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solver is explicitly computed and removed from the total observed variance. The variance
deconvolution estimator is developed from a robust theoretical analysis of the impact of
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estimator are rigorously derived and its performance is compared to that of the standard



method for both UQ and GSA. The proposed method is verified with the analytic Ishigami
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Chapter 1: Introduction

1.1 Motivation

Computational models are computer programs developed with mathematics, physics, and
computer science in order to simulate and study complex systems. Computational mod-
els are used in a wide range of fields – common examples include weather forecasting,
flight simulators, infectious disease tracking, and earthquake simulations. In scientific
disciplines, laboratory experiments are frequently designed and tested by first performing
thousands of computational model simulations. In the field of nuclear engineering, compu-
tational models are used for everything from small-scale experiment design to large-scale
nuclear reactor design.

The mathematical methods used in computational models can be classified as either
deterministic or stochastic. Deterministic methods are used to directly solve an equation
or system of equations, while stochastic methods are used to model random processes that
can be well-described by probability distributions. In computer codes, stochastic solvers
simulate randomness using (pseudo-)random number generators, where the initial seed
could be chosen by the analyst but subsequent stream of numbers is random [79]. If repeat-
edly executed with the same input parameters, deterministic solvers will always produce
an identical output; by design, if repeatedly executed with the same input parameters but
different initial seeds, stochastic solvers will not. Both classes of methods have their uses
and drawbacks. Deterministic methods can be very computationally efficient but require
discretizing each of the underlying function’s independent variables, which can become
prohibitively memory intensive as the problem’s phase space increases or as increased
resolution is desired. Stochastic methods do not require discretization and can be used for
systems that are difficult or impossible to model deterministically, but the output from a
stochastic solver will have some associated uncertainty that must be resolved (referred to
from here as solver variance). Solver variance can be reduced by averaging the results
of repeated solver executions and will tend towards zero at the limit of infinite solver
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executions, but this process can also lead to significantly increased computational expense.
In the field of nuclear engineering, computational models for radiation transport (RT)

use deterministic and stochastic methods, both separately and in combination. Deter-
ministic RT models typically solve some form of the Boltzmann transport equation, an
integro-differential function of (at-most) seven (7) independent variables: three (3) in
space, two (2) in direction, and time and energy. Stochastic models use Monte Carlo (MC)
RT methods, in which particle behavior is simulated by sampling probability distributions
that describe the various ways particles may interact with the system. MC RT methods
are valuable for their ability to model physical data continuously as a function of particle
energy and direction, and are well-suited to handling time-dependent problems with com-
plex geometries because they do not require discretization of the phase space [62, 58]. In
addition to radiation transport, stochastic solvers are used in a wide variety of disciplines
such as compute networks [20, 32], turbulent flows [61], financial modeling [88], and
disease prediction [112].

Whether computational models are used for research, industry, or safety and regulation,
it is consistently important that predictions from computational models are reported with
their associated uncertainties. This requirement can be met using uncertainty quantification
(UQ, also called uncertainty analysis) and sensitivity analysis (SA), both of which are
important steps in rigorous code validation and model verification [42]. The goal of
uncertainty quantification is to provide some quantitative measure of the uncertainty of a
model’s output. Inverse UQ is used to calibrate or correct the model itself by comparing
model output to experimental results. This work is focused on forward UQ, in which
input parameter uncertainty is propagated through the model to determine the effect on
model output, typically by evaluating low-order moments of the output like mean and
variance or by determining the complete probability distribution of the output. The goal of
sensitivity analysis is to determine how output uncertainty can be apportioned, or divided
and allocated, to different sources of input uncertainty. Local SA characterizes a system’s
response to small perturbations around a parameter’s nominal value by computing partial
derivatives of the model response at that value [47, 8]. On the other hand, global sensitivity
analysis (GSA) aims to rank parameters in order of importance to model response across
the entire input parameter space by computing sensitivity indices. Though the aims and
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techniques of UQ and SA differ, they go hand-in-hand and are often performed in tandem
to fully characterize the effects of input uncertainty.

There are many classes of methods for UQ and SA. In sampling-based methods for UQ
and GSA, uncertain parameters are repeatedly sampled from their probability distributions
and used as model input, then UQ and GSA statistics are directly computed from the
many model outputs. Sampling-based methods are useful and powerful for their wide
applicability, as they do not make any assumptions about the linearity, smoothness, or
regularity of the underlying computational model. Their primary drawback is the high
computational cost associated with the multiple code evaluations needed to compute well-
resolved statistics; efficient sampling schemes and numerical algorithms for sampling-
based UQ and GSA are areas of ongoing research [86]. While UQ and GSA methods that
are surrogate- or expansion-based typically require fewer code evaluations, they can be
susceptible to any lack of smoothness or regularity of the underlying function [97, 19].

UQ and SA methodologies generally assume that the computational model itself is
deterministic, i.e., that all of the output variability is induced by input parameter variability
(subsequently referred to as parametric variance). When the inputs to a stochastic model
have some associated uncertainty, the total observed output variance is a combination of
the solver variance and the parametric variance [94, 16], which complicates UQ and SA.
A standard approach to approximate the parametric variance using a stochastic solver is to
increase the number of solver realizations, knowing that the total variance will approach
the parametric variance in the limit of an infinite number of solver samples [90]. However,
doing this for each of the multiple code evaluations needed for sampling-based UQ and
GSA exacerbates the already-high computational cost. UQ and GSA for are too important
to forego even with the additional complexity from stochastic solvers. This dissertation
develops,and assesses the performance of, methods for sampling-based UQ and GSA when
the underlying computational model is stochastic. While these methods are developed with
nuclear engineering applications in mind, the work and its results are applicable to a wide
range of disciplines that use stochastic modeling.
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1.2 Uncertainty quantification and global sensitivity analysis

There are many branches of UQ that consider the impact of uncertainty from a variety of
sources, such as parameters of the model itself or numerical error from approximation. In
forward UQ, input parameter uncertainty is propagated through the computational model to
compute key statistics of the output – low-order moments, probability distribution functions
and cumulative density functions of system responses, and/or envelopes of possible system
responses.

Mathematically written, we consider a generic model output𝑄 = 𝑄 (ξ) , ξ = (𝜉1, . . . , 𝜉𝑘 ) ∈
Ξ ⊂ R𝑘 , where the model has 𝑘 input parameters 𝜉1, . . . , 𝜉𝑘 that are independent random
variables with arbitrary joint distribution function 𝑝(ξ). To characterize the effect of input
uncertainty on 𝑄, we are interested in statistics of 𝑄, like its mean and variance

E𝜉 [𝑄] =
∫
Ξ

𝑄 (ξ) 𝑝(ξ)𝑑ξ and V𝑎𝑟𝜉 [𝑄] =
∫
Ξ

(
𝑄 (ξ) −E𝜉 [𝑄]

)2

𝑝(ξ)𝑑ξ, (1.1)

where we have used a subscript to indicate that 𝜉 is the variable of integration.
UQ and GSA often go hand-in-hand, with UQ typically preceding GSA in current

practice: once the uncertainty of the output has been quantified, GSA is used to rank
parameters in order of importance to model response across the entire input parameter
space. There are many statistics that can be used as measures of importance for parameter
ranking; the chosen statistic depends on what question the practitioner hopes to answer,
defined in [97] as the GSA setting.

There are a few key settings that fall under the umbrella of variance-based GSA [101]:

• Factor Prioritization – Used to identify the input or group of inputs whose variability
accounts for most of the output variability. Once identified, focus can be shifted
towards reducing the variability of these parameters.

• Factor Fixing – Used to identify the input or group of inputs whose variability makes
little to no contribution to the output variability. Once identified, these parameters
can essentially be set at some arbitrary value within their probability distribution,
because varying them does not largely affect the output.
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• Variance Cutting – Used to identify the smallest set of factors one could act upon in
order to reduce the output variance below a given threshold. This ensures the most
effective optimization for a given output uncertainty goal.

Variance-based GSA determines how impactful a factor or set of factors is to the output
variance by computing a sensitivity index (SI), the ratio of the factor’s conditional variance
to the unconditional parametric variance. The first-order SI of parameter 𝜉𝑖 represents the
main effect contribution of 𝜉𝑖, i.e., the sole effect of parameter 𝜉𝑖 on 𝑄.

S𝑖 =
V𝑎𝑟𝜉𝑖

[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

, (1.2)

There are 𝑘 first-order SIs, one for each input parameter. All first-order SIs are between
0 and 1 and

∑𝑘
𝑖=1 S𝑖 ≤ 1. Additionally, higher-order SIs represent the contribution of the

interactions between factors, e.g., a second-order SI represents the interaction between two
parameters. In addition to its first-order SI, a parameter can be described by its total-order
SI T𝐼 , which accounts for its total contribution to the output variance by combining its
first-order effect and all of its higher-order interaction effects. The total-order SI of 𝜉𝑖 can
be expressed as the sum of S𝑖 and all of the higher-order terms that include 𝜉𝑖. For example,
in a model with three parameters, the total effect of 𝜉1 would include the first-order effect
of 𝜉1 plus its interactions with 𝜉2 and 𝜉3: T1 = S1 + S12 + S13 + S123. Alternatively, the
total-order SI of 𝜉𝑖 can also be expressed [43, 95] by conditioning on the set ξ∼𝑖, which
contains all factors except 𝜉𝑖, as

T𝑖 =

E𝜉∼𝑖

[
V𝑎𝑟𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

= 1 −
V𝑎𝑟𝜉∼𝑖

[
E𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

. (1.3)

Since V𝑎𝑟𝜉𝑖
[
E𝜉∼𝑖

[
𝑄 | ξ∼𝑖

] ]
can be understood as the main effect of everything that is not

𝜉𝑖, the remaining E𝜉∼𝑖

[
V𝑎𝑟𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
= V𝑎𝑟 [𝑄] − V𝑎𝑟𝜉∼𝑖

[
E𝜉𝑖

[
𝑄 | ξ∼𝑖

] ] def
= E∼𝑖 is the

effect of any terms that do contain 𝜉𝑖. Rather than compute all higher-order terms, it is
customary to compute the set of first- and total-order indices for a good description of the
importance of parameters and their interactions at a reasonable cost [97].
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1.3 Sampling-based methods

Methods for UQ and GSA can be classified as either intrusive or non-intrusive. Intrusive
UQ is often relatively more numerically efficient, but requires some modification to the
underlying computational model. Sampling-based methods for UQ and GSA are non-
intrusive, as they involve evaluations of an existing computational model with minimal
or no modifications. The Saltelli method [101] for computing sensitivity indices using
Monte-Carlo based sampling is described below for a model with 𝑘 uncertain inputs:

1. Generate two (𝑁, 𝑘) matrices of random numbers, 𝐴 and 𝐵. The base sample 𝑁 is a
number of independent re-samplings of input parameters that can range from a few
hundreds to a few thousands.

2. Form the matrix 𝐶𝑖 by replacing the 𝑖𝑡ℎ column of 𝐵 with the 𝑖𝑡ℎ column of 𝐴.

3. Compute the model output as a function of input matrices 𝐴, 𝐵, and 𝐶𝑖 to obtain
𝑁 × 1 vectors of model output 𝑦𝐴 = 𝑓 (𝐴), 𝑦𝐵 = 𝑓 (𝐵), and 𝑦𝐶𝑖 = 𝑓 (𝐶𝑖).

4. For all 𝑘 columns of 𝐴, construct 𝐶𝑖 and compute 𝑦𝐶𝑖.

First-order sensitivity indices can be estimated:

𝑆𝑖 =
𝑉 [𝐸 (𝑌 |𝑋𝑖)]

𝑉 (𝑌 ) =
𝑦𝑎 · 𝑦𝑐 − 𝑓 2

0

𝑦𝑎 · 𝑦𝑎 − 𝑓 2
0

(1.4)

where · indicates the dot product and

𝑓 2
0 =

(
1
𝑁

∑︁
𝑗

= 1𝑁 𝑦
( 𝑗)
𝐴

)2

𝑦𝐴 · 𝑦𝐴. (1.5)

The total-effect index can be estimated:

𝑆𝑇𝑖 = 1 − 𝑉 [𝐸 (𝑌 |𝑋∼𝑖)]
𝑉 (𝑌 ) = 1 −

𝑦𝐵 · 𝑦𝐶 − 𝑓 2
0

𝑦𝐴 · 𝑦𝐴 − 𝑓 2
0
. (1.6)
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Since the publication of Satelli’s approach for computing first- and total-order effects,
several algorithmic modifications have been introduced to improve the efficiency and
accuracy and the main and total order effects [100, 9].

1.4 Monte Carlo radiation transport

The theoretical analysis in Chapters 2 and 4 is presented assuming a generic stochastic
computational model. Both Chapters present numerical results using a Monte Carlo
radiation transport solver as the stochastic computational model, and Chapter 5 is entirely
based on a MC RT benchmark.

MC RT simulations for treat the physical system of interest as a statistical process,
using nuclear data to construct probability distributions that describe the various ways
particles can behave in the system. A particle is provided an initial state including position,
direction of motion, and energy level. Then, (pseudo-)random numbers and the relevant
probability distributions are used compute how far the particle will travel before having
some interaction with the system and what that interaction will be (e.g., absorption, scatter,
fission). The particle continues moving from interaction to interaction until it exits the
system, either via absorption or by traveling beyond the system’s geometric boundaries. The
user-defined quantity (or quantities) of interest (flux, current, k-eigenvalue, etc.) determines
what particle interactions are tallied and where.

A particle history describes the record of a single particle’s transport through the system
from initiation to termination and all of the tallies it contributed to. The output of a single
MC RT simulation is the average of many particle histories, all of which used different
and independent random number streams. From the Central Limit Theorem [60], as the
number of particle histories tends to infinity, the output of the MC RT simulation will
converge to the ‘true’ value of the quantity of interest and the variance of that output will
decrease to zero at a rate of 𝑁𝜂

−1/2, where 𝑁𝜂 is the number of simulated particle histories.
Both MC and deterministic RT methods are widely used, and which are more useful

depends on the information desired by the user, the problem space, the complexity of the
system, and the available computational tools and resources. For example, deterministic
solutions require an accurate discretization scheme and numerical method for what is often
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a complex phase-space and set of differential equations [58]. Because MC RT methods are
event based rather than phase-space based, they are more amenable to the simulation of
time-dependent problems with complicated geometries that may be difficult to discretize.
In analog MC RT, the probability distributions that govern the simulation are constructed
directly from physical data, such that the simulated physics is directly analogous to the
physical behavior of the particle in a real system [64]. To reduce computation time, improve
scaling with problem size, and/or reduce output variance, non-analog methods have been
introduced that forego exact physics but conserve accurate results. For example, if the tally
of interest is geometrically located where few particles end up traveling, analog methods
can require a large number of particle histories to obtain a statistically significant result [64].
Charged-particle transport often implements non-analog methods because their the physics
is characterized by very small mean free paths between interaction and very small angle
and energy changes when scattering. Whether non-analog MC RT methods are used or
not, the inherent stochasticity of the computational model still contributes some variance
to the output.

Expressed mathematically, we introduce a random variable 𝜂 to represent the inherent
variability of the stochastic solver, and define our previous quantity of interest 𝑄 as the
expectation over 𝜂 of a function 𝑓 (ξ, 𝜂), 𝑄(ξ) = E [ 𝑓 (ξ, 𝜂) | ξ] def

= E𝜂 [ 𝑓 (ξ, 𝜂)]. The
function 𝑓 (ξ, 𝜂) can be directly evaluated as the output from the stochastic solver with
input ξ, but the expectation E𝜂 [ 𝑓 (ξ, 𝜂)] and variance V𝑎𝑟𝜂 [ 𝑓 (ξ, 𝜂)]

def
= 𝜎2

𝜂 (ξ) are not
directly available. Instead, we approximate 𝑄(ξ) as the sample mean of 𝑁𝜂 independent
evaluations of 𝑓 , 𝑄 (ξ) ≈ 1

𝑁𝜂

∑𝑁𝜂

𝑗=1 𝑓 (ξ, 𝜂( 𝑗)) def
= 𝑄̃𝑁𝜂

(ξ). In the context of MC RT, 𝜂( 𝑗)

corresponds to the internal stream of random numbers throughout a single particle history,
𝑓 (ξ, 𝜂( 𝑗)) corresponds to the result (e.g., tally) of that single particle history, and 𝑄̃𝑁𝜂

(ξ)
corresponds to the output of a MC RT simulation that used a total of 𝑁𝜂 particle histories.

As the systems modeled with MC RT become more complex, a single simulation of the
model becomes more computationally expensive. Sampling-based UQ and GSA require
numerous model evaluations to compute well-resolved statistics of interest. Problems with
real-world complexity require a large number of particle histories to not just converge,
but converge to the point that the solver variance can be assumed to have a negligible
contribution to the statistics defined in Section 1.2. In the following, we propose and
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analyze a variance deconvolution estimator to make UQ and GSA with stochastic solvers
more tractable by removing the need to over-resolve the solver variance.

1.5 Dissertation Objectives and Overview

Having established the motivation and background for uncertainty quantification, global
sensitivity analysis, and Monte Carlo radiation transport solvers, the research objectives of
this dissertation are presented.

1. Develop robust theory for an accurate, efficient, and broadly applicable variance
deconvolution estimator for uncertainty quantification with stochastic solvers.

2. Assess the effect of stochastic solvers on GSA sensitivity indices. Extend variance
deconvolution to develop robust theory for a variance deconvolution estimator for
sampling-based sensitivity indices.

3. Demonstrate applicability of the variance deconvolution UQ and GSA estimators to
large-scale radiation transport problems, particularly problems relevant to the Center
for Exascale Monte Carlo Neutron Transport’s challenge problem.

The next four sections of this dissertation present four works that explore these research
objectives: one published academic journal article, one academic journal article under
review, and one journal-ready draft.

Chapter 2 presents a manuscript published in the Journal for Quantitative Spectroscopy
and Radiative Transfer that developed a theoretical framework and sampling-based es-
timator for forward uncertainty propagation that accounts for the additional variability
introduced by a stochastic solver. The accuracy of the estimator was verified with an
1-dimensional mono-energetic attenuation-only radiation transport problem, and perfor-
mance of the estimator was additionally explored by introducing scattering physics to the
radiation transport problem.

Chapter 3 presents a full peer-reviewed conference paper presented at The International
Conference on Mathematics and Computational Methods Applied to Nuclear Science and
Engineering that takes first steps in exploring the impact of stochastic solvers on ANOVA-
based sensitivity indices. That work serves as a precursor to the work in Chapter 4,
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which presents a draft manuscript for submission to the Journal of Computational Physics
that extends the variance deconvolution theoretical framework. A variance deconvolution
estimator was introduced to the widely-used Saltelli method for computing sensitivity
indices and the accuracy of the estimator was evaluated with asymptotic limit analysis. The
accuracy of the estimator was shown numerically with the Ishigami function, a common test
case for sensitivity index estimators. The performance of the estimator was evaluated using
an example radiation transport problem that is one-dimensional in space and multi-group
in energy.

Chapter 5 presents a full conference paper accepted for presentation at The International
Conference on Mathematics and Computational Methods Applied to Nuclear Science and
Engineering that tests the applicability of the developed methods for a large-scale Monte
Carlo radiation transport problem. A k-eigenvalue simulation of the initial condition of
the 3-D C5G7-TD benchmark, a miniature LWR with eight uranium oxide fuel assemblies
and eight mixed oxide fuel assemblies surrounded by a water reflector. Manufacturing
uncertainties of fuel pin radius and fuel pin density were sampled from a normal distribution
of a 5% standard deviation about their nominal values. Both the core k-eigenvalue and
pinwise core fission rate distribution were considered as quantities of interest.

Chapter 6 summarizes the progress made in these four manuscripts and presents pos-
sibilities for future research.
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Chapter 2: A variance deconvolution estimator for efficient uncertainty
quantification in Monte Carlo radiation transport applications

Abstract

Monte Carlo simulations are at the heart of many high-fidelity simulations and analyses
for radiation transport systems. As is the case with any complex computational model,
it is important to propagate sources of input uncertainty and characterize how they affect
model output. Unfortunately, uncertainty quantification (UQ) is made difficult by the
stochastic variability that Monte Carlo transport solvers introduce. The standard method to
avoid corrupting the UQ statistics with the transport solver noise is to increase the number
of particle histories, resulting in very high computational costs. In this contribution, we
propose and analyze a sampling estimator based on the law of total variance to compute UQ
variance even in the presence of residual noise from Monte Carlo transport calculations.
We rigorously derive the statistical properties of the new variance estimator, compare its
performance to that of the standard method, and demonstrate its use on neutral particle
transport model problems involving both attenuation and scattering physics. We illustrate,
both analytically and numerically, the estimator’s statistical performance as a function of
available computational budget and the distribution of that budget between UQ samples
and particle histories. We show analytically and corroborate numerically that the new
estimator is unbiased, unlike the standard approach, and is more accurate and precise than
the standard estimator for the same computational budget.

2.1 Introduction

As computational modeling becomes more important to scientific and engineering commu-
nities, so does the necessity of quantifying and analyzing model reliability, accuracy, and
robustness [18, 24, 42]. These requirements can be met using uncertainty quantification
(UQ), the mathematical characterization of how sources of input uncertainty affect model
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output [34]. UQ can be used to assess the confidence of calculations that inform decisions
or to motivate experimental or computational work to reduce key uncertainties. It is also an
important step in rigorous code validation, which provides confidence in software’s ability
to predict the behavior of new systems [24]. UQ is often performed in conjunction with
sensitivity analysis, a related field which aims to compute the degree to which model output
is sensitive to different inputs or to identify how output uncertainty can be apportioned to
different sources of input uncertainty [97]. However, the scope of this work is specifically
UQ to compute output variance and does not include techniques to compute sensitivities.
We focus in particular on forward UQ using Monte Carlo (MC) sampling [79], in which
sources of uncertainty are propagated through the computational model to calculate mean,
variance, and possibly higher-order moments of the model response over the entire range
of parameter uncertainty [47] (as opposed to inverse UQ to characterize input distribu-
tions; see [111]). MC UQ satisfies the need for a non-intrusive, robust, and efficient UQ
approach; its convergence rate is independent of both the dimensionality of the problem
and the smoothness of the model’s response to its input variability [42, 78]. Some of
the concepts developed here could be extended to non-MC UQ approaches such as the
construction of accurate surrogates for UQ, as demonstrated in [29, 33]. Forward UQ often
requires a large number of code evaluations corresponding to independent realizations of
the uncertain input, which are then used to compute statistics of interest such as failure
probabilities or moments like mean and variance. In practice, just a single code evaluation
for realistic models of complex physics, as is the case in radiation transport [27, 94], is very
computationally expensive. Even if high-performance computing resources are available,
the requirement to perform multiple evaluations for forward UQ compounds this issue.
Over the last few decades, a number of algorithmic advancements have been introduced
to reduce the number of required simulations, for instance with the use of surrogates like
polynomial chaos [19, 105], stochastic collocation [22, 66], and Gaussian process ap-
proaches [38]. More recently, multilevel and multifidelity approaches have been developed
to optimally fuse simulations from different approximations of a problem, e.g., combining
fine and coarse spatial/temporal resolutions in numerical solutions of systems of partial
differential equations, for accurate statistics estimation with a computational cost one or
two orders of magnitude lower compared to single fidelity methods [35, 37, 81, 82].
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UQ methods typically treat model output variability as being caused exclusively by
input variability [34, 73], implicitly assuming that the underlying solver is deterministic
and will produce the same output when queried with the same input (e.g., the discrete
ordinates method [62]). However, non-deterministic methods that produce a stochastic
output with some associated variability are used in a variety of disciplines such as compute
networks [20, 32], turbulent flows [61], financial modeling [88], disease prediction [112],
and radiation transport [62]. Monte Carlo radiation transport (MC RT) solvers, for example,
model average particle behavior by sampling probability distributions that describe physical
phenomena and averaging over the behavior of those particles [62]. MC RT methods are
well-suited to handling time-dependent problems with complex geometries, as they do not
require discretization across phase space, and are also valuable for their ability to model
physical data continuously as a function of particle energy [62, 58]. Unfortunately, results
of UQ studies applied to problems that use stochastic solvers are in a sense ‘polluted’ by
the variability introduced by the solver itself; it is widely known that the overall variance is
comprised of the stochastic solver variance and the MC UQ variance [94, 5]. A brute-force
treatment to handle the stochasticity of the solver when estimating the parametric variance
is to increase the number of particle histories 𝑁 , knowing that the MC RT variance will
approach zero at the limit of an infinite number of particle histories [23, 114]. While a
number of variance-reduction techniques have been introduced for MC RT simulations,
the standard error of the result will still only decrease proportionally with 1/

√
𝑁 , leaving

some remaining solver uncertainty [58]. The disadvantage of the brute-force approach is
that the stochastic solver’s variance needs to be made much smaller than the parametric
variance in order to accurately estimate the latter, and the high computational cost of doing
so must be paid for each of the multiple code evaluations required for MC UQ.

Nevertheless, MC UQ has been used in conjunction with MC RT simulations to estimate
the output uncertainty caused by the input uncertainty (the combination of MC UQ and MC
RT is sometimes referred to as Total Monte Carlo [54]). SCALE, a comprehensive modeling
and simulation suite for nuclear safety analysis and design, includes the SAMPLER module
for performing general uncertainty and sensitivity analysis [115]. However, the uncertainty
of an individual output parameter due to uncertain input parameters is taken to be the
variance of the output parameter over multiple code evaluations, therefore including the
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‘pollution’ of the solver variance [7]. The Monte Carlo N-Particle (MCNP) code, used
for general-purpose transport simulations of particles such as neutrons, photons, electrons,
elementary particles, etc. includes mcnp-pstudy, a tool to automate the setup, execution,
and collection of results from a series of MCNP calculations for convenient uncertainty
analysis [5]. The theory manual for mcnp-pstudy points out that the total variance will
approach the variance due solely to the uncertain parameter space as the number of histories
increases; in an example problem, the tool uses batch statistics on a problem without
parameter uncertainty to confirm that the solver variance is low relative to the total observed
variance of problems with parameter uncertainty, in that case an order of magnitude smaller.
A number of studies have suggested that rather than rely on the brute-force approach to
ensure that the MC RT variance is a sufficiently small portion of the total variance, it would
be useful to explicitly compute how much the MC RT variance contributes to the total
observed variance when the problem contains uncertain parameters [27, 94, 41, 85, 89].
In [94], the authors present the fast Total Monte Carlo method to compute the parametric
variance by using different random number seeds to remove the average MC RT variance
from the total observed variance so long as the average MC RT variance is less than 50%
of the total observed variance, an important improvement over existing methods. In [41],
the authors developed an analytical method (rather than a MC UQ method) for estimating
the MC RT variance using the analysis-of-variance (ANOVA) approach for uncertainty in
geometric configurations and nuclear data.

In this contribution, we study the evaluation of moments of the QoI (namely mean and
variance) due only to the variability introduced by uncertain parameters when combining
MC UQ and stochastic solvers (discussed here as MC RT solvers). We demonstrate both
theoretically and numerically how to correct the UQ statistics by explicitly computing and
removing the variability introduced by the MC RT solver. This approach leads to statistical
estimators with a significantly reduced mean-squared error compared to the brute-force
approach of reducing the solver’s variability by increasing the number of particle histories.
Moreover, by deriving the statistical properties of these estimators, we are able to discuss
their statistical performance in terms of resource allocation amongst the number of MC
UQ realizations and the number of MC RT particle histories per realization. We develop
analytical solutions for UQ statistics of transmittance through an attenuation-only 1D slab
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as a reference radiation-transport problem and use them to verify numerical results; we also
corroborate our findings with numerical results for a problem with scattering, for which
we do not have an analytical solution.

The remainder of this manuscript is organized as follows. In Section 2.2, we introduce
the mathematical background for Monte Carlo estimation of statistics in UQ. In Section 2.3
we introduce our novel estimator, named variance deconvolution, and discuss its statistical
properties, including its mean-squared error as a function of the total number of particle
histories. Both Sections 2.2 and 2.3 are presented assuming a generic stochastic solver, i.e.,
our approach is not limited by the particular stochastic solver employed and, in the context
of radiation transport, is applicable to any MC-based transport solver. In Section 2.4, we
briefly introduce MC RT methods and our numerical problem, including the verification
test case. In Section 2.5, we provide numerical results and compare to analytical results or
a reference solution. In Section 2.6, we conclude by discussing current and future research
directions.

2.2 Mathematical background

We focus on quantifying statistics for a scalar quantity of interest (QoI)𝑄 : R𝑑 → R, which
is a function of a vector of uncertain variables 𝜉 ∈ Ξ ⊂ R𝑑 , where the number of uncertain
variables 𝑑 ∈ N can be arbitrarily large. We consider arbitrary joint distribution functions
𝑝(𝜉) for the input parameters, including the case of correlated (i.e., non-independent)
variables. The goal of the analysis is the precise quantification of the first two statistical
moments of 𝑄, i.e., the mean and variance of 𝑄, which are defined as

E [𝑄] =
∫
Ξ

𝑄(𝜉) 𝑝(𝜉) d𝜉 and

V𝑎𝑟 [𝑄] =
∫
Ξ

(𝑄(𝜉) − E [𝑄])2 𝑝(𝜉) d𝜉,
(2.1)

respectively. In particular, we design estimators capable of efficiently resolving the variance
of 𝑄 for stochastic solvers. When using stochastic solvers, direct observations of 𝑄 as a
function of 𝜉 are not possible, either because the response is corrupted by noise or because
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the quantity of interest is defined as a statistic of events associated with the solver [79].
The latter case emerges naturally when using MC RT solvers; without loss of generality,
we use the MC RT application as the motivation for this paper. For each realization of the
random uncertainty parameters 𝜉, 𝑄 is obtained by post-processing statistics associated
with individual particle histories. We notionally represent the stochasticity of the MC RT
solver with a random variable 𝜂 ∈ 𝐻 ⊂ R𝑑′ , where the series of random events constituting
a single particle history is represented as a single realization of 𝜂. The distribution of 𝜂
is unknown (i.e., cannot be directly sampled) but its events 𝑓 : 𝐻 → R are observable.
For instance, an event 𝑓 could be defined as a single particle transmitting through a slab.
We can define the QoI in terms of the events 𝑓 and the conditional variance of 𝑓 , which
characterize the solver’s variability, as

𝑄(𝜉𝑖) = E [ 𝑓 (𝜉, 𝜂) | 𝜉 = 𝜉𝑖]
def
= E𝜂 [ 𝑓 (𝜉𝑖, 𝜂)]

𝜎2
𝜂 (𝜉𝑖) = V𝑎𝑟 [ 𝑓 (𝜉, 𝜂) | 𝜉 = 𝜉𝑖]

def
= V𝑎𝑟𝜂 [ 𝑓 (𝜉𝑖, 𝜂)] .

(2.2)

From this point forward, we indicate the variable of integration with a subscript. To
evaluate the statistics of 𝑄 with respect to the uncertain parameters 𝜉 in Eq. (2.1), the
definitions from Eq. (2.2) are necessary. Unfortunately, accurate convergence of Eq. (2.2)
with MC RT solvers requires a large collection of events 𝑓 , particularly for high-fidelity
simulations of practical applications. UQ requires evaluating 𝑄 for multiple realizations of
𝜉, and the computational cost compounds when this is paired with use of MC RT solvers.
We illustrate this challenge specifically for UQ using MC sampling in the next section.

2.2.1 Monte Carlo sampling estimation

MC sampling estimation is one of several UQ techniques that allow for efficient computation
of statistics like those in Eq. (2.1). Despite its slow convergence rate, MC sampling is the
most robust choice in the presence of large dimensional spaces and noisy QoIs, like those
of interest for MC RT. In the context of this work, MC simply consists of drawing samples
of 𝜉 from 𝑝(𝜉) and evaluating the corresponding QoI 𝑄(𝜉) a total of 𝑁𝜉 times, then



18

post-processing those values to evaluate the statistics in Eq. (2.1) as

E [𝑄] ≈ 1
𝑁𝜉

𝑁𝜉∑︁
𝑖=1

𝑄(𝜉𝑖)
def
= 𝑄̂𝜉 and

V𝑎𝑟 [𝑄] ≈ 1
𝑁𝜉 − 1

𝑁𝜉∑︁
𝑖=1

©­«𝑄(𝜉𝑖) − 1
𝑁𝜉

𝑁𝜉∑︁
𝑘=1

𝑄(𝜉 (𝑘))ª®¬
2

def
= 𝜎̂2

𝜉 .

(2.3)

Since the MC estimators depend on a finite number of realizations for 𝑄(𝜉), a different
set of 𝑁𝜉 realizations would correspond to a different value for the estimator. Hence, the
MC estimators in Eq. (2.3) are themselves random variables; as such, it is important to
characterize these estimators with their statistical properties of bias and variance, which
correspond respectively to their accuracy and precision. Both estimators presented in
Eq. (2.3) are unbiased, i.e., E

[
𝑄̂𝜉

]
= E [𝑄] and E

[
𝜎̂2
𝜉

]
= V𝑎𝑟 [𝑄] (for the variance,

Bessel’s correction is introduced to achieve this property; see [79]).
When using MC RT to evaluate the QoI, we introduce an additional estimator that

approximates Eq. (2.2) using 𝑁𝜂 independent particle histories,

𝑄(𝜉𝑖) ≈
1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑓 (𝜉𝑖, 𝜂( 𝑗))
def
= 𝑄̃𝑁𝜂

(𝜉𝑖) . (2.4)

As the sample mean of 𝑓 (𝜉𝑖, 𝜂), the estimator presented in Eq. (2.4) is also unbiased, i.e.,
E𝜂

[
𝑄̃𝑁𝜂
(𝜉𝑖)

]
= 𝑄(𝜉𝑖). While this does indicate that the standard error of the estimator

will tend to 0 as 𝑁𝜂 → ∞, it is also known that the standard error will converge as
𝑁𝜂
−1/2 [79]. Rather than assume that 𝑁𝜂 will be large enough to render the standard error

of the approximation negligible, we include the approximation in evaluating the statistics
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of Eq. (2.3). Inserting Eq. (2.4) into Eq. (2.3), we obtain

E𝜉 [𝑄] ≈ E𝜉

[
𝑄̃𝑁𝜂

]
≈ 1

𝑁𝜉

𝑁𝜉∑︁
𝑖=1

𝑄̃𝑁𝜂
(𝜉𝑖) =

1
𝑁𝜉

𝑁𝜉∑︁
𝑖=1

©­« 1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑓 (𝜉𝑖, 𝜂( 𝑗))ª®¬ def
=

〈
𝑄̃𝑁𝜂

〉
V𝑎𝑟𝜉 [𝑄] ≈ V𝑎𝑟𝜉

[
𝑄̃𝑁𝜂

]
≈ 1

𝑁𝜉 − 1

𝑁𝜉∑︁
𝑖=1

©­«𝑄̃𝑁𝜂
(𝜉𝑖) −

1
𝑁𝜉

𝑁𝜉∑︁
𝑘=1

𝑄̃𝑁𝜂
(𝜉 (𝑘))ª®¬

2
def
= 𝑆2,

(2.5)

where, because 𝑄̃𝑁𝜂
depends on both 𝜉 and 𝜂, we have now specified the variable of

integration 𝜉 for clarity. Since the estimators in Eqs. (2.5) are based on an approximation
of 𝑄 using a finite number of 𝑁𝜂 evaluations for 𝑓 , we refer to these estimators as polluted.
Our main focus in this work is to obtain an efficient estimation of V𝑎𝑟𝜉 [𝑄] from its
approximation, the total polluted variance 𝑆2; we introduce our novel estimator to do so in
Section 2.3. First, we summarize below some statistical properties of

〈
𝑄̃𝑁𝜂

〉
(previously

introduced in [33, 11]).

Proposition 2.2.1. The polluted estimator
〈
𝑄̃𝑁𝜂

〉
is unbiased, i.e., E

[〈
𝑄̃𝑁𝜂

〉]
= E𝜉 [𝑄].

Proof. This result follows directly from the linearity of expected value.

E
[〈
𝑄̃𝑁𝜂

〉]
= E𝜉

[
E𝜂

[〈
𝑄̃𝑁𝜂

〉] ]
= E𝜉

E𝜂


1
𝑁𝜉

𝑁𝜉∑︁
𝑖=1

(
1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑓 (𝜉𝑖, 𝜂( 𝑗))
)


=

1
𝑁𝜉

1
𝑁𝜂

𝑁𝜉∑︁
𝑖=1

𝑁𝜂∑︁
𝑗=1

E𝜉

[
E𝜂

[
𝑓 (𝜉𝑖, 𝜂( 𝑗))

] ]
=

1
𝑁𝜉

1
𝑁𝜂

𝑁𝜉∑︁
𝑖=1

𝑁𝜂∑︁
𝑗=1

E𝜉 [𝑄(𝜉𝑖)]

=
1
𝑁𝜉

1
𝑁𝜂

𝑁𝜉∑︁
𝑖=1

𝑁𝜂∑︁
𝑗=1

E𝜉 [𝑄]

= E𝜉 [𝑄]
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□

Proposition 2.2.2. The variance of
〈
𝑄̃𝑁𝜂

〉
is equal to

V𝑎𝑟
[〈
𝑄̃𝑁𝜂

〉]
=
V𝑎𝑟

[
𝑄̃𝑁𝜂

]
𝑁𝜉

, (2.6)

where

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
= V𝑎𝑟𝜉 [𝑄] +

E𝜉

[
𝜎2
𝜂

]
𝑁𝜂

. (2.7)

Proof. Eq. (2.6) follows from the definition of
〈
𝑄̃𝑁𝜂

〉
, a sampling estimator for the mean of

𝑄̃𝑁𝜂
from 𝑁𝜉 evaluations [10]. The remaining result follows from the law of total variance,

V𝑎𝑟 [·] = V𝑎𝑟𝜉
[
E𝜂 [·]

]
+ E𝜉

[
V𝑎𝑟𝜂 [·]

]
,

applied to V𝑎𝑟
[
𝑄̃𝑁𝜂

]
,

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
= V𝑎𝑟𝜉

[
E𝜂

[
𝑄̃𝑁𝜂

] ]
+ E𝜉

[
V𝑎𝑟𝜂

[
𝑄̃𝑁𝜂

] ]
= V𝑎𝑟𝜉 [𝑄] + E𝜉

V𝑎𝑟𝜂


1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑓 (𝜉𝑖, 𝜂( 𝑗))



= V𝑎𝑟𝜉 [𝑄] + E𝜉


1
𝑁𝜂

2

𝑁𝜂∑︁
𝑗=1

V𝑎𝑟𝜂
[
𝑓 (𝜉𝑖, 𝜂( 𝑗))

]
= V𝑎𝑟𝜉 [𝑄] +

E𝜉

[
𝜎2
𝜂

]
𝑁𝜂

.

□

Corollary 2.2.1. Let independent realizations of 𝜂, i.e., independent particle histories,
require the same computational effort independent of parameter 𝜉. Then, for a prescribed
total computational budget equal to C = 𝑁𝜉 × 𝑁𝜂, the variance of estimator

〈
𝑄̃𝑁𝜂

〉
is

minimized at 𝑁𝜂 = 1.
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Proof. This follows from Proposition 2.2.2 (see also [33]), i.e.,

V𝑎𝑟
[〈
𝑄̃𝑁𝜂

〉]
=

V𝑎𝑟𝜉 [𝑄] +
E𝜉

[
𝜎2
𝜂

]
𝑁𝜂

𝑁𝜉

=
𝑁𝜂V𝑎𝑟𝜉 [𝑄] + E𝜉

[
𝜎2
𝜂

]
𝑁𝜉𝑁𝜂

=
𝑁𝜂V𝑎𝑟𝜉 [𝑄] + E𝜉

[
𝜎2
𝜂

]
C ,

where C = 𝑁𝜉 × 𝑁𝜂. Given C = constant, V𝑎𝑟
[〈
𝑄̃𝑁𝜂

〉]
increases with 𝑁𝜂. It follows that

its minimum is obtained for 𝑁𝜂 = 1. □

Corollary 2.2.1 shows that the sampling estimator for the mean,
〈
𝑄̃𝑁𝜂

〉
, is most precise

when 𝑁𝜂 = 1, corresponding to the case in which the UQ parameters are re-sampled for
each particle history. This indicates that, when estimating the mean value, it is more
advantageous to invest the computational budget in exploring the UQ parameter space than
it is to invest the computational budget in explicitly controlling the solver noise with a large
𝑁𝜂. We have obtained this result by considering an ideal cost model in which the costs
of data transfer or restart are considered negligible. In the next section we demonstrate
that even for this simplistic cost scenario, this result does not hold for our novel variance
estimator; the variance of the variance deconvolution estimator is not minimized when
𝑁𝜂 = 1, but rather an optimal value of 𝑁𝜂 can be selected to minimize the variance of the
estimator for a fixed computational budget C.

2.3 Variance deconvolution estimator for QoIs from stochastic solvers

2.3.1 A variance deconvolution estimator

Having explored the statistical properties of the polluted mean estimator
〈
𝑄̃𝑁𝜂

〉
, we now

turn to the polluted variance estimator 𝑆2. To start, we can draw an important theoretical
conclusion from Eq. (2.7) in the proof of Proposition 2.2.2. By applying the law of
total variance to 𝑄̃𝑁𝜂

, we decompose it into V𝑎𝑟𝜉 [𝑄], the contribution from parameter
uncertainty, and E𝜉

[
𝜎2
𝜂

]
/𝑁𝜂, the contribution from the MC RT variance. Using this

relationship, we examine the effect of using polluted estimator 𝑆2 to estimate V𝑎𝑟𝜉 [𝑄].

Theorem 2.3.1. The total polluted variance 𝑆2 is an unbiased estimator for V𝑎𝑟
[
𝑄̃𝑁𝜂

]
,
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i.e., E
[
𝑆2

]
= V𝑎𝑟

[
𝑄̃𝑁𝜂

]
.

Proof. Provided in 2.7. □

Corollary 2.3.2. Given any finite number of particle histories 𝑁𝜂 used at each sample of
𝜉 and E𝜉

[
𝜎2
𝜂

]
> 0, 𝑆2 is a biased estimator for V𝑎𝑟𝜉 [𝑄].

Proof. This follows from Theorem 2.3.1 and Proposition 2.2.2,

E
[
𝑆2

]
= V𝑎𝑟

[
𝑄̃𝑁𝜂

]
= V𝑎𝑟𝜉 [𝑄] +

E𝜉

[
𝜎2
𝜂

]
𝑁𝜂

.

Therefore, E
[
𝑆2

]
= V𝑎𝑟𝜉 [𝑄] if and only if E𝜉

[
𝜎2
𝜂

]
= 0, which is not the case for any

finite 𝑁𝜂. □

Corollary 2.3.2 presents a closed-form representation of the brute-force approach: the
bias of 𝑆2 approaches 0 as 𝑁𝜂 increases and 𝜎2

𝜂 decreases. We introduce an alternative to
the brute-force approach, accounting outright for the variance introduced by the MC RT
simulations and removing it from the polluted variance. This idea was introduced in a
series of prior contributions [11, 13, 74] and was coined variance deconvolution in [74],
a designation we adopt in this article. Assuming the number of particle histories 𝑁𝜂 is
constant for each sample of 𝜉, we estimate the average solver variance:

E𝜉

[
𝜎2
𝜂

]
𝑁𝜂

≈ 1
𝑁𝜉

𝑁𝜉∑︁
𝑖=1

𝜎̂2
𝜂 (𝜉𝑖)
𝑁𝜂

def
= 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

, (2.8)

where

𝜎2
𝜂 (𝜉𝑖) ≈

1
𝑁𝜂 − 1

𝑁𝜂∑︁
𝑗=1

(
𝑓 (𝜉𝑖, 𝜂( 𝑗)) − 𝑄̃𝑁𝜂

(𝜉𝑖)
)2 def

= 𝜎̂2
𝜂 (𝜉𝑖). (2.9)

We define the variance deconvolution estimator 𝑆2 as

V𝑎𝑟𝜉 [𝑄] = V𝑎𝑟
[
𝑄̃𝑁𝜂

]
−
E𝜉

[
𝜎2
𝜂

]
𝑁𝜂

≈ 𝑆2 − 𝜇̂𝜎2
𝑅𝑇,𝑁𝜂

def
= 𝑆2, (2.10)
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providing a means to estimate V𝑎𝑟𝜉 [𝑄] without requiring over-resolution of the MC RT
simulation.

2.3.2 Statistical properties of the deconvolution estimator

The statistical properties (mean and variance) of the variance deconvolution estimator are
necessary to understand its behavior. They also allow for comparison between the variance
deconvolution estimator and the standard estimator, i.e., the estimator obtained by explicitly
over-resolving the MC RT statistics.

Theorem 2.3.3. The deconvolution estimator is unbiased, i.e.,

E
[
𝑆2] = V𝑎𝑟𝜉 [𝑄] . (2.11)

Proof. From the linearity of the expected value,

E
[
𝑆2] = E

[
𝑆2

]
− E

[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
.

In Theorem 2.3.1, we showed that E
[
𝑆2

]
= V𝑎𝑟

[
𝑄̃𝑁𝜂

]
. All that remains is to show that

E
[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
= E


1
𝑁𝜂

1
𝑁𝜉

𝑁𝜉∑︁
𝑖=1

𝜎̂2
𝜂 (𝜉𝑖)

 =
1
𝑁𝜂

E
[
𝜎̂2
𝜂

]
=

1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
. (2.12)

Therefore,
E

[
𝑆2] = V𝑎𝑟𝜉

[
𝑄̃𝑁𝜂

]
− 1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
= V𝑎𝑟𝜉 [𝑄] . (2.13)

□

Theorem 2.3.4. The variance of the deconvolution estimator is

V𝑎𝑟
[
𝑆2] = V𝑎𝑟

[
𝑆2

]
+ V𝑎𝑟

[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
− 2C𝑜𝑣

[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
, (2.14)
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where

V𝑎𝑟
[
𝑆2

]
=

𝜇4
[
𝑄̃𝑁𝜂

]
𝑁𝜉

−
𝜎4 [

𝑄̃𝑁𝜂

]
(𝑁𝜉 − 3)

𝑁𝜉 (𝑁𝜉 − 1) ,

V𝑎𝑟
[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
=

1
𝑁𝜉𝑁𝜂

2V𝑎𝑟
[
𝜎̂2
𝜂

]
, and

C𝑜𝑣
[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
= E

[
𝑆2 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
− E

[
𝑆2] E [

𝜇̂𝜎2
𝑅𝑇,𝑁𝜂

]
.

Proof. Equation 2.14 follows from the definition of variance. We define V𝑎𝑟
[
𝑆2

]
,

V𝑎𝑟
[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
, and C𝑜𝑣

[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
here in terms of polluted quantities for brevity,

where 𝜇4 indicates the fourth moment and 𝜎4 indicates the second moment squared. The
proof in 2.8 showsV𝑎𝑟

[
𝑆2

]
, V𝑎𝑟

[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
, andC𝑜𝑣

[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
in terms of un-polluted

quantities 𝑓 (𝜉, 𝜂) and 𝑄(𝜉). □

Corollary 2.3.5. The MSE of the variance deconvolution estimator is equal to its variance

𝑀𝑆𝐸
[
𝑆2] = V𝑎𝑟

[
𝑆2

]
+ V𝑎𝑟

[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
− 2C𝑜𝑣

[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
. (2.15)

Proof. This result follows from the definition of the MSE of an estimator,

𝑀𝑆𝐸
[
𝑆2] = (

E
[
𝑆2] − V𝑎𝑟𝜉 [𝑄])2

+ V𝑎𝑟
[
𝑆2] (2.16)

= 𝐵𝑖𝑎𝑠
[
𝑆2] + V𝑎𝑟 [

𝑆2] (2.17)

and the results in Theorems 2.3.3 and 2.3.4. □

2.3.3 Variance deconvolution algorithm

In Algorithm 1, we show pseudo-code for implementing variance deconvolution to compute
parametric variance. In this pseudo-code, the STOCHASTIC SOLVER function (lines 3-
10) represents any stochastic solver that takes uncertain parameters 𝜉 as input and uses 𝑁𝜂

solver samples to compute QoI 𝑄̃𝑁𝜂
and solver variance 𝜎̂2

𝜂 . In our example problems, the
stochastic solver is a MC RT solver and 𝑓 (𝜉𝑖, 𝜂( 𝑗)) is a single particle tally. Each execution
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of the STOCHASTIC SOLVER must use an independent sequence of random numbers.
The variance deconvolution algorithm can be implemented in software with existing batch-
statistic capabilities with a couple modifications: assigning re-sampled parameters to each
batch and adding the computation and removal of the average solver variance from the total
variance once all of the batch executions are complete.

Algorithm 1 Compute parametric variance with variance deconvolution
1: for 𝑖 ← 1, 𝑁𝜉 do
2: 𝜉𝑖 ← Re-sample uncertain parameters
3: function Stochastic solver(𝜉𝑖)
4: for 𝑗 ← 1, 𝑁𝜂 do
5: 𝑓 (𝜉𝑖, 𝜂( 𝑗)) ← single-sample response
6: end for
7: 𝑄̃𝑁𝜂

(𝜉𝑖) ← 1
𝑁𝜂

∑𝑁𝜂

𝑗=1 𝑓 (𝜉𝑖, 𝜂( 𝑗))

8: 𝜎̂2
𝜂 (𝜉𝑖) ← 1

𝑁𝜂−1
∑𝑁𝜂

𝑗=1

(
𝑓 (𝜉𝑖, 𝜂( 𝑗)) − 𝑄̃𝑁𝜂

(𝜉𝑖)
)2

9: return 𝑄̃𝑁𝜂
(𝜉𝑖), 𝜎̂2

𝜂 (𝜉𝑖)
10: end function
11: end for
12:

〈
𝑄̃𝑁𝜂

〉
← 1

𝑁𝜉

∑𝑁𝜉

𝑖=1 𝑄̃𝑁𝜂
(𝜉𝑖) ⊲ Unbiased QoI, Eq. (2.5)

13: 𝑆2 ← 1
𝑁𝜉−1

∑𝑁𝜉

𝑖=1

(
𝑄̃𝑁𝜂
(𝜉𝑖) −

〈
𝑄̃𝑁𝜂

〉)2
⊲ Total polluted variance, Eq. (2.5)

14: 𝜇̂𝜎2
𝑅𝑇,𝑁𝜂

← 1
𝑁𝜉

∑𝑁𝜉

𝑖=1
𝜎̂2
𝜂 (𝜉𝑖)
𝑁𝜂

⊲ Average solver variance, Eq. (2.8)

15: 𝑆2 = 𝑆2 − 𝜇̂𝜎2
𝑅𝑇,𝑁𝜂

⊲ Parametric variance, Eq. (2.10)

2.4 Monte Carlo radiation transport methods

While general MC sampling estimation and MC RT solvers were introduced in Section 2.2,
we describe the MC RT methods used in this paper in more detail here. MC RT simulations
treat the physical system of interest as a statistical process, using nuclear data to construct
probability distributions that describe the various ways particles can behave in the system.
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Individual particles are simulated and their behavior (e.g., moving through, interacting with,
and exiting the system) is tallied based on user-defined output quantities [58]. Applying
the Central Limit Theorem [59], the tallied behavior of the simulated particles can then be
extrapolated as the average behavior of all particles in the system, with some associated
uncertainty on the order of 𝑁𝜂

−1/2, as discussed in Section 2.2. In contrast, deterministic
radiation transport methods solve an approximation to the transport equation, analytically
or numerically, for average particle behavior across an entire phase space [58]. While
deterministic solvers introduce bias via the discretization scheme or numerical method
used, stochastic solvers introduce variability via the use of a finite number of samples.
MC RT methods are useful depending on the information needed by the user, the problem
space, or the complexity of the equations governing the system. For example, because MC
RT methods are event-based rather than phase space-based, they can be used to solve time-
dependent problems in complicated geometries without requiring an accurate discretization
scheme or numerical method for a complex system of differential equations [58].

This work uses analog MC RT methods, which use probability distributions constructed
directly from physical data such that a simulated particle’s behavior is directly analogous to
the physical behavior of a particle in a real system [58]. Non-analog methods, in general,
forego the exact physics of the problem to reduce computation time, improve scaling with
problem size, or as a variance reduction technique. The variance deconvolution estimator is
equally applicable when non-analog methods are used so long as the definitions introduced
in Eqs. (2.2) and (2.4) remain true. Particle behavior is sampled using macroscopic
cross sections, material-dependent properties with units of inverse-distance that define the
probability per unit distance that a given reaction will occur [25]. For example, the total
cross section Σ𝑡 measures the probability per unit distance that any reaction will occur,
while the absorption cross section Σ𝑎 measures the probability per unit distance that an
interacting particle will be absorbed. The random walk of a neutral particle1 begins with
some initial conditions, and the particle is moved through the system by computing the

1Transport for charged-particles like electrons and protons is more complex due to electrostatic interac-
tions, and interested readers can refer to [104] for more details.
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distance to its next collision2 𝑑𝑐 ,

𝑑𝑐 =
− ln(Γ)

Σ𝑡

, Γ ∈ [0, 1) , (2.18)

where Γ is a randomly sampled number on [0,1) [58]. The computed distance to collision
remains accurate as long as Σ𝑡 is constant, as in homogeneous media3. The particle will
eventually exit the system, either through geometric boundaries or via absorption, and a
new particle history is initiated. Once all particle histories have been terminated, tallies
are averaged over the particle histories. As the systems modeled using MC RT become
more complex, a single simulation of the model becomes more computationally expensive.
Even for neutral particles, transport can become restrictively computationally expensive as
higher-fidelity geometries or physics are modeled. For example, if the tally of interest is
located where few particles end up traveling, it can take a large number of histories to obtain
a statistically significant result [58]. When considering charged-particle transport, accurate
simulation requires modeling even more complex physics and often more computational
expense.

2.4.1 Verification problem

To show applicability of the variance deconvolution estimator, we consider an example
radiation transport problem solved using MC RT methods. We solve the one-dimensional,
neutral-particle, mono-energetic, isotropic scattering, source-free steady-state radiation
transport problem with a normally incident beam source of magnitude one:

𝜇
𝜕𝜓 (𝑥, 𝜇)

𝜕𝑥
+ Σ𝑡 (𝑥) 𝜓 (𝑥, 𝜇) =

Σ𝑠 (𝑥)
2

∫ 1

−1
𝑑𝜇′𝜓 (𝑥, 𝜇′) , (2.19)

0 ≤ 𝑥 ≤ 𝐿; 𝜓(0, 𝜇 > 0) = 1. (2.20)

2Readers interested in the derivation of the distance to collision can see ref [58].
3This is a common simplifying assumption, but in reality macroscopic cross section data can vary with

energy, temperature, density, or changing material composition [65].
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Dependence on space and angle are represented by 𝑥 and 𝜇, respectively; 𝜓(𝑥, 𝜇) is the
angular neutron flux; Σ𝑡 (𝑥) is the total cross section; andΣ𝑠 (𝑥) is the scattering cross section
integrated over all angles. Because we only consider two possible particle interactions,
absorption or scattering, the total cross section is the sum of the absorption and scattering
cross sections, Σ𝑡 = Σ𝑎 + Σ𝑠. The geometry of the problem is a 1D slab sectioned into
𝑀 material regions, the boundaries between which are fixed. We consider two quantities
of interest: the percentage of incident particles that exit the system through the opposite
surface, transmittance 𝑇 = 𝜓 (𝑥 = 𝐿, 𝜇 < 0), and the percentage of incident particles that
exit the system through the incident surface, reflectance 𝑅 = 𝜓 (𝑥 = 0, 𝜇). Stochasticity,
represented by 𝜉4, is introduced to the problem via the total cross section and the scattering
ratio 𝑐 = Σ𝑠/Σ𝑡 . The stochastic total cross section for material region 𝑚 is given by

Σ𝑡,𝑚 (𝜉𝑚) = Σ0
𝑡,𝑚 + ΣΔ

𝑡,𝑚𝜉𝑚, 𝜉𝑚 ∼ U [−1, 1] , (2.21)

where Σ0
𝑡,𝑚 represents its mean and ΣΔ

𝑡,𝑚 represents its deviation from the mean. It
follows from this definition that Σ𝑡,𝑚 ∼ U

[
Σ0
𝑡,𝑚 − ΣΔ

𝑡,𝑚, Σ
0
𝑡,𝑚 + ΣΔ

𝑡,𝑚

]
. Similarly to the

total cross section, we model the scattering ratio as a uniform random variable 𝑐𝑚 ∼
U

(
𝑐𝑚 − 𝑐Δ𝑚, 𝑐𝑚 + 𝑐Δ𝑚

)
, defined by

𝑐𝑚 (𝜉𝑚+𝑀) = 𝑐0
𝑚 + 𝑐Δ𝑚𝜉𝑚+𝑀 , 𝜉𝑚+𝑀 ∼ U[−1, 1] . (2.22)

Both QoIs are functions of particle behavior, which is affected by the uncertain material
properties. With two uncertain parameters per material region, a single realization of
𝑇 (𝜉) and 𝑅(𝜉) corresponds to a single realization of 𝜉 ∈ R2𝑀 . The goal is to estimate
the variances of the QoIs induced by uncertainty in the material properties, V𝑎𝑟𝜉 [𝑇] and
V𝑎𝑟𝜉 [𝑅]. We also examine an attenuation-only version of this test case, in which Σ𝑠 = 0.
Without a scattering ratio to consider, our only QoI is 𝑇 (𝜉), 𝜉 ∈ R𝑀 .

4The variable 𝜉 is often used in nuclear engineering texts to represent angular dependence in 2D or 3D
problems, so we point out that in our context, 𝜉 is a vector of random variables. See Sec. 2.2.
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2.5 Numerical Experiments on MC RT problems

In this section, we demonstrate use of the variance deconvolution estimator on a MC RT
verification problem and compare its performance to that of a brute-force estimator for
variance. In Sec. 2.5.1 we derive analytic reference solutions for the attenuation-only case,
then in Sec. 2.5.2 present numerical results for both the attenuation-only and scattering
cases.

2.5.1 Analytic solution derivations

With Σ𝑠 = 0, the total cross section and absorption cross section are equivalent and we
are able to derive analytic solutions to serve as verification for numerical results. Because
there is no scattering, particle motion is restricted to the forward direction 𝜇 = 1. The
transmittance 𝑇 (𝜉) = 𝜓 (𝑥 = 𝐿, 𝜇 = 1, 𝜉) is a function of the optical thickness of each
material region,

𝑇 (𝜉) = exp

[
−

𝑀∑︁
𝑚=1

Σ𝑡,𝑚 (𝜉𝑚) Δ𝑥𝑚

]
. (2.23)

Olson et al. [76] derived an analytic solution for the 𝑝th raw moment of Eq. (2.23) with
respect to 𝜉,

E𝜉 [𝑇 𝑝] =
𝑀∏
𝑚=1

exp
[
−𝑝Σ0

𝑡,𝑚Δ𝑥
] sinh

[
𝑝ΣΔ

𝑡,𝑚Δ𝑥
]

𝑝Σ0
𝑡,𝑚Δ𝑥

. (2.24)

We verify our variance estimate 𝑆2 by comparing to the standard raw-to-central moment
conversion for variance, V𝑎𝑟𝜉 [𝑇] = E𝜉

[
𝑇2] − E𝜉 [𝑇]2. We can also verify estimates

for 𝜇̂𝜎2
𝑅𝑇,𝑁𝜂

and 𝑆2 by deriving a reference solution for the average solver variance5 and
summing it with that of V𝑎𝑟𝜉 [𝑇]. Additionally, we can use the closed-form expression
for the variance of the variance deconvolution estimator from Theorem 2.3.4 to derive an
expression5 for the variance deconvolution estimator’s MSE as a function of 𝑁𝜂.

5See 2.9 for details.
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2.5.2 Numerical results

We have arbitrarily chosen a 1D slab with 3 material regions, though our results could
be extended to any number of material regions. In Table 2.1, we present the width,
total cross section average and deviation, and scattering ratio average and deviation for
each material region. UQ is performed using 𝑁𝜉 sample realizations, where each model
realization is a MC RT simulation using 𝑁𝜂 histories, for a total computational cost of
𝐶 = 𝑁𝜉 × 𝑁𝜂. We solved each problem using an array of total computational costs
𝐶 = 200, 500, 1000, 2000, and 5000 and also varied the factor pairs within each 𝐶. To
generate statistics of estimator performance and distribution of results, we repeated each
experiment 25 000 times.

2.5.2.1 Attenuation-only

From Eq. (2.24), the analytic transmittance with the parameters listed in Table 2.1 is
E𝜉 [𝑇] = 0.08378. Our variance deconvolution method does not introduce any novelty in
computing the QoI of transmittance; over all estimator costs and (𝑁𝜉 , 𝑁𝜂) configurations,
we estimateE𝜉 [𝑇] within±8×10−5% (using 25 000 repetitions). The brute-force approach

Problem Parameters Scattering Parameters
Δ𝑥 Σ0

𝑡,𝑚 ΣΔ
𝑡,𝑚 𝑐0

𝑠,𝑚 𝑐Δ𝑠,𝑚
m = 1 2.0 0.90 0.70 0.50 0.40
m = 2 3.0 0.15 0.12 0.50 0.40
m = 3 1.0 0.60 0.50 0.50 0.40

Table 2.1: Problem parameters.

approximates V𝑎𝑟𝜉 [𝑄] with 𝑆2; the variance deconvolution approach approximates it with
𝑆2. From Eq. (2.24), the analytic variance with the parameters listed in Table 2.1 is
V𝑎𝑟𝜉 [𝑇] = 5.504 × 10−3. In Figure 2.1, we show the distributions of 𝑆2 and 𝑆2, as well
as their means, using a total cost of 𝐶 = 2000 for selected factor pairs. For all four factor
pairs, we see that the mean of 𝑆2 over 25 000 repetitions overlaps with the analyticV𝑎𝑟𝜉 [𝑇]
result; this is consistent with the fact that this estimator is unbiased. As the number of
particle histories per UQ sample increases, in order from Figure 2.1(a) to Figure 2.1(d),
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we see the bias of the 𝑆2 estimator reduce as it converges to V𝑎𝑟𝜉 [𝑇]. These distributions
are a visualization of the efficiency of the variance deconvolution estimator compared to
a brute-force approach, and we gain insight into how computational resources must be
spent on resolving the stochasticity of the MC RT solver. For the same computational cost,
one can instead spend more computational resource on improving the precision of the 𝑆2

estimator.
In Figure 2.2, we show the 𝑀𝑆𝐸 , variance, and bias of both estimators as logarithmic

heat maps for all tested total computational costs. We can see from the 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠

maps that 𝑆2 is a more accurate estimator for V𝑎𝑟𝜉 [𝑇] than 𝑆2 at every factor pair and
every computational cost, only approaching equality as we increase 𝑁𝜂 at the expense of
UQ resolution. We see similar profiles and order of magnitude in the variance, therefore
the precision, of the two estimators. This is also visible from the similarity in the shapes
of their distributions in Figure 2.1. As expected, 𝑀𝑆𝐸 [𝑆2] = V𝑎𝑟

[
𝑆2] (note that the scale

has shifted between the two maps). Additionally, the observed bias is on the order of 10−10,
and has a maximum on the order of 10−9. Though this result is non-zero, it is statistically
insignificant compared to the standard error of the 𝑆2 result, which is on the order of
10−5. The bias of the brute-force estimator, however, is statistically significant compared
to V𝑎𝑟𝜉 [𝑇] itself and we see, as expected, that the bias term is a function entirely of 𝑁𝜂.

As a final analysis of estimator behavior, we evaluate the behavior of estimator statistics
as a function of 𝑁𝜂. Using the analytic expressions for the statistics derived in Section 2.5.1,
we can explicitly derive the dependency of V𝑎𝑟

[
𝑆2] on 𝑁𝜂 and evaluate its minimum

in closed-form. In Figures 2.3 and 2.4, we show these results for a variety of total
computational costs. The analytic expressions for V𝑎𝑟

[
𝑆2] , V𝑎𝑟

[
𝑆2

]
, V𝑎𝑟

[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
,

𝑀𝑆𝐸
[
𝑆2] , and 𝑀𝑆𝐸

[
𝑆2

]
are plotted with dashed lines, with numerical results from the

25 000 repetitions and their confidence intervals superimposed. The analytic minimum is
marked with a star in each plot. We can see clearly here that, unlike the result for the mean
estimator in Corollary 2.2.1, V𝑎𝑟

[
𝑆2] is not minimized at 𝑁𝜂 = 1, suggesting there is an

efficiency trade-off between exploration of the parameter space via 𝑁𝜉 and solver noise
reduction via 𝑁𝜂 for a prescribed computational cost6. If the statistics of the QoI cannot

6Incorporating more complex cost dependencies on 𝑁𝜉 and 𝑁𝜂 would give different results; see, e.g., [29].
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(a) C = 2000, 𝑁𝜂 = 2. (b) C = 2000, 𝑁𝜂 = 10.

(c) C = 2000, 𝑁𝜂 = 100. (d) C = 2000, 𝑁𝜂 = 1000.

Figure 2.1: Comparing the variance estimate with a brute-force approach to the estimate
with the variance deconvolution approach for an attenuation-only 1D radiation transport
problem (𝑑 = 3). PDF created with 25 000 repetitions, averages reported with dashed lines.
Exact V𝑎𝑟𝜉 [𝑇] is reported as solid vertical line. 𝑆2 converges to V𝑎𝑟𝜉 [𝑇] as the number
of particles per UQ sample increases, while 𝑆2 is accurate even with 𝑁𝜂 = 2.
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Figure 2.2: Comparing statistics of 𝑆2 and 𝑆2 as estimators for V𝑎𝑟𝜉 [𝑇] = 5.504 × 10−3.
Logarithmic scales.



34

be evaluated in closed form, one would need to estimate them by employing a procedure
based on pilot runs. Therefore, it is possible to envision a numerical procedure that
automatically discovers and selects the best resource allocation for a fixed computational
cost. Developing such a procedure is beyond the present scope of the manuscript and we
leave it to future contributions.
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Figure 2.3: Comparing analytic functions of V𝑎𝑟
[
𝑆2] , V𝑎𝑟

[
𝑆2

]
, and V𝑎𝑟

[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
to

numerical results. The star indicates the minimum V𝑎𝑟
[
𝑆2] . Note that axes are different

for each plot.
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Figure 2.4: Comparing analytic functions of 𝑀𝑆𝐸
[
𝑆2] and 𝑀𝑆𝐸

[
𝑆2

]
to numerical results.

Note that axes are different for each plot.
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2.5.2.2 Scattering

We now move to the scattering case, for which analytical solutions are unavailable for
both the QoI and its statistics. Instead, we generate over-resolved reference solutions
of 𝑆2 using (𝑁𝜉 , 𝑁𝜂) = (105, 20) for comparison. The reference solution variances are
V𝑎𝑟𝜉 [𝑇] = 9.348(7) × 10−3 and V𝑎𝑟𝜉 [𝑅] = 8.033(6) × 10−3, where the parenthetical
indicates the standard deviation of the last digit. For both QoIs, the 𝑀𝑆𝐸 , V𝑎𝑟 , and 𝐵𝑖𝑎𝑠 of
𝑆2 and 𝑆2 follow the same trends as those shown in Figure 2.2. In Figure 2.5, we show the
distributions of 𝑆2 and 𝑆2 over 25 000 independent repetitions for both the transmittance
and reflectance. These results are qualitatively the same as the attenuation-only case,
and we similarly see 𝑆2 converge to the mean of 𝑆2. Finally, in Figures 2.6 and 2.7, we
evaluate the behavior of estimator statistics as a function of 𝑁𝜂 for both V𝑎𝑟𝜉 [𝑇] and
V𝑎𝑟𝜉 [𝑅]. The trends of V𝑎𝑟

[
𝑆2] and V𝑎𝑟

[
𝑆2

]
for both QoIs are similar to what we saw

in the attenuation-only case. From numerical results, shown in Table 2.2, V𝑎𝑟
[
𝑆2] for

V𝑎𝑟𝜉 [𝑇] appears to be minimized at the same 𝑁𝜂 for both the scattering and attenuation-
only cases. However, when approximating V𝑎𝑟𝜉 [𝑅] in Table 2.3, we find that V𝑎𝑟

[
𝑆2]

is minimized at 𝑁𝜂 = 20 rather than 𝑁𝜂 = 10. This demonstrates that the optimal factor
pair (𝑁𝜉 ×𝑁𝜂) can differ between different QoIs even within the same problem, motivating
further investigation to allow the analyst to choose these parameters in an informed way.

Scattering Problem – V𝑎𝑟
[
𝑆2] , Transmittance

𝑁𝜂
Estimator Cost

200 500 2000 5000
2 1.757E-04 6.976E-05 1.730E-05 6.973E-06
5 7.512E-05 2.968E-05 7.422E-06 2.891E-06

10 6.411E-05 2.486E-05 6.191E-06 2.439E-06
20 7.283E-05 2.789E-05 6.947E-06 2.714E-06
25 8.030E-05 3.079E-05 7.399E-06 2.967E-06

100 2.891E-04 8.558E-05 1.883E-05 7.525E-06

Table 2.2: The variance of the estimate of 𝑆2 over 25 000 repetitions for transmittance in
the scattering problems.
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Scattering Problem – V𝑎𝑟
[
𝑆2] , Reflectance

𝑁𝜂
Estimator Cost

200 500 2000 5000
2 1.809E-04 7.041E-05 1.803E-05 7.222E-06
5 6.617E-05 2.628E-05 6.549E-06 2.612E-06

10 4.837E-05 1.869E-05 4.592E-06 1.840E-06
20 4.639E-05 1.774E-05 4.212E-06 1.686E-06
25 4.935E-05 1.842E-05 4.437E-06 1.773E-06

100 1.682E-04 4.044E-05 8.478E-06 3.287E-06

Table 2.3: The variance of the estimate of 𝑆2 over 25 000 repetitions for reflectance in the
scattering problems.

2.6 Conclusions

Monte Carlo sampling-based methods for UQ are non-intrusive, robust, and efficient.
However, when coupled with a stochastic computational model such as a Monte Carlo ra-
diation transport solver, Monte Carlo UQ methods propagate both the intended uncertainty
and the additional variance introduced by the stochastic model. In this work, we applied
the law of total variance to present in closed-form how the UQ variance and stochastic
solver variance contribute to the total observed variance. Our primary outcome was the
development of a variance deconvolution approach to accurately and precisely estimate
the UQ variance. Rather than the standard method of over-resolving the stochastic solver
for each UQ evaluation, variance deconvolution explicitly computes the stochastic solver
variance and removes it from the total observed variance. We showed both in theory and
numerically, with an example neutral-particle radiation transport problem, that the variance
deconvolution estimator is unbiased and more efficient than the standard approach for the
same computational cost. Statistical analysis of the estimator and numerical results sug-
gest an efficiency trade-off between the number of UQ samples and number of stochastic
model samples (e.g., particle histories) for a prescribed computational budget. We used
the analytic solution of the example radiation transport problem to find the cost-optimal
distribution between UQ samples and stochastic model samples, and ongoing work focuses
on constructing a pilot study to numerically estimate the cost-optimal distribution without
an analytic solution, for application to more complex and realistic problems. While the
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Figure 2.5: Comparing the variance estimates for V𝑎𝑟𝜉 [𝑇] and V𝑎𝑟𝜉 [𝑅] from a brute-
force approach to the estimates from the variance deconvolution approach for a 1D radiation
transport problem with scattering (𝑑 = 6). PDF created with 25 000 repetitions, averages
reported with dashed lines.

presented test problem applied variance deconvolution to Monte Carlo radiation transport
methods, the statistical analysis and theoretical conclusions of the variance deconvolution
estimator are applicable to Monte Carlo UQ coupled with any stochastic computational
model. In ongoing work, we incorporate variance deconvolution into Saltelli’s method for
global sensitivity analysis [97] to rank the importance of uncertain random inputs to a MC
RT problem, again without having to over-resolve the stochastic solver [77, 15].
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Figure 2.6: Comparing numerical results forV𝑎𝑟
[
𝑆2] , V𝑎𝑟

[
𝑆2

]
, andV𝑎𝑟

[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
when

approximating V𝑎𝑟𝜉 [𝑇] and V𝑎𝑟𝜉 [𝑅]. Note that axes are different for each plot.
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Figure 2.7: Comparing numerical results for 𝑀𝑆𝐸 [𝑆2] and 𝑀𝑆𝐸 [𝑆2] when approximating
V𝑎𝑟𝜉 [𝑇] and V𝑎𝑟𝜉 [𝑅]. Note that axes are different for each plot.
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2.7 Appendix: Proof of Theorem 2.3.1

We show that 𝑆2 is an unbiased estimator for V𝑎𝑟
[
𝑄̃𝑁𝜂

]
.

𝑆2 =
1

𝑁𝜉 − 1

𝑁𝜉∑︁
𝑖=1

(
𝑄̃𝑁𝜂
(𝜉𝑖) −

〈
𝑄̃𝑁𝜂

〉)2
=

1
𝑁𝜉 − 1

𝑁𝜉∑︁
𝑖=1

(
𝑄̃2

𝑁𝜂
(𝜉𝑖) − 2𝑄̃𝑁𝜂

(𝜉𝑖)
〈
𝑄̃𝑁𝜂

〉
+

〈
𝑄̃𝑁𝜂

〉2
)

=
1

𝑁𝜉 − 1

𝑁𝜉∑︁
𝑖=1

(
𝑄̃2

𝑁𝜂
(𝜉𝑖) −

〈
𝑄̃𝑁𝜂

〉2
)
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E
[
𝑆2

]
= E


1

𝑁𝜉 − 1

𝑁𝜉∑︁
𝑖=1

(
𝑄̃2

𝑁𝜂
(𝜉𝑖) −

〈
𝑄̃𝑁𝜂

〉2
)

=
1

𝑁𝜉 − 1

𝑁𝜉∑︁
𝑖=1

E
[
𝑄̃2

𝑁𝜂
(𝜉𝑖) −

〈
𝑄̃𝑁𝜂

〉2
]

=
𝑁𝜉

𝑁𝜉 − 1

(
E

[
𝑄̃2

𝑁𝜂

]
− E

[〈
𝑄̃𝑁𝜂

〉2
] )
. (2.25)

We first handle E
[〈
𝑄̃𝑁𝜂

〉2
]
. Using combination theory,

〈
𝑄̃𝑁𝜂

〉2
=

©­« 1
𝑁𝜉

𝑁𝜉∑︁
𝑖=1

𝑄̃𝑁𝜂
(𝜉𝑖)

ª®¬
2

=
1
𝑁𝜉

2
©­«
𝑁𝜉∑︁
𝑖=1

𝑄̃2
𝑁𝜂
(𝜉𝑖) +

𝑁𝜉∑︁
𝑖=1

𝑁𝜉∑︁
𝑘=1,≠𝑖

𝑄̃𝑁𝜂
(𝜉𝑖)𝑄̃𝑁𝜂

(𝜉 (𝑘))ª®¬ .
The distinction between 𝑄̃2

𝑁𝜂
(𝜉𝑖) and 𝑄̃𝑁𝜂

(𝜉𝑖)𝑄̃𝑁𝜂
(𝜉 (𝑘)) becomes apparent when taking the

expected value over 𝜉. Because 𝜉𝑖 and 𝜉 (𝑘) are independent realizations,E𝜉

[
𝑄̃𝑁𝜂
(𝜉𝑖)𝑄̃𝑁𝜂

(𝜉 (𝑘))
]
=

E𝜉

[
𝑄̃𝑁𝜂
(𝜉𝑖)

]
E𝜉

[
𝑄̃𝑁𝜂
(𝜉 (𝑘))

]
. Then,

E
[〈
𝑄̃𝑁𝜂

〉2
]
=

1
𝑁𝜉

2
©­«
𝑁𝜉∑︁
𝑖=1

E
[
𝑄̃2

𝑁𝜂
(𝜉𝑖)

]
+

𝑁𝜉∑︁
𝑖=1

𝑁𝜉∑︁
𝑘≠𝑖

E
[
𝑄̃𝑁𝜂
(𝜉𝑖)𝑄̃𝑁𝜂

(𝜉 (𝑘))
]ª®¬

=
1
𝑁𝜉

2

(
𝑁𝜉E

[
𝑄̃2

𝑁𝜂

]
+ 𝑁𝜉

(
𝑁𝜉 − 1

)
E

[
𝑄̃𝑁𝜂

]2
)

=
1
𝑁𝜉

(
E

[
𝑄̃2

𝑁𝜂

]
+

(
𝑁𝜉 − 1

)
E

[
𝑄̃𝑁𝜂

]2
)

=
1
𝑁𝜉

E
[
𝑄̃2

𝑁𝜂

]
+
𝑁𝜉 − 1
𝑁𝜉

E𝜉 [𝑄]2 . (2.26)

Plugging this result into Eq. (2.25),

E
[
𝑆2

]
=

𝑁𝜉

𝑁𝜉 − 1

(
E

[
𝑄̃2

𝑁𝜂

]
− 1
𝑁𝜉

E
[
𝑄̃2

𝑁𝜂

]
−
𝑁𝜉 − 1
𝑁𝜉

E𝜉 [𝑄]2
)

= E
[
𝑄̃2

𝑁𝜂

]
− E𝜉 [𝑄]2 (2.27)
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We now handle E
[
𝑄̃2

𝑁𝜂

]
by first introducing the variable transformation 𝑓 (𝜉, 𝜂) = 𝑄(𝜉) +

𝑍 (𝜂) such that

E𝜂 [ 𝑓 (𝜉, 𝜂)] = E𝜂 [𝑄(𝜉) + 𝑍 (𝜂)] = 𝑄(𝜉)
→ E𝜂 [𝑍 (𝜂)] = 0.

It follows that 𝑄̃𝑁𝜂
can also be written

𝑄̃𝑁𝜂
(𝜉) = 1

𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑓 (𝜉, 𝜂( 𝑗))

=
1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

(
𝑄(𝜉) + 𝑍 (𝜂( 𝑗))

)
= 𝑄(𝜉) + 1

𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑍 (𝜂( 𝑗)). (2.28)

Applying this definition and combination theory,

𝑄̃2
𝑁𝜂
(𝜉) = 𝑄2(𝜉) + 2𝑄(𝜉)

𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑍 (𝜂( 𝑗)) + ©­« 1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑍 (𝜂( 𝑗))ª®¬
2

= 𝑄2(𝜉) + 2𝑄(𝜉)
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑍 (𝜂( 𝑗)) + 1
𝑁𝜂

2
©­«
𝑁𝜂∑︁
𝑗=1

𝑍2(𝜂( 𝑗)) +
𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,≠ 𝑗

𝑍 (𝜂( 𝑗))𝑍 (𝜂(𝑘))ª®¬ .
(2.29)
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Again, because 𝜂( 𝑗) and 𝜂(𝑘) are independent realizations,E𝜂

[
𝑍 (𝜂( 𝑗))𝑍 (𝜂(𝑘))

]
= E𝜂

[
𝑍 (𝜂( 𝑗))

]
E𝜂

[
𝑍 (𝜂(𝑘))

]
.

Finally,

E
[
𝑄̃2

𝑁𝜂

]
= E𝜉

[
E𝜂

[
𝑄̃2

𝑁𝜂

] ]
= E𝜉

𝑄2 + 0 + 1
𝑁𝜂

2

𝑁𝜂∑︁
𝑗=1

E𝜂

[
𝑍2] + 0


= E𝜉

[
𝑄2] + 1

𝑁𝜂

E𝜉

[
E𝜂

[
𝑍2] ]

Plugging in our variable transformation, we see thatE𝜂

[
𝑍2] = E𝜂

[
( 𝑓 −𝑄)2

]
= E𝜂

[ (
𝑓 − E𝜂 [ 𝑓 ]

)2
]
=

𝜎2
𝜂 . Therefore,

E
[
𝑄̃2

𝑁𝜂

]
= E𝜉

[
𝑄2] + 1

𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
. (2.30)

Finally, combining Eq. (2.27) and Eq. (2.30),

E
[
𝑆2

]
= E𝜉

[
𝑄2] + 1

𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
− E𝜉 [𝑄]2

= V𝑎𝑟𝜉 [𝑄] +
1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
, (2.31)

which we recognize from Proposition 2.2.2 as V𝑎𝑟
[
𝑄̃𝑁𝜂

]
. Therefore, 𝑆2 is an unbiased

estimator for V𝑎𝑟
[
𝑄̃𝑁𝜂

]
.
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2.8 Appendix: Proof of Theorem 2.3.4

Before presenting the derivation for the terms appearing in the previous equations, we
introduce some notation for central moments:

𝜇𝑘 [𝑋]
def
= E

[
(𝑋 − E [𝑋])𝑘

]
𝜇𝜂,𝑘 [𝑋]

def
= E𝜂

[
(𝑋 − E𝜂 [𝑋])𝑘

]
𝜎4 [𝑋] =

(
𝜇2 [𝑋]

)2

𝜎4
𝜂 [𝑋] =

(
𝜇𝜂,2 [𝑋]

)2
.

(2.32)

We refer to the variable transformation from 2.7 and the useful property it gives rise to,

E𝜂 [ 𝑓 (𝜉, 𝜂)] = E𝜂 [𝑄(𝜉) + 𝑍 (𝜂)] = 𝑄(𝜉)
→ E𝜂 [𝑍 (𝜂)] = 0,

E𝜂

[
𝑍 𝑘

]
= E𝜂

[
( 𝑓 −𝑄)𝑘

]
= 𝜇𝜂,𝑘 .

The following is also useful; we use the notation 𝑍 𝑗
def
= 𝑍 (𝜂( 𝑗)) for brevity.

©­«
𝑁𝜂∑︁
𝑗=1

𝑍 𝑗
ª®¬

2

=

𝑁𝜂∑︁
𝑗=1

𝑍2
𝑗 +

𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,
≠ 𝑗

𝑍 𝑗𝑍

©­«
𝑁𝜂∑︁
𝑗=1

𝑍 𝑗
ª®¬

3

=

𝑁𝜂∑︁
𝑗=1

𝑍3
𝑗 + 3

𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,
≠ 𝑗

𝑍2
𝑗 𝑍𝑘 +

𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,
≠ 𝑗

𝑁𝜂∑︁
𝑞=1,
≠ 𝑗 ,
≠𝑘

𝑍 𝑗𝑍𝑘𝑍𝑞

©­«
𝑁𝜂∑︁
𝑗=1

𝑍 𝑗
ª®¬

4

=

𝑁𝜂∑︁
𝑗=1

𝑍4
𝑗 + 4

𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,
≠ 𝑗

𝑍3
𝑗 𝑍𝑘 + 3

𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,
≠ 𝑗

𝑍2
𝑗 𝑍

2
𝑘 + 6

𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,
≠ 𝑗

𝑁𝜂∑︁
𝑞=1,
≠ 𝑗 ,
≠𝑘

𝑍2
𝑗 𝑍𝑘𝑍𝑞 +

𝑁𝜂∑︁
𝑗=1

𝑁𝜂∑︁
𝑘=1,
≠ 𝑗

𝑁𝜂∑︁
𝑞=1,
≠ 𝑗 ,
≠𝑘

𝑁𝜂∑︁
𝑟=1,
≠ 𝑗 ,
≠𝑘,
,≠𝑞

𝑍 𝑗𝑍𝑘𝑍𝑞𝑍𝑟 .
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The variance of the deconvolution estimator 𝑆2 can be written as

V𝑎𝑟
[
𝑆2] = V𝑎𝑟

[
𝑆2]︸     ︷︷     ︸

Term 1

+V𝑎𝑟
[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
︸            ︷︷            ︸

Term 2

−2C𝑜𝑣
[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
︸                 ︷︷                 ︸

Term 3

. (2.33)

Term 1
𝑆2 is a sampling estimator for the variance of 𝑄̃𝑁𝜂

from 𝑁𝜉 evaluations. The variance of a
sampling estimator for variance is [10],

V𝑎𝑟
[
𝑆2] =

1.1︷     ︸︸     ︷
𝜇4

[
𝑄̃𝑁𝜂

]
𝑁𝜉

−

1.2︷     ︸︸     ︷
𝜎4 [

𝑄̃𝑁𝜂

]
(𝑁𝜉 − 3)

𝑁𝜉 (𝑁𝜉 − 1) . (2.34)

Expanding Term 1.1,

𝜇4
[
𝑄̃𝑁𝜂

]
= E

[(
𝑄̃𝑁𝜂
− E

[
𝑄̃𝑁𝜂

] )4
]
= E

[(
𝑄̃𝑁𝜂
− E𝜉 [𝑄]

)4
]

= E
[
𝑄̃4

𝑁𝜂

]
− 4E

[
𝑄̃3

𝑁𝜂

]
E𝜉 [𝑄] + 6E

[
𝑄̃2

𝑁𝜂

]
E𝜉 [𝑄]2 − 4E

[
𝑄̃𝑁𝜂

]
E𝜉 [𝑄]3 + E𝜉 [𝑄]4

= E
[
𝑄̃4

𝑁𝜂

]
− 4E

[
𝑄̃3

𝑁𝜂

]
E𝜉 [𝑄] + 6E

[
𝑄̃2

𝑁𝜂

]
E𝜉 [𝑄]2 − 3E𝜉 [𝑄]4 . (2.35)

We solved for E
[
𝑄̃2

𝑁𝜂

]
in 2.7, resulting in Eq. (2.30) (repeated below as (2.36)). Applying

the same process to E
[
𝑄̃3

𝑁𝜂

]
and E

[
𝑄̃4

𝑁𝜂

]
,

E
[
𝑄̃2

𝑁𝜂

]
= E𝜉

[
𝑄2] + 1

𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
, (2.36)

E
[
𝑄̃3

𝑁𝜂

]
= E𝜉

[
𝑄3] + 3

𝑁𝜂

E𝜉

[
𝑄𝜎2

𝜂

]
+ 1
𝑁𝜂

2E𝜉

[
𝜇𝜂,3

]
, (2.37)

E
[
𝑄̃4

𝑁𝜂

]
= E𝜉

[
𝑄4] + 6

𝑁𝜂

E𝜉

[
𝑄2𝜎2

𝜂

]
+ 4
𝑁𝜂

2E𝜉

[
𝑄𝜇𝜂,3

]
+ 1
𝑁𝜂

3E𝜉

[
𝜇𝜂,4

]
+

3
(
𝑁𝜂 − 1

)
𝑁𝜂

3 E𝜉

[
𝜎4
𝜂

]
.

(2.38)
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Expanding Term 1.2,

𝜎4 [
𝑄̃𝑁𝜂

]
=

(
𝜎2 [

𝑄̃𝑁𝜂

] )2
=

(
V𝑎𝑟

[
𝑄̃𝑁𝜂

] )2

=

(
V𝑎𝑟𝜉 [𝑄] +

1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

] )2
. (2.39)

Term 2

V𝑎𝑟
[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
= V𝑎𝑟


1
𝑁𝜉

𝑁𝜉∑︁
𝑖=1

𝜎̂2
𝜂 (𝜉𝑖)
𝑁𝜂

 =
1

𝑁𝜉
2𝑁𝜂

2

𝑁𝜉∑︁
𝑖=1

V𝑎𝑟
[
𝜎̂2
𝜂 (𝜉𝑖)

]
=

1
𝑁𝜉𝑁𝜂

2V𝑎𝑟
[
𝜎̂2
𝜂

]
.

(2.40)
Applying the law of total variance and the variance of a sample variance [10],

V𝑎𝑟
[
𝜎̂2
𝜂

]
= V𝑎𝑟𝜉

[
E𝜂

[
𝜎̂2
𝜂

] ]
+ E𝜉

[
V𝑎𝑟𝜂

[
𝜎̂2
𝜂

] ]
= V𝑎𝑟𝜉

[
𝜎2
𝜂

]
+ E𝜉

[
𝜇𝜂,4 [ 𝑓 ]
𝑁𝜂

−
𝜎4
𝜂 [ 𝑓 ]

(
𝑁𝜂 − 3

)
𝑁𝜂

(
𝑁𝜂 − 1

) ]
.

Combining,

V𝑎𝑟
[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
=
V𝑎𝑟𝜉

[
𝜎2
𝜂

]
𝑁𝜉𝑁𝜂

2 + 1
𝑁𝜉𝑁𝜂

3E𝜉

[
𝜇𝜂,4 [ 𝑓 ] −

𝜎4
𝜂 [ 𝑓 ]

(
𝑁𝜂 − 3

)(
𝑁𝜂 − 1

) ]
(2.41)

Term 3
From the definition of covariance,

C𝑜𝑣
[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
= E

[
𝑆2 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
− E

[
𝑆2] E [

𝜇̂𝜎2
𝑅𝑇,𝑁𝜂

]
.
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We have shown in Proposition 2.3.1 that E
[
𝑆2] = V𝑎𝑟

[
𝑄̃𝑁𝜂

]
, and in Theorem 2.3.3 that

E
[
𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
= 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

]
. What remains is to evaluate E

[
𝑆2 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
:

E
[
𝑆2 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
=

1
𝑁𝜉𝑁𝜂

(
E

[
𝑄̃2

𝑁𝜂
𝜎̂2
𝜂

]
+ E𝜉

[
𝜎2
𝜂

]
E𝜉 [𝑄]2

)
− 2
𝑁𝜉𝑁𝜂

E𝜉 [𝑄] E
[
𝑄̃𝑁𝜂

𝜎̂2
𝜂

]
+

(
𝑁𝜉 − 1

)
𝑁𝜉𝑁𝜂

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
E𝜉

[
𝜎2
𝜂

]
.

Combining,

C𝑜𝑣
[
𝑆2, 𝜇̂𝜎2

𝑅𝑇,𝑁𝜂

]
=

1
𝑁𝜉𝑁𝜂

(
E

[
𝑄̃2

𝑁𝜂
𝜎̂2
𝜂

]
+ E𝜉

[
𝜎2
𝜂

]
E𝜉 [𝑄]2

)
− 2
𝑁𝜉𝑁𝜂

E𝜉 [𝑄] E
[
𝑄̃𝑁𝜂

𝜎̂2
𝜂

]
− 1
𝑁𝜉𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
V𝑎𝑟

[
𝑄̃𝑁𝜂

]
,

(2.42)

where

E
[
𝑄̃2

𝑁𝜂
𝜎̂2
𝜂

]
= E𝜉

[
𝑄2𝜎2

𝜂

]
+ 2
𝑁𝜂

E𝜉

[
𝑄𝜇𝜂,3

]
+ 1
𝑁𝜂

2E𝜉

[
𝜇𝜂,4 +

(
𝑁𝜂 − 3

)
𝜎4
𝜂

]
,

E
[
𝑄̃𝑁𝜂

𝜎̂2
𝜂

]
= E𝜉

[
𝑄𝜎2

𝜂

]
+ 1
𝑁𝜂

E𝜉

[
𝜇𝜂,3

]
, and

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
= V𝑎𝑟𝜉 [𝑄] +

1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
.

2.9 Appendix: Analytic Solutions for Section 2.5.1

We can derive reference solutions for the average solver variance and total polluted variance
by assuming that elementary event 𝑓 is valued 1 to indicate transmittance, or 0 to indicate
absorption. This assumption excludes weighted MC RT approaches, but our primary
interest here is to develop analytic solutions to verify the estimators introduced in this
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work. It follows that 𝑓 = 𝑓 2, from which we can show that

1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
=

1
𝑁𝜂

E𝜉

[
E𝜂

[
( 𝑓 −𝑄)2

] ]
=

1
𝑁𝜂

E𝜉

[
E𝜂

[
𝑓 2 − 2 𝑓 𝑄 +𝑄2] ]

=
1
𝑁𝜂

E𝜉

[
E𝜂

[
𝑓 − 2 𝑓 𝑄 +𝑄2] ]

=
1
𝑁𝜂

E𝜉

[
𝑄 − 2𝑄2 +𝑄2]

=
E𝜉 [𝑄] − E𝜉

[
𝑄2]

𝑁𝜂

.

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
= V𝑎𝑟𝜉 [𝑄] +

E𝜉 [𝑄] − E𝜉

[
𝑄2]

𝑁𝜂

.

(2.43)

Additionally, we can use the closed-form expression for the variance of the variance
deconvolution estimator from Theorem 2.3.4 to derive an expression for the variance
deconvolution estimator’s MSE as a function of 𝑁𝜂. By adopting the same assumption that
𝑓 = 𝑓 2, tedious computations lead us to the following expressions, which simply express
all statistics needed for Eq. (2.33) in terms of raw moments of the transmittance up to the
fourth order.

E𝜉

[
𝜎2
𝜂

]
= E𝜉 [𝑄] − E𝜉

[
𝑄2]

E𝜉

[(
𝜎2
𝜂

)2
]
= E𝜉

[
𝑄2] − 2E𝜉

[
𝑄3] + E𝜉

[
𝑄4]

E𝜉

[
𝜇𝜂,3

]
= E𝜉 [𝑄] − 3E𝜉

[
𝑄2] + 2E𝜉

[
𝑄3]

E𝜉

[
𝜇𝜂,4

]
= E𝜉 [𝑄] − 4E𝜉

[
𝑄2] + 6E𝜉

[
𝑄3] − 3E𝜉

[
𝑄4]

E𝜉

[
𝑄𝜎2

𝜂

]
= E𝜉

[
𝑄2(1 −𝑄)

]
= E𝜉

[
𝑄2] − E𝜉

[
𝑄3]

E𝜉

[
𝑄2𝜎2

𝜂

]
= E𝜉

[
𝑄3 (1 −𝑄)

]
= E𝜉

[
𝑄3] − E𝜉

[
𝑄4]

E𝜉

[
𝑄𝜇𝜂,3

]
= E𝜉

[
𝑄2] − 3E𝜉

[
𝑄3] + 2E𝜉

[
𝑄4]

V𝑎𝑟𝜉 [𝑄] = E𝜉

[
𝑄2] − (

E𝜉 [𝑄]
)2
.

(2.44)
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Chapter 3: Global Sensitivity Analysis in Monte Carlo Radiation Transport

Abstract

We consider Global Sensitivity Analysis (GSA) for Monte Carlo (MC) radiation transport
(RT) applications. GSA is usually combined with Uncertainty Quantification (UQ), where
the latter (among other goals) quantifies the variability of a model output in the presence
of uncertain inputs and the former attributes this variability to the inputs. The additional
noise inherent to MC RT solvers due to the finite number of particle histories presents an
additional challenge to GSA and UQ, which are well-established for deterministic solvers.
In this contribution, we apply variance deconvolution to Saltelli’s method to address MC
RT solver noise without having to over-resolve the MC RT simulation.

3.1 Introduction

Global sensitivity analysis (GSA) aims to apportion, or divide and allocate, variability
in model output to different sources of uncertainty in model input [102]. GSA is useful
to understand the relative importance of each of a model’s uncertain inputs, and their
interactions with one another, to the behavior of model output. It is typically paired
with uncertainty quantification (UQ), which deals with characterizing and propagating
uncertainty sources through computational models. For an exhaustive introduction to
GSA in the scientific computing context, see Saltelli’s book [102]. This work focuses
on sampling-based GSA applied to stochastic solvers, specifically Monte Carlo radiation
transport (MC RT) solvers. Typically, UQ and GSA assume that the computational model
itself is deterministic, i.e., , that given identical inputs, the model will produce identical
outputs. From this assumption, it follows that any output variability characterized by UQ
or apportioned by GSA is a result of some uncertain input to the solver, not variability
inherent to the solver itself. Despite the abundant literature produced on GSA over the last
few decades, there is a gap in the quantification and control of the intrinsic randomness
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introduced by non-deterministic solvers.
Stochastic solvers are widely used and important for many applications depending

on the information needed by the user, the problem space, and the complexity of the
modeled system. Unlike deterministic methods, which require phase-space discretization
and approximate solutions to continuous equations, MC RT methods are event based and
can faithfully model complex physics. This makes MC RT methods well-suited to solve, for
example, complicated three-dimensional, time-dependent problems [64]. However, results
from MC RT solvers are always approximate, constrained by the finite number of particle
histories that can be used in a simulation. While it is certainly possible to apply UQ and
GSA to stochastic solvers, this invalidates the assumption that output uncertainty can be
analyzed solely in the context of input uncertainty. Statistical analysis can be considered
“polluted” by the variability introduced by the solver itself. It is possible to rigorously
show [12, 14] that the stochastic solver increases the observed model output variance,
possibly causing an analyst to over-estimate the model’s response to an uncertain input. A
brute-force method to address this complication and “de-pollute” statistics of interest is to
over-resolve the stochastic solver, e.g., , increase the number of particles in the simulation,
until the solver variance is rendered negligible compared to the effects of the uncertain
inputs [9]. Resolving stochastic models to this extent is already computationally expensive
and folding that into the UQ and GSA workflow, which requires repeated evaluation of
numerical codes, increases the computational expense to the point of intractability. Our
goal is to gain an understanding of how GSA can be performed in the context of MC RT
solvers by explicitly accounting for the stochastic variability they introduce.

This work builds on a recently-derived variance deconvolution approach [12, 14].
We have introduced variance deconvolution to quantify the variance contribution from
a stochastic solver and effectively remove it from the total polluted variance, accurately
estimating the desired variance induced by uncertain input parameters (referred to from
here as parametric variance). This is far more cost effective than the brute-force approach,
and uses an unbiased estimator for the variance introduced by the solver and for the
parametric variance. We apply this variance deconvolution UQ workflow here to MC RT
problems, but as we will show, the method is not specific to radiation transport and is widely
applicable to stochastic solvers. Also in recent work, we integrated variance deconvolution
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in sampling-based GSA for stochastic media [75] and surrogate [31, 28] approaches.
Detailed derivation and analysis for UQ with variance deconvolution is available in [14],
and is summarized below. In this paper, we apply variance deconvolution to a general GSA
case and compare its performance to the straightforward application of Saltelli’s method,
without any particular correction for the solver’s noise.

3.2 Global Sensitivity Analysis: Background Theory

We consider a generic QoI 𝑄 = 𝑄 (ξ), which expresses a mapping from the vector of
𝑑 uncertain input parameters 𝜉 ∈ Ξ ⊂ R𝑑 , with joint probability density function (PDF)
𝑝(𝜉), to scalar 𝑄. In standard UQ, we are concerned with estimating statistics for 𝑄 with
respect to the input parameters, e.g. moments like the mean and variance:

E𝜉 [𝑄]
def
=

∫
Ξ

𝑄(𝜉)𝑝(𝜉)𝑑𝜉 and V𝑎𝑟𝜉 [𝑄]
def
=

∫
Ξ

(
𝑄(𝜉) − E𝜉 [𝑄]

)2
𝑝(𝜉)𝑑𝜉. (3.1)

In this work, we consider variance-based GSA1, quantifying the uncertainty of model output
by studying how each parameter (or group of parameters) 𝜉𝑖 affects the output’s variance.
We start by considering that 𝜉𝑖 is fixed to some value in its PDF 𝜉∗

𝑖
. To compute the mean

of 𝑄 conditional on 𝜉𝑖 = 𝜉∗
𝑖
, we take the expected value of 𝑄 over all parameters except 𝜉𝑖,

denoted 𝜉∼𝑖. The conditional variance over all possible values of 𝜉∗
𝑖
, V𝜉𝑖

[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ] def
=

V𝑖, is known as the first-order effect of 𝜉𝑖 on 𝑄, a measure of the variance introduced by
parameter 𝜉𝑖. To simplify notation, we write this as V𝑎𝑟 [E [𝑄 | 𝜉𝑖]], where the parameters
of integration can be assumed from the fixed parameter. We can also consider higher
order effects, known as interaction effects, which captures that 𝑄’s response to a set of
parameters cannot be fully described by the sum of their individual first-order effects.
For example, the second-order effect of the pair

(
𝜉𝑖, 𝜉 𝑗

)
can be written using Sobol’s

decomposition [103] by removing their individual first-order effects from their joint effect,
V𝑖 𝑗 = V𝑎𝑟

[
E

[
𝑄 | 𝜉𝑖, 𝜉 𝑗

] ]
− V𝑖 − V 𝑗 . While V𝑖 is a measure of the effect of 𝜉𝑖 on 𝑄, the

second-order effect V𝑖 𝑗 is a measure of the effect of the interaction between 𝜉𝑖 and 𝜉 𝑗 on 𝑄.
Sensitivity indices, sometimes referred to as Sobol’ indices (SI), provide a measure of

1We limit ourselves here to variance-based strategies, although other approaches are also possible [80, 30].
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how important a parameter (or set of parameters) is in contributing to the overall variance.
This sensitivity can range between 0 and 1, where importance increases as a SI approaches
1. A SI can be computed for any of a parameter’s arbitrary-order effects. We are typically
interested in computing the first-order SI 𝑆𝑖 and total SI 𝑆𝑇𝑖,

𝑆𝑖 =

V𝜉𝑖

[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

, 𝑆𝑇𝑖 = 1 −
V𝜉∼𝑖

[
E𝜉𝑖

[
𝑄 | 𝜉∼𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

, (3.2)

where total SI accounts for the individual effect of 𝜉𝑖 and all of its interaction effects. For a
model with three uncertain input factors, the total effect SI of 𝜉1 is the sum of its first-order,
second-order, and third-order SIs, 𝑆𝑇1 = 𝑆1 + 𝑆12 + 𝑆13 + 𝑆123.

3.2.1 Saltelli’s method

Saltelli introduced a widely used sampling method [102] that provides the benchmark for
any subsequent GSA development, which we briefly summarize here. Assuming 𝑑 random
inputs and 𝑁 sampling realizations, Saltelli’s algorithm reads as follows:

1. Define two (𝑁, 𝑑) matrices, 𝐴 and 𝐵, which contain independent input samples.

𝐴 =


𝜉
(1)
1 · · · 𝜉

(1)
𝑖
· · · 𝜉

(1)
𝑑

...
. . .

...

𝜉
(𝑁)
1 · · · 𝜉

(𝑁)
𝑖

· · · 𝜉
(𝑁)
𝑑

 , 𝐵 =


𝜉
(1)
𝑑+1 · · · 𝜉

(1)
𝑑+𝑖 · · · 𝜉

(1)
2𝑑

...
. . .

...

𝜉
(𝑁)
𝑑+1 · · · 𝜉

(𝑁)
𝑑+𝑖 · · · 𝜉

(𝑁)
2𝑑

 .
(3.3)

2. For each 𝑖th random input, define a matrix 𝐶𝑖 using all columns of 𝐵 except for the
𝑖th column, which comes from 𝐴.

𝐶𝑖 =


𝜉
(1)
𝑑+1 · · · 𝜉

(1)
𝑖
· · · 𝜉

(1)
2𝑑

...
. . .

...

𝜉
(𝑁)
𝑑+1 · · · 𝜉

(𝑁)
𝑖

· · · 𝜉
(𝑁)
2𝑑

 . (3.4)

3. Compute model output for 𝐴, 𝐵, and all 𝐶𝑖 to obtain vectors of model output 𝑦 of
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dimension (𝑁, 1).

4. Estimate the first-order and total sensitivity indices via sampling:

𝑆𝑖 =
V𝑎𝑟 [E [𝑄 | 𝜉𝑖]]

V𝑎𝑟𝜉 [𝑄]
≈

1
𝑁

∑𝑁
𝑗=1 𝑦

( 𝑗)
𝐴
𝑦
( 𝑗)
𝐶𝑖
−

(
1
𝑁

∑𝑁
𝑗=1 𝑦

( 𝑗)
𝐴

)2

1
𝑁

∑𝑁
𝑗=1

(
𝑦
( 𝑗)
𝐴

)2
−

(
1
𝑁

∑𝑁
𝑗=1 𝑦

( 𝑗)
𝐴

)2 , (3.5)

𝑆𝑇𝑖 = 1 − V𝑎𝑟 [E [𝑄 | 𝜉∼𝑖]]
V𝑎𝑟𝜉 [𝑄]

≈ 1 −
1
𝑁

∑𝑁
𝑗=1 𝑦

( 𝑗)
𝐵

𝑦
( 𝑗)
𝐶𝑖
−

(
1
𝑁

∑𝑁
𝑗=1 𝑦

( 𝑗)
𝐴

)2

1
𝑁

∑𝑁
𝑗=1

(
𝑦
( 𝑗)
𝐴

)2
−

(
1
𝑁

∑𝑁
𝑗=1 𝑦

( 𝑗)
𝐴

)2 . (3.6)

While in this paper we only consider the baseline Saltelli method as in [102], a number
of modifications and extensions have been made to the method, for example as discussed
in [103].

3.3 Computing Sobol’ Indices with Stochastic Solvers

The Saltelli method is well-established when the computational model is deterministic. We
propose a modified application of the Saltelli method for use with stochastic computational
models by applying variance deconvolution.

When the computational model is a stochastic solver, the QoI 𝑄 can only be approxi-
mated by averaging a finite number of elementary event realizations 𝑓 (see [14] for details).
For instance, in MC RT applications, we indicate with 𝑓 an event resulting from a single
particle history, and approximate 𝑄 using 𝑁𝜂 particle histories:

𝑄(𝜉) def
= E𝜂 [ 𝑓 (𝜉, 𝜂)] ≈

1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑓 (𝜉, 𝜂( 𝑗)) def
= 𝑄̃𝑁𝜂

(𝜉). (3.7)

The additional variable 𝜂 is introduced only to notionally represent the randomness in a
MC RT solver. In practice 𝜂, unlike 𝜉, is neither controlled nor assumed to be known, and
merely reflects that even for identical systems defined by the same 𝜉, individual particle
histories will follow different trajectories. Because 𝑄 is approximated by 𝑄̃𝑁𝜂

, parametric
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variance is not directly accessible. With the variance deconvolution approach [14], we
approximate the parametric variance V𝑎𝑟𝜉 [𝑄] from observable quantities via Eq. (3.8),
where V𝑎𝑟

[
𝑄̃𝑁𝜂

]
represents the total variance (polluted by the MC RT noise) and E𝜉

[
𝜎2
𝜂

]
represents the average contribution from the solver’s stochasticity 𝜎2

𝜂

def
= V𝑎𝑟𝜂 [ 𝑓 ]

V𝑎𝑟𝜉 [𝑄] = V𝑎𝑟
[
𝑄̃𝑁𝜂

]
−
E𝜉

[
𝜎2
𝜂

]
𝑁𝜂

. (3.8)

In [75], we applied this variance deconvolution strategy to GSA in the case where the
QoI was the conditional expectation of 𝑄 over stochastic media realizations. Here, we
focus on the general case, wherein we desire to compute first-order and total SIs (Eq. (3.2))
for the QoI 𝑄 but can only access 𝑄̃𝑁𝜂

. We develop an expression for the first-order effect
V𝑎𝑟 [E [𝑄 | 𝜉𝑖]] by first applying the law of total variance to the polluted total variance,

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
= V𝜉𝑖

[
E𝜉∼𝑖 ,𝜂

[
𝑄̃𝑁𝜂

] ]
+ E𝜉𝑖

[
V𝜉∼𝑖 ,𝜂

[
𝑄̃𝑁𝜂

] ]
. (3.9)

We apply variance deconvolution and the law of total variance as needed and, after a few
manipulations, arrive at an expression for the first-order effect of 𝜉𝑖,

V𝜉𝑖

[
E𝜉∼𝑖

[
𝑄

] ]
= V𝑎𝑟

[
𝑄̃𝑁𝜂

]
− E𝜉𝑖

[
V𝜉∼𝑖

[
𝑄̃𝑁𝜂

] ]
, (3.10)

where we have refrained from including the full derivation details in the interest of space.
It follows that the first-order effect of 𝜉∼𝑖, needed to compute the total SI, can be written

V𝜉∼𝑖

[
E𝜉𝑖

[
𝑄

] ]
= V𝑎𝑟

[
𝑄̃𝑁𝜂

]
− E𝜉∼𝑖

[
V𝜉𝑖

[
𝑄̃𝑁𝜂

] ]
. (3.11)

When applying variance deconvolution to UQ [14], we computed the parametric vari-
ance by removing the average solver variance from the total polluted variance. Applied
here for GSA, however, we do not need to explicitly compute the average solver variance to
compute the parametric conditional variances. Instead, we do so by removing the polluted
conditional means, e.g., , E

[
V𝑎𝑟

[
𝑄̃𝑁𝜂
|𝜉𝑖

] ]
from the total polluted variance.
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3.3.1 Modifying Saltelli’s method for stochastic solvers

We use the sampling scheme from Saltelli’s method to compute sample estimates of
Eqs. (3.10) and (3.11), analogous to the sampling estimators in Eqs. (3.5) and (3.6) for
the deterministic-solver case. We consider matrices of random numbers 𝐴, 𝐵, and 𝐶𝑖 as
defined in Eqs. (3.3) and (3.4), and output vectors 𝑦̃𝐴, 𝑦̃𝐵, and 𝑦̃𝐶𝑖

that contain outputs of an
MC RT solver 𝑄̃𝑁𝜂

(𝜉1, . . . , 𝜉𝑑). The only new information to collect for our modification
is a vector of solver variances

𝑦̃𝜎2
𝜂 ,𝐴

def
=



𝜎̂2
𝜂

(
𝜉
(1)
1 , · · · , 𝜉 (1)

𝑖
, · · · , 𝜉 (1)

𝑑

)
𝜎̂2
𝜂

(
𝜉
(2)
1 , · · · , 𝜉 (2)

𝑖
, · · · , 𝜉 (2)

𝑑

)
...

𝜎̂2
𝜂

(
𝜉
(𝑁)
1 , · · · , 𝜉 (𝑁)

𝑖
, · · · , 𝜉 (𝑁)

𝑑

)

, (3.12)

where 𝜎̂2
𝜂 is the sampling estimator for 𝜎2

𝜂 ,

𝜎̂2
𝜂

(
𝜉 (𝑘)

)
def
=

1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

(
𝑓

(
𝜉 (𝑘) , 𝜂( 𝑗)

)
− 𝑄̃𝑁𝜂

(
𝜉 (𝑘)

))2
. (3.13)

We define sampling estimator counterparts for the terms in Eq. (3.10) and (3.11). The
total polluted variance,

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
≈ 𝑆2 def

=
1

𝑁 − 1

𝑁∑︁
𝑗=1

(
𝑦̃
( 𝑗)
𝐴
−

𝑁∑︁
𝑘=1

𝑦̃
(𝑘)
𝐴

)2

, (3.14)

is used to estimate the parametric variance,

V𝑎𝑟𝜉 [𝑄] ≈ 𝑆2 def
= 𝑆2 − 1

𝑁𝜂𝑁𝜉

𝑁∑︁
𝑗=1

𝑦̃
( 𝑗)
𝜎2
𝜂 ,𝐴

. (3.15)
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We estimate the conditional variances as

V𝜉∼𝑖

[
𝑄̃
( 𝑗)
𝑁𝜂

]
≈

(
𝑆2
𝜉∼𝑖

) ( 𝑗) def
=

(
𝑦̃
( 𝑗)
𝐴

)2
+

(
𝑦̃
( 𝑗)
𝐶𝑖

)2
−

(
𝑦̃
( 𝑗)
𝐴
+ 𝑦̃ ( 𝑗)

𝐶𝑖

)2

2
, (3.16)

V𝜉𝑖

[
𝑄̃
( 𝑗)
𝑁𝜂

]
≈

(
𝑆2
𝜉𝑖

) ( 𝑗) def
=

(
𝑦̃
( 𝑗)
𝐵

)2
+

(
𝑦̃
( 𝑗)
𝐶𝑖

)2
−

(
𝑦̃
( 𝑗)
𝐵
+ 𝑦̃ ( 𝑗)

𝐶𝑖

)2

2
(3.17)

such that the sample estimators for first-order and total SI using stochastic solvers are:

𝑆𝑖 =
V𝑎𝑟 [E [𝑄 | 𝜉𝑖]]

V𝑎𝑟𝜉 [𝑄]
≈

𝑆2 − 1
𝑁

∑𝑁
𝑗=1

(
𝑆2
𝜉∼𝑖

) ( 𝑗)
𝑆2 (3.18)

𝑆𝑇𝑖 = 1 − V𝑎𝑟 [E [𝑄 | 𝜉∼𝑖]]
V𝑎𝑟𝜉 [𝑄]

≈ 1 −
𝑆2 − 1

𝑁

∑𝑁
𝑗=1

(
𝑆2
𝜉𝑖

) ( 𝑗)
𝑆2 . (3.19)

3.4 Results

As a test radiation transport problem, we consider a neutral-particle, attenuation-only,
mono-energetic steady-state radiation transport problem. A beam source of magnitude
one is incident on a 1D slab of length 3 that is separated into three material regions.
The problem QoI 𝑄 (ξ) is transmittance through the slab. We introduce six uniformly
distributed uncertain parameters, grouped into three uncertainty sources of interest: 1)
Cosine of beam-source incidence angle 𝜇 ∼ U [0.6, 1.0]; 2) Boundary locations between
material regions 𝑥1 ∼ U [0.3, 1.7] and 𝑥2 ∼ U [1.7, 2.3]; and 3) Total cross sections of
the slab materials Σ𝑡,1 ∼ U [0.1, 0.9] , Σ𝑡,2 ∼ U [0.2, 0.4] , Σ𝑡,3 ∼ U [0.07, 1.03].

To investigate our variance deconvolution modification of Saltelli’s method (denoted
Saltelli-VarD for brevity), we compute first-order and total SIs for the three groups of
parametric uncertainty with both Saltelli-VarD and the straightforward Saltelli method.
For benchmark reference solutions, we solve for SIs using Saltelli’s method with 𝑁 = 108

sample realizations, computing transmittance analytically with optical thickness.
GSA is performed using 𝑁 = 𝑁𝜉 sample realizations, where each model realization is
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a MC RT simulation using 𝑁𝜂 particle histories. We perform two GSA tests, one using
(𝑁𝜉 = 1000, 𝑁𝜂 = 10), and another using (𝑁𝜉 = 1000, 𝑁𝜂 = 1000). We repeat this
numerical experiment 1000 times to construct histograms of estimator output, shown in
Figure 3.1. Across all of the histograms in Figure 3.1, we can see that applying Saltelli’s
method, developed for deterministic solvers, to a stochastic solver does indeed produce
biased results for first-order and total SI compared to the benchmark result. This is most
visible in 𝑆3 and 𝑆𝑇1, Figures 3.1e and 3.1b. For every SI, we can see that the Saltelli-
VarD result is unbiased compared to the benchmark solution, corroborating our theoretical
finding that the conditional variance is accessible using variance deconvolution. In using
Saltelli’s method with a stochastic solver, one could increase the number of particle histories
per simulation to drive down the MC RT variance. We can see the effect of this approach
looking at the 𝑁𝜂 = 1000 case, where we see that all of the results are converging to the
benchmark mean, confirming that over-resolving the MC RT simulation will eventually
drive down the solver variance and cause the bias term to approach 0. However, in every
case, the Saltelli-VarD results with 𝑁𝜂 = 10 are distributed similarly to Saltelli’s method
with 𝑁𝜂 = 1000. For this particular example problem, we observe that Saltelli-VarD
produces results comparable to Saltelli’s method with 100× fewer particles per sample.
Comparing Saltelli-VarD’s 𝑁𝜂 = 1000 results to Saltelli’s 𝑁𝜂 = 1000 results, we see that
Saltelli-VarD achieves a much tighter distribution around the benchmark solution for all
first-order and total SIs.

To quantify these effects, we compute the mean-squared error (MSE) for both methods
compared to the benchmark result. Eq. (3.20) shows MSE of estimator value 𝑋̂ with respect
to a known result 𝑋 , from which we can see that MSE captures both the variance and the
bias of the estimator,

𝑀𝑆𝐸
[
𝑋̂
]
= E

[ (
𝑋̂ − 𝑋

)2
]
= V𝑎𝑟

[
𝑋̂
]
+ 𝐵𝑖𝑎𝑠2 [

𝑋̂, 𝑋
]
. (3.20)

In Table 3.1 we compare the SIs computed with Saltelli and Saltelli-VarD (averaged
over 1000 repetitions) and the benchmark SI values. Using 𝑁𝜂 = 10, Saltelli-VarD well-
approximates the benchmark result, while Saltelli’s method has statistically significant
deviation from the benchmark results. In Table 3.2, we report the variance, bias, and MSE
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(a) First-order SI for cosine of beam incident
angle (b) Total SI for cosine of beam incident angle

(c) First-order SI for material boundary location (d) Total SI for material boundary location

(e) First-order SI for total cross section (f) Total SI for total cross section

Figure 3.1: First-order and total sensitivity indices for the three groups of parametric un-
certainty. Comparing using the straightforward Saltelli approach and Saltelli with variance
deconvolution (Saltelli-VarD) over 1000 repetitions. MC RT simulations performed with
Sandia National Laboratories research code PlaybookMC.
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of each SI from both methods. For Saltelli’s method, going from 𝑁𝜂 = 10 to 𝑁𝜂 = 1000
does reduce the bias term, corresponding to how one might hope to over-resolve the MC
RT solution by increasing the number of particle histories. This comparison between
𝑁𝜂 = 10 and 𝑁𝜂 = 1000 is for a simple 1D slab and attenuation-only physics, and the
computational cost of MC RT resolution will only increase with problem complexity.
While we do see non-zero bias results for Saltelli-VarD, the standard deviation indicates
zero-bias is within a 1𝜎 confidence interval, corroborating our theoretical finding that the
Saltelli-VarD approach provides an unbiased estimate of SIs.

Table 3.1: Comparing Saltelli’s method to Saltelli-VarD for computing first-order and total
SIs when using a MC RT solver. Saltelli and Saltelli-VarD results averaged over 1000
repetitions, using 𝑁𝜉 = 1000 for every case. Results indicate mean(std dev).

Benchmark Saltelli Saltelli-VarD
𝑁𝜂 10 1000 10 1000
𝑆1 0.1824(4) 0.07(8) 0.2(1) 0.2(1) 0.18(3)
𝑆2 0.0549(4) 0.02(9) 0.1(1) 0.0(1) 0.06(3)
𝑆3 0.6752(2) 0.27(8) 0.66(8) 0.67(8) 0.67(2)
𝑆𝑇1 0.1835(8) 0.7(2) 0.2(2) 0.18(8) 0.18(5)
𝑆𝑇2 0.1424(8) 0.7(2) 0.2(3) 0.14(8) 0.14(5)
𝑆𝑇3 0.7623(7) 0.9(1) 0.8(2) 0.8(1) 0.76(4)

3.5 Conclusions

The Saltelli method is a well-defined approach for global sensitivity analysis (GSA), but
assumes that analysis is performed using a deterministic solver. In this paper, we consider
the effects on GSA results of using a stochastic solver, namely a Monte Carlo radiation
transport solver. We have incorporated our previously-developed variance deconvolu-
tion approach [14] to the Saltelli method for GSA and compared its performance to the
unmodified approach. Applied to a test 1D radiation transport problem with three in-
dependent sources of parametric variance, our approach accurately estimated first-order
and total sensitivity indices for significantly less computational cost than the unmodified
Saltelli method and, for the same computational cost, out-performed the unmodified Saltelli
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Table 3.2: MSE, variance, and bias of Saltelli and Saltelli-VarD methods. Comparing
performance using 𝑁𝜂 = 10 to using 𝑁𝜂 = 1000 with a constant 𝑁𝜉 = 1000, over 1000
repetitions.

MSE Var Bias
𝑁𝜂 10 1000 10 1000 10 1000

Sa
lte

lli

𝑆1 0.0194 0.0130 0.0068 0.0129 -0.1121 -0.0077
𝑆2 0.0089 0.0155 0.0075 0.0155 -0.0368 -0.0006
𝑆3 0.1693 0.0064 0.0062 0.0063 -0.4038 -0.0111
𝑆𝑇1 0.2626 0.0562 0.0233 0.0560 0.4892 0.0151
𝑆𝑇2 0.2914 0.0639 0.0252 0.0638 0.5160 0.0115
𝑆𝑇3 0.0396 0.0313 0.0189 0.0313 0.1437 0.0047

MSE Var Bias
𝑁𝜂 10 1000 10 1000 10 1000

Sa
lte

lli
-V

ar
D

𝑆1 0.0109 0.0010 0.0108 0.0010 -0.0099 -0.0013
𝑆2 0.0124 0.0012 0.0123 0.0012 -0.0091 0.0008
𝑆3 0.0066 0.0005 0.0066 0.0005 -0.0007 -0.0010
𝑆𝑇1 0.0064 0.0023 0.0064 0.0023 0.0004 -0.0015
𝑆𝑇2 0.0063 0.0024 0.0063 0.0024 0.0016 -0.0024
𝑆𝑇3 0.0187 0.0013 0.0186 0.0013 0.0104 0.0003

method in terms of accuracy.
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Chapter 4: Sampling-based Sensitivity Indices for Stochastic Solvers with
Application to Monte Carlo Radiation Transport

Abstract

In computational modeling, global sensitivity analysis aims to characterize how input
variability affects output variability. Sobol’ indices, a variance-based tool for global
sensitivity analysis, rank parameters in order of importance to model response across the
entire combined input parameter space. Accurate and efficient methods for computing
Sobol’ indices have been widely researched for deterministic simulators, in which multiple
evaluations of the same input will produce identical outputs. Stochastic simulators, on the
hand, have an intrinsic randomness and produce different outputs for multiple evaluations
of the same input. This introduces additional variability to model output, complicating
the use of traditional methods for computing Sobol’ indices. In this paper, we focus
on computing Sobol’ indices that are unbiased by solver noise without needing to over-
resolve each evaluation of the stochastic simulator. We propose doing so using variance
deconvolution, in which we explicitly calculate the variance due to the solver and remove
it from the total observed variance. The proposed method is applied to two examples: the
Ishigami function that is commonly used as a test case for Sobol’ indices and a neutron-
transport case study. The results confirm the convergence of the approach and highlight
the approach’s utility particularly when the indices are not near-zero and when there is a
large amount of solver noise.

4.1 Introduction

In computational modeling, uncertainty and sensitivity analyses are essential to quantify
and analyze the reliability, accuracy, and robustness of a model and its outputs [18, 24, 42].
Uncertainty analysis focuses on quantifying uncertainty in model output by calculating
statistics of the quantity of interest such as mean and variance [97, 34]; it is also referred
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to as uncertainty quantification (UQ). Sensitivity analysis (SA), a related practice, is the
study of how uncertainty in model output can be ascribed to different sources of input
uncertainty [99]. Local SA characterizes a system’s response to small perturbations around
some nominal parameter value by computing partial derivatives of the model response at
that value [47, 8]. On the other hand, global sensitivity analysis (GSA) aims to rank
parameters in order of importance to model response across the entire input parameter
space. There are many statistics that can be used as measures of importance for parameter
ranking; what statistic is used depends on what question the practitioner hopes to answer,
defined in [97] as the SA setting. For an exhaustive introduction to GSA in the scientific
computing context, see Saltelli’s book [97].

In this paper we focus on variance-based GSA, in which sensitivity indices are used
to determine which factor or set of factors has the largest impact on output variance.
Sensitivity indices (SIs), also commonly referred to as Sobol’ indices, arise from the
ANOVA (ANalysis Of VAriance) decomposition of the output [108, 43]. Many methods
have been introduced to compute SIs, either by approximating the ANOVA decomposition
via meta-modeling (surrogate modeling) or directly by using a sampling-based approach. In
the former, the ANOVA decomposition of the output is approximated via a surrogate model,
such as the polynomial chaos expansion [19]. Meta-modeling approaches typically require
fewer model evaluations than sampling-based approaches and are therefore attractive for
computational models with a large single-simulation time; however, they can be susceptible
to any lack of smoothness or regularity of the underlying function [97, 19] and suffer
from the ‘curse of dimensionality’ [56, 19]. In the latter, indices are computed directly
using sampling-based estimators in combination with sampling schemes such as Monte
Carlo (MC), quasi-MC, or Latin Hypercube [108, 43, 57]. Sampling-based methods are
useful because they do not make any a priori assumptions about the linearity, smoothness,
or regularity of the model [1, 8]. They do assume that the input factors are mutually
independent [95], though treatments exist for the more complex case of correlated input
factors [97]. Their primary drawback is the high computational cost associated with the
multiple code evaluations needed to compute a full suite of sensitivity indices, and efficient
numerical algorithms for computing SIs is an area of ongoing research [86].

The vast majority of the large body of work on GSA [97, 42, 47, 8] has been designed
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with deterministic solvers in mind, inherently assuming that output variability results exclu-
sively from propagated input variability. Additional complication arises when performing
sensitivity analysis in the context of stochastic solvers, which are used in a variety of dis-
ciplines such as compute networks [20, 32], turbulent flows [61], financial modeling [88],
disease prediction [112], and radiation transport [62]. Multiple evaluations of a stochastic
solver using the same input will produce different outputs, akin to different realizations
of a random variable whose probability distribution is unknown [59]. In computer codes,
stochastic solvers simulate randomness using (pseudo-)random number generators, where
the initial seed could be chosen by the analyst but the random number stream cannot [79].
When the inputs of a stochastic simulator have some associated uncertainty, as is the case
for GSA, the total observed output variance is a combination of the variability of the solver
itself (referred to from here as solver variance) and the variability of the inputs (referred
to from here as parametric variance) [94, 16]. A standard approach to approximate the
parametric variance using a stochastic solver is to increase the number of solver realiza-
tions, knowing that the total variance will approach the parametric variance in the limit
of an infinite number of solver samples [90]. However, doing this for each of the multi-
ple code evaluations needed to calculate sampling-based SIs exacerbates the already-high
computational cost.

Over the past decade or so, there have been a number of methods introduced to
extend Sobol’ indices to stochastic simulators, which are reviewed thoroughly in [116].
The macroparameter method [48] considers the solver’s random seed to be an additional
input parameter and computes Sobol’ indices as if there are (𝑘 + 1) parameters, explicitly
treating the covariances [21] of the sets of 𝑘 now-correlated inputs (similar methods
exist for sampling-based UQ with stochastic solvers, e.g., , Total Monte Carlo [54, 55]).
Other methods have defined the Sobol’ indices themselves as random variables by treating
them as functions of the solver stochasticity, then analyzed the statistical properties of the
SIs [40, 53]. Many of the proposed methods mitigate the expense of resolving the stochastic
solver by instead emulating the stochastic solver with a surrogate model, then calculating
Sobol’ indices using the constructed surrogate at a reduced computational cost [116]. One
such class of methods uses joint meta-models to deterministically represent the statistics
of the stochastic outputs such as mean and variance [48, 68], alpha-quantile [6], and
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differential entropy [2]. Most recently, Zhu and Sudret [116] presented a framework for
creating a surrogate that captures entire response distribution of the stochastic solver by
using their generalized lambda model.

In recent publications [74], as an alternative to the standard approach, we proposed
a novel method for UQ with stochastic solvers called variance deconvolution to compute
parametric variance without a surrogate by explicitly quantifying and removing the solver
variance from the total observed variance. In Clements, et al. [16], we rigorously showed
that variance deconvolution is accurate and far more cost effective than the standard
approach for computing parametric variance. In previous work, we integrated variance
deconvolution in sampling-based GSA for stochastic media [74] and surrogate [33, 29]
approaches. The goal of this paper is to present a clear framework to compute Sobol’ indices
using stochastic solvers without stochastic emulators or the expensive standard approach
by using variance deconvolution. We examine the biases introduced when using stochastic
solvers to compute parametric SIs, discuss how and when to use variance deconvolution,
and analyze the impact of combining it with existing sampling-based methods for SIs.

The remainder of the paper is structured as follows. In Section 4.2, we review ANOVA
decomposition and Sobol’ indices. In Section 4.3, we review existing sampling-based
estimators for sensitivity indices. In Section 4.4, we summarize variance deconvolution
as presented in [16]. Then, in Section 4.5, we discuss the impact of computing SIs with
stochastic solvers and how using variance deconvolution compares to a standard approach.
In Section 4.6, we show variance deconvolution’s performance and compare it to that of
the standard approach for two examples, the analytical Ishigami function and a neutral-
particle radiation transport example problem with energy-dependence and fission. Finally,
we summarize the main findings of the paper and discuss possible future applications in
Section 4.7.

4.2 Background and theory on ANOVA

In this section, we give a brief review of Sobol’s variance decomposition [108] and how it
is used to define variance-based sensitivity indices [108, 43].
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4.2.1 Sobol’ decomposition

Consider a generic scalar quantity of interest (QoI) 𝑄 = 𝑄 (ξ) , ξ = (𝜉1, . . . , 𝜉𝑘 ) ∈ Ξ ⊂ R𝑘 ,
where 𝜉1, . . . , 𝜉𝑘 are independent random variables with arbitrary joint distribution function
𝑝(ξ). The mean and variance of 𝑄 can be computed as

E𝜉 [𝑄] =
∫
Ξ

𝑄 (ξ) 𝑝(ξ)𝑑ξ and V𝑎𝑟𝜉 [𝑄] =
∫
Ξ

(
𝑄 (ξ) −E𝜉 [𝑄]

)2

𝑝(ξ)𝑑ξ, (4.1)

respectively, where we have used a subscript to indicate the expectation and variance over
𝜉. Sobol’ considered [108] an expansion of 𝑄 into 2𝑘 orthogonal terms of increasing
dimension,

𝑄 = 𝑄0 +
∑︁
𝑖

𝑄𝑖 +
∑︁
𝑖

∑︁
𝑗>𝑖

𝑄𝑖 𝑗 + · · · +𝑄12...𝑘 , (4.2)

in which each term is a function only of the factors in its subscript, i.e., , 𝑄𝑖 = 𝑄𝑖 (𝜉𝑖),
𝑄𝑖 𝑗 = 𝑄𝑖 𝑗 (𝜉𝑖, 𝜉 𝑗 ). In particular, Sobol’ considered the case in which each term could be
defined recursively using the conditional expectations of 𝑄,

𝑄0 = E𝜉 [𝑄] (4.3)

𝑄𝑖 = E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

]
− E𝜉 [𝑄] (4.4)

𝑄𝑖 𝑗 = E𝜉∼𝑖 ,𝜉∼ 𝑗

[
𝑄 | 𝜉𝑖, 𝜉 𝑗

]
−𝑄𝑖 −𝑄 𝑗 − E𝜉 [𝑄] , (4.5)

where E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

]
indicates the expected value of 𝑄 conditional on some fixed value 𝜉𝑖

and E𝜉∼𝑖 ,𝜉∼ 𝑗

[
𝑄 | 𝜉𝑖, 𝜉 𝑗

]
indicates the expected value of 𝑄 conditional on the pair of values

(𝜉𝑖, 𝜉 𝑗 ). The variances of the terms in Eq. (4.2) give rise to the measures of importance
being sought. The conditional variance V𝑎𝑟𝜉 [𝑄𝑖] = V𝑎𝑟𝜉𝑖

[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ] def
= V𝑖 is called

the first-order effect of 𝜉𝑖 on 𝑄. The second-order effect V𝑎𝑟𝜉
[
𝑄𝑖 𝑗

]
= V𝑎𝑟

[
E
(
𝑄 |

𝜉𝑖, 𝜉 𝑗
) ]
− V𝑖 − V 𝑗

def
= V𝑖 𝑗 is the difference between the combined effect of the pair (𝜉𝑖, 𝜉 𝑗 )

and both of their individual effects; it captures the effect solely of their interaction with
one another. Higher-order effects can be defined analogously to quantify the effects of
higher-order interactions, up to the final term V12...𝑘 . Sobol’s variance decomposition
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expands V𝑎𝑟𝜉 [𝑄] into variance terms of increasing order,

V𝑎𝑟𝜉 [𝑄] =
∑︁
𝑖

V𝑖 +
∑︁
𝑖

∑︁
𝑗>𝑖

V𝑖 𝑗 + · · · + V12...𝑘 . (4.6)

Sensitivity indices (SIs), also referred to as Sobol’ indices, result directly from dividing
Eq. (4.6) by the unconditional variance V𝑎𝑟 [𝑄] and provide measures of importance used
to, e.g., rank the parameters in GSA; this is discussed in the next section.

4.2.2 Sensitivity indices

A sensitivity index is the ratio of the conditional variance of a parameter or set of parameters
to the unconditional variance, which can be used as a measure of importance of the
parameter(s) to the QoI [108, 43, 44, 49, 46]. The first-order sensitivity index of parameter
𝜉𝑖 is the ratio of its first-order effect to the unconditional variance,

S𝑖 =
V𝑎𝑟𝜉𝑖

[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

. (4.7)

The 𝑘 first-order SIs represent the main effect contributions of each input factor to the
variance of the output. All first-order SIs are between 0 and 1 and

∑𝑘
𝑖=1 S𝑖 ≤ 1, with

equality for purely additive models. Analogously to the higher-order variance terms in
Eq. (4.6), higher-order SIs represent the contribution only of the interactions amongst a set
of variables. Dividing Eq. (4.6) by V𝑎𝑟 [𝑄] results in the summation of all of the first- and
higher-order SIs to 1: ∑︁

𝑖

S𝑖 +
∑︁
𝑖

∑︁
𝑗>𝑖

S𝑖 𝑗 + · · · + S12...𝑘 = 1. (4.8)

In addition to its first-order SI, a parameter can be described by its total-order SI T𝐼 ,
which accounts for its total contribution to the output variance by combining its first-order
effect and all of its higher-order interaction effects. For example, in a model with three
parameters, the total effect of 𝜉1 would be the sum of all of the terms in Eq. (4.8) that
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contain a 1: T1 = S1+S12+S13+S123. The total-order SI of 𝜉𝑖 can also be expressed [43, 95]
by conditioning on the set ξ∼𝑖, which contains all factors except 𝜉𝑖, as

T𝑖 =

E𝜉∼𝑖

[
V𝑎𝑟𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

= 1 −
V𝑎𝑟𝜉∼𝑖

[
E𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

. (4.9)

Since V𝑎𝑟𝜉𝑖
[
E𝜉∼𝑖

[
𝑄 | ξ∼𝑖

] ]
can be understood as the main effect of everything that is not

𝜉𝑖, the remaining E𝜉∼𝑖

[
V𝑎𝑟𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
= V𝑎𝑟 [𝑄] − V𝑎𝑟𝜉∼𝑖

[
E𝜉𝑖

[
𝑄 | ξ∼𝑖

] ] def
= E∼𝑖 is the

effect of any terms that do contain 𝜉𝑖. Rather than compute all higher-order terms, it is
customary to compute the set of first- and total-order indices for a good description of
the importance of parameters and their interactions at a reasonable cost [97]. In the next
section, we summarize sampling-based methods for estimating the full set of first- and
total-order SIs.

4.3 Sampling-based estimators for sensitivity indices

The development of efficient numerical algorithms for computing the full suite of first- and
total-order SIs has been an ongoing area of research since MC estimators for S𝑖 and T𝑖 were
first proposed [108, 43, 95], and a number of sampling schemes and estimators exist to do
so. The various methods follow the same general structure: sample the parameter space,
evaluate the computational model at the sampled parameters, then approximate S𝑖 and T𝑖

using MC estimators. We outline the general algorithm, the Saltelli approach [96, 95],
here, assuming 𝑘 uncertain parameters:

1. Define two (𝑁𝜉 , 𝑘) matrices, A and B, which contain independent input samples.

A =


𝜉
(1)
1 · · · 𝜉

(1)
𝑖

· · · 𝜉
(1)
𝑘

...
. . .

...

𝜉
(𝑁)
1 · · · 𝜉

(𝑁𝜉 )
𝑖

· · · 𝜉
(𝑁𝜉 )
𝑘

 , B =


𝜉
(1)
𝑘+1 · · · 𝜉

(1)
𝑘+𝑖 · · · 𝜉

(1)
2𝑘

...
. . .

...

𝜉
(𝑁𝜉 )
𝑘+1 · · · 𝜉

(𝑁𝜉 )
𝑘+𝑖 · · · 𝜉

(𝑁𝜉 )
2𝑘

 .
(4.10)

2. For each 𝑖-th parameter, define matrix A(𝒊)
B

(B (𝒊)
A

), which is a copy of A (B) except
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for the 𝑖-th column, which comes from B (A).

A(𝒊)
B

=


𝜉
(1)
1 · · · 𝜉

(1)
𝑘+𝑖 · · · 𝜉

(1)
𝑘

...
. . .

...

𝜉
(𝑁𝜉 )
1 · · · 𝜉

(𝑁𝜉 )
𝑘+𝑖 · · · 𝜉

(𝑁𝜉 )
𝑘

 . (4.11)

3. Compute model output for A, B, and all A(𝒊)
B

(B (𝒊)
A

) to obtain vectors of model
output 𝑄(A), 𝑄(B), 𝑄(A(𝒊)

B
), and/or 𝑄(B (𝒊)

A
) of dimension (𝑁𝜉 , 1).

4. Approximate the full set of S𝑖 and T𝑖 using 𝑄(A), 𝑄(B), 𝑄(A(𝒊)
B
), and/or 𝑄(B (𝒊)

A
).

Specific methods for computing SIs are defined by two components [83]: 1) the sampling
scheme used to populate matrices A and B from the parameter space, such as purely
random MC or a quasi-random scheme like the Sobol’ sequence [106, 107] or Latin
hypercube [70]; and 2) the MC estimators used to approximate Eqs. (4.7) and (4.9).
Though some estimators require a specific sampling scheme, quasi-random sampling as a
default choice has been shown to be the best for a function of unknown behavior [57, 87].
This is by no means intended as an exhaustive review of estimator design; a few notable
works include [97, 108, 43, 95, 96, 36, 51, 63, 67, 69, 78, 84, 91, 110, 52, 3, 109, 71, 92, 93].
For a review, see, e.g., , [86, 96].

For simplicity when examining the effects of variance deconvolution, we limit discus-
sion to using purely random MC sampling. With purely random MC sampling, there is no
difference between using triplet

(
A,B,A(𝒊)

B

)
or triplet

(
B,A,B (𝒊)

A

)
in the estimators, as

long as they are used consistently within the estimator [96]. We also limit discussion to
one first- and one total-order estimator, shown in Section 4.3.1. Later, we discuss how the
presented variance deconvolution analysis can be extended to other SI estimators.

4.3.1 Sampling estimators for S𝑖 and T𝑖

As recommended by Saltelli et al. (2012) [98], we use the the sampling estimator for S𝑖
from Sobol’ et al. (2007) [110] and for T𝑖 from Jansen et al. (1999) [52]. Letting 𝑄(A)𝑣
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indicates the 𝑣-th element of the vector 𝑄(A), i.e., one function evaluation of 𝑄,

S𝑖 ≈
1
𝑁𝜉

∑𝑁𝜉

𝑣=1 𝑄(B)𝑣
[
𝑄(A(𝒊)

B
)𝑣 −𝑄(A)𝑣

]
1

2𝑁𝜉

∑𝑁𝜉

𝑣=1 (𝑄(A)𝑣 −𝑄(B)𝑣)
2

def
= Ŝ𝑖, (4.12)

T𝑖 ≈
1

2𝑁𝜉

[
𝑄(B (𝒊)

A
)𝑣 −𝑄(B)𝑣

]2

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1 (𝑄(A)𝑣 −𝑄(B)𝑣)
2

def
= T̂𝑖 . (4.13)

In the following, we analyze how to compute the statistical quantities introduced above
when the underlying QoI is computed using a stochastic solver.

4.4 Introduction to variance deconvolution

Variance deconvolution was introduced [16, 74] as a means to efficiently and accurately
estimate the parametric variance of QoI 𝑄 in the presence of an additional variance
contribution from a stochastic solver. In this section, we summarize the concept and
notation of variance deconvolution before extending it to GSA in Section 4.5. For a
detailed presentation of variance deconvolution, see [16].

We consider the same generic QoI defined in Section 4.1,𝑄 = 𝑄 (ξ) , ξ = (𝜉1, . . . , 𝜉𝑘 ) ∈
Ξ ⊂ R𝑘 , with meanE𝜉 [𝑄] and varianceV𝑎𝑟𝜉 [𝑄]. We now introduce an additional random
variable 𝜂 to represent the inherent variability of the stochastic solver, and define our QoI𝑄
as the expectation over 𝜂 of a function 𝑓 (ξ, 𝜂), 𝑄(ξ) def

= E𝜂 [ 𝑓 (ξ, 𝜂)]. The function 𝑓 (ξ, 𝜂)
can be directly evaluated as the output from the stochastic solver with input ξ, but the
expectation E𝜂 [ 𝑓 (ξ, 𝜂)] and variance 𝜎2

𝜂 (ξ)
def
= V𝑎𝑟𝜂 [ 𝑓 (ξ, 𝜂)] are not directly available.

Instead, we approximate 𝑄(ξ) as the sample mean of 𝑁𝜂 independent evaluations of 𝑓 ,
𝑄 (ξ) ≈ 1

𝑁𝜂

∑𝑁𝜂

𝑗=1 𝑓 (ξ, 𝜂( 𝑗)) def
= 𝑄̃𝑁𝜂

(ξ).
In [16], we present that the total variance of 𝑄̃𝑁𝜂

decomposes into the effect of the
uncertain parameters and the effect of the stochastic solver,

V𝑎𝑟𝜉 [𝑄] = V𝑎𝑟
[
𝑄̃𝑁𝜂

]
− 1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
, (4.14)

and propose an unbiased estimator for the parametric variance using MC estimators



76

for V𝑎𝑟
[
𝑄̃𝑁𝜂

]
and E𝜉

[
𝜎2
𝜂

]
. Using the Saltelli method summarized in Section 4.3,

variance deconvolution requires tallying the variance of the model output 𝜎̂2
𝜂 (A)

def
=

1
𝑁𝜂−1

∑𝑁𝜂

𝑗=1

(
𝑓 2(ξ, 𝜂( 𝑗)) − 𝑄̃2

𝑁𝜂
(ξ)

)
in addition to model output 𝑄̃𝑁𝜂

(A). Then, to estimate
V𝑎𝑟𝜉 [𝑄] using 𝑁𝜉 samples,

V𝑎𝑟𝜉 [𝑄] ≈ 𝑆2
(𝐴)

def
= 𝑆2

(𝐴) −
1
𝑁𝜂

〈
𝜎̂2
𝜂

〉
(𝐴) , (4.15)

where 𝑆2
(𝐴)

def
=

1
𝑁𝜉 − 1

𝑁𝜉∑︁
𝑣=1

(
𝑄̃2

𝑁𝜂
(A)𝑣 −

〈
𝑄̃𝑁𝜂

〉2
(𝐴)

)
, (4.16)

〈
𝑄̃𝑁𝜂

〉
(𝐴) =

1
𝑁𝜉

𝑁𝜉∑︁
𝑣=1

𝑄̃𝑁𝜂
(A)𝑣 and

〈
𝜎̂2
𝜂

〉
(𝐴) =

1
𝑁𝜉

𝑁𝜉∑︁
𝑣=1

𝜎̂2
𝜂 (A).

A standard approach is to estimate V𝑎𝑟𝜉 [𝑄] as 𝑆2
(𝐴) , where 𝑆2

(𝐴) → V𝑎𝑟𝜉 [𝑄] as 𝑁𝜂, 𝑁𝜉 →
∞. This standard approach is reliably accurate but computationally expensive, as large
𝑁𝜂 is needed for each function evaluation. In [16], we showed that for the same linear
computational cost C = 𝑁𝜉 × 𝑁𝜂, 𝑆2

(𝐴) was a more accurate estimate of V𝑎𝑟𝜉 [𝑄] than the
biased estimator 𝑆2

(𝐴) . In the next section, we extend the variance deconvolution approach
to computation of Sobol’ indices.

4.5 GSA with variance deconvolution

In this section, we first analyze how the MC estimate 𝑄̃𝑁𝜂
affects S𝑖 and T𝑖, i.e., , the

parametric sensitivity indices of 𝑄. Then, we propose unbiased estimators for S𝑖 and T𝑖

using 𝑄̃𝑁𝜂
.
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4.5.1 Stochastic solver’s effect on sensitivity indices

We begin by considering the first- and total- order SIs of 𝜉𝑖 on 𝑄̃𝑁𝜂
,

S𝑖,𝑄̃𝑁𝜂
=

V𝑎𝑟
[
E
[
𝑄̃𝑁𝜂

| 𝜉𝑖
] ]

V𝑎𝑟
[
𝑄̃𝑁𝜂

] , (4.17)

T𝑖,𝑄̃𝑁𝜂
=

E
[
V𝑎𝑟

[
𝑄̃𝑁𝜂

| 𝜉∼𝑖
] ]

V𝑎𝑟
[
𝑄̃𝑁𝜂

] . (4.18)

From Eq. (4.14), it follows that the numerator of Eq. (4.17) can be expanded as

V𝑎𝑟
[
E
[
𝑄̃𝑁𝜂

| 𝜉𝑖
] ]

= V𝑎𝑟𝜉𝑖
[
E𝜉∼𝑖 ,𝜂

[
𝑄̃𝑁𝜂

| 𝜉𝑖
] ]

= V𝑎𝑟𝜉𝑖
[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
(4.19)

and that the numerator of Eq. (4.18) can be expanded as

E
[
V𝑎𝑟

[
𝑄̃𝑁𝜂

| 𝜉𝑖
] ]

= E𝜉𝑖

[
V𝑎𝑟𝜉∼𝑖 ,𝜂

[
𝑄̃𝑁𝜂

| 𝜉𝑖
] ]

= E𝜉𝑖

[
V𝑎𝑟𝜉∼𝑖

[
𝑄 | 𝜉𝑖

]
+ 1
𝑁𝜂

E𝜉∼𝑖

[
𝜎2
𝜂 | 𝜉𝑖

] ]
= E𝜉𝑖

[
V𝑎𝑟𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
+ 1
𝑁𝜂

E𝜉

[
𝜎2
𝜂

]
. (4.20)

We can therefore conclude that the first-order effect of any subset ξ on 𝑄̃𝑁𝜂
is equivalent

to the first-order effect of ξ on 𝑄; however, the total-order effect of ξ on 𝑄̃𝑁𝜂
is larger than

the total-order effect of ξ on 𝑄. This makes intuitive sense if we consider the meanings
of the first- and total-order effects. The first-order effect of ξ on 𝑄 is the variance of 𝑄
caused exclusively by ξ. As 𝑄̃𝑁𝜂

is an unbiased estimator for 𝑄, we would expect ξ to
induce that same variance on 𝑄̃𝑁𝜂

. The total-order effect of ξ on 𝑄 is the variance of 𝑄
caused by ξ and its interactions with all remaining variables ∼ ξ. However, the total-order
effect of ξ on 𝑄̃𝑁𝜂

additionally includes the interactions of ξ with solver stochasticity 𝜂.
An equivalent result was found in [68] by extending the ANOVA decomposition directly
to the set of input variables (𝜉𝑖, 𝜉∼𝑖, 𝜂).
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We can write the first- and total-order SIs of 𝜉𝑖 on 𝑄 in terms of the first- and total-order
effect SIs of 𝜉𝑖 on 𝑄̃𝑁𝜂

and 𝑅
def
=

E𝜉 [𝜎2
𝜂]

V𝑎𝑟 𝜉 [𝑄] , the ratio of solver variance to parametric variance:

S𝑖,𝑄̃𝑁𝜂
=

V𝑎𝑟𝜉𝑖
[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟𝜉 [𝑄] + 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

]
→ S𝑖 = S𝑖,𝑄̃𝑁𝜂

(
1 + 𝑅

𝑁𝜂

)
, (4.21)

T𝑖,𝑄̃𝑁𝜂
=

E𝜉∼𝑖

[
V𝑎𝑟𝜉𝑖

[
𝑄 | 𝜉∼𝑖

] ]
+ 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

]
V𝑎𝑟𝜉 [𝑄] + 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

]
→ T𝑖 = T𝑖,𝑄̃𝑁𝜂

(
1 + 𝑅

𝑁𝜂

)
− 𝑅

𝑁𝜂

. (4.22)

From Equations (4.21) and (4.22), it is clear that the sets of indices
(
S𝑖,𝑄̃𝑁𝜂

,T𝑖,𝑄̃𝑁𝜂

)
and

(S𝑖,T𝑖) are not equivalent. Unlike the relationship among V𝑎𝑟
[
𝑄̃𝑁𝜂

]
, V𝑎𝑟𝜉 [𝑄], and

E
[
𝜎2
𝜂

]
, the relationships between the SIs of 𝑄̃𝑁𝜂

and 𝑄 are not simply additive. Because
𝑅 ≥ 0, S𝑖,𝑄̃𝑁𝜂

will always be less than S𝑖, therefore underestimating the first-order effect
of 𝜉𝑖. On the other hand, T𝑖,𝑄̃𝑁𝜂

will always be greater than T𝑖, therefore overestimating
the total-order effect of 𝜉𝑖. Substituting 𝑄̃𝑁𝜂

for 𝑄 in Equations (4.12) and (4.13) will
yield unbiased estimates of S𝑖,𝑄̃𝑁𝜂

and T𝑖,𝑄̃𝑁𝜂
, not of S𝑖 and T𝑖, though both S𝑖,𝑄̃𝑁𝜂

and
T𝑖,𝑄̃𝑁𝜂

will approach their parametric counterparts in the limit 𝑁𝜂 = ∞. Because we
desire estimates of S𝑖 and T𝑖, we extend the variance deconvolution framework to propose
unbiased sampling estimators for S𝑖 and T𝑖 using 𝑄̃𝑁𝜂

by introducing terms to correct the
biases in S𝑖,𝑄̃𝑁𝜂

and T𝑖,𝑄̃𝑁𝜂
.

4.5.2 Unbiased sampling estimators using 𝑄̃𝑁𝜂

For unbiased estimates of S𝑖 and T𝑖 from 𝑄̃𝑁𝜂
, the denominator of S𝑖,𝑄̃𝑁𝜂

in Eq. (4.21)
and both the numerator and denominator of T𝑖,𝑄̃𝑁𝜂

in Eq. (4.22) require a corrective term.
It is possible that this varies from estimator-to-estimator; in short, 𝜎̂2

𝜂 terms that require
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correction arise when 𝑄̃𝑁𝜂
(ξ) is squared, but not when two independent realizations of

𝑄̃𝑁𝜂
are multiplied, as in 𝑄̃𝑁𝜂

(B)𝑣𝑄̃𝑁𝜂
(A(𝒊)

B
)𝑣.

To consider the impact of introducing a corrective variance deconvolution term, we
introduce two sets of estimators that use 𝑄̃𝑁𝜂

: “standard” estimators Ŝ𝑖,𝑄̃𝑁𝜂
and T̂𝑖,𝑄̃𝑁𝜂

that
do not have corrective 𝜎̂2

𝜂 terms, and variance deconvolution estimators Ŝ𝑖,𝑉𝐷 and T̂𝑖,𝑉𝐷

that do.
The standard estimators arise from plugging 𝑄̃𝑁𝜂

directly into the estimators in Sec-
tion 4.3.1,

Ŝ𝑖,𝑄̃𝑁𝜂

def
=

1
𝑁𝜉

∑𝑁𝜉

𝑣=1 𝑄̃𝑁𝜂
(B)𝑣

[
𝑄̃𝑁𝜂
(A(𝒊)

B
)𝑣 − 𝑄̃𝑁𝜂

(A)𝑣
]

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1

(
𝑄̃𝑁𝜂
(A)𝑣 − 𝑄̃𝑁𝜂

(B)𝑣
)2

def
=

V̂𝑖,𝑄̃𝑁𝜂

𝑆2
(𝐴𝐵)

, (4.23)

where
〈
𝑄̃𝑁𝜂

〉
(𝐴𝐵) =

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1
[
𝑄̃𝑁𝜂
(A)𝑣 + 𝑄̃𝑁𝜂

(B)𝑣
]
, and

T̂𝑖,𝑄̃𝑁𝜂

def
=

1
2𝑁𝜉

[
𝑄̃𝑁𝜂
(B (𝒊)

A
)𝑣 − 𝑄̃𝑁𝜂

(B)𝑣
]2

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1

(
𝑄̃𝑁𝜂
(A)𝑣 − 𝑄̃𝑁𝜂

(B)𝑣
)2

def
=

Ê𝑆

∼𝑖,𝑄̃𝑁𝜂

𝑆2
(𝐴𝐵)

. (4.24)

The variance deconvolution estimators follow directly from Eqs. (4.21) and (4.22),

S𝑖 ≈ Ŝ𝑖,𝑉𝐷
def
=

V̂𝑖,𝑄̃𝑁𝜂

𝑆2
(𝐴𝐵) −

1
𝑁𝜂

〈
𝜎̂2
𝜂

〉
(𝐴𝐵)

and (4.25)

T𝑖 ≈ T̂𝑖,𝑉𝐷
def
=

Ê𝑆

∼𝑖,𝑄̃𝑁𝜂

− 1
𝑁𝜂

〈
𝜎̂2
𝜂

〉
(𝐵𝑖

𝐴
𝐵)

𝑆2
(𝐴𝐵) −

1
𝑁𝜂

〈
𝜎̂2
𝜂

〉
(𝐴𝐵)

, (4.26)

where 〈
𝜎̂2
𝜂

〉
(𝐴𝐵)

def
=

1
2𝑁𝜉

𝑁𝜉∑︁
𝑣=1

[
𝜎̂2
𝜂 (A)𝑣 + 𝜎̂2

𝜂 (B)𝑣
]
. (4.27)

The additional variance deconvolution terms are introduced to correct the noise introduction
from the stochastic solver while preserving the behavior of the existing estimators. For
example, we estimate V𝑎𝑟 [𝑄] consistent with the sampling estimator for V𝑎𝑟𝜉 [𝑄] used in
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Eqs. (4.12) and (4.13) rather than using a Bessel-corrected estimator as in Eq. (4.16). Other
sampling estimators for V𝑎𝑟𝜉 [𝑄] have been introduced for use with S𝑖 and T𝑖, e.g., in [95]
and [96]. Importantly, though T𝑖 ≥ S𝑖 in theory, the set of estimators Ŝ𝑖 and T̂𝑖 do not
ensure this [4]; we would expect to see that same behavior with the variance deconvolution
versions of these estimators. In the next section, we compare the statistical properties of
the standard and variance-deconvolution estimators.

4.5.3 Mean-squared error of the estimators

The performance of an estimator 𝜃 for true value 𝜃 is characterized by mean-squared error,
which captures both its variance and bias:

𝑀𝑆𝐸
[
𝜃
]
= V𝑎𝑟

[
𝜃
]
+

(
E

[
𝜃
]
− 𝜃

)2

= V𝑎𝑟
[
𝜃
]
+ B𝑖𝑎𝑠2 [

𝜃, 𝜃
]
.

An unbiased estimator will on average yield the true values of the Sobol’ indices, and an
estimator with small variance will on average yield values that remain close to the true values
of the Sobol’ indices [4]. In 4.8, we establish the variances and biases of the standard and
variance-deconvolution estimators under the asymptotic normality assumption [113, 51, 4].
They are, respectively,

B𝑖𝑎𝑠2
[
Ŝ𝑖,𝑄̃𝑁𝜂

, S𝑖
]
=

S2
𝑖

𝑁𝜂
2

E2
𝜉

[
𝜎2
𝜂

]
V𝑎𝑟2

[
𝑄̃𝑁𝜂

] (4.28)

B𝑖𝑎𝑠2 [
Ŝ𝑖,𝑉𝐷 , S𝑖

]
= 0 (4.29)

B𝑖𝑎𝑠2
[
T̂𝑖,𝑄̃𝑁𝜂

,T𝑖

]
=

T2
𝑖

𝑁𝜂
2

E2
𝜉

[
𝜎2
𝜂

]
V2
∼𝑖

V𝑎𝑟2
[
𝑄̃𝑁𝜂

]
E2
∼𝑖

(4.30)

B𝑖𝑎𝑠2 [
T̂𝑖,𝑉𝐷 ,T𝑖

]
= 0, (4.31)
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and,

V𝑎𝑟
[
Ŝ𝑖,𝑄̃𝑁𝜂

]
=

1
V𝑎𝑟2

[
𝑄̃𝑁𝜂

]V𝑎𝑟

[
𝑄̃𝑁𝜂
(B)

(
𝑄̃𝑁𝜂
(A(𝒊)

B
) − 𝑄̃𝑁𝜂

(A)
)

− S𝑖
V𝑎𝑟𝜉 [𝑄]

2V𝑎𝑟
[
𝑄̃𝑁𝜂

] (
𝑄̃𝑁𝜂
(A) − 𝑄̃𝑁𝜂

(B)
)2

] (4.32)

V𝑎𝑟
[
Ŝ𝑖,𝑉𝐷

]
=

1
V𝑎𝑟2

𝜉
[𝑄]

V𝑎𝑟

[
𝑄̃𝑁𝜂
(B)

(
𝑄̃𝑁𝜂
(A(𝒊)

B
) − 𝑄̃𝑁𝜂

(A)
)

− S𝑖
1
2

(
𝑄̃𝑁𝜂
(A) − 𝑄̃𝑁𝜂

(B)
)2

+ S𝑖
1

2𝑁𝜂

(
𝜎̂2
𝜂 (𝐴) + 𝜎̂2

𝜂 (𝐵)
)] (4.33)

V𝑎𝑟
[
T̂𝑖,𝑄̃𝑁𝜂

]
=

1
V𝑎𝑟2

[
𝑄̃𝑁𝜂

]V𝑎𝑟

[
1
2

(
𝑄̃𝑁𝜂
(B (𝒊)

A
) − 𝑄̃𝑁𝜂

(B)
)2

− T𝑖

V𝑎𝑟𝜉 [𝑄] E∼𝑖,𝑄̃𝑁𝜂

2V𝑎𝑟
[
𝑄̃𝑁𝜂

]
E∼𝑖

(
𝑄̃𝑁𝜂
(A) − 𝑄̃𝑁𝜂

(B)
)2

]
(4.34)

V𝑎𝑟
[
T̂𝑖,𝑉𝐷

]
=

1
V𝑎𝑟2

𝜉
[𝑄]

V𝑎𝑟

[
1
2

(
𝑄̃𝑁𝜂
(B (𝒊)

A
) − 𝑄̃𝑁𝜂

(B)
)2
− 1

2𝑁𝜂

(
𝜎̂2
𝜂 (Bi

A) + 𝜎̂
2
𝜂 (B)

)
− T𝑖

(
1
2

(
𝑄̃𝑁𝜂
(A) − 𝑄̃𝑁𝜂

(B)
)2
− 1

2𝑁𝜂

(
𝜎̂2
𝜂 (A) + 𝜎̂2

𝜂 (B)
))]

.

(4.35)

When variance deconvolution is applied to V𝑎𝑟
[
𝑄̃𝑁𝜂

]
to develop the unbiased esti-

mator V𝑎𝑟𝜉 [𝑄] ≈ 𝑆2 = 𝑆2 − 1
𝑁𝜂

〈
𝜎̂2
𝜂

〉
, the additive relationship gives rise to a simple bias

term 1
𝑁𝜂

〈
𝜎̂2
𝜂

〉
and relatively simple variance V𝑎𝑟

[
𝑆2] = V𝑎𝑟

[
𝑆2] + 1

𝑁𝜂
2V𝑎𝑟

[〈
𝜎̂2
𝜂

〉]
−

2
𝑁𝜂

C𝑜𝑣
[
𝑆2,

〈
𝜎̂2
𝜂

〉]
[16]. Because the SI estimators are ratios, the relationships between(

S𝑖, S𝑖,𝑄̃𝑁𝜂

)
and

(
T𝑖,T𝑖,𝑄̃𝑁𝜂

)
are not additive and their biases and variances are less straight-

forward to compare. The variance deconvolution estimators are unbiased; the biases of the
standard estimators do not depend on 𝑁𝜉 but do depend on 𝑁𝜂, the magnitude of the SIs,
and the ratio of the solver noise to the total observed variance.
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It is less obvious to draw comparisons between the variances of
(
Ŝ𝑖,𝑉𝐷 , Ŝ𝑖,𝑄̃𝑁𝜂

)
and(

T̂𝑖,𝑉𝐷 , T̂𝑖,𝑄̃𝑁𝜂

)
. We can qualitatively compare between the estimators for S𝑖 and those

for T𝑖: because a correction term is necessary in both the numerator and denominator of
T𝑖, its estimators’ biases and variances are more complex than their S𝑖 counterparts. We
investigate the statistics of the estimators in the next section through numerical simulation.

4.6 Numerical results

In this section, we illustrate the performance of the Saltelli SI estimators using stochastic
QoIs with and without a variance deconvolution correction. We first discuss results for a
test case with an analytic solution and then test the method on a radiation transport example
problem.

4.6.1 Ishigami function

To test the accuracy of the derived estimators against analytic solutions, we add a stochastic
parameter to the test function from Ishigami and Homma [49]:

𝑓 (𝜉1, 𝜉2, 𝜉3, 𝜂) = sin (𝜉1) + 𝑎 sin2 (𝜉2) + 𝑏𝜉4
3 sin (𝜉1) + 𝑐𝜂, (4.36)

𝑎 = 1, 𝑏 = 0.1, 𝑐 = 5,

𝜂 ∼ N (0, 1) , (𝜉1, 𝜉2, 𝜉3) ∼ U (−𝜋, +𝜋) ,

where 𝜉1, 𝜉2, and 𝜉3 are independent input parameters and 𝜂 represents some intrinsic
randomness. Because we have defined 𝜂 with mean zero and variance 1, the expected
value of 𝑓 is the expected value of the standard Ishigami function and the variance of 𝑓

is the variance of the standard Ishigami function plus a constant 𝑐2. In Figures 4.1-4.6,
we compare the accuracy of the variance deconvolution (Var-D) vs the standard approach
(Brute-F) over 200 repetitions for all first- and total-order indices. We use a consistent
number of samples 𝑁𝜉 = 103 to study the effect of increasing the number of histories
per sample 𝑁𝜂. In general, we see that the Var-D estimator is more accurate than the
Brute-F estimator, but has a larger variance especially at lower 𝑁𝜂. In some cases this
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leads to the Brute-F estimator out-performing the Var-D estimator, in particular when the
first-order index is near zero as with S2 and S3. With S1, we can clearly see that the Brute-F
approach under-estimates the first-order index. With T2 and T3, we see that the Brute-F
over-estimates the total-order index.

4.6.2 Radiation transport test problem

We next perform GSA on a test neutron transport problem solved using Monte Carlo radi-
ation transport methods [65]. The problem is based on the steady-state C5G7 benchmark,
a nuclear reactor benchmark developed by the OECD/NEA [17]. We simplify the design
by reducing to one dimension in space with three materials: uranium dioxide (UO2) fuel,
water moderator, and a control rod. There is a constant source, uniform in energy across all
groups, at the spatial halfway point. The neutron energy spectrum is divided into 7 energy
groups and we use the cross-sections from the C5G7 benchmark. Parameter uncertainty
is introduced in five independent factors: the densities of 1) the fuel, 2) the moderator,
and 3) the control rod were allowed to vary uniformly ±70%; 4) the ratio of fuel-width
to moderator-width and 5) the control-rod thickness were both allowed to vary uniformly
between 0.2 and 0.8. We define two quantities of interest as a function of space: the scalar
flux of the first two energy groups, 𝜙𝐹 (𝑥), and the scalar flux of the remaining five energy
groups 𝜙𝑆 (𝑥).

For reference, using 𝑁𝜉 = 5 × 105 and 𝑁𝜂 = 105, Figure 4.7 shows 𝜙𝐹 (𝑥) and 𝜙𝑆 (𝑥).
Figure 4.8 shows the full set of first- and total- order indices for both QoIs. At such a
high 𝑁𝜂, the lines for Ŝ𝑖,𝑄̃𝑁𝜂

and T̂𝑖,𝑄̃𝑁𝜂
overlap exactly with those of Ŝ𝑖,𝑉𝐷 and T̂𝑖,𝑉𝐷 ,

respectively. The faster group flux 𝜙𝐹 is most sensitive across space to 𝜉2, the density of
the moderator, which is understandable as the density of the moderator will greatly impact
the number of neutrons and their energies everywhere in the problem. The control rod’s
density (𝜉3) and thickness (𝜉5) are most impactful for the slower group flux, with both
having large inflection points at the nominal moderator–control rod boundary at 𝑥 = 1.5.
This is understandable as the control rod is a primarily thermal absorber.

To see the effect of the variance deconvolution correction, we compare the MSE of the
standard and corrected estimators. In Figure 4.9, we consider a constant computational
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cost C =
(
𝑁𝜉 × 𝑁𝜂

)
= 5 × 105 in two different combinations of 𝑁𝜉 and 𝑁𝜂. In the first

combination,
(
𝑁𝜉 , 𝑁𝜂

)
=

(
5 × 103, 102) , we see that the MSE of the standard estimator

is clearly lower than that of the var-d estimator for S1 and S5. Both of these indices are
very close to zero (see Figure 4.8); in this case, the higher variance of the var-d estimator
outweighs the bias of the standard estimator. In the second combination, we have increased
𝑁𝜉 by a factor of 10 and decreased 𝑁𝜂 by the same factor to keep C constant. The variance
deconvolution estimator benefits from this configuration, with an MSE that is lower than
that of the standard estimator at most locations in 𝑥.

This pattern is consistent across QoIs: when indices are close to zero the variance of the
variance deconvolution estimator can outweigh the bias of the standard estimator, and for
a constant C the variance deconvolution estimator generally benefits from increasing the
𝑁𝜉 at the expense of decreasing 𝑁𝜂. In Figure 4.10, we see this for S𝑖 [𝜙𝑆]. For estimating
T𝑖, the correction in both the numerator and denominator makes the difference between the
standard and variance deconvolution estimators more drastic. In Figures 4.11 and 4.12, we
see that the variance deconvolution estimator outperforms the standard across 𝑥 for both
𝜙𝐹 and 𝜙𝑆.

We have shown, in this example and the analytic test case, that when increasing
computational cost for more accurate estimates of S𝑖 and T𝑖, putting those computational
resources towards increasing 𝑁𝜉 with the variance deconvolution estimator will improve
the accuracy of indices that are not near zero.

4.7 Conclusion

In this paper, we extend the variance deconvolution framework introduced in [16] for UQ
to global sensitivity analysis (GSA). Sobol’ indices are well-suited and widely used for
GSA, and there has been abundant work over the past few decades on the most efficient
sampling schemes and estimators for SIs. In this work, we analyze the effect on SIs
when the underlying solver is stochastic, i.e., , has some underlying inherent variability
(e.g., , Monte Carlo radiation transport solvers). We build on a previously-developed
variance deconvolution estimator which, rather than computing parametric variance by
over-resolving the stochastic solver, explicitly quantifies and removes the solver variance
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from the total observed variance. We show in closed-form that in general, using a stochastic
solver will always under-estimate the true first-order SIs and over-estimate the true total-
order SIs. We find that though the variance-deconvolution version of existing SI estimators
has a higher variance than its standard counterpart, the variance deconvolution version is
consistently more accurate than the standard version.
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4.8 Mean-squared error from asymptotic limits

The law of large numbers and central limit theorem ensure that the estimators Ŝ𝑖,𝑉𝐷 and
T̂𝑖,𝑉𝐷 converge toS𝑖 andT𝑖 almost surely, i.e., lim𝑁𝜉→∞ Ŝ𝑖,𝑉𝐷 = S𝑖 and lim𝑁𝜉→∞ T̂𝑖,𝑉𝐷 = T𝑖.

The estimators Ŝ𝑖,𝑄̃𝑁𝜂
and T̂𝑖,𝑄̃𝑁𝜂

converge almost surely to S𝑖,𝑄̃𝑁𝜂
and T𝑖,𝑄̃𝑁𝜂

in the
limit 𝑁𝜉 →∞, and to S𝑖 and T𝑖 in the stricter limit

(
𝑁𝜉 , 𝑁𝜂

)
→∞.

We assume that the sample estimator Ŝ𝑖,𝑉𝐷 uses sample sizes 𝑁𝜉 and 𝑁𝜂 for the
sensitivity sampling and stochastic solver samples per realization, respectively. In the
following, we follow the steps of Janon et al. (2014) [51] and Azzini et al. (2021) [4] to
establish that the asymptotic normality of this estimator is,

lim
𝑁𝜉→∞

√︁
𝑁𝜉

(
Ŝ𝑖,𝑉𝐷 − S𝑖

)
∼ N

(
0,V𝑎𝑟 [𝛼 − S𝑖 (𝛽 − 𝛾)]

)
. (4.37)
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4.8.1 Proof: First-order Estimators

We define random vector 𝑋 with mean 𝜇𝑋 , variance Σ𝑋 , and sample mean 𝑋𝑁𝜉
=

𝑁𝜉
−1 ∑𝑁𝜉

𝑣=1 𝑋𝑣, where the statistics of the samples 𝑋𝑣 do not depend on 𝑣:

𝑋 =


𝑄̃𝑁𝜂
(B)

[
𝑄̃𝑁𝜂
(A(𝒊)

B
) − 𝑄̃𝑁𝜂

(A)
]

1
2

(
𝑄̃𝑁𝜂
(A) − 𝑄̃𝑁𝜂

(B)
)2

1
2𝑁𝜂

(
𝜎̂2
𝜂 (𝐴) + 𝜎̂2

𝜂 (𝐵)
)


=


𝛼

𝛽

𝛾

 , (4.38)

𝜇𝑋 =


V𝑎𝑟

[
E
[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟

[
𝑄̃𝑁𝜂

]
E

[
𝜎2
𝜂

]
/𝑁𝜂

 =


𝜇𝛼

𝜇𝛽

𝜇𝛾

 , (4.39)

Σ𝑋 =


V𝑎𝑟 [𝛼] C𝑜𝑣 [𝛼, 𝛽] C𝑜𝑣 [𝛼, 𝛾]
C𝑜𝑣 [𝛼, 𝛽] V𝑎𝑟 [𝛽] C𝑜𝑣 [𝛽, 𝛾]
C𝑜𝑣 [𝛼, 𝛾] C𝑜𝑣 [𝛽, 𝛾] V𝑎𝑟 [𝛾]

 , (4.40)

𝑋𝑣 =


𝑄̃𝑁𝜂
(B)𝑣

[
𝑄̃𝑁𝜂
(A(𝒊)

B
)𝑣 − 𝑄̃𝑁𝜂

(A)𝑣
]

1
2

(
𝑄̃𝑁𝜂
(A)𝑣 − 𝑄̃𝑁𝜂

(B)𝑣
)2

1
2𝑁𝜂

(
𝜎̂2
𝜂 (𝐴)𝑣 + 𝜎̂2

𝜂 (𝐵)𝑣
)


i.i.d∼ 𝐹 (𝑋). (4.41)

From the central limit theorem (CLT), we have
√︁
𝑁𝜉

(
𝑋𝑁𝜉
− 𝜇𝑋

)
𝑑−→ N𝑘 (0, Σ𝑋).

We define a function 𝑔(𝑎, 𝑏, 𝑐) and its gradient ∇𝑔,

𝑔(𝑎, 𝑏, 𝑐) = 𝑎

𝑏 − 𝑐 , ∇𝑔(𝑎, 𝑏, 𝑐) =
[

1
𝑏 − 𝑐 ,

−𝑎
(𝑏 − 𝑐)2

,
𝑎

(𝑏 − 𝑐)2

]
, (4.42)

such that we can write

𝑔 (𝜇𝑋) =
V𝑎𝑟

[
E
[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟

[
𝑄̃𝑁𝜂

]
− 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

] =

V𝑎𝑟
[
E
[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

= S𝑖, (4.43)

𝑔

(
𝑋𝑁𝜉

)
= Ŝ𝑖,𝑉𝐷 . (4.44)
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From the so-called Delta method [113], given function 𝑔 with gradient ∇𝑔 such that
∇𝑔(𝜇𝑋)

def
= ∇𝜇𝑋 ≠ 0,√︁

𝑁𝜉

(
𝑔(𝑋𝑁𝜉

) − 𝑔(𝜇𝑋)
)

𝑑−→ N
(
0,∇𝜇𝑋 Σ𝑋 ∇𝑇𝜇𝑋

)
.

Therefore, we find that the estimator Ŝ𝑖,𝑉𝐷 is unbiased regardless of stochastic solver
sampling size 𝑁𝜂, with variance that depends on both 𝑁𝜉 and 𝑁𝜂,

V𝑎𝑟
[
Ŝ𝑖,𝑉𝐷

]
=
V𝑎𝑟 [𝛼 − S𝑖 (𝛽 − 𝛾)]

V𝑎𝑟2
𝜉
[𝑄]

. (4.45)

Plugging in 𝛼, 𝛽, and 𝛾 defined in Eq. (4.38) leads to the result in Eq. 4.33.
Analysis of standard estimator Ŝ𝑖,𝑄̃𝑁𝜂

follows by defining vector 𝑌 = [𝛼, 𝛽, 0]𝑇 such
that 𝑔(𝜇𝑌 ) = S𝑖,𝑄̃𝑁𝜂

and 𝑔(𝑌𝑁𝜉
) = Ŝ𝑖,𝑄̃𝑁𝜂

. Then,

√︁
𝑁𝜉

(
𝑔(𝑌𝑁𝜉

) − 𝑔(𝜇𝑌 )
)

𝑑−→ N
(
0,∇𝜇𝑌 Σ𝑋 ∇𝑇𝜇𝑌

)
.

Therefore, we find that Ŝ𝑖,𝑄̃𝑁𝜂
is a biased estimator of S𝑖, where the magnitude of the bias

depends on 𝑁𝜂, with variance that depends on both 𝑁𝜉 and 𝑁𝜂,

B𝑖𝑎𝑠2
[
Ŝ𝑖,𝑄̃𝑁𝜂

, S𝑖
]
=

(
E

[
Ŝ𝑖,𝑄̃𝑁𝜂

]
− S𝑖

)2
(4.46)

=

(
S𝑖,𝑄̃𝑁𝜂

− S𝑖
)2

(4.47)

= S2
𝑖

(
V𝑎𝑟𝜉 [𝑄]
V𝑎𝑟

[
𝑄̃𝑁𝜂

] − 1

)2

(4.48)

=
S2
𝑖

𝑁𝜂
2

E2
𝜉

[
𝜎2
𝜂

]
V𝑎𝑟2

[
𝑄̃𝑁𝜂

] (4.49)
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V𝑎𝑟
[
Ŝ𝑖,𝑄̃𝑁𝜂

]
=

V𝑎𝑟
[
𝛼 − S𝑖,𝑄̃𝑁𝜂

𝛽

]
V𝑎𝑟2

[
𝑄̃𝑁𝜂

] (4.50)

=
1

V𝑎𝑟2
[
𝑄̃𝑁𝜂

]V𝑎𝑟 [𝛼] + V𝑎𝑟2
𝜉
[𝑄]

V𝑎𝑟
[
𝑄̃𝑁𝜂

]4S
2
𝑖 V𝑎𝑟 [𝛽] − 2

V𝑎𝑟𝜉 [𝑄]

V𝑎𝑟
[
𝑄̃3

𝑁𝜂

] S𝑖C𝑜𝑣 [𝛼, 𝛽]
(4.51)

Plugging in 𝛼 and 𝛽 defined in Eq. (4.38) leads to the result in Eq. 4.32.

4.8.2 Proof: Total-order Estimators

To analyze T̂𝑖,𝑉𝐷 and T̂𝑖,𝑄̃𝑁𝜂
, we follow the same process as for the first-order estimators

above. We define random vector 𝑋 with mean 𝜇𝑋 , variance Σ𝑋 , and sample mean 𝑋𝑁𝜉
=

𝑁𝜉
−1 ∑𝑁𝜉

𝑣=1 𝑋𝑣, where the statistics of the samples 𝑋𝑣 do not depend on 𝑣:

𝑋 =



1
2

(
𝑄̃𝑁𝜂
(B (𝒊)

A
) − 𝑄̃𝑁𝜂

(B)
)2

1
2

(
𝑄̃𝑁𝜂
(A) − 𝑄̃𝑁𝜂

(B)
)2

1
2𝑁𝜂

(
𝜎̂2
𝜂 (A) + 𝜎̂2

𝜂 (B)
)

1
2𝑁𝜂

(
𝜎̂2
𝜂 (Bi

A
) + 𝜎̂2

𝜂 (B)
)


=


𝛼

𝛽

𝛾

𝛿


, (4.52)

𝜇𝑋 =


V𝑎𝑟

[
E
[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟

[
𝑄̃𝑁𝜂

]
E

[
𝜎2
𝜂

]
/𝑁𝜂

E
[
𝜎2
𝜂

]
/𝑁𝜂


=


𝜇𝛼

𝜇𝛽

𝜇𝛾

𝜇𝛿


, (4.53)

Σ𝑋 =


V𝑎𝑟 [𝛼] C𝑜𝑣 [𝛼, 𝛽] C𝑜𝑣 [𝛼, 𝛾] C𝑜𝑣 [𝛼, 𝛿]
C𝑜𝑣 [𝛼, 𝛽] V𝑎𝑟 [𝛽] C𝑜𝑣 [𝛽, 𝛾] C𝑜𝑣 [𝛽, 𝛿]
C𝑜𝑣 [𝛼, 𝛾] C𝑜𝑣 [𝛽, 𝛾] V𝑎𝑟 [𝛾] C𝑜𝑣 [𝛾, 𝛿]
C𝑜𝑣 [𝛼, 𝛿] C𝑜𝑣 [𝛽, 𝛿] C𝑜𝑣 [𝛾, 𝛿] V𝑎𝑟 [𝛿]


. (4.54)
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We define a function 𝑔(𝑎, 𝑏, 𝑐, 𝑑) and its gradient ∇𝑔,

𝑔(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 − 𝑑

𝑏 − 𝑐 (4.55)

∇𝑔(𝑎, 𝑏, 𝑐, 𝑑) =
[

1
𝑏 − 𝑐 ,

−(𝑎 − 𝑑)
(𝑏 − 𝑐)2

,
(𝑎 − 𝑑)
(𝑏 − 𝑐)2

,
−1
𝑏 − 𝑐

]
, (4.56)

such that we can write 𝑔(𝜇𝑋) = T𝑖 and 𝑔(𝑋𝑁𝜉
) = T̂𝑖,𝑉𝐷 . Therefore, we find that the

estimator T̂𝑖,𝑉𝐷 is unbiased regardless of stochastic solver sampling size 𝑁𝜂, with variance
that depends on both 𝑁𝜉 and 𝑁𝜂,

V𝑎𝑟
[
T̂𝑖,𝑉𝐷

]
=
V𝑎𝑟 [𝛼 − 𝛿 − T𝑖 (𝛽 − 𝛾)]

V𝑎𝑟2
𝜉
[𝑄]

. (4.57)

Plugging in 𝛼, 𝛽, 𝛾, and 𝛿 defined in Eq. (4.52) leads to the result in Eq. 4.35.
Analysis of standard estimator T̂𝑖,𝑄̃𝑁𝜂

follows by defining vector 𝑌 = [𝛼, 𝛽, 0, 0]𝑇

such that 𝑔(𝜇𝑌 ) = T𝑖,𝑄̃𝑁𝜂
and 𝑔(𝑌𝑁𝜉

) = T̂𝑖,𝑄̃𝑁𝜂
. Therefore, we find that T̂𝑖,𝑄̃𝑁𝜂

is a biased
estimator of T𝑖, where the magnitude of the bias depends on 𝑁𝜂, with variance that depends
on both 𝑁𝜉 and 𝑁𝜂,

B𝑖𝑎𝑠2
[
T̂𝑖,𝑄̃𝑁𝜂

,T𝑖

]
=

(
E

[
T̂𝑖,𝑄̃𝑁𝜂

]
− T𝑖

)2
(4.58)

=

(
T𝑖,𝑄̃𝑁𝜂

− T𝑖

)2
(4.59)

= T2
𝑖

(
V𝑎𝑟𝜉 [𝑄] E∼𝑖,𝑄̃𝑁𝜂

V𝑎𝑟
[
𝑄̃𝑁𝜂

]
E∼𝑖

− 1

)2

(4.60)

=
T2
𝑖

𝑁𝜂
2

E2
𝜉

[
𝜎2
𝜂

]
V2
∼𝑖

V𝑎𝑟2
[
𝑄̃𝑁𝜂

]
E2
∼𝑖
, (4.61)
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V𝑎𝑟
[
T̂𝑖,𝑄̃𝑁𝜂

]
=

V𝑎𝑟
[
𝛼 − T𝑖,𝑄̃𝑁𝜂

𝛽

]
V𝑎𝑟2

[
𝑄̃𝑁𝜂

] (4.62)

=
1

V𝑎𝑟2
[
𝑄̃𝑁𝜂

]V𝑎𝑟 [𝛼] + V𝑎𝑟2
𝜉
[𝑄] E2

∼𝑖,𝑄̃𝑁𝜂

V𝑎𝑟
[
𝑄̃𝑁𝜂

]4
E2
∼𝑖

T2
𝑖 V𝑎𝑟 [𝛽] − 2

V𝑎𝑟𝜉 [𝑄] E∼𝑖,𝑄̃𝑁𝜂

V𝑎𝑟
[
𝑄̃3

𝑁𝜂

]
E∼𝑖

T𝑖C𝑜𝑣 [𝛼, 𝛽] .

(4.63)

Plugging in 𝛼 and 𝛽 defined in Eq. (4.52) leads to the result in Eq. 4.34.
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Figure 4.1: For the Ishigami function with added stochasticity, comparing distributions of
S1 calculated using a variance deconvolution (Var-D) vs. a standard approach (Brute-F)
with the Saltelli estimator. 𝑁𝜉 = 103 in every case, with 𝑁𝜂 increasing from left to right
within a single plot. Analytic indices reported as solid horizontal line.
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Figure 4.2: For the Ishigami function with added stochasticity, comparing distributions of
S2 calculated using a variance deconvolution (Var-D) vs. a standard approach (Brute-F)
with the Saltelli estimator. 𝑁𝜉 = 103 in every case, with 𝑁𝜂 increasing from left to right
within a single plot. Analytic indices reported as solid horizontal line.
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Figure 4.3: For the Ishigami function with added stochasticity, comparing distributions of
S3 calculated using a variance deconvolution (Var-D) vs. a standard approach (Brute-F)
with the Saltelli estimator. 𝑁𝜉 = 103 in every case, with 𝑁𝜂 increasing from left to right
within a single plot. Analytic indices reported as solid horizontal line.
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Figure 4.4: For the Ishigami function with added stochasticity, comparing distributions of
T1 calculated using a variance deconvolution (Var-D) vs. a standard approach (Brute-F)
with the Saltelli estimator. 𝑁𝜉 = 103 in every case, with 𝑁𝜂 increasing from left to right
within a single plot. Analytic indices reported as solid horizontal line.
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Figure 4.5: For the Ishigami function with added stochasticity, comparing distributions of
T2 calculated using a variance deconvolution (Var-D) vs. a standard approach (Brute-F)
with the Saltelli estimator. 𝑁𝜉 = 103 in every case, with 𝑁𝜂 increasing from left to right
within a single plot. Analytic indices reported as solid horizontal line.
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Figure 4.6: For the Ishigami function with added stochasticity, comparing distributions of
T3 calculated using a variance deconvolution (Var-D) vs. a standard approach (Brute-F)
with the Saltelli estimator. 𝑁𝜉 = 103 in every case, with 𝑁𝜂 increasing from left to right
within a single plot. Analytic indices reported as solid horizontal line.
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Figure 4.7: Average scalar flux with five uncertain parameters using 𝑁𝜉 = 5×105, 𝑁𝜂 = 105.
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Figure 4.8: Full set of first- and total- order indices of 𝜙𝐹 and 𝜙𝑆 using 𝑁𝜉 = 5 × 105,
𝑁𝜂 = 105. Standard and corrected estimators exactly overlap. Uncertain factors: the
densities of 1) the fuel, 2) the moderator, 3) and the control rod were allowed to vary
uniformly ±70%; 4) the ratio of fuel-width to moderator-width and 5) the control-rod
thickness were both allowed to vary uniformly between 0.2 and 0.8.
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Figure 4.9: 𝑀𝑆𝐸 [S𝑖] for 𝜙𝐹 , constant computational cost C =
(
𝑁𝜉 × 𝑁𝜂

)
= 5 × 105.

Figure 4.10: 𝑀𝑆𝐸 [S𝑖] for 𝜙𝑆, constant computational cost C =
(
𝑁𝜉 × 𝑁𝜂

)
= 5 × 105.
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Figure 4.11: 𝑀𝑆𝐸 [T𝑖] for 𝜙𝐹 , constant computational cost C =
(
𝑁𝜉 × 𝑁𝜂

)
= 5 × 105.

Figure 4.12: 𝑀𝑆𝐸 [T𝑖] for 𝜙𝑆, constant computational cost C =
(
𝑁𝜉 × 𝑁𝜂

)
= 5 × 105.
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Chapter 5: Monte Carlo Uncertainty Quantification and Sensitivity Analysis
for the C5G7 Benchmark

Abstract

In this study, sampling methods and Monte Carlo (MC) radiation transport (RT) were used
to perform uncertainty quantification (UQ) and global sensitivity analysis (GSA) on the
3D C5G7-TD benchmark in its initial unrodded configuration. UQ was performed using
variance deconvolution, a recently-developed uncertainty propagation method for stochastic
solvers that computes parametric variance by explicitly accounting for the stochastic solver’s
variance. Additionally, we applied our recent work integrating variance deconvolution
with Sobol’ sensitivity indices to compute Sobol’ indices for eight input parameters –
the density and radius of each of the four fuel types in the core. The C5G7 core was
modeled using Monte Carlo Dynamic Code (MC/DC), an open-source neutral-particle
transport code, and both the core 𝑘eff eigenvalue and pinwise core fission rate distribution
were considered as quantities of interest. Manufacturing uncertainties of fuel pin radius
and density were sampled from a normal distribution of a 5% standard deviation about
their respective nominal values. Variation of the densities and radii of the specific pin
components such as pellet radius, gap thickness, and clad thickness was limited due to the
spatial homogenization of the benchmark cross-sections. Using variance deconvolution
allowed for more cost-efficient UQ and GSA with MC RT code than the standard approach
of increasing particle count to reduce the solver variance.

5.1 Introduction

It has remained consistently important for nuclear research, industry, safety, and regulation
that best-estimate predictions from computational models and simulations be reported with
their associated uncertainties. These requirements can be met using uncertainty quantifi-
cation (UQ, also called uncertainty analysis) and sensitivity analysis, both of which are
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important steps in rigorous model validation. To propagate input uncertainties through
reactor physics and modeling simulations, both deterministic [26] and statistical sam-
pling methods [94, 5] have been widely proposed and applied for both nuclear data and
manufacturing uncertainties. Deterministic approaches, such as approximating first-order
sensitivity coefficients by perturbing parameters locally around their nominal values [26],
typically require fewer model evaluations than sampling-based approaches and are there-
fore attractive for computational models for which even one evaluation is computationally
expensive. However, these approaches make some assumptions about the linearity of the
underlying function and allow for relatively small parameter perturbations. In sampling
methods, uncertain parameters are sampled from their probability distributions and prop-
agated through the model, then statistics of the quantity of interest are computed directly
using sampling-based estimators [97]. Sampling-based methods are useful because they
do not make assumptions about the linearity, smoothness, or regularity of the model re-
sponse [97]; however, their primary drawback is the potential high computational cost
associated with the multiple code evaluations needed to compute the required statistics
with satisfactory precision [97], since an independent code evaluation is required for each
drawn sample.

Sampling methods can become cost-prohibitive when the underlying solver itself is
also stochastic, as is the case with Monte Carlo (MC) radiation transport (RT) solvers.
When inputs to a stochastic simulator have some associated uncertainty, the total observed
variance of the output is a combination of the variability of the solver itself (“solver
variance”) and the variability of the input parameters [5, 94]. To estimate variance and
sensitivities of the output introduced solely by the uncertain input parameters (“parametric
variance” and “parametric sensitivities”), a standard approach to handle the stochasticity
of the solver is to increase the number of particle histories such that the solver variance is
a relatively small contribution of the total observed variance; the high computational cost
of doing so must be paid for each of the multiple code evaluations required for sampling
methods.

As an alternative to the standard treatment we have proposed a variance deconvolution
approach [16, 74], in which we compute parametric variance by explicitly quantifying and
removing the solver variance from the total observed variance, rather than by minimizing the
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solver variance. In [16], we rigorously showed that variance deconvolution is accurate and
much more cost-effective than the standard approach for computing parametric variance.
In recent work [15], we integrated variance deconvolution into sampling estimators for
sensitivity indices (SIs, also referred to as Sobol’ indices), which is a GSA approach
that uses analysis of variance to rank input parameters in order of importance to the
output [97]. Exploration of the practical usability and benefit of these capabilities has
included analytic functions and simple slab-geometry radiation transport problems with
and without stochastic media. However, exploration on more realistic problems has not been
performed, leaving questions as to the practical value for large-scale MC RT computations.

In this work, as an example of application to a more realistic MC RT problem, we
use variance deconvolution to evaluate the parametric variance and perform sensitivity
analysis on the 3D C5G7 criticality benchmark problem [45]. We propagate uncertainties
of eight input parameters, namely, the radii and densities of the four fuel types in the core,
to compute the k-eigenvalue and fission rate distributions across the core. We perform MC
RT simulations with the Monte Carlo Dynamic Code (MC/DC), an open source neutron
transport code developed by the PSAAP-III Center for Exascale Monte Carlo Neutron
Transport [72].

The remainder of the paper is structured as follows. In Section 5.2, we summarize the
variance deconvolution approach and its use for UQ and GSA. In Section 5.3, we briefly
describe the C5G7 3D benchmark, then present and discuss the results. A summary and
conclusions are provided in Section 5.4.

5.2 Uncertainty and Global Sensitivity Analysis with Variance Deconvolu-
tion

In this section, we first summarize and introduce notation for UQ and GSA in a general
context, then introduce the case of UQ and GSA for a stochastic solver. For a detailed
presentation of variance deconvolution and an algorithmic representation of variance de-
convolution for UQ, see [16].
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5.2.1 Uncertainty and global sensitivity analysis

We consider a generic scalar quantity of interest (QoI) 𝑄 = 𝑄 (ξ) , ξ = (𝜉1, . . . , 𝜉𝑘 ) ∈ Ξ ⊂
R𝑘 , where 𝜉1, . . . , 𝜉𝑘 are independent random variables with arbitrary joint distribution
function 𝑝(ξ). To characterize the effect of input uncertainty on 𝑄, we are interested in
statistics of 𝑄, like its mean and variance,

E𝜉 [𝑄] =
∫
Ξ

𝑄 (ξ) 𝑝(ξ)𝑑ξ and V𝑎𝑟𝜉 [𝑄] =
∫
Ξ

(
𝑄 (ξ) −E𝜉 [𝑄]

)2

𝑝(ξ)𝑑ξ, (5.1)

where a subscript indicates expectation and variance over 𝜉. We are also interested in
computing SIs, which give the ratio of the conditional variance of a parameter or set of
parameters to the unconditional parametric variance and are commonly used to rank the
parameters in order of importance to the QoI [97]. The importance of parameter 𝜉𝑖 can be
described by its first-order SI S𝑖 and its total-order SI T𝑖,

S𝑖 =
V𝑎𝑟𝜉𝑖

[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

and T𝑖 =

E𝜉∼𝑖

[
V𝑎𝑟𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

= 1−
V𝑎𝑟𝜉∼𝑖

[
E𝜉𝑖

[
𝑄 | ξ∼𝑖

] ]
V𝑎𝑟𝜉 [𝑄]

,

(5.2)
where S𝑖 describes the main effect contribution of parameter 𝜉𝑖 and T𝑖 describes the effect
of parameter 𝜉𝑖 and its interaction with all of the other parameters 𝜉∼𝑖. By definition,
for parameter 𝜉𝑖, 0 ≤ S𝑖 ≤ T𝑖, where the difference T𝑖 − S𝑖 captures the effect solely of
𝜉𝑖’s interactions. Additionally by definition,

∑𝑘
𝑖=1 S𝑖 ≤ 1, where the difference 1 −∑𝑘

𝑖=1 S𝑖
provides an idea of how much variance remains to be captured by higher-order effects;
refer to [97] for additional details.

The so-called Saltelli method [97] is a sampling-based approach to estimate the full
suite of first- and total-order SIs. We outline the general algorithm of this approach below,
assuming 𝑘 uncertain parameters:
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1. Define two (𝑁𝜉 , 𝑘) matrices, A and B, which contain independent input samples.

A =


𝜉
(1)
1 · · · 𝜉

(1)
𝑖

· · · 𝜉
(1)
𝑘

...
. . .

...

𝜉
(𝑁)
1 · · · 𝜉

(𝑁𝜉 )
𝑖

· · · 𝜉
(𝑁𝜉 )
𝑘

 , B =


𝜉
(1)
𝑘+1 · · · 𝜉

(1)
𝑘+𝑖 · · · 𝜉

(1)
2𝑘

...
. . .

...

𝜉
(𝑁𝜉 )
𝑘+1 · · · 𝜉

(𝑁𝜉 )
𝑘+𝑖 · · · 𝜉

(𝑁𝜉 )
2𝑘

 .
2. For each 𝑖-th input factor, define matrix A(𝒊)

B
, which is a copy of A except for the

𝑖-th column, which comes from B.

A(𝒊)
B

=


𝜉
(1)
1 · · · 𝜉

(1)
𝑘+𝑖 · · · 𝜉

(1)
𝑘

...
. . .

...

𝜉
(𝑁𝜉 )
1 · · · 𝜉

(𝑁𝜉 )
𝑘+𝑖 · · · 𝜉

(𝑁𝜉 )
𝑘

 .
3. Compute model output for A, B, and all A(𝒊)

B
to obtain vectors of model output

𝑄(A), 𝑄(B), and 𝑄(A(𝒊)
B
), all of dimension (𝑁𝜉 , 1). Let 𝑄(A)𝑣 indicate the 𝑣-th

element of the vector 𝑄(A), i.e., one function evaluation of 𝑄.

4. Approximate the full set of S𝑖 and T𝑖 using 𝑄(A), 𝑄(B) and 𝑄(A(𝒊)
B
):

S𝑖 ≈
1
𝑁𝜉

∑𝑁𝜉

𝑣=1 𝑄(B)𝑣
[
𝑄(A(𝒊)

B
)𝑣 −𝑄(A)𝑣

]
1

2𝑁𝜉

∑𝑁𝜉

𝑣=1

[
𝑄(A)𝑣 −𝑄(B)𝑣

]2
def
= Ŝ𝑖, (5.3)

T𝑖 ≈
1

2𝑁𝜉

∑𝑁𝜉

𝑣=1

[
𝑄(B (𝒊)

A
)𝑣 −𝑄(B)𝑣

]2

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1

[
𝑄(A)𝑣 −𝑄(B)𝑣

]2
def
= T̂𝑖 . (5.4)

A number of sampling schemes (e.g., quasi-random sequencing, Latin hypercube) can
be used to fulfill step 1) of the above algorithm; for simplicity, we use purely random
sampling. To approximate S𝑖 and T𝑖 in step 4), we have used a sampling estimator for S𝑖
from [110] and for T𝑖 from [52], as recommended for general use by [98]. For a broad
review of sampling schemes and estimators used with the Saltelli method, see e.g., [87].
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In the following, we describe how to compute the statistical quantities introduced above
via sampling when the underlying QoI is computed using a stochastic solver.

5.2.2 Variance deconvolution

To enable mathematical treatment of the stochastic solver’s variability, we represent it
with an additional random variable 𝜂 and define our QoI 𝑄 as the expectation over 𝜂 of
a function 𝑓 (ξ, 𝜂): 𝑄(ξ) = E [ 𝑓 (ξ, 𝜂) | ξ] def

= E𝜂 [ 𝑓 (ξ, 𝜂)]. The function 𝑓 (ξ, 𝜂) can be
directly evaluated as the output from the stochastic solver with input ξ, but the expectation
E𝜂 [ 𝑓 (ξ, 𝜂)] and variance V𝑎𝑟𝜂 [ 𝑓 (ξ, 𝜂)]

def
= 𝜎2

𝜂 (ξ) are not directly available. Instead, we
approximate 𝑄(ξ) and 𝜎2

𝜂 (𝜉) as the sample mean and variance of 𝑓 over 𝑁𝜂 independent
evaluations:

𝑄 (ξ) ≈ 1
𝑁𝜂

𝑁𝜂∑︁
𝑗=1

𝑓 (ξ, 𝜂( 𝑗)) def
= 𝑄̃𝑁𝜂

(ξ) and 𝜎2
𝜂 (ξ) ≈

1
𝑁𝜂 − 1

𝑁𝜂∑︁
𝑗=1

(
𝑓 (ξ, 𝜂( 𝑗)) − 𝑄̃𝑁𝜂

(ξ)
)2 def

= 𝜎̂2
𝜂 (ξ).

In the context of MC RT, 𝜂( 𝑗) corresponds to the internal stream of random numbers
comprising a single particle history, 𝑓 (ξ, 𝜂( 𝑗)) corresponds to the result (e.g., tally) of that
single particle history, and 𝑄̃𝑁𝜂

(ξ) corresponds to the output of a MC RT simulation that
used a total of 𝑁𝜂 particle histories. Variance deconvolution was introduced [16, 74] to show
that the parametric variance of 𝑄, V𝑎𝑟𝜉 [𝑄], can be efficiently and accurately estimated
from 𝑄̃𝑁𝜂

by explicitly computing and removing the solver variance from the total observed
variance. From [16], the total variance of 𝑄̃𝑁𝜂

decomposes into the effect of the uncertain
parameters and the effect of the stochastic solver: V𝑎𝑟𝜉 [𝑄] = V𝑎𝑟

[
𝑄̃𝑁𝜂

]
− 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

]
.

Building on [16, 15], we have extended variance deconvolution to examine the first- and
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total-order SIs of 𝜉𝑖 on 𝑄̃𝑁𝜂
,

S𝑖,𝑄̃𝑁𝜂
=

V𝑎𝑟𝜉𝑖
[
E𝜉∼𝑖 ,𝜂

[
𝑄̃𝑁𝜂

| 𝜉𝑖
] ]

V𝑎𝑟
[
𝑄̃𝑁𝜂

] =

V𝑎𝑟𝜉𝑖
[
E𝜉∼𝑖

[
𝑄 | 𝜉𝑖

] ]
V𝑎𝑟𝜉 [𝑄] + 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

] and (5.5)

T𝑖,𝑄̃𝑁𝜂
=

E𝜉∼𝑖

[
V𝑎𝑟𝜉,𝜂

[
𝑄̃𝑁𝜂

| 𝜉∼𝑖
] ]

V𝑎𝑟
[
𝑄̃𝑁𝜂

] =

E𝜉∼𝑖

[
V𝑎𝑟𝜉𝑖

[
𝑄 | 𝜉∼𝑖

] ]
+ 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

]
V𝑎𝑟𝜉 [𝑄] + 1

𝑁𝜂
E𝜉

[
𝜎2
𝜂

] . (5.6)

Ongoing theoretical work suggests that S𝑖,𝑄̃𝑁𝜂
will always be less than S𝑖, therefore

underestimating the first-order effect of 𝜉𝑖 on𝑄, while T𝑖,𝑄̃𝑁𝜂
will always be greater than T𝑖,

therefore overestimating the total-order effect of 𝜉𝑖 on 𝑄. In pursuit of unbiased estimators
for S𝑖 and T𝑖 using 𝑄̃𝑁𝜂

, we introduce bias-correction terms to the numerator of Eq. (5.6)
and the denominators of both Equations (5.5) and (5.6).

Steps 1) and 2) of the GSA algorithm in Section 5.2.1 remain the same. When
evaluating the model for A, B, and all A(𝒊)

B
in Step 3), variance deconvolution requires

tallying the variance 𝜎̂2
𝜂 (ξ) in addition to the model output 𝑄̃𝑁𝜂

(ξ). In practice, every
independent code evaluation for 𝑄̃𝑁𝜂

(ξ) should also be independent in 𝜂, that is, each MC
RT code evaluation should use a different initial random number seed. Then, in Step 4),
Equations (5.3) and (5.4) are replaced with

S𝑖 ≈ Ŝ𝑖,𝑉𝐷
def
=

1
𝑁𝜉

∑𝑁𝜉

𝑣=1 𝑄̃𝑁𝜂
(B)𝑣

[
𝑄̃𝑁𝜂
(A(𝒊)

B
)𝑣 − 𝑄̃𝑁𝜂

(A)𝑣
]

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1

[
𝑄̃𝑁𝜂
(A)𝑣 − 𝑄̃𝑁𝜂

(B)𝑣
]2
− 1

𝑁𝜂

〈
𝜎̂2
𝜂

〉
(𝐴,𝐵)

, (5.7)

T𝑖 ≈ T̂𝑖,𝑉𝐷
def
=

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1

[
𝑄̃𝑁𝜂
(B (𝒊)

A
)𝑣 − 𝑄̃𝑁𝜂

(B)𝑣
]2
− 1

𝑁𝜂

〈
𝜎̂2
𝜂

〉
(𝐵𝑖

𝐴
,𝐵)

1
2𝑁𝜉

∑𝑁𝜉

𝑣=1

[
𝑄̃𝑁𝜂
(A)𝑣 − 𝑄̃𝑁𝜂

(B)𝑣
]2
− 1

𝑁𝜂

〈
𝜎̂2
𝜂

〉
(𝐴,𝐵)

, (5.8)

where
〈
𝜎̂2
𝜂

〉
(𝐴,𝐵) =

1
2𝑁𝜉

𝑁𝜉∑︁
𝑣=1

[
𝜎̂2
𝜂 (A)𝑣 + 𝜎̂2

𝜂 (B)𝑣
]
.
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5.3 Numerical Results

In this section, we first provide a description of the multigroup 3D C5G7 benchmark, on
which the k-eigenvalue simulations are based. Then, we present and discuss results of the
uncertainty and sensitivity analysis for eight uncertain input parameters: the densities and
radii of the four types of fuel in the benchmark.

5.3.1 3D C5G7 Benchmark Description

The C5G7-TD benchmark is a series of space-time neutron kinetics exercises in 2- and
3D [45] based on the well-studied 2-D steady-state neutron transport C5G7 benchmark [17].
We performed a k-eigenvalue simulation of the initial condition of 3D geometry described
by the C5G7-TD benchmark, i.e., the unrodded case in which the control rod banks are
inserted into the upper axial water reflector.

3D C5G7 is a miniature LWR with sixteen fuel assemblies: eight uranium oxide (UO2)
assemblies and eight mixed oxide (MOX) assemblies, surrounded by a water reflector.
There are three different enrichments of MOX fuel: 4.3%, 7.0%, and 8.7%. The quarter-
core is radially symmetric in the 2-D plane, and it is assumed that control rods can move
continuously across the top water reflector into the active core region. Both the UO2 and
MOX assemblies follow a 17 x 17 configuration, consisting of 264 fuel pins, 24 guide
tubes for control rods, and one instrument tube for a fission chamber in the center grid cell.
The quarter-core with assemblies labeled 1-4 and the fuel-pin configuration are shown in
Figure 5.1.

The C5G7 benchmark problems were originally developed to test the capabilities of
radiation transport codes that do not utilize spatial homogenization above the fuel pin
level. Therefore, the available 7-group macroscopic cross-section data from the original
benchmark [17] as well as the kinetics parameters from [45] are spatially homogenized
to the fuel pin level. Using all nominal parameter values, the eigenvalue of the unrodded
configuration of the 3D C5G7 core was calculated to be 𝑘eff = 1.16562 ± 0.02% using
MC/DC with a total of 50 × 106 particle histories. Other MC codes [39] found 𝑘eff =

1.165449 ± 0.0029% (RMC, 2021) and 𝑘eff = 1.16532 ± 0.0034% (OpenMC, 2018).
First, for uncertainty analysis, we consider the parametric variance of 𝑘eff and of the
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(a) Quarter-core planar section. (b) Fuel pin configuration.

Figure 5.1: Geometry of the 3D C5G7 benchmark problem, south-east quadrant, repro-
duced from [45].

pin-wise fission distribution. Then, for sensitivity analysis, we rank the eight parameters
in order of importance to 𝑘eff.

5.3.2 Uncertainty analysis

We choose manufacturing uncertainties to follow manufacturing uncertainties of the as-
sembly models described in the OECD/NEA UAM benchmark [50]. For each of the four
fuel types in C5G7, the density and diameter of the fuel pin are each normally distributed
with a standard deviation of 5%.

To study the efficiency of variance deconvolution for a k-eigenvalue simulation, we
compare the parametric variance estimate from the variance deconvolution approach with
the total observed variance estimate from a standard UQ approach, in which the solver
variance is assumed to have been effectively resolved out. First, to establish the problem’s
solver variance with nominal values, we compute 𝑘eff and its standard error 𝜎𝑘 using 50
inactive cycles, 100 active cycles, and 50K histories per cycle for a total of 5M histories.
This case is labeled ‘Ref.’ in Table 5.1, with the total observed standard error of 𝑘eff

resulting entirely from the solver stochasticity. Then, in Case A, we minimize the solver
noise by repeating the reference case 100 times for a total of 500M histories, reducing
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𝜎𝑘,MCRT/𝑘eff from 0.054% to 0.007%. Next, for the standard UQ approach in Case B,
we vary all 8 parameters and perform the simulation 100 times with 50 inactive cycles,
100 active cycles, and 50K histories/cycle for a total of 500M histories. Comparing Cases

Case Description keff σ𝒌,total σ𝒌,param σ𝒌,MCRT
Ref. Nominal parameter values.

5M total histories.
1.16568 0.00064 N/A 0.00064

A Nominal parameter values.
500M total histories.

1.16562 0.00008 N/A 0.00008

B Standard UQ. 𝑁𝜉 = 100,
500M total histories.

1.15817 0.00209 N/A N/A

C Variance deconvolution.
𝑁𝜉 = 100, 10M total histo-
ries.

1.15799 0.00214 0.00208 0.00048

Table 5.1: Resulting 𝑘eff from varying parameters in 3D C5G7 problem. 𝜎𝑘,total, 𝜎𝑘,param,
and 𝜎𝑘,MCRT represent the 1-sigma standard deviation of 𝑘eff due to the overall simulation
uncertainty, the parameter uncertainty, and the MC RT solver noise, respectively.

A and B, we see that 𝜎𝑘,total in Case A is small compared to that of Case B and we can
conclude that almost all the uncertainty in Case B is due to the uncertain parameters. To
confirm this, we continue to increase the resolution of the MC RT simulation to observe
that 𝜎𝑘,total does not diminish any further. Next, for the variance deconvolution approach
in Case C, we reduce to 1K histories/cycle for a total of 10M histories, a 50X reduction
in computational cost from Case B. Comparing Cases B and C, we see that variance
deconvolution and standard UQ estimate a 𝜎𝑘,param within 0.5% of one another; variance
deconvolution does so using 50X fewer histories/cycle, which is directly proportional to
a reduction in execution time. In Case C with 10M histories, the standard UQ approach
would estimate the parametric 𝜎𝑘 as 𝜎𝑘,total, 0.00214.

As an additional QoI, we consider the fission rate distribution calculated in Cases B
and C. In Figure 5.2, we compare the variances estimated using the standard approach
(Fig. 5.2a) and the variance deconvolution approach (Figs. 5.2b- 5.3b). As in the variance
estimates for 𝑘eff, the total variance with a standard UQ approach and the parametric
variance with the variance deconvolution approach are in agreement. We see that the
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parametric variance is peaked in the top left corner of Assembly 1, i.e., at the center of the
full-core where it is most active. Using a standard UQ approach with 10M histories, the
total variance in Figure 5.3b would be the best available variance estimate. Although the
total variance is also the largest in Assembly 1, we can see that it is much less resolved than
the sharper relative peaks in Figure 5.2. Comparing Figures 5.3a and 5.3b, we can see the
influence that the shape of the solver variance influences the shape of the total variance,
and increasing the particle count in Case B provides a clearer image of the impact of the
uncertain parameters. Using variance deconvolution, we achieve a comparable resolution
for 50X fewer particle histories.

(a) Total variance estimate from Case B, standard
UQ, 500M histories.

(b) Parametric variance estimate from Case C,
variance deconvolution, 10M histories.

Figure 5.2: Variance estimates using the standard approach (a) and variance deconvolution
approach (b). Fuel pin density and diameter each sampled from normal distribution with
5% standard deviation.

5.3.3 Sensitivity analysis

Additionally, we compute the first- and total-order sensitivity indices of the 8 parameters
with respect to 𝑘eff, comparing the standard and variance deconvolution approaches using
Case C. We report all computed indices and rank the parameters in Table 5.2. As seen
in the data in Table 5.2, 1 − ∑𝑘

𝑖=1 S𝑖 = 0.004, suggesting that the parametric variance is
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(a) Solver variance estimate from Case C, vari-
ance deconvolution, 10M histories.

(b) Total variance estimate from Case C, variance
deconvolution, 10M histories.

Figure 5.3: Solver (a) and total (b) variance estimates using the variance deconvolution
approach. Fuel pin density and diameter each sampled from normal distribution with 5%
standard deviation.

almost entirely comprised of first-order effects. However, T𝑖 − S𝑖 ranges between 0.011
and 0.053, suggesting a larger interaction effect than is indicated by the first-order effects
alone. We hypothesize that this discrepancy could be due to correlation effects between
𝑘eff cycles in a single simulation and that an effective 𝑁𝜂 may need to be used rather than
taking 𝑁𝜂 to be the number of active cycles × the number of particle histories per cycle.
For example, if the solver variance reported by the code were slightly underestimated, it
would align with what ongoing theory work suggests that S𝑖 from variance deconvolution
would still be a slight underestimate and T𝑖 from variance deconvolution would still be
a slight overestimate, therefore creating a larger difference between T𝑖 and S𝑖. Working
through details of this in an orderly way is a topic of ongoing and future work.

In general, we can conclude that the pin radii have a greater impact than the pin
densities, which is consistent with the findings of parameter studies that also varied both
the fuel radius and the density [5]. Criticality conditions are very sensitive to geometry
changes that would necessarily result from changing the radii of the fuel pin. Additionally,
unlike the densities, the radii affect the amount of moderator in the problem: the larger
the fuel pins, the less space is available around them for the moderator. The radius of the
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UO2 pin is the most important by far; we look to the remaining parameters to highlight the
importance of computing the full set of first- and total-order indices. One could reasonably
set an importance threshold below which parameters are discarded as unimportant, e.g.,
0.05 or 0.10. Looking just at the first-order indices, this would qualify most, if not all,
of the remaining parameters as unimportant. However, the total-order indices reveal the
additional importance contribution of interaction effects. For example, the MOX8. 7%
radius nearly doubles from S𝑖 = 0.0524 to T𝑖 = 0.1028. In the same vein, comparing the
parametric indices S𝑖 and T𝑖 to their total-observed counterparts S𝑖,𝑄̃𝑁𝜂

and T𝑖,𝑄̃𝑁𝜂
, we see

that the standard approach could result in misleading conclusions about the importance of
a parameter. Although both approaches rank the parameters in the same order, the standard
approach underestimates S𝑖 and overestimates T𝑖. For example, all four densities appear
more important from T𝑖,𝑄̃𝑁𝜂

than they are revealed to be from T𝑖. This is consistent with
the findings discussed in Section 5.2.2.

Parameter S𝒊 T𝒊 S𝒊,𝑸̃𝑵𝜼
T𝒊,𝑸̃𝑵𝜼

1. UO2 radius 0.7936 0.8043 0.7497 0.8151
2. MOX7.0% radius 0.0680 0.1178 0.0642 0.1666
3. MOX8.7% radius 0.0524 0.1028 0.0495 0.1524
4. MOX4.5% radius 0.0334 0.0851 0.0316 0.1357
5. UO2 density 0.0176 0.0699 0.0166 0.1213
6. MOX4.5% density 0.0119 0.0647 0.0112 0.1164
7. MOX7.0% density 0.0106 0.0633 0.0100 0.1151
8. MOX8.7% density 0.0085 0.0614 0.0080 0.1133
Sum over all parameters 0.9960 1.3693 0.9409 1.7359

Table 5.2: First- and total-order sensitivity indices of 𝑘eff given fuel pin density and
diameter each sampled from normal distribution with 5% standard deviation. UO2 radius
is most important to 𝑘eff both on its own and with interaction effects.

5.4 Conclusions

Sampling methods for UQ and GSA are useful because they do not make assumptions about
the underlying model; their primary drawback is the potentially-high computational cost
of the multiple code evaluations they require. When sampling methods are coupled with
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stochastic simulators such as Monte Carlo radiation transport codes, a standard approach
to estimate parametric statistics (i.e., statistics due only to parameter uncertainty) is to
increase the number of particle histories such that the solver variance is a relatively small
part of the total observed variance, exacerbating sampling methods’ primary drawback.
As an alternative to attempting to minimize solver variance, we have recently proposed
variance deconvolution, in which parametric variance is computed by explicitly quantifying
and removing the solver variance from the total observed variance. In previous work, we
showed that variance deconvolution is accurate and far more cost-effective than the standard
approach for computing parametric variance [16] and integrated variance deconvolution
into sampling estimators for sensitivity indices [15].

In this study, variance deconvolution was coupled with Monte Carlo radiation transport
to perform uncertainty quantification and global sensitivity analysis on the 3D C5G7-TD
benchmark in its initial unrodded configuration. The C5G7 core was modeled using Monte
Carlo Dynamic Code (MC/DC), a neutral-particle transport code from the PSAAP-III
Center for Exascale Monte Carlo Neutron Transport [72]. The manufacturing uncertainties
of the radius and density of the fuel pin were sampled from a normal distribution with
5% standard deviation, based on the manufacturing uncertainties from the OECD / NEA
benchmarks for Uncertainty Analysis in Modeling of LWRs. The core 𝑘eff eigenvalue and
pinwise core fission rate distribution were considered as quantities of interest. Using 50
inactive cycles, 100 active cycles, and 100 samples of the uncertain parameters,𝜎𝑘,param/𝑘eff

was estimated to be 0.18% using the standard approach with 50K histories per cycle and
using the variance deconvolution approach with 1K histories per cycle, a 50X reduction in
computational cost. Though the exact savings in computation time will vary from code-to-
code, reducing particle count consistently reduces code execution time. Both the standard
approach and variance deconvolution approach found the fuel-pin radii to be more important
than their densities, consistent with findings from similar studies. Indices computed with
the standard approach were observed to underestimate first-order and overestimate total-
order indices, which is in alignment with what ongoing theory work suggests. Ongoing
and future work include presenting the details and theoretical explanation of this behavior
and investigating use of effective particle numbers in sensitivity coefficient calculations.
Future work also includes extending these methods to correlated input parameters, as
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existing variance deconvolution analysis has been based on the assumption that parameters
are independently distributed. This extension would allow for application to jointly-
distributed parameters such as nuclear data uncertainty, which is highly relevant to the
field.
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Chapter 6: Conclusions

The purpose of this research was to analyze the effect of stochastic solvers on UQ and GSA
and to develop accurate and efficient estimators for key UQ and GSA statistics. The majority
of the large body of work on UQ and GSA methods inherently assumes that the underlying
computational model is deterministic; when the underlying computational model is instead
stochastic, the statistics computed with UQ and GSA will include the effect of both the
input variability and the stochastic solver variability. A standard approach to treating
solver uncertainty when using a stochastic computational model with existing UQ and GSA
methods is to increase the resolution of the stochastic solver such that the total observed
output statistics converge to the parametric statistics. A number of studies have suggested
that because of the high computational cost of the standard approach, it would be useful
to explicitly compute how much the solver RT variance contributes to the total observed
variance when the problem contains uncertain parameters [27, 94, 41, 85, 89]. Over the past
decade or so, some approaches to handle the impact of solver stochasticity have suggested
fixing the solver’s random seed and explicitly treating the covariances of the now-correlated
inputs [21, 55]. Specifically for sensitivity indices, many of the proposed methods mitigate
the expense of resolving the stochastic solver by instead emulating the stochastic solver
with a surrogate model, then calculating Sobol’ indices using the constructed surrogate at
a reduced computational cost [116].

The objectives of this dissertation research were to asses the effect of stochastic com-
putational models on UQ and GSA theory; to develop accurate, efficient, and broadly
applicable estimators for sampling-based UQ and GSA; to analyze the statistical properties
of the developed estimators; and to demonstrate the estimator’s use on a Monte Carlo
radiation transport problem with real-world applicability. The first novel contribution of
this dissertation was the development and statistical analysis of a variance deconvolution
estimator for UQ, in which the solver variance is explicitly computed during the repeated
evaluations of the computational model and is removed from the total observed variance.
The variance deconvolution analysis was then extended to sensitivity indices for GSA,
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and a novel approach for computing indices was developed by incorporating the variance
deconvolution estimator into existing sampling-based estimators for the Saltelli approach.
This work is presented in a series of four manuscripts that have been published in or
submitted to academic journals and conferences.

In Chapter 2, the law of total variance was applied to present in closed-form how
the parametric variance and stochastic solver variance contribute to the total observed
variance. The primary outcome was the development of a variance deconvolution estimator
to accurately and precisely estimate the parametric variance. Rather than the standard
method of over-resolving the stochastic solver variance for each UQ evaluation of the
computational model, variance deconvolution explicitly computes the stochastic solver
variance and removes it from the total observed variance. We showed both in theory
and numerically, with an example neutral-particle radiation transport problem, that the
variance deconvolution estimator is unbiased and more efficient than the standard approach
for the same computational cost. Statistical analysis of the estimator and numerical results
suggest an efficiency trade-off between the number of UQ samples and number of stochastic
model samples (e.g., particle histories) for a prescribed computational budget. We used
the analytic solution of the example radiation transport problem to find the cost-optimal
distribution between UQ samples and stochastic model samples, and ongoing work focuses
on constructing a pilot study to numerically estimate the cost-optimal distribution without
an analytic solution, for application to more complex and realistic problems. While the
presented test problem applied variance deconvolution to Monte Carlo radiation transport
methods, the statistical analysis and theoretical conclusions of the variance deconvolution
estimator are applicable to sampling-based UQ coupled with any stochastic computational
model.

In Chapter 3, the variance deconvolution approach developed in Chapter 2 was incor-
porated into one estimator for first-order sensitivity index and one estimator for total-order
sensitivity index. These variance deconvolution indices were applied to a 1D slab radiation
transport problem and compared to a standard approach using the existing SI estimators
without variance deconvolution. That work served as a precursor to Chapter 4, in which the
theoretical variance deconvolution analysis in Chapter 2 was extended to ANOVA-based
sensitivity indices and a full suite of first- and total-order SIs. We show in closed-form that
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in general, using a stochastic solver will always under-estimate the parametric first-order
SIs and over-estimate the parametric total-order SIs. Though the total observed first- and
total-order SIs will still correctly rank the input parameters, the respective under- and over-
estimates of the parametric indices could cause an analyst to draw incorrect conclusions
about the importance of specific parameters. The accuracy of one first- and one total-order
estimator were examined analytically with asymptotic limit analysis. We found that though
the variance-deconvolution version of existing SI estimators has a higher variance than
its standard-approach counterpart, the variance deconvolution version is consistently more
accurate than the standard version. We corroborated these theoretical findings with two
numerical test problems: the Ishigami function and a 1-D neutral-particle multi-group
radiation transport problem with fission physics.

In Chapter 5, the developed variance deconvolution UQ and GSA methods were coupled
with Monte Carlo radiation transport to perform uncertainty quantification and global
sensitivity analysis on the 3-D C5G7-TD benchmark in its initial unrodded configuration.
The C5G7 core was modeled using Monte Carlo Dynamic Code (MC/DC), a neutral-
particle transport code from the PSAAP-III Center for Exascale Monte Carlo Neutron
Transport. Manufacturing uncertainties of fuel pin radius and density were sampled
from a normal distribution of a 5% standard deviation about their respective nominal
values, based on similar manufacturing uncertainties in the OECD/NEA benchmarks for
Uncertainty Analysis in Modeling of LWRs. Both the core 𝑘eff eigenvalue and pinwise
core fission rate distribution were considered as quantities of interest. The standard and
variance deconvolution UQ approaches were compared. Using 50 inactive cycles, 100
active cycles, and 100 samples of the uncertain parameters, 𝜎𝑘,param/𝑘eff was estimated
to be 0.18% using 50K histories per cycle for the standard approach and 1K histories per
cycle using the variance deconvolution approach, a 50X reduction in computational cost.
Though the savings in computation time will vary from code-to-code, code execution time
is consistently positively correlated with particle history count. Additionally, variance
deconvolution was integrated with existing GSA methods to compute Sobol’ sensitivity
indices for the density and radii of each of the four fuel types in the core. The ability
to vary the densities and radii of the specific pin components such as pellet radius, gap
thickness, and clad thickness were limited due to the spatial homogenization of the 7-group
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cross sections provided by the benchmark. Nevertheless, the performed sensitivity analysis
found that the radii of the fuel pins was largely more influential than their densities, with
the radius of UO2 by far the most important parameter to 𝑘eff.

6.1 Future work

There are multiple possible directions for future work with variance deconvolution for UQ
and GSA: optimizing the division of computational cost between the number of parameter
samples and stochastic solver samples, extending the variance deconvolution for use with
correlated input parameters, and continuing to implement the method for large-scale Monte
Carlo radiation transport problems.

In Chapter 2, the optimal cost analysis performed for UQ defines the computational
cost as the product of the number of parameter samples and the number of stochastic solver
samples per realization. Further analysis should go beyond this linear cost definition to
consider other contributors to computation time, such as the re-start cost of the stochastic
computational model. Additionally, the statistics of the quantity of interest required to
find the optimal cost suggested in Chapter 2 are complex, up to the fourth moment of the
quantity of interest. Future work could include sensitivity analysis of the estimator itself
to the higher-order moments of the quantity of interest in order to simplify the number
and complexity of required statistics for optimal-cost analysis. Ideally, an algorithm could
be developed for both UQ and GSA that would use a pilot study to compute the statistics
necessary for optimal-cost analysis and ascertain the correct balance of parameter samples
and stochastic solver samples, akin to a multi-fidelity Monte Carlo study that uses the
lower-fidelity simulation to find the proper configuration for the higher-fidelity simulation.

All of the theoretical analysis thus far has assumed that the uncertain input parameters
are independently distributed. Much of the uncertainty and sensitivity analysis studies
that are performed for nuclear reactor and transport simulations consider nuclear data
as the source of input uncertainty. Nuclear data are often jointly distributed and their
uncertainties therefore include covariances. Future work could include extending variance
deconvolution to the case in which some or all of the input parameters are not independent
of one another. This would require a new estimator formulation and additional theoretical
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analysis.
In Chapter 5, the 3D-C5G7 nuclear reactor benchmark is used as the stochastic com-

putational model and the core k-eigenvalue is considered as a quantity of interest. We
hypothesized that sensitivity indices, with and without variance deconvolution, may be
inaccurate due to the effect of correlation between k-eigenvalue cycles. It would be inter-
esting to continue to explore this space by looking for the same effect in other cases where
correlation might arise, like in a time-dependent problem where the solution at a given time
depends on the solutions at the previous times. Additionally, future work could investigate
whether it would be necessary or useful to substitute the actual number of stochastic solver
samples used with an effective number of stochastic solver that takes into account the
correlated cycles.



123

Bibliography

[1] G. Archer, A. Saltelli, and I. Sobol’. Sensitivity measure, anova-like techniques and
the use of bootstrap. Journal of Statistical Computation and Simulation, 58:99–120,
1997.

[2] S. Azzi, B. Sudret, and J. Wiart. Sensitivity analysis for stochastic simulators using
differential entropy. International Journal for Uncertainty Quantification, 2020.

[3] I. Azzini, T. Mara, and R. Rosati. Monte carlo estimators of first- and total-orders
sobol’ indices, 2020. This is on arXiv and the pdf says it’s an Elsevier preprint.
However, I can’t find a published version.

[4] I. Azzini, T.A. Mara, and R. Rosati. Comparison of two sets of monte carlo estimators
of sobol’ indices. Environmental Modelling and Software, 144:105167, 2021.

[5] Forrest Brown, Jeremy Sweezy, and Robert Hayes. Monte carlo parameter studies
and uncertainty analysis with MCNP5. In Proceedings of PHYSOR 2004, Chicago,
Illinois, USA, 2004. PHYSOR.

[6] T. Browne, L. Le Gratiet, J. Lonchampt, and E. Remy. Stochastic simulators based
optimization by gaussian process metamodels – application to maintenance invest-
ments planning issues. International Journal of Quality and Reliability Engineering,
32(6):2067–2080, 2016.

[7] O. Buss, A. Hoefer, J. C. Neuber, and M. Schmid. Hierarchical Monte-Carlo ap-
proach to bias estimation for criticality safety calculations. Proceedings of PHYSOR
2010-Advances in Reactor Physics to Power the Nuclear Renaissance, 2010.

[8] D. Cacuci and M. Ionescu-Bujor. A comparative review of sensitivity and uncer-
tainty analysis of large-scale systems-ii: Statistical methods. Nuclear Science and
Engineering, 147(3):204–217, 2004.

[9] Eungchun Cho and Moon Jung Cho. Variance of sample variance. Proceedings of
the Survey Research Methods Section, pages 1291–1293, 2008.

[10] Eungchun Cho and Moon Jung Cho. Variance of sample variance. Proceedings of
the Survey Research Methods Section, pages 1291–1293, 2008.



124

[11] K. Clements, G. Geraci, and A. Olson. A variance deconvolution approach to
sampling uncertainty quantification for Monte Carlo radiation transport solvers.
In Computer Science Research Institute Summer Proceedings 2021, pages 293–
307, 2021. Technical Report SAND2022-0653R, https://www.sandia.gov/
ccr/csri-summer-programs/2021-proceedings/.

[12] K Clements, G. Geraci, and A. J. Olson. A variance deconvolution approach to
sampling uncertainty quantification for monte carlo radiation transport solvers. In
Computer Science Research Institute Summer Proceedings 2021, number Technical
Report SAND2022-0653R, pages 293–307, 2021. https://cs.sandia.gov/
summerproceedings/CCR2021.html.

[13] K. B. Clements, G. Geraci, and A. J. Olson. Numerical investigation on the perfor-
mance of a variance deconvolution estimator. Trans. Am. Nucl. Soc., 126:344–347,
2022.

[14] Kayla Clements, Gianluca Geraci, and Aaron J Olson. Numerical investigation on
the performance of a variance deconvolution estimator. Transactions of the American
Nuclear Society, 126(1):344–347, 2022.

[15] Kayla Clements, Gianluca Geraci, Aaron J Olson, and Todd S Palmer. Global
sensitivity analysis in monte carlo radiation transport. In Proceedings of the M&C
2023, Niagara Falls, Canada, 2023. American Nuclear Society.

[16] K.B. Clements, G. Geraci, A.J. Olson, and T.S. Palmer. A variance deconvolution
estimator for efficient uncertainty quantification in monte carlo radiation transport
applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 319,
2024.

[17] Nuclear Science Committee. Benchmark on deterministic transport calculations
without spatial homogenization. Technical report, Organization for Economic Co-
operation and Development Nuclear Energy Agency (OECD/NEA), 2005.

[18] National Research Council. Assessing the Reliability of Complex Models: Math-
ematical and Statistical Foundations of Verification, Validation, and Uncertainty
Quantification. The National Academies Press, Washington, DC, 2012.

[19] T. Crestaux, O. L. Maitre, and J-M. Martinez. Polynomial chaos expansion for
sensitivity analysis. Reliability Engineering & System Safety, 94(7):1161–1172,
2009.

https://www.sandia.gov/ccr/csri-summer-programs/2021-proceedings/
https://www.sandia.gov/ccr/csri-summer-programs/2021-proceedings/
https://cs.sandia.gov/summerproceedings/CCR2021.html
https://cs.sandia.gov/summerproceedings/CCR2021.html


125

[20] J. Crussell, T.M. Kroeger, A. Brown, and C. Phillips. Virtually the same: Comparing
physical and virtual testbeds. In 2019 International Conference on Computing,
Networking and Communications (ICNC). IEEE, 2019.

[21] S. Da Veiga, F. Wahl, and F. Gamboa. Local polynomial estimation for sensitivity
analysis on models with correlated inputs. Technometrics, 51:452–463, 2009.

[22] Erin Davis and Anil Prinja. The stochastic collocation method for radiation transport
in random media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112,
2011.

[23] Andrew W Decker. Verification and validation report for the radiation protection
factor methodology using Monte-Carlo N-Particle Code, version 6. Technical report,
Research and Development Directorate, Nuclear Science and Engineering Research
Center, 2018.

[24] Kevin Dowding. Overview of asme v&v 20-2009 standard for verification and
validation in computational fluid mechanics and heat transfer. Technical report,
V&V, UQ, and Credibility Processes Department, Sandia National Laboratories,
2016.

[25] James J. Duderstadt and Louis J. Hamilton. Nuclear Reactor Analysis. John Wiley
& Sons, 1976.

[26] M. essee and D. Dehart. Generalized perturbation theory capability within the scale
code package. In Proceedings of M&C 2009, Saratoga Springs, New York, USA,
2009. American Nuclear Society.

[27] A Fierro, E. Barnat, M. Hopkins, et al. Challenges and opportunities in verifica-
tion and validation of low temperature plasma simulations and experiments. The
European Physical Journal D, 75, 2021.

[28] G. Geraci, K. Clements, and A. J. Olson. A polynomial chaos approach for uncer-
tainty quantification of monte carlo transport codes. In Proceedings of ANS M&C,
August 2023.

[29] G. Geraci, K. Clements, and A.J. Olson. A polynomial chaos approach for uncer-
tainty quantification of monte carlo transport codes. In Proceedings of the American
Nuclear Society M&C 2023, 2023.



126

[30] G. Geraci, P.M. Congedo, R. Abgrall, and G. Iaccarino. High-order statistics in
global sensitivity analysis: Decomposition and model reduction. Computer Methods
in Applied Mechanics and Engineering, 301:80–115, 2016.

[31] G. Geraci and A. J. Olson. Impact of sampling strategies in the polynomial chaos
surrogate construction for monte carlo transport applications. In Proceedings of
ANS M&C, pages 76–86, October 2021.

[32] G. Geraci, L.P. Swiler, and B.J. Debusschere. Multifidelity uq sampling for stochastic
simulations. 16th U.S. National Congress on Computational Mechanics, 2021.

[33] Gianluca Geraci and Aaron Olson. Impact of sampling strategies in the polynomial
chaos surrogate construction for monte carlo transport applications. Proceedings of
the International Conference on Mathematics and Computational Methods Applied
to Nuclear Science and Engineering, pages 76–86, 2021.

[34] Roger Ghanem, David Higdon, and Houman Owhadi. Handbook of Uncertainty
Quantification. Springer International Publishing, Switzerland, 2017.

[35] Michael B Giles. Multilevel Monte Carlo path simulation. Operations Research,
56(3):607–617, 2008.

[36] G. Glen and K. Isaacs. Estimating sobol’ sensitivity indices using correlations.
Environmental Modelling and Software, 37:157–166, 2012.

[37] A. Gorodetsky, G. Geraci, M.S. Eldred, and J.D. Jakeman. A generalized approxi-
mate control variate framework for multifidelity uncertainty quantification. Journal
of Computational Physics, 408, 2020.

[38] Loic Le Gratiet and Josselin Garnier. Recursive co-kriging model for design of
experiments with multiple levels of fidelity. International Journal for Uncertainty
Quantification, 4(5):365–386, 2014.

[39] X. Guo et al. Kinetic methods in monte carlo code rmc and its implementation to
c5g7-td benchmark. Annals of Nuclear Energy, 2021.

[40] J.L. Hart, A. Alexanderian, and P.A. Gremaud. Efficient computation of sobol’
indices for stochastic models. SIAM Journal on Scientific Computing, 39(4):A1514–
A1530, 2017.

[41] Shintaro Hashimoto and Tatsuhiko Sato. Estimation method of systemic uncer-
tainties in Monte Carlo particle transport simulation based on analysis of variance.
Journal of Nuclear Science and Technology, 56, 2019.



127

[42] J.C. Helton. Uncertainty and sensitivity analysis for models of complex systems.
In Frank Graziani, editor, Computational Methods in Transport: Verification and
Validation, pages 207–228. Springer, Berlin, 2008.

[43] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of
model output. Reliability Engineering System Safety, 52(1):1–17, 1996.

[44] S. Hora and R. Iman. A comparison of maximum/bounding and bayesian/monte
carlo for fault tree uncertianty analysis (no. sand85-2839). Technical report, Sandia
National Laboratories, 1986.

[45] Jason Hou, Kostadin Ivanov, Victor Boyarinov, and Peter Fomichenko. Oecd/nea
benchmark for time-dependent neutron transport calculations without spatial ho-
mogenization. Nuclear Engineering and Design, 317:177–189, 2017.

[46] R. Iman and S. Hora. A robust measure of uncertainty importance for use in fault
tree system analysis. Risk Analysis, 10(3):401–403, 1990.

[47] M. Ionescu-Bujor and D. Cacuci. A comparative review of sensitivity and uncer-
tainty analysis of large-scale systems-i: Deterministic methods. Nuclear Science
and Engineering, 147(3):189–203, 2004.

[48] B. Iooss and M. Ribatet. Global sensitivity analysis of computer models with
functional inputs. Reliability engineering and system safety, 94:1194–1204, 2009.

[49] T. Ishigami and T. Homma. An importance quantification technique in uncertainty
analysis for computer models. In Proceedings of the ISUMA’90, First International
Symposium on Uncertainty Modelling and Analysis, University of Maryland, 1990.

[50] K. Ivanov, M. Avramova, and S. Kamerow. Benchmarks for uncertainty analysis
in modeling (uam) for the design, operation and safety analysis of lwrs. Technical
Report NEA/NSC/DOC(2013)7, OECD Nuclear Energy Agency, 2013.

[51] A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. Asymptotic normality
and efficiency of two sobol’ index estimators. ESAIM: Probability and Statistics,
18(3):342–364, 2014.

[52] M. Jansen. Analysis of variance designs for model output. Computer Physics
Communications, 117(1-2):35–43, 1999.

[53] M. Jimenez, O.P. Le Maitre, and O.M. Knio. Nonintrusive polynomial chaos ex-
pansions for sensitivity analysis in stochastic differential equations. SIAM Journal
on Uncertainty Quantification, 5(1), 2017.



128

[54] A.J. Koning and D. Rochman. Towards sustainable nuclear energy: Putting nuclear
physics to work. Annals of Nuclear Energy, 2008.

[55] A.J. Koning and D. Rochman. Modern nuclear data evaluation with the talys code
system. Nuclear Data Sheets, 113(12):2841–2934, 2012.

[56] K. Kontolati, D. Loukrezis, D.G. Giovanis, L. Vandanapu, and M.D. Shields. A
survey of unsupervised learning methods for high-dimensional uncertainty quantifi-
cation in black-box-type problems. Journal of Computational Physics, 464, 2022.

[57] S. Kucherenko, D. Albrecht, and A. Saltelli. Exploring multi-dimensional spaces:
a comparison of latin hypercube and quasi Monte Carlo sampling techniques. arXiv
- University of Cornall (USA), 2015.

[58] Joel Aaron Kulesza, Terry R. Adams, Jerawan Chudoung Armstrong, Simon R.
Bolding, Forrest Brooks Brown, et al. MCNP code version 6.3.0 theory & user
manual. Technical Report LA-UR-22-30006, Rev. 1, Los Alamos National Labora-
tory, 2022.

[59] R. Larsen and M.L. Marx. An Introduction to Mathematical Statistics and Its
Applications. Pearson Education, Boston: Prentice Hall, 5 edition, 2012.

[60] Richard Larsen and Morris L. Marx. An Introduction to Mathematical Statistics and
Its Applications. Pearson Education, Boston: Prentice Hall, 5 edition, 2012.

[61] A.M. Lattanzi and S. Subramaniam. Modeling Approaches and Computational
Methods for Particle-Laden Turbulent Flows, chapter 10 - Stochastic models. Aca-
demic Press, 2023.

[62] E.E. Lewis and W.F. Miller. Computational Methods of Neutron Transport. Ameri-
can Nuclear Society, La Grange, Illinois, 1993.

[63] L. Lilburne and S. Tarantola. Sensitivity analysis of spatial models. International
Journal of Geographic Informational Systems, 2009.

[64] Los Alamos National Laboratory. MCNP - A General Monte Carlo N-Particle
Transport Code, Version 5, 2008.

[65] I. Lux and L. Koblinger. Monte Carlo Particle Transport Methods: Neutron and
Photon Calculations. CRC Press, 1991.

[66] Olivier Le Maitre and Omar Knio. Spectral methods for uncertainty quantification:
With applications to computational fluid dynamics. Springer Netherlands, 2010.



129

[67] T.A. Mara and O.R. Joseph. Comparison of some efficient methods to evaluate the
main effect of compute model factors. Journal of Statistical and Computational
Simulations, 2008.

[68] A. Marrel, B. Iooss, S. Da Veiga, and M. Ribatet. Global sensitivity analysis of
stochastic computer models with joint metamodels. Statist Comput, 22:833–847,
2012.

[69] M.D. McKay. Evaluating prediction uncertainty (no. nureg/cr-6311). Technical
report, Nuclear Regulatory Commission, 1995.

[70] M.D. McKay, R.J. Beckman, and W.J. Conover. Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

[71] H. Monod, C. Naud, and D. Makowski. Uncertainty and Sensitivity Analysis for
Crop Models, pages 35–100. Elsevier Science, 1 edition, 2006. eBook ISBN:
9780080461939.

[72] Joanna Piper Morgan, Ilham Variansyah, Samuel L. Pasmann, Kayla B. Clements,
Braxton Cuneo, Alexander Mote, Charles Goodman, Caleb Shaw, Jordan Northrop,
Rohan Pankaj, Ethan Lame, Benjamin Whewell, Ryan G. McClarren, Todd S.
Palmer, Lizhong Chen, Dmitriy Y. Anistratov, C. T. Kelley, Camille J. Palmer,
and Kyle E. Niemeyer. Monte Carlo / Dynamic Code (MC/DC): An accelerated
Python package for fully transient neutron transport and rapid methods development.
Journal of Open Source Software, 9:6415, 2024.

[73] W.L. Oberkampf and C.J. Roy. Verification and Validation in Scientific Computing.
Cambridge University Press, Cambridge, 2010.

[74] A. J. Olson. Calculation of parametric variance using variance deconvolution. In
Transactions of the American Nuclear Society, volume 120, 2019.

[75] A. J. Olson, K. Clements, and James Petticrew. A sampling-based approach to solve
sobol’ indices using variance deconvolution for arbitrary uncertainty distributions.
Trans. Am. Nucl. Soc., 127:450–453, 2022.

[76] A. J. Olson, A. K. Prinja, and B. C. Franke. Error convergence characterization
for stochastic transport methods. In Transactions of the American Nuclear Society,
volume 116, 2017.



130

[77] Aaron J. Olson, Kayla B. Clements, and James M. Petticrew. A sampling-based
approach to solve Sobol’ indices using variance deconvolution for arbitrary uncer-
tainty distributions. Transactions of the American Nuclear Society, 127:450–453,
2022.

[78] A.B. Owen. Better estimation of small sobol’ sensitivity indices. ACM Transactions
on modeling and computer simulation (TOMACS), 2013.

[79] Art B. Owen. Monte carlo theory, methods and examples, 2013.

[80] Art B. Owen, Josef Dick, and Su Chen. Higher order Sobol’ indices. Information
and Inference: A Journal of the IMA, 3(1):59–81, 03 2014.

[81] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Optimal model man-
agement for multifidelity Monte Carlo estimation. SIAM Journal on Scientific
Computing, 38(5):A3163–A3194, 2016.

[82] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, and G. E. Karniadakis.
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 473(2198):20160751, 2017.

[83] S. Lo Piano, F. Ferretti, A. Puy, D. Albrecht, and A. Saltelli. Variance-based sen-
sitivity analysis: The quest for better estimators and designs between explorativity
and economy. Reliability Engineering and System Safety, 206, 2021.

[84] E. Plischke, E. Borgonovo, and C.L. Smith. Global sensitivity measures from given
data. European Journal of Operational Research, 2013.

[85] Dean Price, Andrew Maile, Joshua Peterson-Droogh, and Derreck Blight. A method-
ology for uncertainty quantification and sensitivity analysis for responses subject to
Monte Carlo uncertainty with application to fuel plate characteristics in the ATRC.
Nuclear Engineering and Technology, 54, 2022.

[86] A. Puy, W. Becker, S. Lo Piano, and A. Saltelli. A comprehensive comparison
of total-order estimators for global sensitivity analysis. International Journal for
Uncertainty Quantification, 2:1–18, 2022.

[87] A. Puy, S. Lo Piano, A. Saltelli, and S. Levin. Sensobol: An r package to compute
variance-based sensitivity indices. Journal of Statistical Software, 102, 2022.



131

[88] G. Kroisandt R. Korn, E. Korn. Monte Carlo Methods and Models in Finance and
Insurance. CRC Press, 2010.

[89] Greg A Radtke et al. Robust verification of stochastic simulation codes. Journal of
Computational Physics, 451, 2022.

[90] T. Rainforth, R. Cornish, H. Yang, A. Warrington, and F. Wood. On nesting monte
carlo estimators. Proceedings of the 35th International Conference on Machine
Learning, 80:4264–4273, 2018.

[91] M. Ratto, A. Pagano, and P. Young. State dependent parameter metamodelling and
sensitivity analysis. Computational Physics Communications, 2007.

[92] S. Razavi and H.V. Gupta. A new framework for comprehensive, robust, and efficient
global sensitivity analysis: 1. theory. Water Resources Research, 52(1):423–439,
2016.

[93] S. Razavi and H.V. Gupta. A new framework for comprehensive, robust, and efficient
global sensitivity analysis: 2. application. Water Resources Research, 52(1):440–
455, 2016.

[94] D. Rochman, W. Zwermann, S. C. van der Marck, A. J. Koning, H. Sjöstrand,
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