
**U.S. Department of Energy**  
Assistant Secretary  
Conservation and Renewable Energy  
Office of Buildings and Community Systems  
Buildings Systems Division  
Washington, DC 20585

## **Description of the Testing Process for the Automated Residential Energy Standard (ARES)**

**In Support of Proposed Interim Energy Conservation Voluntary  
Performance Standards for New Non-Federal Residential Buildings**

**September 1989**





## ACKNOWLEDGMENTS

A number of organizations and individuals contributed to the preparation of this document. Funding for the project was provided by the Department of Energy (DOE), Office of Buildings and Community Systems under the direction of John Millhone. Program management and contract monitoring at DOE was provided by Stephen Walder. Technical recommendations in this report were prepared by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Technical Evaluation Committee for Special Project 53. That committee consisted of the following persons:

Faye C. McQuiston (chairman), Oklahoma State University, Stillwater  
M. Emanuel Levy (vice-chairman), The Levy Partnership, New York  
Robert D. Busch, R.D. Busch & Associates, Albuquerque  
Charles F. Gilbo, Charles F. Gilbo Consultant, Lancaster  
L.M. Holder III, L.M. Holder III, Inc., Austin  
Daniel Hugh Nall, Jones Nall & Davis, Atlanta  
Glen A. Raymond, Carrier Corporation, Syracuse  
Richard Tracy, Ryan Homes, Pittsburgh

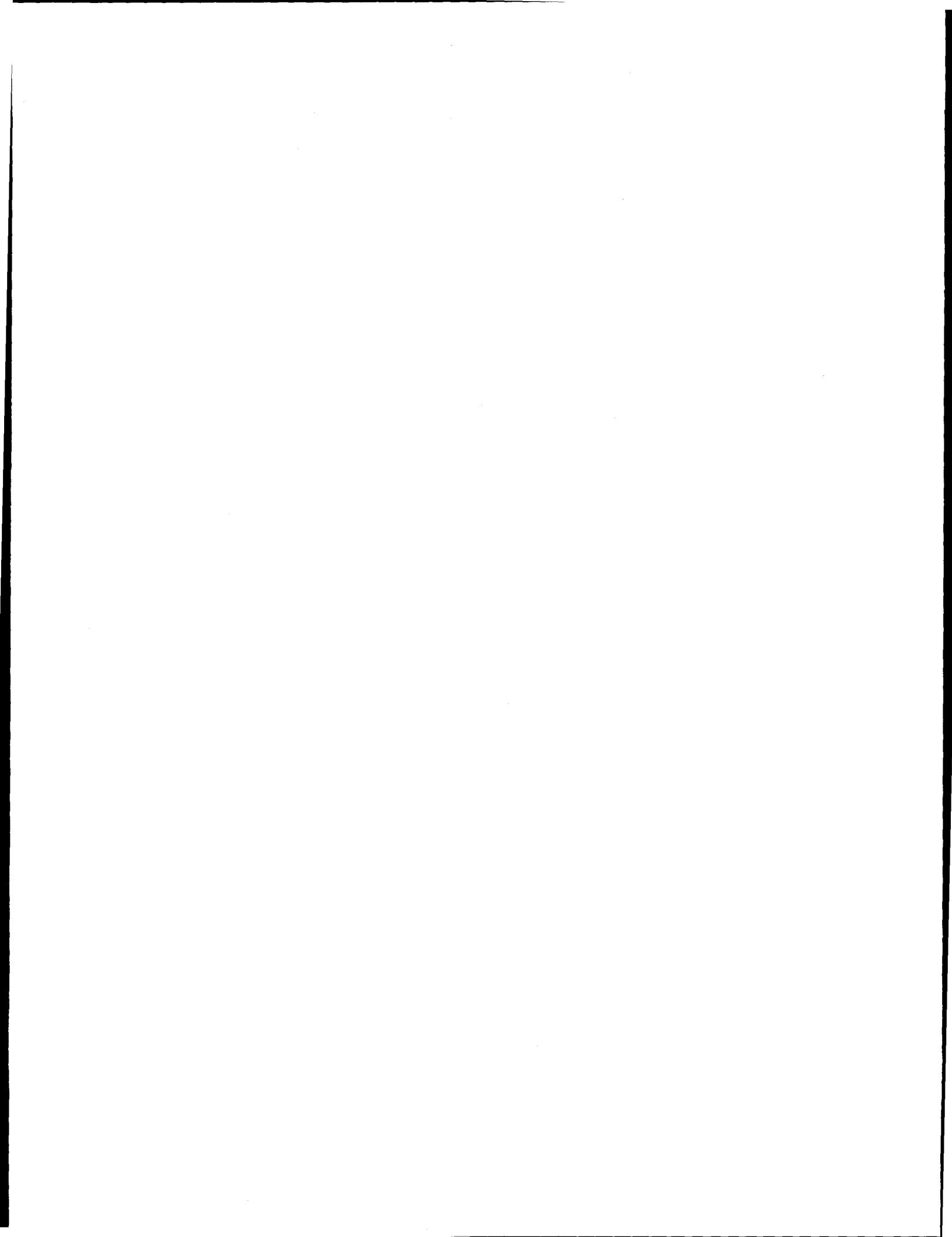
David Conover of the National Conference of States on Building Codes and Standards provided invaluable expertise and insight throughout the development process. Joe Huang of Lawrence Berkeley Laboratory conducted the numerous computer simulations that form the basis for the energy analyses in the standard.

Michael R. Brambley and, previously, Raymond Reilly and Allen Lee served as project manager for the Voluntary Residential Standards Project at Pacific Northwest Laboratory (PNL). Victor Lortz wrote the software which embodies the proposed Standard and was primary author of the accompanying User's Guide. Z. Todd Taylor provided overall guidance and technical support for the analysis of the standard and assisted in preparation of the software User's Guide.

The software for this proposed voluntary standard has been used by the U.S. Department of Housing and Urban Development (HUD) in developing proposed new HUD mandatory standards for new manufactured housing. HUD funded work at PNL that was used jointly in HUD's new standard and in updates to the proposed DOE Voluntary Residential Standard.

## PREFACE

The Energy Conservation for New Buildings Act of 1976, as amended, 42 U.S.C. Section 6831 et. seq. requires the U.S. Department of Energy (DOE) to issue energy conservation standards for the design of new residential and commercial buildings. The standards will be mandatory only for the design of new federal buildings and will serve as voluntary guidelines for the design of new non-federal buildings.


The original recommendations for the non-federal residential standards were produced by the American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53 under contract to Pacific Northwest Laboratory (PNL). Those recommendations were published in four volumes entitled Recommendations for Energy Conservation Standards for New Residential Buildings. DOE modified the original recommendations to accommodate an optional, more flexible economic analysis procedure. DOE also directed PNL to produce additional technical documentation for the software that embodies the standards and to assess the economic and environmental effects of the standards.

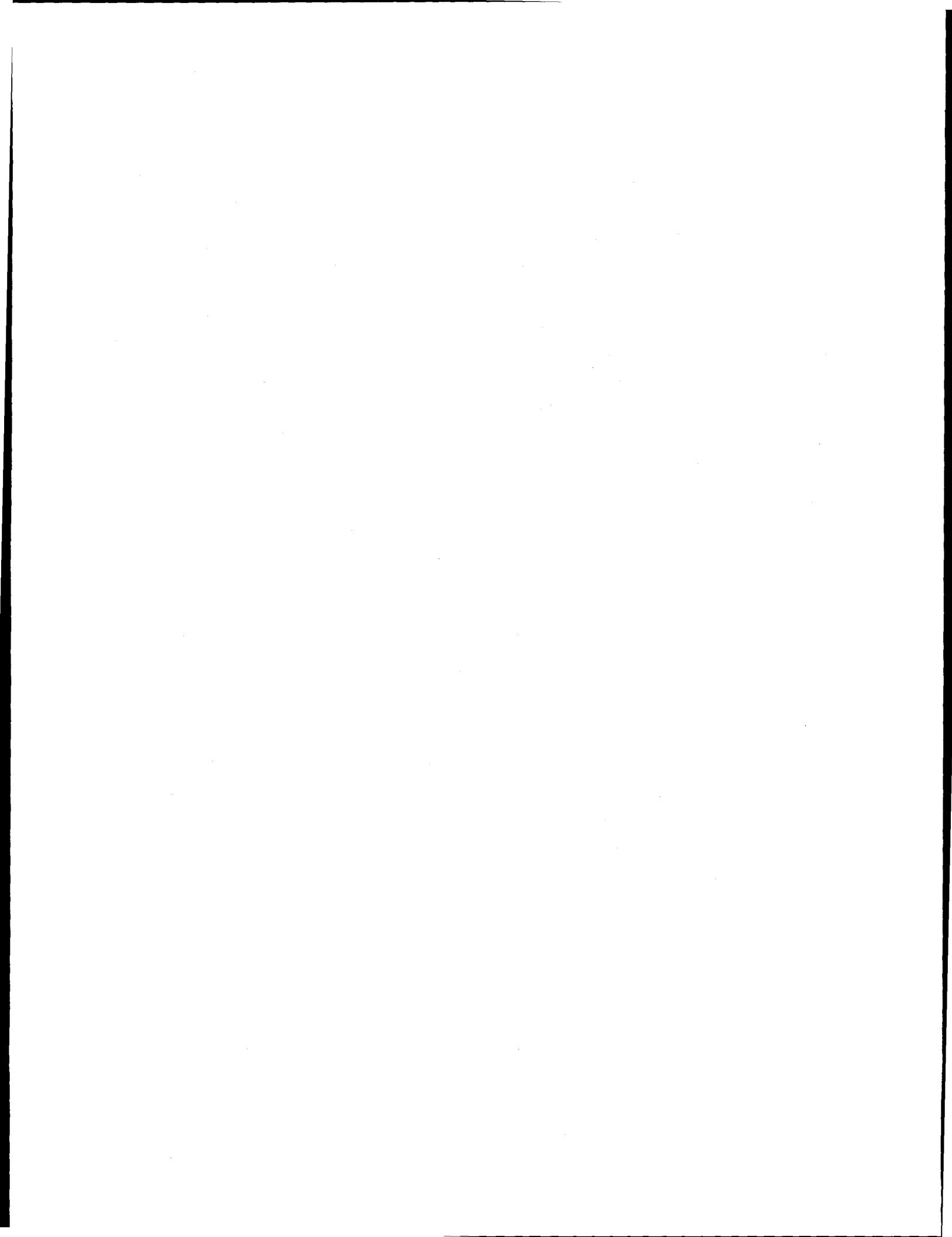
The final standards are documented in six publications in support of the Proposed Interim Energy Conservation Voluntary Performance Standards for New Non-Federal Residential Buildings:

- ARES 1.2 User's Guide (Automated Residential Energy Standard) - Explains the use of the ARES program to develop location-specific energy conservation requirements.
- Technical Support Documentation for the Automated Residential Energy Standard (ARES) - Explains the data and algorithms used by the ARES program to optimize energy-related features of new residences.
- Background to the Development Process for the Automated Residential Energy Standard (ARES) - Explains the background and philosophy of the standard development process.
- Technical Support Documentation for the Automated Residential Energy Standard (ARES) Data Base - Documents the assumptions and procedures used to develop the residential energy consumption data base in ARES.
- Description of the Testing Process for the Automated Residential Energy Standard (ARES) - Describes the process used by the development committee to initially test the ARES computer program.
- Economic Analysis - Describes an assessment of the likely impacts of the new standards on the nation's economy.
- Environmental Assessment - Describes an assessment of the likely impacts of the new standards on new home habitability, on institutions associated with residential construction, and on the economy in general.

CONTENTS

|                                                                        |     |
|------------------------------------------------------------------------|-----|
| PREFACE . . . . .                                                      | iv  |
| 1.0 INTRODUCTION . . . . .                                             | 1.1 |
| 2.0 TESTING THE PROCESS FOR GENERATING THE STANDARD'S REQUIREMENTS . . | 2.1 |
| 3.0 TESTING THE POINTS COMPLIANCE METHOD . . . . .                     | 3.1 |
| APPENDIX A - BASIC STANDARD REQUIREMENT ANALYSES FOR FIVE CITIES . . . | A.1 |
| APPENDIX B - SAMPLE POINTS COMPLIANCE ANALYSIS . . . . .               | B.1 |




## 1.0 INTRODUCTION

Testing of the Standard recommendations was conducted in two parts. The first test examined the apparent equity and accuracy of the requirements that are generated by the procedures and data that support the Standard. The second test was performed to delineate problems that may exist with the points compliance procedure.

The scope of the tests was limited by schedule and financial considerations and intended only to uncover any substantive and obvious problems. Where errors were found that had an impact on the requirements, corrections were made. In addition, modifications were described that simplified the use, and improved the graphic quality of the Standard materials. Where time and resources allowed, these primarily cosmetic changes were implemented.

In the sections that follow, the scope of the tests, the method of analysis, the results, and the conclusions are discussed. In general, the first test indicated that the requirements generated by the Standard procedures and formulae appear to yield reasonable results, although some of the cost data provided as defaults in the Standard should be reevaluated. The second test provided experience that was useful in modifying the points compliance format, but did not uncover any procedural issues that would lead to unreasonable results.

These conclusions are based on analysis using the Automated Residential Energy Standard (ARES) computer program, developed to simplify the process of standards generation. Time and resource constraints prohibited assessing the accuracy of the ARES program in reproducing the results of the algorithms (selected or created by the SP-53 committee) that determine the Standard's requirements. These assessments were, however, made during the software development stages at Pacific Northwest Laboratory (PNL), and are documented in the project files.



## 2.0 TESTING THE PROCESS FOR GENERATING THE STANDARD'S REQUIREMENTS

This test sought to assess the procedures and data used in generating the Standard's requirements. The test was qualitative as opposed to quantitative. The intent was not to rigorously evaluate the numeric accuracy of the algorithms and standard development procedures. Rather the test was conducted to determine whether the requirements they generate, through running the ARES program, appear to be "reasonable" and provide regionally equitable results.

In cases where the resulting requirements were suspect, probable causes were identified and, if the required changes were minor, they were implemented. Suggested changes that were implemented prior to publication of this document are not recorded herein. None of the problems identified in this test required substantial changes to the Standard materials.

For five geographically and climatically disparate locations the ARES program was run, yielding Standard requirements for select housing types and energy types (see Appendix A). The requirements for the five locations - Fort Lauderdale, FL, South Bend, IN, Spokane, WA, Syracuse, NY and Tucson, AZ - were generated using local energy and energy conservation measure costs provided by the National Association of Home Builders National Research Center(a) as modified by the SP-53 committee (see ECM Costs Position Paper(b)).

Requirements were generated for the housing and energy types listed in table 2.1. A summary of the results follows.

---

(a) An Economic Data Base in Support of SPC 90.2: Costs of Residential Energy, Thermal Envelope and HVAC Equipment, NAHB National Research Center, ASHRAE Research Project 494-RP, December 1986.

(b) The position papers of SP-53 are to be published in Background to the Development Process for the Automated Residential Energy Standard (ARES) in support of the Proposed Interim Energy Conservation Voluntary Performance Standards for New Non-Federal Residential Buildings.

| Location/<br><u>Table No./Housing Type</u> <sup>(1)</sup> | Equipment Type (Heating/Cooling) |                                  |                                  |                                |                            |
|-----------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------|----------------------------|
|                                                           | <u>Oil/</u><br><u>DX Clg.</u>    | <u>N. Gas/</u><br><u>DX Clg.</u> | <u>LP Gas/</u><br><u>DX Clg.</u> | <u>Elec/</u><br><u>DX Clg.</u> | <u>Heat</u><br><u>Pump</u> |
| <b>Fort Lauderdale, FL</b>                                |                                  |                                  |                                  |                                |                            |
| 1a. Manufactured housing                                  |                                  |                                  | 0                                | 0                              | 0                          |
| 1b. Single Family Detached                                |                                  |                                  | 0                                | 0                              | 0                          |
| 1c. Multi-Family Attached                                 |                                  |                                  | 0                                | 0                              | 0                          |
| <b>South Bend, IN</b>                                     |                                  |                                  |                                  |                                |                            |
| 2a. Manufactured housing                                  | 0                                |                                  | 0                                | 0                              |                            |
| 2b. Single Family Detached                                | 0                                |                                  |                                  | 0                              | 0                          |
| <b>Spokane, WA</b>                                        |                                  |                                  |                                  |                                |                            |
| 3a. Manufactured housing                                  |                                  |                                  | 0                                | 0                              | 0                          |
| 3b. Single Family Detached                                |                                  |                                  |                                  | 0                              | 0                          |
| 3c. Multi-Family Attached                                 |                                  |                                  |                                  | 0                              | 0                          |
| <b>Syracuse, NY</b>                                       |                                  |                                  |                                  |                                |                            |
| 4a. Single Family Detached                                | 0                                | 0                                |                                  |                                | 0                          |
| 4b. Multi-Family Attached                                 | 0                                | 0                                |                                  |                                | 0                          |
| <b>Tucson, AZ</b>                                         |                                  |                                  |                                  |                                |                            |
| 5a. Manufactured housing                                  |                                  | 0                                | 0                                |                                |                            |
| 5b. Single Family Detached                                |                                  | 0                                | 0                                |                                | 0                          |
| 5c. Multi-Family Attached                                 |                                  | 0                                | 0                                |                                | 0                          |

(1) Table No. refers to the tables in Appendix A of this volume that contain the results of the computer runs.

Table 2.1 Summary of Test Runs Performed

## General Observations

1. Low-E Glazing in the Basic Package - The Low-E glazing options appear to be cost-effective in most locations. This result is a reflection of the improved performance at little extra first cost. The Low-E option, in providing a more stringent energy target, places an inequitable burden on home construction where this product is not available.

The Low-E glazing option may be particularly difficult to acquire in the manufactured housing market (e.g. see results for Fort Lauderdale, FL). One possible rectifying action would be to default Low-E glazing to a "disallow" status for purposes of the optimization but, retain it as an option in the points and package compliance paths.
2. Unrealistic Glazing Options - In some instances the Triple Glazing without Thermal Breaks and the Single Glazing with Thermal Breaks may be selected in the optimization analysis for the basic package. These two options are atypical and unavailable in many housing markets. It is recommended that these options be eliminated from the Standard's materials or defaulted to a "disallow" status and not included in the optimization.
3. High Mechanical Equipment Efficiency - In a number of locations the required efficiency levels for the mechanical equipment appear high, particularly in the case of manufactured housing. These levels are expected to be the result of the assumed first costs. Further corroborating analysis is appropriate here.
4. Cross Regional Requirements - One observation that deems further analysis is inconsistent selection of ECMs across regions. For example, the single family detached housing envelope requirements are more stringent in Syracuse than South Bend, while the mechanical equipment requirements are higher in South Bend (see Oil Furnace results). Additional analysis is justified to delineate the reasons for these discontinuous results.
5. House Type Comparison - In most instances the default data yield similar requirements for single and multifamily housing and different and less stringent requirements for manufactured housing. This finding is not surprising given the somewhat higher costs to achieve stringent levels of conservation in manufactured versus site built housing and the

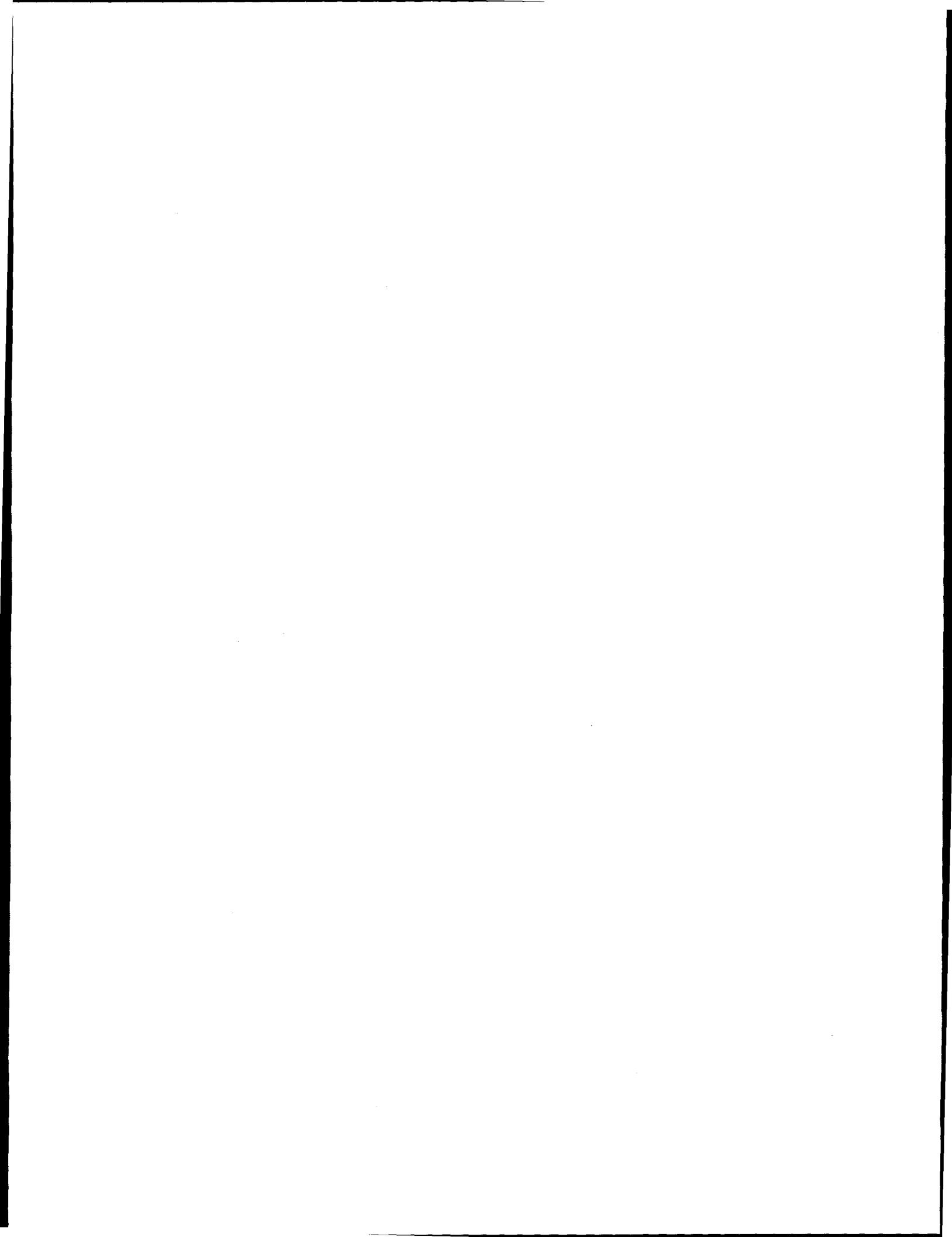
degradation in insulation performance due to compression in manufactured homes. This finding argues a case for providing thermal requirements that differ by housing type.

### 3.0 TESTING THE POINTS COMPLIANCE METHOD

An example of the use of the points compliance method was developed to test the clarity of the procedure and completeness of the descriptive material and to determine the reliability of the results for homes that differ physically from the basic prototypes used to generate the energy data base. In developing the example a number of observations were made concerning the graphic presentation and the descriptive material. The recommended modifications were implemented prior to issuance of the final version of the Text of the Standard.

Where appropriate, wording changes were made and descriptions modified to reflect terms in common usage in the building industry without sacrificing numeric accuracy nor the integrity of the language. While the test indicated that the method is complete and clear it is recommended that, prior to publication, the Points Path be subjected to a Beta type test for further refinement.

The test consisted of developing Point tables for single family detached housing in South Bend, Indiana, with Oil space heating and direct expansion cooling. (The package requirements associated with this set of conditions are provided on Table 2.b.) It was then assumed that compliance was to be demonstrated for a two-story, center hall colonial home in South Bend, Indiana, with the following physical characteristics:


|                      |                   |                   |                  |
|----------------------|-------------------|-------------------|------------------|
| Floor Area:          | 2504 sq. ft.      | Air Infiltration: | Tight Package    |
| Ceiling Area:        | 1224 sq. ft.      | HVAC Efficiency   |                  |
| Opaque Wall Area:    | 2088 sq. ft.      | Heating:          | AFUE 88%         |
| Fenestration Area    |                   | Cooling:          | SEER 10.0        |
| Total:               | 248 sq. ft.       | DHW System:       | Two Panel Active |
| North:               | 50 sq. ft.        |                   | Solar            |
| East:                | 120 sq. ft.       |                   |                  |
| South:               | 25 sq. ft.        |                   |                  |
| West:                | 53 sq. ft.        |                   |                  |
| Basement Type:       | Unheated Basement |                   |                  |
| Basement Floor Area: | 1280 sq. ft.      |                   |                  |

Based on that analysis, a number of graphic and procedural revisions were made. These were implemented prior to the release of the final Text of Volume I and are not reported here. In addition, the following observations were made:

1. The procedure is generally easy to follow and, while it is a considerable departure from current compliance procedures, the added degree of design flexibility is a distinct advantage.
2. As would be anticipated, the results are particularly sensitive to certain design decisions, such as selecting the "tight" level of air infiltration, a high level of mechanical equipment efficiency and the specification of a solar domestic hot water system. While the magnitude of the points associated with these options may be in the correct proportion relative to the other options, their use could allow compliance with relatively low levels of envelope insulation.
3. In compliance the same type of space conditioning equipment must be specified for both the Design and Target homes. This procedure assures that reductions in thermal integrity cannot be made simply by assuming that the Target home has electric resistance heat and the Design home has a heat pump.

This check and balance is not possible with the domestic hot water point computation. The target for the DHW system is set by the federally mandated minimum which provides values only for electric resistance. Specification of a heat pump water heater allows a credit against space conditioning conservation measures. This issue requires further consideration in the future.

APPENDIX A  
BASIC STANDARD REQUIREMENT ANALYSES FOR FIVE CITIES



APPENDIX A - BASIC STANDARD REQUIREMENT ANALYSES FOR FIVE CITIES

Table 1a. Comparison of Energy Conservation Measures for Fort Lauderdale, FL

Housing Type: Manufactured Housing

| Energy Conservation  |  | Heating Equipment Type |                         |                  |
|----------------------|--|------------------------|-------------------------|------------------|
| <u>Measure (ECM)</u> |  | <u>L-P Gas Furnace</u> | <u>Electric Furnace</u> | <u>Heat Pump</u> |
| Ceiling Insulation:  |  | R-11                   | R-11                    | R-11             |
| Wall Insulation:     |  | R- 7                   | R-11                    | R- 7             |
| Floor Insulation     |  |                        |                         |                  |
| Crawl:               |  | R- 7                   | R-11                    | R- 7             |
| Slab:                |  |                        |                         |                  |
| Heated Basement:     |  |                        |                         |                  |
| Unheated Basement:   |  |                        |                         |                  |
| Fenestration         |  |                        |                         |                  |
| Window Type:         |  | Double Low-E           | Double Low-E            | Double Low-E     |
|                      |  | Sun                    | Sun                     | Sun              |
| Max. Window Area:    |  | 12 %                   | 12 %                    | 12 %             |
| Min. South Window:   |  | 0 %                    | 0 %                     | 0 %              |
| Infiltration:        |  | Average                | Average                 | Average          |
| Equipment Efficiency |  |                        |                         |                  |
| Heating:             |  | AFUE 78 %              | 100 %                   | HSPF 7.3         |
| Cooling:             |  | SEER 10                | SEER 10                 | SEER 10          |

Table 1b. Comparison of Energy Conservation Measures for Fort Lauderdale, FL

Housing Type: Single Family Detached

| <u>Energy Conservation Measure (ECM)</u> | <u>Heating Equipment Type</u> |                         |                     |
|------------------------------------------|-------------------------------|-------------------------|---------------------|
|                                          | <u>L-P Gas Furnace</u>        | <u>Electric Furnace</u> | <u>Heat Pump</u>    |
| Ceiling Insulation:                      | R-30                          | R-30                    | R-30                |
| Wall Insulation:                         | R-11                          | R-11                    | R-11                |
| Floor Insulation                         |                               |                         |                     |
| Crawl:                                   | R- 0                          | R-11                    | R- 0                |
| Slab:                                    | R- 0                          | R- 0                    | R- 0                |
| Heated Basement:                         | R- 0                          | R- 0                    | R- 0                |
| Unheated Basement:                       | R- 0                          | R- 0                    | R- 0                |
| Fenestration                             |                               |                         |                     |
| Window Type:                             | Double Low-E<br>Sun           | Double Low-E<br>Sun     | Double Low-E<br>Sun |
| Max. Window Area:                        | 12 %                          | 12 %                    | 12 %                |
| Min. South Window:                       | 0 %                           | 0 %                     | 0 %                 |
| Infiltration:                            | Average                       | Average                 | Average             |
| Equipment Efficiency                     |                               |                         |                     |
| Heating:                                 | AFUE 78 %                     | 100 %                   | HSPF 7.3            |
| Cooling:                                 | SEER 10                       | SEER 10                 | SEER 10             |

Table 1c. Comparison of Energy Conservation Measures for Fort Lauderdale, FL

Housing Type: Multi-Family Attached

| Energy Conservation<br>Measure (ECM) | Heating Equipment Type |                     |                     |
|--------------------------------------|------------------------|---------------------|---------------------|
|                                      | L-P Gas Furnace        | Electric Furnace    | Heat Pump           |
| Ceiling Insulation:                  | R-19                   | R-19                | R-19                |
| Wall Insulation:                     | R-11                   | R-13                | R-11                |
| Floor Insulation                     |                        |                     |                     |
| Crawl:                               | R- 0                   | R-11                | R- 0                |
| Slab:                                | R- 0                   | R- 0                | R- 0                |
| Heated Basement:                     | R- 0                   | R- 0                | R- 0                |
| Unheated Basement:                   | R- 0                   | R- 0                | R- 0                |
| Fenestration                         |                        |                     |                     |
| Window Type:                         | Double Low-E<br>Sun    | Double Low-E<br>Sun | Double Low-E<br>Sun |
| Max. Window Area:                    | 12 %                   | 12 %                | 12 %                |
| Min. South Window:                   | 0 %                    | 0 %                 | 0 %                 |
| Infiltration:                        | Average                | Average             | Average             |
| Equipment Efficiency                 |                        |                     |                     |
| Heating:                             | AFUE 78 %              | 100 %               | HSPF 7.3            |
| Cooling:                             | SEER 10                | SEER 10             | SEER 10             |

Assumptions: Fort Lauderdale, FL

1. ECM costs and economic parameters: ARES default values.
2. Local energy costs: L-P Gas (\$/gallon) - 0.788  
Electricity (\$/Kwatt-hr) - 0.083 (winter)  
- 0.088 (summer)
3. Prevalent foundation type: Manufactured Housing - Crawl space  
Single Family Detached - Crawl space  
Multi-Family Attached - Crawl space

Table 2a. Comparison of Energy Conservation Measures for South Bend, IN

Housing Type: Manufactured Housing

| Energy Conservation  |                    | Heating Equipment Type |                         |                  |
|----------------------|--------------------|------------------------|-------------------------|------------------|
| <u>Measure (ECM)</u> | <u>Oil Furnace</u> | <u>L-P Gas Furnace</u> | <u>Electric Furnace</u> | <u>Heat Pump</u> |
| Ceiling Insulation:  | R-19               | R-19                   | R-33                    | R-19             |
| Wall Insulation:     | R-19               | R-19                   | R-19                    | R-19             |
| Floor Insulation     |                    |                        |                         |                  |
| Crawl:               | R-19               | R-19                   | R-28                    | R-19             |
| Slab:                |                    |                        |                         |                  |
| Heated Basement:     |                    |                        |                         |                  |
| Unheated Basement:   |                    |                        |                         |                  |
| Fenestration         |                    |                        |                         |                  |
| Window Type:         | Triple w/o TB      | Double Low-E           | Double Low-E            | Double Low-E     |
| Max. Window Area:    | 12 %               | 12 %                   | 12 %                    | 12 %             |
| Min. South Window:   | 0 %                | 0 %                    | 0 %                     | 0 %              |
| Infiltration:        | Average            | Average                | Average                 | Average          |
| Equipment Efficiency |                    |                        |                         |                  |
| Heating:             | AFUE 85 %          | AFUE 90 %              | 100%                    | HSPF 7.3         |
| Cooling:             | SEER 10            | SEER 10                | SEER 10                 | SEER 10          |

Table 2b. Comparison of Energy Conservation Measures for South Bend, IN

Housing Type: Single Family Detached

| Energy Conservation<br>Measure (ECM) | Heating Equipment Type |                  |               |
|--------------------------------------|------------------------|------------------|---------------|
|                                      | Oil Furnace            | Electric Furnace | Heat Pump     |
| Ceiling Insulation:                  | R-30                   | R-60             | R-30          |
| Wall Insulation:                     | R-23                   | R-26             | R-23          |
| Floor Insulation                     |                        |                  |               |
| Crawl:                               | R-19                   | R-30             | R-30          |
| Slab:                                | R- 5 (2 ft.)           | R-10 (4 ft.)     | R-10 (4 ft.)  |
| Heated Basement:                     | R- 5 (4 ft.)           | R-10 (4 ft.)     | R- 5 (4 ft.)  |
| Unheated Basement:                   | R-13                   | R-30             | R-19          |
| Fenestration                         |                        |                  |               |
| Window Type:                         | Triple w/o TB          | Triple Low-E     | Triple w/o TB |
| Max. Window Area:                    | 12 %                   | 12 %             | 12 %          |
| Min. South Window:                   | 0 %                    | 0 %              | 0 %           |
| Infiltration:                        | Average                | Average          | Average       |
| Equipment Efficiency                 |                        |                  |               |
| Heating:                             | AFUE 95 %              | 100 %            | HSPF 8.5      |
| Cooling:                             | SEER 10                | SEER 10          | SEER 11       |

Assumptions: South Bend, IN

1. ECM costs and economic parameters: ARES default values.
2. Local energy costs:
  - Oil (\$/gallon) - 0.987
  - L-P Gas (\$/gallon) - 0.788
  - Electricity (\$/Kwatt-hr) - 0.064 (winter)  
- 0.062 (summer)
3. Prevalent foundation type: Manufactured Housing - Crawl space  
Single Family Detached - Unheated Basement  
Multi-Family Attached - Unheated Basement

Table 3a. Comparison of Energy Conservation Measures for Spokane, WA

Housing Type: Manufactured Housing

| Energy Conservation<br>Measure (ECM) | Heating Equipment Type |                  |               |
|--------------------------------------|------------------------|------------------|---------------|
|                                      | L-P Gas Furnace        | Electric Furnace | Heat Pump     |
| Ceiling Insulation:                  | R-19                   | R-19             | R-19          |
| Wall Insulation:                     | R-19                   | R-19             | R-11          |
| Floor Insulation                     |                        |                  |               |
| Crawl:                               | R-19                   | R-22             | R-19          |
| Slab:                                |                        |                  |               |
| Heated Basement:                     |                        |                  |               |
| Unheated Basement:                   |                        |                  |               |
| Fenestration                         |                        |                  |               |
| Window Type:                         | Double Low-E           | Double Low-E     | Double w/o TB |
| Max. Window Area:                    | 12 %                   | 12 %             | 12 %          |
| Min. South Window:                   | 0 %                    | 0 %              | 0 %           |
| Infiltration:                        | Average                | Average          | Average       |
| Equipment Efficiency                 |                        |                  |               |
| Heating:                             | AFUE 90 %              | 100 %            | HSPF 7.3      |
| Cooling:                             | SEER 10                | SEER 10          | SEER 10       |

Table 3b. Comparison of Energy Conservation Measures for Spokane, WA

Housing Type: Single Family Detached

| <u>Energy Conservation Measure (ECM)</u> | <u>Heating Equipment Type</u> |                  |
|------------------------------------------|-------------------------------|------------------|
|                                          | <u>Electric Furnace</u>       | <u>Heat Pump</u> |
| Ceiling Insulation:                      | R-30                          | R-30             |
| Wall Insulation:                         | R-26                          | R-23             |
| Floor Insulation                         |                               |                  |
| Crawl:                                   | R-30                          | R-13             |
| Slab:                                    | R-10 (4 ft.)                  | R- 5 (2 ft.)     |
| Heated Basement:                         | R-10 (4 ft.)                  | R- 5 (4 ft.)     |
| Unheated Basement:                       | R-30                          | R-13             |
| Fenestration                             |                               |                  |
| Window Type:                             | Double Low-E                  | Triple w/o TB    |
| Max. Window Area:                        | 12 %                          | 12 %             |
| Min. South Window:                       | 0 %                           | 0 %              |
| Infiltration:                            | Average                       | Average          |
| Equipment Efficiency                     |                               |                  |
| Heating:                                 | 100 %                         | HSPF 7.3         |
| Cooling:                                 | SEER 10                       | SEER 10          |

Table 3c. Comparison of Energy Conservation Measures for Spokane, WA

Housing Type: Multi-Family Attached

| Energy Conservation<br><u>Measure (ECM)</u> | Heating Equipment Type |               |
|---------------------------------------------|------------------------|---------------|
|                                             | Electric Furnace       | Heat Pump     |
| Ceiling Insulation:                         | R-30                   | R-30          |
| Wall Insulation:                            | R-23                   | R-23          |
| Floor Insulation                            |                        |               |
| Crawl:                                      | R-30                   | R-13          |
| Slab:                                       | R-10 (4 ft.)           | R- 5 (2 ft.)  |
| Heated Basement:                            | R-10 (4 ft.)           | R- 5 (4 ft.)  |
| Unheated Basement:                          | R-30                   | R-11          |
| Fenestration                                |                        |               |
| Window Type:                                | Double Low-E           | Triple w/o TB |
| Max. Window Area:                           | 12 %                   | 12 %          |
| Min. South Window:                          | 0 %                    | 0 %           |
| Infiltration:                               | Average                | Average       |
| Equipment Efficiency                        |                        |               |
| Heating:                                    | 100 %                  | HSPF 7.3      |
| Cooling:                                    | SEER 10                | SEER 10       |

Assumptions: Spokane, WA

1. ECM costs and economic parameters: ARES default values.
2. Local energy costs:
 

|                           |                  |
|---------------------------|------------------|
| L-P Gas (\$/gallon)       | - 0.788          |
| Electricity (\$/Kwatt-hr) | - 0.031 (winter) |
|                           | - 0.032 (summer) |
3. Prevalent foundation type: Manufactured Housing - Crawl space  
Single Family Detached - Unheated Basement  
Multi-Family Attached - Unheated Basement

Table 4a. Comparison of Energy Conservation Measures for Syracuse, NY

Housing Type: Single Family Detached Housing

| Energy Conservation  |                    | Heating Equipment Type  |                  |  |
|----------------------|--------------------|-------------------------|------------------|--|
| <u>Measure (ECM)</u> | <u>Oil Furnace</u> | <u>Nat. Gas Furnace</u> | <u>Heat Pump</u> |  |
| Ceiling Insulation:  | R-30               | R-30                    | R-30             |  |
| Wall Insulation:     | R-26               | R-23                    | R-26             |  |
| Floor Insulation     |                    |                         |                  |  |
| Crawl:               | R-30               | R-30                    | R-30             |  |
| Slab:                | R-10 (4 ft)        | R- 5 (2 ft)             | R-10 (4 ft)      |  |
| Heated Basement:     | R-10 (4 ft)        | R- 5 (4 ft)             | R-10 (4 ft)      |  |
| Unheated Basement:   | R-30               | R-19                    | R-30             |  |
| Fenestration         |                    |                         |                  |  |
| Window Type:         | Double Low-E       | Triple w/o TB           | Double Low-E     |  |
| Max. Window Area:    | 12 %               | 12 %                    | 12 %             |  |
| Min. South Window:   | 0 %                | 0 %                     | 0 %              |  |
| Infiltration:        | Average            | Average                 | Average          |  |
| Equipment Efficiency |                    |                         |                  |  |
| Heating:             | AFUE 90 %          | AFUE 90 %               | HSPF 9.8         |  |
| Cooling:             | SEER 10            | SEER 10                 | SEER 12          |  |

Table 4b. Comparison of Energy Conservation Measures for Syracuse, NY

Housing Type: Multi-Family Attached Housing

| Energy Conservation<br>Measure (ECM) | Heating Equipment Type |                  |              |
|--------------------------------------|------------------------|------------------|--------------|
|                                      | Oil Furnace            | Nat. Gas Furnace | Heat Pump    |
| Ceiling Insulation:                  | R-30                   | R-30             | R-30         |
| Wall Insulation:                     | R-23                   | R-23             | R-26         |
| Floor Insulation                     |                        |                  |              |
| Crawl:                               | R-30                   | R-30             | R-30         |
| Slab:                                | R-10 (4 ft.)           | R- 5 (2 ft.)     | R-10 (4 ft.) |
| Heated Basement:                     | R-10 (4 ft.)           | R-10 (4 ft.)     | R-10 (4 ft.) |
| Unheated Basement:                   | R-30                   | R-13             | R-30         |
| Fenestration                         |                        |                  |              |
| Window Type:                         | Double Low-E           | Triple w/o TB    | Double Low-E |
| Max. Window Area:                    | 12 %                   | 12 %             | 12 %         |
| Min. South Window:                   | 0 %                    | 0 %              | 0 %          |
| Infiltration:                        | Average                | Average          | Average      |
| Equipment Efficiency                 |                        |                  |              |
| Heating:                             | AFUE 80 %              | AFUE 80 %        | HSPF 7.3     |
| Cooling:                             | SEER 10                | SEER 10          | SEER 10      |

Assumptions: Syracuse, NY

1. ECM costs and economic parameters: ARES default values.
2. Local energy costs:
 

|                           |                  |
|---------------------------|------------------|
| Oil (\$/gallon)           | - 1.113          |
| Natural Gas (\$/therm)    | - 0.593          |
| Electricity (\$/KWatt-hr) | - 0.078 (winter) |
|                           | - 0.063 (summer) |
3. Prevalent foundation type: Single Family Detached - Unheated Basement  
Multi-Family Attached - Unheated Basement

Table 5a. Comparison of Energy Conservation Measures for Tucson, AZ

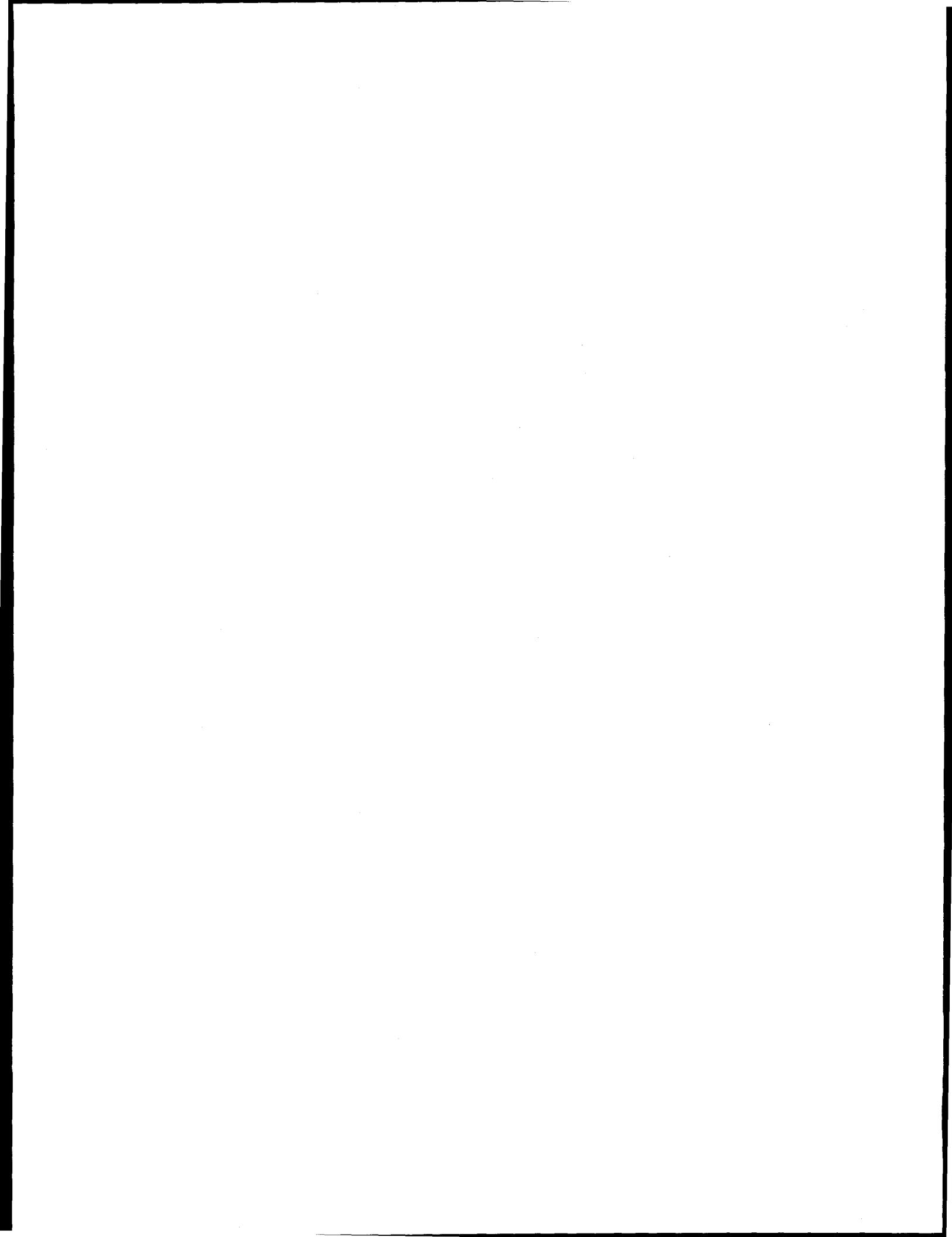
Housing Type: Manufactured Housing

| <u>Energy Conservation Measure (ECM)</u> | <u>Heating Equipment Type</u> |                        |
|------------------------------------------|-------------------------------|------------------------|
|                                          | <u>Nat. Gas Furnace</u>       | <u>L-P Gas Furnace</u> |
| Ceiling Insulation:                      | R-19                          | R-19                   |
| Wall Insulation:                         | R-11                          | R-13                   |
| Floor Insulation                         |                               |                        |
| Crawl:                                   | R-19                          | R-19                   |
| Slab:                                    |                               |                        |
| Heated Basement:                         |                               |                        |
| Unheated Basement:                       |                               |                        |
| Fenestration                             |                               |                        |
| Window Type:                             | Double Low-E                  | Double Low-E           |
|                                          | Sun                           | Sun                    |
| Max. Window Area:                        | 12 %                          | 12 %                   |
| Min. South Window:                       | 0 %                           | 0 %                    |
| Infiltration:                            | Average                       | Average                |
| Equipment Efficiency                     |                               |                        |
| Heating:                                 | AFUE 78 %                     | AFUE 78 %              |
| Cooling:                                 | SEER 10                       | SEER 10                |

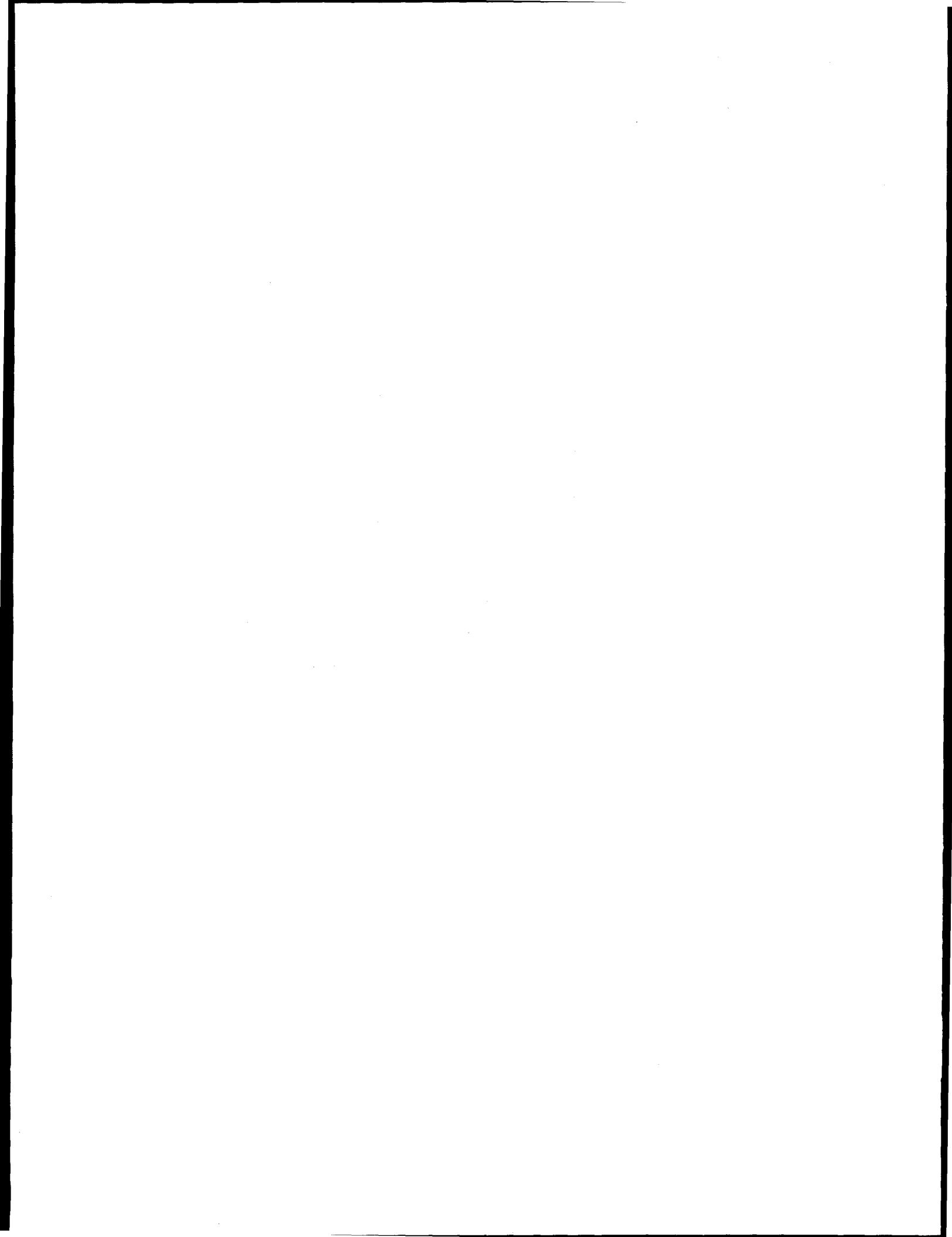
Table 5b. Comparison of Energy Conservation Measures for Tucson, AZ

Housing Type: Single Family Detached

| Energy Conservation<br>Measure (ECM) | Heating Equipment Type |                 |              |
|--------------------------------------|------------------------|-----------------|--------------|
|                                      | Nat. Gas Furnace       | L-P Gas Furnace | Heat Pump    |
| Ceiling Insulation:                  | R-30                   | R-30            | R-38         |
| Wall Insulation:                     | R-19                   | R-23            | R-23         |
| Floor Insulation                     |                        |                 |              |
| Crawl:                               | R-11                   | R-19            | R-13         |
| Slab:                                | R- 0                   | R- 5 (2 ft.)    | R- 0         |
| Heated Basement:                     | R- 0                   | R-10 (4 ft.)    | R- 5 (4 ft.) |
| Unheated Basement:                   | R- 0                   | R-11            | R- 0         |
| Fenestration                         |                        |                 |              |
| Window Type:                         | Double Low-E           | Double Low-E    | Double Low-E |
|                                      | Sun                    | Sun             | Sun          |
| Max. Window Area:                    | 12 %                   | 12 %            | 12 %         |
| Min. South Window:                   | 0 %                    | 0 %             | 0 %          |
| Infiltration:                        | Average                | Average         | Average      |
| Equipment Efficiency                 |                        |                 |              |
| Heating:                             | AFUE 78 %              | AFUE 80 %       | HSPF 7.3     |
| Cooling:                             | SEER 10                | SEER 10         | SEER 10      |


Table 5c. Comparison of Energy Conservation Measures for Tucson, AZ

Housing Type: Multi-Family Attached

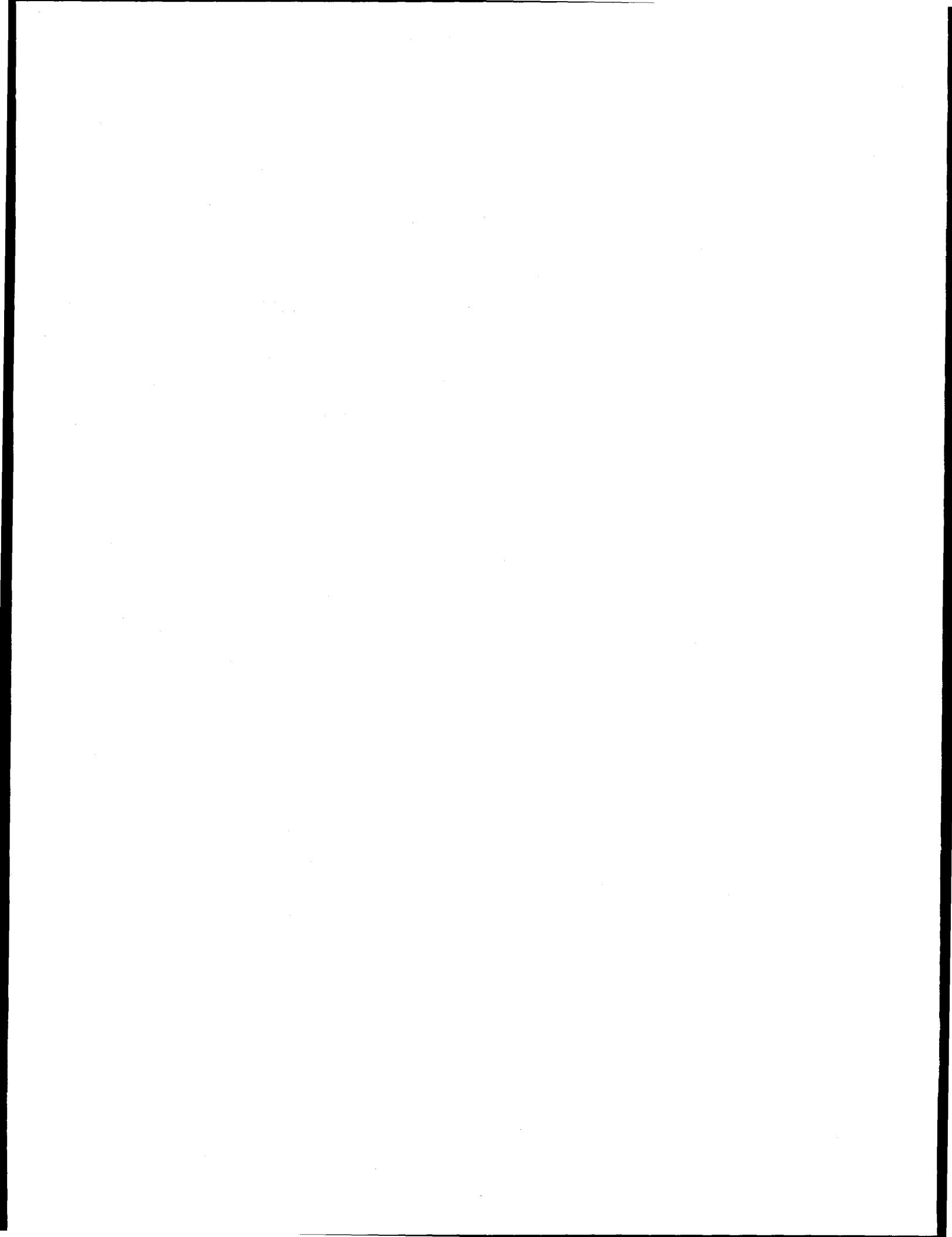

| Energy Conservation<br>Measure (ECM) | Heating Equipment Type |                     |                     |
|--------------------------------------|------------------------|---------------------|---------------------|
|                                      | Nat. Gas Furnace       | L-P Gas Furnace     | Heat Pump           |
| Ceiling Insulation:                  | R-30                   | R-30                | R-38                |
| Wall Insulation:                     | R-19                   | R-19                | R-23                |
| Floor Insulation                     |                        |                     |                     |
| Crawl:                               | R-11                   | R-11                | R-13                |
| Slab:                                | R- 0                   | R- 0                | R- 0                |
| Heated Basement:                     | R- 5 (4 ft.)           | R- 5 (4 ft.)        | R- 5 (4 ft.)        |
| Unheated Basement:                   | R- 0                   | R- 0                | R- 0                |
| Fenestration                         |                        |                     |                     |
| Window Type:                         | Double Low-E<br>Sun    | Double Low-E<br>Sun | Double Low-E<br>Sun |
| Max. Window Area:                    | 12 %                   | 12 %                | 12 %                |
| Min. South Window:                   | 0 %                    | 0 %                 | 0 %                 |
| Infiltration:                        | Average                | Average             | Average             |
| Equipment Efficiency                 |                        |                     |                     |
| Heating:                             | AFUE 78 %              | AFUE 78 %           | HSPF 7.3            |
| Cooling:                             | SEER 10                | SEER 10             | SEER 10             |

Assumptions: Tucson, AZ

1. ECM costs and economic parameters: ARES default values.
2. Local energy costs:
  - Natural Gas (\$/therm) - 0.478
  - L-P Gas (\$/gallon) - 0.788
  - Electricity (\$/KWatt-hr) - 0.071 (winter)  
- 0.071 (summer)
3. Prevalent foundation type: Manufactured Housing - Crawl space  
Single Family Detached - Slab-on-Grade  
Multi-Family Attached - Slab-on-Grade



APPENDIX B  
SAMPLE POINTS COMPLIANCE ANALYSIS




## APPENDIX B - SAMPLE POINTS COMPLIANCE ANALYSIS

This appendix contains a worked example of the point system. ARES was run for a single family detached house in Washington, DC, with gas space heating and direct expansion cooling. The house was assumed to be a two story center hall home with the following characteristics:

|                      |                   |
|----------------------|-------------------|
| Floor Area:          | 2504 sq. ft.      |
| Ceiling Area:        | 1224 sq. ft.      |
| Opaque Wall Area:    | 2088 sq. ft.      |
| Fenestration Area    |                   |
| Total:               | 248 sq. ft.       |
| North:               | 50 sq. ft.        |
| East:                | 120 sq. ft.       |
| South:               | 25 sq. ft.        |
| West:                | 53 sq. ft.        |
| Foundation Type:     | Unheated Basement |
| Basement Floor Area: | 1280 sq. ft.      |

All page numbers that follow refer to Section 5 of the Text of the Standard (Volume I of this set).



ARES Version 1.2  
Release date: 3/ 8/89

Prescriptive Compliance Packages

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

Created 8/30/1989 8:13:01

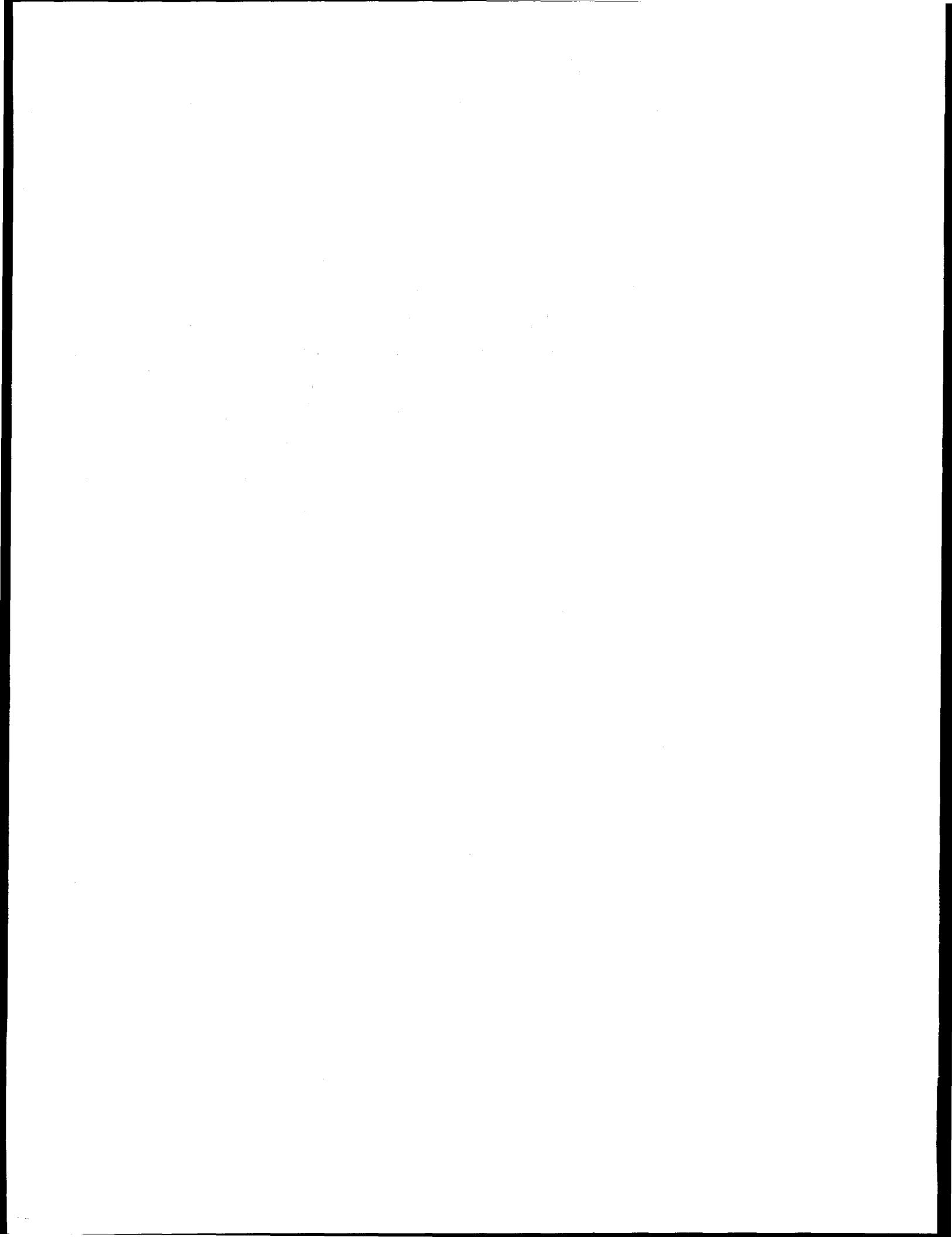



Table 4-3a Prescriptive Compliance Package

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia  
Heating Type: Gas Furnace  
Description : Basic Single Family Gas Furnace Package

| Component                        | Requirement     |
|----------------------------------|-----------------|
| Ceiling Insulation               | R-30            |
| Wall Insulation                  | R-23            |
| Floor over Crawlspace Insulation | R-30            |
| Floor over Basement Insulation   | R-11            |
| Basement Wall Insulation         | R-5_4ft         |
| Slab Insulation                  | R-5_2ft         |
| Window Type                      | Double_w/o_TB   |
| Max window area/floor area       | 12.0% Max Total |
| Minimum south window area        | 0.0% Min South  |
| Infiltration                     | Normal          |
| Heating Efficiency               | AFUE_85%        |
| Cooling Efficiency               | SEER_10         |

Table 4-3b Prescriptive Compliance Package

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia  
Heating Type: Electric Furnace  
Description : Basic Single Family Electric Furnace Package

| Component                        | Requirement     |
|----------------------------------|-----------------|
| Ceiling Insulation               | R-38            |
| Wall Insulation                  | R-26            |
| Floor over Crawlspace Insulation | R-30            |
| Floor over Basement Insulation   | R-30            |
| Basement Wall Insulation         | R-10_4ft        |
| Slab Insulation                  | R-10_4ft        |
| Window Type                      | Double_Low-E    |
| Max window area/floor area       | 12.0% Max Total |
| Minimum south window area        | 0.0% Min South  |
| Infiltration                     | Normal          |
| Heating Efficiency               | Elec_Resistance |
| Cooling Efficiency               | SEER_10         |

-----  
Table 4-3c Prescriptive Compliance Package

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia  
Heating Type: Heat Pump  
Description : Basic Single Family Heat Pump Package

| Component                        | Requirement     |
|----------------------------------|-----------------|
| Ceiling Insulation               | R-30            |
| Wall Insulation                  | R-13            |
| Floor over Crawlspace Insulation | R-30            |
| Floor over Basement Insulation   | R-13            |
| Basement Wall Insulation         | R-10_4ft        |
| Slab Insulation                  | R-5_2ft         |
| Window Type                      | Double_Low-E    |
| Max window area/floor area       | 12.0% Max Total |
| Minimum south window area        | 0.0% Min South  |
| Infiltration                     | Normal          |
| Heating Efficiency               | HSPF 7.3        |
| Cooling Efficiency               | SEER 10.0       |

---

-----  
Table 4-3d Prescriptive Compliance Package

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia  
Heating Type: Gas Furnace  
Description : R-19 Walls for Gas

| Component                        | Requirement     |
|----------------------------------|-----------------|
| Ceiling Insulation               | R-30            |
| Wall Insulation                  | R-19            |
| Floor over Crawlspace Insulation | R-30            |
| Floor over Basement Insulation   | R-11            |
| Basement Wall Insulation         | R-5_4ft         |
| Slab Insulation                  | R-5_2ft         |
| Window Type                      | Double_Low-E    |
| Max window area/floor area       | 12.0% Max Total |
| Minimum south window area        | 0.0% Min South  |
| Infiltration                     | Normal          |
| Heating Efficiency               | AFUE_78%        |
| Cooling Efficiency               | SEER_10         |

---

ARES Version 1.2  
Release date: 3/ 8/89

Point System (Section 7)

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

Created 8/30/1989 8:13:01

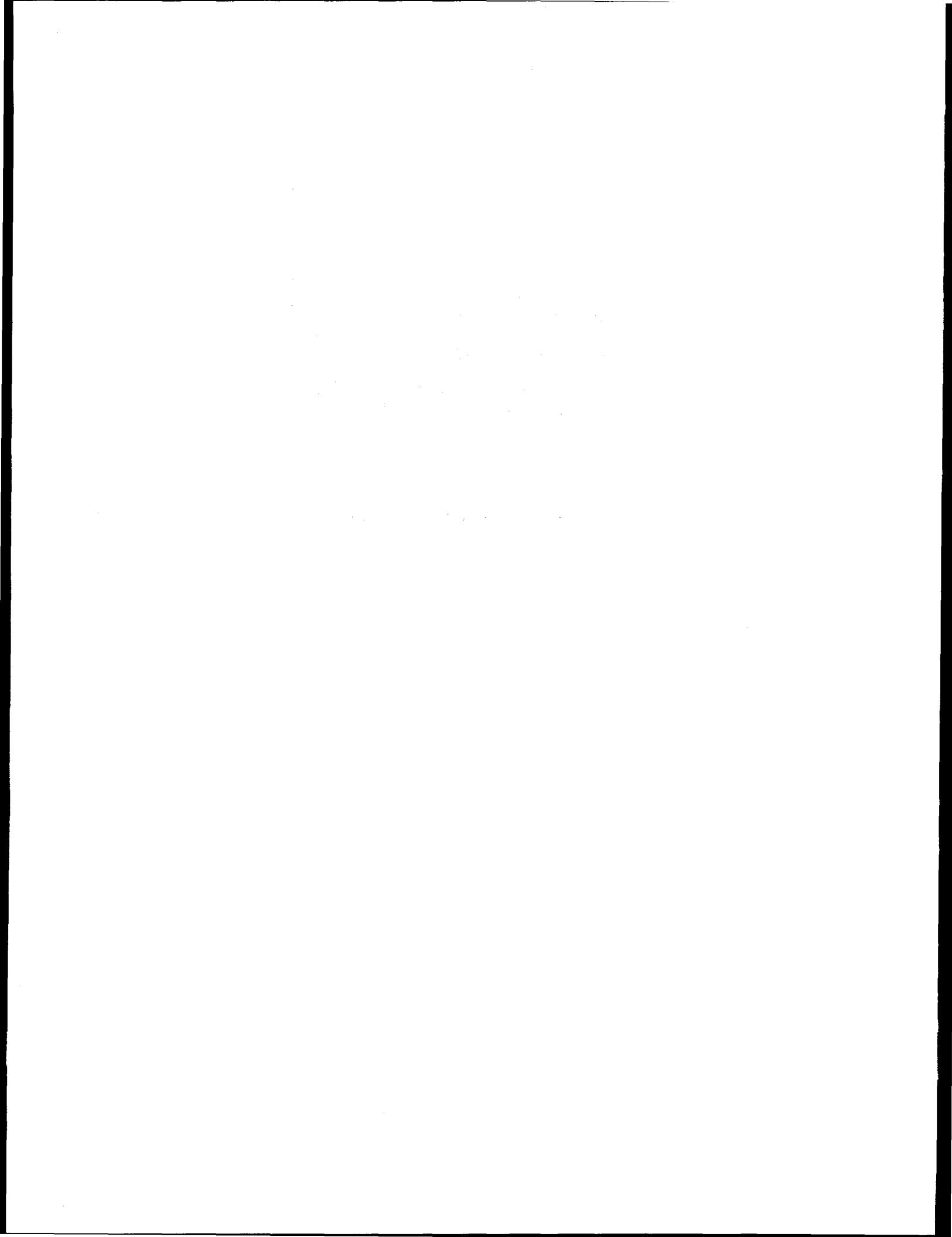



Table 5-2 TARGET Ceiling Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Heating<br>Equipment Type | Heating | Multiplier | Cooling |
|---------------------------|---------|------------|---------|
| Oil                       | N/A     |            | N/A     |
| Natural Gas               | 37      |            | 11      |
| L. P. Gas                 | N/A     |            | N/A     |
| Electric Res.             | 29      |            | 9       |
| Elec. Heat Pump           | 37      |            | 11      |

Table 5-3 DESIGN Ceiling Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| R-value  |               | Multiplier |         |
|----------|---------------|------------|---------|
| At least | but less than | Heating    | Cooling |
| R-11     | R-19          | 81         | 24      |
| R-19     | R-30          | 57         | 17      |
| R-30     | R-38          | 37         | 11      |
| R-38     | R-49          | 29         | 9       |
| R-49     | R-60          | 23         | 7       |
| R-60     | --            | 20         | 6       |

Table 5-4 TARGET Wall Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Heating<br>Equipment Type | Heating | Multiplier | Cooling |
|---------------------------|---------|------------|---------|
| Oil                       | N/A     |            | N/A     |
| Natural Gas               | 55      |            | 9       |
| L. P. Gas                 | N/A     |            | N/A     |
| Electric Res.             | 48      |            | 8       |
| Elec. Heat Pump           | 84      |            | 14      |

Table 5-5a DESIGN Frame Wall Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| R-value  |               | Multiplier |         |
|----------|---------------|------------|---------|
| At least | but less than | Heating    | Cooling |
| R-11     | R-13          | 99         | 16      |
| R-13     | R-19          | 84         | 14      |
| R-19     | R-23          | 68         | 11      |
| R-23     | R-26          | 55         | 9       |
| R-26     | --            | 48         | 8       |

Table 5-5b DESIGN Mass Wall Insulation Multipliers  
Medium Weight (40 to 110 lb/sf)

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| R-value        |                | Multiplier |         |
|----------------|----------------|------------|---------|
| At least       | but less than  | Heating    | Cooling |
| R-0_Medium_Wt  | R-5_Medium_Wt  | 291        | 32      |
| R-5_Medium_Wt  | R-10_Medium_Wt | 137        | 13      |
| R-10_Medium_Wt | R-15_Medium_Wt | 82         | 7       |
| R-15_Medium_Wt | R-30_Medium_Wt | 58         | 4       |
| R-30_Medium_Wt | --             | 30         | 1       |

Table 5-5c DESIGN Mass Wall Insulation Multipliers  
Heavy Weight (greater than 110 lb/sf)

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| R-value       |               | Multiplier |         |
|---------------|---------------|------------|---------|
| At least      | but less than | Heating    | Cooling |
| R-0_Heavy_Wt  | R-5_Heavy_Wt  | 289        | 29      |
| R-5_Heavy_Wt  | R-10_Heavy_Wt | 136        | 11      |
| R-10_Heavy_Wt | R-15_Heavy_Wt | 81         | 5       |
| R-15_Heavy_Wt | R-30_Heavy_Wt | 57         | 3       |
| R-30_Heavy_Wt | --            | 30         | 0       |

Table 5-5d DESIGN Solid Wood (Log) Wall Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Nominal Thickness (inches) |               | Multiplier |         |
|----------------------------|---------------|------------|---------|
| At least                   | but less than | Heating    | Cooling |
| 6_inch_Log                 | 8_inch_Log    | 124        | 17      |
| 8_inch_Log                 | 10_inch_Log   | 95         | 13      |
| 10_inch_Log                | 12_inch_Log   | 78         | 11      |
| 12_inch_Log                | --            | 66         | 10      |

Table 5-6 TARGET Floor/Foundation Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Heating<br>Equipment Type | Slab | Heating Multiplier |                      |                    |
|---------------------------|------|--------------------|----------------------|--------------------|
|                           |      | Crawl<br>Space     | Unheated<br>Basement | Heated<br>Basement |
| Oil                       | N/A  | N/A                | N/A                  | N/A                |
| Natural Gas               | 138  | 0                  | 29                   | 452                |
| L. P. Gas                 | N/A  | N/A                | N/A                  | N/A                |
| Electric Res.             | 0    | 0                  | 0                    | 382                |
| Elec. Heat Pump           | 138  | 0                  | 20                   | 382                |

| Heating<br>Equipment Type | Slab | Cooling Multiplier |                      |                    |
|---------------------------|------|--------------------|----------------------|--------------------|
|                           |      | Crawl<br>Space     | Unheated<br>Basement | Heated<br>Basement |
| Oil                       | N/A  | N/A                | N/A                  | N/A                |
| Natural Gas               | 1    | 39                 | 27                   | 40                 |
| L. P. Gas                 | N/A  | N/A                | N/A                  | N/A                |
| Electric Res.             | 9    | 39                 | 33                   | 28                 |
| Elec. Heat Pump           | 1    | 39                 | 28                   | 28                 |

-----  
Table 5-7a DESIGN Slab Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

Insulation at least 2 feet deep:

| R-value  | Multiplier    |         |         |
|----------|---------------|---------|---------|
| At least | but less than | Heating | Cooling |
| R-0      | R-5_2ft       | 375     | 0       |
| R-5_2ft  | R-10_2ft      | 138     | 1       |
| R-10_2ft | --            | 94      | 2       |

Insulation to depth of footing:

| R-value  | Multiplier    |         |         |
|----------|---------------|---------|---------|
| At least | but less than | Heating | Cooling |
| R-0      | R-5_4ft       | 375     | 0       |
| R-5_4ft  | R-10_4ft      | 70      | 6       |
| R-10_4ft | --            | 0       | 9       |

-----  
Table 5-7b DESIGN Floor-Over-Crawlspace Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| R-value  | Multiplier    |         |         |
|----------|---------------|---------|---------|
| At least | but less than | Heating | Cooling |
| R-0      | R-11          | 208     | 30      |
| R-11     | R-13          | 39      | 38      |
| R-13     | R-19          | 26      | 38      |
| R-19     | R-30          | 18      | 39      |
| R-30     | --            | 0       | 39      |

Table 5-7c DESIGN Floor-Over-Unheated-Basement Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| R-value  | Multipler     |         |         |
|----------|---------------|---------|---------|
| At least | but less than | Heating | Cooling |
| R-0      | R-11          | 113     | 8       |
| R-11     | R-13          | 29      | 27      |
| R-13     | R-19          | 20      | 28      |
| R-19     | R-30          | 11      | 30      |
| R-30     | --            | 0       | 33      |

Table 5-7d DESIGN Basement Wall Insulation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

Insulation at least 4 feet deep:

| R-value  | Multipler     |         |         |
|----------|---------------|---------|---------|
| At least | but less than | Heating | Cooling |
| R-0      | R-5_4ft       | 725     | 86      |
| R-5_4ft  | R-10_4ft      | 452     | 40      |
| R-10_4ft | --            | 382     | 28      |

Insulation at least 8 feet deep:

| R-value  | Multipler     |         |         |
|----------|---------------|---------|---------|
| At least | but less than | Heating | Cooling |
| R-0      | R-5_8ft       | 725     | 86      |
| R-5_8ft  | R-10_8ft      | 361     | 37      |
| R-10_8ft | --            | 240     | 22      |

-----  
**Table 5-8 TARGET Air Infiltration Multipliers**

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Heating<br>Equipment Type | Heating | Multiplier |
|---------------------------|---------|------------|
|                           |         | Cooling    |
| Oil                       | N/A     | N/A        |
| Natural Gas               | 143     | 17         |
| L. P. Gas                 | N/A     | N/A        |
| Electric Res.             | 143     | 17         |
| Elec. Heat Pump           | 143     | 17         |

-----

-----  
**Table 5-9 DESIGN Air Infiltration Multipliers**

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Infiltration Package * | Multiplier |         |
|------------------------|------------|---------|
|                        | Heating    | Cooling |
| Normal                 | 143        | 17      |
| Tight                  | 101        | 12      |

-----  
\*(see Section 5.2.5 of Standard)

Table 5-10 TARGET Glazing Layers and Sash Multipliers

Housing Type: Single Family Detached

Jurisdiction: District of Columbia

| Heating<br>Equipment Type | Multiplier |         |
|---------------------------|------------|---------|
|                           | Heating    | Cooling |
| Oil                       | N/A        | N/A     |
| Natural Gas               | 75         | 1       |
| L. P. Gas                 | N/A        | N/A     |
| Electric Res.             | 39         | 1       |
| Elec. Heat Pump           | 39         | 1       |

Table 5-11 DESIGN Glazing Layers and Sash Multipliers

Housing Type: Single Family Detached

Jurisdiction: District of Columbia

| Glazing Type    | Multiplier |         |
|-----------------|------------|---------|
|                 | Heating    | Cooling |
| Single_w/o_TB   | 1148       | 22      |
| Double_w/o_TB   | 625        | 12      |
| Double_TB       | 473        | 9       |
| Triple_TB       | 373        | 7       |
| Single_Heat_abs | 1148       | 22      |
| Double_Heat_abs | 625        | 12      |
| Triple_Heat_abs | 473        | 9       |
| Double_Low-E    | 322        | 6       |
| Triple_Low-E    | 252        | 5       |

Table 5-12 TARGET Fenestration Area and Orientation Points

Housing Type: Single Family Detached  
 Jurisdiction: District of Columbia

| Heated Floor<br>Area (sf) | Points      |         |                  |         |           |         |
|---------------------------|-------------|---------|------------------|---------|-----------|---------|
|                           | Gas Furnace |         | Electric Furnace |         | Heat Pump |         |
|                           | Heating     | Cooling | Heating          | Cooling | Heating   | Cooling |
| Less than 500             | 28          | 24      | 23               | 19      | 23        | 19      |
| 500 to 750                | 42          | 36      | 34               | 29      | 34        | 29      |
| 750 to 1000               | 55          | 48      | 45               | 39      | 45        | 39      |
| 1000 to 1250              | 67          | 61      | 55               | 49      | 55        | 49      |
| 1250 to 1500              | 79          | 74      | 65               | 59      | 65        | 59      |
| 1500 to 1750              | 91          | 87      | 75               | 70      | 75        | 70      |
| 1750 to 2000              | 102         | 101     | 85               | 80      | 85        | 80      |
| 2000 to 2250              | 112         | 114     | 94               | 91      | 94        | 91      |
| 2250 to 2500              | 122         | 128     | 102              | 102     | 102       | 102     |
| 2500 to 2750              | 132         | 142     | 111              | 113     | 111       | 113     |
| 2750 to 3000              | 141         | 157     | 119              | 124     | 119       | 124     |
| 3000 to 3250              | 149         | 172     | 127              | 135     | 127       | 135     |
| 3250 to 3500              | 157         | 186     | 134              | 147     | 134       | 147     |
| 3500 to 3750              | 165         | 202     | 142              | 158     | 142       | 158     |
| 3750 to 4000              | 172         | 217     | 148              | 170     | 148       | 170     |
| 4000 to 4250              | 178         | 232     | 155              | 182     | 155       | 182     |
| 4250 to 4500              | 184         | 248     | 161              | 194     | 161       | 194     |
| 4500 to 4750              | 190         | 264     | 167              | 207     | 167       | 207     |
| 4750 to 5000              | 195         | 281     | 173              | 219     | 173       | 219     |
| 5000 to 5250              | 199         | 297     | 178              | 232     | 178       | 232     |
| 5250 to 5500              | 204         | 314     | 183              | 244     | 183       | 244     |
| Greater than 5500         | 204         | 314     | 183              | 244     | 183       | 244     |

Table 5-13 DESIGN Fenestration Area and Orientation Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Orientation | Shading Coefficient |      |             |      |               |      |
|-------------|---------------------|------|-------------|------|---------------|------|
|             | 1.0 to 0.8          |      | 0.79 to 0.5 |      | less than 0.5 |      |
|             | Heat                | Cool | Heat        | Cool | Heat          | Cool |
| North       | 35                  | 26   | 27          | 21   | 17            | 13   |
| Northeast   | 46                  | 33   | 36          | 26   | 22            | 16   |
| East        | 56                  | 40   | 45          | 32   | 28            | 20   |
| Southeast   | 77                  | 40   | 61          | 32   | 38            | 20   |
| South       | 98                  | 39   | 77          | 31   | 48            | 19   |
| Southwest   | 76                  | 44   | 60          | 34   | 37            | 21   |
| West        | 55                  | 48   | 43          | 38   | 27            | 23   |
| Northwest   | 45                  | 37   | 35          | 29   | 22            | 18   |
| Northwest   | 45                  | 37   | 35          | 29   | 22            | 18   |

Typical Shading Coefficients:

|                 |       |
|-----------------|-------|
| Single_w/o_TB   | 1.000 |
| Double_w/o_TB   | 0.880 |
| Double_TB       | 0.880 |
| Triple_TB       | 0.740 |
| Single_Heat_abs | 0.750 |
| Double_Heat_abs | 0.660 |
| Triple_Heat_abs | 0.560 |
| Double_Low-E    | 0.710 |
| Triple_Low-E    | 0.600 |

Table 5-14 DESIGN Overhang Multipliers

Jurisdiction: District of Columbia

|                | Overhang Ratio (L/H) |                   |                 |                  |
|----------------|----------------------|-------------------|-----------------|------------------|
|                | 0.000 to<br>0.548    | 0.549 to<br>0.999 | 1.0 to<br>1.999 | 2.0 and<br>above |
| <b>Heating</b> |                      |                   |                 |                  |
| North          | 10                   | 10                | 10              | 10               |
| NorthEast      | 10                   | 10                | 10              | 9                |
| East           | 11                   | 9                 | 8               | 6                |
| SouthEast      | 12                   | 9                 | 7               | 5                |
| South          | 12                   | 8                 | 6               | 3                |
| SouthWest      | 12                   | 9                 | 7               | 5                |
| West           | 11                   | 9                 | 8               | 6                |
| NorthWest      | 10                   | 10                | 10              | 9                |
| <b>Cooling</b> |                      |                   |                 |                  |
| North          | 10                   | 10                | 10              | 10               |
| NorthEast      | 11                   | 9                 | 8               | 8                |
| East           | 11                   | 9                 | 7               | 6                |
| SouthEast      | 12                   | 8                 | 7               | 6                |
| South          | 13                   | 9                 | 8               | 8                |
| SouthWest      | 12                   | 8                 | 7               | 6                |
| West           | 11                   | 9                 | 7               | 6                |
| NorthWest      | 11                   | 9                 | 8               | 8                |

Table 5-15 DESIGN Glazing Area and Orientation Points

Housing Type: Single Family Detached  
 Jurisdiction: District of Columbia

| Heating F-Factor  | Heating Points | Cooling F-Factor  | Cooling Points |
|-------------------|----------------|-------------------|----------------|
| Less than 190     | 19             | Less than 90      | 9              |
| 190 to 380        | 40             | 90 to 180         | 18             |
| 380 to 570        | 61             | 180 to 270        | 28             |
| 570 to 760        | 83             | 270 to 360        | 37             |
| 760 to 950        | 105            | 360 to 450        | 47             |
| 950 to 1140       | 129            | 450 to 540        | 57             |
| 1140 to 1330      | 153            | 540 to 630        | 67             |
| 1330 to 1520      | 178            | 630 to 720        | 77             |
| 1520 to 1710      | 205            | 720 to 810        | 87             |
| 1710 to 1900      | 231            | 810 to 900        | 97             |
| 1900 to 2090      | 259            | 900 to 990        | 108            |
| 2090 to 2280      | 288            | 990 to 1080       | 118            |
| 2280 to 2470      | 317            | 1080 to 1170      | 129            |
| 2470 to 2660      | 347            | 1170 to 1260      | 140            |
| 2660 to 2850      | 378            | 1260 to 1350      | 151            |
| 2850 to 3040      | 410            | 1350 to 1440      | 162            |
| 3040 to 3230      | 443            | 1440 to 1530      | 174            |
| 3230 to 3420      | 476            | 1530 to 1620      | 185            |
| 3420 to 3610      | 510            | 1620 to 1710      | 197            |
| 3610 to 3800      | 545            | 1710 to 1800      | 209            |
| 3800 to 3990      | 581            | 1800 to 1890      | 221            |
| 3990 to 4180      | 618            | 1890 to 1980      | 233            |
| 4180 to 4370      | 656            | 1980 to 2070      | 245            |
| 4370 to 4560      | 694            | 2070 to 2160      | 257            |
| 4560 to 4750      | 734            | 2160 to 2250      | 270            |
| 4750 to 4940      | 774            | 2250 to 2340      | 282            |
| 4940 to 5130      | 815            | 2340 to 2430      | 295            |
| 5130 to 5320      | 856            | 2430 to 2520      | 308            |
| 5320 to 5510      | 899            | 2520 to 2610      | 321            |
| 5510 to 5700      | 942            | 2610 to 2700      | 334            |
| 5700 to 5890      | 987            | 2700 to 2790      | 348            |
| Greater than 5890 | 987            | Greater than 2790 | 348            |

Table 5-16 TARGET and DESIGN Base Load Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

| Foundation Type   | Heating | Cooling |
|-------------------|---------|---------|
| Crawlspac         | 1       | -27     |
| Unheated Basement | 9       | -27     |
| Heated Basement   | 36      | -27     |
| Slab              | 34      | -35     |

Table 5-17 TARGET HVAC Equipment Points

| Heating<br>Equipment Type | Heating Multiplier |          |           | Cooling Multiplier |          |
|---------------------------|--------------------|----------|-----------|--------------------|----------|
|                           | Ducted             | Hydronic | Baseboard | Ducted             | Hydronic |
| Oil                       | N/A                | N/A      | N/A       | N/A                | N/A      |
| Natural Gas               | 67                 | 66       | N/A       | 67                 | 66       |
| L. P. Gas                 | N/A                | N/A      | N/A       | N/A                | N/A      |
| Electric Res.             | 225                | 220      | 216       | 67                 | 66       |
| Heat Pump                 | 95                 | 93       | N/A       | 67                 | 66       |

Table 5-18 TARGET and DESIGN HVAC Equipment Multipliers

Housing Type: Single Family Detached  
Jurisdiction: District of Columbia

|           | Heating Equipment Type |      |     |               |                        | Cooling                    |
|-----------|------------------------|------|-----|---------------|------------------------|----------------------------|
|           | Oil                    | Gas  | LPG | Elec.<br>Res. | Heat Pump<br>(Heating) | DX, Heat Pump<br>(Cooling) |
| Ducted    | N/A                    | 5729 | N/A | 21364         | 696                    | 672                        |
| Hydronic  | N/A                    | 5612 | N/A | 20928         | 682                    | 658                        |
| Baseboard | --                     | --   | --  | 20510         | --                     | --                         |

Table 5-19 TARGET Domestic Hot Water Points

| Water Heating<br>Fuel | TARGET<br>POINTS |
|-----------------------|------------------|
| Oil                   | 27235            |
| Gas                   | 16406            |
| LPG                   | 30974            |
| Electric              | 35229            |

Table 5-20 DESIGN Domestic Hot Water Factor

| Water Heating<br>Fuel | DESIGN DHW<br>FACTOR |
|-----------------------|----------------------|
| Oil                   | 13454                |
| Gas                   | 8925                 |
| LPG                   | 16850                |
| Electric              | 33280                |

Table 5-21 TARGET and DESIGN Solar Domestic Hot Water Points

| Space<br>Heating<br>Fuel | TARGET<br>POINTS | DESIGN POINTS |         |          |         |              |         |
|--------------------------|------------------|---------------|---------|----------|---------|--------------|---------|
|                          |                  | Active        |         | Integral |         | Thermosyphon |         |
|                          |                  | 1-Panel       | 2-Panel | 1-Panel  | 2-Panel | 1-Panel      | 2-Panel |
| Oil                      | 27235            | 24150         | 21708   | 24640    | 22665   | 24133        | 22038   |
| Gas                      | 16406            | 14359         | 12740   | 14685    | 13374   | 14348        | 12958   |
| LPG                      | 30974            | 27111         | 24053   | 27725    | 25251   | 27089        | 24465   |
| Electric                 | 35229            | 27598         | 21558   | 28811    | 23925   | 27556        | 22373   |

Table 5-1. Point Computation Summary Form

| Component                        | Source Equation | TARGET         |              | DESIGN         |              |
|----------------------------------|-----------------|----------------|--------------|----------------|--------------|
|                                  |                 | Heating        | Cooling      | Heating        | Cooling      |
| Ceiling Insulation               | 5-1,5-2         | <u>45</u>      | <u>13</u>    | <u>45</u>      | <u>13</u>    |
| Wall Insulation                  | 5-3,5-4         | <u>115</u>     | <u>19</u>    | <u>175</u>     | <u>29</u>    |
| Floor Insulation                 | 5-5,5-6         | <u>37</u>      | <u>35</u>    | <u>26</u>      | <u>36</u>    |
| Air Infiltration                 | 5-7,5-8         | <u>358</u>     | <u>43</u>    | <u>253</u>     | <u>30</u>    |
| Glazing Layers                   | 5-9,5-10        | + <u>189</u>   | + <u>3</u>   | + <u>155</u>   | + <u>3</u>   |
| SUBTOTAL 1                       | Note (a)        | <u>743</u>     | <u>113</u>   | <u>654</u>     | <u>111</u>   |
| Glazing Orientation              | 5-11,5-12       | - <u>132</u>   | + <u>142</u> | - <u>205</u>   | + <u>118</u> |
| SUBTOTAL 2                       | Note (b)        | <u>611</u>     | <u>255</u>   | <u>449</u>     | <u>229</u>   |
| Base Points                      | 5-13            | <u>+ 23</u>    | <u>- 68</u>  | <u>+ 23</u>    | <u>- 68</u>  |
| SUBTOTAL 3                       | Note (c)        | <u>634</u>     | <u>187</u>   | <u>472</u>     | <u>161</u>   |
| HVAC Efficiency                  | 5-14,5-15       | <u>x 67</u>    | <u>x 67</u>  | <u>x 65</u>    | <u>x 67</u>  |
| Heating                          |                 |                |              |                |              |
| Cooling                          |                 |                |              |                |              |
| TOTAL HEATING AND COOLING POINTS | Note (d)        | <u>42478</u>   | <u>12529</u> | <u>30680</u>   | <u>10787</u> |
| TOTAL SPACE CONDITIONING POINTS  | Note (e)        | <u>+ 55007</u> | <u>55007</u> | <u>+ 41467</u> | <u>41467</u> |
| Domestic Hot Water Points        | 5-16,5-17       | <u>+ 16406</u> |              | <u>+ 12740</u> |              |
| TOTAL POINTS                     | Note (f)        |                | <u>71413</u> |                | <u>54207</u> |

Notes for Table 5-1:

Complies

- Sum the points in each column to obtain entries for the four SUBTOTAL 1 boxes.
- Subtract the Glazing Layers Heating points and add Glazing Layers Cooling points to obtain entries for the four SUBTOTAL 2 boxes.

- c) Sum the Base Points and SUBTOTAL 2 to obtain SUBTOTAL 3 entries. Note:  
Some Base Points may be negative. In this case, subtract them from  
SUBTOTAL 2.
- d) Multiply Heating SUBTOTAL 3 by HVAC Heating Points to obtain TOTAL HEATING POINTS. Multiply Cooling SUBTOTAL 3 by HVAC Cooling Points to obtain TOTAL COOLING POINTS.
- e) Sum TOTAL HEATING and TOTAL COOLING POINTS to obtain TOTAL SPACE CONDITIONING POINTS.
- f) Sum TOTAL SPACE CONDITIONING POINTS and Domestic Hot Water Points to obtain TOTAL POINTS.

### 5-3 Ceiling Insulation Points Computation

The equations below are provided to determine the number of Ceiling Insulation, Target and Design, Heating and Cooling Points. Values for the Target and Design Multipliers are provided by the ARES Computer Program.

#### Point Calculation - Ceiling Insulation

##### TARGET HOME:

$$\text{Heating: } \frac{1224}{\text{Ceiling Area}} \times \frac{37}{\text{TARGET Htg. Mult. (Table 5-2)}} = \frac{45288}{1000} = \underline{\underline{45}} \quad (5-1a)$$

$$\text{Cooling: } \frac{1224}{\text{Ceiling Area}} \times \frac{11}{\text{TARGET Clg. Mult. (Table 5-2)}} = \frac{13464}{1000} = \underline{\underline{13}} \quad (5-1b)$$

##### DESIGN HOME: R-30

$$\text{Heating: } \frac{1224}{\text{Ceiling Area}} \times \frac{37}{\text{DESIGN Htg. Mult. (Table 5-3)}} = \frac{45288}{1000} = \underline{\underline{45}} \quad (5-2a)$$

$$\text{Cooling: } \frac{1224}{\text{Ceiling Area}} \times \frac{11}{\text{DESIGN Clg. Mult. (Table 5-3)}} = \frac{13464}{1000} = \underline{\underline{13}} \quad (5-2b)$$

#### 5-4 Wall Insulation Point Computation

The equations below are provided to determine the number of Wall Insulation, Target and Design, Heating and Cooling Points. Values for the Target and Design Multipliers are provided by the ARES Computer Program.

##### Point Calculation - Wall Insulation

###### TARGET HOME:

$$\text{Heating: } \frac{2088}{\text{Wall Area}} \times \frac{55}{\text{TARGET Htg. Mult.}} = \frac{114840}{1000} = \underline{115} \quad (5-3a)$$

(Table 5-4)

$$\text{Cooling: } \frac{2088}{\text{Wall Area}} \times \frac{9}{\text{TARGET Clg. Mult.}} = \frac{18792}{1000} = \underline{19} \quad (5-3b)$$

(Table 5-4)

###### DESIGN HOME: R-13

$$\text{Heating: } \frac{2088}{\text{Wall Area}} \times \frac{84}{\text{DESIGN Htg. Mult.}} = \frac{175392}{1000} = \underline{175} \quad (5-4a)$$

(Table 5-5)

$$\text{Cooling: } \frac{2088}{\text{Wall Area}} \times \frac{14}{\text{DESIGN Clg. Mult.}} = \frac{29232}{1000} = \underline{29} \quad (5-4b)$$

(Table 5-5)

## 5-5 Floor/Foundation Insulation Point Computation

The equations below are provided to determine the number of Floor/Foundation, Target and Design, Heating and Cooling Points. Values for the Target and Design Multipliers are provided by the ARES Computer Program.

Point Calculation - Floor/Foundation Insulation (Unheated Basement)

### TARGET HOME:

$$\text{Heating: } \frac{1280}{\text{Component Size*}} \times \frac{29}{\text{TARGET Htg. Mult. (Table 5-6)}} = \frac{37120}{1000} = \underline{\underline{37}} \quad (5-5a)$$

$$\text{Cooling: } \frac{1280}{\text{Component Size*}} \times \frac{27}{\text{TARGET Clg. Mult. (Table 5-6)}} = \frac{34560}{1000} = \underline{\underline{35}} \quad (5-5b)$$

### DESIGN HOME: R-13

$$\text{Heating: } \frac{1280}{\text{Component Size*}} \times \frac{20}{\text{DESIGN Htg. Mult. (Table 5-7)}} = \frac{25600}{1000} = \underline{\underline{26}} \quad (5-6a)$$

$$\text{Cooling: } \frac{1280}{\text{Component Size*}} \times \frac{28}{\text{DESIGN Clg. Mult. (Table 5-7)}} = \frac{35840}{1000} = \underline{\underline{36}} \quad (5-6b)$$

\* Enter the area (sqft) for a floor over a crawlspace or unheated basement.  
Enter the perimeter length (ft) for slabs and heated basements.

## 5-6 Air Infiltration Points Computation

The equations below are provided to determine the number of Air Infiltration, Target and Design, Heating and Cooling Points. Values for the Target and Design Multipliers are provided by the ARES Computer Program.

### Point Calculation - Air Infiltration

#### TARGET HOME:

|          |                                                                                                               | <u>TARGET POINTS</u> |
|----------|---------------------------------------------------------------------------------------------------------------|----------------------|
| Heating: | $\frac{2504}{\text{Floor Area}}$ x $\frac{143}{\text{TARGET Htg. Mult. (Table 5-8)}}$ = $\frac{358072}{1000}$ | <u>358</u> (5-7a)    |

|          |                                                                                                             |                  |
|----------|-------------------------------------------------------------------------------------------------------------|------------------|
| Cooling: | $\frac{2504}{\text{Floor Area}}$ x $\frac{17}{\text{TARGET Clg. Mult. (Table 5-8)}}$ = $\frac{42568}{1000}$ | <u>43</u> (5-7b) |
|----------|-------------------------------------------------------------------------------------------------------------|------------------|

#### DESIGN HOME: (Tight Package)

|          |                                                                                                               | <u>DESIGN POINTS</u> |
|----------|---------------------------------------------------------------------------------------------------------------|----------------------|
| Heating: | $\frac{2504}{\text{Floor Area}}$ x $\frac{101}{\text{DESIGN Htg. Mult. (Table 5-9)}}$ = $\frac{252904}{1000}$ | <u>253</u> (5-8a)    |

|          |                                                                                                             |                  |
|----------|-------------------------------------------------------------------------------------------------------------|------------------|
| Cooling: | $\frac{2504}{\text{Floor Area}}$ x $\frac{12}{\text{DESIGN Clg. Mult. (Table 5-9)}}$ = $\frac{30048}{1000}$ | <u>30</u> (5-8b) |
|----------|-------------------------------------------------------------------------------------------------------------|------------------|

## 5-7 Fenestration Layers and Sash Material Points Computation

The equations below are provided to determine the number of Fenestration Layers and Sash Material, Target and Design, Heating and Cooling Points. Values for the Target and Design Multipliers are provided by the ARES Computer Program.

### Point Calculation - Window Layers and Sash Material

#### TARGET HOME:

|                                                                                                   | <u>TARGET POINTS</u>                 |
|---------------------------------------------------------------------------------------------------|--------------------------------------|
| Heating: $\frac{2504}{\text{Floor Area}} \times \frac{75}{\text{TARGET Htg. Mult. (Table 5-10)}}$ | $= \frac{187800}{1000} = 188$ (5-9a) |

|                                                                                                  | <u>(5-9b)</u>             |
|--------------------------------------------------------------------------------------------------|---------------------------|
| Cooling: $\frac{2504}{\text{Floor Area}} \times \frac{1}{\text{TARGET Clg. Mult. (Table 5-10)}}$ | $= \frac{2504}{1000} = 3$ |

#### DESIGN HOME: (Double w/o TB)

|                                                                                                    | <u>DESIGN POINTS</u>                  |
|----------------------------------------------------------------------------------------------------|---------------------------------------|
| Heating: $\frac{248}{\text{Window Area}} \times \frac{625}{\text{DESIGN Htg. Mult. (Table 5-11)}}$ | $= \frac{155000}{1000} = 155$ (5-10a) |

|                                                                                                   | <u>(5-10b)</u>            |
|---------------------------------------------------------------------------------------------------|---------------------------|
| Cooling: $\frac{248}{\text{Window Area}} \times \frac{12}{\text{DESIGN Clg. Mult. (Table 5-11)}}$ | $= \frac{2976}{1000} = 3$ |

## 5-8 Glazing Area and Orientation Point Computation

The equations below are provided to determine the number of Glazing Area and Orientation Design Heating and Cooling Points. Values for the Target Heating and Cooling Points, and the Design Multipliers (Option and Overhang) are provided by the ARES Computer Program.

### TARGET Point Calculation - Fenestration Area and Orientation

#### TARGET HOME:

|                                           | <u>TARGET POINTS</u>                                   |
|-------------------------------------------|--------------------------------------------------------|
| Heating: $\frac{2504}{\text{Floor Area}}$ | $\frac{132}{\text{(Table 5-12)}} \quad \text{(5-11a)}$ |

|                                           | <u>(5-11b)</u>                    |
|-------------------------------------------|-----------------------------------|
| Cooling: $\frac{2504}{\text{Floor Area}}$ | $\frac{142}{\text{(Table 5-12)}}$ |

DESIGN HOME: HEATING CALCULATION

| Orientation  | Glazing Area | Energy Option Multiplier | Overhang Multiplier | Penetration Factor (F) |
|--------------|--------------|--------------------------|---------------------|------------------------|
| (Table 5-13) |              |                          |                     |                        |
| North        | 50           | x 35                     | x 10                | / 100 = 175            |
| Northwest    | 120          | x 56                     | x 11                | / 100 = 739            |
| East         | 25           | x 98                     | x 12                | / 100 = 294            |
| Southeast    | 53           | x 55                     | x 11                | / 100 = 321            |
| South        |              |                          |                     |                        |
| Southwest    |              |                          |                     |                        |
| West         |              |                          |                     |                        |
| Northwest    |              |                          |                     |                        |

Total HEATING Penetration Factor (F)  
DESIGN Points:  $\frac{1529}{205}$  (5-12a)  
(Table 5-15)

DESIGN HOME: COOLING CALCULATION

| Orientation  | Glazing Area | Energy Option Multiplier | Overhang Multiplier | Penetration Factor (F) |
|--------------|--------------|--------------------------|---------------------|------------------------|
| (Table 5-13) |              |                          |                     |                        |
| North        | 50           | x 26                     | x 10                | / 100 = 130            |
| Northwest    | 120          | x 40                     | x 11                | / 100 = 528            |
| East         | 25           | x 39                     | x 13                | / 100 = 127            |
| Southeast    | 53           | x 48                     | x 11                | / 100 = 280            |
| South        |              |                          |                     |                        |
| Southwest    |              |                          |                     |                        |
| West         |              |                          |                     |                        |
| Northwest    |              |                          |                     |                        |

Total COOLING Penetration Factor (F)  
DESIGN Points:  $\frac{1065}{118}$  (5-12b)  
(Table 5-15)

## 5-9 Base Load Computation

The equations below are provided to determine the number of Base Load Heating and Cooling Points. Values for the Heating and Cooling Multipliers are provided by the ARES Computer Program.

### Point Calculation - Base Load

$$\text{Heating: } \frac{2504}{\text{Floor Area}} \times \frac{9}{\text{Heating Multiplier (Table 5-16)}} = \frac{22536}{1000} = \underline{\underline{23}} \quad (5-13a)$$

$$\text{Cooling: } \frac{2504}{\text{Floor Area}} \times \frac{-27}{\text{Cooling Multiplier (Table 5-16)}} = \frac{-67608}{1000} = \underline{\underline{-68}} \quad (5-13b)$$

### TOTAL POINTS

$$\text{Heating: } \frac{2504}{\text{Floor Area}} \times \frac{9}{\text{Heating Multiplier (Table 5-16)}} = \frac{22536}{1000} = \underline{\underline{23}} \quad (5-13a)$$

$$\text{Cooling: } \frac{2504}{\text{Floor Area}} \times \frac{-27}{\text{Cooling Multiplier (Table 5-16)}} = \frac{-67608}{1000} = \underline{\underline{-68}} \quad (5-13b)$$

## 5-10 HVAC Equipment and System Efficiency Point Computation

The equations below are provided to determine the number of HVAC Systems, Target and Design, Heating and Cooling Points. Values for Target and Design Multipliers are provided by the ARES Computer Program.

### Point Calculation - Mechanical Equipment

TARGET HOME: (Ducted Gas Furnace)  
w/ DX AC

### TARGET POINTS

$$\frac{67}{(\text{Table 5-17})} \quad (5-14a)$$

Cooling:

$$\frac{67}{(\text{Table 5-17})} \quad (5-14a)$$

DESIGN HOME:

$$\text{Heating: } \frac{5729}{\text{Equipment Multiplier (Table 5-18)}} \div \frac{88}{\text{Efficiency Indicator}} = \underline{\underline{65}} \quad (5-15a)$$

(AFUE)

### DESIGN POINTS

$$\frac{65}{(\text{Table 5-17})} \quad (5-15a)$$

$$\text{Cooling: } \frac{672}{\text{Equipment Multiplier (Table 5-18)}} \div \frac{10}{\text{Efficiency Indicator}} = \underline{\underline{67}} \quad (5-15b)$$

(SEER)

## 5-11 Domestic Hot Water Point Calculation

Values for the Target DHW Points and Design and Target Points for demonstrating compliance using Solar DHW System, are provided by the ARES Computer Program. The ARES Computer Program is also used to determine the DHW Multiplier in calculating the Design DHW Points.

### Point Calculation - Nonsolar Domestic Water Heating

TARGET HOME:

TARGET POINTS

16406  
(Table 5-19)

DESIGN HOME:

DESIGN POINTS

DHW Multiplier  
(Table 5-20)

$$\div \frac{\text{Energy Factor}}{=} \text{DESIGN POINTS} \quad (5-16b)$$

NA

### Point Calculation - Solar Domestic Water Heating

TARGET HOME:

TARGET POINTS

16406  
(Table 5-21)

DESIGN HOME:

(Active, 2-Panel System)

DESIGN POINTS

12740  
(Table 5-21)  $(5-17b)$