LA-UR. 96-429 Cong . Fo0820 - -2

Title: COMPUTATIONAL, PROCESSES OF EVOLUTION AND THE GENE
EXPRESSION MESSY GENETIC ALGORITHM

Author(s):

H. Kargupta APR 0 1 1995

Submitted to: Foundations of genetic algorithms (FOGA4)

San Diego, CA
August 1996

MASTER

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity empldyer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 RS

DISTRIBUTION OF THIS DOCUMENT I8 mw&aﬁ hiiertic

Computational Processes Of Evolution And The Gene
Expression Messy Genetic Algorithm

Hillol Kargupta®
Computational Science Methods division

Los Alamos National Laboratory
Los Alamos, NM, USA.

Abstract

This paper makes an effort to project the theoretical
lessons of the SEARCH (Search Envisioned As Rela-
tion and Class Hierarchizing) framework introduced
elsewhere (Kargupta, 1995b) in the context of natu-
ral evolution and introduce the gene expression messy
genetic algorithm (GEMGA)—a new generation of
messy GAs that directly search for relations among
the members of the search space. The GEMGA is
an O(JA|¥(€+ k)) sample complexity algorithm for the
class of order-k delineable problems (Kargupta, 1995a)
(problems that can be solved by considering no higher
than order-k relations) in sequence representation of
length € and alphabet set A. Unlike the traditional
evolutionary search algorithms, the GEMGA empha-
sizes the computational role of gene expression and
uses a transcription operator to detect appropriate re-
lations. Theoretical conclusions are also substantiated
by experimental results for large multimodal problems
with bounded inappropriatness of representation.

1 Introduction

The SEARCH (Séarch Envisioned As Relation and
Class Hierarchizing) framework introduced elsewhere
(Kargupta, 1995a) offered an alternate perspective of
blackbox search (BBS) in terms of relations, classes
and partial ordering. SEARCH is primarily motivated
by the observation that searching for optimal solution
in a BBS is essentially an inductive process (Michal-
ski, 1983) and in absence of any relation among the
members of the search space, induction is no better
than enumeration (Watanabe, 1969). SEARCH de-
composed BBS into three spaces: (1) relation, (2)
class, and (3) sample spaces. SEARCH also identified
the importance of searching for appropriate relations

*The author can be reached at, P.O. Box 1663, XCM, Mail
Stop F645, Los Alamos National Laboratory. Los Alamos, NM
87545, USA. e-mail: hillol@lanl.gov

in BBS. No BBS algorithm can efficiently solve a rea-
sonably general class of problems unless it searches
for relations. Kargupta (1995a) also showed that the
class of order-k delineable problems can be solved in
SEARCH with sample complexity polynomial in prob-
lem size, desired quality and reliability of the solution.

In this paper, I use the SEARCH framework to pro-
pose an alternate computational perspective of natu-
ral evolution. This perspective emphasizes the role
of gene ezpression (DNA—RNA—Protein) in natu-
ral evolution and identifies gene regulatory mecha-
nism, proteins, and DNA in terms of relation, class,
and sample space respectively. This decomposi-
tion of evolutionary search process, backed by the
SEARCH framework leads to the development of a
new O(JA|*(€+k)) BBS algorithm called gene expres-
sion messy GA (GEMGA) for order-k delineable prob-
lems in sequence representation of length £ with alpha-
bet A.

Long before the development SEARCH framework,
Goldberg and his students (Deb, 1991; Goldberg,
Korb, & Deb, 1989; Goldberg, Deb, Kargupta, &
Harik, 1993; Kargupta, 1995a) realized the impor-
tance of detecting appropriate relations and proposed
a unique class of algorithms known as messy genetic al-
gorithms. Different versions of messy GAs studied dif-
ferent aspects of BBS by decomposing blackbox search
along different dimensions. These investigations have
directly influenced the development of SEARCH and
the design of the GEMGA. Undoubtedly, the authors
of the original version of messy GA (Goldberg, Korb,
& Deb, 1989) deserve the credit for first realizing the
importance of detecting appropriate relations among
the members of the search space.

Section 2 briefly reviews the SEARCH framework.
Section 3 discusses the information flow in natural evo-
lution from the SEARCH perspective. Section 4 com-
bines the ideas developed in previous sections and in-
troduces GEMGA. This is followed by Section 5 which
presents the test results for large multimodal, order-
k delineable problems. Finally, Section 77 concludes

{884 - 1 # §# J;1100
T 0###\\‘;1 011
HH Fedoomemee HHH1<L, Fo1to
IR N #8850 X 0001

Relation space Class space Sample space

Figure 1: Decomposition of blackbox optimization in

SEARCH.

this paper.

92 SEARCH: A Brief Review

The foundation of SEARCH is laid on a decompo-
sition of the blackbox search problem into relation,
class, and sample spaces. A relation is a set of or-
dered pairs. For example, in a set of cubes, some white
and some black, the color of the cubes defines a rela-
tion that divides the set of cubes into two subsets—
set. of white cubes and set of black cubes. Consider
a 4-bit binary sequence. There are 94 such binary
sequences. This set can be divided into two classes
using the equivalence relation! f#4t#, where f de-
notes position of equivalence; the # character matches
with any binary value. This equivalence relation di-
vides up the complete set into two equivalence classes,
1444 and 0##+. The class 1§ #4 contains all the
sequences with 1 in the leftmost position and 0###
contains those with a 0 in that position. The total
number of classes defined by a relation is called its
index. The order of a relation is the logarithm of its
index with some chosen base. In a BBS problem, rela-
tions among the search space members are often intro-
duced through different means, such as representation,
operators, heuristics, and others. The above exam-
ple of relations in binary sequence can be viewed as
an example of relation in the sequence representation.
In a sequence space of length ¢, there are 2¢ different
equivalence relations. The search operators also define
a set of relations by introducing a notion of neighbor-
hood. For a given member in the search space, the
search operator define a set of members that can be
reached by one or several application of the opera-
tors. This introduces relations among the members.
Heuristics identifies a subset of the search space as
more promising than others often based on some do-

! An equivalence relation is a relation that is reflexive, sym-
metric, and transitive.

 ——————

main specific knowledge. Clearly this can be a source
of relations. Relations can sometimes be introduced
in a more direct manner. For example, Perttunen and
Stuckman (1990) proposed a Bayesian optimization
algorithm that divides the search space into Delaunay
triangles. This classification directly imposes a cer-
tain relation among the members of the search space.
The same goes for interval optimization (Ratschek &
Voller, 1991), where the domain is divided into many
intervals and knowledge about the problem is used to
compute the likelihood of success in those intervals.
As we see, relations are introduced by every search
algorithm, either implicitly or explicitly. The role of
relations in BBS is very fundamental and important.

Relations divide the search space into different
classes and the objective of sampling based BBS is
to detect those classes that are most likely to contain
the optimal solutions. To do so requires constructing
a partial ordering among the classes defined by a re-
lation. The classes are evaluated using samples from
the search domain and a class comparison statistic is
used for comparing different classes. For a given class
comparison statistic <t and some number M, a rela-
tion is said to properly delineate the search space if the
class containing the optimal solution is within the top
M classes, when the set of all classes defined by the
relation are ordered using <7. This basically means
that if a relation satisfies the delineation constraint
then, given sufficient samples, the relation will pick
up the class containing the optimal solution within
the top A ranked classes. If a relation does not sat-
isfy this, then the relation leads to wrong decision and
as a result success in finding the optimal solution is
very unlikely.

A particular relation may not satisfy the delineation
constraint for different. problems, different class com-
parison statistics, and different values of M. One re-
lation may work for a particular case and may fail to
do so for a different setting. Therefore, any algorithm
that aspires to be applicable for a reasonably general
class of problems, must search for appropriate rela-
tions. Determining whether or not a relation satisfies
this delineation constraint requires decision making in
absence of complete knowledge. For a given relation
space ¥/, a BBS algorithm must identify the relations
that properly delineate the search space with certain
degree of reliability and accuracy. This requires com-
paring one relation with another using a relation com-
parison slatistic and constructing a partial ordering
among them.

A BBS algorithm in SEARCH cannot be efficient
if it needs to consider relations that divide the search
space in classes, with the total number of classes grow-
ing exponentially with the problem dimension. For

example, in an £-bit sequence representation, if there
is a class of problem which requires considering the
equivalence relations with (€— 1) fixed bits then there
is a major problem. This relation divides the search
space into 2¢~1 classes and we cannot solve this prob-
lem in complexity polynomial in (. However, in BBS
the ultimate objective is to identify the optimal so-
lution which basically defines a singleton class. The
smaller the cardinality of the individual classes, the
larger the index of the corresponding relation. So we
need the higher order relations for finally identifying
the optimal solution, but we cannot directly evaluate
them since their index is large. The solution is to limit
our capability and realize that we can only solve those
problems which can be addressed using low order rela-
tions and when high order relations are decomposable
to those low order relations. This means that the in-
formation about low order relations can be used to
evaluate the higher order relations. Consider the fol-
lowing example. Let 7o be a relation that is logically
equivalent to rj Arq, where r; and ra are two different
relations; the sign A denotes logical AND operation.
If either of »; or ro was earlier found to properly delin-
eate the search space, then the information about the
classes that are found to be bad earlier can be used
to eliminate some classes in rg from further consider-
ation. This process in SEARCH is called resolution.
Resolution basically evaluates the relations of higher
order using the information gathered by direct evalu-
ation of bounded order relations.

The above description gives a brief informal
overview of the SEARCH framework. As we saw,
SEARCH addresses BBS on three distinct grounds:
(1) relation space, (2) class space. and (3) sample
space. Figure 1 shows this fundamental decomposi-
tion in SEARCH. The major components of SEARCH
can be summarized as follows:

1. classification of the search space using a relation
2. sampling

3. evaluation, ordering. and selection of better

classes

4. evaluation, ordering, and selection of better rela-
tions

5. resolution

A detailed description of each of these processes and
their analysis, leading to the development of a bound
on sample complexity, can be found elsewhere (Kar-
gupta, 1995a).

The SEARCH framework has clearly pointed out
the different facets of decision making in BBS and
explained why searching for relations is essential in

BBS. This also identified the class of order-k delineable
problems, that can be solved in polynomial sample
complexity in SEARCH. An order-k delineable prob-
lem is one that can be solved using a polynomially
bounded number of relations. The main lessons that
will be used in the coming sections are, (1) search for
appropriate relations is essential for transcending the
limits of random enumeration, (2) both relation and
class spaces require correct decision making, (3) we
can only efficiently solve problems that need to con-
sider a bounded number of relations from the given
relation space, i.e. the class of order-k delineable prob-
lems, (4) the SEARCH perspective of implicit paral-
lelism (Holland, 1975)—evaluation of different rela-
tions from the same sample set.

This sets the stage for launching an algorithm for
solving the k-delineable problems. However, we shall
take a detour and first establish the physical validity of
the analytical findings in the context of a classical BBS
algorithm of nature—the evolution of life on earth. In
the following section we shall examine the computa-
tional processes in natural evolution and demonstrate
that the lessons of SEARCH remains valid and even
opens up some new dimensions in the biological con-
text.

3 SEARCH And Natural Evo-
lution

Natural evolution has evolved fitter organisms dur-
ing the course of time; some species became extinct
and some flourished. The development of functionally
complex but efficient organisms like human beings has
taken place in about 2 billion years. Human genome is
comprised of around 2.9 x 10® base pairs, which essen-
tially means that search space is extremely large and
it is very unlikely that at the beginning of evolution
there existed any prior domain knowledge about this
search space. Clearly we evolved in a relatively shorter
period of time and that really makes the evolutionary
search very impressive.

The objective of this section is to develop a compre-
hensive perspective toward evolutionary computation
using the lessons from the SEARCH Tframework. In
order to do that we first need to establish a compu-
tational perspective of gene expression in evolution,
largely ignored by the existing computational mod-
els of evolution. Once we do that, the arguments of
SEARCH can be easily interpreted in the biological
context.

Section 3.1 briefly discusses the flow of informa-
tion in natural evolution. Section 3.2 points out the
main problem of the existing models of evolutionary

computation—lack of emphasis on gene expression.
Section 3.3 raises some additional questions about
the natural evolutionary search. Finally, Section 3.4
draws the correspondence between SEARCH and evo-
lution and presents an alternate perspective. Section
3.5 revisits the questions raised in Section 3.3 and pro-
poses some answers. The possibility of constructing
richer representation transformation in eukaryotes is
pointed out in Section 3.6.

3.1 Information flow in evolution

Information flow in evolution is primarily divided into
two kinds:

e extra-cellular flow: storage, exploration, and
transmission of genetic information from genera-
tion to generation;

¢ intra-cellular flow: expression of genetic infor-
mation within the body of an organism.

Each of these will be discussed in the following two
paragraphs.

The extra-cellular flow involves replication, muta-
tion, recombination, and transmission of DNA (de-
oxyribonucleic acid) from parents to offspring. A DNA
molecule consists of two long complementary chains
held together by base pairs. DNA consists of four
kinds of bases joined to a sugar-phosphate backbone.
The four bases in DNA are adenine (A), guanine (G),
thymne (T) and cytosine (C). Chromosomes are made
of DNA double helices. For more detailed descrip-
tion, the reader should refer to Alberts, Bray, Lewis,
Raff, Roberts, and Watson (1994, Stryer (1988). Eu-
karyotes (most of the developed organisms) have two
chromosomes in their cell nucleus, and thus called
diploid organisms. On the other hand, in prokaryotes,
such as single-celled bacteria, only one chromosome
is present. These are called haploid organisms. The
DNA sequence is changed by mutation. Crossing over
and subsequent recombination result in exchange of
base pairs between the parent DNA sequences. These
processes result in generation of new DNA sequences.
DNA is then transmitted from the parents to the off-
spring. The DNA is responsible for defining the phe-
notype of organism and thereby controls the suitabil-
ity of the organism in the environment. This suit-
ability determines the selective pressure on the organ-
ism. Fitter organisms survive, and the rest do not.
However, the computation of the phenotype from the
DNA—gene expression—is an interesting process in
itself. The following paragraph briefly describes the
main steps of gene expression, that define the intra-
cellular flow of evolutionary information.

Transcripti Translati
ranscnption \{m Tanstaion)@

Transcription Replicaton

Figure 2: Intra-cellular flow of genetic information.

Expression of genetic information coded in DNA
into the proteins is called the gene ezpression. Expres-
sion of genetic information takes place through several
complicated steps. However, the major distinct phases
are identified as

e transcription: formation of mRNA (ribonucleic
acid) from DNA

o translation: formation of protein from mRNA

Figure 2 shows the different steps of gene expression.
Each of them is briefly described in the following.

Transcription synthesizes messenger RNA (mRNA)
from part of the DNA. RNA (ribonucleic acid) con-
sists of four types of bases joined to a ribose-sugar-
phosphodiester backbone. Transcription basically
constructs a sequence of bases from another sequence
of bases—the DNA. Transcription is initiated by some
particular sequences of bases in DNA. They are known
as promoter regions. For example, in many prokary-
otes, the Pribnow bozx sequence TATAAT is a com-
mon promoter region. Transcription continues until
it reaches some particular kind of sequences of bases,
known as a terminator region. RNA polymerase tran-
scribes the portion of DNA between the promoter and
terminator regions. Regulatory proteins of a cell can
directly control the transcription of DNA sequences.
There are two kinds of regulatory proteins:

o gene activator protein, which enhances transcrip-
tion of a gene, wherever it binds.

e gene repressor protein, which inhibits transcrip-
tion of a gene.

These proteins usually bind to specific sequences of

DNA and determine whether or not the corresponding’

gene will be transcribed. Translation synthesizes pro-
teins from the mRNA sequences. Proteins are again
sequence of amino acids, joined by peptide bonds.
Most of the existing models of evolutionary com-
putation do not provide any understanding about the

computational role of the intra-cellular flow of genetic
information. The following section gives an account
of that.

3.2 A major problem of existing mod-
els of evolutionary computation

Unfortunately, many of the existing computational
models of evolution address only the extracellular flow
of genetic information. Simple genetic algorithms
(De Jong, 1975; Goldberg, 1989b; Holland, 1975),
evolutionary strategie (Rechenberg, 1973), and evolu-
tionary algorithms (Fogel, Owens, & Walsh, 1966) are
some examples. These existing perspectives of evolu-
tionary computation do not assign any computational
role to the nonlinear mechanism for transforming the
information in DNA into proteins. The same DNA is
used for different kinds of proteins in different cells of
living beings. The development of different expression
control mechanisms and their evolutionary objectives
are hardly addressed in these models. They primarily
emphasize the extra-cellular flow. The main difler-
ence among these models seems to be the emphasis
on crossover compared to mutation or vice versa.

Although gene expression is not emphasized very
much in most of the popular models of evolutionary
computation, several researchers realized its impor-
tance. The importance of the computational role of
gene expression was first realized by Holland. He de-
scribed (Holland, 1975) the dominance operator as a
possible way to model the effect of gene expression in
diploid chromosomes. He also noted the importance
of the process of protein synthesis from DNA in the
computational model of evolution. Despite the fact
that traditionally dominance maps are explained from
the Mendelian perspective, Holland made an interest-
ing leap by connecting it to the synthesis of protein
by gene signals, which today is universally recognized
as gene expression. He realized the relation between
the dominance operator with the “operon™ model of
the functioning of the chromosome (Jacob & Monod,
1961) in evolution and pointed out the possible com-
putational role of gene signaling in evolution (Holland,
1975).

Several other efforts have been made to model
some aspects of gene expression. Diploidy and dom-
inance have also been used elsewhere (Bagley, 1967;
Brindle, 1981; Hollstien, 1971; Rosenberg. 1967;
Smith, 1988). Most of them took their inspiration
from the Mendelian view of genctics. The under-
specification and over-specification decoding operator
of messy GA has been viewed as a mechanism sim-
ilar to gene signaling in Goldberg. Korb, and Deb
(1989). Dasgupta and McGregor (1992) proposed the
so-called structured genetic algorithm, which uses a

structured hierarchical representation in which genes
are collectively switched on and off. This implemen-
tation also gathered its primary motivation {rom gene
expression. An interesting effort was made by Ack-
ley (1987). He proposed a connectionist paradigm for
iterative genetic hillclimbing (SIGH) and introduced
a relation space through weights. Although, SIGH
was not really motivated by gene expression, rather
by connectionist computation, the computational ob-
jectives of SIGH shared similar philosophy.

Kauffman (1993) offered an interesting perspective
of the natural evolution that realizes the importance
for gene expression. However, Kauflman’s work does
not explain the process in basic computational terms
on analytical grounds and does not relate the issue to
the complexity of search process.

As we see, the computational role of gene expression
has mostly been unrecognized. Even when duly rec-
ognized, little argument has been made to explain its
role in making search efficient. In the coming sections
an effort will be made to fill in this lacuna using the
lessons from the SEARCH framework in pure compu-
tational terms. However, first let us set the premise
properly by asking some relevant questions.

3.3 Evolution of life: Some questions

The problems of our existing computational under-
standing of evolutionary search will become more clear
when we ask some hard questions and demand answers
in rigorous computational terms. The objective of this
section is to do so and demonstrate the need for the
alternate perspective of evolution that SEARCII of-
fers.

First in Section 3.3.1 I discuss the issue of “ade-
quate time” (Kauffiman, 1993) in evolution and argue
that evolution is efficient because it directly scarches
for relations during gene ezpression. Section 3.3.2 in-
vestigates the possible computational role of genetic
recombination.

3.3.1 The problem of “adequate time”

The evolution of living organisms, comprised of a
large number of mutually interacting components with
amazing degree of coordination is undoubtedly im-
pressive. This naturally lead us to think about the
time that might have been needed to evolve such or-
ganisms from primitive ingredients. Some biologists
think that there was enough time for evolution to suc-
ceed (Kauffman, 1993) and some of them (Shapiro,
1986; Hoyle & Wickramasinghe, 1981) do not. This is
the classical question of “adequate time” in evolution.

Holland (1976) came to an interesting conclusion.
Using the so called a-universe model, he argued that

emergence of life on earth in such a short time is only
possible if evolutionary search could detect the appro-
priate equivalence classes or schemata. This was an
important argument; unfortunately, this line of argu-
ment was largely neglected by the biologists and the
debate continued primarily because of the lack of an-
alytical result supporting Holland’s argument.

Those who believe in inadequate time theory, de-
pend on the observation that the search space is too
large to deal with by random enumeration. Two bil-
lion years may be a “long time” compared to our life-
time, it may not be quite so compared to the size of the
evolutionary search space. Wald (1954) conjectured
that 2 billion years of time is sufficient and sampling
different organisms during the course of this “long”
time made evolution successful. He even concluded
“Time is in fact the hero of the plot”. Shapiro (1986)
criticized Wald’s perspective and presented convinc-
ing argument demonstrating that there was not suffi-
cient time for evolution to succeed. Shapiro estimated
the total number of samples that evolution could have
taken during the last two billion years. He then com-
puted a conservative bound on the joint probability
of finding the set of functional enzymes of a primi-
tive bacterium from this set of samples and showed
that success probability is extremely low. The joint
success probability is so low that it has been com-
pared elsewhere Hoyle and Wickramasinghe (1981)
with the chance of “a tornado sweeping through a junk
yard might assemble a Boeing 747 from the materials
therein”. The foundation of this line of argument is
based on the assumption that evolution searches by
random enumeration. Once we accept this premise
their argument makes sense.

Goldberg (1989a) indirectly addressed this question
on computational grounds following Holland’s idea
of schema processing. Although his arguments were
primarily directed toward computational limitations
of evolutionary algorithms such as GAs, their im-
plications on biological context were equally impor-
tant. He introduced (Goldberg. 1987) order-k decep-
tive functions which essentially admitted that a black-
box search algorithm can only efficiently solve prob-
lems with certain degree of decomposability.

Kauffman (1993) offered a different. way of answer-
ing this question. He argued against the idea of com-
puting joint success probability for all the different
enzymes of living bemgs. He writes “We should in-
stead be concerned with the probability of finding any
one of possibly very many properly coupled sets of
enzymatic activities which might constitute a living
proto-organism™. He proposes that the development
of the individual components in the RNA and pro-
tein spaces lead to the emergence of the whole in

a time shorter than that corresponding to the joint
probability computed by Shapiro (1986). This is an
interesting break. Although Kauffman presents his ar-
guments in terms of phase transitions, autocatalysis,
and percolation principles, in my opinion his argu-
ments against computing the joint probability make
sense only when the protein space is decomposable.
Although the search problem in DNA space may not
be decomposable, the DNA—RNA—Protein transfor-
mation may convert the problem into a decomposable
one.

As we see, the arguments in favor of adequate
time are three folds: (1) Holland’s idea of equivalence
class processing (2) Goldberg’s argument about prob-
lem decomposability, and (3) Kauffiman’s emphasis on
gene expression. However, none of them alone de-
scribes the complete picture about the computational
processes in natural evolution. In the coming sections
we shall put them together in the light of SEARCH
to offer a more complete picture of the efficiency in
evolutionary search. Before that, let us consider an-
other important factor in evolution—the natural se-
lection and see whether or not the existing models of
evolutionary computation does capture the complete
picture.

3.3.2 Natural selection: Some questions

The role of natural selection in evolution is almost
universally acknowledged. Natural selection has been
identified as one of the main factor defining the evolu-
tion and self-organization in many complex systems.

An immediate question that may come to our mind
is—What does natural selection select? Clearly liv-
ing organisms have DNA space and the protein space.
The DNA sequence defines the set of proteins in an
organism. The proteins are in turn responsible for the
phenotypic features of the organism. The performance
of an organism in its environment may act as an in-
dex of the selective pressure. However, the question
is how does the selective pressure effect the organism?
As we know, both DNA space and the gene regula-
tory mechanisms evolved during the course of evo-
lution (Alberts, Bray, Lewis, Rafl, Roberts, & Wat-
son, 1994). In order to take place that, there must be
some distribution of selective pressure in each of these
spaces.

Unfortunately, existing evolutionary algorithms do
not consider the apportionment of selective pressure in
these two diflerent spaces. As we saw earlier, evolu-
tionary search algorithms remains contend with selec-
tion in the sample space, corresponding to the effect
of natural selection in the DNA space. Clearly, the
lack of consideration of the selective pressure in gene
expression is a missing feature from the modeling per-

spective. The question is whether it affects even the
computational modeling of evolutionary search? The
answer is yes. However, let us again resist ourselves
from explaining the answer until we discuss another
puzzle of natural evolution that appears from the role
of genetic recombination and crossing-over.

3.3.3 Recombination of what?

Recombination among homologous pair of chromo-
somes results in exchanging set of genes among the
parent chromosomes and produces offspring with new
chromosomes. A good deal of controversy exists about
the utility of recombination. In fact, the field of evo-
lutionary computation appears to be divided into two
camps one supporting the utility of recombination and
other dismissing that. The basic question that we need
to ask first is that recombine what? If we consider the
parent chromosome together as a tuple. then recombi-
nation is nothing but a permutation operator among
the 2¢ genes. There are (2()! ways to permute that
tuple of 2€ genes. Therefore, searching using recombi-
nation is no more efficient. than mutative search.

However, recombination is good if we know what to
exchange. If we know what relations are good then
we only need to exchange the classes that belong to
those relations. In an order-k delineable representa-
tion recombination can be used to combine the classes
to produce classes of higher order relations.

In natural evolution, recombination process is con-
trolled by different proteins. For example in E. coli,
recombination is mediated by products of rec genes
(Stryer, 1988). After the single-stranded DNA is cre-
ated by recBCD protein, the rec: protein directly con-
trols the process of binding the duplex DNA, base
pairing, and the exchange of strands. Clearly the
working of recombination depends on these proteins
and recombination will reduce to be a random permu-
tation operator in-absence of these proteins. There-
fore, the evolution of right proteius appears to be im-
portant for the efficient working of recombination.

Unfortunately, most of the existing evolutionary al-
gorithms do not recognize this. One and multi-point
crossover (De Jong, 1975; Holland. 1975). uniform
crossover (Syswerda, 1989) are some examples of arti-
ficial crossovers widely used in genetic algorithms. In
one and multi-point. crossovers the point of crossing-
overs are randomly chosen. In uniform crossover in-
dividual gene swapping is decided randomly. Clearly
none of them has any controlling feature. An inter-
esting efforts was made elsewhere (Schaffer & Mor-
ishima, 1987). They suggested the use of adaptive
crossover that gradually biases toward better classes.
Maini, Mehrotra, Mohan, and Ranka (1994) proposed
using domain knowledge-based nonuniform crossover.

Other efforts on adaptive crossovers can be found else-
where (Jog, Suh, & Van Gucht, 1989; White & Op-
pacher, 1994).

3.4 Evolutionary computation: The

SEARCH perspective

Previous sections have clearly explained the need for
understanding the processing of relations in natural
evolution. In this section we take one step ahead
by drawing a one to one correspondence between the
evolutionary search mechanisms and decomposition of
BBS in SEARCH.

e Sample space: DNA constitute the sample
space. Crossover and mutation generate new
samples of DNA. A population of organisms de-
fines the sample space for the evolutionary search.

e Class space: Base sequences of mRNA tran-
scribed in a cell correspond to only a part of
the complete DNA. The sequence of amino acids
in protein in turn correspond to base sequence
in mRNA. The genetic code tells us that there
is a unique relationship between the nucleotide
triplets of the DNA and the amino acids in the
protein. Therefore, if we consider the DNA as
a representation defined over the evolutionary
search space for life and different forms of life,
then the amino acid sequence of a protein corre-
sponds to a class of different DNA; every DNA
in this class must have a certain sequence of nu-
cleotides that can be transcribed to that partic-
ular sequence of amino acids. Since the genetic
code is unique, a particular sequence of amino
acids can only be produced by a certain sequence
of nucleotides. In other words, the sequence of
amino acids in a protein defines an equivalence
class over the DNA space.

e Relation space: Recall that amino acid se-
quences in protein are translated from the nu-
cleotide sequences of mRNA. The construction of
mRNA is basically controlled by the transcription
process. Since an equivalence relation is an en-
tity that defines the equivalence classes, the tran-
scription regulatory mechanism can be viewed as
the relation space that defines classes in terms
of the nucleotide sequences in mRNA and finally
in terms of the amino acid sequences in proteins.
Among the different components of this regula-
tory mechanism, regulatory proteins, promoter
and terminator regions play a major role. Reg-
ulatory proteins exist as a separate entity from
the DNA, but the promoter and terminator re-
gions are defined on the DNA. It appears that

Table 1: Counterparts of different components
SEARCII in natural evolution.

SEARCH Natural evolution
Relation space gene regulatory mechanism

Class space amino acid sequence in protein
Sample space DNA space

there is a distinct relation space comprised of the

_different regulatory agents, such as activator and
inhibitor proteins. However, it is quite interest-
ing to note that this space also directly makes
use of information from the sample space—the
DNA. Expression of genetic information in eu-
karyotic organisms is more interesting than that
in prokaryotes.

These possible relationships between the different
spaces of SEARCH and natural evolution are summa-
rized in Table 1. Now that, we have drawn a corre-
spondence betiween the different components of nat-
ural evolution and the SEARCH framework, we are
ready for answering the questions raised earlier in sec-
tion 3.3.

3.5 Evolution of life: Some answers

In this section we shall revisit the questions raised in
section 3.3 in the light of SEARCH and present some
possible explanations,

3.5.1 The issuc of adequate time

As we saw eatlier, the arguments favoring the ade-
quate time theory are three folds: (1) Holland’s idea of
equivalence class processing (2) Goldberg’s argument
about problem decomposability, and (3) Kauffman’s
argument favoring the importance on evolution in the
protein space. Now if we look at the adequate time
problem and these arguments in the light of SEARCH
we can come to an interesting conclusion—all of them
are correct when we put them together. When we
do so, the hypothesis appears as follows: evolufion
can be successful in such a short period of time if and
only 1f il searches for appropriate equivalence classes
defincd by the representation and the search problem
was either origmally decomposable or transformed to
a decomposable onc i the prolen space. The follow-
ing part of this section corroborates this hypothesis
on the analytical grounds offered by SEARCH.

First of all, SEARCH proved that polynomial com-
plexity blackbox search is not possible unless some
relations among the members of the search space is

exploited. Relations define classes and exploiting re-
lations requires processing classes. Therefore, evolu-
tionary search cannot be of polynomial complexity (
i.e. efficient) unless it processes classes defined over
the genetic representation. The second point is about
decomposability. Was the evolutionary search prob-
lem decomposable in the initial genetic representation.
No one knows, but it is unlikely. The genetic rep-
resentation and the expression of genetic information
(a representational transformation) evolved during the
course of evolution. If the evolutionary search land-
scape were really decomposable and solvable in an ef-
ficient manner even at the early stage, such evolution
and transformation of representation was not required.
It seems that nature had to search for an appropriate
transformation which expressed the genetic expression
in such a way that the search problem becomes decom-
posable at a certain level. The need for problem de-
composability and the possible mechanism of gene ex-
pression for accomplishing such decomposability can
again be corroborated using SEARCH. The SEARCH
framework proved that a blackbox search algorithm
can only solve problems that need considerations of
relations up to a bounded order—the class of order-
k delineable problems. In other words there must be
some degree of decomposability in the relation space.
If the given relation space is not order-em k deline-
able, the relation space, ¥, must be transformed to
introduce delineability. Evolutionary search in nature
uses a sequence representation. DNA sequence defines
the primary representation. Expression of this infor-
mation using the DNA—RNA—Protein defines a new
relation space. Searching for appropriate regulatory
mechanism can be viewed as the search for the right
relation space that makes the problem order-k deline-
able. Clearly all the threce components of hypothesis
supporting adequate time theory can be put in proper
perspective in the light of the analytical foundation
offered by SEARCH.

The following section revisits the issue regarding the
computational need for accounting the effect of natu-
ral selection in the DNA. protein, and the regulatory
mechanism spaces.

3.5.2 Apportionment of selection pressure

Section 3.4 identified the DNA space as the sample
space, the protein space as the explicit class space and
the gene regulatory control mechanisms as the relation
space. SEARCH clearly poiuts out that no algorithm
can surpass the limits of random enumerative search
if it guides itself by applying selection in the sample
space. Therefore, evolutionary search in nature can-
not surpass this computational limit by simply apply-
ing the selective pressure in the DNA space. Effect

of natural selection must also be distributed in the
relation and class spaces of evolutionary search. In
other words the effect of natural selection must show
up in the evaluation of parts of DNA sequences into
proteins in different cells of an organisms and also the
gene regulatory mechanism space.

The following section revisits the computational
aspects of genetic recombination in the light of
SEARCH.

3.5.3 Recombination of classes

From the SEARCH perspective, recombination serves
the purpose of resolution. Once the right relations are
detected the corresponding betier classes can be re-
solved using a recombination like operator. Therefore,
the purpose of recombination in natural evolution is
not at all clear unless we introduce the relations as
possible controlling agents.

The following section describes an interesting
possibility—construction of new representation in nat-
ural evolution.

3.6 Representation construction

Evolution of gene regulatory mechanism means con-
struction of new representation. Eukaryotic organisms
have a richer way to construct new representation.
Most of the eukaryotic organisins are diploid. At a
particular gene one allele is recessive and the other is
dominant. The expression of a domiinant gene takes
place during transcription and translation. When a
diploid chromosome is viewed as a sequence of domi-
nant and recessive tuples, the set of dominant alleles
can be interpreted as a new representation for the set
of recessive alleles. The gene regulatory control mech-
anism determines what gets expressed in a particular
cell. The evolution of this regulatory control mecha-
nism is computationally equivalent to construction of
new relation space. There is existing biological evi-
dence that these settings for the intra-cellular expres-
sion of genetic information evolved during the course
of evolution (Alberts, Bray, Lewis. Rall. Roberts, &
Watson, 1994). As noted in SEARCIL such transfor-
mation is needed when the original relation space is
not. order-k delineable. Therefore. onr of the reason
that eukaryotic organisms became more successful in
the evolutionary race could be the ability to construcl
new representation. On the other hand prokaryotes
are primarily haploid (i.e. one chromosome only) and
are deprived of this capability. The following section
presents the GEMGA. The following section identifies
an one to one correspondence between different com-
ponents of natural evolution and SEARCH.

4 The Gene Expression Messy
GA

In the earlier sections of this paper, we noted the es-
sential ingradients of efficient, general BBS algorithms
and identified a class of BBS problems that can be
solved efficiently. We also observed these conclusions
in the light of natural evolutionary search. Now it is
the time to put them together and propose a realiza-
tion of the theoretical observations along with biolog-
ical plausibility.

In this section I introduce Gene Expression Messy
GA (GEMGA)—an O(JA|*(€+ k)) sample complexity
algorithm for order-k delineable problems in sequence
representation of length £ and alphabet A. Design
of GEMGA is based on the alternate perspective of
evolution, developed by SEARCH that emphasize the
computational role of gene expression.

Section 4.1 discusses the representation in GEMGA.
Section 4.2 explains the population sizing in GEMGA.
This is followed by Section 4.3 that describes the main
operators, transcription, selection, and recombination.
Section 4.4 presents of the overall mechanisms.

4.1 Representation

GEMGA uses a sequence representation. Each se-
quence will be called a chromosome. Every member
of this sequence is called a gene. A gene is a data
structure, containing the locus, value, and weight. The
locus determines the position of the member in the se-
quence. The locus does not necessarily have to be
the same as the physical position of the gene in the
chromosome. For example, the gene with locus 7, may
not be at the i-th position of the chromosome. When
the chromosome is evaluated, however the gene with
locus i gets the i-th slot. This positional indepen-
dence in coding was introduced elsewhere (Deb, 1991,
Goldberg, Korb, & Deb, 1989) to enforce the proper
consideration for all relations defined by the represen-
tation. GEMGA does not depend on the particular
sequence of coding. For a given ¢ bit representation,
the genes can be placed in arbitrary sequence. A gene
also contain the value, which determines the value of
the gene. which could be any member of the alphabet
set, A. The relation space is explicitly evaluated us-
ing the weights associated with each member. Weights
take a positive real number except at the initial stage.
All weights are initialized to -1.0. No two members
with the same locus are allowed in the sequence. In
other words, unlike the original messy GA (Deb, 1991;
Goldberg. Korb, & Deb, 1989) no under or overspect-
fiction are allowed. A population in GEMGA is a
collection of such chromosomes.

4.2 Population sizing

GEMGA requires at least one instance of the optimal
order-k class in the population. For a sequence repre-
sentation with alphabet A, a randomly generated pop-
ulation of size A¥ is expected to contain one instance
of an optimal order-k class. The population size in
GEMGA is therefore, n = cA¥, where ¢ is a constant.
When the signal from the relation space is clear, a
small value for ¢ should be sufficient. However, if the
relation comparison statistic produces a noisy signal,
this constant should statistically take care the sam-
pling noise from the classes defined by any order-k re-
lation. Since GEMGA uses sequence representation,
the relation space contains total 2¢ relations. How-
ever, GEMGA processes only those relations with or-
der bounded by a constant, k. In practice, the order
of delineability (Kargupta, 1995a) is often unknown.
Therefore, the choice of of population size in turn de-
termines what order of relations will be processed. For
a population size n, the order of relations processed
by GEMGA is, k = log(n/c)/log|A|. If the problem is
order-k delineable (IKargupta, 1995a) with respect to
the chosen representation and class comparison statis-
tics then GEMGA will solve the problem otherwise
not. In that case a higher population size should be
used to consider higher order relations.

4.3 Operators

GEMGA has four primary operators, namely: (1)
transcription. (2) class selection, (3) string selection,
and (4) recombination. Each of them is described in
the following.

4.3.1 Transcription

As mentioned before, the weight space in GEMGA
chromosomes is used to process relations. The tran-
scription operator detects the appropriate order-k re-
lations. Comparing relations require a relation com-
parison statistics. GEMGA does not process the rela-
tions in a centralized global fashion; instead it evalu-
ates relations locally in a distributed manner. Every
chromosome tries to determine whether or not it has
an instance of a good class belonging to some rela-
tion. In GEMGA, the quality of a relation is deter-
mined by the quality of its good classes distributed
over the population. Again, no centralized processing
of relations is performed. The transcription opera-
tor is a deterministic one. It considers one gene at a
time. The value of the gene is randomly flipped to note
the change in fitness. For a minimization problem, if
that change causc a improves the fitness (i.e. fitness
decreases) then the original instance of the gene cer-
tainly do not. belong to the instance of the best class of

// pick s the currvently considered gene
Transcription(CHROMOSOME chrom, int pick)
double phi, delta;
int dummy;
double dwt;

dwt = chrom[pick].Weight();

if(dwt > 0.0 OR dwt == -1.0) {
phi = chrom.Fitness();
dummy = chrom[pick].Value();
// Change the value randomly
chrom[pick].PerturbValue(); .
// Compute new fitness
chrom[pick] .EvaluateFitness();
// Compute the change in fitness
delta = chrom[pickl.Fitness() - phi;
// For mmimuzation problem
if(delta < 0.0)

delta = 0.0;
// Sel the weight
if(dwt < delta OR delta == 0.0)
chrom[pick].SetWeight(delta);

// Set the value to the original value
chrom[pick] .SetValue(dummy);
// Set the orgial fitness
chrom{pick] .SetFitness(phi);

Figure 3: Transcription operator for minimization
problem. For maximization problem, if delta< 0 ab-
solute value of delta is taken and otherwise delta is
set to 0.

a relation. since fitness can be further improved. Tran-
scription sets the corresponding weight of the gene to
zero. On the other hand if the fitness worsens (i.e.
fitness increases) then the original gene may belong to
a good class; at least that observation does not say
it otherwise. The corresponding weight of the gene
is set to the absolute value of the change in fitness.
Finally, the value of that gene is set to the original
value and the fitness of the chromosome is set to the
original fitness. In other words, ultimately transcrip-
tion does not change anything in a chromosome except
the weights. For a maximization problem the condi-
tions for the weight change are just reversed. The
same process 1s continued deterministically for all the
€ genes in every chromosome of the population. Figure
3 shows the pseudo-code for the transcription opera-
tor. For genes with higher cardinality alphabet set
(A) this process is repeated for some constant ' < [A]

10

ClassSelection(chromi, chrom2)
CHROMOSOME chromi, chrom2;

{

int i;

for(i=0; i<Problemlength; i++) {
if (chromi[i].Weight() >
chrom2{il .Weight())
chrom2[i] = chromif{i];
else if(chrom2[i].Weight() >
chromi[i].Weight())
chrom1[i] = chrom2[il;

Figure 4: Class selection operator in GEMGA. A con-
sistent coding (where chroml[i] and chrom2[i] has
common locus) is used in place of messy coding for
the sake of illustration.

times The following section describes the two kinds
of selection operators used in GEMGA. which corre-
spond to the selective pressures in protein and DNA
spaces of natural evolution.

4.3.2 Selection

Once the relations are identified, selection operator
is applied to make more instances of better classes.
GEMGA uses two kinds of selections—(1) class selec-
tion and (2) string selection. Each of them is described
in the following:

¢ Class Selection: The class selection operator is
responsible for selecting individual classes from
the chromosomes. Better classes detected by the
transcription operator are explicitly chosen and
given more copies at the expense of bad classes in
other chromosomes. Figure 4 describes the oper-
ator. Two chromosomes are randomly picked: the
weights of the genes are compared and the gene
with higher weight overwrites the corresponding
gene in other chromosome with lower weight.

String Selection: This selection operator gives
more copies of the chromosomes. A standard
binary tournament selection operator (Brindle.

1981; Goldberg, Korb, & Deb. 1989} is used.

Binary tournament selection randomnly picks up
two chromosomes from the population, compares
their objective function values, and gives one ad-
ditional copy of the winner to the population at
the expense of the looser chromosome.

The following section describes the recombination op-
erator in GEMGA.

Recombination(chromi, chrom2, pcg)
CHROMOSOME chroml, chrom2;

double pcg;

{

int i;

GENE dummy;

for(i=0; i<Problemlength; i++) {
if(chromi[i].Weight() >=
chrom2[i] .Weight ()
AND Random() < peg) {
dummy = chromi[i];
chromi[i] = chrom2[i];
chrom2[i] = dummy;

}
}

}

Figure 5: Recombination operator in GEMGA. A con-
sistent coding (where chrom1[i] and chrom2[i] has
common locus) is used in place of messy coding for
the sake of illustration. Random() generates a random
number in between 0 and 1; pcg is a number between
0 and 1.

4.3.3 Recombination

Figure 5 shows the mechanism of the recombination
operator in GEMGA. It randomly picks up two chro-
mosomes from the population and considers all the
genes in the chromosomes for possible swapping. It
randomly marks one among them. If the weight of a
gene from the marked chromosome is greater than that
of the corresponding gene from the other chromosome
then it swaps the genes.

The following section describes the overall mecha-
nism of the algorithm.

4.4 The Algorithm

GEMGA has two distinct phases: (1) primordial
stage and (2) juxtapositional stage. The primordial
stage simply applies transcription operator for { gen-
erations, deterministically considering every gene in
each generation. During this stage The population
of chromosomes remains unchanged, except. that the
weights of the genes change. This is followed by the

juxtapositional stage, in which the selection and re-

11

combination operators are applied iteratively. Figure
6 shows the overall algorithm. The length of the juxta-
positional stage can be roughly estimated as follows. If
{ be the total number of generations in juxtapositional
stage, then for binary tournament selection, every
chromosome of the population will converge to same

void GEMGA() {
POPULATION Pop;
int i, j, k, C, kamax;

// Initialize the population at random
Initialize(Pop);
i=0;
// Primordial stage
While(i < €) { // C 15 a constant
j=0;
Repeat {
// Identify better rclations
Transcription(Pop, j);
// Increment generation counter
j=i+ 1
} Until(j == Problemlength)
i=1i+1;
}
k = 0;
// Juztapositional stage
Repeat {
// Select betler strings
Selection(Pop);
// Select better classes
ClassSelection(Pop);
// Produce offspring
Recombination(Pop);
Evaluate(Pop); // Evaluate filness
// Increment generahion counicr
k=k +1;
// k-maz is of O(log(P1oblem_length))
} Until (k > kmax)

}

Figure 6: Pseudo-code of GEMGA. The constant. C j
[A|, where |A| is the cardinality of the alphabet set.

instance of classes when 2/ = n. i.e. I = logn/log2
Substituting n = c|A| we get. = '—"-‘-‘%’}glﬁ"il—\'. A
constant factor of tis recommen(lcd for actual prac-
tice. Clearly the number of generations in juxtaposi-
tional stage is O(k). Let us now compute the overall
sample complexity of GEMGA. Since the population
size is O(JA|¥) and the primordial stage continues for
C!l = O(£) generations, the overall sample complexity.

5C = O(IAPF(C +)

GEMGA is a direct realization of the lessons from the
SEARCH framework. Following SEARCI. it ¢an be
recognized that the sample complexity is also a func-
tion of the desired quality of the solution and the reli-
ability of the process. However, the implementation of
GEMGA through distributed local evaluation of rela-

tions and classes outweighs the satisfaction of quanti-
fying the success probability that is straight forward in
case of centralized comparison (as it was in SEARCH)
from the practical perspective. Therefore, the reader
must realize the dependence of the sample complexity
on the desired accuracy of the solution and reliability,
implicit in the above arguments. The followingsection
presents the test results.

5 Test Results

Designing a test set up requires careful consideration.
An ideal set up should contain problems with differ-
ent dimensions of problem difficulty, such as multi-
modality, bounded inappropriateness of relation space
(BIRS), problem size, scaling, noise. The GEMGA
has been tested against problems with all of these di-
mensions of difficulties (I{argupta, 1996). However,
because of limited space, in this section, we present the
performance of GEMGA for problems with only mas-
sive multimodality and controlled amount of BIRS.

For all functions the average number of function
evaluations per success (AFPS) is measured. TFor
every function we choose the desired solution value
(DSV) a priori. We say the algorithm was successfull
if it reaches the DSV.

Deceptive trap functions (Ackley, 1987) are used as
basic building blocks for designing this test suite. A
trap function can be defined as follows:

flz) = 0 if u={l
= ¢ —1—u otherwise,

where v is the number of 1-s in the string = and (' is

the length of the sequence used for representing the

variable 2. Goldberg, Deb, and Clark {1992) showed

that such deceptive problems can be used to design

- problems of bounded difficulty. In a trap function de-

fined over a sequence of length £ the order of dclin-
eability is ¢ with respect to the class average com-
parison statistics. Although GEMGA does not work
using the class average comparison statistic (i.e. when
classes are compared with respect to the distribution
means) this gives us a simple way to capture the main
essence. When multiple number of such functions are
concatenated with each other a problem defined over
a sequence of length £ with order-{’ delineability can
be designed. Since the order of delineability directly
controls the BIRS, such concatenated functions can be
effectively used for designing problems with BIRS by
controlling the . Such functions have only (/{’ proper
relations among the (%) order-5 relations that must be
detected in order to find the global solution. There-
fore, searching for the appropriate relations is not a

12

Recombination probability 0.0
Gene exchange probability (pcg) | 0.0
Class selection probability 1.0
String selection probability 0.0

Table 2: GEMGA parameters for TF1.

I B

Average Funcron Eviuatere Par Sucoess (AFPS)

?’

" s " x 2
1000 1200 140 160 830 n:
Procem 3ae

N 1 M
433 800 800

Figure 7: Growth of the number of function evalua-
tions with problem size. The population size for all
problem sizes was 300. All the results are average of
five independent runs.

trivial job in this class of problems. Apart from BIRS,
such functions also offer multimodality. If we carefully
ohserve, we shall note that a trap function has two
peaks. One of them corresponds to the string with all
I-s and the other is the string with all 0-s. If we de-
sign a problem by concatenating m such functions. it
will have a total of 2™ local optima and among them
only one will be the globally optimal solution.Clearly
this class of problems are massively multimodal and
has bounded inappropriateness of the relation space,
defined by the representation.

For testing the GEMGA, a test function is con-
structed by concatenating multiple numbers of trap
functions, each with (' = 5. Therefore the order of de-
lineability is five. As we increase the number of func-
tions, in other words the overall problem length (, the
degree of BIRS remains constant, but the degree of
multimodality increases exponentially. For ¢ = 200.
the overall function contains 40 subfunctions; there-
fore, an order-5 bounded 200-bit problem has 21? local
optima, and among them, only one is globally optimal.

The GEMGA is tested against order-5 deceptive
problems of different sizes. Table 2 shows the GEMGA
parameters used for all of them. Figure 7 shows the
average number of function evaluations from five in-
dependent rins needed to find the DSV for different

problem sizes. For all problems, the DSV is set to the
globally optimal solution, which is equal to problem
size. (. The population size is chosen as described ear-
lier in this paper. The chosen population size for all
the problems was 300. The sample complexity clearly
grows linearly and the population size is constant.
Figure & and 9 show the gradual detection of the
relations during the primordial and juxtapositional
stages for a 30-bit order-5 deceptive problem. Each
figure represent the relation space of the whole popu-
lation at a certain generation. The x-axis denotes the
weights in the genes, ordered on the basis of the locus
of the gene. In other words the values along the x-axis
correspond to the actual value of the locus of a gene in
a chromosome. The y-axis corresponds to the differ-
ent. members in the population. The z-axis, perpen-
dicular to the page denotes the real valued weights of
the corresponding gene in the corresponding chromo-
some. Since the test function is comprised of order-5
trap functions, for any particular gene in a chromo-
some, there are only 4 other genes that are related
with it. The complete relation space has a cardinality
of 23°. Among (£°) order-5 relations there are only
& relations that correctly correspond to the actual de-
pendencies defined by the problem. GEMGA needs to
detect. the relations that relate genes with loci rang-
ing from 0 to 4 together, from 5 to 9 together and so
on. Figure 8 show that these relations are gradually
detected in different chromosomes that contain good
classes from those relations. Finally, at the end of
primordial stage (Figure 9 (top)) all the relations are
detected. Figure 9(middle), (bottom) shows the pro-
cessing of classes during juxtapositional stage. More
instances of good classes are produced by selection and
they are exchanged among diflrent strings to create
higher order relations that finally lead to the optimal
solution. The following section concludes this paper.

6 Conclusion

This paper makes an effort to design BBS algorithms
in a constructive manner following the lessons of
SEARCH. It identified different decision makings in
BBS and realized the class of problems efficiently. Af-
ter verifying the arguments in the the Tight of natural
evolution. the GEMGA is introduced. GEMGA does
not construct new representation, although it is one
among the immediate future possibilities. If the prob-
lem is order-k delineable with respect to the repre-
sentation and class comparison statistic GEMGA will
solve the problem in polynomial sample complexity.
Test results for large problems with milions of local
optima and bounded inappropriateness of the repre-
sentation confirms this conclusion.

13

Figure 8:

The relation ~pace during primordial ge-
neation 1 (top). 10 (middlei, and 20 (hottom).

Figure 9: The relation space at the end of primordial
geneation (top), juxtapositional generations | (imid-
dle) and 4 (bottom).

The GEMGA eliminates many problems of the pre-
vious versions of messy GAs. The main improvements
are (1) explicit processing of relations and classes, (2)
eliminating the need for a template solution, (3) reduc-
ing the population size from O(JA[*€) to O(|A}¥) for
order-k delineable problems in sequence representation
of length ¢, (4) eliminating the thresholding scheduling
problem of the fmGA (Goldberg, Deb, Kargupta, &
Harik, 1993), and (4) reducing the running time by a
large factor. Hopefully, this paper will take the messy
GAs one step closer to being a reasonably general pur-
pose optimization algorithm for practical problems.

7 Acknowledgement

The early stages of this work was supported by AF-
SOR Grant. F49620-94-1-0103 and the Illinois genetic
Algorithm Laboratory. The following stages of the de-
sign and experimentation have been performed at Los
Alamos national Laboratory under the auspices of the
US. Department of Energy. The author also acknowl-
edges many useful discussions with Professor David E.
Goldberg, Kakali Sarkar, and Georges Harik.

References

Ackley, D. H. (1987). A connectionist machine for
genetic hill climbing. Boston: Kluwer Academic.

Alberts, B., Bray. D., Lewis, J., Raff, M., Roberts.
K., & Watson, J. D. (1994). Molecular biology
of the cell. New York: Garland Publishing Inc.

Bagley, J. D. (1967). The behavior of adaptive
systems which employ genetic and correla-
tion algorithms. Dissertation Abstracts Interna-
tional, 28(12), 5106B. (University Microfilms
No. 68-7556).

Brindle, A. (1981). Genetic algorithms for funclion
optimization. Unpublished doctoral dissertation,
University of Alberta, Edmonton, Canada.

Dasgupta, D., & McGregor, D. R. (1992). Designing
neural networks using the structured genetic al-
gorithm. Artifical Neural Networks, 2, 263-268.

De Jong, K. A. (1975). An analysis of the behavior
of a class of genetic adaptive systems. Disscr-
tation Abstracts International, 36(10), 51401,
(University Microfilms No. 76-9381).

Deb, K. (1991). Binary and floating-point function
oplimization using messy genetic algorithms (Il

liGAL Report No. 91004). Urbana: University of

Illinois at Urbana-Champaign, Hlinois Geunetic
Algorithms Laboratory.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966).
Artificial intelligence through simulated evolu-
tion. New York: John Wiley.

Goldberg, D. E. (1987). Simple genetic algorithms
and the minimal, deceptive problem. In Davis,
L. (Ed.), Genetic Algorithms and Simulated An-
nealing (pp. 74-88). San Mateo, CA: Morgan
Kaufmann. (Also TCGA Report 86003).

Goldberg, D. E. (1989a). Genetic algorithms and
Walsh functions: Part I, a gentle introduction.
Complex Systems, 3(2), 129-152. (Also TCGA
Report 88006).

Goldberg, D. E. (1989b). Genetic algorithms in
search, optimization, and machine learning.
New York: Addison-Wesley.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992).
Genetic algorithms, noise, and the sizing of pop-
ulations. Complex Systems, 6, 333-362.

Goldberg, D. E., Deb, K., Kargupta, H., & Harik,
G. (1993). Rapid, accurate optimizaiton of dif-
ficult problems using fast messy genetic algo-
rithms. In Forrest, S. (Ed.), Proceedings of the
Fifth International Conference on Genetic Al
gorithms (pp. 56-64). San Mateo, CA: Morgan
Kaufmann.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy
genetic algorithms: Motivation, analysis, and
first results. Complexr Systems, 3(5), 493-530.
(Also TCGA Report 89003).

Holland, J. H. (1975). Adaptation in natural and ar-
tificial systems. Ann Arbor: University of Michi-
gan Press.

Holland, J. H. (1976). Studies of the spontaneous
emergence of self-replicating systems using cel-
lular automata and formal grammars. In Lin-
denmayer, A., & Rozenberg, G. (Eds.), Au-
tomata. Languages, Development (pp. 385-404).
New York: North-Holland.

[tollstien, R. B. (1971). Artificial genetic adapta-
tion in computer control systems. Dissertation
Abstracts International, 32(3), 1510B. (Univer-
sity Microfilms No. 71-23,773).

Hoyle, F., & Wickramasinghe, N. C. (1981). Evolu-
tion from space. London: Dent.

Jacob, F., & Monod, J. (1961). Genetic regulatory
mechanisms in the synthesis of proteins. Molec-
ular Biology, 3, 318-356.

1

Jog. P., Suh, J. Y., & Van Gucht, D. (1989). The
effects of population size, heuristic crossover
and local improvement on a genetic algorithm
for the traveling salesman problem. In Schaffer,

J. D. (Ed.), Proceedings of the Third Inlerne-
tional Conferencc on Genetic Algorithms (pp.
110-115).

Kargupta, H. (1995a, October). SEARCH, Poly-
nomial Complexity, and The Fast Messy Ge-
netic Algorithm. Doctoral dissertation, Depart-
ment of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL 61801, USA.
Also available as IHIGAL Report 95008.

Kargupta, H. (1993b). Signal-to-noise, crosstalk
and long range problem difficulty in genetic al-
gorithms. In Eshelman, L. (Ed.), Proceedings of
the Sizth International Conference on Genetic
Algorithms (pp. 193-200). San Mateo, CA: Mor-
gan Kaufmann.

Kargupta, H. (1996). Search. evolution. and the
gene expression messy genelic algorithm. Los
Alamos National Laboratory Report LA-UR-96-
60.

Kauffman, S. (1993). The origins of order. New
York: Oxford University Press.

Maini, H., Mehrotra, K., Mohan, C., & Ranka, S.
(1994). Knowledge-based nonuniform crossover.
In Proceedings of the First IEEE Conference on
Evolutionary Computation, Volume 1 (pp. 22—
27). Piscataway. NJ: IEEE Service Center.

Michalski, R. S. (1983). Theory and methodology
of inductive learning. In Michalski, R. S., Car-
bonell, J. G., & Mitchell, T. M. (Eds.), Machine
learning: An artificral intelligence approach (pp.
323-348). Tioga Publishing Co.

Perttunen, C., & Stuckman. B. (1990). The rank
transformation applied to a multiunivariate
method of global optimization. IEEE Transac-
tions on System, Man, and Cybernetics, 20,

1216-1220.

Ratschek, H., & Voller, R. L. (1991). What can in-
terval analysis do for global optimization. Jou-
nal of Global Optimization, I, 111-130.

Rechenberg, L. (1973). Bionik, evo-
lution und optimierung. Naturwissenschaftliche
Rundschau, 26, 465-472.

Rosenberg, R. S. (1967). Simulation of genetic pop-
ulations with biochemical properties. Disser-
tation Abstracts International, 28(7). 2732B.
(University Microfilms No. 67-17,836).

Schaffer, J. D., & Morishima, A. (1987). An adap-
tive crossover distribution mechanism for ge-
netic algorithms. In Grefenstette, J. J. (Ed.),
Proceedings of the Second International Confer-
ence on Genetic Algorithms (pp. 36-40).

16

Shapiro, R. (1986). Origins: A skeptic’s guide to
the creation of life. New York: Summit Books.

Smith, R. E. (1988). An investigation of diploid ge-
netic algorithms for adaptive search of nonsta-
tionary functions (TCGA Report No. 88001).
Tuscaloosa: University of Alabama, The Clear-
inghouse for Genetic Algorithms.

Stryer, L. (1988). Biochemistry. New York: W. H.
Freeman Co.

Syswerda, G. (1989). Uniform crossover in genetic
algorithms. In Schaffer, J. D. (Ed.), Proceedings
of the Third International Conference on Ge-
netic Algorithms (pp. 2-9).

Wald, G. (1954, August). The origin of life. Scien-
tific American.

Watanabe, S. (1969). Anowing and guessing - A
formal and gquantative study. New York: John
Wiley & Sons, Inc.

White, T., & Oppacher, F. (1994). Adaptive
crossover using automata. In Davidor, Y.,
Schwefel, H-P., & Manner, R. (Eds.), Paral-
lel Problem Solving from Nalure- PPSN III (pp.
229-238). Berlin: Springer-Verlag.

