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Laser-Produced Plasmas

Abstract

This dissertation deals with the interaction of an intense laser with a
plasma (a quasineutral collection of electrons and ions). During this
interaction, the laser drives large-amplitude waves through a class of
processes known as parametric instabilities. Several such instabilities drive
one type of wave, the Langmuir wave, which involves oscillations of the
electrons relative to the nearly-stationary ions. There are a number of
mechanisms which limit the amplitude to which Langmuir waves grow. In
this dissertation, these mechanisms are examined to identify qualitative
features which might be observed in experiments and/or simulations. In
addition, a number of experiments are proposed to specifically look for
particular saturation mechanisms.

In a plasma, a Langmuir wave can decay into an electromagnetic wave
and an ion wave. This parametric instability is proposed as a source for
electromagnetic emission near half of the incident laser frequency observed
from laser-produced plasmas. This interpretation is shown to be consistent

with existing experimental data and it is found that one of the previous
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mechanisms used to explain such emission is not. The scattering version of
the electromagnetic decay instability is shown to provide an enhanced noise
source of electromagnetic waves near the frequency of the incident laser.

In the experiments performed for this dissertation, a probe laser was
scattered from the electrons present in the plasma to measure the spectrum of
Langmuir waves driven in the plasma. This technique, known as Thémson
scattering, was used to identify the mechanisms producing the Langmuir
waves, as well as to identify mechanisms respor'\sible for the saturation of
these Langmuir waves. The Thomson-scattering measurements indicated
that the Langmuir-wave spectrum resulted from stimulated Raman
scattering, which is the decay of the laser into an electromagnetic wave and a
Langmuir wave. In a related experiment, these measurements detected
Langmuir waves which were driven by the Langmuir decay instability, w\hich
is the decay of a Langmuir wave into a second Langmuir wave and an ion
acoustic wave. This measurement represents the first observation of the
three-wave parametric instability known as the Langmuir decay instability in

laser-produced plasmas.
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Chapter 1

Introduction

1.1 Introduction

This dissertation deals with the interaction of an intense laser with a plasma,
which can loosely be called ionized matter. During this interaction, the laser
can drive large amplitude waves in the plasma through a class of processes
known as parametric instabilities. These are discussed in greater detail in
section 1.3. This dissertation examines the mechanisms which limit the
amplitude to which these waves can be driven by the incident laser. This
work is primarily motivated by tf\e saturation of Langmuir waves, which are
also known as electron plasma waves. Consequently, the experimental work
described below used a parametric instability known as stimulated Raman
scattering to generate the Langmuir waves used to study these saturation
mechanisms. Stimulated Raman scattering is the decay of an electromagnetic

wave (the laser) into a scattered electromagnetic wave and an electron plasma

wave or Langmuir wave.
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Raman scattering occurs in a number of plasma applications which
include inertial confinement fusion, particle acceleration, current-drive in
Tokamaks, and X-ray-laser plasmas, to name a few. In some of these
applications, such as particle acceleration and current-drive in Tokamaks,
Raman scattering is beneficial and it is desirable to drive large amplitude
Langmuir waves to increase efficiency. In other applications such as inertial
confinement fusion and x-ray lasers, stimulated Raman scattering is
detrimental and it is important to limit the amplitude that the Langmuir
waves are driven. It is therefore important to understand the saturation
mechanisms which limit the growth of these parametric instabilities as a first
step in the eventual process of controlling the amplitude to which these
processes grow.

As stated above, in inertial confinement fusion and X-ray-laser
plasmas, stimulated Raman scattering is a detrimental process. In inertial
confinement fusion, lasers are used to compress deuterium and tritium
targets to very high densities. Parametric instabilities which drive
electromagnetic waves take energy away from the incident laser, thereby
reducing the efficiency at which the energy is coupled into the target. In
addition, parametric instabilities which drive Langmuir waves can lead to the
generation of distributions of electrons with very high temperatures. These
hot electrons can preheat the fuel in inertially confined plasmas which
increases the energy required to compress the fuel to the necessary densities.
In the case of x-ray laser schemes, stimulated Compton scattering can cause a

heating of the background electron distribution resulting in a loss of

efficiency[1]. Understanding the saturation mechanisms which limit the
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amplitude of the waves driven in these instabilities may lead to more
efficient ways to control the growth of these instabilities.

As mentioned in the first paragraph, there are also several applications
in which Raman scattering is beneficial. The Langmuir wave driven in
Raman scattering can be used for particle acceleration[2-4]. In this case, a
Langmuir wave with a phase velocity close to the speed of light is used to
accelerate electrons to very high energy. The electrons traveling slightly
slower than the wave see a nearly constant potential in the wave frame
which allows them to be efficiently accelerated. Raman scattering can also be
used for current drive in Tokamaks[5-8]. In this case Raman scattering is used
to drive a Langmuir wave with a phase velocity several times the thermal
velocity of electrons in a plasma. In this application near thermal electrons in
the plasma are accelerated by the Langmuir wave in a preferential direction,
generating a net current around the Tokamak. All of these applications are
limited by the amplitude to which the Langmuir wave can be driven and an
understanding of these applications requires detailed knowledge of the
saturation mechanisms responsible for limiting the amplitude of these
waves.

Secondary parametric instabilities can also be beneficial in many
circumstances. In laser-produced plasmas, an instability can saturate when
one of its daughter waves becomes large enough that it can become the pump
wave for a secondary parametric instability[9-13]. Therefore, although the

original parametric instability is detrimental, the secondary parametric

instability is beneficial because it limits the amplitude that the original
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parametric instability can grow. This process is discussed in further detail in
section 2.5 of chapter 2.

| The second section of this chapter reviews some of the basic principles
of plasmas. This section also discusses the normal modes present in the
plasma which make up the waves driven by parametric instabilities. The
third section of chapter 1 introduces parametric instabilities and reviews the
physical mechanism responsible for the growth of parametric instabilities.
This section also gives a brief description of the parametric instabilities
discussed in the rest of the dissertation along with the location where these
instabilities occur. Finally, the fourth section of chapter 1 gives a brief outline

of the subsequent chapters contained in this dissertation.

1.2 Plasma Basics

A plasma can be defined as an ionized gas consisting of electrons and
ions in which the kinetic energy of its constituent particles is much greater
than their potential energy[14,15]. Using the above definition for a plasma, it
has been estimated that more than 99 % of the universe is in the plasma state.
Applications involving plasmas include the generation of fusion energy,
thin-film deposition, manufacturing of microelectronics, particle accelerators,
isotope separation, gas lasers, fluorescent bulbs, and gas treatment to name a
few.

An important property of a plasma is Debye shielding. As a test charge

is placed in a plasma the particles arrange themselves to screen out the

potential formed by the test charge. The potential of a test particle at rest is
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given by @ =%exp(—-{—] [14,15]. The Debye length, Ape=vth/ ®pe, is then the
De

distance over which the potential from the test charge has decreased by one

exponentiation where vy, =(xT, /me)o'5 is the thermal velocity of the

)0.5

electrons and wpe is the plasma frequency defined as @pe = (47tq2noe / me

The definition given for a plasma above can then be understood in terms of
the number of particles located in a sphere of radius equal to the Debye

length. The potential energy, q®, being much less than the kinetic energy is
2

easily expressed as q(I>=q—<< %mvfh. where the inter-particle spacing, r, is
r

approximately equal to the cube root of the electron density, r zng}e/ 3. The

3

above conditions imply that 1<< éﬂ' Vg‘ n,, =A where A is the number of
)
pe

particles within a sphere of radius the Debye length, Ape[14,15]. The definition
of a plasma given above then simply requires that the number of particles
within the shielding cloud must be very large. This definition excludes
strongly-coupled plasmas in which the number of particles within the Debye
sphere is very small such as occurs in the overdense partially ionized region
of solid target laser-plasma experiments and also in the relatively cold
plasmas formed by short-pulse high-intensity lasers. A more inclusive
definition of a plasma might simply be ionized matter.

Another important property of plasmas used throughout this
dissertation is the plasma frequency, wpe, defined above. The plasma
frequency is the resonant frequency which the electrons in the plasma

respond. If the ions in the plasma were displaced slightly from the electrons,

the two slabs representing the electrons and ions, would oscillate like a
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harmonic oscillator. This oscillation frequency, ®, would approximately be at
0.5
2 2 2

the plasma frequency, @°= pe + Opi, where o =(47L'q2noi/ mi) and

0, <@,
p pe

In a homogeneous plasma with no externally imposed electromagnetic
or magnetic fields, there are only three normal modes present;
electromagnetic waves, electrostatic ion waves, and Langmuir waves, also
known as electron plasma waves. These modes satisfy the following
dispersion relations in a field free plasma:

2 2 2k§

@y = Ope +C for electromagnetic waves,  (1.2.1)

2 _ . 2 2.2 .
Wepw = Ppe +3VinKepw for Langmuir waves, and (1.2.2)

g

Wig — Kja -UOf = cgKjg for ion acoustic waves, (1.2.3)

which are the more-common, long-wavelength regime of electrostatic ion
waves. Here wo(ko), O)epw(kepw), oija(kia) are the frequency(wavenumber) of
the electromagnetic wave, the Langmuir wave, and the ion acoustic wave,
respectively, and c is the speed of light, vth is the electron thermal velocity, cs
is the ion sound speed, and uf is the flow velocity of the plasma. Both the
Langmuir waves and the ion acoustic waves are electrostatic waves with their
electric fields parallel to their wavevectors while the electromagnetic waves
are transverse waves with their electric field perpendicular to their
wavevector. The Langmuir waves and the electromagnetic waves are high

frequency waves whose frequency must be greater than the plasma frequency.
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This is simply due to the fact that the electrons in the plasma react on time
scales dictated by the plasma frequency. When a Langmuir wave or
electromagnetic wave has a frequency less than the plasma frequency, the
electrons in the plasma react faster than the wave can push them around
which results in a net damping of the Langmuir or electromagnetic wave.
The point at which the plasma frequency is equal to the frequency of the
electromagnetic wave, therefore defines the classical turning point for a
normally incident electromagnetic wave. The density corresponding to this

turning point is known as the critical density, nc¢r, and is defined as .

-1
Nep =(meco§)(47z:q2) . The ion acoustic wave on the other hand has a

frequency which is much less than the plasma frequency. The ion acoustic
wave obeys the same dispersion relation as an acoustic wave in air, provided
kijaApe << 1. The motion of acoustic waves in air result from the gfadient in
pressure between regions of compression and rarefaction. The motion vof ion
acoustic waves in plasmas result from both the gradient in ion pressure
between the regions of rarefaction and compression and from a build up of
charge in these regions due to the pressure of the electrons present in the

plasma.

1.3 Parametric Instabilities

This dissertation deals primarily with parametric instabilities driven
when a high-intensity laser interacts with a plasma. In this context, the laser

intensity, I, is high when I>1013 W/cm2. A parametric instability occurs when

there exists a wave in the plasma which has sufficient amplitude that it can in
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turn drive other waves in the plasma unstable. In this case, the wave driving
the instability is known as the pump wave while the waves being driven are
referred to as the daughter waves. Parametric instabilities present in laser-
produced plasmas are often driven by the electroragnetic wave associated
with the high-intensity laser incident on the plasma.

One example of a parametric instability driven in laser-produced
plasmas is stimulated Raman scattering. This represents the decay of an
electromagnetic wave into a scattered electromagnetic wave and an electron
plasma wave[16,17]. This instability is analogous to stimulated Raman
scattering driven in nonlinear optical media where the incident
electromagnetic wave scatters from quantized electronic, vibrational,
molecular, or optical lattice phonon modes[18]. The mechanism of instability
in the case of stimulated Raman scattering in laser-produced plasmas is
illustrated in figure 1.3.1[19]. The oscillation velocity of the electrons, ugs, in
the plasma associated with the incident electromagnetic wave couples with a
density fluctuation, Onepw, present in the plasma. This coupling produces a
transverse scattered current, js=q5nepwuos, which acts as a source term to
drive a scattered electromagnetic wave, of electric field Es. The scattered
electromagnetic wave beats with the incident electromagnetic wave resulting
in a "ponderomotive force", pushing plasma out of regions of high field
pressure, which in turn enhances the original density fluctuation. This
process forms a closed loop leading to instability.

The term, "ponderomotive force" deserves a bit more explanation: The

plasma tries to maintain a pressure balance between the particle pressure and

the wave pressure. Therefore, regions of high wave-pressure push the plasma
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particles out so as to maintain a pressure balance. The corresponding "force",
which is proportional to the gradient in the time-averaged pressure associated
with high-frequency waves, is known as the ponderomotive force. This force
may be produced by either electromagnetic or Langmuir waves, and may
involve the pressure of a given wave or the low-frequency pressure
associated with the beating of two waves. This ponderomotive force is

responsible for pushing the plasma from regions of high field.

8nepw

vz(Eo'Es.) Snepwuos

Es

Figure 1.3.1 Physical description of parametric instabilities illustrating how

the wave interactions lead to instability.

Parametric instabilities obey the frequency and wavenumber matching

conditions,
o, = 0, + O, and (1.3.1)
k, =k, + k. (13.2)
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where o,k ;®,.k,;and @, .k are the frequency and wavenumber of the

incident electromagnetic wave, the scattered electromagnetic wave, and the
electron plasma wéve respectively. These are the conditions required for a
resonant interaction which, in the case of stimulated Raman scattering,
allows the ponderomotive force associated with the beating of the two
electromagnetic waves to remain in phase with the Langmuir wave density
fluctuation such that the waves can interact over a long distance.

The parametric instabilities in which the ‘pump wave is represented by
the incident laser are shown in figure 1.3.2. The incident laser travels up to
the reflection point at the critical density, ncy. The parametric instabilities
detailed in figure 1.3.2 take place at and below the critical surface in the
plasma corona.

The oscillating two stream instability, which involves the decay of the
incident electromagnetic wave into an electron plasma wave and a zero-
frequency ion wave, occurs primarily near the critical surface. From the
critical surface to approximately eighty percent of the critical surface, the
incident laser can drive the ion acoustic decay instability. This instability
involves the decay of the incident laser into an electron plasma wave and an
jon acoustic wave. The low density cutoff for the ion acoustic decay instability
occurs when the damping on the Langmuir wave becomes large enough that
the instability goes below threshold for instability as discussed in section 2.2.
From the quarter critical surface to approximately tweﬁty percent of the

critical surface, the incident laser drives two plasmon decay which is the decay

of the electromagnetic wave into two Langmuir waves. Again the low density
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cutoff of this instability occurs when the damping on the two Langmuir
~ waves becomes greater than the growth rate for the instability. Below the
quarter critical surface, the incident laser drives stimulated Raman scattering
which, as mentioned above, is the decay of the incident laser into an
electromagnetic wave and a Langmuir wave(at the lowest densities

stimulated Raman scattering evolves into stimulated Compton

l———>P1asma Corona

oscillating
two stream
instability

plasmon
decay

stimulated
Raman

scattering

ion acoustic
decay

instability
stimulated

Brillouin
scattering,
filamentation

1.00 |

0.80 |-

0.25
0.20~

Normalized density (ne/ncr)

Position

Figure 1.3.2 Graph showing the coronal region of a laser produced plasma.
The vertical axis shows the density normalized to the critical density, the
reflection point of normally incident light, while the horizontal axis shows

the spatial region in front of the target. The parametric instabilities are then

labeled showing the density region where each may occur.
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scattering)[20]. All throughout the plasma corona, the laser can drive
stimulated Brillouin scattering and filamentation. Stimulated Brillouin
scattering is the decay of the incident laser into an ion wave and a scattered
electromagnetic wave and filamentation is the forward scattering version of
stimulated Brillouin scattering.

As discussed above, stimulated Raman scattering is a parametric
instability in which an incident electromagnetic wave drives a scattered
electromagnetic wave and a Langmuir wave, also known as an electron
plasma wave. The actual derivation of the equations describing stimulated
Raman scattering is located in Appendix 2.1. In this Appendix, the equations
describing stimulated Raman scattering are Fourier transformed, leading to
the dispersion relation for stimulated Raman scattering. .

Neglecting higher order harmonics, the dispersion relation describing

stimulated Raman scattering is given by

o(@+ive) ,_ 31222, = k&2, 1 N (1.3.3)
2 be =770 T i
1

D(w+wo,f<+l'io) i

where D(w,E) = oo +ivg) / colz,e -1- czkz/ corz,e . Figure 1.3.3 a and b are contour
plots in which the dashed lines in the contour plot show the locations where

the real part of the above dispersion relation is equal to zero and the solid

lines show the locations where the imaginary part of the above dispersion

relation is equal to zero. In figure 1.3.3 a, the damping is assumed to be zero
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and the remaining parameters are chosen such that the downscattered wave
is a resonant mode, Re[D(w - coo,l-é —EO)] =0. The intersection points between
the real zero contours, dashed lines, and the imaginary zero contours, solid
lines, represent some of the roots of the above sixth order dispersion relation.
Figure 1.3.3 a shows that there exists one root which is unstable characterized

by a positive imaginary component of the frequency.

0 -02 a) 'i' “: 2 . O b) ;‘
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Figure 1.3.3 Contour plots of the dispersion relation for stimulated Raman
scattering. Both the vertical and horizontal axes represent frequency

normalized to the plasma frequency.

Although the dispersion relation shown in equation 1.3.1 contains
upscattered terms in addition to downscattered terms, parametric instabilities
are only unstable to the downscattering processes. This can be seen by looking

at the zero contours shown in figure 1.3.3 b. In figure 1.3.3 b the parameters of

equation 1 are chosen so that the upscattered component is a resonant mode,
Re[D(aH- wo,lz+120)]z0. The dispersion relation in this case is stable as




CHAPTER 1. INTRODUCTION ' 14

characterized by the lack of a root containing a positive imaginary

component.

1.4 Layout of the dissertation

The second chapter reviews a number of saturation mechanisms and
attempts to give simple models to explain how these processes lead to
saturation. After the introduction of some of these mechanisms, a section
describing relevant experimental evidence for these saturation processes is
given. This chapter also tries to address when each of these saturation
mechanisms might become important. This chapter also proposes a number
of experiments to look for the effects of particular parametric instabilities.

The third chapter considers the role which the electromagnetic decay
instability(EDI) plays in laser-produced plasmas. This instability represents the
decay of an electron plasma wave into an electromagnetic wave and an ion
acoustic wave. The electromagnetic decay instability provides another
channel, in addition to Langmuir decay through which parametric
instabilities involving Langmuir waves can saturate. As a specific example,
the conditions for which EDI is an absolute instability are found for the case
where this instability is pumped by the Langmuir wave associated with
stimulated Raman scattering. When EDI is pumped by the Langmuir waves
associated with two plasmon decay, EDI presents an explanation for wo/2
emission from laser-produced plasmas which is consistent with experimental

observations. In addition, the scattering of Langmuir waves off of ion acoustic

waves near the critical surface is shown to provide an enhanced noise source
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from which stimulated Brillouin scattéring can grow. In addition, this
enhanced noise source can then appear as an apparent Brillouin signal.

The theory of Thomson scattering is reviewed in Chapter 4. Thomson
scattering was the primary diagnostic used in the experiments performed for
this dissertation which are described in chapters 5 and 6. Chapter 4 discusses
the plasma parameters which can, in principle, be obtained through the use of
this diagnostic. Section 4.2 discusses the homogeneous theory of Thomson
scattering and presents calculated spectra which are used to infer various
properties in the plasma. Section 4.3 looks at the inhomogeneous theory of
Thomson scattering and proposes a diagnostic to measure .the local flow
gradient in a plasma.

The first experiment is then detailed in the fifth chapter. In this
experiment Thomson scattering was used to look directly at the Langmuir
wave spectrum associated with stimulated Raman scattering. These
measurements provided a direct comparison between stimulated Raman
scattering and a model known as "enhanced Thomson scattering"[21] as
explanations for the electromagnetic emission between wg and wy/2 observed
in laser-produced plasmas. The Thomson scattering measurements showed
that the Langmuir wave spectrum resulted from stimulated Raman scattering
and not from enhanced Thomson scattering.

The sixth chapter describes an experiment which was designéd to look
for the Langmuir decay instability. This experiment also used Thomson
scattering to measure the Langmuir wave spectrum driven by stimulated

Raman scattering. This experiment detected Langmuir waves with

components both parallel and antiparallel to the incident laser’s wavevector.
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Langmuir waves traveling parallel to the incident laser wavevector were
attributed to stimulated Raman scattering, however, the Langmuir waves
moving ahﬁparallel to the incident laser, which cannot be explained by
stimulated Raman scattering, were attributed to the Langmuir decay
instability. |

Finally chapter 7 presents a summary the work presented in chapters 2
through 6. Chapter 7 attempts to organize the material presented in the

previous chapters. The Appendices contain the calculations discussed in the

relevant chapters.
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Chapter 2

Saturation Mechanisms

2.1 Introduction

In this chapter, a number of saturation mechanisms are introduced and when
appropriate simple models are given to explain how these mechanisms lead
to saturation. In some cases a section describing relevant experimental
evidence for these saturation processes is given. The text of this chapter will
be concerned with using simple models to describe these saturation
mechanisms with more accurate calculations being placed in the Appendices.
This dissertation, and consequently this chapter, is primarily concerned with

those saturation mechanisms which act specifically on Langmuir waves.
2.2 Saturation from damping effects

This section reviews the effects of damping on parametric instabilities.

As discussed in chapter 1, stimulated Raman scattering is a parametric

instability in which an incident electromagnetic wave drives a scattered
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electromagnetic wave and a Langmuir wave, also known as an electron
plasma wave. The actual derivation of the equations describing stimulated
Raman scattering is located in Appendix 2.1. It is necessary to look at the
dispersion relation for the waves participating in stimulated Raman
scattering to see the effect of damping on the instability. The dispersion
relation for stimulated Raman scattering can be found by Fourier
transforming the equations for this parametric process which are derived in
Appendix 2.1, equations 2.1.6 and 2.1.10.

The dispersion relation for stimulated Raman scattering is given by

i 242 2.2.
&)(CO +212Ve) _1_31(2/1208 _ k V20s 1 . (2.2.1)
1

D(w+wo,E+Eo) ’

where D(w,l_i)={w(w+i2vs)—w§e —czkz}a)}',%. Figure 2.2.1a is a contour plot

showing the zero contours of the real and imaginary parts of the dispersion
relation. In this case the damping is assumed to be zero, and the remaining
parameters are chosen such that the downscattered wave is a resonant mode,
Re[D(w—wo,E—lzo)] =0. The intersection points between the real zero
contours(dashed lines) and the imaginary zero contours(solid lines) represent
some of the roots of the above sixth order dispersion relation. The plot shows
that there exists one root which is unstable characterized by a positive

imaginary component of the frequency. Figure 2.2.1b shows the identical case

as figure 2.2.1a except that the product of the damping on the two daughter
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waves is now approximately equal to the square of the growth rate, yo2=vsVve.

In this case the parametric instability is stable, characterized by a negative

imaginary component of the frequency.
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Figure 2.2.1 Homogeneous damping stabilization of convective parametric

instabilities.

There have been several examples of damping stabilization of
stimulated Raman scattering in laser-produced plasmas[22-24]. In these cases
the combination of high Z and high density combine to increase the
collisional damping on both daughter waves. In addition, several of the
saturation processes discussed below can lead to saturation of parametric
instabilities due to the nonlinear damping caused by the particular saturation

mechanism. These processes are discussed for example in section 2.5, 2.8, and
2.10 below.

2.3 Saturation due to plasma Inhomogeneities
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This section deals with saturation of parametric instabilities due to
plasma inhomogeneities. Parametric instabilities can be convective or
absolute in nature. Convective instabilities result in a finite gain at any spatial
location in the plasma. Absolute instabilities on the other hand continue to
grow at a given spatial location until the daughter wave amplitudes become
large enough to saturate by some mechanism other than the initial density
inhomogeneity itself, although growth of the instability might cause changes
to the background density leading to saturation. A graphical representation of
the above definitions is shown in figure 2.3.1. In this example the daughter
waves have opposing but equal group velocities. Figure 2.3.1 was generated

using the numerical code shown in Appendix 2.4. A delta function noise

source was used in this example as assumed by Nicholson and

Rosenbluth[7,25]. There are several conditions which must be satisfied for
parametric instabilities to be driven absolute. The group velocity of the
daughter waves, along the direction of plasma inhomogeneity, must be
opposed. If the group velocity, along the plasma inhomogeneity , of the two
daughter waves is in the same direction, then the instability will be
- convective since eventually both waves will pass any given spatial location
producing only a finite gain[26]. Likewise, Rosenbluth showed that a linear
phase mismatch between the three interacting waves produced a convective
instability, except in the case of two plasmon decay, even when the group
velocity of the two daughter waves travel in the opposite direction, this is the
case in figure 2.3.1a[27]. Exceptions to this occur when the interaction beam is
localized over a short distance or when one of the daughter waves travels

perpendicular to the plasma inhomogeneity, in which case absolute
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instability is possible[28]. Plasma inhomogeneities include density, plasma
flow, and temperature gradients. Density gradients effect electron plasma
waves while plasma flow and temperature gradients primarily effect ion
acoustic waves. In laser plasma interactions, plasma flow typically results in a

linear phase mismatch between the waves participating in parametric

instabilities.
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Figure 2.3.1 Convective vs. absolute parametric instabilities in laser-produced
plasmas. The convective instability(a) arises from a linear phase mismatch
between the interacting waves. In this example the two waves have opposing
but equal velocity causing a symmetrical spreading about the perfect phase
matching point. The absolute instability(b) arises from a parabolic phase
mismatch between the interacting waves. In this case, the two daughter
waves again have opposing but equal group velocities. In b, however, the
quadratic phase mismatch cannot saturate the daughter wave amplitudes and

the instability continues to grow.

The derivation of the equations describing stimulated Raman

scattering are shown in Appendix 2.1 and follow closely from the derivation
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shown in Kruer 1988[16]. These equations represent the growth of the
daughter Langmuir wave and electromagnetic wave participating in
stimulated Raman scattering. Rosenbluth showed in 1972 that plasma
inhomogeneities can cause these instabilities to have finite gain[27]. The
formal derivation of this gain for linear and quadratic phase mismatches is
shown in Appendix 2.2.

The parameter dependence obtained by Rosenbluth can be obtained by
a qualitative analysis at the homogeneous equations describing the excitation
of parametric instabilities in plasmas along with the dispersion relations for -
the waves in inhomogeneous plasmas. The steady-state homogeneous

coupled equations for stimulated Raman scattering without damping,

av_, )
gepw d;" =7,¥, and (23.1)
av
\785 ?.X—. = YZ‘Pepw ’ (232)

are easily solved upon inspection to yield the wave's homogeneous spatial

* ~0.5
growth rate, lPsozexp[}'ox(Vgep‘,\,Vgs) ], where 7, =+7271 is the

homogeneous growth rate. The saturation level for convective instabilities
can be obtained by treating the instability like a driven harmonic oscillator. A
harmonic oscillator is only driven efficiently for frequencies which fall
within a narrow resonance width. The wavenumber resonance width for

parametric instabilities can be found by Fourier transforming the

homogeneous equations, 2.3.1 and 2.3.2, and looking for the full-width at
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half-maximum(FWHM) in wavenumber space. This is detailed in Appendix
2.3 including damping on both daughter waves. Using this prescription, the
wavenumber resonance width, neglecting damping, for parametric
instabilities is Ak e ¥, (Vgepngs)—O's. Therefore, the instability is only driven
efficiently as long as the wavenumber mismatch between the waves remains
within this resonance width.

The length over which the instability can grow is determined by
plasma inhomogeneities which dictate how fast the waves become detuned.

The wavenumber mismatch,

Ak(x) = [k (x)~ ks(x)~ ke (x)] = (233)
AK(x) + (x = %o )il +0.5(x=xo) K", ,

can be Taylor expanded about the perfect phase matching point, xp, to show
how the phase changes with distance[27]. The interaction length, x-xp, is
found by equating the wavenumber resonance width to the Taylor expanded
wavenumber mismatch, 7%, (Vgepngs)_O'S oc (X —xo)x’]xo +0.5(x —xo)2 x‘”lxo.

The interaction length, X-Xo, is then given as

0.5
Xint =X —Xg =(-—K’+\[K'2 +Byox"(Vgepngs) Jx‘"'l. The overall

convective gain for stimulated Raman forward scatter along a parabolic

profile is found by inserting the above interaction length into the

homogeneous spatial growth rate found above producing
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B{Yo("'K' + \/ x? +B, 'YoK”/ \/ Vgepw Vgs )

 Veeow Ve X7

Y oexp

’

where B1 and B2 are constants chosen to match the Rosenbluth results shown
in Appendix 2.2. When the perfect phase matching point is far from the top of
the parabola, x'>>x" and the energy gain reduces to

* -1
‘Psaexp[o.Sﬂlﬁzyg(x’Vgepngs) ] which has the correct parameter

dependence for a convective instability containing a linear phase mismatch

with B1Bo=4=n giving the correct energy gain[27]. When the perfect phase

mismatch point is at x=0, x'=0 and the energy gain reduces to

4 ‘P;anP[ﬁﬁg > 7’3{ > (Vgepwvgs )

-0.75
K'”—O'S:l which has the correct parameter

dependence for a convective instability containing a quadratic mismatch with
B,BY® =6.992 yielding the correct energy gain[29]. Taking these two limits sets
the value of B1 to 3.89 and B2 to 3.23. This prescription then allows for the
calculation of the gain all along the parabolic profile smoothly going between
the top of the parabola, where the phase mismatch is quadratic, and the sides,
where the phase mismatch is linear. The wavenumber resonance width
including damping can also be used to look at the effects of damping on the
gain of convective instabilities which is shown in Appendix 2.3.

Equations 2.1 and 2.2 in Appendix 2.2 were solved numerically to
observe the temporal evolution of the waves. The normalization of these
equations along with the FORTRAN program written to solve these coupled
partial differential equations is shown in Appendix 2.4. Figure 2.3.2 shows the

results from four of the simulations performed with this program. In figure
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2.3.2, the initial amplitude and phase of the electron plasma waves were
taken to be constant over a distance larger than the interaction length of the
instability. The initial amplitude of the slowest wave(solid black line) in all
four cases was chosen to be equal to 1.0. In figure 2.3.2 a, the parameter

-1 . - -1
yg(lc'V gepngs) was set to 1.5 and the ratio of velocities, Vgepy, Vgs, Was set

' -1
toV Véls =1.0. In figure 2.3.2 b, the parameter yg(x"V gepngS) was set to

&gepw
1.0 and the ratio of velocities, VgepwV'gls, was set to VgepwV'gls =1.0. In figure
2.3.2 ¢, the parameter yg(K’V gepngs)—l was set to 1.0 and the ratio of
velocities, VgepwV:gls, was set to VgepwVéls =0.5. In figure 2.3.2 d, the parameter
yg(K'V gepw Vgs )_1 was set to 1.0 and the ratio of velocities, VgepWV;gls, was set

t0 Vgepw Vs =0.25.

gepw
The amplitude of the slow wave is simply given by noise level

-1
multiplied by the gain factor or ¥ epw (sat)= ¥ epw (O)exp(nyg(x'v gepngs) )

The amplitude of the fast wave is determined by first finding the scattering
amplitude produced by the interaction beam scattering from a fixed
amplitude slow wave above assuming that the slow wave does not change
amplitude. The next step is to multiply this value by the convective gain
which in the limit of small gain should reduce to the scattering amplitude
found in the first step. The scattering amplitude can be found in a similar
manner as the instability gain already covered. In the case of the scattering
process, the resonance width is changed. The resonance width for the

scattering problem is found by examining the equation

v d¥,

8 dx VO‘Pepw(O)H( . ], (2.3.5)

2Xint
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Figure 2.3.2 Numerical solution of the Rosenbluth equations for a linear

phase mismatch between the interacting waves. This figure represents four

graphs of the numerical solution to the equations 2.2.1 and 2.2.2 shown in

Appendix 2.2. In each graph, the vertical axis represents the amplitude that

the waves are driven and the horizontal axis represents position. The solid

black line in all cases represents a slow wave traveling to the left, while the

solid gray line represents a fast wave traveling to the right.

where H(O. 5xx-—mlt) is unity between - xjnt and xint and zero elsewhere. Xint

represents the length over which the process is driven before saturation. The

. . s * -1
homogeneous solution to equation 2.3.5 is simply ¥¢ = ‘Pepw(O)yongs. The

resonance width is found by Fourier transforming equation 2.3.5 and looking
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for the FWHM in the same manner as described above. The Fourier

transform of equation 2.3.5 is

1275 g O sin{loy 236)

¥ (k)= Vs (kx t)2

It is apparent from equation 2.3.6 that the FWHM is proportional to the
inverse of the interaction length or Ak e< x}rllt. The interaction length is found
by equating the resonance width, Ak o< x{,llt, with the change in wavenumber,

Ak =«x'x.

ints found above. This yields an interaction length proportional to

X.

int < kY2, The scattering amplitude is found by inserting the interaction

length into the homogeneous solution above, or

* —0.5 -1
Y, = VZn‘Pepw(O)yox \~Y (2.3.7)

where (27)05 is the correct numerical coefficient. The amplitude of the fast

* -1
wave, as determined above, is given by ¥, = n.\/exp[Znyg(K’V gepwvgs) ]—1

where n is chosen such that when the term in the exponent is small the
amplitude reduces to equation 2.3.7 above. The amplitude of the fast wave is

then given by

gepw - g8

* -1
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Equation 2.3.8 agrees very well with the numerical results shown in figure
2.3.2 above.

There have been many experiments to verify the convective growth of
parametric instabilities[30,31]. One of these experiments[30] involved looking
at the growth of forward Raman scatter at low enough densities such that
backward Raman scattering could not occur, thereby preventing coupling
between these instabilities which could lead to absolute instability[32,33]. The
results of this experiment are shown in figure 2.3.3 below. This figure shows

the gain has the exponential dependence on the pump intensity expected
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Figure 2.3.3 Measured amplification of the scattered electromagnetic wave

associated with stimulated Raman forward scattering as a function of pump

intensity. This graph has been reprinted from Batha et al.[34].




CHAPTER 2. SATURATION MECHANISMS ' 29

from convective saturation only for intensities less than approximately 7x1014
W/cm?2. Above pump intensities of 7x1014 W/cm2, the Raman process is
being saturated by some other mechanism.

The overall convective gain experienced by the daughter waves
participating in stimulated Raman backscattering would predict an increase in
gain with a decrease in the parameter kepwApe which is in contrast to
experimental observations such as the one shown in figure 2.10.3. The only
way to salvage the convective saturation is to assume that the noise level
from which these instabilities grow decreases sufficiently with keprDe to
explain the experimental spectrum which was not found to be the case[35].
This suggests that stimulated Raman backscattering is not being saturated due

to the detuning as the waves travel along the plasma inhomogeneity.

2.4 Pump depletion

Pump depletion can occur when the daughter waves associated with a
parametric instability grow to a sufficient amplitﬁde that a significant fraction
of the energy contained in the pump wave is transferred to the daughter
waves. In this way, the amplitude of the daughter waves can saturate because
of the corresponding reduction in the growth rate which is proportional to
the pump intensity of the interaction beam. To account for pump depletion,
the equation describing the pump beam must be included along with the

equations describing each of the daughter waves. The pump beam equation

then contains a term which provides a sizable damping to the pump beam
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when the daughter waves become large enough to remove a significant
fraction of the pump beam's energy.

In many small scale experiments, the level of stimulated Raman
scattering driven in the plasma is quite small, typically representing less than
10-3 to 105 of the incident lasers energy, however, the energy contained in
stimulated Brillouin scattering can be on the order of 10-1. The effect of pump
depletion in an inhomogeneous plasma has been looked at previously[36].
The following calculation will look at the effectiveness of stimulated
Brillouin scattering in depleting the pump in a homogeneous plasma. The
equations describing stimulated Brillouin scattering can be reduced to first
order partial differential equations by making the slowly varying envelope
approximation as shown in appendix 2.2. In addition by looking for a steady-
state solution, the three equations describing stimulated Brillouin scattering
are then reduced to three ordinary differential equations plus their complex
conjugates. These equations can be combined to yield the Manley-Rowe

relations

2 2 2 2
dl‘I’s(x)| =-v. % d|‘Po(x)| =y % M; @pe dI\Pi(X)I (24.1)
&8 dx 8w, dx 8 wg Zmg k2c?  dx

\Y

The Manley-Rowe relations can then be integrated to provide the
relationship between the pump wave, ¥,(x), and the ion wave, ¥j(x), in
terms of the scattered wave, ¥4(x). The pump wave can expressed as

.V
W (xf = 92 - =&

|‘Ps(x)|2, and the ion wave can be expressed as
o Vgo
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aJngsZmekzc2

0;VgiM; 5,

|‘Ps(x)|2. The initial six ordinary differential

() =

equations can be combined with the above two relations to form a second

order differential equation representing the growth of the scattered light wave

A (x)f ( 6}’2ws )[l‘l’s( )I] L )I( 472 ] (24.2)

2

Provided |‘I’S(x)|2 << ¢2, equation 2.4.2 shows the correct gain for the scattered

-0.5
light of I‘I’S(x)l2 o exp[Z yox(Vgngs) ] Saturation occurs when the scattered

light wave has reached the value I‘I’S(x)]2=(2ongo /Bwngs)fpg. For

backscattered stimulated Brillouin scattering, pump depletion saturates the
parametric process when the scattered light wave has reached 67 percent of
the incident wave.

As stated above, many small-scale experiments measure reflectivities
of stimulated Brillouin scattering on the order of 10 percent. These absolute
measurements are spatially and temporally integrated over the entire plasma.
Therefore, the spatial and temporal region over which stimulated Brillouin
scattering is being driven could be saturated by pump depletion and would
therefore affect the other parametric instabilities as well. Also recent short-
pulse Raman experiments have measured tens of percents of Raman
reflectivities which might be in the range where pump depletion is
operating[37]. In many short-pulse high-intensity experiments the laser is less

than a picosecond in duration and consequently the daughter waves can grow

to saturation levels faster than many of the saturation mechanisms
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involving ion waves described below can occur. In these cases pump
depletion and particle trapping, discussed below in section 2.10, can become

important saturation mechanisms.

2.5 Secondary decay processes

The experiments performed for this dissertation primarily cover
saturation of parametric instabilities due to secondary decay processes.
Secondary decay processes occur when the decay waves associated with a
parametric instability become large enough that they can in turn become the
pump wave for a secondary decay process. As the daughter waves driven by
the secondary instability grow, the primary instability may saturate if enough
energy is removed to pump the secondary instability. The secondary
instability, therefore, introduces an effective "nonlinear" damping into the
primary instability[9]. In addition, parametric instabilities may saturate due to
the frequency shift resulting from the coupling to secondary instabilities and
also due to the self consistent detuning caused by changes to the background
density[17,38].

The most widely studied of the secondary decay processes is the
Langmuir decay instability[9,12,13,39]. The Langmuir decay instability
involves the decay of a "pump” Langmuir wave into a second Langmuir
wave and an ion acoustic wave. The experiments performed for this
dissertation have implications primarily for this saturation mechanism. In

the case of stimulated Raman scattering, the incident electromagnetic wave

drives an electromagnetic wave and a Langmuir wave. When the Langmuir
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wave becomes large enough, it can overcome the damping threshold and
drive a second Langmuir wave and an ion acoustic wave, the Langmuir decay
instability. The experimental evidence for this saturation mechanism is
shown primarily in Chapter 6, but also in chapter 5 and in Villeneuve et
al. [40].

Although the Langmuir decay instability has received the most
attention, there are a number of other possible decays. The Langmuir wave
associated with stimulated Raman scattering can also decay into an
electromagnetic wave and an ion acoustic wave, the electromagnetic decay
instability,[41-45] which is discussed in detail in chapter 3. The threshold
conditions for the Langmuir decay instability and the electromagnetic decay
instability can be expressed as conditions on the amplitude, 6n/n, of the

pump Langmuir wave

(2.5.1)

in_l 4kepw/’LDe Via Vepw and
n

LDI (éepw ’éepwz) Djp Bepw

an| _Skepwhoe [%y Vs (25.2)
n [gpy (éepw‘és) (O PRON

respectively[39,46]. In equation 2.5.1 and 2.5.2 above, kepw is the wavenumber
of the pump Langmuir wave, ®ja(Via) coepw(vepw), and wg(vs) are the

frequencies(damping) of the daughter ion wave, Langmuir wave, and

electromagnetic wave, respectively, and &gpy, and €epw2, are unit vectors in

the direction of propagation for the pump Langmuir wave, éepw, and the

daughter Langmuir, éepwzr wave while &; is the unit vector in the direction
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of the vector potential of the scattered electromagnetic wave. Figure 2.5.1

shows the threshold amplitude which the Raman generated Langmuir wave

must reach before the threshold for convective instability is reached. This

figure assumes a CH plasma with an electron temperature of 1 keV and an
incident laser wavelength of 351 nm. The solid line represents the threshold
corresponding to the Langmuir decay instability while the dashed line
represents the threshold corresponding to the electromagnetic decay
instability. This figure shows that the Langmuir decay instability has a slightly
lower Langmuir-wave-amplitude threshold for kApe less than approximately
0.2, however, the electromagnetic decay instability has a substantially lower
Langmuir-wave-amplitude threshold for kApe>0.2. The daughter
electromagnetic wave associated with the electromagnetic decay instability
does not experience Landau damping, so when the Landau damping on the
daughter Langmuir wave associated with the Langmuir decay instability
becomes larger than the collisional damping, the threshold for the Langmuir
decay instability rises exponentially due to the Landau damping on the
daughter Langmuir wave. This results in a higher threshold for the
Langmuir decay instability than the electromagnetic decay instability for
kApe>0.2. The threshold for the Langmuir decay instability qualitatively
agrees with representative spectrum of stimulated Raman backscattering
which can be seen in figure 2.10.3 below. The threshold for LDI is highest for
kApe>0.2 when Landau damping on the daughter Langmuir wave is large,
however, it falls quickly as kApe decreases due to the exponential dependence

on kApe for the threshold condition which is similar to the spectrum shown
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in figure 2.10.3. This qualitative behavior was the basis for an explanation of

the gap region in the Raman spectrum discussed in section 2.8b[39].
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Figure 2.5.1 Figure showing the amplitude of the Langmuir wave at the
threshold for convective instability. The solid line fepresents the threshold
for the Langmuir decay instability while the dashed line represents the
threshold for instability of the electromagnetic decay instability. The bottom
horizontal axis shows the percent of critical density that the Raman process is
occurring, while the top horizontal axis shows the corresponding value of

kApe for the direct backscattered Raman generated Langmuir wave.

The driven electromagnetic wave in stimulated Raman scattering can

also undergo secondary decay. The range of densities over which Raman

scattering is driven produces scattered electromagnetic waves which range
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from the scattered electromagnetic waves critical surface down to well below
the quarter-critical-surface for the scattered electromagnetic wave. The
secondary decay processes which may be driven by the scattered
electromagnetic wave associated with stimulated Raman scattering therefore
includes the oscillating two-stream instability at the quarter critical surface,
the ion acoustic decay instability from ne/nc¢r=0.25 to 0.2, two plasmon decay
from ne/ncr=0.09 to 0.1, stimulated Brillouin scattering below ne/nc¢r=0.25,
and stimulated Raman scattering below ne/ncr=0.1 where these densities are
in relation to the electromagnetic wave driving the stimulated Raman
scattering process.

The easiest of these secondary processes, resulting from the scattered
electromagnetic wave, to observe would be the decay of the scattered
electromagnetic wave associated with stimulated Raman scattering into two
Langmuir waves, two plasmon.decay. This should occur at approximately
ne/ncr=0.09 to 0.1 with respect to the frequency of the interaction beam
driving the stimulated scattering process. The secondary Langmuir waves
would then be observed as the interaction beam Thomson scatters from the
Langmuir waves driven by this process producing a scattered electromagnetic
wave which should be easily diagnosed. The scattered electromagnetic
spectrum should have the characteristic double peaked emission pattern

associated with 3/2 wo emission. In this case, however, the double peak

pattern would be centered about 1.32 wo, This experiment was proposed as a

UC-LLNL collaborative experiment on the NOVA laser. This process could be
important for holhraum experiments which have very long scalelengths and

are typically filled with a gas mixture at about ten percent of the critical
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density for the interaction beam, the required density for this process to occur.
Large levels of stimulated Raman scattering, >10%, have been observed in
such experiments indicating that this particular secondary instability should
be above the required threshold. If this experiment were done in a gas bag or
holhraum configuration, the damping on the Langmuir waves could be

easily varied by changing the ionic concentration of the gas present.

2.6 Modulational instability and collapse of the
Langmuir waves

The modulational instability is another mechanism which could be
considered a secondary decay mechanism mentioned above. In’ the
modulational instability, a Langmuir wave decays into a purely growing
density fluctuation plus a number of secondary Langmuir waves[47-49]. The
equations, which represent a sufficient description of the modulational
instability, are known as the Zakharov equations and are derived in
Appendix 2.5 for the case of ponderomotive detuning. The low frequency

Zakharov equation[50] is given by

2 202 |nag _Zmg o] P 2.6.1
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The high frequency Zakharov equation can be written as
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where the fast oscillation at the plasma frequency, @pe, has been removed

from the equation. These two equations can be Fourier transformed yielding
the dispersion relation for the modulational instability. Including both a

stokes and anti-stokes daughter Langmuir wave, the dispersion relation for

the modulational instability can be written as

i_iﬁ 22, | = Zm, k*v3scos°0 (2.6.3)
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This dispersion relation also describes the Langmuir decay instability, in

which case the antistokes component is non-resonant and can be neglected. In
the dipole limit of the pump Langmuir wave, ko=0, a range of ion
wavenumbers are unstable, causing a broadening in the Langmuir wave
spectrum. For the experiments described in chapters 5 and 6 which saw a
broadening in the Langmuir wave spectrum, the dipole approximation for
the pump Langmuir wave is, however, not a good assumption since in these
experiments koApe=0.15 to 0.3. In this case, the finite pump wavenumber has
a stabilizing effect on the modulational instability reducing the range of

unstable wavenumbers as shown below in figure 2.6.1. The modulational

instability might also play an important role in increasing the level which
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stimulated Raman scattering can grow. In section 2.3, it was the effects of
inhomogeneity on the overall gain was reviewed. A simple model was
constructed which showed that the gain was limited by the finite
wavenumber resonance width driven by the instability. This finite resonance
width limited the length over which stimulated Raman scattering could grow
due to the detuning effects of the plasma inhomogeneity. The modulational
instability, however, increases the resonance width which could lead to a

larger interaction distance and a correspondingly larger gain.

0.07 ]'Ill'lllllllllllllllll[l1[lll

e P v o s o i T e

0 005 010 015 020 025 0.30
KpumpA\De

Figure 2.6.1 Range of unstable ion wavenumbers, kja, driven by the

modulational instability. The horizontal axis represents the wavenumber of

the pump Langmuir wave while the vertical axis represents the wavenumber

of the ion wave. The shaded region shows the unstable ion wavenumbers.

This graph was made assuming a pump Langmuir amplitude of én/n=0.01.
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There have been several experiments which have looked at the effect
of modulational instability in laser-produced plasmas[3,51]. The two
experiments referenced above used Thomson scattering to observe the
Langmuir wave and ion wave spectrum driven by two copropagating
electromagnetic waves whose frequency difference was approximately equal
to the plasma frequency. These experiments reported that the modulational
instability was the mechanism responsible for the saturation of the amplitude
of the Langmuir wave driven by these two copropagating electromagnetic
waves.

When the amplitude of the Langmuir waves become large enough, the
Langmuir waves can become trapped in the density hole, caviton, dug by the
ponderomotive force associated with the Langmuir wave itself. The
threshold amplitude for caviton formation can be understood by a simple
pressure balance argument. The pressure associated with the electric field of
the Langmuir wave pushes plasmas out of regions of high field in order to
maintain a balance of pressure with the surrounding plasma. The threshold
for caviton formation is the point at which the frequency of the Langmuir
wave inside the caviton becomes equal to the electron plasma frequency
outside of the caviton, at which point the Langmuir wave becomes trapped.
Assuming that the frequency of the Langmuir wave is equal to the plasma

frequency outside of the caviton, the ratio of the density inside the cavity to
that outside the cavity is simply njngide/Noutside = w}%e / cogpw. Using the

dispersion relation for a Langmuir wave, wgpw = w]%e(1+ BkEPWl%e), this ratio

may be written as ny,gde/Noutside = 1—3k§pwl%e. The pressure balance then
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equates the field, E2/871:, and particle pressure, Ny,gdeXTinsider inside the

caviton with the particle pressure, ngyuisideXToutsides Outside the caviton,

) _
NinsideX Linside + E / 87 = Nyytside XK Toutside- (2.6.4)

Using the above relations and assuming that the electron temperature inside
the caviton is equal to the temperature outside the caviton, the pressure
balance can be written as Ez/ (87mMoutsideXT) = 3k§pw/l%e. Utilizing Gauss' law,
V.E=4np, the above pressure balance can be written in terms of the
Langmuir wave amplitude, nepyw /ninside = \/gkgpwl%e.

Zakharov showed that in 3-dimensions equations 2.6.1 and 2.6.2 lead to
the collapse of the Larigmuir waves, resulting in a further localization of the
Langmuir wave energy[50,52]. The self-accelerating collapse process continues
until the caviton has reached the size where a near thermal electron can
traverse the caviton in a half cycle of the Langmuir waves frequency. At this
point the energy contained in the Langmuir wave is quickly returned to the
electrons through transit time damping and the caviton "burns out"[47]. The
saturation of the Langmuir wave amplitude in this case is determined by the
amplitude of the Langmuir wave directly before the "burn out” stage of the
collapse. The saturation of the Raman process, however, could occur before
the saturation of the Langmuir wave itself. Although the amplitude of the
Langmuir wave is growing, it is becoming localized over an ever decreasing
volume. The energy density of the scattered light is proportionai to the square

of the amplitude of the density fluctuation multiplied by the square of the

typical dimension of the caviton. In the self-similar solution to the Zakharov
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equations in 3-d, the amplitude of the Langmuir wave is proportional to the
inverse square of the size of the caviton. This solution, however, is for the
case of an undriven Langmuir wave. In that case, the total energy of scattered
light from the caviton is proportional to the caviton size during collapse. The
maximum scattered light detected in the experiment would then be
determined from the amplitude of the Langmuir wave at the onset of

collapse which was given above to be approximately

Nepw /Ninside = \/ngPWAZDe. This would predict a smaller amplitude Langmuir

wave at saturation than the threshold for Langmuir decay instability
discussed above only for kepwApe<0.03. Again, this does not correspond to
the saturation of the amplitude of the Langmuir wave which continues to
grow over an ever decreasing volume until the "burn out" phase of the
caviton. This also does not include the growth of the Langmuir wave due to
the Raman process itself which could cause the increase scattering due to the
higher Langmuir wave amplitude be more important than the reduction in
scattering volume.

During the collapse of the caviton, the frequency of the Langmuir
waves is also changing which can remove the Langmuir waves out of the
resonance width driven by the stimulated Raman process. The detuning
resulting from the amplitude dependent change in the frequency of the
Langmuir wave is discussed in the following section. Once the Langmuir
wave has been removed from the resonance, the growth of the Langmuir
wave is determined by the dynamics of the collapsing caviton and the above

estimations should be valid.
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2.7 Ponderomotive detuning

Ponderomotive detuning was proposed as a saturation mechanism for
stimulated Raman forward scattering[38]. This mechanism uses the Zakharov
equations described above and looks at the effect of the change in frequency of
the Langmuir wave, caused by the growth of the Langmuir wave, on the
growth of stimulated Raman forward scatter. In the paper introducing this
mechanism,[38] the Zakharov equations were solved in steady-state using the
quasi-static approximation with the further assumption that the spatial
dependence could be written as a slowly varying component multiplied by a
fast oscillation in the same manner as the convective instabilities in section
2.3. Solving these equations in steady-state precludes the possibility of
Langmuir collapse. The modulational instability, which causes a broadening
in the wavenumber spectrum of the Langmuir waves, might stabilize this
saturation mechanism in the sense that although the spectrum is changing, if
the overall spectrum is broad enough that there is an overlap with the
original resonance width, the instability might continue to grow.

The effect of ponderomotive detuning can be viewed very simply by
examining the equation describing the Langmuir wave participating in

stimulated Raman scattering with the inclusion of the Zakharov low

frequency response,
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which is identical to the expression derived in Appendix 2.1 except for the
nonlinear term on the left side of the equation which accounts for the effect
of the Langmuir wave and scattered electromagnetic wave pressure on the
plasma frequency. This process can be thought of as a detuning by removing
the frequency of the wave from the resonance width driven by the instability.
The instability is driven only over a narrow range of frequencies proportional
to the homogeneous growth rate of the instability. Ignoring the
electromagnetic pressure, the left hand side of the above equation can be

expressed roughly as the dispersion relation

2

2 2 1 Inepwl 2.2 (2.7.2)
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with the assumption that when nepw(noe)'l is small,

mgpw+w§e+3vﬁlkgpw =0 is satisfied. As the Langmuir wave grows in

amplitude, the wavenumber of the Langmuir wave frequency changes,

kepw :kepw+Ak. By expanding the dispersion relation, this change in
wavenumber is found to be proportional to

Ak <

2 -1
nepw(noe)_li wpe[(kgpwlge)vepw] . Using the results from section 2.3,
)—-0.5

the wavenumber resonance width is proportional to Ak e )/(,(VQPWVS
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Once the wavenumber changes by a number of resonance widths, the

instability is detuned and ceases to grow. Therefore, the amplitude of the

Langmuir wave, | nepw(noe)-l, saturates at
Inepw(noe)_ll o< kepwl Dng's?zsa’x's VgggV;O'zs. Appendix 2.5 details the

calculation and finds the numerical coefficient in front which is equal to 0.5.
Figure 2.7.1 below shows a comparison of the Langmuir wave amplitude
predicted by the ponderomotive detuning model with the Langmuir wave
amplitude at the damping threshold for the Langmuir decay instability. This
figure was generated assuming a CH plasma at 1 keV irradiated with a 351 nm
interaction beam at 5x1014 W/cm2. As shown in the figure, the
ponderomotive detuning can onset at much smaller values than the
damping threshold for the Langmuir decay instability. However, as stated
above this treatment assumes that the modulational instability does not
broaden the Langmuir wave spectra which might prevent saturation of the
Langmuir wave's amplitude by this mechanism. In addition, many of the
simulations looking at the saturation of stimulated Raman scattering, which
include the physics of the Langmuir decay instability and ponderomotive
detuning, see the generation of Langmuir waves attributed to the Langmuir
decay instability[9,12,13].

This mechanism can also be applied to the problem of beat wave
excitation of Langmuir waves[2]. In this case, the nonlinear dispersion
relation remains the same, however, the wavenumber resonance width of
the scattering process is different than the stimulated process above. Again, by

expanding the nonlinear dispersion relation shown in 2.7.2, the change in

wavenumber resulting from the ponderomotive force of the Langmuir wave
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2 1
is proportional to Ak e |neqy, (nge) ll wpe[(kgpwlﬁe)vepw] , the same as the

stimulated process described above. The resonance width for the scattering
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Figure 2.7.1 Comparison of the Langmuir wave amplitude at saturation
predicted by the ponderomotive detuning model(dashed line) versus the
Langmuir wave amplitude at threshold for the Langmuir decay

instability(solid line).

problem is found by examining the linear version of equation 2.7.1 above.
The assumption is made that the wave quantities in equation 2.7.1 can be
written as a slowly varying spatial component multiplied by a fast oscillating

component in time and space. This reduces the above equation to
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Xint

where H[O.S)oci"nlt] is unity between - xjnt and xint and zero elsewhere. xint

represents the length over which the process is driven before saturation. The
solution to equation 2.7.3 is simply ¥ [ -0. 251c2kgpw‘l’ ¥ Vepwwepw]x The
resonance width is found by Fourier transforming equation 2.7.3 and looking
for the FWHM in the same manner as described in section 2.3. The Fourier
transform of equation 2.7.3 is

-C kepwxmt Sin(kxint) (2.7.4)

e(k) = 'ZV——"I" —"
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It is apparent from equation 2.7.4 that the FWHM is proportional to the

inverse of the interaction length or Ak o< xil. The interaction length is found

by equating the resonance width, Ak x{,lit, with the change in wavenumber,

- -1
Ak o< nepw(noe) 1|2wpe[(k§pwa§e)vepw] , found above. This yields an

interaction length proportional to
2,2 —1\W3/ 2. 2 —-2/3
Xint > (kepwz'oevepwwpe) ( ¢“Kepw¥o¥ Vepw epw) .

amplitude of the Langmuir wave is then

The saturation
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It should be noted that this is lower than the value predicted by relativistic

detuning for the beat wave process described below in section 2.9.

2.8 Mode Coupling(unstimulated processes)

a. Self-interaction between different decay triangles

The wave-wave saturation of stimulated Raman scattering has
primarily dealt with the Langmuir decay instability, whereby the Langmuir
wave decays into a secondary Langmuir wave and an ion acoustic wave. This
section focuses on the effect of mode coupling between several decay triangles
associated with stimulated Raman scattering. In this manner, energy is fed

into both Langmuir waves directly from the stimulated Raman process itself.

This process has been observed in the case of two plasmon decay through
particle-in-cell simulations[53], as well as Thomson scattering experiments
described below([54]. The ponderomotive force created by the coupling of these
two Langmuir waves then drives an ion acoustic wave. Unlike the
stimulated process of the Langmuir decay instability, mode coupling has no
threshold to overcome, assuming stimulated Raman scattering is being
driven.

When the Langmuir waves, associated with separate decay}triangles of
stimulated Raman scattering, drive the ion acoustic wave, the ion acoustic
wave experiences secular growth. Because of the ion wave's relatively high
ratio of damping to ion acoustic frequency, the amplitude that the ion

acoustic waves are driven is determined primarily by damping rather than
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plasma inhomogeneity. An ion acoustic wave is driven due to the

ponderomotive pressure of two Langmuir waves as shown by

2
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where Z is the average charge state in the plasma, me is the electron mass, Mj
is the ion mass, Wepw1 and Wepw? are the Langmuir pump frequencies, kepw1
and kepwz are the Langmuir pump wavenumbers, nepwi /noe and
nepwz/ npe are the pump Langmuir wave amplitudes, cs is the sound speed,
and nja/noe is the amplitude of the ion acoustic wave. The wave
amplitudes are assumed to be of the form

Ny

- =-;—‘Paexp[i(jlza.d&’-mat)]+c.c.. For a resonant interaction, equation
oe

2.8.1 can then be written in the form
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It is interesting to note that mode coupling between these two decay

triangles associated with stimulated Raman scattering produces long

wavelength ion acoustic fluctuations. These fluctuations are close to the
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wavelength which Nicholson[25] found to be capable of causing absolute
instability. Nicholson investigated the effect of a -time-independent sinusoidal
density perturbation superimposed on a linear density gradient. He found
that the sinusoidal density perturbation could induce an absolute instability
and that this effect was strongest when A, =27z\ﬁ,7'—271y51. This introduces
the very interesting possibility that mode coupling between the different
decay triangles driven by stimulated Raman scattering could induce absolute
instability. This would then provide an explanaticn for the large levels of
Raman seen in experiments in which the wavenurnber mismatch is strictly
linear and the Raman process should be a convective instability. There have
been many experiments which have seen considerably larger levels of

stimulated Raman scattering than would be predicted from the expected

convective gain[55]. This gain is difficult to explain even invoking

filamentation as a means of enhancing the local laser intensity. These ion
waves could also induce an absolute instability for stimulated Brillouin
scattering and thereby provide a mechanism whereby stimulated Raman
scattering could indirectly produce large levels of stimulated Brillouin
scattering. The apparent seeding of stimulated Brillouin scattering has been
previously observed in Thomson scattering experiments[56]. Mode coupling
could also play a critical role in the saturation of the instability as well due to
the modification of the background density by the ion acoustic waves. This
detuning mechanism is discussed in section 2.8 b.

A Thomson scattering experiment would be an ideal way of looking for
the ion waves which would be produced by this mode-coupling process. The

ion waves produced in this experiment would have very small
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wavenumbers resulting in small angle Thomson scattered signals. If the
experiment were done with a thin exploding foil target, a 526 nm interaction
beam could be used to drive the stimulated Raman scattering which would
make it easily diagnosed with a streak camera. A 1 pm probe beam could then
be used which would result in a much larger angle scattering due to the
smaller disparity between the probe wavenumber and the ion acoustic
wavenumber . The primary concern would be in ensuring that the quarter-
critical surface is not present for the 526 nm interaction beam which would
produce large levels of 1 um light from ®wo/2 emission at the quarter-critical
surface.

The growth of the ion waves and their effect on the Raman process
could be looked at in detail using fluid codes in which the feedback process for
the Langmuir decay instability and the modulational instability has been
eliminated by taking out the coupling term in the Langmuir wave equation,
representing the coupling between the ion waves and the Langmuir waves.
With modifications, a code such as SATIN could be used for such a study[57].
The equations describing stimulated Raman scattering along with an ion
wave equation driven by the Raman produced Langmuir waves could be
solved in 2-D with a linear inhomogeneity to investigate the possibility that
Raman could be driven absolute in a linear density gradient due to the ion
fluctuations driven by the mode coupling of Langmuir waves from different
decay triangles. The pressure associated with the ion waves would act on the
plasma allowing the ion waves to alter the local plasma density so that the

equations describing the Raman process see a plasma density modified by the

ion wave fluctuations. This code would then allow the study of stimulated
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Raman scattering to see if absolute instability could ensue. The ion waves

acting on the plasma density could affect the saturation of stimulated Raman

scattering by modifying the background density. This then provides a means

by which stimulated Raman scattering can be driven absolute in a linear
density gradient thereby explaining the large levels of Raman seen in
experiments. It also provides a means whereby the Raman process can be
saturated, possibly at a lower value than that predicted by the Langmuir
waves overcoming the damping threshold for the Langmuir decay instability.
In any case, mode coupling is very important in determining the level at
which the Langmuir and ion acoustic waves grow. It is also very important
for determining what particular decay geometry of LDI wins, more so than
which has the highest growth rate which is demonstrated below.

One of the clearest experimental evidence for mode coupling involved
a Thomson scattering experiment with two plasmon decay[54]. Many of the
first Thomson scattering experiments used COj; lasers to interact with the
plasma and drive Two Plasmon Decay[58]. These experiments utilized visible
light to perform Thomson scattering off of the Langmuir waves and
subsequent ion waves produced in Two Plasmon Decay. In one of these
experiments, the simultaneous spectrum of Langmuir waves and ion acoustic
waves were measured[54]. The experimentally measured wavenumber
spectrum of electrostatic waves is shown in figure 2.8.1.

The magnitude of the wavenumbers driven in two plasmon decay are
very sensitive to the electron temperature of the plasma. Many of the CO»
experiments had electron temperatures of less than 100 eV. As a consequence

the Langmuir waves excited had wavenumber magnitudes much greater
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than the wavenumber of the incident pump. Because these wavenumbers

were so much larger than the incident wavenumber, the magnitude of the
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Figure 2.8.1 Wavenumber resolved Thomson scatter spectrum from
Langmuir waves and ion waves participating in stimulated Raman scattering.

This graph has been reprinted from Baldis et al. 1991, [17].

Langmuir wavenumbers are insensitive to their angle relative to the incident
wavenumber. The wavenumbers are then sensitive primarily to the density
and temperature of the plasma. In the experiment shown above the
wavenumbers are roughly between 7 and 13 times the wavenumber of the
incident electromagnetic wavenumber. Assuming the long wavelength cutoff
of the waves correspond to a value of khpe=0.3, the electron temperature is

estimated at approximately 75 eV. If the long wavenumber cutoff is chosen to

occur at a value of kApe=0.3, then the short wavenumber cutoff can be

estimated from the Thomson scattered data as approximately kApe=0.15. It is
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interesting to note that this spectrum appears to have a gap for small kApe
values, very similar to stimulated Raman scattering.

There are several mechanisms which can lead to the generation of ion
acoustic waves. These mechanisms include the Langmuir decay instability in
which a Langmuir wave decays into a Langmuir wave and an ion acoustic
wave, the electromagnetic decay instability, the coupling of Langmuir waves
to drive ion acoustic waves, and the modulational instability which is a four
wave process. The ion waves shown in the data above have wavenumbers
greater than the wavenumber belonging to the waves which precludes the
modulational instability which drives near zero wavenumber ion waves.
Likewise, the electromagnetic decay instability, described in chapter 3,
produces ion acoustic waves with wavenumbers approximately equal to the
wavenumber of the Langmuir waves, which was not observed in the
experiment. Because the scattering process(mode coupling) has no threshold
to overcome, it is likely that this process will be the first to occur.

In the scattering process, Langmuir waves from different decay
triangles couple together to drive ion acoustic waves. For this scattering

process to be resonant, it must satisfy the frequency and wavenumber

matching conditions ®j; = Wepw1 + Pepws and Kig =Kepwi +Kepws where

w3y (kia), wepwl(l—iepwl), and wepw3(12epw3) are the frequency(wavenumber) for

the scattered ion acoustic wave, the first Langmuir wave, and the third
Langmuir wave respectively. The two Langmuir waves are from different
decay triangles. The waves can possibly satisfy the matching conditions
between an ion acoustic wave and both a red plasmon and a blue plasmon.

The coupling of a blue(red) plasmon with another blue(red) plasmon
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produces smaller wavenumber ion acoustic waves and the coupling of a blue
‘plasmon with a red plasmon produces ion acoustic waves with larger
wavenumbers.

For the parameters of this experiment, the coupling between red and
blue plasmons produce ion acoustic wavenumbers which vary from 1.5 kepw
near the higher wavenumber cutoff of the spectrum to approximately 1.56 at
the lower wavenumber cutoff of the spectra. The magnitude of the ion
wavenumber generated with this coupling is very insensitive to both angle
and density. These wavenumber magnitudes agree extremely well with the .
Thomson scattered data shown in figure 2.8.1, which is in contrast with the
analysis of the authors who assumed that the ion acoustic wavenumber
should be at twice the wavenumber of the Langmuir wave, which is the ion
- wavenumber with the highest growth rate involved in the Langmuir decay
instability. The shorter ion acoustic wavenumber, however, varies
considerably with angle but is insensitive to density. In this case, to generate
the shorter wavenumber ion acoustic fluctuation, a red(blue) plasmon at
some angle to the incident wavenumber has to couple with a red(blue)
plasmon scattered nearly perpendicular to the incident laser wavenumber.
The absence of the shorter wavenumber ion acoustic waves is then likely due
to the absence of the appropriate waves to couple to. When the two large
amplitude Langmuir waves drive the ion acoustic wave, the ion acoustic
wave experiences secular growth.

Another interesting possibility is the coupling between Langmuir

waves associated with two plasmon decay to drive an electromagnetic wave.

This mechanism is identical to a mechanism operating at the critical surface
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which produces second harmonic emission. I first submitted an experimental
proposal to study this mechanism at the quarter critical surface to the
University of Rochester in 1992. This process was studied independently by
Russel et al.[59] using numerical simulations. In this process, Langmuir
waves from different decay triangles associated with two plasmon decay
couple together driving an electromagnetic wave which satisfies the

wavenumber and frequency matching conditions
Bepw1 + Depwz = Vs and (2.8.3)
kepwl + 1<epwz =k, (2.84)

where (Depwl(kepwl), mepwz(kepwz), and wg(ks) are the frequency
(wavenumber) of the first Langmuir wave, the second Langmuir wave, and
the driven electromagnetic wave respectively. The equation describing the
amplitude of the electromagnetic wave produced by the coupling of two

Langmuir waves is

’

pPe

( 92 o2 CZVZ] qAS2 - 2 (nepwl Uepw?2

2 pe ]
at transverse

meC Nge C
where qAs/mec?, nepwi/noe, uepwi/c is the amplitude of the
electromagnetic wave, the amplitude of the first Langmuir wave, and the
oscillation velocity of the electrons in the second Langmuir wave,
respectively. Using the procedure outlined in chapter 4, the amplitude of the

electromagnetic wave produced in a linear profile will be
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2z

4 WgVgs 4_ lTepwllllPepwzl (2.8.6)
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The process of driving the electromagnetic wave takes energy out of
the Langmuir waves providing a damping mechanism which can help to
saturate the instability. The electromagnetic wave can take a significant
amount of energy out of the Langmuir waves, while the ion wave discussed
above does not take a significant amount of energy from the waves but rather
acts to transfer energy between the different decay triangles. The large level
ion wave can, however, modify the background density and detune the
parametric instabilities, as well as cause profile steepening. Another of the
| important possibilities for this mechanism is that the electromagnetic wave
produced in this process could act as an enhanced noise source from which
stimulated Brillouin scattering could grow. Stimulated Brillouin scattering is
a parametric instability in which an eléctromagnetié wave drives a scattered
electromagnetic wave and an ion acoustic wave.

An experiment to look for this scattering process will be plagued by the
need to eliminate the occurrence of stimulated Brillouin scattering. An
experiment could involve using a gas bag target or capillary discharge which
would be filled with a mixture of Helium and Hydrogen which resuits in
large damping of the ion acoustic wave driven by stimulated Brillouin
scattering. A plot of the damping as a function of the ratio of the ion
temperature to the electron temperature can be seen in figure 4.4.5 in

Appendix 4.4. Secondly, the scattered light would be collected which had

polarization rotated 90 degrees from the interaction beam which should
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greatly reduce the effects of stimulated Brillouin scattering whose gain

exponent is proportional to the square of the cosine of the polarization angle

between the incident and scattered light. The gas fill in the targets could be

varied from below around ten percent of critical to above quarter critical to

look for a change in the electromagnetic emission near the laser frequency as

the two plasmon decay is turned on when densities around twenty to twenty

five percent are pfesent. Another possibility would be to use an exploding foil

target to let the peak density change from above quarter critical to below _

twenty percent of critical while monitoring the level of "SBS like" emission

which was the original design of the experiment submitted to Rochester,

however, the enhanced damping obtainable with gas mixtures should help to

reduce the stimulated Brillouin scattering signal.

b. Interaction between different instabilities

The most widely studied interaction between different instabilities

involves the interaction between stimulated Raman scattering and

stimulated Brillouin scattering[11,56,60,61]. One way stimulated Brillouin

scattering can saturate the Raman process is through quasi-resonant mode

coupling(4,61-63]. In this process a Langmuir wave can couple with an ion

wave generating Langmuir waves which have a wavevector, ki, equal to the

original Langmuir wavevector, kepw, plus an integer number of the ion

wave's wavevector or K, =Kepy 2nkjonX. For this process to be efficient the

resultant mismatch between the Langmuir waves must be less than the

frequency variation, A, produced by the ion wave, Aw/@pe =0.5n;, /1,; [62].
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Therefore, this quasi-resonant mode coupling typically requires large
amplitude ion acoustic waves before this process becomes efficient. The
source of ion waves typically proposed for this process is stimulated Brillouin
scattering[64]. If ion waves are produced which satisfy the above criteria, then
energy may be efficiently transferred from the Raman driven Langmuir wave
into secondary Langmuir waves. The generation of these coupled modes can
introduce a large nonlinear damping into the original Raman process thereby
saturating stimulated Raman scattering[4]. As pointed out above in 2.8 a, the
Langmuir waves from different decay triangles can couple together driving
ion waves which could then undergo quasi-resonant mode coupling if the
ion waves were driven to sufficient amplitude.

Stimulated Brillouin scattering can also saturate stimulated Raman
scattering due to the detuning effects associated with the modifications of the
background density profile caused by the ion waves[11,65]. The Langmuir
wave equation for stimulated Raman scattering is modified by the density
fluctuation as shown in equation 2.7.6 where the low frequency fluctuation
nel/npe represents the ion wave. Stimulated Raman scattering is detuned
when the wavenumber change induced by the density fluctuation becomes
larger than the resonance width of the instability shown above to be

-0.5
proportional to Ak e yo(Vepst) . The change in wavenumber induced by
-0.5
the ion wave is given by Ak e (ng /noe)(kepwﬁ.%e) . The Raman process can

then become detuned when the ion wave amplitude, ne]/npe, has reached a

value (nej/nge) > (Vos/Ckepwipe kepwkgl. A distribution of ion waves,

however, will likely reduce the stabilization effect on the Raman process.

These ion waves could be produced by a number of sources. As pointed out
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above in 2.8 a, the Langmuir waves from different decay triangles can couple
together driving ion waves which could lead to the detuning of the Raman
process. Also the Langmuir waves could become large enough to form
cavitons as discussed in section 2.6[11]. The density fluctuations resulting
from these cavitons can then produce enhanced levels of ion waves which
can both seed stimulated Brillouin scattering and reduce the level of
stimulated Raman scattering[11]. Stimulated Brillouin scattering could
produce large levels of ion waves which could detune the Raman
process[60,65,66]. Forward Brillouin scatter can also be seeded by two crossed
laser beams. Eventually this technique could be used in laser-driven fusion to
control stimulated Raman scattering through the generation of large
amplitude ion waves. These ion waves would take a minimal amount of
energy from the driver beams with all but a very small fraction of the energy
going into the forward direction.

In many experiments, a gap in the spectrum of stimulated Raman
scattering is observed[39]. This gap typically ranges from slightly below
ne/ncr=0.25 to approximately ne/ncr=0.2. This is also the range of densities
over which two plasmon decay is driven. As discussed in 2.8 a above, the
Langmuir waves associated with two plasmon decay can couple together
driving large amplitude ion acoustic waves[53,54]. In addition, the Langmuir
waves driven by two plasmon decay can undergo decay by several of the
secondary procésses discussed in section 2.5 driving large amplitude
Langmuir waves. Additionally the Langmuir waves can undergo collapse as
discussed in section 2.6 leading to the generation of ion fluctuations. These

ion waves can then detune the Raman process as discussed above. This
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represents one possible explanation of the Raman gap although there are
several other explanations[39,67,68]. The relation given above for the
detuning by ion waves, (nej /e } < (Vos/€)Kepwpe kepwk;,1 , suggests that the
gap should begin to disappear when the temperature of the plasma is
increased sufficiently, which consequently raises the value of kepw)\.[)e in the
gap region. An interesting experiment to look at the effects of the ion
dependent saturation mechanisms on the gap would involve looking at
stimulated Raman scattering from a solid target utilizing a high-intensity
short-pulse laser. If stimulated Raman scattering is driven hard enough that
it grows faster than the ion waves can saturate the instability, then the gap
should not be present in the case of these high-intensity short-pulse
experiments. In addition, the high vos/c should reduce the stabilizing effect

of the ion waves.

2.9 Relativistic detuning

This section examines relativistic effects on the detuning of parametric
instabilities involving waves. Relativistic detuning become important when
the oscillation velocity of the electrons become relativistic. Recent short pulse
experiments have achieved high enough intensities that the oscillation
velocity of the electrons in the electromagnetic field is relativistic. Likewise
there are conditions where the oscillation velocity of the electrons can

become relativistic due to the electrostatic field of the Langmuir wave itself.

The continuity equation,
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24v-(ni)=0, (29.1)

provides insight into where relativistic effects are important in the latter case.
By assuming a plane wave solution and linearizing the density into zero

order and first order components, the continuity equation can be written as

Ups _ @Pepw dn (29.2)
¢ Kepw Noe

This shows that the oscillation velocity is relativistic primarily for Langmuir
waves with very small wavenumbers. Therefore, the instabilities most
affected by this detuning mechanism should be the oscillating two stream
instability at the critical surface and to a lesser degree forward stimulated
Raman scattering.

The saturation of waves by relativistic detuning was first considered by
Rosenbluth and Lui[7]. The specific case which they considered was a
Langmuir wave driven by two electromagnetic waves, which is unstimulated
Raman forward scattering. Because the oscillation velocity of the electrons is
proportional to the amplitude of the electron plasma wave, as the wave
grows the oscillation velocity of the electrons changes causing the frequency
of the wave to change and the scattering process to eventually become
detuned. For stimulated processes, the frequency resonance width of the
instability is proportional to the growth rate so that when the Langmuir

wave's frequency changes by an amount equal to some number of growth
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rates of the instability, the resonance width, the instability detunes itself and
does not experience further growth.

Recently, the case of stimulated Raman forward scattering has been
looked at[69]. For stimulated Raman forward scatter, the wavenumber of the
wave is approximately kepw=0pe/¢. This calculation is detailed in Appendix
2.7. The equation describing the growth of the Langmuir wave participating

in Raman scattering may be written as

5 2 2 g2\ _ ' '
15 (e ~3vRY )¢ = (29.3)

mgc (é’/c) ( scatt © Apump)

where the Langmuir wave amplitude, nje/nee, is equal to nje/nge =|V¢|. The
left hand side of the above equation can be expressed roughly by the following

dispersion relation
wepw[1+1 5(¢/c) ]+ @3 +3Vikpw = 0 (2.9.4)

with the assumption that when (C/c) is small, %, +o} +3viki, =0 is

satisfied. As the Langmuir wave grows in amplitude, the wave's frequency

changes, ®,,, = @, +3. By expanding the dispersion relation, this change in

s 1 \2
frequency is found to be proportional to & o wpe((;’ /c) . Once the frequency

changes by a number of growth rates, the instability is detuned and ceases to

grow. The Langmuir wave amplitude at saturation is then proportional to
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nle/ noeoc(kepwca)pe) yow , which is similar, although higher, to the

saturation amplitude for ponderomotive detuning discussed above. The
numerical coefficient in front is approximately 2 as shown in appendix 2.6.
Equation 2.9.4 above is the same approximate "dispersion relation”
used to describe the scattering process whereby two fixed amplitude lasers are
used to drive a Langmuir wave. This scattering process, however, has a
different resonance width. The resonance width for the scattering process is
proportional to the inverse time over which the process grows, & oct}}llt, as
described in section 2.7 above. From the non-relativistic form of equation

2.9.3 above, the spatial fluid displacement at early times grows at the

homogeneous growth rate, { < it where = %k ‘I-‘O‘Pswggw. Therefore, by

epw

combining the resonance width, § octi'nlt, of the scattering process with the
2

frequency mismatch, § e wpe(wepwgc_l) , caused by the growing Langmuir

wave and the amplitude of the fluid displacement itself, { o< ty,;, the

interaction time is found to be proportional to ti, cc(c wpe) ﬁ—2/3 The

saturation amplitude which the wave grows is found simply by plugging the
interaction time into the homogeneous growth rate. This results in a wave

amplitude which is proportional to

— /3 3
Nepw (Noe) 1 oc(ckepwa)egw) ( 21<&22pw‘~l’ ‘Pswepw)]’/ at saturation which is in

agreement with previous results[7]. Relativistic detuning of the beatwave
process predicts a higher saturation amplitude for the Langmuir waves by the

2/3
factor (cv&ll) / over that predicted by the ponderomotive detuning of the

beatwave process. It should be noted that both the relativistic detuning, as
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well as the ponderomotive detuning, neglect broadening of the frequency

spectrum by the modulational instability.

2.10 Particle trapping and wave breaking

Another mechanism which can saturate the amplitude of a Langmuir
wave is particle trapping. Particle trapping is a wave-particle interaction
which leads to the saturation of parametric instabilities due to the induced
nonlinear damping[16,70]. When particles in the plasma are traveling at
approximately the phase velocity of a given electrostatic wave, they can be
efficiently accelerated or decelerated by that wave. When the amplitude of the
electrostatic wave becomes large, the electrostatic field of that wave can
accelerate the thermal electrons in the plasma up to the phase velocity of the
wave resulting in a large damping. The effects of particle trapping are best
studied with particle-in-cell simulations or Vlasov simulations[16,70].

The effect of the finite amplitude of the Langmuir wave is to accelerate
the background electrons closer to the phase velocity of the wave. This can be
modeled roughly as an effective reduction in the phase velocity of the wave
or consequently as an effective increase in the wavenumber, keff, of the
Langmuir wave. The effective increase in the wavenumber of the Langmuir

wave can be approximated as

-1
2 .
K gApe = kepw)‘De [1-!— kepw;LDe - kepwl%)e + 25n/nJ . The Langmuir wave

with its effective phase velocity is then treated as a small amplitude wave in

which the analytic expression for the Landau damping is valid. The next step




CHAPTER 2. SATURATION MECHANISMS 66

is to solve for the required value of keffApe such that Landau damping is
large enough to cause thg instability to go below the convective damping
threshold. Once this effective phase velocity of the wave is found, the
amplitude of the Langmuir wave can be solved for using the above relation
for the effective wavenumber of the Langmuir wave in terms of the actual
wavenumber and the Langmuir wave amplituce. As an example, two
plasmon decay is driven above the convective threshold discussed in section
2.2 when the growth rate is larger than the square root of the product of the
damping of the two daughter waves which in the case of two plasmon decay
is approximately Yo>Vepw. In the case of Langmuir waves, the analytic
expression for the effective Landau damping of the Langmuir wave is given

-1 -2 . . .
by @; @epw ~+mexp —1.5—0.5(keffﬂ.De) (2keffADe) which is wvalid for

keffApe<0.4. The effective wavenumber can then be found ir_t the case of two
plasmon decay by equating the growth rate to the effective Landau damping
and solving for keffApe. This rough approximation can then be used to
approximate the saturation amplitude of the Langmuir waves such that the
damping induced by particle trapping causes the parametric instability to go

below the convective damping threshold through the relation

2 .
on/n = 0.5[(1+ kepw;LDe —kepw/lDekgflflf)le) —kgpwljZDe]. As an example, for a

typical irradiation intensity of 5x1014 W/cm?2, the growth rate divided by the
plasma frequency is approximately 9x10-3. The corresponding value of

keffApe such that the instability is below threshold is keffApe=0.28. The

resulting amplitude of the Langmuir waves at saturation is shown in figure

2.10.1 below as a function of the Langmuir waves actual kepwxDe. It is
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qualitatively clear that particle trapping predicts that the saturation amplitude

of the Langmuir wave should increase with decreasing kepwlpe.
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Figure 2.10.1 Approximate Langmuir wave amplitude for which two plasmon

decay goes below the convective damping threshold as a function of the

parameter kepwhpe.

Another possible saturation mechanism for Langmuir waves is wave
breaking. In 1971, Coffey showed that a stationary Langmuir wave in a plasma
could only exist in steady-state up to a fixed amplitude[71]. Figure 2.10.2 is the
resulting graph from this paper showing the maximum amplitude a
stationary Langmuir wave can reach in a plasma as a function of the product
of the wavenumber of the Langmuir wave with the Debye length, Ape. The

amplitude at the wave breaking limit is much greater than the threshold

amplitude for secondary decay processes which can be seen by comparing
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figure 2.10.2 below with figure 2.5.1 in section 2.5 until kApe becomes very

large, greater than 0.5.
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Figure 2.10.2 Plot showing the amplitude at which wave breaking becomes
important for Langmuir waves. This plot was modified slightly from a paper

by Coffey[71].

The main problem with this model, as well as particle trapping, is that
it predicts that the saturation level of waves should increase with increasing
phase velocity. Figure 2.10.3 below shows a stimulated Raman spectrum
taken from a solid target experiment[55]. This figure shows, as do most
stimulated Raman spectra, that the stimulated Raman spectrum peaks where
the phase velocity of the Léngmuir waves is approximately three times the
thermal velocity and decreases with increasing phase velocity. This scaling is

in contrast to the predictions of either particle trapping or wave breaking.
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This is not too surprising considering the high amplitudes required of the
Langmuir waves before these mechanisms become important. Particle-in-cell
simulations typically see a reduction in the level of stimulated Raman
scattering when the ions are mobile[72,73]. In the case of Langmuir waves, the
mobility of the ions should not affect the saturation induced by either wave
breaking or particle trapping. These simulations, as well as the experimental
spectrum shown below would suggest that these mechanisms are probably
not limiting the amplitude of the Langmuir waves for small values of kipe.

Both particle trapping and wave breaking are much more likely to
affect the saturation of Langmuir waves which are driven with large values
of khpe. These mechanisms could be responsible for the saturation of
Langmuir waves driven with kApe>0.4 with other mechanisms such as the
Langmuir decay instability and other secondary decay processes causing
saturation for smaller values of kApe. This is in fact consistent with the
spectrum shown in figure 2.10.3 which shows the Raman spectrum being cut
off for kApe<0.6. This cutoff is usually attributed to Landau damping,
however, in many cases stimulated Raman scattering remains above the
convective threshold for large values of kApe due to the decrease in the
collisional damping of the scattered electromagnetic wave as the density
decreases.

Wave breaking and particle trapping are much more likely in short-
pulse high-intensity experiments because the waves can grow on a time scale

faster than many of the ion wave saturation mechanisms described above can

occur. Therefore, the waves are likely to grow to much higher amplitudes
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than in the long pulse experiments where the growth rate is comparable to

the growth rate for many of the ion wave saturation mechanisms. There is

kepwADe with Te=500 eV
060 0.14 0.08

0.04

0.00
500 700 900 1100

Wavelength (nm)

Figure 2.10.3 Flux of stimulated Raman scattering driven from a gold solid

target. This graph was reproduced from a paper by Shepard et al.[55]. The

bottom horizontal axis represents the wavelength of the scattered light while
the top horizontal axis represents the corresponding value of kApe of the
Raman generated Langmuir wave. This figure shows that the Raman flux

peaks at an intermediary value of kApe and then decreases as kApe decreases.

evidence that these short-pulse lasers can drive significantly larger reflectivity
levels of Raman than their long-pulse counterparts with equivalent plasma
parameters[37,74]. The increased reflectivity would occur even if ion wave
saturation mechanisms were active due to the significant increase in the
growth rate for the Raman process resulting from the higher intensity
interaction beam. An interesting and rather simple experiment or simulation

would be to see if the spectral saturation of Raman scattering in short-pulse
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high-intensity experiments actually increased with decreasing values of kApe
in contrast with long-pulse experiments but in accordance with the
assumption that the saturation is due to particle trapping or wave breaking.
This experiments would best be performed from a solid target experiment in
which all densities are present. The plasma could be preformed with a long-
pulse laser and then on different shots a high-intensity short-pulse laser and a
long-pulse laser could be used to drive stimulated Raman scattering and their
resulting spectrum compared. This would then only require measuring the
reflectivity at discrete wavelengths of the Raman scattered signal, preferably
in a solid target experiment where all densities are present. If ion wave
mechanisms are not contributing to the saturation of stimulated Raman
scattering, then wave breaking and particle trapping would produce a unique

spectrum which would be quite different than many of the ion wave

saturation mechanisms described in the previous sections.
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Chapter 3

Electromagnetic decay instability

3.1 Introduction

This chapter examines the electromagnetic decay instability(EDI) and its role
in laser-produced plasmas. The electromagnetic decay instability provides
another channel through which parametric instabilities involving Langmuir
waves can saturate. As a specific example, the conditions for which EDI is an
absolute instability are found for the case where this instability is pumped by
the Langmuir wave associated with stimulated Raman scattering. In the case
where EDI is pumped by the Langmuir waves associated with two plasmon
decay, EDI presents an explanation for ®wo/2 emission from laser-plasmas
which is consistent with experimental observations. In addition, the
scattering of Langmuir waves off of ion acoustic waves near the critical
surface is shown to provide an enhanced noise source from which stimulated

Brillouin scattering can grow. This enhanced noise source can then appear as

an apparent Brillouin signal.
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Controlling parametric instabilities has been a major focus of the
inertial confinement fusion community for many years[16]. A key step in this
process is to understand the saturation mechanisms which limit the
amplitude of the waves participating in these instabilities. This chapter
addresses one particular saturation mechanism in which a Langmuir wave
decays into an electromagnetic wave and an ion acoustic wave. This
saturation mechanism can directly or indirectly affect every three-wave
parametric instability present in laser-produced plasmas.

When one of the daughter waves driven by a particular instability
becomes large enough, it can become the pump for a secondary decay process.
As the daughter waves driven by the secondary instability grow, the primary
instability may saturate if enough energy is removed to pump the secondary
instability. The secondary instability, therefore, introduces an effective
"nonlinear" damping into the primary instability[9]. In addition, parametric
instabilities may saturate due to the frequency shift resulting from the
coupling to secondary instabilities and also due to the self consistent detuning
caused by changes to the background density[17,38].

The electromagnetic decay instability(EDI), which is the subject of this
chapter, involves the decay of a Langmuir wave into an electromagnetic
wave and an ion acoustic wave. Because the ion acoustic wave is a low
frequency wave, the frequency of the electromagnetic daughter wave is very
close to the frequency of the Langmuir wave pump. This has led to the use of
EDI as an explanation for electromagnetic emission near the plasma
frequency observed in laboratory electron beam instability experiments[41],

type III solar bursts[42,43], and recently in ionospheric heating
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experiments[44]. The simultaneous evolution of EDI with the decay of the
Langmuir wave into another Langmuir wave and an ion acoustic wave has
also been studied[45]. In the case of type III solar bursts, electrons stream from
the sun during solar flares and excite Langmuir waves via the bump-on-tail
instability. These Langmuir waves can then undergo a decay into an
electromagnetic wave and an ion acoustic wave (EDI). EDI then provides one
of several explanations for the radio emission recorded during type III solar
bursts[42].

Most of the parametric instabilities present in laser-produced plasmas
posses daughter Langmuir waves which can drive EDIL In particular, the
Langmuir waves generated in stimulated Raman scattering, two plasmon
decay, ion acoustic decay, oscillating two stream instability, and the Langmuir
~ decay instability[16,46,75] may all decay through EDI. In the case of stimulated
Brillouin scattering, EDI may still play a role by creating an enhanced noise
level from which stimulated Brillouin scattering may grow.

To be resonant, EDI must satisfy frequency and wavenumber matching
conditions. The frequency matching condition is given by ®epw = ®5+0js
and the wavenumber matching condition by Eepw = Es +Eia, where

- -

mepW,EepW;ms,ks;mia,kia are the frequency and wavenumber for the
Langmuir wave, the electromagnetic wave, and the ion acoustic wave
respectively. The frequency matching condition in conjunction with the
dispersion relations imply that the wavenumber of the electromagnetic wave

is much less than that of the Langmuir wavenumber or, more precisely

|ks] ~+3 thhlkepwl, where vih is the electron thermal velocity and c is the

speed of light.
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The homogeneous growth rate for EDI, as with all parametric
instabilities,[16] can be calculated by Fourier transforming the fluid equations
and Maxwell’s equations, neglecting non-resonant terms. This procedure
assumes kinetic effects are not dominant. The homogeneous growth rate

calculated by this method is[41]

v 1 ( Nepw J Opi kiza Oepw (éA -€epw ) (3.1.1)
EDI 2.2 2 ’
4\ Toe ( 1+ kia)”De ) kePW \/ kiacs Vs

where @pi, ®epw, ®s are the ion plasma frequency, the Langmuir wave
frequency and the scattered light wave frequency respectively; cs and Ape are
the sound speed and the electron Debye length; nepw/noe is the amplitude of
the Langmuir wave pump; and (é A 'éepw) is the dot product of the electric
field vectors for the Langmuir wave and the scattered light wave. The growth
rate is maximum when the electric fields of the Langmuir wave and the
electromagnetic wave are aligned. This corresponds to direct sidescatter of the
electromagnetic wave in a plane perpendicular to the propagation direction of
the Langmuir wave.

The following sections discuss some specific cases where EDI can be
driven in laser produced plasmas. éection 3.2 discusses the effects of EDI
when it is driven by two plasmon decay and compares this to previous
experimental observations. Section 3.3 examines the scattering version of EDI
at the critical surface and its consequences for stimulated Brillouin scattering,

as well as the ion acoustic decay instability. In section 3.4, the conditions in
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which EDI can be an absolute instability when driven by the Langmuir wave

associated with stimulated Raman scattering are found.

3.2 Electromagnetic decay instability from two
plasmon decay

EDI can be pumped by the Langmuir waves associated with two
plasmon decay, a parametric instability involving the decay of an incident
electromagnetic wave into two Langmuir waves. Since the frequency of these
two Langmuir waves is approximately half the laser frequency, radiation
scattered at odd half-harmonics of the laser has been attributed to two
plasmon decay. Because EDI involves the decay of a Langmuir wave into an
electromagnetic wave and an ion acoustic wave, it provides a potential
explanation for the electromagnetic emission near half the laser frequency
observed in laser-plasma experiments.

Figure 3.2.1 shows a typical spectrum of light near half the laser
harmonic. This spectrum has been reproduced from Seka et al.[76] with
permission of the first author Wolf Seka. The spectrum shows two broad

peaks(éf- = 0.02)[76,77] which are red(c) and blue(b) shifted from half the
laser frequency and one narrow peak(%—)ﬂlzo.004)[76,77] which is red(a)

shifted by approximately half the amount of the broad red peak(c). This
narrow feature(a) has been attributed to the high frequency mixed
polarization instability,[76,77] whose theory has been developed by Afeyan[78].

The frequency shifts of the two Langmuir waves associated with two

plasmon decay can be calculated from the dispersion relation. When plasma
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flow is included in the calculation and assumed to be antiparallel to the

incident pump wavenumber, the plasma waves are up and down shifted

kepw E
from half the laser frequency by[79] Aw = i-(—-wkw—i - % k, )[———th -ug |,
()

where Eepw is the wavenumber of the blue plasmon, k, is the wavenumber
of the incident wavenumber, v, is the thermal electron velocity, and uy is

the flow velocity of the plasma.
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Figure 3.2.1 Plot of the wo/2 emission observed from a solid target
experiment. The vertical axis shows the relative emission while the
horizontal axis shows the wavelength of the scattered light. This graph has

been reprinted with permission of Wolf Seka.

Two explanations have appeared in the literature for the broad features
shown in figure 3.2.1[76,77,80]. The first explanation involves Thomson

scattering of the incident laser off of the electron plasma waves associated
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with two plasmon decay. The red shifted peak has been attributed to
Thomson scattering of the incident laser from the blue shifted plasmons
associated with two plasmon decay, while the blue shifted peak has been
attributed to Thomson scattering of reflected light from the critical surface off
of the red plasmons associated with two plasmon decay. The second
explanation involves the inverse resonance absorption of the Langmuir
waves associated with two plasmon decay. In inverse resonance
absorption,[81,82] the electric field of a Langmuir wave, at its turning point,
tunnels up the density gradient where some fraction of its energy excites
electric and magnetic fields at the critical surface. These fields travel down the
density gradient and drive an electromagnetic wave at its turning point
which then leaves the plasma. Recently a third explanation has been used to
describe this electromagnetic emission[59]. This explanation involves the
unstimulated coupling of Langmuir waves and ion acoustic waves to drive
electromagnetic waves and is the scattering analog of EDL

The collisional damping on the Langmuir waves limit how far the
waves can travel and still retain a significant amount of their energy.
Therefore, any explanation for the electromagnetic emission which requires
propagation of the Langmuir waves must consider their subsequent damping.
The collisional damping of the Langmuir wave’s energy as it travels up the

density gradient to its turning point can be estimated using the WKB

-2k A ;L k
method[16] to be approximately exp epwDe Vel 1-—2- ||, where Vg is
' Vth epw

the electron-ion collision frequency and ky is the Langmuir wavenumber

perpendicular to the density gradient. For the experiments discussed in this

chapter,[76,77,83,84] a Langmuir wave driven at an angle of 10 degrees to the
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density gradient would retain less than 6 percent of its energy when it reaches
its turning point.

There are several problems with the Thomson scattering explanation
of o/2 emission from plasmas. Electromagnetic emission near 3wo/2 has
been measured simultaneously with the @wo/2 emission and both of these
features have been attributed to Thomson scattering of the pump beam off of
the Langmuir waves associated with two plasmon decay. The 3wp/2 features
would correspond to Thomson upscattering, while the wo/2 features would
correspond to the Thomson downscattering. As shown in figure 3.2.2, the
®o/2 feature, which is damped more than the 3wo/2 feature, can contain
nearly four orders of magnitude more energy than the 3wo/2 feature. Figure
3.2.2 has also been reprinted from Seka et al.[76]. Using the models developed

in section 3.3 and 4.3[7,80,85], the ratio of intensities of the Thomson

downscattering process, 1j/;, to the Thomson upscattering process, I3/,
which is responsible for the 3wo /2 features, is the smaller
-1 1.1 0137 5 0.35 ' -1

of (T2 [Tay2 = 0.33kaokih 1172 / Ta/2 = 280 Like) (Lnx . /2} (x 32 K7 ,2)},
which for kepwApe<0.1 is less than approximately 330. The relative
magnitudes between the 3wg/2 features and the wo/2 features is then
inconsistent with the interpretation that the wg/2 feature is the result of
Thomson scattering.

One apparent solution to the difference in magnitude of the 3wp/2 and
Wo/2 features would be to assume that the 3wg/2 feature resulted from
Thomson scattering, while the wo/2 feature was the result of stimulated

Raman scattering. Specifically, if the Langmuir waves associated with two
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plasmon decay became resonant with stimulated Raman scattering, through

refraction or scattering, they could be amplified, resulting in a much higher
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Figure 3.2.2 Plot of the absolute magnitude of 3wo/2 emission and wgo/2

emission as a function of incident laser intensity. The left vertical axis shows

* the absolute 30o/2 emission and the right vertical axis shows the absolute
®o/2 emission while the horizontal axis shows the intensity of the incident

laser. This graph has been reprinted with permission of Wolf Seka.

emission of ®wo/2 light than 3wo/2 light. One of the problems with this
explanation can be seen in the spectrum shown in figure 3.2.1. The 0o/2
emission consists of two broad peaks which are red(c) and blue(b) shifted from
the laser. Although the red peak(c) could be amplified by stimulated Raman
scattering, the blue peak(b), as discussed in chapter 2, could not. The resulting
spectrum should then only show the red peak(c) due to the limited dynamic

range of the streak camera. Figure 3.2.1 shows that the broad blue peak(b)
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contains in fact approximately twice the energy as the broad red peak(c). The
similarity in magnitude of the two broad features precludes stimulated
Raman scattering as the explanation for the two broad peaks observed in the
experiments.

The second explanation of the wo/2 feature, which appears in the
literature, is the conversion of Langmuir energy into electromagnetic energy
by inverse resonance absorption. The conversion efficiency for inverse

resonance absorption is expressed in terms of the parameter

0oL 0.67
q= (—i-iw—) sin% , where Wepw is the Langmuir wave frequency and the

electromagnetic wave frequency, L is the density scalelength, c is the speed of
light, and 0 is the angle between the density gradient and the converted
electromagnetic wavenumber at the plasma vacuum boundary([16,81,82]. For
the process to be greater than one percent efficient, the parameter q must be

less than approximately 2.5 which limits the perpendicular wavenumber to
-0.33

_ko | Oepwh 7 Dpe .
ky =73 Ja . <0.115k,, where k, =3 ~ is the wavenumber

of the incident laser at the quarter critical surface. The perpendicular

component of the Langmuir wave can be related to the electromagnetic wave
-0.33

® 0 o
angle through the relation k6 = —2% gin@ = —22 [q| —2¥ . This
& & y c c c

shows that a Langmuir wave with a perpendicular component of its
wavenumber greater than the Langmuir wave frequency divided by the speed
of light cannot undergo inverse resonance absorption because the required

electromagnetic wave would not be a normal mode of the plasma.
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Figure 3.2.3 Schematic representation of inverse resonance absorption in an
inhomogeneous plasma. The electric field then tunnels up the density
gradient and back, driving a Langmuir wave and an electromagnetic wave
which have the same perpendicular component to their wavenumber as the

original Langmuir wave.

Because of the restrictions on the perpendicular component of the
wavenumber, the phase space of plasmons available for efficient conversion
into electromagnetic radiation is very small. Even with considerable
scattering of the Langmuir waves, only those plasmons traveling up the
density gradient with the specified perpendicular component of their
wavenumber would undergo appreciable conversion into electromagnetic

waves. Likewise, most of their energy would be lost before they reached their

critical surface. Without significant perturbations to the background density,
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inverse resonance absorption does not present itself as a likely candidate to
explain the emission observed in experiments[76,77).

There are several ways in which the background density could be
perturbed to increase the amount of inverse resonance absorption. If two
plasmon decay occurs in laser hotspots, then the hotspots could provide a
broader angular range for the density gradient[76,86]. The ponderomotive
force of the laser hotspot would cause a density cavity in which the two
plasmon decay Langmuir waves could become trapped. These waves could
then undergo inverse resonance absorption on the walls of the cavity.
Assuming a simple pressure balance in a homogeneous plasma, the hotspot
intensity divided by the average intensity, «, required to trap a Langmuir

wave is

a=1+

(akgpwz%e)(ﬂenoe)(@c)
=

Iav

where xTenge is the plasma pressure and Iay is the average pump intensity.
a would have a value of 4 assuming kepwApe=0.2, Ly=8x1014 W/cm2, Te=1
keV, and nge=2.25x1021 cm-3. The reduced local scalelength inside the cavity
increases the range of angles for efficient resonance absorption.

Inverse resonance absorption can also occur due to changes in the
background density caused by ion acoustic waves. Large amplitude ion
acoustic waves can cause the local electron density to become overdense to
the Langmuir waves. These Langmuir waves can then undergo inverse
resonance absorption on the ion acoustic wave itself. This eliminates the

need for the Langmuir waves to travel large distances, and the need for the
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red plasmons to undergo decay or be scattered up the density gradient. The
amplitude of the ion acoustic waves, nja/ngj, must be greater than
3(kepw7\'De)2~ Therefore, it is less likely that this process can be used to convert
Langmuir waves with large KepwADe, however, ion acoustic waves with
amplitudes of 25% have been reported near the quarter critical surface in COy
experiments[17]. This process could even take place in an overall
homogeneous plasma, relying only on the local density gradients resulting
from the ion fluctuations. In this process, the "local” scalelength is replaced by
the wavelength of the ion acoustic fluctuation which leads to a much larger
angular range since q, which must be less than 2.5 for efficient conversion, is
proportional to L2/3, In the case of conversion on ion acoustic waves, much of
the electric field will tunnel through the ion wave converting a small
percentage of the Langmuir wave energy into electromagnetic waves on
either side of the density fluctuation.

Both hotspots and large level ion waves provide a means whereby a
larger spectrum of Langmuir waves can undergo inverse resonance
absorption. The resulting electromagnetic waves will be approximately
symmetrically displaced about half the frequency of the incident laser. The
spectrum shown in figure 3.2.1, however, shows a slight red shift of the
spectrum about half the laser frequency which is not predicted by inverse
resonance absorption.

It has been shown that electromagnetic emission near wp/2 can result
from inverse plasmon-phonon decay which is the coupling of Langmuir

waves and ion acoustic waves which then radiate electromagnetic waves[59].

However, this scattering process requires the ion wave amplitudes to be
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much larger than thermal levels to explain the signals observed. These
experiments indicated that nearly twenty five percent of the energy contained
in the hot electrons attributed to the Langmuir waves was converted into
electromagnetic emission near ®o /2. The ion acoustic wavenumbers must
also be approximately the same magnitude and direction as the Langmuir
wave it is scattering from. Therefore, relying on this scattering process
requires that the appropriate ion waves be part of the ion acoustic spectra
generated by the coupling, decay, or collapse of the two plasmon decay and
stimulated Raman scattering Langmuir waves[59]. EDI can lead to much
stronger emission and greatly enhanced ion waves when compared to
scattering.

As a result of EDI, the Langmuir waves generated by two plasmon
decay can produce electromagnetic emission near ®o /2. In the subsequent
decay of these Langmuir waves into electromagnetic waves and ion acoustic
waves, the scattered light frequencies of the secondary daughter waves,

assuming the contribution from inhomogeneity is ignorable, would be

o. [ Eeow Eo 3( uck 3.2.2

2 k, 2
i k 2
_o kepW ko 1 343 Vih usk 3.2.3
Osred = %-(T—El% }(TT ~CsKepw2 ‘*’—2‘&, ( )

where ®gue is the scattered light frequency resulting from the blue plasmon

and Ogreq is the scattered light frequency produced by the red plasmon.

Equations 3.2.2 and 3.2.3 show that EDI does allow for an overall red shift of
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the ®o/2 spectrum. The maximum energy transferred to electromagnetic
emission is limited by the total energy contained in the Langmuir waves
associated with two plasmon decay. Previous experiments have inferred from
the measured x-ray emission that approximately 104 of the laser energy is
contained in hot electrons attributed to two plasmon decay[83,84]. These
experiments found a close correlation between the relative levels of hot
electrons and scattered 3wo/2 emission observed allowing them to conclude
that the electrons resulted from two plasmon decay. In similar experiments
5x1076 of the laser energy was found in wo/2 emission[76]. When the damping
of the Wp/2 emission is accounted for, the energy contained in the wo/2 light
represents approximately 25% of the energy observed in the hot electrons.
This illustrates that there is enough energy contained in the Langmuir waves
themselves to explain the level of wg/2 emission seen in experiments. It is
also interesting to note that stimulated Brillouin scattering, which shares the
same daughter waves as EDI, typically has reflectivity levels close to that
inferred from the experiments described above. As an instability, EDI
amplifies both the ion acoustic waves and the electromagnetic waves from
which it grows. Therefore, unlike inverse plasmon-phonon decay, EDI does
not require other processes to enhance and broaden the ion acoustic wave

spectrum.

3.3 Seeding of stimulated Brillouin scattering
and saturation of the ion acoustic decay
instability
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Stimulated Brillouin scattering, which is an instability in which an
electromaignetic wave drives a scattered electromagnetic wave and an ion
acoustic wave, can be seeded by nonthermal electromagnetic waves generated
near the critical surface. Near the critical surface of the plasma, the incident
laser can excite the ion acoustic decay instability. The ion acoustic decay
instability, also known as plasmon-phonon decay, is a parametric instability
in which an incident electromagnetic wave decays into a Langmuir wave and
an ion acoustic wave. This coupling process is illustrated in figure 3.3.1. The
Langmuir wave and ion acoustic wave spectra resulting from the ion acoustic
decay instability can then couple together generating a transverse current.
This current drives an electromagnetic wave close to the frequency of the
laser (which initially excited the ion acoustic decay instability). This coupling
process generates electromagnetic waves which can be many orders of
magnitude above thermal level. These electromagnetic waves, wherever they
are locally resonant, provide an enhanced noise source from which
stimulated Brillouin scattering can grow. This can be much larger than the
electromagnetic noise source from which stimulated Brillouin scattering
grows, which is set by Thomson scattering of the pump from thermal ion
waves. This process can also give the appearance of an enhanced level of
stimulated Brillouin scattering.

A model can be constructed which shows the electromagnetic wave
amplitude, near its turning point, produced by the scattering of a Langmuir

wave from an ion acoustic wavel7,85]. The electromagnetic wave is driven
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Figure 3.3.1 Wavevector diagram showing the coupling process which leads
to electromagnetic emission near the plasma frequency. The two wavevector
diagrams in the center represent two possible decay triangles belonging to the
ion acoustic decay instability. The ion acoustic wave from one of these decay
triangles can couple to the Langmuir wave of the second decay triangle and

drive an electromagnetic wave close to the Langmuir wave frequency.

due to the transverse current formed by the coupling of a Langmuir wave and

an ion acoustic wave which is given by

8_2.'_&)2 (1+_>(_)_C2i2_ gﬁ&=_ 2 ila_ wepw nepw , (3.3.1)
ot> Pe L, Ix2 mec2 P® noe ckepw Nge

where Nepw /noe and nja/nge are the pump Langmuir wave amplitude and
the ion acoustic amplitude, respectively and Agc is the vector potential of the
scattered light wave. The pump Langmuir wave and ion acoustic wave
amplitudes are assumed to be of the form
Ny

&= -;—‘Pa(x)exp[i“lza -dx- mat)] +c.c.. The scattered vector potential is
oe

assumed to be of the form g-és%=%‘l’s(x)exp[-ia)st]+c.c.. The steady state

form of equation 3.3.1 can be written as
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where the wavenumber mismatch of the pump Langmuir wave and the ion
acoustic wave has been Taylor expanded, (Eia(x) + Eepw(x))-diz x'x, about
the perfect phase matching point. Equation 3.3.2 was solved numerically as
shown in Appendix 3.1. The resultant scattered vector potential, at the perfect

phase matching point, is

oo o2 ~0.45 333
¥, (x) = 3.3| — (¥ epw ¥ —F e
s 23k ' epw “iaj| 21 15
CKepwX edi nX adi

The scattered vector potential, at the plasma-vacuum interface, is

-1 )—1/ 6

approximately 0.85(wpean times the scattered vector potential, at the

turning point shown in equation 3.3.3.

The scattered vector potential resulting from Thomson scattering of
the pump beam from thermal ion acoustic waves can be calculated as shown
in section 5.3, assuming a linear phase mismatch. This calculation yields a

scattered vector potential, at the turning point, of

N
|‘.PSC"I'homson , 2pe ‘TO“\I‘ia|t}1ernnal' (3:34)
K Thomson 4 € Xsc

The ratio of the intensities is then equal to
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where eGIADI is the energy gain experienced by the ion acoustic waves
participating in the ion acoustic decay instability. The scattered vector
potential produced by the coupling of Langmuir waves and ion acoustic
waves driven by the ion acoustic decay instability can be several orders of
magnitude greater than the vector potential produced by Thomson scattering

of the pump off of thermal level ion acoustic waves.

3.4 Electromagnetic decay instability from
stimulated Raman scattering

There are several circumstances where EDI can be an absolute
instability. When parametric instabilities are driven by a spatially localized
pump, they can be driven absolute even with a linear wavevector
mismatch[28,87]. Therefore, EDI is expected to be an absolute instability when
its pump Langmuir wave is sufficiently localized in space. In the case of
stimulated Raman backscattering driven near the quarter critical surface or on

top of a parabolic profile, the daughter waves will be spatially localized[78]. In
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particular, when stimulated Raman backscattering is driven at the apex of a

parabolic profile, the Langmuir wave is localized over a region
2 -2

(el )
Y le | \de) L0 0, )\ o, ) (34.1)

where Lg is the plasma scalelength(n, ocﬁ(l—xz/ Lzz)), Ao is the vacuum

W=

wavelength pump, and

1
6
) ’ )
f [——93) Dpe pe 1- 2 pe ~1. The distance over
Mg C‘)o

which the Raman daughter waves are localized is then independent of the

Raman growth rate provided the instability is not close to the quarter critical
surface where equation 3.4.1 is no longer valid. For EDI to be absolute due to a
localized pump, its growth rate must be sufficiently large to satisfy the
condition -\?—K'lf <x'll < v/8¢,[28,87] where K‘:%(k@w -k, —kim),
I = m /4o, and 1y is the localization distance given in equation 3.4.1.
For Ly=700Ao, Te=1 keV, (ope/ wo=0.3, kepwlpe=0.2, the Langmuir wave
amplitude must be greater than approximately 2% for absolute instability to
ensue, neglecting damping. This is illustrated below in figure 3.4.1. The
program describe in section 2.3 and Appendix 2.4 was used to look at the
absolute instability condition shown above. In these figures, the daughter
waves were given the same magnitude but opposite group velocities. The
Rosenbluth gain was set to Yo2/(k'V1V2)=1.0 in figures 3.4.1 a-d. Figure 34.1 a

represents the case where the pump is uniform over space, ly/lc=co. The
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daughter wave amplitude is shown to saturate at an amplitude of
approximately 9.0 with the wave convecting out at the group velocity. Figure
3.4.1 b represents the case in which the pump is localized but not yet meeting
the condition for absolute instability with ly/1¢=6.67. In this case the
amplitude saturates at a value of approximately 11.0 with the daughter wave

traveling to the right at the group velocity. In figure 3.4.1 ¢, the condition for
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Figure 3.4.1 Finite spatial pump effects on the absolute and convective nature
of parametric instabilities. The vertical axes in all graphs represent the
relative amplitude while the horizontal axis represents position. Each graph

shows the daughter wave amplitude at three different times with the

parameter Yo2/(x'V1V2)=1.0 in figures 3.4.1 a-d. Figure 3.4.1 a represents the
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case where the pump is uniform over space, ly/lc=co. Figure 3.4.1 b represents
the case in which the pump is localized but not yet meeting the condition for
absolute instability with ly/1¢=6.67. In figure 3.4.1 ¢, the condition for absolute
instability is met with ly/1¢=0.67. In figure 3.4.1 d, the pump is too localized for
absolute instability to ensue with ly/1¢ =0.40.

absolute instability is met with ly/1¢=0.67. The daughter wave does not
saturate due to plasma inhomogeneities and continues to grow in time at a
growth rate which is approximately 0.3 times the homogeneous growth rate.
In figure 3.4.1 d, the pump is too localized for absolute instability to ensue
with ly/1¢ =0.40.

EDI can also become absolute when its daughter electromagnetic wave
travels in a perpendicular direction to the density gradient. Figure 3.4.2
illustrates this geometry in the case of stimulated Raman backscattering,
where the pump wave for the secondary process is a Langmuir wave
traveling along the density gradient. The daughter waves are then an
electromagnetic wave perpendicular ;co the density gradient and an ion
acoustic wave which is nearly aligned with the density gradient. EDI is only
driven over the distance, perpendicular to the density gradient, in which the
Langmuir pump wave is coherent, Lcoh- EDI grows for the transit time,
tcoh=Lcoh/vgs, of the electromagnetic wave across this coherence length.
Therefore, the maximum energy amplification of the daughter
electromagnetic wave is e2Yotcoh where v, is the homogeneous growth rate
given in equation 3.1.1. Assuming a 1 keV plasma with a 0.351 ym pump, a
Langmuir wave with an amplitude of nepw/ noe=0.05 driven at ten percent of
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the critical density would require a perpendicular coherence length of nearly

60 um to amplify the daughter electromagnetic wave by e27.
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Figure 3.4.2 Schematic representation of absolute electromagnetic decay
 driven by stimulated Raman scattering. Assuming the laser is incident along
the density gradient, stimulated Raman backscatter produces Langmuir waves
which also travel in the direction of the density gradient. These Langmuir
waves can then decay into a scattered light wave traveling perpendicular to
the density gradient causing the instability to be absolute in the direction of

the density gradient.

Instabilities can also grow absolutely due to reflections coupling energy
from the daughter waves back into the interaction region[29]. This is easily
achievable by the same mechanism discussed in section 3.2 regarding
hotspots. For hotspot intensities slightly above the average intensity of the
laser(Ihot/Iav<4), the electromagnetic waves formed by the electromagnetic

decay instability can become trapped in the density cavern formed by the

hotspot. This scenario, therefore, allows the scattered electromagnetic wave to
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couple back to the interaction region driving the instability absolute. This
process also does not require the electromagnetic decay instability to be above

the homogeneous threshold for absolute instability.

3.5 Summary

The most compelling evidence that the electromagnetic decay
instability(EDI) occurs in laser-produced plasmas comes from wo/2 emission
observed in experiments. This emission has been shown above to be
inconsistent with previous interpretations involving Thomson scattering.
The observed ratio of wg/2 emission to 3wo/2 emission implies that
Thomson scattering is not responsible for the measured value of wgo/2
emission. Also it was shown that the broad red shifted feature could not be
explained as a resonant scattering process of the incident laser from the blue
plasmons even with refraction. Because the red and blue peaks are within a
factor of two in energy, it is unlikely that Thomson scattering could explain
the observed features. It was also shown that the phase space of blue
plasmons capable of undergoing greater than one percent inverse resonance
absorption was very small. Additionally these waves would lose a significant
amount of their energy due to collisional damping as they traveled to their
turning point. Inverse resonance absorption, therefore, requires hotspots or
large level ion waves to convert a larger phase space of Langmuir waves into
electromagnetic emission. The observed wo/2 spectra shows a slight red shift
which is not predicted by inverse resonance absorption. Nonetheless,

experiments measuring hot electrons have shown that enough energy is
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contained in the two plasmon decay daughter waves to account for the wp/2
emission. By using EDI to explain ®o/2 emission, the relative levels of 3wg/2
emission and wo/2 emission and the amount of energy found in the wo/2
feature can be accounted for. EDI also allows for a slight red shifting of the
spectrum which can be seen in figure 3.2.1.

Near the critical surface, Langmuir waves and ion acoustic waves can
generate transverse currents which drive electromagnetic waves close to the
frequency of the incident laser. A model was constructed which shows the
ratio of the vector potential resulting from the coupling between Langmuir
and ion acoustic waves driven by the ion acoustic decay instability relative to
the vector potential driven by Thomson scattering of the incident pump from
thermal level ion acoustic waves. These electromagnetic waves can be several
orders of magnitude higher than Thomson scattering from thermal levels.
They can, therefore, provide an enhanced noise source from which
stimulated Brillouin scattering can grow.

The conditions under which EDI could be driven absolute were
investigated. EDI can be driven absolute when its daughter electromagnetic
wave is driven perpendicular to the density gradient. EDI can also be driven
absolute when the pump Langmuir wave is sufficiently localized. For the case
of a Raman generated Langmuir wave, these conditions were obtained from
previous calculations of the Langmuir wave localization distance[78] and the
general condition for absolute instability given a localized pump{28,87]. EDI
can also be driven absolute due to the coupling of the daughter wave energy

back into the interaction region. If the Raman process is being driven

primarily by hotspots in the laser, then for very small hotspot intensities, the
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daughter electromagnetic wave can be trapped in the resultant density cavern
and consequently couple back into the interaction region driving the

instability absolute.

3.6 Future Work

I proposed an experiment to Los Alamos o study Langmuir wave
saturation by observing the electromagnetic emission from Langmuir waves.
I delayed working on this experiment, however, in the interest of finishing
my dissertation. In the proposed experiment, stimulated Raman

scattering(SRS) was to be used to generate the Langmuir plasma waves to be

studied. In Stimulated Raman Scattering an incident electromagnetic wave
decays into an electron plasma wave and a scattered electromagnetic wave.
Stimulated Raman Scattering can occur below the quarter critical surface
defined by the pump electromagnetic wave. Because this electromagnetic
radiation is near the plasma frequency, SRS must be driven with 350 nm light
so that the scattered light can be detected with an S-1 streak camera. The
electromagnetic emission from SRS produced Langmuir waves would range
from 700 nm to approximately 1600 nm. With an S-1 streak camera, the range
from 700 nm to approximately 1100 nm, corresponding to stimulated Raman
emission from the quarter critical surface down to the tenth critical surface,
would be detectable.

In the experiment, I proposed to vary the transverse scalelength to

observe the effect this had on the level of stimulated Raman backscattering

which has not yet been reported in the literature. According to linear theory,
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the transverse scalelength should not affect stimulated Raman backscatter,
assuming the backscatter is along the primary density gradient, however, it
could greatly affect secondary instabilities such as the electromagnetic decay
instability thereby changing the reflectivity of stimulated Raman backscatter.
Likewise, different random phase plates on the interaction beam would affect
the hotspot statistics which should effect the electromagnetic decay instability
if it is being driven absolute from coupling of the daughter electromagnetic

wave back into the interaction region due to trapping caused by the

ponderomotive force associated with the hotspot.
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Chapter 4

Thomson Scattering

4.1 Introduction

Thomson scattering is the primary diagnostic used in the experiments
described in the following chapters. This chapter, therefore, presents a review
of the theory of Thomson scattering and later discusses the plasma
parameters which can, in principle, be obtained through the use of this
diagnostic. However, there are limitations due to plasma inhomogeneities
which will be discussed in section 4.2. The information given in this chapter
is drawn from a number of reviews on Thomson scattering[88-93]. Some of
the longer derivations are placed in Appendices. In the following discussion,
it will be assumed that there are no zero-order external magnetic fields.
Thomson scattering from plasmas involves the scattering of incident

photons by electrons and ions present in the plasma. An incident

electromagnetic wave accelerates electrons and ions in the plasma which in
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turn emit radiation that is Doppler shifted due to the thermal velocities of the
electrons and ions participating in the scattering process. Because the mass to
charge ratio of the electrons is much less than the ions present in the plasma,

their acceleration is greater than that of the ions by the ratio M;/Zm,(21837).

Consequently the amplitude of the scattered electromagnetic wave resulting

from the electrons is greater than the radiation scattered by the ions by this
same ratio, M;/Zm,. The radiation emitted by the plasma particles is
incoherent when they are uncorrelated, however, when the electrons
participate in collective oscillations in the plasma, they are correlated and the
radiation emitted from the electrons participating in the collective oscillation
adds coherently. Therefore, the scattered spectrum contains an incoherent
component, as well as coherent peaks representing the electrostatic normal
modes present in the plasma. These electrostatic normal modes are the
Langmuir waves and ion acoustic waves present in the plasma. The ions do
play an important role in determining the éhape of the scattered spectrum
due to the plasma's quasi-neutrality. The electrons shield the ions and hence
the coherent scattering observed from ion waves comes from the electrons
which are helping to shield the ions. When the wavelength of the ion wave
becomes less than the shielding distance, the electron Debye radius, the
electrons cannot completely shield the ion charge and hence the Thomson
scattering signal from these waves is reduced. This effect would be most
apparent in the stimulated Brillouin scattering where the exponential gain is
reduced due to the incomplete shielding of the electrons.

Thomson scattering was used in the experiments performed for this

dissertation primarily to observe the Langmuir wave spectrum driven by
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parametric instabilities. The next section discusses the calculation of the
expected Thomson scattering spectra from thermal level waves in a
homogeneous plasma and presents calculated spectra from two of the ion-
species plasmas used in these experiments. This section also reviews the
characteristics of the Thomson scattered spectrum which are used to
determine various plasma parameters and discusses the ambiguities which
inhomogeneities introduce in the interpretation of the Thomson scattered
spectra. The final section addresses the issue of Thomson scattering from
electrostatic waves in inhomogeneous plasmas and the effect these

inhomogeneities have on the Thomson scattered spectrum.

4.2 Thomson Scattering in Homogeneous
Plasmas

The calculation of the Thomson scattered shape factor is shown in
appendix 4.2. This calculation treats each individual particle in the plasma as
a test particle and calculates the electric field generated by the remaining
particles which are shielding the test particle. The sum of the electric fields
representing the shielding of each of the test particles, along with the electric
field of the test particle electrons themselves, represent the electric field
present in the plasma due tb the thermal level density fluctuations. The
spectral density fluctuations are then found simply by integrating the first-
order distribution function using the total electric field calculated from the

test-particle approach. The scattered form factor obtained in this appendix is

given by
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The experiments performed for this dissertation involved primarily
CH and Collodium plasmas. The CH plasmas had equal parts of Carbon and
Hydrogen while the Collodium plasmas had 23.1% Carbon, 30.8% Hydrogen,
36.5% Oxygen, and 9.6% Nitrogen. Figure 4.2.1 shows the scattering form
factor, S(E, w), for a CH plasma assuming kApe=0.1. The two peaks represent
the scattering from ion acoustic waves present in the plasma. This figure
shows how the Thomson scattering shape factor changes as the ratio of the
ion to electron temperature changes.

Thomson scattering from electrostatic waves obeys the frequency and

wavenumber matching conditions[88],
Dgeatt = Dpr T Djp and (42.2)
Kscatt = l-Epr * Eia; (4.2.3)

where wscatt(kscatt), (Dpr(kpr), wja(kia) are the frequency(wavenumber) of the
Thomson scattered wave, the probe beam, and the electrostatic wave
respectively. These matching conditions are required for the waves to stay in

phase with each other so that they may interact over a greater distance. In the

case of ion acoustic waves, the ion acoustic frequency is much less than the
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Figure 4.2.1 Thomson scattering form factor for a 50:50 CH plasma at various
values of Ti/Te. Figure 4.2.1a-d show the form factor at four different values
of the ratio of the ion temperature to the electron temperature. In all four
cases, the wavenumber multiplied by the electron Debye length is fixed at
kApe=0.1 and the ions are assumed to be fully stripped. The vertical axis
represents the amplitude of the scattered form factor, while the horizontal
axis shows the form factor as a function of frequency. In all four cases the

peaks are separated by twice the ion wave frequency which is approximately

0.002 wpe-

frequency of the electromagnetic waves and consequently the wavenumbers

of the electromagnetic waves are approximately the same magnitude.

Therefore, in an experiment the wavenumber of the ion acoustic waves, Kia,
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being probed is determined primarily by the geometry of the Thomson

scattering experiment[88],

=2, sin, 424)

where kpr is the wavenumber of the Thomson probe beam and 6 is the angle
between the Thomson probe beam and the scattered electromagnetic wave.
The frequency separation between the scattered peaks is twice the ion

wave frequency. This is proportional to the square root of the electron

temperature, Te, provided kijaApe<<1 and may be expressed as
Wgep = (T;)Kiay Te , (4.2.5)

where o(Tj) is a function of the ion temperature which must be calculated
numerically from the scattering form factor, S(l::.,co), of the plasma. The
relationship between the parameters of equation 4.2.5 is demonstrated in
figure 4.2.2 which shows the peaks of the Thomson scattered form factor. As
the parameter kiaApe is changed from 0.1 in 4.2.2a to 0.2 in 4.2.2b, the
separation between the peaks doubles accordingly. The behavior of the
separation as a function of Tj/Te remains unchanged, however, as stated in
equation 4.2.5. The separation between the peaks is the primary feature which
is used to determine the electron plasma temperature, Te. The frequency of
the Thomson scattered peak yields the ion wave frequency while the
geometry of the experiment is used to determine the magnitude of kia, the

wavenumber of the ion wave. The numerical solution of the Thomson shape
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factor is then used to infer the electron temperature. The primary source of
uncertainty in the electron temperature is due to the unknown ion
temperature which changes the separation between the peaks depending on

its value relative to the electron temperature as shown in figure 4.2.2 a and b.
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'Figure 4.2.2 Dependence of the shape factor on the ratio of ion to electron
temperature for a CH plasma. Figure 4.2.2a shows the maximum of the
scattered peaks present in the form factor as a function of the ratio of the ion
temperature to electron temperature with kApe=0.1. Figure 4.2.2b again shows

the maximum of the scattered peaks present in the form factor with kApe=0.2

in this case.

Several of the attributes which are used to determine plasma
parameters are shown in figure 4.2.3. Figure 4.2.3a shows the relative

damping of the least damped ion wave mode in a CH plasma as a function of

the ratio of Tj to Te. This represents the solution of the dispersion relation,
e(m,§)=1+ xe(m,E)+2 zia((o,lz)=0. The graphical roots to the plasma
[14
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dispersion function along with plots of the least damped modes can be seen

in appendix 2.4 for several different ion species. Figure 4.2.3 b-d are taken
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Figure 4.2.3 Attributes of the Thomson scattering shape factor, S(k,), for a CH
plasma. The horizontal axis in figure 4.2.3 a-d represent the ratio of the ion to
electron temperature present in the plasma. The vertical axis in figure 4.2.3a
shows the relative damping of the ion wave expressed as the absolute
magnitude of the imaginary component of the frequency divided by the real
part of the frequency. The vertical axis in figure 4.2.3b represents the relative
magnitude of the Thomson shape factor for é CH plasma. The vertical axis in

figure 4.2.3c represents the ratio of the peak to valley in the Thomson
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scattered shape factor and the vertical axis in figure 4.2.3d represents the
frequency width of the Thomson scattered peaks normalized to the plasma

frequency.

from the Thomson scattered form factor shown in figure 4.2.1 a-d. Figure
4.2.3b shows the relative magnitude of the scattered peaks as a function of the
ratio of Tj to Te. Figure 4.2.3c shows the ratio of the peak to valley as the ratio
of Tj to Te is varied. The valley is defined as the value of the shape factor
where Oscatt=Oprobe. Figure 4.2.3d shows the frequency width of the peaks in
the Thomson scattered spectra as Tj/Te is varied. In all these figures, kApe is
equal to 0.1.

The ion temperature relative to the electron temperature is typically
determined by the either the frequency width of the scattered peaks as
depicted in figure 4.2.3 d or by the ratio of the peak to valley in the Thomson
scattered form factor as shown in figure 4.2.3 c. Although these functions are
typically monotonically increasing functions of the ratio of ion temperature
to electron temperature for the frequency width and monotonically
increasing for the case of the peak to valley measurement, in multi-species
plasmas these features become multi-valued as is apparent in figure 4.2.3 ¢
and d. Both of these features follow qualitatively the damping of the ion
acoustic waves as can be seen by comparing figure 4.2.3 ¢ and d to figure 4.2.3
a.

As mentioned in section 2.1, when the wavelength of the ion wave

becomes less than the shielding distance, the electron Debye radius, the

electrons cannot completely shield the ion charge and hence the Thomson
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scattering signal from these waves is reduced. Figure 4.2.1 a-d shows the
Thomson scatter spectra for a CH plasma with Tj/Te maintained at 0.5 as a

function of kApe. The magnitude of the Thomson shape factor decreases with

increasing values of kApe.
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Figure 4.2.4 Thomson scatter spectra in a CH plasma as a function of kApe
with Tj/Te fixed at 0.5. The vertical axes in all four figures represent the
relative amplitude of the Thomson scattered signals while the horizontal
axes are normalized frequency. Figure 4.2.4 a-d represent the Thomson shape

factor with kApe=0.1, kApe=0.5, kApe=1.5, and kApe=3.0, respectively.

The Thomson scattering form factor can also be used to determine if
there is a relative drift between the electrons and ions in the plasma. Figure

4.2.5 compares the Thomson scattering form factor for the case in which a
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Carbon plasma has no drift between the electrons and ions, 4.2.5a, to the case
where the electrons are drifting with a relative drift of approximately 0.5 cg
relative to the Carbon ions 4.2.5b. If the electrons and ions are drifting relative
to one another by an amount greater than the phase velocity of the ion wave,
then the ion waves are unstable and may be driven to large amplitude. In
multi-ion plasmas, there is also the possibility that there can be a drift
between different ion species, which, in the case of low-Z ion species where
the damping is dominated by the ion distributions, can have a more
important effect on the asymmetry of the peaks than a relative drift between

the ions and electrons.
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Figure 4.2.5 Thomson shape factor for a Carbon plasma in which there exists
a finite drift between the electrons and ions. The horizontal axes shows the
scattered frequency which the signal is scattered while the vertical axes show
the relative amplitude. Figure 4.2.5a represents the case with zero drift
between the electrons and ions. Figure 4.2.5b represents the case in which

there is a relative drift between the ions and electrons of approximately 0.5 cs.

When measuring the plasma temperature, it is important to minimize

the angular spread in the Thomson probe beam and collection optics to
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reduce the uncertainty in the magnitude of ion wavenumber being probed.
The Thomson scattering data is typically fit to the scattering form factor to
extract the electron temperature, the ion temperature, and the relative drift
between the electrons and the ions. Although in a homogeneous plasma, a fit
can be made between the width of the Thomson scattered peaks and their
separation to determine the ion and electron temperature, this is much more
difficult in an inhomogeneous plasma. In inhomogeneous laser-produced
plasmas, the flow gradient scalelengths are typically on the order of the spot
size of the probe beam. This causes the probe to effectively see a range of flow
velocities which are much broader than the homogeneous FWHM of the
scattered peaks. Due to differences in the temperature gradients, the probe
beam can also sample a range of temperature ratios. These flow gradients and
temperature gradients can make the measurement of Tj difficult. The flow
gradients can significantly broaden the spectrum making any estimation of Tj
from the width of the scattered peaks meaningless. Instrumental effects and
flow gradients can also fill in the valley of the Thomson shape factor relative
to the maximum of the scattered peaks causing an overestimation of the ratio
of ion to electron temperature present in the plasma.

A simple criteria can be established for the validity of using the
homogeneous FWHM of the Thomson scattered spectra. The dispersion

relation for an ion acoustic wave in an inhomogeneous plasma is given by

Dja = 1zia - (1 _fx') +CsKia, (4.2.6)

v
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where wja(kia) are the frequency(wavenumber) of the ion acoustic wave and
¢s, uf, Ly are the sound speed, the flow velocity, and the flow velocity
scalelength respectively. Ly can be defined as cs(duf/dx)-1. As a rough
approximation, the ion acoustic frequency changes by an amount equal to it's
“value at x=0 over a distance approximately equal to the flow velocity
scalelength. The FWHM of the scattered peaks is roughly equal to the
damping of the ion acoustic wave divided by the ion acoustic frequency.
Therefore, in most cases the focal spot of the probe beam divided by the flow
velocity scalelength must be less than the damping on the ion acoustic wave
divided by the ion acoustic frequency in order for a measurement of the
FWHM of the spectra to yield useful results. For most small-scale laser-
plasma experiments this is not the case, however, for large-scale laser-plasma
experiments such as found in exploding foil targets, gas jet experiments,
backfilled chambers, or gas bag experiments, flow velocity scalelengths of over
a thousand wavelengths can exist.' In this case the broadening due to flow
velocity inhomogeneity could be é small percentage of the broadening due to
damping on the ion wave itself, particularly in the case that there is heavy
damping on the ion wave. For high-Z ion species where the damping is a few
percent of the ion wave frequency, the probe beam area would have to be
close to one percent of the flow velocity scalelength which is unlikely even
for many large-scale plasmas. The above criteria assumes that the scattering
occurs uniformly throughout the focal spot size of the probe beam.
Narrowing can -occui' due to the distribution of intensities in the focal

spot(hot spots) and due to the dependence on density present in the scattering

formula. Improvements are made by going to larger scalelength plasmas and
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smaller focal spot diameters and higher f numbers for the Thomson probe

beam.

4.3 Thomson Scattering in Inhomogeneous
Plasmas

All of the calculations presented in the section above and in the

relevant appendices have assumed a homogeneous plasma. In laSer-produced
plasmas, however, inhomogeneities are very important in limiting the
amplitude which the collective Thomson scattered signals are driven. In the
homogeneous case, the coherent peaks in the form factor are determined by
the damping on the electrostatic waves which are scattering the Thomson
probe beam. When inhomogeneity is included, the amplitude of the coherent
peaks can be determined by the plasma inhomogeneities rather than the
damping on the electrostatic wave, particularly in the case of Langmuir
waves. The incoherent part of the spectrum is not affected by the
inhomogeneity. This can change the peak to valley in the scattered form
factor, as well as the full width half maximum of the scattered peaks. More
importantly, the broad range of flow velocities sampled by the probe beam can
cause a large broadening of the scattered peaks making any estimation of the
width of the scattered peaks meaningless.

A model can be constructed that shows the electromagnetic wave
amplitude produced by the Thomson scattering of a electromagnetic wave
from a fixed amplitude electrostatic wave in an inhomogeneous

plasmal7,27,80]. This model is useful in predicting the magnitude of the signal
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generated from Thomson upscattering off of Langmuir or ion waves when
this is not a stimulated process. Stimulated scattering is then just a special
case of collective Thomson scattering. The vector potential of the scattered

light wave, Agc, is driven due to the transverse current formed by the
coupling of the incident electromagnetic wave, Apr, and the ion acoustic

wave, Nepw/Noe, which is given by

[iz_ 0l -2 _‘?ijﬂ;’*_stx) . ) qur(zx) , 43.1)

at? x> mgC Nge  mgC

where @, is the plasma frequency, c is the speed of light, me and q are the

mass and charge of an electron respectively. The wave amplitudes can be

expressed in the form SEAI—O‘T(;—);;—‘P,Z(x)exp[iUEa-di-(oat)]+c.c.. Equation
€

4.3.1 is reduced to a first order differential equation using the slowly varying
envelope assumption that the wave amplitudes are slowly varying with
respect to the wavenumber, kg, and frequency, 0, of the wave, or
d_lP_g%ﬁ i‘l-‘—‘éix’—t). In the case of ion acoustic

k¥ o (x) << , and @,¥ ,(x) <<

waves of amplitude Wi, in a linear profile, the steady state form of equation

4.3.1 can be written as

2 (a3 .3 .
d:xsc = (OPZ(:;;( eSC)(‘Pia‘Ppr)eXp[ LES ]’ #.32)

where the wavenumber mismatch, (Esc(x)—lzpr(x)ilzia(x))-di=x’x, has

been Taylor expanded about the perfect phase matching point. Contour
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integration can be used to obtain the magnitude of the scattered vector
potential as shown in Appendix 4.5. The resultant scattered vector potential ,

assuming a linear phase mismatch, is

2 A A
2n mpe(epr ) esc)

R Y

.. (4.3.3)

I\Pial

Figure’ 4.3.1a shows the amplitude of the scattered vector potential
from a plasma containing a linear phase mismatch. This situation is found
when Thomson scattering from Langmuir waves in a linear profile and in a
parabolic profile when the waves are not at the top of the parabola. The initial
conditions are that at t=0, the amplitude of the scattered vector potential is
zero everywhere is space. In this figure, the Thomson scattered signal has
reached the saturation amplitude in figure 4.3.1 a and the signal is traveling
to the left at the group velocity in figures 4.3.1 b and 4.3.1 c¢. The dashed line in
figure 4.3.1 ¢ shows the amplitude of the steady state signal calculated in
equation 4.3.3 above. Figure 4.3.1 d shows the growth of the scattered vector
potential at the perfect phase matching point, x=0. This graph shows the
amplitude growing linearly in time at approxirnately the homogeneous
growth rate, Wgc, =t0’;2>e‘1'probe'1’epw /4ws with wg;e‘Ppmbe‘Pepw /cos =1 used
in the simulation.

In the case of Thomson downscattering, the scattering process can be a
stimulated process known as stimulated Brillouin scattering, provided the
square of the growth rate for stimulated Brillouin écattering is greater than
the product of the damping on the daughter waves[16]. In this case the

Thomson downscattered peak can be driven higher than the upscattered
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peak, causing an asymmetry in the Thomson scattered peaks. This asymmetry

can also be caused by a relative drift between the ions and electrons which can
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Figure 4.3.1 Numerical evaluation of the Thomson scattered vector potential
for the case of a linear phase mismatch between the interacting waves. The
scattered vector potential as a function of distance is shown in figure 4.3.1 a-c
each representing a different time. The vertical axis on all of these graphs
represents the amplitude of the Thomson scattered vector potential. The
horizontal axis on figures a-c represent the distance along the profile with x=0

representing the perfect phase matching point. The horizontal axis in figure

4.3.1 d represents time.
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lead to asymmetric Landau damping on the ion waves, as discussed above. In
fact if the drift velocity between the ions and electrons is greater than the
phase velocity of the ion waves, the ion waves become unstable. The majority
of the thermal Thomson scattering spectra found in the literature have
interpreted any asymmetry in the peaks as caused by a relative drift between
the ions and electrons, however, in some of these cases the Thomson probe
intensity is above the homogeneous threshold for stimulated Brillouin
scattering. Using the results in chapter 2 from the éonvective amplification

section, the absolute magnitude of the square of the downscattered vector

potential can be written as

. = (ng )\f L ol &My, [eG=-1].
Vds Mi (DSC kiazme i

When the gain for stimulated Brillouin scattering is small, the exponential

may be expanded and equation 4.3.4 reduces to equation 4.3.3. The ratio of the

stimulated downscattered feature, }‘Pscino e to that of the Thomson

upscattered feature, I‘Psclip, is

where Gg, is the Rosenbluth gain defined in chapter 2, section 2.2. This is
then another mechanism which can lead to an asymmetry in the Thomson
scattered peaks. This process could possibly be used as a diagnostic to

determine the "local” flow gradient scalelength, the scalelength within the
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area of the probe beam, due to the linear dependence on Ly contained in Ggbs.
The primary problem with this diagnostic would be the difficulty in
monitoring the speckle pattern of the intensity present in the probe beam, as
well as an uncertainty in the plasma frequency. The flow velocity and sound

speed, at least, would be known due to the location of the peaks relative to the

probe frequency and relative to each other, respectively.
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Chapter 5

Initial Thomson scattering
experiments; verification of Raman
scattering models

5.1 Introduction

In this experiment, Thomson scattering was used to measure the Langmuir
wave spectrum driven by stimulated Raman scattering. These measurements
provided a direct comparison between stimulated Raman scattering and the
enhanced Thomson scattering model for the electromagnetic emission
between @, and wg/2 observed in laser-produced plasmas. The Thomson
scattering measurements showed that the Langmuir wave spectrum resulted
from stimulated Raman scattering and not from enhanced Thomson
scattering. The width in k-space of the measured Thomson scattering signals
also has implications for the saturation of the Langmuir waves.

Many experiments have measured the scattered electromagnetic wave

associated with stimulated Raman scattering and observed features which are

difficult to explain using linear theory[21,55].
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In these experiments stimulated Raman scattering was often observed at
levels significantly above the spectral intensity calculated assuming
convective amplification from thermal noise levels. Another feature
observed in many of the experiments is a gap in the Raman spectra, discussed
in section 2.8, extending from close to the quarter critical surface to
somewhere below twenty percent of the critical density. In addition, the
spectral intensity in these experiments typically peaked at long wavelengths,
corresponding to lower densities, even though linear convective theory
would predict higher gain with increasing density, providing the density
scalelength does not change. These discrepancies with linear theory have led
to several hypotheses concerning the Raman spectrum observed in
experiments[21,39].

One of the hypotheses used to explain the discrepancies cited above was
the "enhanced Thomson scattering” model[21]. This model assumes that hot
electron pulses moving through the plasma excite large level electron plasma
waves via the bump-on-tail instability. The electron distribution in such a
case is shown in figure 5.1.1. The Langmuir waves whose phase velocity falls
on.the reversed side of the hot electron distribution, as drawn in gray in
figure 5.1.1, are unstable and amplify at the appropriate growth rate. These
waves are unstable because those electrons trav‘eling close to the phase
velocity of a particular wave experience an almost constant potential from the
wave. When there are more particles traveling slightly fastér than the wave,
then the wave gains energy from the electrons. On the other hand, when

there are more particles traveling slightly slower than the phase velocity of

the wave, the particles gain energy from the wave and the wave damps. As
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shown in figure 5.1.1, the Langmuir waves whose phase velocity fall on the
reversed side of the hot electron distribution have more electrons traveling
slightly faster than the phase velocity of the waves and therefore these waves
experience a net amplification at the expense of the hot electrons.

The scattered electromagnetic wave measured in experiments would
then result from Thomson scattering of the pump beam from these enhanced
electron plasma waves. The authors proposed that the hot electrons could
originate from the two plasmon decay instability near the quarter critical
surface. In the case of stimulated Raman scattering, the wavevectors of the
electron plasma waves being scattered from travel in the same direction as
the incident laser or probe beam. For solid target experiments, this requires
that the beam of electrons leaving the quarter critical surface travel down the
density gradient to a sheath region in the plasma and reflect. The reflected
electrons then travel up the density gradient where they can excite Langmuir
waves which the probe beam can scatter from, producing the backscattered

electromagnetic wave observed in experiments.
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Figure 5.1.1 Model distribution of the electrons in a plasma containing a hot
electron distribution. In this case, the distribution contains a cold Maxwellian
component and also a hot electron distribution with a normalized velocity

centered at 25.

This experiment was designed to look at the Langmuir wave spectrum
in an attempt to distinguish between the enhanced Thomson scattering
model and stimulated Raman scattering[40]. In the next section, the
experimental setup is presented along with the plasma parameters present
during the experiment. Thomson scattering is discussed following the
experimental description. The measuréd spectrum observed in the
experiments is discussed following the experimental setup and these
observations are compared to stimulated Raman scattering and the enhanced

Thomson scattering model.

5.2 Experimental description

The experimental setup is shown in figure 5.2.1. The plasma was
formed by a 1.064 pum, 2.5 ns FWHM Nd:Glass laser. The focal spot of the
interaction beam was varied between 80 to 400 pm in diameter and the laser
energy ranged from 100 to 160 Joules, resulting in average intensities on target
between 3x1013 and 1x1015 W/cm2. The targets consisted of Collodium thin
foils mounted on 5 mm diameter rings with thicknesses ranging between 100

and 500 nm, as well as solid Carbon targets which retained a critical surface for

the entire duration of the interaction beam.
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The Thomson probe beam was formed by taking ten percent of the
energy from the 1.064 um interaction beam. This energy was then frequency
upconverted, resulting in a 355 nm Thomson probe beam with a temporal
duration slightly less than 1.5 ns. The Thomson probe beam was focused
using an /10 lens which was masked to approximately £/100 giving the probe
beam an angular spread of less than 0.6 degrees. The probe beam was incident
at 63 degrees from the interaction beam such that the Langmuir waves
corresponding to Raman backscattering could be observed.

The Thomson scattering diagnostic, used to measure the Langmuir
wave spectrum, is shown in Figure 5.2.1. The Thomson scattered light was
collected over a range from 15 degrees to approximately 40 degrees from the
probe beam. This was the angular range corresponding to the Thomson
scattered signal from the Langmuir waves responsible for Raman backscatter
of the incident beam. This scattered light was sent to a spectrometer where the
Fourier transform plane was imaged onto the entrance slit of the
spectrometer. Because the spectrometer was a 1:1 imaging device, the angular
information focused on the entrance slit of the spectrometer was also imaged
at the output of the spectrometer. This allowed for the angular measure in
one direction and wavelength resolution in the perpendicular direction. At
the exit plane of the spectrometer, an 5-20 Kentech gated optical imager(GOI)
was used to record the wavelength versus angle of the Thomson scattered
signal. The GOI served two purposes. The microchannel plate amplified the
Thomson scattered signal and the gate allowed the Thomson scattered signal

to be discriminated from the Bremsstrahlung emission which although had

much less intensity, it occurred over a much longer period of time. The
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output phosphor on the GOI was imaged onto a CCD camera which recorded
each shot. Ultimately the CCD camera recorded wavelength versus angle of
the Thomson scattered light emitted from the plasma. Assuming a resonant
scattering process, the angle which the light exits the plasma can be used to
determine the wavelength of the Langmuir wave from which the probe beam
scatters. This diagnostic then provides a direct measurement of ® versus k of

the Langmuir waves corresponding to resonant scatter from the probe beam.

Thomson Scattering
Measurement

amera

R Gated
Optical
Imager

Reticon

Array | T Image
Tl':,om::n | Dissector
ro ——
Beam '

3/2 wo Measurement

Stimulated Raman
Interaction Back Scattering
Beam ' Diagnostic

Figure 5.2.1 Experimental layout showing the interaction and probe beams,
along with the interaction chamber. This figure also shows the three primary
diagnostics used in this experiment; the Thomson scattering diagnostic, the

stimulated Raman backscattering measurement, and the diagnostic used to

measure the 3/2 g emission from the plasma.
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The Raman backscatter diagnostic, used to measure the backscattered
light above 1.064 um, is also shown in Figure 5.2.1. This diagnostic measured
the light which was backscattered into the focusing lens. A glass plate was
placed in the incident beamline which reflected approximately eight percent
of the backscattered Stimulated Raman scattered light. This reflected light was
focused onto the entrance slit of a Czurney-Turner spectrometer which was
used to spectrally resolve the signal. The spectrometer had an 85 gr/mm
grating and the focusing mirrors had a radius of curvature of 0.25 m. The
output plane of the spectrometer formed the input into an image dissector
which was used to obtain a time integrated spectrum of backscattered light of
wavelengths greater than 1.064 pm[94]. The output of the spectrometer
provided a continuous frequency versus position measurement which the
image dissector then turned into a sequence of discrete frequency bands
versus time at its output. The output of the image dissector was focused onto
a Au:Ge detector which provided a time integrated signal in discrete
frequency bands. The output of the gold germanium detector was sent to an
oscilloscope and recorded on film. Figure 5.2.2 shows a schematic of the

detector circuit. The Au:Ge detector was cooled with liquid Nitrogen to 77° K.
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Figure 5.2.2 Schematic of the detector circuit used for the Au:Ge detector. The
50 Q input from the oscilloscope, in conjunction with the 70 pf junction
capacitance of the Au:Ge detector, gave an RC decay time of approximately 3.5

ns.

The oscillator for the interaction beam was used to calibrate the loss of
signal as a function of round trips in the image dissector. This method was
also used to determine the wavelength range contained in each wavelength
band sent to the detector. Figure 5.2.3 shows the attenuation as a function of
round trip passes inside the image dissector. The time between signals is
approximately 13 ns and the decay time for an individual signal is
approximately 3.5 ns. Each signal represents a frequency bin of approxiniately

55 nm.
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Figure 5.2.3 Signal attenuation as a function of round trip passes through the

image dissector.
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The 3/2 wp emission driven during these experiments was measured
using a spectrometer and a Reticon array as shown in Figure 5.2.1. As
explained in chapter 3, the 3/2 wo emission results from Thomson scattering
of the incident pump beam from Langmuir waves produced by two plasmon
decay near the quarter critical surface[76]). The image plane of the plasma was
focused onto the slit of the spectrometer, and the spectrally dispersed light
was then focused onto a reticon array providing a time integrated

measurement of the spectral intensity near 709 nm.

5.3 Collective Thomson scattering

Collective Thomson scattering was the primary diagnostic used in this
experiment. The Thomson scattering diagnostic was used to obtain the
spectrum of Langmuir waves which had been driven by the interaction beam.
Resonant Thomson scattering satisfies the frequency and wavenumber
matching conditions gy =00, and Kecatt =1”<pt11“<ia where
Kscatt(@scatt), Kpr(@pr), and kia(®ia) are the wavenumber(frequency) of the
Thomson scattered wave, the probe beam, and the ion acoustic wave,
respectively. Through these matching conditions, the frequency and angle
that the Thomson scattered signal is observed determines the frequency and
wavevector of the Langmuir wave being probed.

In this experiment, Thomson scattering was used to examine the
spectrum of Langmuir waves driven in an inhomogeneous plasma. A model

can be constructed which gives the electromagnetic wave amplitude produced

by the Thomson scattering of a electromagnetic wave from a fixed amplitude
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Langmuir wave in an inhomogeneous plasma(7,27,80]. This model is useful
in predicting the magnitude of the signal genefated from Thomson scattering
off of Langmuir waves whose amplitude has saturated. This model is also
useful in determining the amplitude of the scattered vector potential present
in the enhanced Thomson scattering model. The vector potential of the

scattered light wave, Ay, is driven due to the transverse current formed by

the coupling of the incident electromagnetic wave, Ay, and the Langmuir

wave, Nepy [Noe, Which is given by

92 2 297 \aAx(¥) _ o Depwl(X) GAp(X) (53.1)
at2 P& T gx? mec2 P€ noe mec2 ’

where @, is the plasma frequency, c is the speed of light, me and q are the

mass and charge of an electron respectively. The wave amplitudes can be

expressed in the form %ﬂ = %‘Pa(x)exp[i(jlza -dx - coat)] +c.c.[27).
€

Equation 5.3.1 is reduced to a first order differential equation under the

assumption that the wave amplitudes are slowly varying with respect to the

wavenumber and frequency of the wave, or k,¥,(x)<< E‘P_g(ﬁﬂ’ and
X
d¥ ,(x,t) : N ,
0¥ o(x) << —a In the case of Langmuir waves in a linear profile, or

far from the apex of a parabolic profile, the steady state form of equation 5.3.1

can be written as

2 A ~
d¥,. _ wPe(epr 'esc‘)

i xz} (5.3.2)
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where the wavenumber mismatch, ( (x)- k LX) epw(x)) dX = x'x, has

been Taylor expanded about the perfect phase matching point, x=0. Contour
integration can be used to obtain the magnitude of the scattered vector
potential as shown in Appendix 4.5. The resultant scattered vector potential ,

assuming a linear phase mismatch, is

Y
\N27x @pe (epr “Csc (5.3.3)

[¥sc|= —m——cfr‘)h’epw"‘f’prl.

sC

For Langmuir waves driven at the top of a parabolic profile, the steady

state equation can be written in the form

2 A A
d¥s. _ wpe(epr'eSC) ix''x (5:3.4)
A | gic%k,, (Fepw¥pr)exp) =5

where [k_.(x)-k_ (x)xk x))-dX = x''x%[2 is the wavenumber mismatch
sc pr epw

at the top of a parabolic profile. Again contour integration can be used to
obtain the magnitude of the scattered vector potential as shown in Appendix

4.5. The scattered vector potential at the top of a parabolic profile is

(5.3.5)

epw
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5.4 Plasma Characterization
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The hydrodynamics code, LASNEX, was run by Kent Estabrook to
model the plasmas used in this experiment. This modeling is important
especially for thin foil targets used in the experiments described in this
chapter. It is important that the peak of the laser intensity occur when the foil
has burned through such that the maximum of the electron density is below
the quarter critical surface where stimulated Raman scattering can be driven
absolute on the top of the density profile. The LASNEX simulation used the
incident laser power profile shown in figure 5.4.1 below. The maximum laser

intensity occurred at 4.2 ns and the FWHM of the laser pulse was 2.5 ns.

o

Relative laser power

0 1 2 3 4 5
time (ns)

Figure 5.4.1 LASNEX model for the incident laser. The FWHM of the laser

pulse is approximately 2.5 ns and the peak laser intensity occurs at 4.2 ns.

Figure 5.4.2 shows the LASNEX prediction for the maximum electron
density averaged over a 200 pm radius as a function of time. This represents

the case of a 0.40 um Collodium foil. In this simulation, by the time the laser

reaches its maximum amplitude at 4.2 ns, the density has dropped to
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approximately 2.5 % of the critical density. Most of the Raman signals seen in
this experiment occurred below about 8 % of the critical density for the 0.35
pum and below 5 % of the critical density for 0.25 um targets. The scalelength,
Ly, where ng = noeexp[—(x/Lz)Z], is nearly 100 pm when the maximum
density is approximately 6 % ncr to nearly 150 pum when the maximum

density has dropped to around 2 % ncr at around 4.6 ns into the simulation.

S~

1.0E+23 }

1.0E+22 |
1.0E+21 |

1.0E+20 |

electron density (cm™

time (ns)

Figure 5.4.2 LASNEX prediction for the maximum electron density averaged
over a 200 pum radius cylinder as a function of time for a 0.40 um Collodium
foil. The vertical axis shows the electron density while the horizontal axis

represents time in ns.

Figure 5.4.3 shows the LASNEX prediction for the electron temperature
as a function of time. The simulations placed the temperature of the plasma
at approximately 350 eV during the maximum of the laser intensity. The

electron temperature peaks before the laser has reached the point of half the

laser intensity, however, by this point the maximum density is dropping




CHAPTER 5. INITIAL THOMSON SCATTERING EXPERIMENTS; . . 134

quickly. Because the laser absorption coefficient is quadratically dependent on
the density, even though the laser intensity is increasing, less laser energy is
being absorbed by the plasma and the electron temperature begins to cool
- even before the laser has reached half of its maximum intensity. Thomson
scattering from thermal level ion acoustic waves was used in previous
experiments to determine the electron temperature. These measurements
estimated the temperature to be in the range 300-700 eV, consistent with the
LASNEX results shown in figure 5.4.3[95]. The simulations also show that the

plasma ions are fully stripped resulting in an average Z of approximately 5.29.

o
n

©
—

2 3 4 5
time (ns)

o
o
— |

Electron Temperature (keV)
o
N

Figure 5.4.3 LASNEX estimation for the electron temperature averaged over a
200 pm radius cylinder as a function of time for a 0.40 um Collodium foil
target. The vertical axis shows the electron temperature while the horizontal

axis represents time in ns.

The ion wave damping as a function of the ratio of ion temperature to

electron temperature is shown in figure 5.4.4. The dispersion relation,
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e(o),E) =1+ ze(m,i) + Z xia(m,fc) =0, was solved to determine the damping
o

on the ion acoustic waves present in the plasma. The dispersion relation was
written in terms of complex error functions and solved using Mathematica.
The simulations showed that the ratio of the ion temperature, Tj, to the
electron temperature, Te, was approximately 0.6 near the maximum of the
electron density. According to figure 5.4.4, this ratio of temperatures would
predict a damping of approximately 5 % of the real component of the ion

wave frequency.
0.12
0.08

0.04

lIm[w)/Relw]!
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TiTe

Figure 5.4.4 Ion wave damping as a function of the ratio of ion temperature,
Ti, to electron temperature, Te, for a Collodium plasma. The vertical shows
the absolute magnitude of the ion wave damping normalized to the real part

of the ion acoustic frequency and the horizontal axis represents the ratio of

ion temperature, Tj, to electron temperature, Te. This calculation assumed

kApe=0.1 and that the ions were completely ionized.
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5.5 Experimental observations

Figure 5.5.1 a shows the Thomson scattered measurement of the

Langmuir wave spectrum obtained from a 0.35 pum Collodium foil. The
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Figure 5.5.1 Thomson scattering and stimulated Raman scattering observed
from a 0.35 um Collodium thin foil. In (a), the Thomson scattered signal is
plotted along with the dispersion curve showing the expected position of the
Thomson scattered signal as a function of wavelength. The contours in 5.5.1 a
represent factors of two in intensity. In (b), the corresponding measurement
of stimulated Raman scattering from the 1.064 um interaction beam is shown.
The percentage of critical density from which the signals in (a) and (b)

originated are drawn on each of the graphs for comparison.

feature near 355 nm represents stray probe light and Thomson scattering from
ion acoustic waves. The dashed line represents the location which the
Thomson scattered signal should lie assuming that the Langmuir waves are
participating in resonant Raman scattering of the interaction beam. The
feature from 380 to 390 nm represents Thomson scattering of the probe beam
from Langmuir waves. This signal lies along the dashed curve expected for
Langmuir waves participating in Raman scattering of the interaction beam.
Figure 5.5.1 b Tepresents the time-integrated measurement of the
backscattered electromagnetic wave participating in stimulated Raman
scattering. The inferred densities from which the Raman signal originated are
drawn at the top of figure 5.5.1 b. This range of densities agrees with the
inferred densities at which the Thomson scattered signal originated.

Figure 5.5.2 is a composite graph showing the Thomson scattering
spectrum obtained from six different shots. These shots were taken from

Collodium thin foil targets which ranged in thickness from 300 nm to 350

nm. In general, the Thomson scattered signal and the corresponding




CHAPTER 5. INITIAL THOMSON SCATTERING EXPERIMENTS; . . 138

stimulated Raman signal resulting from the thicker targets originated from
higher densities. The dashed line again represents the calculated curve

corresponding to Langmuir waves participating in resonant scattering of the

430.0
3 —125.0
el SRS 200
€ 410.0 - dispersion curve \\\ composite 415.0 g
£ E - Thomson | 10.0 2
£ E ~ scattered LV
';C':!"’ 390.0 3 signals _| 5.0 25
@ - = ®
3 E 1253
& 370.0 3
= 3 Stray Light
350.0 F 0.0
ST TR NN B T T T N N TN T T N TN T N N N TN B ¢
20.0 30.0 40.0

Scattering Angle (Degrees)

Figure 5.5.2 Composite graph showing the Thomson scattered signal from the
Langmuir waves driven in six different shots. These signals all fall along the
dispersion curve expected for resonant scattering of the interaction beam. The
horizontal axis shows the angle which the light was scattered relative to the
probe beam. The left vertical axis shows the wavelength of the scattered light
and the right vertical axis shows the percent of critical density relative to the
interaction beam which the signals originated, assuming an electron

temperature of 350 eV.

incident pump beam. In all the cases in which Thomson scattering was

observed, the Langmuir wave spectrum was found to lie along this dispersion
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curve. The filled contours represent the half intensity contour of the
Thomson scattered signal for the respective shot.

The modulational instability, described in section 2.6, drives a range of
ion wavenumbers unstable, causing a broadening in the Langmuir wave
spectrum. For the experiments described in chapters 5 and 6 which saw a
broadening in the Langmuir wave spectrum, the product of the wavenumber
of the Langmuir waves and the Debye length was approximately
keleDezO.IS to 0.3. Figure 5.5.3 below shows the range of unstable ion waves

driven as a function of the amplitude of the pump Langmuir wave. The

0.020 I v .y r 1 1 rrr 114y F §v 757

0.015
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kiaADe

0.005

S e
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Langmuir wave amplitude(nepw/noe)
Figure 5.5.3 Range of unstable ion wavenumbers, kia, driven by the

modulational instability. The horizontal axis represents the amplitude of the

pump Langmuir wave while the vertical axis represents the wavenumber of

the ion wave. The shaded region shows the unstable ion wavenumbers. This
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graph was made assuming that the phase velocity of the pump Langmuir was
five times the thermal velocity of the plasma or kepwlpe=0.2.

broadest signal observed represented an 8% change in wavenumber across the
angular width of the signal with the majority of the shots having an angular
width corresponding to only a 2% change in wavenumber. For kepwApe~0.2,
the modulational instability would predict a Langmuir wave amplitude of
approximateiy Nepw /Noe=9.5% for the broadest case, 8%, and an amplitude of
approximately nepw/noe=~2.4% for the average case, 2%. The broadest signal
shown in composite graph showed a weaker Thomson scattering and
Stimulated Raman scattering signal than observed in figure 5.5.1 above
indicating that the broadening of the Langmuir wave spectrum is not
correlated with the Langmuir wave amplitude as measured by the intensity of

the Thomson scattering spectrum.

5.6 Discussion

The broadest signal shown in figure 5.5.2 represents less than an 8
percent change in the Langmuir wavevector, which is much narrower than
the spectrum of Langmuir waves expected from Langmuir waves driven due
to the bump-on-tail instability. In addition, the largest percentage of shots
showed less than a 2 percent change in the magnitude of the Langmuir
wavenumber. It is unlikely that the spectrum of Langmuir waves driven by
the bump-on-tail instability could be this narrow. The bump-on-tail

instability should drive a very broad spectrum of Langmuir waves, only a
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small fraction of which would be resonant for Raman scattering[96]. That is
not to say that enhanced Langmuir waves were not present, but that the
amplitude of such Langmuir waves would be down in magnitude by at least a
factor of 20 from the stimulated-Raman-scattering-driven Langmuir waves
detected in this experiment. The bump-on-tail instability can also drive quasi-
Langmuir waves which do not satisfy the normal dispersion relation for a
Langmuir wave in a plasma with a monotonically decreasing distribution
function. These quasi-Langmuir waves which do not obey the normal
dispersion relation cannot decay easily through wave-wave interaction. These
waves would likely be driven to a larger amplitude than their normal mode
counterparts, producing a larger Thomson scattering signal. These quasi-
modes were not observed in this experiment.

The enhanced Thomson scattering model requires a source of hot
electrons from which the Langmuir waves are driven. The source most
frequently assumed is the two plasmon decay instability near the quarter
critical surface. In the case of the majority of the targets used in this
experiment, the center of the foil burned through the quarter critical surface
before the end of the incident laser pulse, although there remained a quarter
critical surface near the edges of the interaction beam. For the 0.4 um thick
targets, predicted that the foils went below quarter critical approximately 2.2
ns into the laser pulse. A more thorough test of the enhanced Thomson
scattering model would involve using targets which retained their quarter
critical surface the entire time the laser is interacting with the plasma. With

the given combination of laser energy and focusing optic, it was not possible

to drive stimulated Raman scattering from a solid Carbon target even using a




CHAPTER 5. INITIAL THOMSON SCATTERING EXPERIMENTS; . . 142

5 ns prepulse in an attempt to increase the scalelength. It was possible,
however, to drive two plasmon decay from these targets which was inferred
from the 3/2 o emission and 5/2 wg emission measured from the solid
targets. Figure 5.6.1 shows a time integrated 3/2 ®wo spectrum which resulted
from a solid Carbon target. The 3/2 wo light is produced when the incident
laser Thomson scatters from Langmuir waves produced near the quarter
critical surface[76]. Therefore, although it was not possible to observe Raman
signals from these solid targets, it was inferred that two plasmon decay was
occurring. Therefore, the lack of Raman in the solid target experiments
indicated that the Langmuir waves were not driven sufficiently by the bump-

on-tail instability to be observed with the Au:Ge detector.
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Figure 5.6.1 The 3/2 wo emission obtained from a solid Carbon target which
maintained a critical surface throughout the duration of the interaction beam.

The vertical axis shows the relative amplitude to which the peaks were
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driven, while the horizontal axis represents the wavelength of the scattered

light.

The Thomson scattered vector potential resulting from a parabolic
profile can be much larger than the vector potential resulting from a linear
profile, assuming comparable scalelengths and Langmuir wave amplitudes. It
is therefore probable that the Raman signal produced by the enhanced
Thomson scattering model would be much larger in the case of a parabolic

profile than in the case of a linear profile. The ratio of the scattered vector -

potentials produced in a linear profile,
: . /6 2/3
profile, I‘Psclpar, is [Wscly, /l‘l’sclpar zlS(k/l%e) \Liin / (Lpar) , where L}in

and Lpar are the scalelengths for the linear and parabolic profiles respectively.

‘Psclnn, to that produced in a parabolic

For the parameters present in this experiment, the vector potential produced
from the linear profiles present in the solid Carbon targets should have been
about one fourth of the amplitude of the vector potential produced in the
Collodium foil targets. This signal level should still have been measurable
with the backscatter diagnostic, provided the Langmuir waves had been

driven to the same amplitude by the enhanced Thomson scattering model.
5.7 Summary

In summary, Thomson scattering was used to measure the Langmuir
wave spectrum associated with Raman backscatter. 'This measurement

showed that the Langmuir waves obeyed the dispersion relation for

Langmuir waves driven by stimulated Raman scattering. The Thomson




CHAPTER 5. INITIAL THOMSON SCATTERING EXPERIMENTS; . . 144

scattered signal was observed over a narrow angular range which is consistent
with the assurhption that the Langmuir waves were driven by stimulated
Raman scattering and inconsistent with the assumption that they were
driven by the bump-on-tail instability predicted in the enhanced Thomson
scattering model. In the solid Carbon target experiments, two plasmon decay
was driven, as inferred from measurements of 3/2 ®p emission. Stimulated
Raman scattering, however, was not detected in these experiments which
retained a quarter-critical surface for the entire duration of the interaction
beam. The lack of stimulated Raman scattering was expected due to the
relatively steep density gradient[97]. The enhanced Thomson scattering
model, however, would predict the observation of signals in this case due to
the presence of two plasmon decay. Therefore, the lack of Raman signals in

the solid target experiments shows that the Langmuir waves were not driven

sufficiently by the bump-on-tail instability.
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Chapter 6

Thomson scattering measurements
of the Langmuir wave spectra
resulting from stimulated Raman
scattering

6.1 Introduction

This chapter shows the results of an experiment in which Thomson
/ scattering was used to measure the Langmuir wave spectrum generated by
stimulated Raman scattering. This experiment detected Langmuir waves with
components both parallel and antiparallel to the incident laser's wavevector,
ko. The parallel component was attributed to stimulated Raman scattering.
However, the Langmuir waves moving antiparallel to Eo, which cannot be
explained by stimulated Raman scattering, were attributed to the Langmuir
decay instability. |

As discussed in chapter 1, saturation of the amplitude of Langmuir

waves is an important issue in many applications involving plasmas. These
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applications include inertial confinement fusion[98], particle accelerators[2],
current-drive in Tokamaks[5], and X-ray lasers[1]. In laser-proddced plasmas,
Langmuir waves may be driven by several instabilities, one of which is
stimulated Raman scattering(SRS). In SRS, an incident electromagnetic wave
resonantly drives a Langmuir wave and a scattered electromagnetic
‘wave[16,17]. Much of the prior work on SRS has been focused on its onset,
which proved difficult to understand[67,99-102]. Few experiments have
looked directly for these saturation mechanisms[3,40,56]. Many recent
simulations and analyses have indicated that the Langmuir decay instability
may be responsible for the saturation of SRS[9,12,13,39]. The present work is
the first experimental study of the three wave process known as the
Langmuir decay instability in laser-produced plasmas.

The Langmuir decay instability involves the decay of a Langmuir wave
into a second Langmuir wave and an ion acoustic wave. This instability can‘
be driven by the Langmuir waves produced by stimulated Raman scattering,
two plasmon decay, the ion acoustic decay instability, and other mechanisms,
as well. For the present experiment stimulated Raman scattering was chosen
to provide the Langmuir pump wave. The electromagnetic daughter wave
associated with stimulated Raman scattering is easily diagnosed for a direct
comparison to the measured Langmuir waves. The primary Langmuir wave
spectrum driven by stimulated Raman scattering is also much simpler than
the primary spectrum driven by either the ion acoustic decay instability or
two plasmon decay. Specifically, two plasmon decay and the ion acoustic

decay instability generate Langmuir waves which have components both

parallel and antiparallel to the incident laser wavevector. In contrast,
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stimulated Raman scattering only drives Langmuir waves with components
in the same direction as the incident laser wavevector. Thus, any Langmuir
waves traveling antiparallel to the laser wavevector must be due to the
Langmuir decay instability or another mechanism which can reverse the

wavevector of the Langmuir wave.

6.2 Experimental layout

The layout of the experiment is shown in figure 6.2.1. The plaéma was
formed by two counterpropagating 0.526 pm beams impinging upon a 1.2 um
thick, 440 um diameter, CH foil. These f/6 plasma formation beams contained
Random Phase Plates with 0.75 mm elements which produced an
approximate FWHM focal spot size on target of 360 pm. The average intensity
on target for the preform beams was approximately 5x1013 W/cm2. An £/6
heater beam at 0.526 um, delayed by 1.1 ns from the preform beams, provided
a measurement of the temporal evolution of the plasma density, as well as a
temperature diagnostic. The heater beam contained a Random Phase Plate
with 1.5 mm elements which produced an approximate FWHM focal spot
size of 180 um. The average intensity on target for the heater beam was
approximately 2x1014 W/cm2. The interaction beam at 1.053 pm was incident
upon the plasma approximately 1.7 ns after the plasma formation beams. The
£/6 interaction beam had a temporal length of approximately 600 ps. Without
a Random Phase Plate, the average intensity on target for the interaction

beam was approximately 3x1014 W/cm2. When a Random Phase Plate was

used on the interaction beam, its element size was 2 mm producing an
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approximate FWHM focal spot size of 260 um. This resulted in a lower

intensity on target of approximately 5x1013 W/cm2.

Thomson scattering
from Langmuir waves

Cf-é Heater beam
Carlera  Raman diagnostic

Interaction]
beam 1.053 um

Interaction beam
Raman diagnostic

Figure 6.2.1 Experimental setup showing the Thomson scattering diagnostic,
as well as the stimulated Raman scattering diagnostics from the 526 nm

heater beam and the 1.053 um interaction beam.

The Thomson scattering probe beam at 351 nm was incident on the
plasma approximately 1.4 ns after the plasma formation beams. The use of a 3
to 1 ratio for the probe beam frequency to interaction beam frequency allowed
the Thomson downscattered signal from the Langmuir waves traveling in
the same direction as the laser wavevector to be scattered at nearly the same
angle as the Thomson upscattered signal from the Langmuir waves traveling
in the opposite direction to the laser wavevector. The Thomson scattered

beam had an f/# of 3.33 which in some shots was changed to an f/# of 25
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through the use of an aperture. The angular spread of the Thomson probe
beams and interaction beams are important in analyzing the angular extent of
the Thomson scattered signals as discussed below. With an f/# of 3.33 the
probe beam had an angular spread of approximately 17 degrees, however,
with the use of the aperture, the angular spread was reduced to approximately
2.3 degrees. The interaction beam had an f/# of 6 which resulted in an
angular spread of approximately 9.5 degrees.

The stimulated Raman backscatter from the 1.053 um interaction beam
was monitored to provide a comparison with the Thomson scattered signal
resulting from the driven Langmuir wave spectrum. The wavelength range
corresponding to stimulated Raman scatter from the interaction beam ranges
from 2 pm near the quarter critical surface to approximately 1 um at very low
densities. The time integrated stimulated Raman backscatter from the 1 um
interaction beam was recorded using a room-temperature 1-D Germanium
photodiode array, which was sensitive from 800 nm to approximately 1.8 pm.
The Germanium photodiode array consisted of 16 elements, each element
having a width of 1 mm. This array was placed at the output plane of a 0.35
meter Czurney-Turner spectrometer. Each of the channels in the array was
biased positive to 3.2 volts to improve linearity and response time(lower the
junction capacitance). The diagram of the detector circuit is shown in figure
6.2.2 . The output of the diode was sent through a high-pass filter and read out
using LeCroy 2249A charge integrators. The Raman backscatter spectrometer
had a 100 gr/mm grating which yielded a dispersion of approximately 30.3

nm/mm. Therefore, each channel of the detector sampled 30.3 nm. An

example of the Raman spectrum can be seen in figure 6.4.1 b. The output
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signal from the 2249A charge integrator was then read using LabView on the

Macintosh.

1 I
1puf
. 50Q
Gern}amum 10 kQ 2249A
diode .

input

32V l

T

__l___

Figure 6.2.2 Schematic of one of the detector circuits used for the Germanium
diode array. The 50 Q input from the oscilloscope, in conjunction with the 0.6
nf junction capacitance of the Germanium diodes, gave an RC decay time of

approximately 33 ns.

Figure 6.2.3 shows a trace of one of the channels of the diode array, as
well as the gate signal for the 2249A. The 2249A collected charge from the
diode array during the 200 ns gate signal. The junction capacitance of the
diodes was reduced to approximately 0.6 nf when the diode was biased to 3.2
volts. This gave the detector circuit a RC decay time of approximately 33 ns
which was sufficiently short that the signal could be integrated over the 200
ns gate time.

The backscattered stimulated Raman scattering from the heater beam
provided information on the peak plasma density as a function of time. This
signal ranged from 1053 nm at the quarter critical surface to around 526 nm at

very low densities. This diagnostic could also measure the 3/2 ®o emission, at

702 nm, generated from the 1053 nm interaction beam, as well as Thomson
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upscatter from the interaction beam. The Raman backscattered signal was

dispersed using a 0.25 m Czurney-Turner spectrometer and temporally

diode resonse

o
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Figure 6.2.3 Oscilloscope trace showing the gate signal, lower trace, which was
sent to the 2249 A charge integrator and the diode response, higher trace, to a
600 ps 1 pum laser impinging upon its surface. The 2249 A integrated the

current from the diode over the 200 ns, -700 mV gate signal.

dispersed by a S-20 Livermore streak camera placed at the output plane of the
spectrometer. The streak camera had the 3X card which provided a temporal
window of approximately 3 ns. By carefully choosing the filtering to allow
through a small amount of 526 nm light, the streak camera provided
information on the relative timing of the beams. This technique also allowed
for the wavelength calibration on each shot. The first order signal from the

grating provided wavelength for 526 nm and the second order signal from the

grating provided the location of the 1053 nm wavelength. The output
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phosphor of the streak camera was imaged onto a Photometrics CCD camera
which recorded each shot. The Stimulated Raman signal was also sent to a
photodiode for absolute measurement of the backscattered signal.

The Thomson scattered signals from the Langmuir waves and the ion
acoustic waves were relayed out of the chamber using the same optical path.
A beamsplitter was used to send the Thomson scattered signals to two
different optical tables. One which observed Thomson scattering from the
Langmuir waves and the other which measured Thomson scattering from
the ion acoustic waves. The Langmuir wave optical table, shown in figure
6.2.1, consisted of an S-20 gated optical imager, and a 0.45 m Czurney-Turner

spectrometer. The grating used in the spectrometer was a 300 gr/mm grating

which resulted in a dispersion of 10 nm/mm at the output plane of the

spectrometer. As discussed in chapter 5, the Fourier transform plane of the
Thomson scattered signal from the Langmuir waves was focused onto the
entrance slit of the spectrometer which allowed for the angular measure in
one direction and wavelength resolution in the perpendicular
direction[40,103]. The S-20 gated optical imager was placed at the output of the
spectrometer to provide a time integrated measurement of ® vs. k of the
Langmuir waves present in the plasma. The output phosphor of the gated
optical imager was recorded with a CCD camera.

The ion acoustic optical table consisted of a 1.2 m Ebert-Fastie
spectrometer and an S-20 Imacon 500 streak camera. The image plane of the
plasma was focused onto the entrance slit of the spectrometer. The
spectrometer had a 1200 gr/mm grating which produced a 0.7 nm/mm

dispersion at its output. A spherical lens was used to image the output of the
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spectrometer onto the entrance slit of the streak camera for frequency vs. time
-measurements. The output phosphor of the streak camera was then recorded

on hard film.
6.3 Plasma Characterization

The hydrodynamics code, LASNEX, was run by Kent Estabrook to
model the CH plasmas used in this experiment. This modeling was essential
in determining the proper target thickness and beam timing such that the
correct range of maximum electron densities would overlap temporally with
the interaction beam. The LASNEX run described below assumed that the
plasma was formed by two 0.527 um preform beams at time t=0 which were
640 ps in duration and contained 26 Joules of energy. The heater beam in the
simulation was 640 ps in duration and contained 26 Joules of energy. The
heater beam wés modeled as a 0.527 pm beam which was incident 1 ns after
the preform beams. Both the preform b\eams and the heater beam were
simulated as f/6 beams. The interaction beam was also 640 ps in temporal
width and was modeled as an f/12 beam. The interaction beam was a 1.05 pum
beam which was delayed 2 ns from the preform beams. The FWHM of the
spot size on target of the beams in the simulation were 393 um, 450 um, and
250 um for the preform beams, the heater beam, and the interaction beam,
respectively. The on target intensities in the simulations were 2.5x1013

W/cm2, 1.9x1013 W/cm?, and 1.2x1014 W/cm? for the preform beams, the

heater beam, and the interaction beam, respectively. The CH target was 1.2
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pum thick and approximately 400 pm in diameter. The flux limit used in the
simulations was 0.03.

The LASNEX prediction for the maximum density as a function of
time near the center of the target is shown below in figure 6.3.1. In this figure
the beam timing is drawn in at the bottom of the graph showing the preform
beams at t=0 ns, the heater beam at t= 1 ns, and the interaction beam at t=2 ns.
The solid line represents the LASNEX prediction for the density evolution in
time, while the gray striped line shows the density versus time inferred from
Raman scattering measurements taken during the experiment. The targets

used in these experiments are similar to those used in previous
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Figure 6.3.1 LASNEX predicted evolution of the maximum of the plasma
density as a function of time. The vertical axis shows the electron density

normalized to the critical density for a 1 pm interaction beam. The horizontal




CHAPTER 6. THOMSON SCATTERING MEASUREMENTS OF. . . . 156

axis represents the time in the simulation. The beam timing used in the

simulation is drawn at the bottom of the figure.

experiments[104]. A brief density increase in time was also seen in the
simulations described in the reference above and interpreted as an inflow of
plasma from the edges of the target stagnating at the center of the target. This
interpretation is consistent with the reaction of the ion temperature in these
simulations as discussed below. Over the density range where the maximum
density falls from approximately 16 percent of the critical density for the
interaction beam to approximately 1 percent of the critical density, the
LASNEX prediction for the density evolution as a function of time can be fit
by the relation ne/ncr=0.415(t)-443.

The LASNEX prediction for the evolution of the plasma temperature is
shown in figure 6.3.2 below. The electron temperature follows closely the
time history of the incident beams. The collisional damping of the incident
beams due to inverse bremsstrahlung strongly affects the temperature of the
electrons as can be seen in figure 6.3.2. The ion temperature experiences a
large spike near 1 ns and becomes larger than the electron temperature in the
simulation. This occurs at the same time as the appearance of the density
increase in time at the center of the target shown in figure 6.3.1 above. The
interpretation of the density hump as being produced by plasma driven from
the edges is consistent with the jump in ion temperature. As the plasma

begins to interpenetrate at the center of the plasma, the plasma stagnates

causing a large heating of the ions which might or might not be realistic[105].
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Figure 6.3.2 LASNEX prediction for time evolution of the electron and ion

temperatures present in the plasma. This represents the temperatures at the

center of the targets. The vertical axis is temperature while the horizontal axis

is the time of the simulation. Again the beam timing used in the simulation

is drawn at the bottom of the figure.

The LASNEX prediction for the linear flow velocity scalelength at the
time of the interaction beam was approximately 400 pm out to about z=500
pm béyond which the scalelength goes to approximately 700 um. The spatial
density profile is not well characterized by a gaussian density profile.
However, the density scalelength is very large being on the order of 700 pm.

The maximum density of the plasma was determined from

measurements of the stimulated Raman scattering from the heater beam, as

shown in figure 6.3.3. The beam timing as measured by this diagnostic is
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drawn to the right of the figure. The features near t=0 are the two preform
beams at 526 nm appearing on the first and second order of the grating. The
interaction beam drives two plasmon decay when densities higher than
approximately twenty percent of the critical density for the interaction beam
are present[76]. The feature at 702 nm, driven from t=1.2 to t=1.6 ns, represents
the Thomson scattering of the interaction beam from the Langmuir waves
associated with two plasmon decay as discussed in chapter 3. The feature
above 750 nm, driven from t=1.45 to t=1.65 ns, represents Thomson
upscattering of the interaction beam from non-thermal-level Langmuir
waves. The feature above 700 nm, driven from t=0.8 to t=1.25 ns, represents
stimulated Raman scattering which is driven when the heater beam is turned
‘on. The density inferred from the measurement of the maximum of the
stimulated Raman scattering spectrum, from 0.9 to 1.2 ns, as a function of
time is drawn on figure 6.3.1, which shows the LASNEX prediction for the
density evolution as a function of time. Although the density deduced from
the Raman scattering does not follow the brief temporal density increase
shown in the simulation, it does agree with the temporal slope of the
LASNEX density profile after the brief temporal density increase.

This diagnostic can also be used as a rough estimate of the electron
temperature of the plasma[95,99]. The idea behind this temperature diagnostic
is the rapid increase in the Landau damping of the Langmuir wave as a
function of the parameter kApe, the product of the Langmuir wave's
wavenumber with the Debye length. The short wavelength limit of the

scattered spectrum would then be interpreted as being the result of the

increased Landau damping on the Langmuir wave. As shown in figure 2.10.1
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from chapter 2, the shorter wavelengths of Raman scattered light correspond
to larger values of kApe. For absolute instability, the homogeneous damping

threshold occurs when the homogeneous growth rate, Yosgs, is equal to one
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Figure 6.3.3 Spectrum from the heater beam stimulated Raman scattering
diagnostic. Relative beam timing is drawn along the right side. The vertical
axis represents relative time, while the horizontal axis shows the wavelength

of the scattered light.
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half the damping on the Langmuir wave, VepwsRs, multiplied by the square

root of the ratio of the light wave group velocity, Vssgs, over the Langmuir
wave's group velocity, VepwsRs, OF Yogrs > O'SVePWSRS\/VsSRS /VeprRS [106].

As discussed in chapter 2, for a convective instability the homogeneous
damping threshold depends upon the growth rate, Yosrs, being larger than
the product of the Langmuir wave's damping, VepwSRS, and the scattered
electromagnetic wave's damping, Vssrs, Of Ygers >m . Although
the Landau damping on the Langmuir wave is increasing as density
decreases, the light wave's damping is decreasing making the use of this
diagnostic questionable in the case of convective instabilities.

Figure 6.3.4 a shows lines of constant kApe for the Langmuir waves
participating in resonant stimulated Raman scattering. These lines are plotted
as a function of the wavelength of the scattered light detected in the
experiment. The line labeled kApe=0.3 shows that for a Langmuir wave to
have a khApe=0.3 and be in a resonant Raman process with a 700 nm scattered
light wave that the electron temperature would have to be approximately 800
eV. Likewise, for a Langmuir wave with a kApe=0.3 to be in a resonant
Raman process with a 645 nm scattered light wave, the electron temperature
would have to be approximately 400 eV. The Landau damping of the
Langmuir wave as a function of the parameter kApe is shown in figure 6.3.4 b.
The gray line represents the analytic damping on the Langmuir wave valid
for kApe<<l. The solid line represents the numerical damping calculated
solving the dispersion relation for Langmuir waves in the same manner as

discussed in chapter 4. For the parameters of this experiment, the threshold

for absolute instability occurs for kApe=0.25. When this is used in conjunction
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with the cutoff of the Raman spectrum shown in figure 6.3.3, the estimated
electron temperature at the time of the heater beam is approximately 600 eV
which is higher than the LASNEX prediction of 400 eV shown in figure 6.3.2.
One of the possible reasons for this discrepancy is that comparing the beam
intensities above. The LASNEX simulation assumed an intensity of 2x1013
W/cm? for the heater beam while in the experiment, the heater beam had an
intensity of approximately 2x1014 W/cm?2. This undoubtedly resulted in a
higher temperature than the prediction of 400 eV.
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Figure 6.3.4 Concept behind the use of stimulated Raman scattering as a
temperature diagnostic. Figure 6.3.4 a shows the corresponding temperature
of the plasma such that a Langmuir wave with a given kApe product
participates in a resonant Raman scattering processes with a given
wavelength scattered electromagnetic wave. Figure 6.3.4 b displays the Landau
damping of a Langmuir wave normalized to the real part of the frequency as a
function of kApe, Figure 6.3.4 b includes Landau damping of the Langmuir
wave only, although typically collisional damping becomes larger than

Landau damping when klpe is less than 0.24, however, this is dependent on

the parameter ngeZ/(Te)1-2. The solid black line represents the numerically
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calculated Landau damping while the gray line represents the analytic

expression for the Landau damping which is valid for small kApe.

This diagnostic can also be used in the case of stimulated Raman
scattering from the 1.053 um interaction beam. In this case, the experiment
showed that the short wavelength cutoff of the Raman spectrum occurred at
approximately 1330 nm as shown in figure 6.4.1. The graph corresponding to
figure 6.3.4 a for the case of the 1.053 um interaction beam is shown below in
figure 6.3.5. In the case of the interaction beam, this diagnostic would predict a
temperature for the plasma of 400 to 500 eV during the time that the

interaction beam is incident on the plasma.
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Figure 6.3.5 Corresponding temperature of the plasma such that a Langmuir

wave with a given KApe product participates in a resonant Raman scattering

processes with a given wavelength scattered electromagnetic wave. This

graph corresponds to Raman scattering with a 1.053 pm interaction beam.
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The temperature of the plasma was measured by collective Thomson
scattering from the assumed thermal level ion acoustic waves, the principles
of which are discussed in detail in chapter 4[107]. Figure 6.3.6 a below shows
the Thomson scattering measurement from the ion acoustic waves while
figure 6.3.6 b shows a lineout of the Thomson scattered spectrum which can
be compared to figure 4.2.1 from chapter 4. The spectrum shown in figure
6.3.6 b has a peak to minimum of approximately 1.5 and a FWHM greater
than the ion acoustic frequency as discussed in chapter 4. A comparison of
these numbers with figure 4.2.3 ¢ and d in chapter 4 shows that this spectrum
exhibits too much broadening for any useful information concerning the

ratio of the ion to electron temperature. Without any information regarding
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Figure 6.3.6 Thomson scattering spectrum taken with an interaction beam
intensity of approximately 5x1012 W/cm2. Figure 6.3.6 a displays the contour
plots of the Thomson scattered spectrum showing the peak separation as a
function of time. Figure 6.3.6 b shows a lineout of the Thomson scattered
spectrum which can be compared to the CH Thomson scattered spectrum

generated in Chapter 4 in figure 4.2.1.
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the ratio of the ion to electron temperature there are considerable error bars
on the estimation of the electron temperature due to the dependence of the
spectrum on this ratio as can be seen in figure 4.2.2 a of chapter 4. This
measurement would place the electron temperature at approximately 400 eV
with a 200 eV uncertainty in either direction. In addition, this measurement
was taken with the incident beam intensity of 5x1012 W/cm?2. With a higher
interaction beam intensity, the temperature of the plasma will increase as
well.

The upscattering process shown in figure 6.3.3 has been observed in
several experiments with different interpretations given as to the origins of
the non-thermal-level Langmuir waves[63,108]. This process brings up the
interesting point that it could be used as a temporal density diagnostic for thin
foil 1 um interaction beam experiments. This could be very useful in
diagnosing such experiments which typically must rely on time integrated
measurements of the stimulated downscattering process. With this in mind,
the short wavelength cutoff of the upscattering feature indicates that the
maximum density near t=1.52 ns is greater than 12% of the critical density,
corresponding to a kApe of approximately 0.19. Although there are higher
densities present as indicated by the 3/2 wo emission, the cutoff in this case is
likely due to the cutoff of the 1 pm Raman spectrum rather than the
maximum density in the plasma. The wavelength response of the 5-20 streak
camera used in this experiment falls rapidly for wavelengths greater than 800

nm. It is possible, therefore that the long wavelength cutoff of the upscatter

feature is due to the streak camera, however, this cutoff of 820 nm also
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A}

corresponds to kApe of approximately 0.25. With the use of a dedicated streak
camera, the short wavelength cutoff of the upscattering feature could provide
a useful measure of the maximum density present in the plasma as a

function of time.

6.4 Experimental results

Measurements of the Langmuir wave spectra by Thomson scattering
and the corresponding Raman spectrum are shown in figure 6.4.1. This figure
was taken with a probe f/# of approximately 3.33 which allowed for a large
sampling of the wavenumber spectrum of the Langmuir waves. The
interaction beam had an f/# of approximately 6 which set the geometrical
spread in the Thomson scattering angle of approximately 9.5 degrees. The
angular spread measured in figure 6.4.1 a is close to approximately 8 degrees
which is slightly less than the expected geometrical spread set by the
assumption that the entire angular spread of the interaction beam is driving
stimulated Raman scattering. In figure 6.4.1 a, the longer wavelength feature
represents the Thomson downscattering from the waves that copropagate
with the laser, referred to as SRS produced Langmuir waves[109]. The central
feature at 351 nm is a combination of stray probe light and Thomson
scattering from ion acoustic waves whose frequency shift is less than the
resolution of the spectrometer. The shorter-wavelength feature represents
Thomson scattering from Langmuir waves traveli’mg opposite to the laser
wavevector, referred to as counterpropagating Langmuir waves. These

counterpropagating Langmuir waves have been interpreted as due to the
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Figure 6.4.1 Thomson scattering measurement of the Langmuir wave

spectrum using a f/3.3 probe beam (a) and the backscattered electromagnetic

waves (b) driven by the 1 um interaction beam.
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Langmuir decay instability, as discussed below. Figure 6.4.1 b shows the
corresponding time-integrated measurement of the scattered electromagnetic
wave driven by stimulated Raman scattering. In figure 6.4.1 b, the channels
centered at 1275, 1305, and 1510 nm were not functional.

For the purpose of comparing the different processes observed in the
experiment it is useful to look at the density range over which they occurred.
In figure 6.4.1, the Thomson downscatter feature, assuming an electron
temperature of 500 eV, extends from ne/ncr=0.045 to ne/ncr=0.11,
corresponding to values of kApe ranging from 0.24 to 0.14, respectively.
Likewise, the Thomson upscatter feature in figure 6.4.1 extends from
ne/ner=0.07 to ne/;ncr=0.11, corresponding to values of kApe ranging from
0.19 to 0.14, respectively. The Raman upscatter feature shown in figure 6.3.3
extends from ne/ncr=0.065 to ne/n¢cr=0.12, corresponding to values of kApe
ranging from 0.25 to 0.12, respectively.

Figure 6.4.2 displays the results from a separate shot in which an
aperture was placed in front of the Thomson probe beam resulting in a {/# of
approximately 25. In this case, the geometrical spread in the Thomson
scattering angle was determined by the f/# of the probe beam which produced
an angular spread of approximately 2.3 degrees. The angular spread measured
in figure 6.4.2 is approximately 2-4 degrees for the SRS feature. The
explanation of the Thomson scattered features in figure 6.4.2 is the same as
discussed for figure 6.4.1. In this case the measured signal was just above the
detection threshold of the detector which resulted in a reduced signal-to-noise

ratio. An angular broadening of 2 degrees would indicate a broadening in the

wavenumber spectrum of the Langmuir waves of approximately 5.5 percent.
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The modulational instability would predict a broadening in the Langmuir
wave spectrum proportional to the Langmuir wave amplitude for
kepwlpe=0.2[49]. For kepwxpezo.z, a broadening in the Langmuir wave
spectrum of 5.5% would suggest a Langmuir wave amplitude of
approximately nepw /Noe=6.5%, which is in reasonable agreement with the
estimation given below in section 6.5. However, as discussed in chapter 5, the
broadening of the Langmuir wave spectrum in that experiinent did not
appear to be correlated with the Langmuir wave amplitude as measured by

the intensity of the Thomson scattering spectrum.
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Figure 6.4.2 Thomson scattering measurement of the Langmuir wave
spectrum using a f/25 probe beam. The vertical axis represents the scattering
angle relative to the centér of the aperture on the probe beam. The bottom
horizontal axis represents the wavelength of the Thomson scattered signals

while the top horizontal axis shows the approximate percent of critical

density corresponding to the frequency shift of the Thomson scattered signal.
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One of the more interesting features observed in figure 6.3.3 was the

signal level of the Raman upscatter and 3/2 ®wo emission. These different
processes are both attributed to Thomson scattering of the incident laser from
Langmuir waves, although the explanations for these processes differ in the
source and mechanisms responsible for the Langmuir waves as discussed
below and in chapter 3. These two features have the same approximate
spectral energy, showing that although the Langmuir waves are driven at
different densities, the amplitude of the Langmuir waves being scattered from
have approximately the same magnitude.

With the addition of a random phase plate, Thomson scattered signals
were observed on only one shot in which the stimulated Raman signal from
the interaction beam saturated the Germanium detector array. This shot did
not show any evidence of the Raman upscatter feature even though there
was a short 3/2 0o emission feature near the beginning of the interaction
beam. The heater beam Raman diagnostic indicated that the maximum
density fell below approximately 0.2 ne/n¢r early on in the interaction beam

in contrast to the data shown in figure 6.3.3. The lack of a quarter critical

surface makes it more difficult for the enhanced Thomson model, which was

also discussed in chapter 5, to explain either the Thomson upscatter feature
seen in figure 6.4.1 a or the Raman upscatter feature shown in figure 6.3.3.
The absence of the Raman upscatter feature in this case could be attributed to
a number of reasons ranging from secondary effects of the random phase
plates to the absence of the quarter critical surface. It would be very interesting

to look at the effect of Random phase plates on the Raman upscatter feature
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relative to the stimulated downscatter process in an attempt to better

understand the Raman upscatter feature.
6.5 Discussion

The measured ratio of the amplitude of the SRS Langmuir wave,
NnepwsRs/ Noe, to the amplitude of the counterpropagating Langmuir waves,
nepWLDI/ Noe, is 0.5 * 0.2. The coupled equations describing SRS and the
Langmuir decay instability[9] can be used to infer the relationship between the
amplitudes of the participating waves. With a CH plasma, the Landau
damping on the ion acoustic waves is approximately ten percent of the ion
‘acoustic frequency[110]. The strong damping approximation reduces the ion
wave equation to an algebraic equation relating the ion wave amplitude to

the product of the Langmuir pump and daughter wave amplitudes,

Miawpr _ l(mia] 1 {neprRS NepwLDI ] (6.5.1)
2 2 2 !
n v. |k A n n
oe 2 /" epwsRs De oe oe

where kepWSRs is the SRS Langmuir wavenumber, njai.pi/noe is the ion
wave amplitude, Ape is the Debye length, and ®ja/Vvia is the ratio of the real
part of the frequency to the damping of the ion acoustic wave.

The Langmuir decay instability can saturate the Raman process by
increasing the damping on the Langmuir wave[9], driving the Raman process

below threshold for absolute instability. The threshold for absolute instability

is given by
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Niatpr ~ epwLDI ]

’
oe oe

VepwsRs = O.Smpe[

where wpe is the plasma frequency, Yosgs is the homogeneous growth rate for
Raman scattering and Vssrs and VePwSRs are the group velocities of the
Raman scattered light wave and SRS Langmuir wave respectively. The
damping is due primarily to the pump depletion term in the SRS Langmuir |
wave equation. Upon combining equation 6.5.1 and 6.5.2 in conjunction with
the measured ratio of the pump Langmuir wave and the counterpropagating
Langmuir wave, the SRS Langmuir wave’s amplitude was inferred to be
nepw /noe=5.0%;.

In order for the Langmuir decay instability to explain the results of this
experiment, this amplitude must be above the homogeneous damping

threshold for LDI[39],

Depwsks VepwiD! Viatp1  (6.5.3
YoLo1 ~ \[ VepwLp1ViaLD1 = > 4kepwsrsApe , 633

Noe () coia
pe

where Yorpris the homogeneous growth rate for the Langmuir decay
instability and vepw is the damping on the counterpropagating Langmuir
wave. Ignoring the damping effects of cascading, the homogeneous damping
threshold for the Langmuir decay instability near seven percent of critical is

approximately 0.005. This amplitude is well below the value obtained above
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suggesting that the Raman Langmuir wave was above the damping threshold
for Langmuir decay.

Other explanations for the counterpropagating Langmuir waves have
been considered. The most straightforward way of producing
counterpropagating Langmuir waves involves the propagation of the
Langmuir waves produced by stimulated Raman scattering up the density
gradient to their reflection point and back. This process, as pointed out in
chapter 3, results in too much damping of the Langmuir waves to explain the
observed ratio of amplitudes. Another mechanism involving the reflection
of Langmuir waves from their critical surface is the direct reflection of
Langmuir waves from an ion wave whose amplitude is sufficient to cause the
local plasma density to become overdense to the plasma wave. While very
large ion waves might in principle produce densities large enough to directly
reflect SRS Langmuir waves, this would require large ion wave amplitudes
(~10%) which would likely quench the SRS itself[56].

Another mechanism capable of producing counterpropagating
Langmuir waves involves the quasiresonant mode coupling of Langmuir
waves with ion waves[62,64]. In this process a Langmuir wave can couple
with an ion wave generating Langmuir waves which have a wavevector, ki,
equal to the original Langmuir wavevector, kepw, plus an integer number of
the ion wave's wavevector or EL=Eepwinkion§<. For this process to be
efficient, the resultant mismatch between the Langmuir waves must be less

than the frequency variation, A®, produced by the ion wave,

Aa)/a)pe =0.5n;, /ny; [62]. Assuming that the two Langmuir wave features

differed by an ion acoustic frequency, their frequency mismatch would be
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approximately Aa)/ Wpe = 41/Zme /M;KApe =0.1kApe. Therefore, for this process
to be efficient the ion wave fluctuation would have to be approximately 4%
based on the parameters inferred from the above measurements. In addition,
the Thomson scattered data from the éounterpropagating Langmuir waves
had nearly the same magnitude wavevector as the copropagating Langmuir
waves, the two wavevectors being antiparallel. The ion wave which provided

this quasiresonant coupling would be required to have a wavevector equal to

T

kion = ZEepw /n, where n is an integer. The Thomson scattered data shown in

figure 6.4.1 indicates that the copropagating Langmuir waves observed in the
experiment ranged from 17 k, at the lower densities to 1.6 EO at the highest
density where ko is the wavenumber of the interaction beam. That would
- suggest that the ion waves would require a wavenumber between 3.4 120 /n
and 3.2k, /n. The source of ion waves typically proposed for this process is
stimulated Brillouin scattering[64]. Only extreme forward scatter of SBS could
satisfy the wavenumber conditions above. In that case n would become very
large and consequently this process would drive a broad range of Langmuir
waves only a small fraction of which would be observed as the
counterpropagating feature. Again the measured difference between these
signals precludes this possibility.

The enhanced Thomson scattering model[67,96] would predict
Langmuir waves traveling in both directions of the incident laser. According
to the enhanced Thomson scattering model, Langmuir waves are produced by
the bump-on-tail instability between hot electrons and the background
electron distribution. The electromagnetic wave attributed to stimulated

Raman scattering would then represent the incident pump beam scattering
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off these enhanced plasma waves. As discussed in chapter 5, thé enhanced
Thomson scattering model would, however, predict a much broader
spectrum of Langmuir waves than observed in this experiment. In addition,
the Thomson scattered signal from the counterpropagating Langmuir waves
was unaffected by the absence of the quarter critical surface indicating that the
enhanced Thomson scattering model was not responsible for the production

of the counterpropagating Langmuir waves.
6.6 Summary

In summary, the Langmuir-wave spectra measured by Thomson
scattering show that Langmuir waves are present which propagate both
parallel and antiparallel to the laser wavevector. The Langmuir waves
propagating parallel to the laser's wavevector are expected as they are being
driven directly by stimulated Raman scattering. The counterpropagating
waves are not predicted directly from the Raman process itself. A number of
mechanisms were reviewed as possible candidates for the production of such
waves, however, as discussed in section 6.5 most of these processes could not
explain the data observed in the experiment. The presence and properties of
the Langmuir waves traveling antiparallel to the incident laser's wavevector
can be explained by the Langmuir decay of the Langmuir waves traveling
parallel to the laser's wavevector, but not by any other mechanism identified

in section 6.5. This thus represents the first experimental observation of the

Langmuir decay instability.
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Chapter 7

Summary

The saturation of stimulated Raman scattering, as well as other instabilities, is
a difficult problem which will require a great deal of effort in experiments,
theory, and simulations to understand all of the mechanisms at work and
their relative importance. This dissertation dealt primarily with the
experimental observation of the Langmuir decay instability and identified a
number of possible experiments which could be used to look for other
saturation mechanisms. The following paragraphs give a summary of the
results obtained in the previous chapters of this dissertation.

Chapter 1 reviewed a number of applications in which Raman
scattering was an important process. The success or optimization of these
applications is dependent on the saturation of the Raman process. However,
very little experimental work has been done specifically considering what
mechanisms are occurring and contributing to the saturation of Raman

scattering. The goal of this dissertation was to evaluate and observe these

saturation
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mechanisms. The experiments performed for this dissertation, described in
chapters 5 and 6, looked specifically for the Langmuir decay instability
described in section 2.5.

Chapter 2 provided an introduction to a number of saturation
mechanisms and in some cases experimental evidence for the occurrence of
these mechanisms. It also attempted to show cases when a particular
saturation mechanism did not explain certain details from experimental data,
indicating that the mechanism was not responsible for the saturation of the
amplitude of the daughter waves in that case. The saturation of stimulated
Raman scattering is clearly dependent on the intensity regime. For example,
in the short-pulse high-intensity regime, the reflectivity of the Raman
scattered light was found to be close to ten percent[37]. In contrast, for
comparable plasmas in the long-pulse moderate-intensity regime, the
reflectivity would likely saturate at a value closer to 0.1 to 0.01 percent of the
laser energy.

In the long-pulse regime, the saturation mechanisms responsible for
limiting the amplitude of the daughter waves depend on a number of
parameters. The saturation mechanisms affecting the Langmuir waves tend
to group most easily by the parameter kApe, which is simply the thermal
velocity of the plasma divided by the phase velocity of the Langmuir wave.
Convective instabilities such as forward Raman scattering can saturate by
plasma inhomogeneity at low laser intensities, however, for higher laser
intensities other saturation mechanisms limit the amplitude of the daughter

waves. For large values of kApe, greater than 0.3 to 0.4, saturation

mechanisms such as particle trapping or wave breaking are likely candidates
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which is consistent with experimental results such as shown in figure 2.10.3.
For values of kApe between 0.3 to 0.05, saturation of the daughter wave
amplitudes is likely dominated by wave-wave saturation mechanisms such as
the Langmuir decay instability or the electromagnetic decay instability as
discussed in chapter 6 and 3, respectively. This is supported by the
experiments described in chapter 6 which observed the Langmuir decay
instability over the range of kApe from approximately 0.25 to 0.15, as well as by
numerous simulations. For smaller values of kApe, less than 0.05,
modulational instability and collapse are predicted from simulations to
dominate the saturation of stimulated Raman scattering. As shown in section
2.6, the broadening in the spectrum of the Langmuir waves due to the
modulational instability increases rapidly for kApe less than 0.1 which is
qualitatively consistent with simulations.

The experiments performed for this dissertation involved the
saturation of Raman scattering in the long-pulse regime, however,
simulations and experiments performed in the short pulse regime allow
some deductions to be made. For short pulses at moderate intensities, the
saturation of the Raman process likely results from the limited gain
obtainable from the pulse width itself. For higher intensities, however, the
daughter waves have ample time to grow to large amplitudes. In this short-
pulse high-intensity regime, particle-in-cell simulations have shown that the
saturation level of stimulated Raman scattering is not dependent on ion
dynamics[111]. This indicates that the Raman saturation is not dominated by

parametric instabilities involving ion waves or by mode coupling or pump

depletion resulting from stimulated Brillouin scattering. The saturation
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likely resulted from mechanisms which did not depend on ion waves, such
as particle trapping, wave breaking, relativistic effects, or pump depletion
which were discussed in section 2.10, 2.9, and 2.4 respectively. In chapter 2, an
experiment was proposed to verify the saturation of Raman due to particle
trapping or wave breaking in this regime.

Chapter 3 examined the electromagnetic decay instability, specifically
looking for evidence that this instability is occurring in laser-produced
plasmas. The most compelling evidence that the electromagnetic decay

instability occurs in laser-produced plasmas comes from ®o/2 emission

observed in experiments. This ®wo/2 emission had been attributed to

Thomson scattering and inverse resonance absorption in previous papers. It
was shown in chapter 3 that the ratio of energy between the 3wp/2 emission
and the ®o/2 emission measured in previous experiments was inconsistent
with the interpretation that the wo/2 emission from these experiments was
the result of Thomson scattering. In chapter 3, and in previous work, it was
shown that without significant perturbations to the background density
distribution, inverse resonance absorption could not explain the levels of
®o/2 emission measured in the experiments discussed in chapter 3. To
explain the levels of ©®o/2 emission, inverse resonance absorption, therefore,
requires hotspots or large level ion fluctuations to convert a larger phase
space of Langmuir waves into electromagnetic emission. In addition, the
observed mq/2 spectra showed a slight red shift which is not predicted by
inverse resonance absorption. Experiments measuring hot electrons have
shown that enough energy is contained in the two plasmon decay daughter

waves to account for the wg/2 emission. By using the electromagnetic decay
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instability to explain ®o/2 emission, the relative levels of 3wo/2 emission and
®o/2 emission can be explained by attributing these features to independent
mechanisms, using the electromagnetic decay instability to explain the wo/2
emission. In addition, the electromagnetic decay instability also allows for a
slight red shifting of the ®o/2 spectrum seen in the experiments and is
consistent with the amount of energy found in the wo/2 feature.

Near the critical surface, Langmuir waves and ion acoustic waves can
generate transverse currents which drive electromagnetic waves close to the
frequency of the incident laser. In chapter 3, a model was constructed which
shows the ratio of the vector potential resulting from the coupling between
Langmuir and ion acoustic waves driven by the ion acoustic decay instability
. relative to the vector potential driven by Thomson scattering of the incident
pump from thermal level ion acoustic waves. It was shown that these
electromagnetic waves can be several orders of magnitude higher than
Thomson scattering from thermal levels. They can, therefore, provide an
enhanced noise source from which stimulated Brillouin scattering can grow.

Chapter 3 also examined the conditions under which the
electromagnetic aecay instability could be driven absolute. The
electromagnetic decay instability can be driven absolute when its daughter
electromagnetic wave is driven perpendicular to the density gradient and also
when the pump Langmuir wave is sufficiently localized. For the case of a
Raman generated Langmuir wave, these conditions were obtained from
previous calculations of the Langmuir wave localization distance[78] and the

general condition for absolute instability given a localized pump[28,87]. In

addition, the electromagnetic decay instability can also be driven absolute due
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to the coupling of the daughter wave energy back into the interaction region
which can occur when the Raman process is being driven primarily by
hotspots in the laser. For moderate hotspot intensities, the daughter
electromagnetic wave can become trapped in the resultant density cavern and
consequently couple back into the interaction region driving the instability
absolute.

Chapter 4 presented a review of Thomson scattering in homogeneous
plasmas and then looked at the effects of inhomogeneities on the Thomson
scattered vector potential. It also discussed the implications which
inhomogeneities introduced into the interpretation of Thomson scattering
experiments. The inhomogeneities primarily caused a broadening in the
spectrum limiting the information which could be extracted from the Raman
spectrum.

Chapter 5 described an experiment which was used to distinguish
between several models for the electromagnetic emission between ®wo/2 and
®o usually attributed to stimulated Raman scattering. The alternative model
used to explain this emission is known as the enhanced Thomson scattering
model. In the experiment described in chapter 5, Thomson scattering was
used to measure the Langmuir wave spectrum associated with Raman
backscatter. This measurement showed that the Langmuir waves obeyed the
dispersion relation for Langmuir waves driven by stimulated Raman
scattering. This experiment found that the Thomson scattered signal was

observed over a narrow angular range which was consistent with the

assumption that the Langmuir waves were driven by stimulated Raman

scattering and inconsistent with the assumption that they were driven by the
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bump-on-tail instability predicted in the enhanced Thomson scattering
model. The two plasmon decay instability was driven in solid Carbon target
experiments, as inferred from measurements of 3/2 wp emission. Stimulated
Raman scattering, however, was not detected in these experiments which
retained a quarter-critical surface for the entire duration of the interaction
beam. The lack of stimulated Raman scattering was expected due to the low
convective gain resulting from the relatively steep density gradient. The
enhanced Thomson scattering model, however, would predict stimulated _
Raman scattering in this case due to the presence of two plasmon decay.
Therefore, the lack of stimulated Raman scattering in the solid target
experiments shows that the Langmuir waves were not driven sufficiently by
the bump-on-tail instability to be measured.

Chapter 6 described an experiment which was designed to look for one
particular saturation mechanism of stimulated Raman scattering known as
the Langmuir decay instability. Again the Langmuir-Wave spectra were
measured by Thomson scattering. In this experiment, the Thomson scattering
measurements showed that Langmuir waves were present which propagated
both parallel and antiparallel to the laser wavevector. The Langmuir waves
propagating parallel to the laser's wavevector were directly driven by
stimulated Raman scattering, however, the counterpropagating waves are not
predicted directly from the Raman process itself. These waves require another
mechanism to reverse the wavenumber of the Langmuir waves directly
driven in the Raman process itself. A number of mechanisms were reviewed
as possible candidates for the production of such waves, however, as

discussed in section 6.5, most of these processes could not explain the data




CHAPTER 7. SUMMARY 182

observed in the experiment. The presence and properties of the Langmuir
waves traveling antiparallel to the incident laser's wavevector can be
explained by the Langmuir decay of the Langmuir waves traveling parallel to
thé laser's wavevector, but not by any other mechanism identified in section
6.5. This measurement provided the first experimental observation of the
Langmuir .decay instability and provided a measurement of the relative

energy contained in the counterpropagating Langmuir waves.
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Appendix 2.1

Derivation of equations describing stimulated
Raman scattering

This appendix reviews the derivation of the equations describing the three
-waves participating in stimulated Raman scattering.

The first step is to derive the equation describing the growth of the
Thomson scattered vector potential[16]. The derivation begins with Ampere's

law

- 4z- 19E
VxB-lI+——a—t (211

which relates the magnetic field, B, to the current, ], and the rate of change of
19A

the electric field,E. After inserting the relations B=VxA, and E=-V¢ ey

above, equation 2.1.1 may be expressed as

9% A
2

~c?V2A =4ncf - CZV(V A+£f) (2.1.2)

dt
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relating the vector potential, A, to the current and the scalar potential, ¢. The

transverse component of the scattered vector potential, At, can be written as

- czVZAt = 47:5]}. (2.1.3)

The transverse current, J;, is found from the electron momentum equation

%—ltl+-;—V(ﬁ- ) — Gx(Vxd) = (2.1.4)
;e.[-V¢ -li‘f‘—+3x(vx.&)] -Ype,
me cdt ¢ NeMe

without damping, where i, pe, and n. are the electron fluid velocity,
pressure, and density respectively. By inspection of equation 2.1.4, the
transverse electron fluid velocity, Uy, is equal to 4 = e;&/cme where e and me
are the magnitude of the electron's charge and mass respectively. The
scattered vector potential can then be written as

2

92 At 2427 dre -
— C V A e n A . 2.1.5
9 t2 t Me et ) ( )

The electron fluid density, ne, can be expressed as a zero order background
density, npe, and a first order perturbation, nepw, representing the Langmuir
wave fluctuation present in the plasma. Next the transverse vector potential,
A,, can be separated into components representing the interaction beam, Ao,

and the vector potential of the scattered electromagnetic wave, Agcatt. The
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resulting equation describing the growth of the scattered vector potential,

without damping, is

32 A
(5?'4' a)ge - szzj%zﬁ' = (216)
e

2
_4zngee (Bscatt -8 )nepw qA,
T \®scatt "©o 5
mg Nge mMgC

where &5t and &, are unit vectors in the direction of the scattered and
interaction vector potentials, respectively. The electron fluid momentum
equation, equation 2.1.4, also contains the longitudinal component of the

electron fluid representing the Langmuir wave. The longitudinal electron

velocity is given by
dup 1o, - eFy Vp
——+—V . = — e .
5, T3 V(@9 e, 2.1.7)

Equation 2.1.7 can used in conjunction with the continuity equation for the

electron fluid,

an -
5 TV (me)=0.0, (2.1.8)

to obtain the equation describing the growth of the Langmuir wave.

Combining a partial with respect to t of equation 2.1.8 and a divergence of

equation 2.1.7 produces
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?n, en.V-Ep Vp
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The pressure, pe, is assumed to follow the one dimensional adiabatic
equation of state, pe / ng = constant. The electron fluid density, ne, can be
expressed as a zero order background density, noe, and a first order
perturbation, nepw, representing the Langmuir wave fluctuation present in
the plasma. The velocity components can also be expressed as a zero order
velocity, u, =qA,/mec, representing the interaction beam and two first order
components Ugca = JAgcatt/MeC  and  Uepyy representing the scattered
electromagnetic wave and the Langmuir wave, respectively. Keeping only

first order components, equation 2.1.9 can be expressed as

2 2
0° Nepw | 4 NpeNepy
ot me

Nge CZVZ[ qAo qucaZtt}
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2
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Appendix 2.2

Rosenbluth model for parametric instabilities
in inhomogeneous plasmas

This appendix reviews the calculation of the overall gain for convective
parametric instabilities in inhomogeneous plasmas[27]. Appendix 2.4 shows
the substitutions required to transform equation 2.1.6 and 2.1.10 in Appendix
2.1 to the steady-state equations describing parametric instabilities in the case

of a linear phase mismatch between the waves which are

ity
(vs + Vg —C%(-)‘Ps = yo‘Peexp[ ”; X ) and (2.2.1)

sgat 2
(Ve—Vead;)‘Pe=yo‘I’sexp(lK2x ) (22.2)

With the following substitutions

s gt 2

_ 2
¥, = (I)sexp{ 1’1 X ) and ¥, = <I>eexp[1K4x ), _ (2.2.3)
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the previous equations may be put in a form which can be Fourier

transformed easily. With the above substitutions, equations 2.2.1 and 2.2.2
become

ddg iK"x

V;dg + Vg —= e

@, and (2.2.4)

do, iK'x
€ dx

Ve®e e = Yo®s- (2.2.5)

These equations can then be Fourier transformed into the following

equations

] . d

-Vs"'lkvs'*' > .d—k} s(k)= Yoq’e(k) and (2.2.6)
i KV, d |

A XCREXCE @27)

These two equations can then be combined into a single equation describing
the gain for the coupled modes participating in the parametric instability.

This equation is

'2 2 1
K'< d K'{ve vold .K 2
2 - =& S, —j—+k 2.2.8
[4dk2 2(V+V)d_klzJr (228)
o Ve gl le B @ (k)=0.
ViV, VeV ve V,

Neglecting damping on the daughter waves, Ve =V, =0, this equation reduces

to
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d%® e(k) K 2 72
2 K.z[ = +k __—VV @e(k)=0. (229)

This is then solved by the WKB method[27] integrating between the zeros
@ (k) o exp{ V p= j \/1 - d]} (2.2.10)
8

The amplitude gain, assuming a linear phase mismatch, for the coupled

mode described by the above equations is then given by

D (k) exp{v\-,’%-} | 2.2.11)

This approach has also been used to calculate the gain at the top of a
parabolic profile in which the wavenumber mismatch does not contain a
nonzero derivative in the wavenumber mismatch. This is the case for
stimulated Raman forward scatter on the top of a parabolic profile. The
equations describe forward stimulated Raman scattering from the top of a
parabolic density profile. The inhomogeneity in the light wave equation has
been ignored in comparison with the inhomogeneity effects in the Langmuir

wave equation so that the resulting equations,

d
(Vs +Vy a‘;)qls =%Yo¥e and (2.2.12)
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can be Fourier transformed into a single second-order differential equation
which can be solved using WKB theory. The above two equations can then be

Fourier transformed into the following equations

[vs +ikV]@s(K) = 7oPe(k) and (2.2.14)

i iope d? 2.2.15
ve+1kVe+2w T @, (k) = oD, (k). | (2.2.15)

e*n

These two equations can then be combined into a single equation describing
the gain for the coupled modes participating in the parametric instability.

This equation is

1
-k2+1k(_‘.{e_+1§_}+xe_yii2q_ (2.2.16)

2 1 V. V, VeV,

Neglecting damping on the daughter waves, Ve = Vg = 0, this equation reduces

down to

d> 1 Y2
l:dk2 K"L kV VvV, ):l (k)
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This is then solved by the WKB method integrating between the zeros

A 075 ‘\/——J‘\/_— d}} (2.2.18)

P, (k) o< eXP{

The amplitude gain, assuming a linear phase mismatch, for the coupled

mode described by the above equations is then given by[29]

@, (k) o exp{ 3.496Y," } (2.2.19)

(V Vv )0754—
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Appendix 2.3

K-space resonance width for steady state

The k-space resonance width is determined by Fourier transforming
the coupled homogeneous equations describing parametric instabilities

d¥

Veow L epw + Ve d::w =y,¥. +8(x) and (23.1)

d¥,

VW, +V, dxs =¥, ¥ epw- (2.3.2)
The Fourier transformed amplitude is given by
‘;/5 +ik (2.3.3)
\Pepw(k)= 85. v ) VvV M
Vgepw[-k2 +ik( LO ]+ Yo ¥ e"“’)
VSS VSEPW \]8‘*PW‘]8-">

The square of the absolute magnitude of the Fourier transformed amplitude

is then
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{kz +______7§ - stepw] +k2(

Vgepw Vgs

2
Vgepw

v 2
\;/5 +- epw ]
gs  Vgepw

-0.5
Provided vsv;;g << \/yg - Vs Vepw (Vgepngs) , g(k) has it's maximum value
-0.5
when k= 1, }’3 - VsVepw (Vgepwvgs) at which point g(k) has the value

g(k) = ¥ o (K) P o (k) = - , - ﬂ (2.3.5)

The k-space resonance width is now found by looking at the full width in k-
space at half maximum of g(k) given in 2.3.5. This k-space resonance width is

then

2
Ak = 3(7§'V5Vepw)+l( Vs . Vepw] N

VeepwVgs  2{ Vgs  Vgepw

0.5

1
4 Vgepwvgs Vgs Vgepw Vgepngs

272 2
6(73'stepw)+( Vs . Vepw J _{ﬁ:’ stepw]
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-0.5
With no damping Ak e ?’o(Vepst) and in the strong damping limit

where Vepy >> yovgespWV"O S, Ak o vepWV:glepw

The length over which the parametric instability can grow is
determined by plasma inhomogeneities which dictate the length over which
the waves become detuned. The wavenumber mismatch between the waves
participating in the parametric process can be Taylor expanded about the
perfect-phase-matching-point, xo, to see how the how the phase changes with

distance. Using this prescription, the wavenumber mismatch is given by

Ak(x) = [ko (x) - ke (x)~ ke (x)] = (237)
Ak(xo)+{(x = Xo)K],_+0.5(x=x) "), ,

where it is assumed that at the perfect-phase-mismatch-point, xgp, Ak(xp)=0.
The interaction length; X-Xg, is found by equating the wavenumber resonance

width to the Taylor expanded wavenumber mismatch,

-0.5
yo(Vgepngs) o (x = %o )x], +0.5(x =X, )2 k"], . In the case of a linear
mismatch, neglecting damping, x'>>x" and
_ 0.5 ]
Liin = (X=Xg ) < Yok’ 1(Vgepngs) . However, in the case where x'=0, the
-0.25
interaction distance is given by Lpar =(x—Xo) o< 05 —OS(Vgepngs) in
the undamped case. In the strong damping limit, Vepw >> yovgespwv-os the

interaction distance in the case of a linear phase mismatch is given by

Liin =< Vepnglepw’f "1 and in the case of a parabolic phase mismatch is given

05 0S5 La—05
by Lpar epwvgepw :
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The homogeneous solution to equation 2.1 and 2.2 is given by

2
Y v, — Vepw V!
Yepw < exp| x —0.5( epw 4 s J+\[o.25( pw +‘”S ) +7‘2’ __epw s

Neglecting damping, the homogeneous amplitude is reduced to

-0.5
‘Psaexp[yox(Vgepngs) ] In the strong damping limit,

Vepw >> yovgfpwvgs“, the homogeneous amplitude is given by

¥epw ocexp[xygv;%,ngs]. The parameter dependence of the inhomogeneous
gain is found by inserting the interaction length into the expression for the
homogeneous gain above. The parameter dependence for the gain in a
plasma with a linear phase mismatch neglecting damping is therefore given

-1
by Ggyg < yﬁ(Vgngepr') . As shown in Appendix 2.2, n is the correct
numerical coefficient giving the expression for the amplitude gain with a

linear phase mismatch  between the waves as

-1
¥epw ocexp[nyg (Vgngepr") :I In the strong damping limit, the parameter

dependence for the gain in a plasma with a linear phase mismatch is also

-1
given by Ggg o< 7§(Vgngepwx') which has the same parameter dependence

as the undamped case. The parameter dependence for the gain in a plasma

with a quadratic phase mismatch neglecting damping is given by
15 075 _,.-05 . . .

Gars =< ¥, (VgSVgepw) K . As shown in Appendix 2.2, 3.496 is the

correct numerical coefficient giving the expression for the amplitude gain
with a quadratic phase mismatch between the waves as

-0.75
Fepw = exp[3.4967(1)'5 (Vgngepw) k"' 70 ] In the strong damping limit, the

parameter dependence for the gain in a plasma with a quadratic phase
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. N WY OS5 a1 .
mismatch is given by Ggg < yg(vepngepwx ) Vgswith 4.45 giving the

correct numerical coefficient for the amplitude gain.
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Appendix 2.4

Numerical solution of Rosenbluth equations

This appendix details the numerical calculation for parametric instabilities
driven from a linear phase mismatch. This calculation solves two first-order
coupled partial differential equations by the method of characteristics which
has been used previously to investigate these equations[112]. With very slight
modification, the code given below can treat forward and backward scattering,
quadratic phase mismatches, background density perturbations, convective or
absolute instabilities, etc..

From Appendix 2.1, the equations describing the growth of the

daughter waves participating in stimulated Raman scattering are

2 A n A
LA 02, -c2v2 [Lsaatt _ 2 Depw Ppump g 24.1)
dt meC Nge mMgC

) ; _
(_8 + w2 BV%hVZ)—nePW = CZVZ[———q‘A‘SC"tt  Hpump ) (24.2)

2
Noe mecC meC
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These equations can be further simplified by writing the vector potentials and

the Langmuir wave fluctuation as a slowly varying component multiplied by

a rapid oscillation, or more precisely
ri‘:‘; =—;—‘Pa(x,t)exp(iflza-dS'(—iwt)+c.c.. The assumption  that
-a-—\P—a“%-’-t—)<<k‘Pa(x,t) and -N—gi)—(ﬁ«w‘l’a(x,t) reduces the above

equations to the following first-order partial differential equations

3 <3 (9 *
('a—t'!' Vscatt + Vscatt 'ﬁ)?scatt = (243)

2
_a)pe

4i0gau ‘PePW‘PPumPeXP(iJ‘ Ak(X)dx) and

] = 4
(5—t+ Vepw £ Vepw -;;}Pepw = (2.4.4)

24,2
—C"Kepw

rEr— ‘i‘:catt‘l’pumpexp(-i_[ Ak(x)dx),

where Vepw and vgcatt are the damping of the Langmuir wave and the

scattered electromagnetic wave respectively. The Taylor expanded phase

mismatch for a linear profile is Ak(x)=Kpump —Kepw ¥ Kscatt = K'(Xo)X-

Making the further substitutions YWepy = ¢epw.(-i)\/c2k§pw /4a)epw and
Wicatt = ¢Scam}w§e / 4@gcay allows equations 2.4.3 and 2.4.4 to be written in

the form

9 d . Kx?
5‘{"' Vscatt + Vscatt'a—x" Pscatt = YoPepweXP 1‘2— and (2.4.5)
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d J  Kx2
(m’*‘ Vepw £ Vepw ‘é—x)(bepw = 70¢scattexp('1 T} (24.6)

where Yo is the homogeneous growth rate for stimulated Raman scattering
defined as ¥, =KepwC¥ pump®pe / (41/a)epwwscatt). The above equations are
then normalized with the variable substitutions 7=7y,t and

xX= yox/ Vepw Vscatt - These variable substitutions allow equations 2.4.5 and

2.4.6 to be written as

d {Vsca_i 0 - 24,
(8 zt Vepw ax]‘pscaﬂ’ - 247)

i K'VarwV
Vscatt 1 epw Yscatt 2
- Oscatt + PepweXP x° |and
Yo P (2 Yo )

d fvepw d . |
+ = 24.8
[a T Y Vscatt aqu’epw (242)

Vepw -i ¥Vepw Vsatt 2
Doy + PscareXp| ——Bw Scatt 2|
Yo ePW scatt P[ 2 y§ X

The method of characteristics can be used to numerically solve equations 2.4.7

and 2.4.8 by integrating along the characteristic. The substitutions required for
the method of characteristics are &=y+ 71/Vepw/Vscatt and

n=x- 'L',/Vscatt /Vepw - Equations 2.4.7 and 2.4.8 can now be written as
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d ¢epw (2.49)
s scatt ’ epw B
Vseatt
Vepw -i VepwVscatt ]
- Pepw + & ttexp( x° |rand
{ %o epw T ¥sca 7(2) J
a¢scatt = (2.4.10)
on Vscatt ’ epw o
epw Vscatt

Vscatt + ex KVepw Vscatt 2 1
{ 7, Pscatt + Pepw P[ yg X J

(]

Figure A.2.4.1 shows a graphical representation of the method of
characteristics. The spatial and temporal step used in the numerical
evaluation of equation 2.4.9 and 2.4.10 are chosen to fall along the intersection
of the characteristics as shown in figure A.2.4.1. The relationship between the
spatial step, Ay, and the temporal step, At, is given by Ay = ATW :
The relationship between the change in the characteristic variables is given by

An=-A&, and the relationship between the characteristic variable and the

{V
temporal time step is given by AE=A Vscatt , | Z€PW | The differenced
Vepw Vscatt

equations used in the program are

Pepw (M+ A1, E) = Gepw (1, E) + A 2.411) -

17 -i KVepw V.
{ t;})w ¢epw(77r§)'*‘ ¢scatt(77r‘§)exp( 1 epw? catt Zz]][ and

2 Yo

(o]
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Fscate(11,§ + AL) = Gscanr (1, §) + AT (2412)

i KVepwV
{‘ Tscatt Pscatt (7, §)+¢epw(77r f)exp[; ep;vz e 12]}
o

Yo

lines of
constant &

lines of

N P2 e > constant 7

AT 4~

Ay 2Ay 3Ay 4Ay
Figure A.2.4.1 Grid spacing used in the numerical program in the case of

backscatter where the group velocity of the two waves are opposing.

The actual program follows:

C This program will look at the overall Rosenbluth gain
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C for forward scattered daughter waves.
C This version uses method of characteristics.
PARAMETER (NSTEP=2000)
COMPLEX ScaNew(-NSTEP:NSTEP),ScaOld(-NSTEP:NSTEP),
IEpwNew(-NSTEP:NSTEP),EpwOIld(-NSTEP:NSTEP),i,
IDisp(-NSTEP:NSTEP),NuL ,NuE,DTs,DTe,
1ScaTime(0:NSTEP)
REAL Gamma, NuLight, NuEpw, Vratio, Time, VLight,
DT, DX, VEpw
INTEGER NITER, Vrat
open(unit=13,file="Expdet0’,status="unknown')
close(unit=13,status='delete’)
open(unit=13,file="Expdet0’,status="unknown’)
open(unit=14,file="Expdet1’,status="unknown’)
close(unit=14,status='delete’)
open(unit=14,file="Expdetl’,status="unknown’)
open(unit=15,file="Expdet2’,status="unknown’)
close(unit=15status='delete’)
open(unit=15,file="Expdet2’,status="unknown’)
open(unit=16,file="Expdet3',status="unknown’)
close(unit=16,status='delete’)
open(unit=16,file="Expdet3',status="unknown’)
open(unit=17 file="Expdet4',status="unknown’)
close(unit=17,status='delete")
open(unit=17 file="Expdet4',status="unknown’)
open(unit=18,file="Exptime’,status="unknown’)
close(unit=18,status='delete’)
open(unit=18,file="Exptime’,status='unknown’)
i=CMPLX(0.,1.)
10 PRINT *, 'Enter THE TOTAL NUMBER OF TIME STEPS (0 TO STOP)'
12 PRINT *, 'SUGGEST 1200.'
READ *NITER
IF (NITER .EQ. 0.) STOP
14 PRINT *, 'ENTER Gamma, NuLight, NuEpw, and Vratio’
16 PRINT *, 'SUGGEST 1.0, 0.0, 0.0, 1.0’
READ *, Gamma, Nulight, NuEpw, Vratio
IF (Gamma .EQ. 0.) STOP
VLight=SQRT(Vratio)
C forward scattering uses +VEpw
VEpw=1.0/SQRT(Vratio)
DT=0.00125
DX=DT/SQRT(Vratio)
Vrat=Vratio
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C setup initial wave amplitudes
DO 20 IX=-NSTEP NSTEP
ScaOld(IX)=CMPLX(0.000,0.)
ScaNew (IX)=CMPLX(0.000,0.)
EpwOIld(IX)=CMPLX(0.000,0.)
EpwNew(IX)=CMPLX(0.000,0.)

Disp(IX)=0.5**(REAL(DX*IX))**2.0/Gamma
20 CONTINUE
DO 25 IM=-NSTEP,NSTEP

C this ensures a smooth output

EpwOl1d(IM)=CMPLX(1.,0.)
25 CONTINUE

C end setup initial wave amplitudes

C verify initial wave amplitudes
DO 30 IV=-NSTEP NSTEP

C PRINT *,'Epw="EpwOId(IV),’ PmpMag=',CABS(EpwOId(IV))

C PRINT *,'Disp=',Disp(IV)

30 CONTINUE

C end verify initial wave amplitudes
Time=0.

C time loop
NuL=CMPLX(DT*NuLight,0.0)
NuE=CMPLX(DT*NuEpw,0.0)
DTs=CMPLX(DT,0.0)
DTe=CMPLX(DT,0.0)

C  PRINT ¥, NuL ,NuE,Dts,Dte

C take care of boundary conditions
DO 35 IP=-NSTEP, -NSTEP+Vrat
EpwNew(IP)=CMPLX(1.0,0.0)

35 CONTINUE

C end boundary conditions
DO 40 ITER=1, NITER
Time=Time+DT
ScaTime(ITER)=ScaOld(0)

C fill out amplitude arrays at new time step

DO 50 IX=-NSTEP+Vrat, NSTEP
ScaNew(IX)=ScaOld(IX-Vrat)-

! ScaOld(IX-Vrat)*NuL+

! DTs*EpwOld(IX-Vrat)*CEXP(

! -Disp(IX-Vrat))
EpwNew(IX)=EpwOIld(IX-1)-

I EpwOld(IX-1)*NuE+

! DTe*ScaOld(IX-1)*CEXP(Disp(IX-1))
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50 CONTINUE
DO 60 JX=-NSTEP, NSTEP
ScaOld(JX)=ScaNew(JX)
EpwOId(JX)=EpwNew(JX)
60 CONTINUE
IF (ITER.EQ. 3) THEN
write(13,*),' Mag. of As',',',/ Mag. of Epw',,','position’
DO 70 JX=-NSTEP, NSTEP, 4
write(13,*),CABS(ScaOld(JX)),’,,
! CABS(EpwOld(JX)),, JX*DX
70 Continue
close(unit=13)
Else IF (ITER.EQ.NITER/2) THEN
write(14,*),'Mag. of As',',',/'Mag. of Epw',’,','position’
DO 75 JX=-NSTEP, NSTEP, 4
write(14,*),CABS(ScaOld(JX)),,,
! CABS(EpwOld(X)),, JX*DX
75 Continue
close(unit=14)
Else IF (ITER.EQ.2*NITER/3) THEN
write(15,*),Mag. of As',',',;/Mag. of Epw',',’,'position’
DO 80 JX=-NSTEP, NSTEP, 4 '
write(15,*),CABS(ScaOld(JX)}),",,
! CABS(EPWOld(]X))/'I'; X*DX
80 Continue
close(unit=15)
Else IF (ITER.EQ.5*NITER/6) THEN
write(16,*), Mag. of As',',',/'Mag. of Epw',’,,'position’
DO 85 JX=-NSTEP, NSTEP, 4
write(16,*),CABS(ScaOld (X)),
! CABS(EpwOld(X)),, JX*DX
85 Continue
close(unit=16)
Else IF (ITER.EQ.NITER-1) THEN
write(17,*),Mag. of As',,','Mag. of Epw',',",'position’
DO 90 JX=-NSTEP, NSTEP, 4
write(17,*),CABS(ScaOld(JX)),,’,
! CABS(EpwOld(JX)),, JX*DX
90 Continue
close(unit=17)
END IF
40 CONTINUE
write(18,*),'Mag. of As',',)','time'
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DO 95 IL=1,NITER,5
write(18,*),CABS(ScaTime(IL)),", IL*DT
95 CONTINUE
close(unit=18)
END
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Appendix 2.5

Saturation of forward Raman scattering due to
ponderomotive detuning

This chapter details the derivation of the Langmuir wave's saturated
amplitude due to ponderomotive detuning. This saturation mechanism was
proposed as a saturation mechanism for stimulated Raman forward scattering
and the derivation contained in this appendix follows the original paper [38].
The approximations made in this derivation, as well as their consequences,
are discussed in chapter 2 section 2.7.

The derivation begins with the equations describing the low frequency
response of the ion and electrons due to the ponderomotive pressure of the
high frequency waves. This equation can be derived from the momentum
equation for the electrons and the continuity and momentum equations for
the ions. Upon neglect of the electron inertial term in the electron

momentum equation, the ion density perturbation, n;,, can be written in

terms of the electron density perturbation, n, as
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2

v n, 2.5.1

Znﬂ =1n, —(—L] Vzne, —Ea-)TVZ(uzh +uf°s), ( )
pe pe

where Z is the charge state, u,, is the oscillation velocity from the high
frequency Langmuir wave, and u,, is the oscillation velocity from the high
frequency electromagnetic daughter wave. The continuity and momentum
equations for the ions can be combined to relate the ion density perturbation
to the low frequency electron perturbation and the results combined with
equation 2.5.1 to give the equation expressing the low frequency response of

the electrons to the high frequency fields. This equation can be written as

ueh

az 292 | Ny Zm 2
—_— L =_eVy
(Btz &V )noe 2M. (

1

e ) (2.5.2)

where ne]/npe is the amplitude of the low frequency response, me is the
mass of the electron, Mj is the mass of the ion species, and cg is the sound

speed. Equation 2.5.2 is essentially the low frequency Zakharov equation.

Making the quasi-static approximation, d/dt << c,8/dx, equation 2.5.2 becomes

ng __1 lueh2 quosr (2.5.3)
n. 2| VA VA [

where 2.5.3 has been averaged over time 'removing high frequency

components. The equation representing the amplitude of the Langmuir
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wave, nepw/Noe, participating in Raman scattering is derived in the same

manner as shown in appendix 2.1 and is given by

2
d + o2 (1 4 Del )_ 3xTe v2 Nepw _ 2v2 qAscatt 94 pump . (254)

The equation representing the scattered vector potential, Agcatt, is given by

2
[3 +ol, (1 o Dol )_ szz]qucatt _ _ 2. Depw quur;_\p. (2.5.5)

e
It Noe mec2 P nee mgC

The low frequency response shown in equation 2.5.3 can be inserted into

equations 2.5.4 and 2.5.5 to produce the equations

2 2
i— +02.d1- 1] _1 |Bepw + i qAscatt _3xT, v2 Nepw (2.5.6)
g t2 Pe. 2| k2 l%e Nge thh me o2 m, oo
A A
= C2V2 a Scaztt . 9 pllI;lp and
meC mgC
2 2 5 2
?——+m2e 1-1 _1_|Tepw + £ 9Ascatt| || _ c2y2 GAscatt
att ¥ 2\ K2AZ | moe | vfy| mec? mec?

—o2 Nepw JApump .

2
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These equations are reduced by assuming that the Langmuir wave amplitude
and the vector potentials can be written as a slowly varying component

multiplied by a fast oscillation or

¥ pump = (quump / mecz) = O.S‘Po(x,t)[exp(ikox —iwet)+c.c], (2.5.7)
Yocatt = (qucatt / mecz) = 0.5[¥4(x,t)exp(ikgx ~ imgt) + c.c.], and

Yepw = (nepw /noe) =0.5 [‘Pepw(x,t)exp(ikepwx - icoepwt) +c. c.].

When the equations in 2.5.7 are inserted into 2.5.6 and the dispersion relation

for the waves are used, the equations can be written as

2 2 ‘ )y
o 1 2 ¢ 2 . epw (2.5.8)
pe ¥ W g 3 2 k P
P l l p 19Vih
2 2 epw| S5 1its epw v epw
8 {kepwloe l I Vth ) d x

2,2
-C kepw
4

2 2 *
o 1 2 ¢ 2 Lo . J¥

pe 2 S

5 [ Py, I‘Pepwl t |%,| ]\Ps_lc ks-g)_(..

¥, ¥; and

The above two equations plus their complex conjugates represent the four

equations which must be solved. These equations can be written as




¥
¥ epw —ifB a‘z’“’ = n¥e, (2.5.9)

*

oY¥
a‘P:pw +ip c;;fw =nY¥,,

d Ve
== Y2¥epw, and

a5 ~in dx

¥
a‘P +17] I x ‘YZ\Pepwr

2 2 21,2
® 2 ¢ 2 —CKepw
where o= 8pe [kzpwxz |lPepw| +'V_t2h'|lps| ), ﬁ=3thkepwr Y11= 4ep Y,
2
-
n=c%k,, and vy, = 4‘” ..
? 2.5.10
] _-n 32l @510
d x ﬁ Y2 ax ’

10 (wrwr +w ¥, )=of L-Llwtwr , —w v

‘K( MHop + ¥ F g = n B (#3¥epw —¥ ¥ )

. a L 7L 1 1 *

(¥ ¥ epw — ¥ Fepy ) a(—n——E)(‘P Vopw + ¥ ¥ o | =

Ny P_o22 2
z—B-\PsI 222 ¥ ey + and
a¥ ?

. epwl

ip— T = —-71(‘11;“1’2pw - ‘Ps‘PepW).
These equations can be combined into a single equation

22w I (2.5.11)

epw

2 477|
A | _
epw

Gl
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2
epwl <<1, the solution to the above equation is approximately

2o=exp(2x70/1/VsVepw) where 70/1/V3Vepw'= v,v,/(Bn). Saturation

happens when the left most terms in equation 2.5.11 balance each other or

For l‘}‘

Tepw

when

Dpe

Vs
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Appendix 2.6

Saturation of forward Raman scattering due to
relativistic detuning

This appendix details the derivation of the Langmuir wave's saturated
amplitude due to relativistic detuning. The derivation presented in this
appendix assumes that the laser intensity is small enough that the electrons
do not experience relativistic motion due to the laser itself.

The equations describing stimulated Raman scattering can be derived
from Maxwell's equations in conjunction with the relativistically correct
fluid equations. The starting point for this derivation will be the relativistic

momentum equation given by

B, . o= (- o -) Vp

/Y + -V = E+— B -, 2.6.1

5¢ T Vp=q E+oxB |-— (26.1)
where p = o The resultant derivation will consider Raman forward

l-uz/c2

scatter as a three wave process. Forward Raman scattering can involve four or

more waves when this process occurs at low densities where the plasma
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frequency is much less than the incident laser frequency. The transverse
components of the momentum equation above show that the transverse

momentum, p,, may expressed in terms of the vector potential, A , as
pL=—qA, /c.

The equation representing the daughter Langmuir wave is

E1-(00s/) ot/ SNuas/c St (262)
( {g/c) (Uos /<) )3/2 2(1_(4;/‘3)2'(‘105/@’2)3/2

(0he —3vE V2 ) = m' :

(C/ C) (uos/ C) (A.L A )r

where { is the spatial displacement of the electron fluid in the wave and is

related to the Langmuir wave amplitude by |nle /noe|=|VC|. The equation

describing the electromagnetic daughter wave may be expressed as

2
(f—fw%e\/l—(c'/c)z-(uos/c)z—c2v2]AL= @69

2 n,
_a’pe\/:l C/C —(us/c) n_ersr

oe

where ugg is the oscillation velocity of the electrons in the electromagnetic

wave. Specifically, upg may be written in terms of the vector potential of the

incident electromagnetic wave,

(uafe)' =(1-(E6) Jaro/me?)' /[1+(aAa /me?)'] 264
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After making the substitutions n=wpel/c, T=Wpet, Y=0peX/c, the vector
potentials and Langmuir wave amplitude is written as a slowly varying

component multiplied by a fast oscillating term,

Wos = (qus / mecz) =0.5* ‘Po(t)[exp(ikocx / @y =it / cope) + c.c.], (2.6.5)
¥, = (qA L/ mecz) = O.5[‘Ps(t) * exp(ikscx / Qpe —iarst / wpe) +C c.],

and n1=0. 5[§(t) * exp(ikpcx / @pe —ioyt / wpe)+ c c.].

Using the dispersion relations of the waves, equations 2.6.2, 2.6.3, and 2.6.5

can be reduced to

(o g2 : 2, 9
(o Ve iy Ty, 1_(_&] l¢f | (2.6.6)
\Ppe ) 8 @pe ~ Alop @pe | 4
( o. Vg2 . 2.5
| ﬂ)_ ﬂ_ L W u* 1kpC _ ..C_OE.. 1é|_
Wit =gy |1 |
\wpe) wPf? Bpe wpe )
3( @ \! 2, .0p o —i(k,—ks)c ¥, ¥, @p \2[§|2
sy |gfe-i—~E=—2 32 0 siq| 2| 2L i and
8 \wpe J wpe wpe 4 wpe ) 4
(@ ' o i(k ¥,¥ o, \ (&2
3| % !§I2€*+i 14 é*zl( o —ks)e Yo' 1-| =P €] .
8\03;73) wpe wPe 4 a)pe 4

These four equations may be simplified combined and written as
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dA
— aC’
dz

i _ o, B
it dr’

a
9 _imAD= 2a—”-[—“15-3 +A},and
dt 05 | 0y

é-D-—iﬂAC =0.
dt

In equation 2.6.7 above, A=[gf", B=|¥,[, C=[e¥,+£¥;], D=[e¥,-E¥]],
2. 0 3
a(A): 1- .EOL Ié_’ ﬁ_?.g’ and rn= §. & +.:£ .(_1.)2_& . The second
o, 4| 40, 8| 0, 8l W, O

equation in 2.6.7 expresses conservation of action. The four equation in 2.6.7
can be used to eliminate all of the variables except A, resulting in the

equation

d’A

0 2
= -—4052-(:)—"-A+£2—A3 =0. (2.6.8)

s

For A<<1, the Langmuir wave amplitude grows like A=A _e™", where the

®
= P ;
homogeneous growth rate y=0awm, o Saturation happens when the left

s
most terms in equation 2.6.8 are equal or when A =f8_coi The saturation
T
pe

amplitude of the Langmuir wave is therefore,

0.25 3 -1
. = kpCS é O)P +1 Bp_i‘o_p i =9 _'L_ . (269)
P «/Ecope 8| o, 8| 0, @, O O,
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Appendix 3.1

Numerical calculation of the scattering
version of EDI from an inhomogeneous
plasma

. This appendix details the numerical calculation for the scattering version of
the electromagnetic decay instability. From chapter 3, the equation describing

the growth of the scattered vector potential is

2 ok (ni)-cza_z Ghg 2 N Depw Tepw | 3.1.1)
ot Pl L, ax* meC2 P ng, kepw Noe

where nepw/ Noe and nja/npe are the pump Langmuir wave amplitude and
the ion acoustic amplitude, respectively and Agc is the vector potential of the
scattered light wave. The pump Langmuir wave and ion acoustic wave
amplitudes are assumed to be of the form
ng _1

" =E‘Pa(x)exp[i(jl‘<a-di-mat)]+c.c.. The scattered vector potential is
0e

assumed to be of the form &5‘5:%‘Ps(x)exp[-imst]+c.c.. The steady state
meC

form of equation 3.1.1 can be written as
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2 2
d? DpeX DpeDepw ix'x2 (3.1.2)
— — —————— ‘I“ x T i o —— ‘P \P. e P bt
[ sz Can] s( ) 2C3kepw ( epw 1a) Xp 2

where the wavenumber mismatch of the pump Langmuir wave and the ion
acoustic wave has been Taylor expanded, (Eia-(x) + Eepw(x))-diz x'x, about
the perfect phase matching point. The spatial coordinate is normalized

according to x=x'0-5x. Equation 3.1.2 can then be written as

2 .2
(—5—2 - Ex]‘l’s ()= Gexp[%—zl, (3-1.3)
X

-1 -1
where o= w%ea)epw (‘Pepwaia)(zc3kepw x') and &= w;2>e ( chnx'l's) )
Equation 3.1.3 was treated as a boundary value problem in which ¥s=0 at the

right hand boundary and is an outgoing wave at the left hand boundary.

Equation 3.1.3 can be differenced into the equation

(1-0-25(a%)? En ) ¥t + (—2 —~0.5(A%)* Exn )‘Pn + (3.1.4)

a2
(1 - 0.25(A)()2 §;{n)‘Pn_1 = Gexp[l—gl‘-].

Equation 3.1.4 represents a tri-diagonal matrix which can be solved assuming
a one term backward recursion relation of the form ¥, j=0,¥, +pbn-
Substitution of the recurrence relation into equation 3.1.4 allows for the

determination of the recursion relations for the o and B coefficients. This

procedure yields
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-(1-0.25(Ax)2 éxn-l) (3.1.5)
o = and
(1 ~0.25(A7) éxn-l)anq + (-2 ~0.5(Ax)? éxn-1)
oexp|i0.523.1]-(1-0.25(A2) 201 B (3.1.6)

" (1-025(87) Exn-1) o1 +(-2-0.5(82)% )

The outgoing boundary condition on the left hand side fixes the value of

nstep+1 =(1+i0.5(A;()1/§xnstep,1)/(1—10.5(Ax),//,‘xnstep-1) and  B.nsteps1 =0

with the inclusion of a gaussian damping factor on the right hand side of
equation 3.1.3 as shown in the program.

The actual program follows:

C This program will look at the amplitude of the
C scattered signal due to a linear phase mismatch
C when the scattered signal is near its turning point.
PARAMETER (NSTEP=6000)
COMPLEX ScaOld(-NSTEP:NSTEP),ScaNew(0:51),
1i,Disp(-NSTEP:NSTEP),
!Alpha(-NSTEP:NSTEP),Beta(-NSTEP:NSTEP)
REAL sigma,eta,DX,cie
Integer k
open(unit=13,file='steady’,status="unknown’)
close(unit=13,status='delete")
open(unit=13,file='steady’,status="unknown’)
open(unit=14 file='sigmavary',status='unknown')
close(unit=14,status='delete’)
open(unit=14 file='sigmavary',status='unknown')
i=CMPLX(0.,1.)
14 PRINT *, 'ENTER sigma,eta,cie’
16 PRINT *, 'SUGGEST 0.005,0.1,0.0’
C sigma is (wpe/2¥n¥o)/(2¢"2(k'))
C eta is wpe~2/(c2Ln(k")*1.5)
C cie is normalized ks"2=(ws/ 2-wpe”2)/(c 2(k"))
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C normalized time t'=t(wpe”2¥n¥o)/(4ws)
C normalized space x'=x(k")"0.5
READ *, sigma,eta,cie
DX=0.01
C outgoing boundary conditions on right-hand side
C alpha(i)=-(A+)/(alpha(i-1)*(A-)+(A0))
C A-=sigma/DX"2
C A0=-2sigma/DX"2+i/DT
C A+=sigma/DXA2
Alpha(-NSTEP+1)=(1.0+
1i*0.5*DX*(eta*DX*Real(NSTEP-1))**0.5) /
1(1.0-i*0.5*DX*(eta*DX*
!Real(NSTEP-1))**0.5)
C  Alpha(-NSTEP+1)=CMPLX(0.000,0.)
C end boundary conditions
C setup initial wave amplitudes
DO 20 IX=-NSTEP NSTEP
ScaOld(IX)=CMPLX(0.000,0.)
Disp(IX)=i*DX**2.04(REAL(IX))**2.0/2.0
! -(4.8*(REAL(IX))/REAL(NSTEP))**2.0
20 CONTINUE
C end setup initial wave amplitudes
DO 30 J=-NSTEP+2,NSTEP,1
Alpha(])=(-1.0+i*0.5*cie*DX+
I DX**2.0%ta*
! REAL(J-1)*DX/4.0)/
! (Alpha(J-1)*(1.0+i*0.5*cie*DX-
! DX**2.0%ta*
! REAL(J-1)*DX/4.0)-2.0-
! DX**2.0%eta*
! REAL(J-1)*DX/2.0)
30 CONTINUE
C beta(i)=(b(i-1)-(A-)beta(i-1))
C /(alpha(i-1)*(A-)+(A0))
C b(i-1)=(i/ DT-cie+eta*DX*(i-1))ScaOld(i-1)+
C cexp(0.5ix2+ix(cie/sigma)”0.5)
Beta(-NSTEP+1)=CMPLX(0.000,0.)
DO 35 sigma=0.001,0.05,0.001
DO 45 J=-NSTEP+2 NSTEP,1
Beta(J)=(DX**2.0*sigma*CEXP(Disp(J-1))-
! Beta(J-1)*(1.0+i*0.5*cie*DX-
! DX**2.0%ta*
! REAL(J-1)*DX/4.0))/
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! (Alpha(J-1)*(1.0+i*0.5*cie*DX-
! DX**2.0%eta*
! REAL(J-1)*DX/4.0)-2.0-
! DX**2.0%eta*
! REAL(J-1)*DX/2.0)
45 CONTINUE
C fill out amplitude arrays at new time step
C ¥(i-1)=alpha(i)¥(i)+beta(i)
DO 50 IX=NSTEP, -NSTEP+1, -1
ScaOld(IX-1)=Alpha(IX)*ScaOld(IX)+
! Beta(IX)
50 CONTINUE
k=1000*sigma
ScaNew(k)=ScaOld(0)
35 Continue
write(13,*),'Mag. of As',,’,'position’
DO 70 JX=-NSTEP, NSTEP, 20
write(13,*),CABS(ScaOld(JX)),’,’,
t IX*DX
70 Continue
write(14,*),'Mag. of As',',’,'sigma’
DO 80 sigma=0.001, 0.05, 0.001
k=1000*sigma
write(14,*),CABS(ScaNew(k)),",’,
! sigma
80 Continue
close(unit=13)
close(unit=14)
END
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Appendix 4.1

Derivation of the Thomson scattered signal
using the fluid equations

This appendix details the derivation of the equation describing the vector
potential of the Thomson scattered signal using Maxwell's equations in
conjunction with the electron fluid equations. This is a simpler approach
showing the important parameters for Thomson scattering in plasmas. To
correctly recover the Thomson scattering features, a kinetic approach must be
used to recover the correct spectral features of the density fluctuations. This
kinetic approach is reviewed in Appendix 4.2.

The first step is to derive the equation describing the Thomson

scattered vector potential[16]. The derivation begins with Ampere's law,

- 1
VxB=="F+-2, @4.1.1)
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which relates the magnetic field, B, to the current,J, and the rate of change of

the electric field, E. Inserting the relations B=VxA, and E= -Vo —-Z—-é;—? into

Ampere's law yields

92 A 242 13¢
T —c?V2A = 4nc] - ¢ (V A+-—at (4.1.2)

relating the vector potential, A, to the current and the scalar potential, ¢.

From equation 4.1.2, the transverse component of the scattered vector

potential, At, can be written as

Z S _PV2A, =4nd,. (4.1.3)

The transverse current, J;, is found from the electron momentum equation

98 1o oy el g, 1A 1 VPe
o= V(@ 8)~ (Vi) = e[ Vp-=S 4 (VxA)] o 419

where 1, pe, and n, are the electron fluid velocity, pressure, and density
respectively. Upon inspection of equation 4.1.4, it is apparent that the
transverse electron fluid velocity, @i, is equal to ii; =eA/cm,, provided the
damping is small, where e and me are the magnitude of the electron’s charge
and mass respectively. Combining the above formula for the transverse

current with equation 4.1.3, the scattered vector potential can then be written

as




APPENDIX 4.1 DERIVATION OF THE THOMSON SCATTERED. . . . 223

neAy. | (4.1.5)

The electron fluid density, ne, is separated into a zero-order background
density, npe, and a first-order perturbation, nepw, representing the Langmuir
wave fluctuation present in the plasma. Next the transverse vector potential,
A, is separated into a zero-order component representing the incident
Thomson probe beam, Aprobe, and a first-order component representing the
Thomson scattered vector potential, Agcatt. The resulting equation describing '

the growth of the Thomson scattered vector potential is

0’ 0 A
(5—{2-+v5¥+mf,e —CZVZJ———_En CZ“ = (4.1.6)
_ 4n noeez Nepw qurobe

(éscatt & ) ’
probe 2
m, n, myc

where &g,y and €prope are unit vectors in the direction of the scattered and
probe vector potential respectively.

Equation 4.1.6 can be simplified by assuming that the vector potentials

and density fluctuation can be written in the form
GAgcatt / mec2 =0.5% (x)exp(il-éS X - ia)st) +c.c.,

Nepw [Moe = 0.5‘1"8(x)exp(i1.<e X = icoet) +cc, a nd

qAprobe / mec? =0. S‘I’pr(x){exp(il—ipr X - iwprt) +c. c} . The equation describing

the scattered vector potential can be written as
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ol (6 .3
[ﬁ +Vgs ] S(x)__ Pe—(:is; epr)‘l’prlpe(x)r (4.1.7)

where f=v+ (-—wz + a)lz,e -c%? ) /-41(0. Assuming that the density fluctuation

is independent of x, this scattered vector potential from a finite plasma of

length L is given by

2 [~
‘Ps(L)={“’_Ef_aw__11).qf ¥ ][1-exp(-1,ﬁ/vgs)], (4.1.8)

For a finite plasma with small damping on the scattered electromagnetic

wave, such that LB/ Vgs<<1, the scattered vector potential can be written as

¥ (L) = ____(_____Iﬂly L, (4.1.9)
410)ng

which is independent of the damping on the light wave. In the limit that the

parameter LB/ Vgs>>1, the scattered vector potential can be written as

2 (n A
Wpel€sc “€pr
¥ (L)= __P_iwglwprxpe, (4.1.10)

The intensity of Thomson scattered light from a plasma is given by

(ER,HE*(%,1)) (meéz )2 (AsEOAIEY) 11y
=kt . -
8w q 87

I(%,t)=vg
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The expectation value of the vector potential product can be written in terms

of the expectation of the Fourier transformed vector potentials, or

(AS(SE,t)A’;(S‘c,t)) = (51;)8 [11f (As(w,E)A;(w',E')) 4.1.12)

ei[(l?-l?)-i-(w-w')t] i dedE' do'.

As discussed in Oberman and Auer[90], the ensemble average of quantities

may be written as

3y, 3x.
<aa(xio,vi)ao' (x,-o,vj )> = H _” (%—‘—](d—v-]-]d?’vide’vj | (4.1.13)

aa(xio /Vi )(Zo-' (on ,Vj )fo-(vi )fO" (V])

From equation 4.2.7 in Appendix 4.2, the Fourier transformed scattered vector

potential is proportional to

As(w,i) o< Iy e(m,i)

1__7@(_&9 e % 5(w-k-9) . (4114)
electrons

e(m,ﬁ) (2x)®

Because the electrons and ions, as well as different ion species, are assumed to

be uncorrelated, each species can be treated separately. The ensemble average
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of the product of the Fourier transformed density fluctuations can be written

as

s S a0

nlmknl( )>=

[ "E'i* 6(0) -k- i’ri)Ze"iE,'ii 6(0)' -k -x‘/j)+
j

e( ) 21' ks (co k- V1)22a€ .-'.iis(m'_f("{'i)}'

j

€=
=1

(1'11 (co,lz)nf(m',lz'» = (21‘33 ” 5(f< - E')5(0) -') (4.1.16)

Using the equations above, the Thomson scattered intensity can be written as

22 2p2(s. .5\
Flux vgs<E (X,t)> _ VgsToe wge Eo(esc 'epr) (4.1.17)
dodkdQ  87rdwdkdQ  8z(27) 1602 | Noe 1Bk

st ez 2t}
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Appendix 4.2

Derivation of the Thomson scattering form
factor in a homogeneous plasma

This appendix details the calculation of the Thomson scattered spectrum in a
homogeneous plasma.
The detected Thomson scattered spectrum is proportional to the

ensemble average of the product of the spectral scattered vector potential
(Asc (m,l_i)Azc (co,l-i». It was shown in Appendix 4.1 that (Asc(m,E)Azc(m,E» is

%

n ~ - \D - -
proportional to < P¥ (0) +mpr,k+kpr) P (0)+copr,k+kpr)>. A detailed

Noe Noe
picture of the scattered spectrum, therefore, requires a kinetic calculation of
the spectrum of electrostatic waves driven in the plasma. The kinetic
calculation permits the treatment of the Landau damping of the ion acoustic
waves.
The derivation of the electrostatic waves spectrum begins with the

Vlasov equation, also known as the “correlationless” Boltzman equation.

The Vlasov equation[91],
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Ay g . Oy _

is very similar to the Boltzman equation from statistical mechanics, showing
that the total derivative of the particle distribution function, fo, in phase
space is constant, ignoring collisions. The acceleration, a, comes from the
Lorentz force law, &=(q/m,)(E+¥xB/c), and represents the average fields
generated in the plasma, as well as external fields imposed on the plasma.

The Vlasov equation allows the determin;tion of the velocity
distribution for the particles in the plasma, as well as the collective
oscillations. From this information, along with Maxwell's equations, the
Thomson scattered spectrum can be derived. The first step is to linearize the
Vlasov equation by assuming the particle distribution contains a zero-order
component which is a function of velocity only, as well as a first-order part
which is a function of position, time, and velocity. This leads to a set of

linearized equations,

af 1e - afle eﬁ of Oe
+5.90e _€E dfee . (422
ot M oX mg OV an )

Hiy = HMpg . ZoeE Ofgy
e 5. %Ntie e . 423
2'—5& Vi N (4.2.3)

(44

one for the electrons and one for each of the different ion species. These

equations in conjunction with Gauss’ law,
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V-Eg=dmp= 41{—en1e + Zgenyig +qp8[x — (%o + Vot)]} (4.2.4)
o

determine the electrostatic fluctuations in a magnetic field-free homogeneous -
plasma. The electric field, Eﬁ, in Gauss' law above represents the electric field
produced by the shielding of a given test particle in the plasma. The test-
particle approach allows for the determination of the fluctuation level using
each of the particles in the plasma as a test charge to find the fields generated -
by the shielding of the individual charges. These shielding fields are then
added to the electric field produced by the charges themselves to obtain the
total field generated in the plasma[89-93].

The electric field due to a test particle can be found by Fourier
transforming Gauss's law along with the linearized version of Vlasov's
equations. The electric field due to the shielding cloud surrounding a given

test particle is then

-\ -i4mqp e—ii'i°5((0—lz-§70) (4.2.5)
5 (m,k)- k (27) s(co,lz) '
- 2 K-Vifoe 13- 4 272 K- Vfoi
where e(co,k)=1+:;‘:::1 J(m—l%-oé)dsv ne J‘(m kov) The

electron density fluctuation is obtained by integrating the first-order electron
distribution function, present in equation 4.2.2, over all velocity space. Taking

into account the Fourier transform of the test electrons themselves, the

spectral electron density fluctuation is
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nye(0,k) = [fie(0,k)d% + elec%g;:‘:rtides (4.2.6)

_ieE(co,E) K-Vofoe .3 e—ii'i"a(ﬁ)‘lz‘vo)
e B e AP

The electric field, E(m,E)= ZEﬁ(m,E)+ Y, ZEﬁ(m,i), in equation
electrons species ions

4.2.6 is composed of the shielding cloud fields produced from each of the

individual test particles. Inserting the total shielding electric field calculated

in 4.2.5 into 4.2.6 shows that the spectral electron density fluctuation may be

written as

e—i]z-io 5(0) -k- ‘70) . 4.2.7)

| 8(“)' -.) }elec%ons (27 )3
r—xe(m,lz)} zae-iﬁ-ioa(m-i : \70)
R )PY

3
o ions (27)

Assuming that the electrons and ions are uncorrelated and that the
individual ion species are uncorrelated with each other, then all cross terms

vanish and the

-\12 2
1_;ce(eo,k){ 1 [ }56(0)__1.(.%)] , @29

electrons
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The scattering form factor for a uniform plasma is typically defined as[92]

S(E, w) = (2n)° (nle(m,l_i)n’fe(co,lz». (4.2.9)

In equation 4.2.9 above, the square of the delta function can be interpreted as
TS '

5% = —(2 ) and the ensemble average of the delta function can be interpreted as
particles

Therefore, the scattering form factor for a homogeneous plasma may be
defined as[92]

2

ze(w,l?)lz ~7e(0K) (4.2.11)

ZZ%,flia(a)/k) )

- e(m,E) l e(a),k)
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Appendix 4.3

Numerical calculation of Thomson scattering
from an inhomogeneous plasma

This appendix details the numerical calculation for the level of Thomson
scattering produced from a fixed amplitude Langmuir wave located on the
top of a parabolic profile. This is in fact applicable to many scattering processes
present in inhomogeneous plasmas such as the generation of electromagnetic
waves from the coupling of Langmuir waves, ion waves produced by the
coupling of Langmuir waves, scattering of an electromagnetic wave from
electrostatic waves present in the plasma(Thomson scattering), etc. |

From Appendix 4.1, the equation describing the growth of the

Thomson scattered vector potential is

0> 2 292 |9A s
(.ﬁmpg Sl (43.)
_47‘ noeez nepw qurobe

(escatt : eprobe) 2 7

m n, mg.c

e
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where €5y and €prope are unit vectors in the direction of the scattered and

probe vector potential respectively. This equation can be further simplified by
writing the vector potentials and the Langmuir wave fluctuation as a slowly
varying component multiplied by a rapid oscillation, or more precisely

qA"é =-;—‘Pa(x,t)exp(ihza-dS’(—ia)t)-i-c.c.. The assumption  that

meC
2 ?g )((_x_ ) <<k¥4(x,t) and I¥xt) ‘Pgix,t) << @ ¥ 4(x,t) reduces equation 4.3.1 to

the first order partial differential equation

d . - d
(ﬁ' + Vgscatt . 'é_sz")lpscatt (X/ t) = (43.2)

2 . A ~
wpel(escatt : eprobe)
40y "

(% probe¥epw Jexp|ix"x*/6],

where the Taylor expanded phase mismatch on the top of the parabolic

profile, xo, i Kprobe Tkepw ~Kscatt = K(X) = K”(xo X2 /2. Making the

2
[ = 4 b 4
substitutions x = (x‘”)mx and 7=—E pr;be P ¢ transforms equation 4.3.2
S
into
n1/3
8 . 0 Wvesan 3
+— £ Pscatt(2,7) = ‘ (4.3.3)

T oW

pe probe"Pepw Ix

i(éscatt ) éprobe)

1 exp[ix3 / 6].
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The method of characteristics is used to numerically solve equation 4.3.3. Two
2
@pe'Y probe ¥ epw c

new variables are introduced ({=gx+ N3 and
as(x”) Vgscatt
2
Wpe'Y ¥
n=y-—& ’prl;’;e P¥ 1. Upon substitution of the above new variables,
0 (k") Vgscatt

equation 4.3.3 transforms into

{ ’
I¥s|0¢  os(x )P vescatt 3¢ . (4.3.4)
¢ \3 v wgelpprobelpepw dx

/ i fa ,\
2% an, (K Vesan 9| _ i{Bscat 'eP’°be)exp[ix3/6]
IN |97 0fhe¥probeFepw 9 X 4

Equation 4.3.4 can then be written as

O Wscatt _ i(éscatt : éplfobe)e>(l)[i2."3/ 6] (4.3.5)
- "3 ’
I¢ a’}zaeq’probeq’epw + o5 (K’ )1/ Vascatt
n1l/3 2
o5 (K" )1/ Vgscatt  @pe't probe Y epw

2 13
(9 4 v as(x”)’"v
where A{ =A\{ pe _probe " epw (') £ Catt] and An=-A{. Given the

n1/3 2
a’s("')v Voscatt  @pe't probe F epw

above two variable relations, the change in spatial scale can be expressed in

wg(K” 1/e’vgscé,
terms of the change in time or Ay = At ;( ) £,
@pe'Y probe ¥ epw

Figure A.4.3.1a shows the amplitude of the scattered vector potential

from a plasma containing a quadratic phase mismatch. This situation is

found when Thomson scattering from Langmuir waves located at the top of a
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parabolic profile. The initial conditions are that at t=0, the amplitude of the

scattered vector potential is zero everywhere is space. In this figure, the

7=6.25 =833
g gos| Sooald g a ]
2308 S goe
P =32 t ;
g 504 =W ;
5 E g4 d
=< f S«
0* 0l .
-10 0 10 -10 O 10
distance (X=(x"")1/3x) distance (X=(x'")1/3x)
t=12.5
o8 3 go4 T —
- 2 F Analytic = 2 ;
£ 204 £ 20.2 ]
s E S E _
z < o | S < N

distance (X=(x)1/3x) time {1=(wpe)*¥probe¥epwt/ ®s}
Figure A.4.3.1 Thomson scattered vector potential produced in a plasma with
a quadratic phase mismatch between the interacting waves. The scattered
vector potential as a function of distance is shown in figure A.4.3.1 a-c each
representing a different time. The vertical axis on all of these graphs
represents the amplitude of the Thomson scattered vector potential. The
horizontal axis on figures a-c represent the distance along the profile with x=0

representing the perfect phase matching point. The horizontal axis in figure

A.4.3.1 d represents time.
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Thomson scattered signal has reached the saturation amplitude in figure
A.43.1 a and the signal is traveling at the group velocity in figures A.4.3.1 b
and A.4.3.1 c. The dashed line in figure A.4.3.1 ¢ shows the amplitude of the |
steady state signal calculated in Chapter 5. Figure A.4.3.1 d shows the growth
of the scattered vector potential at the perfect phase matching point. This

graph shows the amplitude growing linearly in time at approximately the
homogeneous growth rate, "I’scatt=ta’1%e‘1'probe‘{'epw/4ws with

a)[z,e‘l’pmbe‘l’epw /ws =1 used in the simulation.

C This program will look at the amplitude of the Thomson
C scattered vector potential due to a parabolic phase mismatch.
C This version uses method of characteristics.
PARAMETER (NSTEP=1200)
COMPLEX ScaNew(-NSTEP:NSTEP),ScaOld(-NSTEP:NSTEP),
i, Disp(-NSTEP:NSTEP),DTs,ScaTime(0:NSTEP)
REAL ParDrive, Time, DT, DX
INTEGER NITER
open(unit=13 file='"Expdet0’,status="unknown')
close(unit=13,status='delete")
open(unit=13,file="Expdet0’,status="unknown')
open(unit=14 file="Expdetl’,status="unknown’)
close(unit=14,status="delete")
open(unit=14 file='"Expdetl’,status="unknown')
open(unit=15,file='Expdet2',status='unknown‘)
close(unit=15,status='delete’)
open(unit=15 file="Expdet2’ status="unknown’)
open(unit=16,file="Expdet3',status="unknown’)
close(unit=16,status='delete’)
open(unit=16 file="Expdet3’,status="unknown’)
open(unit=17 file="Expdet4’,status="unknown’)
close(unit=17,status="'delete")
open(unit=17 file="Expdet4',status="unknown’)
open(unit=18 file="Exptime’ status="unknown’)
close(unit=18,status='delete’)
open(unit=18, file="Exptime’ status="unknown')
i=CMPLX(0.,1.)
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10 PRINT *, 'Enter THE TOTAL NUMBER OF TIME STEPS (0 TO STOP)'
12 PRINT *, 'SUGGEST 1000.’
READ *NITER
IF (NITER .EQ. 0.) STOP
14 PRINT ¥, 'ENTER parabolic driving term'
16 PRINT *, 'SUGGEST 1.0'
READ *, ParDrive
DT=0.0125
DX=DT /ParDrive
C setup initial wave amplitudes
DO 20 IX=-NSTEP ,NSTEP
ScaOld(IX)=CMPLX(0.000,0.)
ScaNew(IX)=CMPLX(0.000,0.)
Disp(IX)=i*(REAL(DX*IX))**3.0/6.
20 CONTINUE
C end setup initial wave amplitudes
Time=0.
C time loop _
DTs=CMPLX(DT*0.25,0.0)
C take care of boundary conditions
ScaNew(-NSTEP)=CMPLX(0.000,0.)
C end boundary conditions
DO 40 ITER=1, NITER
Time=Time+DT
ScaTime(ITER)=ScaOld(0)
C fill out amplitude arrays at new time step
DO 50 IX=-NSTEP+1, NSTEP
ScaNew(IX)=ScaOld(IX-1)-
! i*DTs*CEXP(Disp(IX-1))
50 CONTINUE
DO 60 JX=-NSTEP, NSTEP
ScaOld(JX)=ScaNew(JX)
60 CONTINUE
IF (ITER.EQ. 3) THEN
write(13,%),'Mag. of As',',",'position'
DO 70 JX=-NSTEP, NSTEP, 4
write(13,*),CABS(ScaOld(JX)),’,’,
! JX*DX
70 Continue
close(unit=13)
Else IF (ITER.EQ.NITER/2) THEN
write(14,*), Mag. of As',’,’,'position’
DO 75 JX=-NSTEP, NSTEP, 4
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write(14,*),CABS(ScaOld(JX)),,’,
! IX*DX
75 Continue
close(unit=14)
Else IF (ITER.EQ.2*NITER/3) THEN
write(15,*),'Mag. of As',',),'position’
DO 80 JX=-NSTEP, NSTEP, 4
write(15,*),CABS(ScaOld(JX)),’,’,
1 JX*DX
80 Continue
close(unit=15)
Else IF (ITER.EQ.5*NITER/6) THEN
write(16,*), Mag. of As',',','position’
DO 85 JX=-NSTEP, NSTEP, 4
write(16,*),CABS(ScaOld(X)),",’,
I JX*DX
85 Continue
close(unit=16)
Else IF (ITER.EQ.NITER-1) THEN
write(17,*),'Mag. of As',',",'position’
DO 90 JX=-NSTEP, NSTEP, 4
write(17,*),CABS(ScaOld(JX)),,',
1 JX*DX
90 Continue
close(unit=17)
END IF
40 CONTINUE
write(18,*), Mag. of As’,')','time’
DO 95 IL=1 NITER,5
write(18,*),CABS(ScaTime(IL)),’, , IL*DT
95 CONTINUE
close(unit=18)
END
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Appendix 4.4

Graphical solution of the roots of the
dispersion relation corresponding to ion
acoustic waves

This Appendix contains plots shoWing the roots corresponding to the
solution to the dispersion relation e(a),E) =1+ xe(co,l'i) +Z xia(co,E) =0 for the
o

plasmas used in the experiments performed for this dissertation. In Figures
A.4.4.1-A.44.3, the solid contours represent the zero contours of the
Im{e(w,k)}=0 and the dashed lines represent the zero contours of the
Re{e(w,k)}=0. The roots of the dispersion relation are then given by the
intersection between the real and imaginary zero contours. Figure A.4.4.4 a-d
shows the damping of the ion wave as a function of the ratio of ion

temperature to electron temperature for the four different ion-species

plasmas used in the experiments performed for this dissertation.
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Figure A.4.4.1 Graphical solution of the roots of the dispersion relation in a
Carbon plasma. Each figure represents the solution at a different ratio of ion

to electron temperature. The vertical axes represent the imaginary

component of the frequency while the horizontal axis represents the real

component of the frequency.
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Figure A.4.4.2 Graphical solution of the roots of the dispersion relation in a
Collodium plasma. Each figure represents the solution at a different ratio of
ion to electron temperature. The vertical axes represent the imaginary

component of the frequency while the horizontal axis represents the real

component of the frequency.
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Figure A.4.4.3 Graphical solution of the roots of the dispersion relation in a
CH plasma. Each figure represents the solution at a different ratio of ion to
electron temperature. The vertical axes represent the imaginary component

of the frequency while the horizontal axis represents the real component of

the frequency.
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Figure A.4.4.4 Absolute magnitude of the ion wave damping normalized to
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Appendix 4.5

Contour integrations for Thomson scattering

The equation describing Thomson scattering from an inhomogeneous

plasma with a linear phase mismatch between the waves is given by

2 A ~
= )
dx 4ic ksC

st 2
ix'x (45.1)
(‘Pepw‘l’pr)exp[ > }

This equation can be written as

2 (s .a ) .
SC

The integral in equation 4.5.2 can be solved using the contour shown below

in figure A.4.5.1
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\H
n/4
>

I

Figure A.4.5.1 Contour used to evaluate | exp(im2)dm.

The contour is equal to

$§ =] +] +| =2riy residues=0,
I il

I
as labeled in figure 4.5.1. These integrals may be written as

. 4
lim it [ exp[iR2 exp(izg)]iRexp(ie)de
0

0= Iexp[ixz]dx+ R

+?exp[—r2]exp(i f4)dr.

o

The integral is then equal to

Iexp[ixz]dx = exp(i 1c/4);[; exp|[-1?]dr = exp(in/4)Vn/2.

245

(4.5.3)

(4.5.4)

(4.5.5)




APPENDIX 4.5 CONTOUR INTEGRATIONS FOR THOMSON. . . . 246

The absolute magnitude of the Thomson scattered vector potential, with a

linear phase mismatch between the interacting waves, is

l\Psc (o) 4C2k \/_2? ‘Pepw”q‘pr (4.5.6)

The equation describing Thomson scattering from an inhomogeneous

plasma with a quadratic phase mismatch between the waves is given by

2 -~ ~
d¥,. _ wPe(epr "€
dx 4ic2ksc

) (\Pepwq’pr)exp[ix';x‘?’ } 45.7)

This equation can be written as

1t

2 {a .a 13 -
?sc(“)=%;:sc)(—§-) (‘Pepw‘i’pr)_{oexp[ims]dm. (458)

The integral in equation 4.5.8 can be solved using the contours shown below

in figure A.4.5.2




APPENDIX 4.5 CONTOUR INTEGRATIONS FOR THOMSON. . . . 247

Figure A.4.5.2 Contours used to evaluate | exp(im3)dm.

The contours shown in figure A.4.5.2 can be written as

i =! + i‘; + f!; =2ni) residues =0 and (4.5.9)

;

v vV oW e
These contours may be written as

o . a6
=0 = [exp|ix’ dx+—hr—n'—t” exp|iR® exp(i36)|iRexp(if)de  (4-511)
a 0 R= e 0.

0
+| exp[—r3]exp(i n/6)drand
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§ =0= ?exp[ixg’]dx + Texp[—-fs]exp(i57’/ 6)dr
b —co 0

limit
R= o0

n
| exp[iR3 exp(i3e)]iRe xp(i6)d6.
56

Equations 4.5.11 and 4.5.12 reduce to

fexplix*]ax = exp(i/6)] expl-r’Jdr and

}exp[ixﬂdx = —exp(i 57:/6)} exp|[-r*]dr,

—o0

respectively. The original integral of interest is then equal to

—-00

Texp[ix3 ]dx = [exp(i #/6) - exp(i5/ 6)]}°exp[—r3]dr =
0

wfg]oexp[—rs]dr.
0
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(4.5.12)

(45.13)

(4.5.14)

(45.15) .

The remaining integral can be written in terms of a Gamma function, T,

fexplrJar = (3" [ ()% exp[-T)dT =T(1/3)/3.

(4.5.16)

The absolute magnitude of the Thomson scattered vector potential, with a

quadratic phase mismatch between the interacting waves, is
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(4.5.17)

V3

_ 98 -8)( 6 P I(Y3)
l‘Psc (w)! - 42 ksc (_)

Vo
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K” pri
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