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Abstract

The Transient Multi-Level (TML) method is applied to a time-dependent

Monte Carlo transport solver to offload some of the computational burden

of the expensive Monte Carlo solve to lower-order Coarse Mesh Finite Dif-

ference (CMFD) and Exact Point Kinetics Equations (EPKE) solvers via

factorization of the neutron flux at the transport and CMFD levels using the

Predictor Corrector Quasi-Static Method (PCQM). The Monte Carlo tran-

sient is solved by a modified fission source iteration scheme that introduces a

single transient source bank. The method is implemented in the production-

level Monte Carlo code, Shift, and verified with prescribed reactivity ramps

from the two-dimensional version of the C5G7-TD reactor benchmark. The

results show that, as compared to other quasi-static methods, the TML re-

duces the stochastic noise inherent to the transient Monte Carlo solver by

factors of ∼2 to 6 for various norm comparisons of the reactor power ampli-
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tude. The TML additionally reduces the number of Monte Carlo evaluations

needed to simulate the transient, leading to roughly an order of magnitude

improvement in CPU time relative to the standard PCQM for the problems

tested.

Keywords: transient, quasi-static, Monte Carlo

1. Introduction

Until the mid-2000s reactor transient calculations were predominantly

limited to point kinetics, where the spatial, energy, and angular dependence

are integrated out of the underlying neutron transport and delayed neutron

precursor density equations to reduce the problem to a single “point” reactor

model. In the 1950s, Henry and a series of colleagues observed that loosely-

coupled reactor physics problems could be solved with sufficient accuracy by

factorizing the neutron flux into the product of a time-dependent amplitude

function solved by point kinetics on a fine time scale and a shape function

with weak time-dependence solved by neutron diffusion on a coarse time

scale [1, 2, 3]. In the late 60s, Ott and Meneley improved the accuracy of

the method by introducing updates to the shape function with an iterative

procedure to develop the Improved Quasi-Static Method (IQM) [4].

Gehin’s 1992 dissertation introduced the Predictor-Corrector Quasi-static

Method (PCQM), which avoided the costly IQM iterative procedure to de-

termine the shape function by updating the entire neutron flux on the coarse

time scale as a “predictor” and correcting the solution with the fine time-

resolution amplitude function [5]. The method received little attention with

respect to computational efficiency at the time of publication but was re-
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investigated by Dulla et al. in the mid-2000’s [6, 7]. In their analysis, Dulla

et al. showed the PCQM to be well-suited for implementations requiring

high-fidelity solvers because it typically requires fewer evaluations on the

coarse time scale than the IQM. On the other hand, several studies over the

last few years have suggested that the IQM might actually be better-suited

for multiphysics calculations because it allows for iterative communication

between the neutronics and thermal hydraulics solvers [8, 9, 10]. Between

the two, the clearly-superior technique has yet to be established, as both

methods have started to see transport-level applications in recent years.

Zhu improved the speed and accuracy of the PCQM in the deterministic

Michigan Parallel Characteristics Transport (MPACT) code by introducing

an intermediate time-discretization [11]. In what Zhu calls the Transient

Multi-Level (TML) method, the Coarse Mesh Finite Difference (CMFD)

equations are used to propagate the amplitude function forward in time at the

intermediate time scale to preserve some spatial and energy dependence in

between Method of Characteristics (MOC) transport solutions. Shen showed

further improvement by introducing a fourth, energy-integrated, CMFD time

discretization level to the TML between the CMFD and point kinetics levels

[12]. Shen additionally characterized Lie and Strang operator splitting for

multiphysics schemes that might be relevant for future applications of this

work.

With huge strides in computational capacity, the previous decade has

also seen several reactor kinetics implementations that make use of Monte

Carlo (MC) transport solvers. MC solvers offer numerous advantages over

deterministic solvers (at the cost of computational expense), including not re-
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quiring spatial, angular, or energy discretization. Sjenitzer and Hoogenboom

showed that explicitly tracking the inventory of delayed neutron precursors

produces very accurate results, but is prohibitively expensive for practical

applications [13, 14]. Hackemack et al. implemented the PCQM with fixed-

source Monte Carlo transport at the coarse time step but found that the per-

formance was limited by long fission chains [15]. Kooreman and Griesheimer

expanded on the work of Hackemack et al. by introducing the MC-PCQM

algorithm into a multiphysics solver [10].

Jo et al. solved the issue of non-terminating fission chains by solving the

Monte Carlo step with fission source iteration [16]. Lee et al. improved fission

source convergence rates by introducing the CMFD equations to a MC solver

[17, 18]. Shaner developed a frequency transform method in 2018 (based

on a deterministic technique developed by Ban et al. [19]) that uses time-

dependent CMFD equations (in a distinct formulation from those developed

by Zhu) to propagate the space- and energy-dependent frequencies forward

in time so that they can inform time-dependent updates to the Monte Carlo

solution [20]. Kreher et al. incorporated thermal-hydraulic feedback into

Shaner’s frequency transform method [21]. Recently, He et al. and Mascolino

and Haghighat have had success in reducing simulation times of hybrid MC-

deterministic transient calculations with methods based on the Transient

Fission Matrix technique [22, 23].

This work applies a MC solver at the transport level of Zhu’s TMLmethod

[11]. The transient MC criticality solver is largely modeled after Jo’s transient

criticality solver implementation [16] with a collapsed number of particle

source banks (from five to two). The remainder of this paper is organized
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as follows. Section 2 gives a high-level overview of the TML and describes

the detailed methodologies for the three solver levels. Section 3 describes

the implementation details specific to the transient MC criticality, CMFD,

and Exact Point Kinetics Equations (EPKE) solver levels of the TML and

how they are coupled together. Section 4 describes the results of the method

applied to a 2D multigroup reactor benchmark. Finally, conclusions are given

in Section 5.

2. Transient Methodologies

This section begins with a high-level overview of the TML method be-

ing described in this paper. Then, the equations being solved by the three

transient subsolvers are defined: the transport-level Transient Fixed Source

Problem (TFSP), the diffusion-level TFSP, and the EPKEs. Figure 1 shows

the temporal discretization being solved by the TML, where a high-fidelity

(but computationally expensive) MC solver is used with a coarse time step,

a time-dependent CMFD solver that applies the diffusion approximation is

used with an intermediate time step, and an EPKEs solver that has inte-

grated out the spatial and energy dependence of the transient is used with a

fine time step.

2.1. Transient Multi-Level Method

The TML method consists of two nested levels of PCQM temporal dis-

cretizations [5] [7], where each of the discretizations is formulated by a sep-

aration of variables of the neutron flux into the product of an amplitude

function, and a shape function. The amplitude function is characterized by

reduced phase space dimensionality and strong temporal dependence. The
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∆tMC, MC
update/fission source
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ψMC

(
x, Ω̂, E, t

)

∆tCMFD, CMFD update
ϕCMFD (x, E, t)

∆tEPKE, EPKE update
pEPKE (t)

t

Figure 1: TML time stepping scheme [11].

shape function, which typically retains full phase space dimensionality, is

assumed to have weak temporal dependence and is generally more computa-

tionally expensive than the amplitude function. Quasi-static methods take

advantage of these characteristics to update the two functions on separate

time scales, where ∆tshape > ∆tamplitude. In this way, much of the compu-

tational work in capturing time-dependent features of the neutron flux is

off-loaded to lower-order approximate amplitude solvers.

The PCQM updates the entire neutron flux on the macro time scale, as

opposed to other quasi-static methods that only update the shape function on

the macro time scale. This initial updated flux solution is the “predictor” flux

and typically has errors associated with integrating over a large time step.

The algorithm proceeds by updating the amplitude function on the micro

time scale to “correct” the flux estimate. The main benefit of the PCQM

algorithm is that it eliminates an expensive inner iteration that would be

required by other quasi-static methods.
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The TMLmethod [11] extends the predictor-corrector quasi-static method

by introducing an intermediate nested time discretization level, shown in

Fig. 1. As with the PCQM, the angular flux is computed with a high-fidelity

solver and factorized into the product of amplitude and shape functions. The

amplitude function at the transport level is now the solution of the CMFD

equations discussed in Sec. 2.3 and is used to correct the transport-level pre-

dictor flux. The CMFD solution is further factorized into the product of

another shape and amplitude function, where instead the amplitude is the

solution of the EPKEs discussed in Sec. 2.4 and used to update the CMFD-

level predictor flux.

The main benefit of adding the extra CMFD level is that it allows the

spatial and energy dependence of the shape function to be updated in be-

tween MC time steps that would not otherwise be captured by the globally-

integrated point kinetics equations. It will be shown that the addition of

the CMFD level also allows for a larger transport-level macro time step,

improving the overall speed of the transient calculation.

2.2. Transient Fixed Source Problem

At the highest-fidelity level, the MC method is used to solve the underly-

ing time-dependent neutron transport problem. The time-dependent Boltz-

mann neutron transport equation and delayed neutron precursor equations
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are

1

v(E)

∂ψ

∂t
(x, Ω̂, E, t) +Mψ(x, Ω̂, E, t) =

χp(x, E, t)

4πk0eff
Fpψ(x, Ω̂, E, t)

+
J∑

j=1

χd,j(x, E, t)

4π
Sd,j(x, Ω̂, E, t) ,

(1a)

∂Cj

∂t
(x, t) =

1

k0eff
Fd,jψ(x, Ω̂, E, t)− λj(x, t)Cj(x, t) , (1b)

where the basic symbols that appear in Eq. (1) are defined in Table A.3

and the operators are defined such that M corresponds to particle migra-

tion (streaming, collisions, and scattering), Fp corresponds to prompt fission,

Fd,j corresponds to delayed fission and Sd,j corresponds to an accumulated

delayed neutron source term,

Mψ(x, Ω̂, E, t)

= ∇ · Ω̂ψ(x, Ω̂, E, t) + Σt(x, E, t)ψ(x, Ω̂, E, t)

−
∫ ∞

0

∫
4π

Σs(x, Ω̂ · Ω̂′, E ′ → E, t)ψ(x, Ω̂′, E ′, t) dΩ′ dE ′ , (2a)

Fpψ(x, Ω̂, E, t)

=

∫ ∞

0

∫
4π

[1− β(x, E ′, t)] νΣf(x, E
′, t)ψ(x, Ω̂′, E ′, t) dΩ′ dE ′ , (2b)

Fd,jψ(x, Ω̂, E, t)

=

∫ ∞

0

∫
4π

βj(x, E
′, t)νΣf(x, E

′, t)ψ(x, Ω̂′, E ′, t) dΩ′ dE ′ , (2c)

Sd,j(x, t) = λj(x, t)Cj(x, t) . (2d)
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In Eqs. (1), the appearance of the initial k-eigenvalue, k0eff, serves to nor-

malize the terms that contain the fission source integral and ensures critical-

ity of the initial state. For this work, an implicit Euler scheme is selected to

discretize the temporal domain of Eq. (1) with the superscript index, n, de-

noting discretized points in time. Integrating over the range, tn−1 ≤ t ≤ tn,

Eq. (1) becomes

1

v(E)∆tn

[
ψn(x, Ω̂, E)− ψn−1(x, Ω̂, E)

]
+Mψn(x, Ω̂, E)

=
χn
p(x, t)

4πk0eff
Fpψ

n(x, Ω̂, E) +
J∑

j=1

χn
d,j(x, t)

4π
Sn
d,j(x, Ω̂, E) , (3a)

Cn
j (x) = Cn−1

j (x)f1,j +
1

k0eff
Fd,jψ

n−1(x, Ω̂, E)f2,j

+
1

k0eff
Fd,jψ

n(x, Ω̂, E)f3,j . (3b)

The time-interpolated weighting factors are derived by approximating the

fission source as varying linearly in time and integrating with Lagrange poly-

nomial interpolation. These weighting factors are

f1,j = e−λj∆tn , (4a)

f2,j =
1− e−λj∆tn − λj∆tne−λj∆tn

λj∆tn
, (4b)

f3,j =
e−λj∆tn

(
1− eλj∆tn + λj∆t

neλj∆tn
)

λj∆tn
, (4c)

and a detailed integration can be found in Appendix A of [24].

To integrate Eq. (1b), the delayed fission term 1
k0eff

Fd,jψ(x, Ω̂, E, t) is ap-

proximated as varying linearly in time. Higher-order approximations are
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possible, but can lead to negative weighting factors analogous to Eqs. (4).

These negative weighting factors can lead to negative MC particle weights,

which are generally avoided as they have no physical interpretation, can lead

to increased variance, and can complicate other variance reduction schemes

that might be implemented in a production code. After integrating Eq. (1b)

and substituting into Eq. (3a), the TFSP is

(M +
1

v(E)∆tn
)ψn(x, Ω̂, E) =

ψn−1(x, Ω̂, E)

v(E)∆tn

+
1

4πk0eff

[
χn
p(x, E)Fpψ

n(x, Ω̂, E)

+
J∑

j=1

χn−1
d,j (x, E)Sn−1

d,j (x, Ω̂, E)f1,j

+
J∑

j=1

χn−1
d,j (x, E)Fd,jψ

n−1(x, Ω̂, E)f2,j

+
J∑

j=1

χn
d,j(x, E) Fd,jψ

n(x, Ω̂, E)f3,j

]
. (5)

10



2.3. Time-Dependent Coarse Mesh Finite Difference Equations

To formulate the time-dependent CMFD equations, the TFSP is derived

from the continuous-energy diffusion equation:

1

v (E)

∂ϕ (x, E, t)

∂t
=∇ ·D (x, E, t)∇ϕ (x, E, t)− Σt (x, E, t)ϕ (x, E, t)

+

∫ ∞

0

Σs0 (x, E
′ → E, t)ϕ (x, E ′, t) dE ′

+χp (x, E, t) (1− β (x, t))
1

k0eff
Fϕ (x, E, t)

+χd (x, E, t)Sd (x, E, t) , (6a)

∂Cj

∂t
(x, t) =βj (x, t)

1

k0eff
Fϕ (x, E, t)− λj (x, t)Cj (x, t) , (6b)

where the delayed neutron fractions have been averaged over energy, linear

anisotropy has been assumed, and

Fϕ(x, E, t) ≡
∫ ∞

0

νΣf(x, E
′, t)ϕ(x, E ′, t) dE ′ . (7)

Zhu [11] derives the diffusion-level TFSP by applying a backward Euler

time discretization to Eqs. (6) and integrating over the range tn−1 ≤ t ≤ tn

to arrive at:

ϕn(x, E)− ϕn−1(x, E)

v(E)∆tn
= ∇ ·Dn(x, E)∇ϕn(x, E)− Σn

t (x, E)ϕ
n(x, E)

+

∫ ∞

0

Σn
s0(x, E

′ → E)ϕn(x, E ′) dE ′

+ χn
p(x, E)(1− βn(x))

1

k0eff
Fϕn(x, E)

+ χn
d(x, E)S

n
d (x, E) . (8)
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Since negative particle weights are not of concern in deterministic solves,

the fission source can be approximated as having higher-order (quadratic)

temporal dependence. The resulting interpolated delayed neutron and fission

source terms are

Fϕn(x, E) ≡
∫ ∞

0

νΣn
f (x, E

′)ϕn(x, E ′) dE ′ . (9a)

Sn
d (x, E) = ωn(x)

1

k0eff
Fϕn(x, E) + S̃n−1

d (x, E) , (9b)

ωn(x) =
J∑

j=1

βn
j (x)Ω

n
j (λ

n
j (x)) , (9c)

S̃n−1
d (x, E) =

J∑
j=1

λnj (x)Ω
0
j(λ

n
j (x))C

n−1
j (x)

+
1

k0eff
Fϕn−1(x, E)

J∑
j=1

βn−1
j (x)Ωn−1

j (λnj (x))

+
1

k0eff
Fϕn−2(x, E)

J∑
j=1

βn−2
j (x)Ωn−2

j (λnj (x)) . (9d)

The time-interpolated weighting factors here are derived in a similar fashion

to those defined in Eq. (4). As noted above, the fission source is now ap-

proximated as having quadratic time dependence, which yields the following

weighting factors using Lagrange polynomial interpolation and integrating
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over the time step tn−1 ≤ t ≤ tn:

Ω0
j(λ̃

n
j (x)) = e−λ̃n

j (x) , (10a)

Ωn
j (λ̃

n
j (x)) =

κ2(λ̃
n
j (x)) + γκ1(λ̃

n
j (x))

(1 + γ)
, (10b)

Ωn−1
j (λ̃nj (x)) =

[
Ω0

j(λ̃
n
j (x))−

κ2(λ̃
n
j (x)) + (γ − 1)κ1(λ̃

n
j (x))

γ

]
, (10c)

Ωn−2
j (λ̃nj (x)) =

κ2(λ̃
n
j (x))− κ1(λ̃nj (x))

(1 + γ)γ
, (10d)

κ0(x) = 1− e−x , (10e)

κ1(x) = 1− κ0(x)

x
, (10f)

κ2(x) = 1− 2κ1(x)

x
, (10g)

λ̃nj (x) = λnj (x)∆t
n . (10h)

A detailed derivation is given in Appendix A of [24].

A time-dependent balance equation can then be derived by introducing

a cumulative fission spectrum,

χn(x, E) = χn
p (x, E)(1− βn(x)) + χn

d(x, E)β
n(x) , (11)

into Eq. (9a) to arrive at

−∇·Dn(x, E)∇ϕn(x, E) + Σn
t (x, E)ϕ

n(x, E)

=

∫ ∞

0

Σn
s0(x, E

′ → E)ϕn(x, E ′) dE ′ + χn(x, E)
1

k0eff
Fϕn(x, E) + Sn

tr(x, E) .

(12)
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The transient source term is

Sn
tr(x, E) = An(x, E)ϕn(x, E)+Bn(x, E)

1

k0eff
Fϕn(x, E)+Cn−1(x, E) , (13)

where

An(x, E) = − 1

v(E)∆tn
, (14a)

Bn(x, E) = χn
d(x, E)(ω

n(x)− βn(x)) , (14b)

Cn−1(x, E) = χn
d(x, E)S̃

n−1
d (x, E) +

ϕn−1(x, E)

v(E)∆tn
. (14c)

In this Multigroup Matrix (MGM) formulation [11], A and B are flux-

and fission source-dependent coefficients, and C is a constant coefficient de-

pending on quantities defined at the previous point in time tn−1. The MGM

allows the entire transient diffusion problem to be written and solved as a

standard linear system.

The transient CMFD equations themselves are derived by discretizing

the energy and spatial domains. Discretizing the energy domain is straight-

forward by applying the multigroup approximation. The spatial domain is

discretized by integrating the resulting equation over a coarse mesh volume,
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typically spanning a fuel pin cell or assembly, to arrive at

∑
u∈x,y,z

1

∆u
k

[(
−D̃u,n

k− 1
2
,l,m,g

− D̂u,n

k− 1
2
,l,m,g

)
ϕn
k−1,l,m,g

+
(
D̃u,n

k− 1
2
,l,m,g

+ D̃u,n

k+ 1
2
,l,m,g

− D̂u,n

k− 1
2
,l,m,g

+ D̂u,n

k+ 1
2
,l,m,g

)
ϕn
k,l,m,g

+
(
−D̃u,n

k+ 1
2
,l,m,g

+ D̂u,n

k+ 1
2
,l,m,g

)
ϕn
k+1,l,m,g

]
− Σn

t,k,l,m,gϕ
n
k,l,m,g

=
G∑

g′=1

Σn
s0,k,l,m,g′→gϕ

n
k,l,m,g′ +

χn
k,l,m,g

k0eff

G∑
g′=1

νΣn
f,k,l,m,g′→gϕ

n
k,l,m,g′ + Sn

tr,k,l,m,g .

(15)

The subscript g corresponds to the energy group index and the subscripts

(k, l,m) are cell indices corresponding to an arbitrary direction set (u, v, w).

This notation is borrowed from OpenMC documentation [25] and is used to

condense the summation across spatial dimensions. The ∆ terms describe

the respective length of a CMFD cell. For example, ∆u
k = uk+ 1

2
− uk− 1

2
.

The D̂ diffusion coefficient is a non-linear coupling term used to relate

the neutron current and scalar flux. This non-linear coupling term is defined

based on whether the CMFD cell is coupled to another CMFD cell or a

problem boundary. For cell-to-cell coupling, the neutron current and scalar

flux are related by

Ju,n

k± 1
2
,l,m,g

= −D̃u,n,cell
k,l,m,g

(
±ϕn

k±1,l,m,g ∓ ϕn
k,l,m,g

)
+ D̂u,n,cell

k,l,m,g

(
ϕn
k±1,l,m,g + ϕn

k,l,m,g

)
,

(16a)

D̃u,n,cell
k,l,m,g =

2Dn
k±1,l,m,gD

n
k,l,m,g

Dn
k±1,l,m,g∆

u
k +Dn

k,l,m,g∆
u
k±1

. (16b)
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For cell-to-boundary coupling, the neutron current and scalar flux are related

by

Ju,n

k± 1
2
,l,m,g

= ±D̃u,n,bound
k,l,m,g ϕn

k,l,m,g + D̂u,n,bound
k,l,m,g ϕn

k,l,m,g , (16c)

D̃u,n,bound
k,l,m,g =

2Dn
k,l,m,g

(
1− αu,n

k± 1
2
,l,m,g

)
4Dn

k,l,m,g

(
1 + αu,n

k± 1
2
,l,m,g

)
+
(
1− αu,n

k± 1
2
,l,m,g

)
∆u

k

, (16d)

where α is an albedo boundary condition

αu,n

k± 1
2
,l,m,g

=
Ju,n−
k± 1

2
,l,m,g

Ju,n+

k± 1
2
,l,m,g

. (17)

2.4. Exact Point Kinetics Equations

The EPKEs are

dp (t)

dt
=
ρ (t)− β (t)

Λ (t)
+

1

Λ (0)

∑
j

λj (t) ζj (t) , (18a)

dζj (t)

dt
=

Λ (0)

Λ (t)
βeff
j (t) p (t)− λj (t) ζj (t) , (18b)

where the quantities of interest are the core-wise amplitude function p, the

time-dependent “dynamic” reactivity ρ, and the adjoint-weighted delayed

neutron precursor number densities ζj. The adjoint-weighted point reactor

kinetics parameters are given in Table A.3. The definitions of these param-

16



eters are:

ζj (t) =

〈
ψ†
0χd,jCj

〉
〈
ψ†
0F0Ψ0

〉 , (19a)

ρ (t) =

〈
ψ†
0 (F −M)Ψ

〉
〈
ψ†
0FΨ

〉 , (19b)

Λ (t) =

〈
ψ†
0
1
v
Ψ
〉

〈
ψ†
0FΨ

〉 , (19c)

βeff
j (t) =

〈
ψ†
0Fd,jΨ

〉
〈
ψ†
0FΨ

〉 , (19d)

λeffj (t) =

〈
ψ†
0λj

〉
〈
ψ†
0FΨ

〉 . (19e)

The angle bracket notation indicates integration over the space, direction,

and energy domains. More detailed derivations of the EPKEs can be found

in [2, 6, 7]. In this work, the EPKEs are also solved by applying a backward

Euler temporal discretization with the fission source approximated as behav-

ing quadratically in time [26] (as opposed to the linear behavior in the MC

approximation).

3. Monte Carlo Transient Criticality Solver and Subsolver Cou-

plings

In this section, the individual source terms and particle banks in the

transient MC solver are discussed to outline how the time-dependent source

terms from the TFSP can be integrated into a static MC criticality solver to
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extend its functionality to support transient criticality calculations. Then,

to accelerate these transient MC calculations, the equations and procedures

for coupling the various subsolver levels of the TML method (MC to CMFD

and CMFD to EPKE) are discussed.

3.1. Transient Monte Carlo Solver

Hackemack et al. showed that MC implementations of the TFSP given by

Eq. (5) can result in prohibitively long individual particle histories for large

positive reactivity insertions [15]. This is because fixed-source algorithms

typically cycle through the entire fission chain until an individual history

terminates. One way to address the issue of long non-terminating fission

chains is to implement particle rouletting for low-weight particles.

Alternatively, Jo et al. proposed that Eq. (5) be solved as a modified

fission source iteration problem [16]. The fission source iteration algorithm

only banks the subsequent generation of fission particles at each iteration, ef-

fectively guaranteeing the termination of each history. Additionally, a fission

source iteration could help avoid numerical instability by allowing a greater

chance for the neutron flux distribution to become balanced before advancing

to the next time step. For these reasons, the same methodology is also used

in this work. To accommodate these changes, a fission source iteration index
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is applied to all operators applied at time tn in Eq. (5) to arrive at

(
M +

1

v(E)∆tn

)
ψl+1,n(x, Ω̂, E) =

ψn−1(x, Ω̂, E)

v(E)∆tn︸ ︷︷ ︸
1

+
1

4πk0eff

[
χn
p(x, E)Fpψ

l,n(x, Ω̂, E)︸ ︷︷ ︸
2

+
J∑

j=1

χn−1
d,j (x, E)Sd,jψ

n−1(x, Ω̂, E)︸ ︷︷ ︸
3

f1,j

+
J∑

j=1

χn−1
d,j (x, E)Fd,jψ

n−1(x, Ω̂, E)︸ ︷︷ ︸
4

f2,j

+
J∑

j=1

χn
d,j(x, E)Fd,jψ

l,n(x, Ω̂, E)︸ ︷︷ ︸
5

f3,j

]
.

(20)

A total of L = Linactive+Lactive fission source iterations are computed for each

time step, where Linactive and Lactive are the number of inactive and active

cycles, respectively, and set by the user. During the inactive cycles, tallies

are turned off as the fission source is allowed to converge. During the active

cycles, tallies are turned on, and an estimate of keff and the fission source

distribution are recorded.

Traditional criticality solvers solve the steady-state equation,

Mψl+1,n(x, Ω̂, E) = Fψl,n(x, Ω̂, E) , (21)
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where all operators are defined for a single point in time, tn, and the right-

hand side contains only a single source term communicated between fission

source iterations that corresponds to both prompt and delayed fission neu-

trons. The transient criticality formulation has five distinct source terms,

some of which are defined at tn, and some of which are defined at tn−1. For

this work, a solver of Eq. (20) was implemented on a static research branch

of Shift, a MC solver developed and maintained by Oak Ridge National Lab-

oratory (ORNL) [27].

The left-hand side of Eq. (20) is implemented by augmenting the to-

tal cross section at the beginning of a random walk by the factor 1
v∆tn

.

This augmentation accounts for the sampling of an additional “time census”

pseudo-absorption event when performing the distance-to-collision calcula-

tion. When interpreted this way as an additional absorption interaction, the

distance to the nearest collision is sampled with uniform random number

ξ ∼ U([0, 1]) as

dcollision = − 1

Σt +
1

v∆tn

ln (ξ) . (22)

The implementation of the source terms on the right-hand side of Eq. (20)

uses two separate particle source banks: one passed between fission source

iterations (terms 2 and 5 ), and one passed between time indices (terms

1 , 3 , and 4 ). To decrease computational time, all five source terms

are sampled implicitly at all collisions by pushing a copy of the incident

particle to its respective source bank with an appropriate weighting factor.

The individual source terms and their corresponding weight modifications

are:

1 Neutrons from time tn−1 that are still in flight by the time tn. These
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“time census” neutrons are implicitly captured at every collision dur-

ing active cycles. This is done by passing a copy of the incident par-

ticle’s state information (position, direction, energy, and weight) at

every collision to the transient time-stepping bank. In order to ensure

an unbiased result, the banked particle state requires a weight modifi-

cation that corresponds to the probability that a time-absorption event

is sampled at the collision site as

wbanked = wincident

(
1

v(E)∆tn

Σn
t (x, E) +

1
v(E)∆tn

)
, (23a)

where wincident is the incident weight of the particle prior to experiencing

a collision, and wbanked is the weight that is passed to the time stepping

bank data structure. The incident particle will then proceed through

the MC algorithm and collision mechanics will be processed with a

weight adjustment factor corresponding to the compliment of Eq. (23a)

as

wcollision = wincident

(
Σn

t (x, E)

Σn
t (x, E) +

1
v(E)∆tn

)
. (23b)

For very small time steps the weight of the particles exiting a time-

absorption event could be very small if 1
v∆t
≪ Σt. Therefore, a particle

rouletting procedure is performed upon exiting a collision if the weight

falls below a user-specified universal threshold. In this procedure, a

uniform random number between zero and one is sampled and the par-

ticle history is terminated with user-defined probability proulette. Oth-

erwise the particle history continues with a multiplicative adjustment
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of 1/(1− proulette).

2 Neutrons resulting from prompt fission. This bank is already handled

in steady-state k-eigenvalue calculations and therefore requires no mod-

ification to the criticality solver. If a prompt neutron is sampled, its

state information is banked at the fission site to be carried over the

next fission source iteration and used to source a new particle history.

Because these neutrons are emitted on very small time scales, their

state information is not passed to subsequent time steps.

3 This is a special term that accounts for the accumulation of delayed

neutron precursors when integrating over previous time steps. These

accumulated delayed neutron precursors will emit delayed neutrons at

times that might exceed tn +∆tn. In the Shift implementation, copies

of all of the particle state information in the time step iteration bank

at time index n− 1 are injected into the time step iteration bank at n

with weight of

wtn = wtn−1f1,j . (23c)

4 Neutrons resulting from delayed neutron precursors that were accumu-

lated over ∆tn and numerically weighted as being sourced from the

previous time index, n− 1, with a weight modification of

wbanked = wincidentf2,j . (23d)

5 Neutrons resulting from delayed neutron precursors that were accumu-

lated over ∆tn and numerically weighted as being sourced from the
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current time index, n, with a weight modification of

wbanked = wincidentf3,j . (23e)

The particle state information is then copied and pushed to the time-

stepping source bank.

A simplified branching process that neglects energy-dependence is shown

in Fig. 2 to depict the implicit banking of source terms at each collision site.

Figure 3 depicts the transfer of source terms between fission source itera-

tions and time steps. Fission source terms ( 2 and 5 ) are passed between

fission source iterations. During the active fission cycles, time step source

terms ( 1 and 4 ) are tallied and read in as source terms at the start of the

next time step. Finally, the accumulated delayed neutron term ( 3 ) is read

from the previous time step iteration bank at n− 1.

The recursive process of transferring delayed neutron source terms from

n − 1 causes the time step source bank to accumulate terms exponentially.

To prevent this exponential growth, a population control technique known

as “combing” [28] is performed in between time steps that keeps the size of

the bank fixed. Say, for example, that the size of the transient will be fixed

to contain the state information of Ntrans source particles. Before combing,

the weight of all of the particles in the transient source bank will be added

together. Next, the order of all of the particles in the source bank will then

be randomly shuffled and only the state information for the first Ntrans will

be retained (the remaining particle state information will be discarded). The
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Figure 2: Simplified neutron history branching in transient fission source iteration scheme.

weight of all of the remaining Ntrans source particles will be added together

so that the weight of the remaining particles can be updated as

wj,combed = wj

∑Ntrans

j wj∑
iwi

, (24)

where i corresponds to the index of the source particle before shuffling and

j corresponds to the index of the same source particle after shuffling.
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3.2. Monte Carlo Transport and CMFD Coupling

The PCQM formulation between the MC and CMFD solvers factorizes

the angular flux as

ψMC

(
x, Ω̂, E, t

)
= pMC (x, E, t)ΨMC

(
x, Ω̂, E, t

)
, (25)
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where pMC is the transport-level amplitude function and ΨMC is the transport-

level shape function. The shape function is computed by

ΨMC

(
x, Ω̂, E, t

)
=
ψMC

(
x, Ω̂, E, t

)
pMC (x, E, t)

≈
ψMC

(
x, Ω̂, E, t

)
ϕCMFD (x, E, t)

, (26)

where ϕCMFD is the CMFD scalar flux and is the solution to Eq. (15). The

time-dependent CMFD solution can be obtained with any standard linear

algebra solver after setting up the system of equations as a matrix described

by Zhu’s MGM method (defined in Section 2.3) [11]. The CMFD solver in

Shift uses the Generalized Minimal Residual (GMRES) method to solve the

matrix formulation of Eq. (15) where the solution vector consists of the cell-

centered CMFD scalar fluxes for each energy group. Uniqueness with the

factorization given by Eq. (25) is ensured with a normalization constraint for

each CMFD cell:
1

VCMFD

〈
ψMC

(
x, Ω̂, E, t

)〉
= 1 . (27)

The MC and CMFD coupling algorithm is explicitly defined in Algorithm

1. To begin, the forward and adjoint steady state fluxes are evaluated at t =

0. In this work, the adjoint solution is generated using an SP3 k-eigenvalue

solver in the Denovo solver [29].

The algorithm proceeds by advancing the MC solution on the coarse

time step ∆tMC by solving Eq. (20). This flux solution is denoted as the

“predictor” flux with superscript p. The CMFD parameters that appear

in Eq. (15) at the beginning and end of the ∆tMC time step are calculated

from the MC tallies. While quantities such as multigroup macroscopic cross

sections and scalar fluxes are straightforward to compute using path-length
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or collision tallies, special care must be taken when computing the diffusion

coefficients, D̃ and D̂.

The D̃ diffusion coefficient is defined by Eq. (16b) or Eq. (16d) with the

“standard” diffusion coefficients defined as

Dn
k,l,m,g ≈

1

3(Σn
t,k,l,m,g − µ0

∑G
g′ Σ

n
s0,k,l,m,g′→g)

. (28)

This approximation assumes that the in-scatter rate of neutrons from E ′

to E is approximately equal to the out-scatter rate of neutrons from E to

all other energies E ′, i.e., the medium is weakly-absorbing. Moreover, this

approximation requires group-to-group scattering matrices for every coarse

mesh volume for every time step.

In the Shift implementation, these matrices are computed using analog

tallies that are scored every time a neutron transitions from group g′ to

group g. These analog tallies can be subject to poor statistics in parts of

the problem with highly-absorbing media or low neutron populations and

result in ill-conditioned matrix systems when performing the CMFD solve.

These limitations make the MC implementation of the TML particularly

challenging when compared to deterministic implementations. More accurate

diffusion coefficients can be calculated with migration area tallies [30] but

have not been explored in this work. Once the D̃ are known, the D̂ diffusion

coefficients can computed by Eq. (16a) or Eq. (16c).

After all CMFD parameters have been computed at the beginning and

end of the ∆tMC time step, they are interpolated on the ∆tCMFD time scale

so that the CMFD scalar flux amplitude function (and corresponding EPKE
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substeps) can be propagated forward in time. Finally, the CMFD shape

function is used to correct the MC tallies at tn and precursor concentrations

are computed. The superscript c is used to denote the corrected flux solution.

Algorithm 1 PCQM coupling between MC and CMFD levels in the TML.

1: Solve Eq. (21) for forward steady-state forward flux ψ0
MC

2: Solve for steady-state adjoint flux ψ†,0;
3: for all 1 ≤ n ≤ NMC do
4: ψp,n

MC ← Eq. (20)
5: Linearly interpolate CMFD volume- and surface-integrated MC tallies

between ψn−1 and ψn

6: Propagate through Algorithm 2 to compute ϕp,n
CMFD and ϕc,n

CMFD

7: ψc,n
MC ← ψp,n

MC
ϕc,n
CMFD

ϕp,n
CMFD

8: Update precursor concentrations using corrected MC flux distribu-
tion.

9: end for

3.3. CMFD and EPKE Coupling

The PCQM formulation between the CMFD and EPKE solvers factorizes

the scalar flux as

ϕCMFD (x, E, t) = pCMFD (t)ΨCMFD (x, E, t) , (29)

where pCMFD (t) = pEPKE (t). The normalization constraint used to ensure

uniqueness after the factorization in Eq. (29) is defined as

c =

〈
ψ†,0

(
x, Ω̂, E

)
,

1

v (E)
Ψ0

CMFD (x, E)

〉
(30)

=

〈
ψ†,0

(
x, Ω̂, E

)
,

1

v (E)
ΨCMFD (x, E, t)

〉
.
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The amplitude and shape functions are then computed as

ϕc,n
CMFD (x, E) =

c〈
ψ†,0

(
x, Ω̂, E

)
, 1
v(E)

ϕp,n
CMFD (x, E)

〉pEPKE,nϕ
p,n
CMFD (x, E) .

(31)

The PCQM coupling between the CMFD/EPKE levels is described by

Algorithm 2. To begin, the multigroup cross sections needed for the CMFD

solver are post-processed from the direct MC tallies and interpolated on the

CMFD time scale. Next, the normalization constant c is computed with

Eq. (30) to ensure that the shape/amplitude factorization is unique. Then,

the CMFD predictor solution is propagated forward in time. The EPKE

parameters are then interpolated on the ∆tEPKE time scale and the EPKE

amplitude function is propagated forward in time to the end of the CMFD

time step. Finally, the CMFD predictor flux is corrected using Eq. (31) and

the precursor concentrations are computed.

Algorithm 2 PCQM coupling between CMFD and EPKE levels in the TML.

1: Linearly interpolate multigroup cross sections needed for CMFD solver
on ∆tCMFD time step

2: c← Eq. (30)
3: for all 1 ≤ n ≤ ∆tMC/∆tCMFD do
4: ϕp,n

CMFD ← Eq. (15)
5: Linearly interpolate globally-integrated EPKE parameters at ∆tEPKE

resolution
6: pnEPKE ← Eq. (18)
7: ϕc,n

CMFD ← Eq. (31)
8: Update precursor concentrations using corrected CMFD flux distri-

bution.
9: end for

Figure 4 shows the flow of information between the various TML levels.
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At the beginning and end of each MC time step, multigroup cross sections are

passed down to the CMFD solver to be interpolated and propagated forward

through the CMFD time steps. At end of the CMFD propagations, a space-

and energy-dependent amplitude function pCMFD is passed back to the MC

solver to update the weights of the particles in the time-stepping source bank

as a function of their current position and energy

wc,n−1 = wp,n−1 ϕc,n−1
CMFD (x, E)〈
ϕc,n−1
CMFD (x, E)

〉 . (32)

Between the CMFD and EPKE levels, point kinetics parameters are passed

from the CMFD calculation. At the end of each EPKE propagation, a

globally-integrated amplitude function is passed back up to the CMFD solver

to update the scalar flux prediction.

Monte Carlo

CMFD

EPKE

MGXS

Amplitude ϕCMFD(x, E, t)

PK Parameters βeff ,Λ, ρ

Amplitude p(t)

Figure 4: Flow of information for coupling between the MC, CMFD, and EPKE levels.

3.4. Implementation Into Shift

Several changes to Shift’s source code were implemented on a frozen re-

search branch to enable the TML algorithm. The burden of implementing
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these changes was lessened by leveraging several of Shift’s existing features.

For example, introducing time-stepping capabilities into Shift was accom-

plished by repurposing the existing depletion infrastructure to set up a series

of MC k-eigenvalue solves. By repurposing Shift’s surface census tally ca-

pabilities, census particle state information could be written to HDF5 files

at the end of a MC solve so that it could be read in at the start of the

subsequent MC solve. Passing information between Denovo’s deterministic

adjoint SP3 and CMFD solvers was enabled by repurposing Shift’s hybrid

CADIS and FW-CADIS capabilities [31]. Point kinetics tallies were enabled

by repurposing Shift’s nodal tally capabilities and summing over the spatial

and energy domains. Additional infrastructure was developed for specifying

time-dependent multipliers to material densities to initiate transient events

and performing particle combs via shuffling for population control [28].

4. C5G7 TD3 Benchmark Results

The TML implementation in Shift was tested using the C5G7 determin-

istic transient benchmark [32]. The C5G7 reactor benchmark models a small

Pressurized Water Reactor (PWR) core with quarter-core radial symmetry.

There are sixteen fuel assemblies: eight Uranium Dioxide (UO2) assemblies,

and eight Mixed Oxide (MOX) assemblies (with varying levels of enrich-

ment), surrounded by a water reflector. Each assembly consists of a 17× 17

array with 264 fuel pins, 24 guide tubes for control rods to be placed, and one

instrument tube in the center of the grid for a fission chamber. A diagram

of the southeast quadrant homogenized at the pincell level can be seen in

Fig. 5.
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Figure 5: Southeast quadrant of the C5G7 reactor core configuration homogenized at the
pincell level.

Each fuel cell has a pitch of 1.26 cm and has been homogenized into two re-

gions: a fuel zone homogenized over the ceramic fuel, gap, and cladding with

radius of 0.54 cm, and a surrounding moderator zone. Transport-corrected

macroscopic cross sections and scattering matrices are given in the bench-

mark specifications [32].

While several prescribed transient exercises are specified in the C5G7

benchmark, this work presents the results of simulating the third prescribed

exercise, “TD3”. Exercise TD3 simulates four transient events by linearly

varying the core moderator density for a 2D version of the reactor geometry

with the time-dependent profile seen in Fig. 6, where ω is the minimum

moderator density used throughout the transient at t = 1 s.
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Figure 6: Time-dependent changes in the average moderator density specified for the
C5G7-TD3 exercises.

4.1. PCQM Results

Before implementing the full TML in Shift, a PCQM implementation

(without the CMFD intermediate level) was first implemented to test the

transient fission source iteration and provide a benchmark to assess perfor-

mance improvements upon introducing the CMFD level. The PCQM results

are shown in Fig. 7 for a macro time step of ∆tMC = 0.1 s, which is the same

transport-level time step used for a deterministic PCQM simulation of the

same transient simulated by DeHart et al. [33]. Each MC step was simulated

with 105 neutron histories per cycle for 150 inactive cycles and 250 active

cycles. The micro time step was selected to be ∆tEPKE = 1ms.

The results show that stochastic noise in the dynamic reactivity after

t > 2 s is amplified by the exponential transform of the solution that the
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EPKE solver assumes. This same phenomenon was also observed by Guo et

al. for a MC-PCQM implementation in the RMC code [34] and Shaner for

a frequency transform method [20] that also assumes exponential behavior

of the amplitude function. Shaner showed that the stochastic noise for reac-

tivities near zero is resolved as the number of particle histories is increased,

while Guo et al. use a polynomial fitting technique of the dynamic reactivity

for noise reduction.

Figure 8 presents the same simulations with stochastic noise in the dy-

namic reactivity artificially removed for t > 2 s by forcing the dynamic reac-

tivity in the simulation to be zero after t = 2 s instead of being derived from

MC tallies (i.e. ρ (t > 2 s) ≡ 0). To accomplish this, the dynamic reactivity

computed by the CMFD solver is hardcoded to be zero for t ≥ 2 s for the

C5G7-TD3 transient. Removing noise in the dynamic reactivity also results

in a smoothing of the fractional core fission rate profile. From these results

it is also apparent that initial bias immediately after t = 2 s is propagated

throughout the transient, resulting in positive feedback loop as time pro-

gresses. In future work, adaptive schemes for devoting more computational

resources to resolving statistical uncertainties for dynamic reactivities near

zero should be considered.

4.2. TML Results

Figure 9 shows the results of the TD3 simulations using the TML imple-

mentation, now with the CMFD level. Each TD3 case simulated was run

to t = 6 s with 105 particle histories per cycle, 150 inactive cycles, and 250

active cycles. The CMFD mesh uses a pincell resolution (51×51 mesh ele-

ments) over the active region of the reactor. Partial current tallies are used
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Figure 7: Dynamic reactivity and relative fission rate of the PCQM implementation.
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Figure 8: Dynamic reactivity and relative fission rate of the PCQM implementation with
stochastic noise removed for t > 2 s.

to define the CMFD boundary sources, but the CMFD calculation did not

directly include the reflector regions. All of the reaction rate, surface current

and point kinetics tallies were accumulated on this mesh during the MC ac-

tive cycles to be used as input for the CMFD solver. The time steps at the

various TML levels are selected to be ∆tMC = 0.25 s, ∆tCMFD = 0.05 s, and

∆tEPKE = 0.001 s.

The TML method noticeably reduces the stochastic noise in both the

dynamic reactivity and corresponding fractional core fission rate profiles.

This is because (1) there are fewer MC steps being computed throughout the
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transient and (2) MC tallies (and their accompanying stochastic noise) are

not directly driving the EPKE solution. Instead, point kinetics parameters

are derived from the CMFD solutions that use linearly-interpolated MC-

generated cross sections to provide spatial and energy resolution updates

to the shape function throughout the transient. The importance of these

intermediate updates is illustrated by the slight curvature in the dynamic

reactivity (left) for both the descending (0 ≤ t < 1 s) and ascending (1 ≤ t <

2 s) portions of the curve. Therefore, linearly interpolating EPKE parameters

between MC solutions at t = 0, t = 1, and t = 2, is not sufficient to capture

this feature. Error bars are not presented in Fig. 9 as the propagation of

error in the MC tallies through the CMFD and EPKE subsolvers is not

straightforward. Instead, batch statistics are used to assess the resolution of

stochastic noise later in Fig. 10.
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Figure 9: Dynamic reactivity and relative fission rate of the TML implementation with
stochastic noise removed for t > 2 s.

Several norm comparisons are given in Table 1 to assess TML performance

improvements over the PCQM implementation. The MPACT solutions are

used as the reference solution. The L1 and L∞ norm evaluations for the

TML decrease by roughly an order of magnitude for every TD3 case when
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compared to the PCQM. The L2 norm improves by a factor of 2-4 for all

TD3 cases.

Table 1: Norm comparisons (given in %) to MPACT solution for both PCQM and TML
implementations.

Norm TD3-1 TD3-2 TD3-3 TD3-4

L∞ = maxn
[
pn,Shift−pn,MPACT

pn,MPACT

] PCQM 8.42 13.48 10.12 12.38
TML 2.40 3.65 2.83 2.23

L2 = 1
N

[∑
n

(
pn,Shift−pn,MPACT

pn,MPACT

)2
] 1

2 PCQM 0.28 0.47 0.28 0.46
TML 0.09 0.12 0.13 0.13

L1 = 1
N

∑
n

∣∣∣ pn,Shift−pn,MPACT

pn,MPACT

∣∣∣ PCQM 2.17 3.70 2.18 3.42
TML 0.62 0.91 1.07 1.06

Ideally, the use of a larger MC time step would bring down the total

simulation time as the MC solve is much costlier than both the CMFD and

EPKE solves. To show this, a rough timing comparison between the various

implementations is shown in Table (2). All of the Shift calculations were ex-

ecuted on an ORNL compute cluster featuring dual-processor AMD Opteron

6378 CPUs with 16 cores per CPU, for a total of 32 cores per node, and

128 GB RAM per node. All Shift simulations of the C5G7 reactor geometry

were run on eight nodes (256 cores). The MPACT simulations were carried

out for the same transient specifications up until t = 10 s. Additionally, the

MPACT benchmark only reported wall time using nine processors. The wall

times reported by MPACT were then multiplied by a factor of nine to give an

estimate for the number of core hours used. While these numbers are approx-

imate and not directly comparable, it can be seen that the Shift PCQM and

TML implementations are roughly one and two orders of magnitude slower,

respectively, than the MPACT implementation.
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Table 2: CPU time comparison (hours) between the TD3 solution methods.

TD3 Case Shift-PCQM (6 s) Shift-TML (6 s) MPACT (10 s)

1 2510.1 395.0 30.6
2 3067.1 395.1 29.7
3 2533.1 398.0 29.7
4 2039.8 351.1 29.7

As stated previously, Shaner showed that the stochastic noise in the MC

frequency transform method was resolved with an increasing number of par-

ticle histories [20]. For the MC TML implementation, small perturbations in

the dynamic reactivity are amplified by the EPKE solver. A batch analysis

was performed to assess whether this is also the case with the MC TML

implementation. Three values for the number of histories to simulate per

fission source iteration cycle: Nhpc = 104, 105, and 106. The C5G7-TD3-4

transient was modeled based on the magnitude of its change in reactivity.

Other than varying Nhpc, all Shift inputs used to generate each individual

simulation of the batch analysis were identical to those used to generate

the results presented in Fig. 9. All values of Nhpc were simulated with ten

batches, where each batch began with a unique random seed. The average

over the two batches for each point in time are shown as the solid lines in

Fig. 10. The shaded regions show the standard deviation at each point in

time. It is clearly shown that the noise is resolved with increasing particle

histories. The quality of the solution is fairly consistent while the reactivity

is changing, i.e. t < 2 s. The solution is much more sensitive to stochastic

noise for dynamic reactivities near zero. In future implementations, more

computational resources (i.e., larger values of Nhpc) should be devoted to
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temporal regions where the imposed reactivity should be zero.
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Figure 10: Uncertainties from stochastic noise associated with dynamic reactivity and
relative fission rate for TD3-4.

A refinement of the MC and CMFD time scales was also analyzed to

see how the ratio ∆tMC/∆tCMFD affects the accuracy of the solution. The

L2 norm comparison for each of the simulations for various values of ∆tMC

is shown in Fig. 11 (left), where the reference solution used time steps of

∆tMC = 0.1 s, ∆tCMFD = 2ms, and ∆tEPKE = 80 µs. Accuracy gains appear

to level off for values of ∆tMC/∆tCMFD > 10. The right plot in Fig. 11 shows

the percentage of the total simulation time spent computing the MC time

propagations. The percentage of time spent on the MC solves appear to de-

crease linearly with an increasing number of CMFD steps per MC step. Since

the most significant gains in solution accuracy occur for ∆tMC/∆tCMFD < 10,

the MC solver takes upwards of 95% of the total simulation time in the TML

implementation. Therefore, acceleration efforts should ideally focus on re-

ducing the number of MC steps required to solve a transient while retaining

the accuracy of the solution.
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Figure 11: Time step convergence analysis for TD3-4 exercise.

5. Conclusions

In this paper, the TML method was implemented using a modified MC

fission source iteration solution at the transport level. The MC TML im-

plementation showed marked reductions in both stochastic noise and overall

simulation time when compared against the standard MC PCQM technique

for the C5G7-TD3 transient benchmark problem. It was shown that stochas-

tic noise where the dynamic reactivity is near zero is amplified in the tran-

sient power profiles but that this stochastic noise is resolved as the number

of histories simulated approaches infinity. Similar stochastic noise resolution

was observed with Shaner’s frequency transform method, indicating that the

observation is likely generalizable to other transients using the TML.

It was also shown that, for the C5G7-TD3 problem, performance gains

diminish significantly after the number of CMFD per MC steps of around ten,

where ≥ 95% of the total simulation time is spent on the MC calculations.

Zhu’s initial deterministic implementation of the TML found that the MOC

transport solver accounted for roughly 50% of the overall simulation time and

40



the CMFD solver accounted for 31% of the overall simulation time. It should

be noted though that Zhu’s calculations also included thermal hydraulics

solvers that accounted for 17% of the overall simulation time [11]. Though it

was expected that the MC solver would dominate the overall simulation time,

it draws attention to the fact that further acceleration techniques should be

oriented towards limiting the number of MC steps needed to simulate the

transient without losing accuracy. While the MC TML shows speedup when

compared to the PCQM, the method is still roughly an order of magnitude

slower than the MOC TML for the C5G7-TD3 transient.

Areas of future work include investigating models that further stress the

MC TML implementation. In particular, models that stress the limitation

of the implementation’s dependence on group-to-group scattering matrices

through analog tallies. Problems with regions of low statistics for these ma-

trices may lead to ill-conditioned CMFD systems and instability of the algo-

rithm. It may be necessary to implement global variance reduction techniques

to ensure better MC statistics [35, 36, 37]. Additionally, the TML imple-

mentation in Shift only supports multigroup physics. Monte Carlo solvers

using continuous-energy physics will lead to even more computationally ex-

pensive transients. Acceleration schemes are therefore necessary to make the

algorithm more tractable for practical applications. Other areas of future

work include investigating alternative formulations of the CMFD equations

(such as pCMFD, odCMFD, and lpCMFD [38, 39]) to be used in the TML.
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Appendix A. Nomenclature

Table A.3: Symbols used throughout document.

x position E energy

Ω̂ direction t time

ψ angular flux C delayed neutron precursor concentration

λ decay constant j delayed neutron precursor group

k0eff multiplication factor at v particle speed

initial steady state β delayed neutron fraction

χp prompt neutron emission spectrum χd delayed neutron emission spectrum

Σt macroscopic total cross section Σs macroscopic scatter cross section

Σf macroscopic fission cross section ν fission neutron multiplicity

ϕ (x, E, t) scalar flux Σs0 zeroth Legendre moment

D diffusion coefficient of the scattering cross section

ρ dynamic reactivity p reactor power amplitude

βeff
effective delayed neutron fraction Λ effective mean neutron generation time

ζ adjoint-weighted delayed λeff effective decay constant

neutron precursor concentration ξ uniform random number

l fission source iteration index ψ†
adjoint angular flux

w particle weight
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