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1. DESCRIPTION AND CHARACTERISTICS OF THE OPEN-SOURCE
AIRFOILS

The Open-Source Offshore (OSO) airfoils have been developed for research purposes for offshore wind
turbines, offering a set of airfoils that align with modern turbine design requirements and industry design
practices without proprietary constraints on research use. The eventual airfoil family will target the IEA
22 MW reference wind turbine [Zahle et al. 2024], which was originally developed with the FFA airfoils.
The two airfoils summarized in Table 1 (0SO-21-WT1 and OSO-30-WT1) started development as part of a
family of airfoils being designed to target the IEA 22 MW wind turbine.

The criteria used to design these airfoils are summarized in Table 1, which aim to encapsulate
requirements of modern airfoils for offshore wind turbine applications, and were developed with
feedback from industry and research experts. The airfoils were designed using XFOIL and candidate airfoils
were then analyzed in RFOIL, which is considered more accurate than XFoil for high lift predictions of
thicker airfoils. The design process for a preliminary family of airfoils is available, including a more detailed
explanation of the design requirements and metrics similar to those used for these airfoils [Karcher et al.
2025].

Most of the design criteria are met for these two airfoils, with two exceptions. For both airfoils, the L/D
Roughness Loss metric is exceeded (42% > 40% goal) and the desired lift coefficient margin over the design
value (“CL_Margin”) was moderately exceeded (0.43 > 0.3) while smooth-stall characteristics (computed)
were achieved. Note that all of the metrics were computed using RFOIL, and like other new airfoils, these
will need to be experimentally validated at a range of Reynolds numbers. The airfoil coordinates will be
shared publicly on Sadia National Laboratories’ public Github repository:

(https://github.com/sandialabs/released-oso-airfoils).
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Figure 1-1. Shape of the 0S0O-21-WT1 (top) and OS0O-30-WT1 (bottom) airfoils.



https://github.com/sandialabs/released-oso-airfoils

Table 1-1. Open-Source Offshore airfoil design criteria and performance (computed metrics)

Design Criteria

Structures - Bending Stiffness

moment of inertia.

0S0-21-WT1 0S0-30-WT1

Modern Airfoil tip region Modern Airfoil mid-span Airfoil, tip region | Airfoil, mid-span
Thickness - t/c 21% 30% 21% 30%
Reynolds Number, Chordwise, design target Re=12e6+ Re=15e6+ Re=12e6 Re=18e6
CL_Design 1.2-1.6 1.2-1.6 1.47 1.43
L/D - Clean >200 >160 205 171
L/D - Rough >115 >95 121 100
L/D Roughness Loss % <40% <40% 41% 42%
Stall Margin - Clean >3 deg. 6.0 5.8
Stall Margin - Rough >3 deg. 6.0 4.8
CL Margin Cl_Max - Cl_Des < 0.3 0.42 0.43
CL Loss Rough CL Loss due to roughness at Alpha Design (< 10%) 4.3% 6.8%
Post Stall Slope - Clean (dCL/dAlpha < -0.17/deg. over 2 deg. post stall) -0.132 -0.103
Post Stall Slope - Rough (dCL/dAlpha < -0.17/deg. over 2 deg. post stall) -0.135 -0.091
L/D Robustness - Clean +/- 5% from peak L/D at +/- 1 deg. from design AoA 1.5% 4.0%
L/D Robustness - Rough +/- 5% from peak L/D at +/- 1 deg. from design AoA 3.5% 4.8%

~Equal or less than existing open airfoils (S-series, DU)
CM Magnitude < ]-0.17| | < |-0.16| -0.150 -0.156

Last 2% of chord must have a wedge angle of at least 10
Structures - TE angle degrees v v
Structures - Leading Edge Curvatl{re - Shaped for LE Radius > 0.01 LE Radius > 0.04
robust performance, manufacturing, and erosion v v

Limit concave curvature on aft airfoil upper surface for
Structures - Aft section upper surface curvature buckling resistance v v

Maximum thickness of airfoil measured perpendicular to
Structures - Spar location and thickness chord line and located aft of 25% normalized chord v v

Quantify that structural performance is at least as good as
existing open airfoils, for example by comparing area
v v







2. AIRFOIL MODELED PERFORMANCE DATA

Airfoil performance predictions made using RFoil (v 1.1) and XFoil (v. 6.99).

2.1. 0S0-21-WT1 Performance Data
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Figure 2-1. Shape of the 0S0O-21-WT1 airfoil.




CL
=

CL
o

Tau : 21, Clean

RFOIL
XFOIL
Re=3e6
Re=6e6
Re=12e6
Re=18e6

Figure 2-2. CL vs. Alpha, Clean and Rough, 0SO-21-WT1

30 —20 —10 0 10 20 30
Alpha
Tau : 21, Rough
—— RFOIL
—— XFOIL i
Re=3e6
Re=6eb6
Re=12e6
—— Re=18e6
30 —20 —10 0 10 20 30
Alpha




Tau : 21, Clean

3
2,
1,
0,
_1-
—21 ——— Re=12¢6
—— Re=18eb6
_0??000 0.005 0.010 0.015 0.020 0.025 0.030
CD
5 Tau : 21, Rough
2, I
1_
0,
—— RFOIL
1 ——- XFOIL
Re=3e6 -
Re=6eb6
—27 Re=12e6
—— Re=18e6
_0??000 0.005 0.010 0.015 0.020 0.025 0.030

CD

Figure 2-3. CL vs. CD, Clean and Rough, 0SO-21-WT1
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Figure 2-4. CM vs. Alpha, Clean and Rough, 0SO-21-WT1

11

30




L/D

L/D

Tau : 21, Clean

300
—— RFOIL
500~ XFOLL
—— Re=3eb
Re=6eb
L1001 —— Re=12¢6
—— Re=18¢6
ol e
—100
—200 1
=305 —20 —10 0 10 20 30
Alpha
200 Tau : 21, Rough
—— RFOIL
500~ XFOLL
Re=3eb6
Re=6eb
100+ Re—12¢6
—— Re=18¢6
O,
—100
—200 1
=305 —20 —10 0 10 20 30

Alpha
Figure 2-5. L/D vs. Alpha, Clean and Rough, 0S0O-21-WT1

12




L/D

L/D

Tau : 21 , Clean

300
—— RFOIL
500~ XFOLL
—— Re=3eb
Re=6eb
1001 —— Re=12e6
—— Re=18¢6
O,
—100
—200 1
—30073 9 1 0 1 9
CL
200 Tau : 21, Rough
—— RFOIL
500~ XFOLL
Re=3eb6
Re=6eb
100+ Re—12¢6
—— Re=18¢6
O,
—100
—200 1
—30073 9 1 0 1 9

Figure 2-6. L/D vs. CL, Clean and Rough, 0S0-21-WT1
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2.2. 0SO0-30-WT1 Performance Data
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Figure 2-7. Shape of the 0SO-30-WT1 airfoil.

For the 30% thick (OSO-30-WT1) airfoil, RFoil will converge to two lift curves at negative angles of
attack post-stall for this airfoil. Only the lower in magnitude negative angle of attack lift curve is
reported from the RFoil data, the higher in magnitude negative lift curve values are not included and
are closer to the reported XFoil values.
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Figure 2-9. CL vs. CD, Clean and Rough, 0SO-30-WT1
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APPENDIX A. AIRFOIL COORDINATES

A.1. 0S0-21-WT1 Coordinates

Table 3-1. A.1. 0S0-21-WT1 Coordinates

1.0000000 0.0013100 0.2873058 0.1351977 0.0001259 -0.0025697 0.3099210 -0.0745518
0.9841340 0.0060754 0.2762660 0.1349087 0.0005035 -0.0051356 0.3214906 -0.0742716
0.9682721 0.0106047 0.2654083 0.1344209 0.0011327 -0.0076936 0.3332310 -0.0738902
0.9524181 0.0149262 0.2547356 0.1337342 0.0020133 -0.0102396 0.3451393 -0.0734036
0.9365761 0.0190663 0.2442504 0.1328493 0.0031452 -0.0127697 0.3572124 -0.0728077
0.9207500 0.0230493 0.2339556 0.1317675 0.0045281 -0.0152800 0.3694473 -0.0720984
0.9049440 0.0268976 0.2238535 0.1304911 0.0061615 -0.0177667 0.3818410 -0.0712717
0.8891618 0.0306313 0.2139469 0.1290232 0.0080452 -0.0202261 0.3943903 -0.0703236
0.8734075 0.0342686 0.2042382 0.1273677 0.0101786 -0.0226546 0.4070921 -0.0692504
0.8576852 0.0378258 0.1947297 0.1255293 0.0125611 -0.0250490 0.4199431 -0.0680487
0.8419986 0.0413169 0.1854240 0.1235135 0.0151923 -0.0274060 0.4329401 -0.0667154
0.8263518 0.0447544 0.1763234 0.1213267 0.0180713 -0.0297226 0.4460799 -0.0652476
0.8107488 0.0481488 0.1674301 0.1189759 0.0211976 -0.0319961 0.4593592 -0.0636432
0.7951933 0.0515087 0.1587465 0.1164691 0.0245702 -0.0342237 0.4727745 -0.0619005
0.7796895 0.0548412 0.1502746 0.1138147 0.0281884 -0.0364032 0.4863226 -0.0600187
0.7642411 0.0581517 0.1420166 0.1110219 0.0320513 -0.0385324 0.5000000 -0.0579974
0.7488520 0.0614441 0.1339746 0.1081005 0.0361578 -0.0406093 0.5138033 -0.0558375
0.7335262 0.0647210 0.1261506 0.1050606 0.0405070 -0.0426322 0.5277289 -0.0535405
0.7182674 0.0679833 0.1185466 0.1019130 0.0450978 -0.0445995 0.5417735 -0.0511093
0.7030796 0.0712312 0.1111646 0.0986687 0.0499289 -0.0465099 0.5559334 -0.0485478
0.6879666 0.0744632 0.1040062 0.0953388 0.0549992 -0.0483623 0.5702051 -0.0458612
0.6729320 0.0776772 0.0970735 0.0919350 0.0603074 -0.0501559 0.5845850 -0.0430563
0.6579799 0.0808700 0.0903680 0.0884686 0.0658521 -0.0518897 0.5990695 -0.0401411
0.6431138 0.0840375 0.0838915 0.0849512 0.0716321 -0.0535634 0.6136549 -0.0371254
0.6283375 0.0871749 0.0776457 0.0813940 0.0776457 -0.0551763 0.6283375 -0.0340208
0.6136549 0.0902767 0.0716321 0.0778082 0.0838915 -0.0567281 0.6431138 -0.0308405
0.5990695 0.0933370 0.0658521 0.0742044 0.0903680 -0.0582188 0.6579799 -0.0275998
0.5845850 0.0963492 0.0603074 0.0705930 0.0970735 -0.0596480 0.6729320 -0.0243160
0.5702051 0.0993064 0.0549992 0.0669838 0.1040062 -0.0610158 0.6879666 -0.0210086
0.5559334 0.1022012 0.0499289 0.0633858 0.1111646 -0.0623221 0.7030796 -0.0176990
0.5417735 0.1050261 0.0450978 0.0598075 0.1185466 -0.0635668 0.7182674 -0.0144111
0.5277289 0.1077734 0.0405070 0.0562566 0.1261506 -0.0647500 0.7335262 -0.0111714
0.5138033 0.1104350 0.0361578 0.0527396 0.1339746 -0.0658715 0.7488520 -0.0080083
0.5000000 0.1130032 0.0320513 0.0492626 0.1420166 -0.0669311 0.7642411 -0.0049532
0.4863226 0.1154697 0.0281884 0.0458304 0.1502746 -0.0679287 0.7796895 -0.0020398
0.4727745 0.1178266 0.0245702 0.0424468 0.1587465 -0.0688638 0.7951933 0.0006957
0.4593592 0.1200661 0.0211976 0.0391147 0.1674301 -0.0697359 0.8107488 0.0032140
0.4460799 0.1221802 0.0180713 0.0358359 0.1763234 -0.0705444 0.8263518 0.0054737
0.4329401 0.1241613 0.0151923 0.0326112 0.1854240 -0.0712883 0.8419986 0.0074305
0.4199431 0.1260021 0.0125611 0.0294402 0.1947297 -0.0719666 0.8576852 0.0090371
0.4070921 0.1276953 0.0101786 0.0263219 0.2042382 -0.0725780 0.8734075 0.0102441
0.3943903 0.1292340 0.0080452 0.0232539 0.2139469 -0.0731210 0.8891618 0.0109990
0.3818410 0.1306117 0.0061615 0.0202332 0.2238535 -0.0735938 0.9049440 0.0112469
0.3694473 0.1318223 0.0045281 0.0172558 0.2339556 -0.0739944 0.9207500 0.0109301
0.3572124 0.1328600 0.0031452 0.0143172 0.2442504 -0.0743204 0.9365761 0.0099886
0.3451393 0.1337195 0.0020133 0.0114119 0.2547356 -0.0745693 0.9524181 0.0083599
0.3332310 0.1343961 0.0011327 0.0085341 0.2654083 -0.0747384 0.9682721 0.0059791
0.3214906 0.1348855 0.0005035 0.0056773 0.2762660 -0.0748246 0.9841340 0.0027789
0.3099210 0.1351842 0.0001259 0.0028350 0.2873058 -0.0748245 1.0000000 -0.0013100
0.2985251 0.1352890 0.0000000 0.0000000 0.2985251 -0.0747348
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A.2.

1.0000000
0.9841340
0.9682721
0.9524181
0.9365761
0.9207500
0.9049440
0.8891618
0.8734075
0.8576852
0.8419986
0.8263518
0.8107488
0.7951933
0.7796895
0.7642411
0.7488520
0.7335262
0.7182674
0.7030796
0.6879666
0.6729320
0.6579799
0.6431138
0.6283375
0.6136549
0.5990695
0.5845850
0.5702051
0.5559334
0.5417735
0.5277289
0.5138033
0.5000000
0.4863226
0.4727745
0.4593592
0.4460799
0.4329401
0.4199431
0.4070921
0.3943903
0.3818410
0.3694473
0.3572124
0.3451393
0.3332310
0.3214906
0.3099210
0.2985251

0S0-30-WT1 Coordinates

0.0091400
0.0148232
0.0201982
0.0253076
0.0301887
0.0348737
0.0393908
0.0437639
0.0480141
0.0521592
0.0562144
0.0601928
0.0641050
0.0679601
0.0717652
0.0755260
0.0792466
0.0829299
0.0865774
0.0901895
0.0937654
0.0973033
0.1008005
0.1042534
0.1076574
0.1110073
0.1142970
0.1175200
0.1206690
0.1237366
0.1267146
0.1295949
0.1323688
0.1350277
0.1375631
0.1399662
0.1422287
0.1443424
0.1462992
0.1480917
0.1497127
0.1511556
0.1524146
0.1534840
0.1543593
0.1550364
0.1555120
0.1557836
0.1558494
0.1557085

Table 3-2. A.2. 0S0O-30-WT1 Coordinates

0.2873058
0.2762660
0.2654083
0.2547356
0.2442504
0.2339556
0.2238535
0.2139469
0.2042382
0.1947297
0.1854240
0.1763234
0.1674301
0.1587465
0.1502746
0.1420166
0.1339746
0.1261506
0.1185466
0.1111646
0.1040062
0.0970735
0.0903680
0.0838915
0.0776457
0.0716321
0.0658521
0.0603074
0.0549992
0.0499289
0.0450978
0.0405070
0.0361578
0.0320513
0.0281884
0.0245702
0.0211976
0.0180713
0.0151923
0.0125611
0.0101786
0.0080452
0.0061615
0.0045281
0.0031452
0.0020133
0.0011327
0.0005035
0.0001259
0.0000000

0.1553606
0.1548064
0.1540472
0.1530851
0.1519231
0.1505647
0.1490141
0.1472763
0.1453567
0.1432615
0.1409972
0.1385709
0.1359900
0.1332625
0.1303964
0.1274003
0.1242826
0.1210523
0.1177182
0.1142891
0.1107740
0.1071816
0.1035205
0.0997994
0.0960263
0.0922092
0.0883558
0.0844733
0.0805684
0.0766476
0.0727167
0.0687811
0.0648457
0.0609146
0.0569917
0.0530800
0.0491822
0.0453003
0.0414356
0.0375892
0.0337614
0.0299520
0.0261607
0.0223863
0.0186275
0.0148827
0.0111498
0.0074267
0.0037109
0.0000000

0.0001259
0.0005035
0.0011327
0.0020133
0.0031452
0.0045281
0.0061615
0.0080452
0.0101786
0.0125611
0.0151923
0.0180713
0.0211976
0.0245702
0.0281884
0.0320513
0.0361578
0.0405070
0.0450978
0.0499289
0.0549992
0.0603074
0.0658521
0.0716321
0.0776457
0.0838915
0.0903680
0.0970735
0.1040062
0.1111646
0.1185466
0.1261506
0.1339746
0.1420166
0.1502746
0.1587465
0.1674301
0.1763234
0.1854240
0.1947297
0.2042382
0.2139469
0.2238535
0.2339556
0.2442504
0.2547356
0.2654083
0.2762660
0.2873058
0.2985251

-0.0036077
-0.0072175
-0.0108291
-0.0144422
-0.0180565
-0.0216717
-0.0252874
-0.0289032
-0.0325186
-0.0361331
-0.0397461
-0.0433568
-0.0469643
-0.0505676
-0.0541655
-0.0577567
-0.0613395
-0.0649121
-0.0684724
-0.0720179
-0.0755460
-0.0790534
-0.0825369
-0.0859925
-0.0894159
-0.0928025
-0.0961472
-0.0994443
-0.1026878
-0.1058714
-0.1089880
-0.1120303
-0.1149905
-0.1178607
-0.1206323
-0.1232965
-0.1258444
-0.1282668
-0.1305542
-0.1326974
-0.1346868
-0.1365131
-0.1381671
-0.1396397
-0.1409223
-0.1420065
-0.1428845
-0.1435489
-0.1439929
-0.1442106

0.3099210
0.3214906
0.3332310
0.3451393
0.3572124
0.3694473
0.3818410
0.3943903
0.4070921
0.4199431
0.4329401
0.4460799
0.4593592
0.4727745
0.4863226
0.5000000
0.5138033
0.5277289
0.5417735
0.5559334
0.5702051
0.5845850
0.5990695
0.6136549
0.6283375
0.6431138
0.6579799
0.6729320
0.6879666
0.7030796
0.7182674
0.7335262
0.7488520
0.7642411
0.7796895
0.7951933
0.8107488
0.8263518
0.8419986
0.8576852
0.8734075
0.8891618
0.9049440
0.9207500
0.9365761
0.9524181
0.9682721
0.9841340
1.0000000

-0.1441964
-0.1439459
-0.1434553
-0.1427218
-0.1417435
-0.1405192
-0.1390491
-0.1373340
-0.1353758
-0.1331773
-0.1307424
-0.1280758
-0.1251832
-0.1220713
-0.1187474
-0.1152201
-0.1114986
-0.1075931
-0.1035145
-0.0992748
-0.0948869
-0.0903646
-0.0857229
-0.0809778
-0.0761463
-0.0712472
-0.0663002
-0.0613268
-0.0563502
-0.0513952
-0.0464888
-0.0416598
-0.0369395
-0.0323611
-0.0279602
-0.0237750
-0.0198456
-0.0162144
-0.0129260
-0.0100262
-0.0075626
-0.0055834
-0.0041369
-0.0032708
-0.0030314
-0.0034621
-0.0046023
-0.0064860
-0.0091400
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