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Abstract

The Transient Multi-Level (TML) method is applied to a time-dependent
Monte Carlo transport solver to offload some of the computational burden
of the expensive Monte Carlo solve to lower-order Coarse Mesh Finite Dif-
ference (CMFD) and Exact Point Kinetics Equations (EPKE) solvers via
factorization of the neutron flux at the transport and CMFD levels using the
Predictor Corrector Quasi-Static Method (PCQM). The Monte Carlo tran-
sient is solved by a modified fission source iteration scheme that introduces a
single transient source bank. The method is implemented in the production-
level Monte Carlo code, Shift, and verified with prescribed reactivity ramps
from the two-dimensional version of the C5G7-TD reactor benchmark. The
results show that, as compared to other quasi-static methods, the TML re-
duces the stochastic noise inherent to the transient Monte Carlo solver by

factors of ~2 to 6 for various norm comparisons of the reactor power ampli-
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tude. The TML additionally reduces the number of Monte Carlo evaluations
needed to simulate the transient, leading to roughly an order of magnitude
improvement in CPU time relative to the standard PCQM for the problems
tested.

Keywords: transient, quasi-static, Monte Carlo

1. Introduction

Until the mid-2000s reactor transient calculations were predominantly
limited to point kinetics, where the spatial, energy, and angular dependence
are integrated out of the underlying neutron transport and delayed neutron
precursor density equations to reduce the problem to a single “point” reactor
model. In the 1950s, Henry and a series of colleagues observed that loosely-
coupled reactor physics problems could be solved with sufficient accuracy by
factorizing the neutron flux into the product of a time-dependent amplitude
function solved by point kinetics on a fine time scale and a shape function
with weak time-dependence solved by neutron diffusion on a coarse time
scale [1, 2, 3]. In the late 60s, Ott and Meneley improved the accuracy of
the method by introducing updates to the shape function with an iterative
procedure to develop the Improved Quasi-Static Method (IQM) [4].

Gehin’s 1992 dissertation introduced the Predictor-Corrector Quasi-static
Method (PCQM), which avoided the costly IQM iterative procedure to de-
termine the shape function by updating the entire neutron flux on the coarse
time scale as a “predictor” and correcting the solution with the fine time-
resolution amplitude function [5]. The method received little attention with

respect to computational efficiency at the time of publication but was re-



investigated by Dulla et al. in the mid-2000’s [6, 7]. In their analysis, Dulla
et al. showed the PCQM to be well-suited for implementations requiring
high-fidelity solvers because it typically requires fewer evaluations on the
coarse time scale than the IQM. On the other hand, several studies over the
last few years have suggested that the IQM might actually be better-suited
for multiphysics calculations because it allows for iterative communication
between the neutronics and thermal hydraulics solvers [8, 9, 10]. Between
the two, the clearly-superior technique has yet to be established, as both
methods have started to see transport-level applications in recent years.

Zhu improved the speed and accuracy of the PCQM in the deterministic
Michigan Parallel Characteristics Transport (MPACT) code by introducing
an intermediate time-discretization [11]. In what Zhu calls the Transient
Multi-Level (TML) method, the Coarse Mesh Finite Difference (CMFD)
equations are used to propagate the amplitude function forward in time at the
intermediate time scale to preserve some spatial and energy dependence in
between Method of Characteristics (MOC) transport solutions. Shen showed
further improvement by introducing a fourth, energy-integrated, CMFD time
discretization level to the TML between the CMFD and point kinetics levels
[12]. Shen additionally characterized Lie and Strang operator splitting for
multiphysics schemes that might be relevant for future applications of this
work.

With huge strides in computational capacity, the previous decade has
also seen several reactor kinetics implementations that make use of Monte
Carlo (MC) transport solvers. MC solvers offer numerous advantages over

deterministic solvers (at the cost of computational expense), including not re-



quiring spatial, angular, or energy discretization. Sjenitzer and Hoogenboom
showed that explicitly tracking the inventory of delayed neutron precursors
produces very accurate results, but is prohibitively expensive for practical
applications [13, 14]. Hackemack et al. implemented the PCQM with fixed-
source Monte Carlo transport at the coarse time step but found that the per-
formance was limited by long fission chains [15]. Kooreman and Griesheimer
expanded on the work of Hackemack et al. by introducing the MC-PCQM
algorithm into a multiphysics solver [10].

Jo et al. solved the issue of non-terminating fission chains by solving the
Monte Carlo step with fission source iteration [16]. Lee et al. improved fission
source convergence rates by introducing the CMFD equations to a MC solver
[17, 18]. Shaner developed a frequency transform method in 2018 (based
on a deterministic technique developed by Ban et al. [19]) that uses time-
dependent CMFD equations (in a distinct formulation from those developed
by Zhu) to propagate the space- and energy-dependent frequencies forward
in time so that they can inform time-dependent updates to the Monte Carlo
solution [20]. Kreher et al. incorporated thermal-hydraulic feedback into
Shaner’s frequency transform method [21]. Recently, He et al. and Mascolino
and Haghighat have had success in reducing simulation times of hybrid MC-
deterministic transient calculations with methods based on the Transient
Fission Matrix technique [22, 23].

This work applies a MC solver at the transport level of Zhu’s TML method
[11]. The transient MC criticality solver is largely modeled after Jo’s transient
criticality solver implementation [16] with a collapsed number of particle

source banks (from five to two). The remainder of this paper is organized



as follows. Section 2 gives a high-level overview of the TML and describes
the detailed methodologies for the three solver levels. Section 3 describes
the implementation details specific to the transient MC criticality, CMFD,
and Exact Point Kinetics Equations (EPKE) solver levels of the TML and
how they are coupled together. Section 4 describes the results of the method
applied to a 2D multigroup reactor benchmark. Finally, conclusions are given

in Section 5.

2. Transient Methodologies

This section begins with a high-level overview of the TML method be-
ing described in this paper. Then, the equations being solved by the three
transient subsolvers are defined: the transport-level Transient Fixed Source
Problem (TFSP), the diffusion-level TFSP, and the EPKEs. Figure 1 shows
the temporal discretization being solved by the TML, where a high-fidelity
(but computationally expensive) MC solver is used with a coarse time step,
a time-dependent CMFD solver that applies the diffusion approximation is
used with an intermediate time step, and an EPKEs solver that has inte-
grated out the spatial and energy dependence of the transient is used with a

fine time step.

2.1. Transient Multi-Level Method

The TML method consists of two nested levels of PCQM temporal dis-
cretizations [5] [7], where each of the discretizations is formulated by a sep-
aration of variables of the neutron flux into the product of an amplitude
function, and a shape function. The amplitude function is characterized by

reduced phase space dimensionality and strong temporal dependence. The
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Figure 1: TML time stepping scheme [11].

shape function, which typically retains full phase space dimensionality, is
assumed to have weak temporal dependence and is generally more computa-
tionally expensive than the amplitude function. Quasi-static methods take
advantage of these characteristics to update the two functions on separate
time scales, where Atgape > Atamplitude- In this way, much of the compu-
tational work in capturing time-dependent features of the neutron flux is
off-loaded to lower-order approximate amplitude solvers.

The PCQM updates the entire neutron flux on the macro time scale, as
opposed to other quasi-static methods that only update the shape function on
the macro time scale. This initial updated flux solution is the “predictor” flux
and typically has errors associated with integrating over a large time step.
The algorithm proceeds by updating the amplitude function on the micro
time scale to “correct” the flux estimate. The main benefit of the PCQM
algorithm is that it eliminates an expensive inner iteration that would be

required by other quasi-static methods.



The TML method [11] extends the predictor-corrector quasi-static method
by introducing an intermediate nested time discretization level, shown in
Fig. 1. As with the PCQM, the angular flux is computed with a high-fidelity
solver and factorized into the product of amplitude and shape functions. The
amplitude function at the transport level is now the solution of the CMFD
equations discussed in Sec. 2.3 and is used to correct the transport-level pre-
dictor flux. The CMFD solution is further factorized into the product of
another shape and amplitude function, where instead the amplitude is the
solution of the EPKESs discussed in Sec. 2.4 and used to update the CMFD-
level predictor flux.

The main benefit of adding the extra CMFD level is that it allows the
spatial and energy dependence of the shape function to be updated in be-
tween MC time steps that would not otherwise be captured by the globally-
integrated point kinetics equations. It will be shown that the addition of
the CMFD level also allows for a larger transport-level macro time step,

improving the overall speed of the transient calculation.

2.2. Transient Fized Source Problem
At the highest-fidelity level, the MC method is used to solve the underly-
ing time-dependent neutron transport problem. The time-dependent Boltz-

mann neutron transport equation and delayed neutron precursor equations



are

1 oY Xplx, Bt .
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where the basic symbols that appear in Eq. (1) are defined in Table A.3
and the operators are defined such that M corresponds to particle migra-
tion (streaming, collisions, and scattering), F, corresponds to prompt fission,
F, ; corresponds to delayed fission and Sq; corresponds to an accumulated

delayed neutron source term,
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In Egs. (1), the appearance of the initial k-eigenvalue, kY, serves to nor-
malize the terms that contain the fission source integral and ensures critical-
ity of the initial state. For this work, an implicit Euler scheme is selected to
discretize the temporal domain of Eq. (1) with the superscript index, n, de-
noting discretized points in time. Integrating over the range, t"~! <t < ",

Eq. (1) becomes

1 A
— " E "l QF My"(x, Q2 F
CEaE V@ E) v @ . B)| - MY @, 0, )
_ Xp(x,t) . ngj(a:,t) . .
- 47Tk£)ﬁ pr (w797E)+j21 A7 Sd,J(wvﬂaE)7 (3&)
1
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The time-interpolated weighting factors are derived by approximating the
fission source as varying linearly in time and integrating with Lagrange poly-

nomial interpolation. These weighting factors are

fl,j — e—AjAt” 7 (4&)
1 — efAjAtn _ )\ ‘AtneiAjAtn
J
e—AjAt” (1 o eAjAtn + AjAtne)\jAtn)
f35= A , (4c)
J

and a detailed integration can be found in Appendix A of [24].
To integrate Eq. (1b), the delayed fission term %Fd7j¢(m, Q,E, t) is ap-
eff

proximated as varying linearly in time. Higher-order approximations are



possible, but can lead to negative weighting factors analogous to Eqgs. (4).
These negative weighting factors can lead to negative MC particle weights,
which are generally avoided as they have no physical interpretation, can lead
to increased variance, and can complicate other variance reduction schemes
that might be implemented in a production code. After integrating Eq. (1b)
and substituting into Eq. (3a), the TFSP is

1 . (e, Q, E)
()Ath( E)= v(E)Atn

1 R
+ W [XS(%E)FMW(Q%QE)

(M +

—i—ZX ngl(chE)fU
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j=1
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2.3. Time-Dependent Coarse Mesh Finite Difference Equations

To formulate the time-dependent CMFD equations, the TFSP is derived

from the continuous-energy diffusion equation:

1 0¢(x, E,t)
v(E) ot

:VD(m>E7t) V¢($7E7t) — 2 (maEvt)¢($7E7t)
+/ S (@, B — E.1) 6 (x, B 1) dE
0

T (@, B, t) (1— B (2,1)) = Fo (x, B, 1)
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+Xa (z, E,1) Sq (z, E,1) , (6a)
oC; 1
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where the delayed neutron fractions have been averaged over energy, linear

anisotropy has been assumed, and
Fo(e, B.1) = / Vi@, B 1) o(, ', 1) dE' | (1)
0

Zhu [11] derives the diffusion-level TFSP by applying a backward Euler
time discretization to Eqs. (6) and integrating over the range "~ < ¢ < "
to arrive at:

¢n(w’ E) — ¢n_1(m7 E)
v(E)At?

=V . .D%x, E)V¢"(x,F) — 3 (x, E)¢" (x, F)
+ /Oo Yh(x, B — E)¢"(x,E') dE
+xp (@, E)(1 = "(x)) 5 Fo" (2, E)

+xi(x, E)Sq (, E) . (8)
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Since negative particle weights are not of concern in deterministic solves,
the fission source can be approximated as having higher-order (quadratic)
temporal dependence. The resulting interpolated delayed neutron and fission

source terms are

Fo'(o.B)= | VS (e, B)" @, F)dE (9)
Si(e,E) = (@) Fo'(@. B) + 57w ) (9b)
w”(w)ziﬂn( U (@) (9¢)
531<w7E>=;A"< @)W ()0} (@)
P e ZB’“ ) (X (@)
+kigﬁF¢“ Zﬁ“ (@), (9d)

The time-interpolated weighting factors here are derived in a similar fashion
to those defined in Eq. (4). As noted above, the fission source is now ap-
proximated as having quadratic time dependence, which yields the following

weighting factors using Lagrange polynomial interpolation and integrating
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over the time step "1 <t < ™
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A detailed derivation is given in Appendix A of [24].
A time-dependent balance equation can then be derived by introducing

a cumulative fission spectrum,

X"(@, E) = x;(z, E)(1 = 5"(z)) + xi(z, E)5"(z) , (11)
into Eq. (9a) to arrive at
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~ [ S B = B)6" @ )B4 X a B) g PO (@, E) + S E)
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The transient source term is

S (x, E) = A™(x, E)¢"(x, E)+ B"(x, E)ins"(m, E)Y+C" Yz, E), (13)

ke
where
Az, F) = ! 14
(z, E) = N (14a)
B"(x, E) = x4(z, E)(w" () — 8"(x)) , (14b)

¢" (=, E)

n—1 E) = " E an—1 E
C (w> ) Xd(wa )Sd (CC, )_'_ U(E)Atn

(14c)

In this Multigroup Matrix (MGM) formulation [11], A and B are flux-
and fission source-dependent coefficients, and C' is a constant coefficient de-
pending on quantities defined at the previous point in time ¢"~*. The MGM
allows the entire transient diffusion problem to be written and solved as a
standard linear system.

The transient CMFD equations themselves are derived by discretizing
the energy and spatial domains. Discretizing the energy domain is straight-
forward by applying the multigroup approximation. The spatial domain is

discretized by integrating the resulting equation over a coarse mesh volume,
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typically spanning a fuel pin cell or assembly, to arrive at

1 ~ .
u,n _ Aun n
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The subscript g corresponds to the energy group index and the subscripts
(k,l,m) are cell indices corresponding to an arbitrary direction set (u, v, w).
This notation is borrowed from OpenMC documentation [25] and is used to
condense the summation across spatial dimensions. The A terms describe
the respective length of a CMFD cell. For example, A} = Upyl = Up_ 1.
The D diffusion coefficient is a non-linear coupling term used to relate
the neutron current and scalar flux. This non-linear coupling term is defined
based on whether the CMFD cell is coupled to another CMFD cell or a
problem boundary. For cell-to-cell coupling, the neutron current and scalar

flux are related by

u,n . u,n,cell n n Au,n,cell n n
Tt 1mg = ~Ditomg (EOst1mg F Fimg) + Ditimg (Pisrimg + Ohimg)
(16a)
n n
u,n,cell _ 2Dki1»lvm79Dkzlvmvg (16b>
klm,g — n u n u :
Dkil,l,m,gAk + Dk,l,m,gAkil
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For cell-to-boundary coupling, the neutron current and scalar flux are related

by

u,n o ~u,n,bound ;n Au,n,bound ;n
Jki%,l,m,g - :l: k)lumag kvl7m7g + Dkyl?m)g k7l7m7g ’ (16C>
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k,,m,g - AD" 1 wn 1 wn Av ) ( )
k,lm,g ( + aki%,l,m,g) + ( o O‘ki%,z,m,g) k
where « is an albedo boundary condition
J’U,,TL*
k+3,1,m.g
)’ =_—2"= (17)
k+35,lm,g JUJLJF
k+%,l,m.g

2.4. Exact Point Kinetics Equations

The EPKEs are

TGN OG0, (18

dt At .
d%t(t) - ?\(((2; ) p () — A () ¢ (1), (18b)

where the quantities of interest are the core-wise amplitude function p, the
time-dependent “dynamic” reactivity p, and the adjoint-weighted delayed
neutron precursor number densities ¢;. The adjoint-weighted point reactor

kinetics parameters are given in Table A.3. The definitions of these param-
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eters are:

G (1) = 2?020;0; (19a)
plt) = (4 (<ng>w> (19D)
Aft) = % (19¢)
B (1) = % (194)
X (1) = % (190)

The angle bracket notation indicates integration over the space, direction,
and energy domains. More detailed derivations of the EPKEs can be found
in [2, 6, 7]. In this work, the EPKEs are also solved by applying a backward
Euler temporal discretization with the fission source approximated as behav-
ing quadratically in time [26] (as opposed to the linear behavior in the MC

approximation).

3. Monte Carlo Transient Criticality Solver and Subsolver Cou-
plings

In this section, the individual source terms and particle banks in the
transient MC solver are discussed to outline how the time-dependent source

terms from the TFSP can be integrated into a static MC criticality solver to
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extend its functionality to support transient criticality calculations. Then,
to accelerate these transient MC calculations, the equations and procedures
for coupling the various subsolver levels of the TML method (MC to CMFD
and CMFD to EPKE) are discussed.

3.1. Transient Monte Carlo Solver

Hackemack et al. showed that MC implementations of the TFSP given by
Eq. (5) can result in prohibitively long individual particle histories for large
positive reactivity insertions [15]. This is because fixed-source algorithms
typically cycle through the entire fission chain until an individual history
terminates. One way to address the issue of long non-terminating fission
chains is to implement particle rouletting for low-weight particles.

Alternatively, Jo et al. proposed that Eq. (5) be solved as a modified
fission source iteration problem [16]. The fission source iteration algorithm
only banks the subsequent generation of fission particles at each iteration, ef-
fectively guaranteeing the termination of each history. Additionally, a fission
source iteration could help avoid numerical instability by allowing a greater
chance for the neutron flux distribution to become balanced before advancing
to the next time step. For these reasons, the same methodology is also used

in this work. To accommodate these changes, a fission source iteration index
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is applied to all operators applied at time t" in Eq. (5) to arrive at

Y@, Q,F)

1 I+1,n A
<M+ v(E)At") Y, B) = R

+) N7 (@, E)Sa )" (@, QL E) fiy

J/

j:l ~~

+> X @ B)Fy )" (2, QL E) fo

J/

(20)

A total of L = Lijactive + Lactive fission source iterations are computed for each
time step, where Lijactive and Lictive are the number of inactive and active
cycles, respectively, and set by the user. During the inactive cycles, tallies
are turned off as the fission source is allowed to converge. During the active
cycles, tallies are turned on, and an estimate of k. and the fission source
distribution are recorded.

Traditional criticality solvers solve the steady-state equation,

Myt (z,Q,F) = Fy'"(z,Q, E) | (21)

19



where all operators are defined for a single point in time, ¢", and the right-
hand side contains only a single source term communicated between fission
source iterations that corresponds to both prompt and delayed fission neu-
trons. The transient criticality formulation has five distinct source terms,
some of which are defined at ¢, and some of which are defined at t"~!. For
this work, a solver of Eq. (20) was implemented on a static research branch
of Shift, a MC solver developed and maintained by Oak Ridge National Lab-
oratory (ORNL) [27].

The left-hand side of Eq. (20) is implemented by augmenting the to-

1
vAt™”

tal cross section at the beginning of a random walk by the factor
This augmentation accounts for the sampling of an additional “time census”
pseudo-absorption event when performing the distance-to-collision calcula-
tion. When interpreted this way as an additional absorption interaction, the

distance to the nearest collision is sampled with uniform random number

£~ U([0,1]) as
1

-1
Et + YNE

dcollision =

In (¢). (22)

The implementation of the source terms on the right-hand side of Eq. (20)
uses two separate particle source banks: one passed between fission source
iterations (terms @ and @), and one passed between time indices (terms
@, , and @) To decrease computational time, all five source terms
are sampled implicitly at all collisions by pushing a copy of the incident
particle to its respective source bank with an appropriate weighting factor.
The individual source terms and their corresponding weight modifications

are:

@ Neutrons from time ¢"~! that are still in flight by the time ¢". These

20



“time census” neutrons are implicitly captured at every collision dur-
ing active cycles. This is done by passing a copy of the incident par-
ticle’s state information (position, direction, energy, and weight) at
every collision to the transient time-stepping bank. In order to ensure
an unbiased result, the banked particle state requires a weight modifi-
cation that corresponds to the probability that a time-absorption event

is sampled at the collision site as

(@ B) + Smae

1
v(E)At"
Wpanked = Wincident 1 ’ (2?)&)
v(E)At"

where Wincident 18 the incident weight of the particle prior to experiencing
a collision, and wpankeq is the weight that is passed to the time stepping
bank data structure. The incident particle will then proceed through
the MC algorithm and collision mechanics will be processed with a

weight adjustment factor corresponding to the compliment of Eq. (23a)

X' (e, B
Weollision — Wincident < L ( ) ) . (23b>

as

2P (:IZ,E) + m

For very small time steps the weight of the particles exiting a time-
absorption event could be very small if ﬁ & Y. Therefore, a particle
rouletting procedure is performed upon exiting a collision if the weight
falls below a user-specified universal threshold. In this procedure, a
uniform random number between zero and one is sampled and the par-
ticle history is terminated with user-defined probability proutette. Oth-

erwise the particle history continues with a multiplicative adjustment
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of 1/(1 - proulette)-

Neutrons resulting from prompt fission. This bank is already handled
in steady-state k-eigenvalue calculations and therefore requires no mod-
ification to the criticality solver. If a prompt neutron is sampled, its
state information is banked at the fission site to be carried over the
next fission source iteration and used to source a new particle history.
Because these neutrons are emitted on very small time scales, their

state information is not passed to subsequent time steps.

This is a special term that accounts for the accumulation of delayed
neutron precursors when integrating over previous time steps. These
accumulated delayed neutron precursors will emit delayed neutrons at
times that might exceed t" + At™. In the Shift implementation, copies
of all of the particle state information in the time step iteration bank
at time index n — 1 are injected into the time step iteration bank at n
with weight of

wtn — wtn—lfl,j . (23C>

Neutrons resulting from delayed neutron precursors that were accumu-
lated over At" and numerically weighted as being sourced from the

previous time index, n — 1, with a weight modification of

Whanked = wincidenth,j . (23d>

Neutrons resulting from delayed neutron precursors that were accumu-

lated over At" and numerically weighted as being sourced from the
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current time index, n, with a weight modification of

Wpanked = wincidentf&j . (236)

The particle state information is then copied and pushed to the time-

stepping source bank.

A simplified branching process that neglects energy-dependence is shown

in Fig. 2 to depict the implicit banking of source terms at each collision site.

Figure 3 depicts the transfer of source terms between fission source itera-
tions and time steps. Fission source terms (@ and @) are passed between
fission source iterations. During the active fission cycles, time step source
terms (@ and @) are tallied and read in as source terms at the start of the
next time step. Finally, the accumulated delayed neutron term ((3)) is read
from the previous time step iteration bank at n — 1.

The recursive process of transferring delayed neutron source terms from
n — 1 causes the time step source bank to accumulate terms exponentially.
To prevent this exponential growth, a population control technique known
as “combing” [28] is performed in between time steps that keeps the size of
the bank fixed. Say, for example, that the size of the transient will be fixed
to contain the state information of Ny, source particles. Before combing,
the weight of all of the particles in the transient source bank will be added
together. Next, the order of all of the particles in the source bank will then
be randomly shuffled and only the state information for the first Nins will

be retained (the remaining particle state information will be discarded). The

23



Census neutrons at "'
Prompt fission neutrons at "

Source Particle
Delayed fission neutrons at " e

Delayed fission neutrons at ¢!

Sample distance to
collision
. leak . new cell Get distance to
Kill }4———{ Move particle lg¢ }—» cell boundary
T e = 525
Ceot = ot bt
Leol < Lsurt

Implicit time census

Variance Reduction

survive
mplicit Capture

roulette
1
L

Sample # of fis-

Kill . )
sion neutrons, v
for each of
v neutrons
delayed
Variance Reduction

Sample pre-
Cursor group roulette survive
Process collision

Kill .
mechanics

Figure 2: Simplified neutron history branching in transient fission source iteration scheme.

prompt

weight of all of the remaining Ni,..,s source particles will be added together
so that the weight of the remaining particles can be updated as
(24)

Ntrans
Z j wj
Y

w . b d — w .
j,combe g
> Wi

where ¢ corresponds to the index of the source particle before shuffling and

j corresponds to the index of the same source particle after shuffling.
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Figure 3: Transfer of source terms between fission source iterations and time steps.

3.2. Monte Carlo Transport and CMFED Coupling
The PCQM formulation between the MC and CMFD solvers factorizes

the angular flux as

ch (IB,Q,E, t) = PmMmcC (wa Eat) ‘IJMC (CB,Q,E,t) ) (25>
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where pyic is the transport-level amplitude function and Wy is the transport-

level shape function. The shape function is computed by

YﬂMc (m,Q,E,t) ¢MC <$,Q,E,t>
puc (z, E, ) ~ demrp (x, B t)

Unio (mQEt) - (26)

where ¢cypp is the CMFD scalar flux and is the solution to Eq. (15). The
time-dependent CMFD solution can be obtained with any standard linear
algebra solver after setting up the system of equations as a matrix described
by Zhu’s MGM method (defined in Section 2.3) [11]. The CMFD solver in
Shift uses the Generalized Minimal Residual (GMRES) method to solve the
matrix formulation of Eq. (15) where the solution vector consists of the cell-
centered CMFD scalar fluxes for each energy group. Uniqueness with the

factorization given by Eq. (25) is ensured with a normalization constraint for

each CMFD cell:

! <¢Mc <a:, Q,E,t>> =1. (27)

Vemrp

The MC and CMFD coupling algorithm is explicitly defined in Algorithm
1. To begin, the forward and adjoint steady state fluxes are evaluated at t =
0. In this work, the adjoint solution is generated using an SP3 k-eigenvalue
solver in the Denovo solver [29].

The algorithm proceeds by advancing the MC solution on the coarse
time step Atyc by solving Eq. (20). This flux solution is denoted as the
“predictor” flux with superscript p. The CMFD parameters that appear
in Eq. (15) at the beginning and end of the Aty time step are calculated
from the MC tallies. While quantities such as multigroup macroscopic cross

sections and scalar fluxes are straightforward to compute using path-length
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or collision tallies, special care must be taken when computing the diffusion
coefficients, D and D.
The D diffusion coefficient is defined by Eq. (16b) or Eq. (16d) with the

“standard” diffusion coeflicients defined as

1

n ~
klm,g ™ n G v :
3(Zt,k,l,m,g — Ho Zg/ ZsO,k,lvmvg’—w)

(28)

This approximation assumes that the in-scatter rate of neutrons from FE’
to E is approximately equal to the out-scatter rate of neutrons from E to
all other energies F’', i.e., the medium is weakly-absorbing. Moreover, this
approximation requires group-to-group scattering matrices for every coarse
mesh volume for every time step.

In the Shift implementation, these matrices are computed using analog
tallies that are scored every time a neutron transitions from group ¢’ to
group ¢g. These analog tallies can be subject to poor statistics in parts of
the problem with highly-absorbing media or low neutron populations and
result in ill-conditioned matrix systems when performing the CMFD solve.
These limitations make the MC implementation of the TML particularly
challenging when compared to deterministic implementations. More accurate
diffusion coefficients can be calculated with migration area tallies [30] but
have not been explored in this work. Once the D are known, the D diffusion
coefficients can computed by Eq. (16a) or Eq. (16¢).

After all CMFD parameters have been computed at the beginning and
end of the Atyc time step, they are interpolated on the Atcyrp time scale

so that the CMFD scalar flux amplitude function (and corresponding EPKE
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substeps) can be propagated forward in time. Finally, the CMFD shape
function is used to correct the MC tallies at t™ and precursor concentrations

are computed. The superscript ¢ is used to denote the corrected flux solution.

Algorithm 1 PCQM coupling between MC and CMFD levels in the TML.

1: Solve Eq. (21) for forward steady-state forward flux ¥y
2: Solve for steady-state adjoint flux "?;
3: for all 1 < n < Nyc do
4: e < Eq. (20)
5: Linearly interpolate CMFD volume- and surface-integrated MC tallies
between ¢)" "1 and 9"
Propagate through Algorithm 2 to compute ¢ghrp and ¢evrp
R
Update precursor concentrations using corrected MC flux distribu-
tion.
9: end for

3.3. CMFD and EPKE Coupling

The PCQM formulation between the CMFD and EPKE solvers factorizes

the scalar flux as

dcmrp (2, E,1) = penvrep (1) Yourp (2, £, 1) (29)
where pomrp (t) = pepke (). The normalization constraint used to ensure
uniqueness after the factorization in Eq. (29) is defined as

¢= <¢T’° (a:ﬂ E) ,ﬁ\ngFD (x, E)> (30)

= <¢T70 (m,Q, E) ,ﬁ\I’CMFD (z, E,t)> -
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The amplitude and shape functions are then computed as

C

010 (2,9, B) , s 6iien (@, B)

Pénrp (T, E) = < >pEPKE,n¢%’ﬁFD (x,E) .

(31)

The PCQM coupling between the CMFD/EPKE levels is described by
Algorithm 2. To begin, the multigroup cross sections needed for the CMFD
solver are post-processed from the direct MC tallies and interpolated on the
CMFD time scale. Next, the normalization constant c¢ is computed with
Eq. (30) to ensure that the shape/amplitude factorization is unique. Then,
the CMFD predictor solution is propagated forward in time. The EPKE
parameters are then interpolated on the Atgpky time scale and the EPKE
amplitude function is propagated forward in time to the end of the CMFD
time step. Finally, the CMFD predictor flux is corrected using Eq. (31) and

the precursor concentrations are computed.

Algorithm 2 PCQM coupling between CMFD and EPKE levels in the TML.
: Linearly interpolate multigroup cross sections needed for CMFD solver
on Atcurp time step
c + Eq. (30)
: for all 1 S n S AtMC/AtCMFD do
carp < Ea. (15)

Linearly interpolate globally-integrated EPKE parameters at Atgpkg
resolution

Perke < Ed. (18)

$émrp < Ea. (31)

Update precursor concentrations using corrected CMFD flux distri-
bution.
9: end for

AN =

Figure 4 shows the flow of information between the various TML levels.
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At the beginning and end of each MC time step, multigroup cross sections are
passed down to the CMFD solver to be interpolated and propagated forward
through the CMFD time steps. At end of the CMFD propagations, a space-
and energy-dependent amplitude function poyrep is passed back to the MC
solver to update the weights of the particles in the time-stepping source bank

as a function of their current position and energy

c,n—1
c,n—1 n—1 CMFD (33, E) (32>

w = P )
($emrn (2, E))

Between the CMFD and EPKE levels, point kinetics parameters are passed
from the CMFD calculation. At the end of each EPKE propagation, a
globally-integrated amplitude function is passed back up to the CMFD solver

to update the scalar flux prediction.

Monte Carlo | '

A'—\lllplitl,ld&‘ (A)('lecD(iB.’ E, [)

CMFD f ' ' ' '
PK Parameters 5T, A, p

Amplitude p(t)
EPKE

Figure 4: Flow of information for coupling between the MC, CMFD, and EPKE levels.

3.4. Implementation Into Shift

Several changes to Shift’s source code were implemented on a frozen re-

search branch to enable the TML algorithm. The burden of implementing
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these changes was lessened by leveraging several of Shift’s existing features.
For example, introducing time-stepping capabilities into Shift was accom-
plished by repurposing the existing depletion infrastructure to set up a series
of MC Ek-eigenvalue solves. By repurposing Shift’s surface census tally ca-
pabilities, census particle state information could be written to HDF5 files
at the end of a MC solve so that it could be read in at the start of the
subsequent MC solve. Passing information between Denovo’s deterministic
adjoint SP3 and CMFD solvers was enabled by repurposing Shift’s hybrid
CADIS and FW-CADIS capabilities [31]. Point kinetics tallies were enabled
by repurposing Shift’s nodal tally capabilities and summing over the spatial
and energy domains. Additional infrastructure was developed for specifying
time-dependent multipliers to material densities to initiate transient events

and performing particle combs via shuffling for population control [28].

4. C5G7 TD3 Benchmark Results

The TML implementation in Shift was tested using the C5G7 determin-
istic transient benchmark [32]. The C5GT7 reactor benchmark models a small
Pressurized Water Reactor (PWR) core with quarter-core radial symmetry.
There are sixteen fuel assemblies: eight Uranium Dioxide (UO2) assemblies,
and eight Mixed Oxide (MOX) assemblies (with varying levels of enrich-
ment), surrounded by a water reflector. Each assembly consists of a 17 x 17
array with 264 fuel pins, 24 guide tubes for control rods to be placed, and one
instrument tube in the center of the grid for a fission chamber. A diagram
of the southeast quadrant homogenized at the pincell level can be seen in

Fig. 5.
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Figure 5: Southeast quadrant of the C5G7 reactor core configuration homogenized at the
pincell level.

Each fuel cell has a pitch of 1.26 cm and has been homogenized into two re-
gions: a fuel zone homogenized over the ceramic fuel, gap, and cladding with
radius of 0.54cm, and a surrounding moderator zone. Transport-corrected
macroscopic cross sections and scattering matrices are given in the bench-
mark specifications [32].

While several prescribed transient exercises are specified in the C5G7
benchmark, this work presents the results of simulating the third prescribed
exercise, “TD3”. Exercise TD3 simulates four transient events by linearly
varying the core moderator density for a 2D version of the reactor geometry
with the time-dependent profile seen in Fig. 6, where w is the minimum

moderator density used throughout the transient at t = 1s.
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Figure 6: Time-dependent changes in the average moderator density specified for the
C5GT7-TD3 exercises.

4.1. PCOM Results

Before implementing the full TML in Shift, a PCQM implementation
(without the CMFD intermediate level) was first implemented to test the
transient fission source iteration and provide a benchmark to assess perfor-
mance improvements upon introducing the CMFD level. The PCQM results
are shown in Fig. 7 for a macro time step of Atyc = 0.1, which is the same
transport-level time step used for a deterministic PCQM simulation of the
same transient simulated by DeHart et al. [33]. Each MC step was simulated
with 10° neutron histories per cycle for 150 inactive cycles and 250 active
cycles. The micro time step was selected to be Atgpxg = 1 ms.

The results show that stochastic noise in the dynamic reactivity after

t > 2s is amplified by the exponential transform of the solution that the
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EPKE solver assumes. This same phenomenon was also observed by Guo et
al. for a MC-PCQM implementation in the RMC code [34] and Shaner for
a frequency transform method [20] that also assumes exponential behavior
of the amplitude function. Shaner showed that the stochastic noise for reac-
tivities near zero is resolved as the number of particle histories is increased,
while Guo et al. use a polynomial fitting technique of the dynamic reactivity
for noise reduction.

Figure 8 presents the same simulations with stochastic noise in the dy-
namic reactivity artificially removed for ¢ > 2s by forcing the dynamic reac-
tivity in the simulation to be zero after t = 2s instead of being derived from
MC tallies (i.e. p(t > 2s) = 0). To accomplish this, the dynamic reactivity
computed by the CMFD solver is hardcoded to be zero for t > 2s for the
CHGT7-TD3 transient. Removing noise in the dynamic reactivity also results
in a smoothing of the fractional core fission rate profile. From these results
it is also apparent that initial bias immediately after ¢ = 2s is propagated
throughout the transient, resulting in positive feedback loop as time pro-
gresses. In future work, adaptive schemes for devoting more computational
resources to resolving statistical uncertainties for dynamic reactivities near

zero should be considered.

4.2. TML Results

Figure 9 shows the results of the TD3 simulations using the TML imple-
mentation, now with the CMFD level. Each TD3 case simulated was run
to t = 6s with 10° particle histories per cycle, 150 inactive cycles, and 250
active cycles. The CMFD mesh uses a pincell resolution (51x51 mesh ele-

ments) over the active region of the reactor. Partial current tallies are used
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Figure 7: Dynamic reactivity and relative fission rate of the PCQM implementation.
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Figure 8: Dynamic reactivity and relative fission rate of the PCQM implementation with
stochastic noise removed for ¢ > 2s.

to define the CMFD boundary sources, but the CMFD calculation did not
directly include the reflector regions. All of the reaction rate, surface current
and point kinetics tallies were accumulated on this mesh during the MC ac-
tive cycles to be used as input for the CMFD solver. The time steps at the
various TML levels are selected to be Aty = 0.258, Atcvrp = 0.05, and
Atgpkg = 0.001 s.

The TML method noticeably reduces the stochastic noise in both the
dynamic reactivity and corresponding fractional core fission rate profiles.

This is because (1) there are fewer MC steps being computed throughout the
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transient and (2) MC tallies (and their accompanying stochastic noise) are
not directly driving the EPKE solution. Instead, point kinetics parameters
are derived from the CMFD solutions that use linearly-interpolated MC-
generated cross sections to provide spatial and energy resolution updates
to the shape function throughout the transient. The importance of these
intermediate updates is illustrated by the slight curvature in the dynamic
reactivity (left) for both the descending (0 < ¢ < 1s) and ascending (1 <t <
2) portions of the curve. Therefore, linearly interpolating EPKE parameters
between MC solutions at t = 0, t = 1, and t = 2, is not sufficient to capture
this feature. Error bars are not presented in Fig. 9 as the propagation of
error in the MC tallies through the CMFD and EPKE subsolvers is not
straightforward. Instead, batch statistics are used to assess the resolution of

stochastic noise later in Fig. 10.
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Figure 9: Dynamic reactivity and relative fission rate of the TML implementation with
stochastic noise removed for ¢ > 2s.

Several norm comparisons are given in Table 1 to assess TML performance
improvements over the PCQM implementation. The MPACT solutions are
used as the reference solution. The L; and L., norm evaluations for the

TML decrease by roughly an order of magnitude for every TD3 case when
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compared to the PCQM. The L, norm improves by a factor of 2-4 for all
TD3 cases.

Table 1: Norm comparisons (given in %) to MPACT solution for both PCQM and TML
implementations.

Norm TD3-1 TD3-2 TD3-3 TD34

PCQM 842 1348 10.12  12.38
TML 240 365 283 223

1 b o umeny21d PCQM 028 047 028 0.46
LFW[E"(—MMPAéT >] TML 009 012 013  0.13
PCOM 2.7 370  2.18  3.42
TML 062 091 107  1.06

Pn,Shift —Pn,MPACT
Loo = maxy, [%]

Pn,MPACT

Pn,Shift —Pn,MPACT
L, =L ) ,
1 N 2n Pn,MPACT

Ideally, the use of a larger MC time step would bring down the total
simulation time as the MC solve is much costlier than both the CMFD and
EPKE solves. To show this, a rough timing comparison between the various
implementations is shown in Table (2). All of the Shift calculations were ex-
ecuted on an ORNL compute cluster featuring dual-processor AMD Opteron
6378 CPUs with 16 cores per CPU, for a total of 32 cores per node, and
128 GB RAM per node. All Shift simulations of the C5G7 reactor geometry
were run on eight nodes (256 cores). The MPACT simulations were carried
out for the same transient specifications up until ¢t = 10s. Additionally, the
MPACT benchmark only reported wall time using nine processors. The wall
times reported by MPACT were then multiplied by a factor of nine to give an
estimate for the number of core hours used. While these numbers are approx-
imate and not directly comparable, it can be seen that the Shift PCQM and
TML implementations are roughly one and two orders of magnitude slower,

respectively, than the MPACT implementation.
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Table 2: CPU time comparison (hours) between the TD3 solution methods.

TD3 Case Shift-PCQM (6s) Shift-TML (6s) MPACT (10s)

1 2510.1 395.0 30.6
2 3067.1 395.1 29.7
3 2533.1 398.0 29.7
4 2039.8 351.1 29.7

As stated previously, Shaner showed that the stochastic noise in the MC
frequency transform method was resolved with an increasing number of par-
ticle histories [20]. For the MC TML implementation, small perturbations in
the dynamic reactivity are amplified by the EPKE solver. A batch analysis
was performed to assess whether this is also the case with the MC TML
implementation. Three values for the number of histories to simulate per
fission source iteration cycle: Ny, = 10%, 10, and 10%. The C5G7-TD3-4
transient was modeled based on the magnitude of its change in reactivity.
Other than varying Nype, all Shift inputs used to generate each individual
simulation of the batch analysis were identical to those used to generate
the results presented in Fig. 9. All values of Ny,. were simulated with ten
batches, where each batch began with a unique random seed. The average
over the two batches for each point in time are shown as the solid lines in
Fig. 10. The shaded regions show the standard deviation at each point in
time. It is clearly shown that the noise is resolved with increasing particle
histories. The quality of the solution is fairly consistent while the reactivity
is changing, i.e. t < 2s. The solution is much more sensitive to stochastic
noise for dynamic reactivities near zero. In future implementations, more

computational resources (i.e., larger values of Nyp,.) should be devoted to
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temporal regions where the imposed reactivity should be zero.
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Figure 10: Uncertainties from stochastic noise associated with dynamic reactivity and
relative fission rate for TD3-4.

A refinement of the MC and CMFD time scales was also analyzed to
see how the ratio Atyio/Atcyrp affects the accuracy of the solution. The
L, norm comparison for each of the simulations for various values of Atyc
is shown in Fig. 11 (left), where the reference solution used time steps of
Atyie = 0.1s, Atemrp = 2ms, and Atgpkg = 80 ps. Accuracy gains appear
to level off for values of Atyc/Atcvrp > 10. The right plot in Fig. 11 shows
the percentage of the total simulation time spent computing the MC time
propagations. The percentage of time spent on the MC solves appear to de-
crease linearly with an increasing number of CMFD steps per MC step. Since
the most significant gains in solution accuracy occur for Atyo/Atcemrp < 10,
the MC solver takes upwards of 95% of the total simulation time in the TML
implementation. Therefore, acceleration efforts should ideally focus on re-
ducing the number of MC steps required to solve a transient while retaining

the accuracy of the solution.

39



== Atuc=1 Atuc=0.5 == Atuc=0.25 Atwc=0.1

1.000 A

3
#
1

0.9751
1501 | 0.950 1

1.25 H 0.925 1
|

ime

£ i !
0.900 4

MC Runti

0.875 4

______________

<~ T 0.850 1
————————

DL VAR ——————— e 0.825

A
/
X x

0.800 1

0 10 20 30 40 50 0 10 20 30 40 50
Atwc/Bteurp Atyc/Dtemro

Figure 11: Time step convergence analysis for TD3-4 exercise.

5. Conclusions

In this paper, the TML method was implemented using a modified MC
fission source iteration solution at the transport level. The MC TML im-
plementation showed marked reductions in both stochastic noise and overall
simulation time when compared against the standard MC PCQM technique
for the C5G7-TD3 transient benchmark problem. It was shown that stochas-
tic noise where the dynamic reactivity is near zero is amplified in the tran-
sient power profiles but that this stochastic noise is resolved as the number
of histories simulated approaches infinity. Similar stochastic noise resolution
was observed with Shaner’s frequency transform method, indicating that the
observation is likely generalizable to other transients using the TML.

It was also shown that, for the C5G7-TD3 problem, performance gains
diminish significantly after the number of CMFD per MC steps of around ten,
where > 95% of the total simulation time is spent on the MC calculations.
Zhu'’s initial deterministic implementation of the TML found that the MOC

transport solver accounted for roughly 50% of the overall simulation time and
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the CMFD solver accounted for 31% of the overall simulation time. It should
be noted though that Zhu’s calculations also included thermal hydraulics
solvers that accounted for 17% of the overall simulation time [11]. Though it
was expected that the MC solver would dominate the overall simulation time,
it draws attention to the fact that further acceleration techniques should be
oriented towards limiting the number of MC steps needed to simulate the
transient without losing accuracy. While the MC TML shows speedup when
compared to the PCQM, the method is still roughly an order of magnitude
slower than the MOC TML for the C5G7-TD3 transient.

Areas of future work include investigating models that further stress the
MC TML implementation. In particular, models that stress the limitation
of the implementation’s dependence on group-to-group scattering matrices
through analog tallies. Problems with regions of low statistics for these ma-
trices may lead to ill-conditioned CMFD systems and instability of the algo-
rithm. It may be necessary to implement global variance reduction techniques
to ensure better MC statistics [35, 36, 37].  Additionally, the TML imple-
mentation in Shift only supports multigroup physics. Monte Carlo solvers
using continuous-energy physics will lead to even more computationally ex-
pensive transients. Acceleration schemes are therefore necessary to make the
algorithm more tractable for practical applications. Other areas of future
work include investigating alternative formulations of the CMFD equations

(such as pPCMFD, odCMFD, and IpCMFD (38, 39]) to be used in the TML.
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Appendix A. Nomenclature

Table A.3: Symbols used throughout document.

position energy

direction time

angular flux delayed neutron precursor concentration

> < 8

decay constant delayed neutron precursor group

k?gff multiplication factor at particle speed

initial steady state delayed neutron fraction

XQ@MQ&N

Xp prompt neutron emission spectrum d delayed neutron emission spectrum
Zt macroscopic total cross section Zs macroscopic scatter cross section
Zf macroscopic fission cross section 14 fission neutron multiplicity
gb (Q’J, E, t) scalar flux ESO zeroth Legendre moment
D diffusion coefficient of the scattering cross section
1% dynamic reactivity p reactor power amplitude
ﬁeﬁ effective delayed neutron fraction A effective mean neutron generation time
C adjoint-weighted delayed )\eff effective decay constant
neutron precursor concentration 5 uniform random number
l fission source iteration index @Z)T adjoint angular flux
w particle weight

50



