 end values  

end function f_ys  

 

begin function f_hard 

 type is piecewise linear 

 begin values  

 20    1.0 

 50    {426./395.} 

 100   {476./395.} 

 end values  

end function f_hard  

 

begin function f_exp 

 type is piecewise linear  

 begin values  

 20    1.0 

 50    {0.196/0.33} 

 100   {0.131/0.33} 
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 end values 

end function f_exp 

 

 

 

 

 


