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TRIBOLOGY STUDIES OF ORGANIC THIN FILMS BY SCANNING FORCE
MICROSCOPY
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ABSTRACT

Using the micro-contact printing method we prepared patterned self-assembled monolayers
(SAMs) consisting of methyl-terminated alkanethiols of different chain lengths. The samples
were characterized using lateral force microscopy (LFM) and the force modulation technique
(FMT). In general, higher friction is observed over the short chain regions than over the long
chain regions when a low or moderate load is applied to the SFM tip. For such cases the high
friction (short chain) regions are also “softer” as measured by FMT. At high loads, a reversal of
the image contrast is observed and the short chain regions show a lower friction than the long
chain regions. This image contrast is reversible upon reduction of the applied load.

INTRODUCTION

The use of organic thin films as lubricants on solid surfaces is important in many modern
technologies including magnetic storage and micromachines [1, 2]. Langmuir-Blodgett (I.B) films
and self-assembled monolayers (SAMs) are attractive candidates for lubricant layers and for
model studies of lubrication because of their strong adsorption to the surface. The recent interest
on the properties of LB films and SAMs has been also motivated by their potential applications
in sensors [3], non-linear optical devices [4], lithography [5] and microelectronics [6].

Recently, considerable interest has been shown in characterization of LB-films and SAMs
(and in particular patterned SAMs) using scanning force microscopy (SFM). In particular, it has
been demonstrated that lateral force microscopy (LFM), which measures the friction forces
between the tip and the sample surface, can distinguish between chemically different surface
regions. Such experiments providing material-contrast imaging are relevant to applications
involving lubrication, adhesion and wetting. Knowing the interaction leading to different friction
forces between the SFM tip and the sample surface is essential for the understanding of the image
contrast relating the contrast to the tribological surface properties. Unfortunately, the
interpretation of the experimental data is complicated because the mechanisms underlying the
image contrast are not yet completely understood. As a consequence, conclusions based on
results reported to date are far from being unequivocal. The LFM image contrast observed
between different domains of phase-separated domains is believed to be due to differences in the
mechanical properties of the LB domains, i. . elastic compliance[7]. The frictional properties of
SAMs of methyl-terminated alkylsilanes of different chain lengths on mica substrates ‘are seen to
depend strongly on the chain length [8] such that higher friction was observed for short chain
lengths. This effect was attributed to disorder in the layers formed by molecules with short chain
length. On the other hand recent investigations of patterned SAMs consisting of regions of
alkanethiols with chemically different terminal groups suggested that the friction contrast
observed in LFM might be dominated by the chemical identity of the end groups of the surface
and tip [9-10]. Thus, there is a need to study in more detail the effects of order, packing,
crystallinity and chemical identity of the terminal end groups on the observed frictional contrast
in LFM.

In this paper, we discuss the LFM image contrast between different regions of a patterned
SAM consisting of alkanethiols having the same terminal end group, -CH3, but different chain
lengths. We investigate in particular the correlation between the observed frictional contrast and
the measured local elastic properties of the different regions of the SAM using the force
modulation technique (FMT). FMT is based on the principle that the vertical force between the
SFM tip and the sample surface is modulated by oscillating the probe and the relative elasticity
of the sample is measured by recording the amplitude of the tip deflection versus position over







the sample [11-12]. We show that the frictional contrast between the short and the long chain
regions strongly depends on the applied load.

EXPERIMENT

Materials: The silicon wafers were obtain from Semiconductor Processing Co. The gold
surfaces were prepared by sputter deposition of 10 nm of titanium, followed by sputter
deposition of 100 nm of gold, on the native layer of the silicon oxide. The gold and the titanium
purity was 99.999%. Octadecyl mercaptan (C18), hexadecyl mercaptan (C16), nonyl mercaptan
(C9) and heptyl mercaptan (C7) were obtained from Aldrich and were used without further
purification. The micro-contact printing process was applied as described elsewhere[13].

Instruments: A commercial Digital Instruments Nanoscope III was used for the SFM
experiments. The experiments reported here were carried out in air under ambient conditions. The
measurements were performed with commercial Si cantilevers with nominal force constants C =
0.02 - 0.1 N/m and commercial Si3N4 cantilevers with nominal force constants C = 0.06 - 0.12
N/m. Topographic (“height”) images were obtained in the constant force mode and
simultaneously recorded with the friction maps which were obtained in the lateral force mode
(LFM). The elasticity measurements, performed using the force modulation technique (FMT),
were obtained simultaneously with topographic images. The data are presented as gray coded
images such that bright areas correspond to higher regions in topographic images, higher friction
in LFM images and softer regions in FMT images.

RESULTS

Figure 1 shows the SFM images of a patterned SAM sample on gold consisting of C18
(circular structure) and C7 arrays (surrounding the circles). The sample was prepared by first
stamping the C18 component using a master consisting of circles (approx. 3 um in diameter) and
then exposing the stamped sample to C7 solution. The topography image (Figure 1a ) shows
clear image contrast between the more elevated C18 regions (bright gray) and the C7
surroundings. We measured = 0.8 nm as height difference between the C18 and C7 surface regions
which is in reasonable agreement with the expected value of 1 nm. One should note, however,
that an exact measurement of the height difference is difficult due to the different penetration of
the SFM tip into the C18 and C7 regions (see discussion of the local elastic properties below).

Figure 1b shows the LFM image (friction map) recorded simultaneously with the topography
image shown in Figure 1a. Inthe LFM mode, very good contrast is observed between the circular
C18 regions and the surrounding C7. The LFM map shows higher friction (bright gray) over the
short chain C7 regions and lower friction over the long chain C18 regions (circles). The image
presented was obtained applying a low load (=16 nN)[14]. As shown below, the image contrast
depends strongly on the force the tip exerts on the sample surface. Similar images were observed
for patterned samples consisting of C18 and C9 arrays, C16 and C7 arrays and C16 and C9
arrays (data not shown). In all cases a higher frictional force was recorded over the short chain
regions than over the long chain regions when a low or moderate load was applied (up to = 190
nN).

Figure 1c shows the FMT image (elasticity map) of the patterned SAM sample. Imaging the
patterned SAMs under ambient conditions produced contrast between the C18 regions (bright
circles) and the C7 regions (dark surroundings). Bright regions correspond to softer sites which
absorb more of the cantilever’s energy, causing a reduced cantilever response and lower
amplitudes. Figure 1c shows that the C7 surface regions are “stiffer” than the C18 circles. The
same type of elasticity maps were observed for patterned samples consisting of C18 and C9
arrays, C16 and C7 arrays as well as for C16 and C9 arrays (data not shown). In all cases the
short chain regions appeared “stiffer” than the long chain surface regions as measured by FMT.
Studies of patterned SAMs consisting of surface regions with different chemical functionalities
showed that the LFM image contrast generally seems to correlate with the surface free energy of
the arrays [9, 10, 15]. Higher friction has been observed over the hydrophilic-COOH, or -OH
terminated surface regions than over the hydrophobic -CH3 terminated areas. However, these
studies did not clarify to which extend other factors such as packing and disorder contribute to







G ~"N’.‘ ey “,V:‘j 4 = gl = L5x > -
Figure 1: SFM images of a patterned C18/C7 alkanethiol SAM on gold. (a) Topographic image.
The horizontal bar corresponds to 10 um and is representative for all images. The gray scale
corresponds to a z-scale of 10 nm. (b) LFM image showing the friction map. Dark regions (C18)
correspond to lower friction and bright regions (C7) to higher friction. (¢) FMT image showing
the local elasticity. Bright regions (C18) correspond to “softer” areas and dark regions (C7) to
“stiffer” areas.

the observed image contrast. Contact angle measurements do not show pronounced differences
between the short and long alkanethiols[16]. Thus one must conclude that the image contrast
observed in the friction map (Figure 1b) originates from factors such as disorder and packing
rather than from surface free energy/hydrophobicity. A recent study of the chain length
dependence of the frictional properties of alkylsilane SAMs on mica showed that friction forces
strongly depend on the length of the alkyl chains, being higher for the short chains, in agreement
with our study [8]. The observed dependence of the friction forces on the chain length could be
explained by a much higher alkyl chain disorder in the short chain SAMs. FTIR data suggest that
SAMs of short chain alkanethiols (n <10) have liquid-like chains packed at lower densities than
their longer chain counterparts [17]. Thus, the possibility of differences in surface coverage
should also be taken into account.

Our data show that the friction maps correlate with the local elasticity maps: the long chain
arrays exhibit lower friction and are “softer” than the short chain regions. A similar correlation
was reported for patterned SAMs consisting of chemically different arrays, i.e. -COOH and
-CH3 terminated alkanethiols, where the high friction -COOH regions appeared to be
“stiffer”’[10]. In the case of phase-separated LB films, a different correlation was observed: higher
friction was observed for the “softer” fluorocarbon domains than for the “stiffer” hydrocarbon
domains[12]. In that case, however, the fluorocarbon domains consisted of multilayers, the
fluorocarbons sitting on top of the hydrocarbon monolayer. This seems to be important if the
thickness of the organic film and the substrate plays a role. The liquid-like short chain
alkanethiols are expected to be softer; however, one must take into account that the oscillating tip
in FMT might “feel” the underlying substrate. In that case the short chain regions would appear
“stiffer” as detected by FMT since the tip may penetrate more easily through the organic
monolayer through the substrate. We note, however, the same type of image contrast was
observed even with very small load and small oscillating amplitude.

We now turn to a study of patterned SAMs consisting of arrays of alkanethiols quite similar in
chain length. This is assumed to minimize the effects arising from different film thickness and
surface coverage. We prepared and investigated SAMs consisting of C18 circular regions and C16
regions surrounding the circles. Figure 2a shows the SFM topography image, which exhibits little
image contrast. This is not surprising since the height difference between the C18 and C16
surface regions should be on the order of 0.2 nm. Figure 2b shows the friction map (LFM image)
of the patterned SAM. The LFM image shows very good image contrast between the C18 and
C16 surface arrays. Higher friction is observed over the C16 surface regions (bright gray)
surrounding the C18 circles (dark gray), irrespective of which of the two components was







Figure 2: SFM images of a patterned C18/CI6 alkanethlol SAM on gold. (a) Topographic image.
The horizontal bar corresponds to 5 pm and is representative for all images. The gray scale
corresponds to a z-scale of 10 nm. (b) LFM image showing the friction map. Dark regions (C18)
correspond to lower friction and bright regions (C16) to higher friction. (¢) FMT image showing
the local elasticity. Bright regions (C18) correspond to “softer” areas and dark regions (C16) to
“stiffer” areas.

adsorbed by stamping or from solution. This result is quite remarkable since it indicates that
friction contrast can be observed between alkanethiol surface regions which differ by just two
CH? groups: lower friction is always observed over the long chain surface regions. Figure 2¢
shows the FMT image (elasticity map) of the patterned SAM sample consisting of the C18
circular surface regions and their C16 surroundings. It shows that the C16 surface regions are
“stiffer” than the C18 circles, again, independent of which component was stamped and which
adsorbed from solution. Thus, as in the case of the patterned SAM consisting of quite different
alkanethiol chain regions (e.g. C18 and C7), the short chain regions appeared “stiffer” than the
long chain surface regions as measured by FMT.

It is instructive to explore the friction image dependence on the applied load. Figure 3 shows a

Figure 3: LFM images of a patterned C18/C7 alkanethiol SAM on gold. The horizontal bar
corresponds to 5 um in (a) and (b), and to 10 um in (c). (a) LFM image recorded with a low load
of 16 nN. The C18 regions show a lower friction (dark gray) than the C7 regions (bright gray) (b)
LFM image recorded with a high load of 230 nN. The C18 regions show now a higher friction
(bright gray) than the C7 regions (dark gray). (c) LFM image of a bigger area which has been
previously scanned with a high force recorded with a low load of 11 nN. Now the C18 regions
show again a lower friction (dark gray) than the C7 regions (bright gray).







series of LFM images for a patterned SAM sample consisting of C18 circular regions and C7
surroundings obtained with different loads. Figure 3a shows the friction map recorded applying a
load of approx. = 16 nN. As discussed above, lower friction is observed over the C18 surface
regions (dark gray) than over the C7 surface regions at low load. Figure 3b shows the friction map
of the same surface region recorded applying a much higher load of = 230 nN. Above a certain
threshold, a reversal of the LFM image contrast is observed. At high loads lower friction is
observed over the short chain C7 region (dark gray) and higher friction over the long chain C18
regions (bright gray). One might expect that at high loads, destruction of the adsorbed organic
surface layers would occur. However, we observed that the frictional contrast obtained at
different loads was reversible. Figure 3¢ shows the LFM image acquired with a low load of a
surface region which has been previously scanned with a high load. One can clearly recognize the
rectangular surface region which has been scanned with higher loads. But nevertheless. the original
image contrast is restored and the long chain C18 surface regions show again a lower friction than
the short chain C7 regions.

The dependence of friction forces on the tip load has been studied for alkylsilanes of different
chain length self-assembled on mica [8]. Up to load of 100 nN, elastic behavior was found and the
frictional forces were always higher for the short chain molecules. Above a tip load of 100 nN, a
substantial distortion of the alkylsilane chains was observed resulting in irreversible displacement
of the molecules and damage of the organic film{8]. It is important to note that the situation is
different for alkanethiols adsorbed on gold which undergo reversible displacement upon distortion
at high loads. Atomic resolution imaging showed that the observed periodicity changed from a
(V3xV3)R30° structure at low loads (repeatedly observed for thiol layers adsorbed on Au(111) )
to a (1x1) structure at high load (due to the underlying Au(111)) and back to (V3xV3)R30° when
the load was decreased again [18]. The mechanism underlying the observed behavior was unclear
and three possibilities have been discussed. (i) desorption of the thiols at high loads and binding
to the SFM tip, which are adsorbed to the gold again when the load is decreased; (ii) liquefying of
the thiols under the tip pressure so that the tip penetrates the monolayers and images the gold;
(iii) lateral displacement of the thiols, which are still adsorbed to the substrate[18]. Our findings
exclude the first possibility since this mechanism would be expected to degrade the pattern
quality, manifestly not the case here, as observed in Figure 3c. The same argument is true in a
weaker sense for the second possibility since it is unlikely that the liquefied C18 and C7
molecules reassemble in a patterned ordered layer, especially at the phase boundaries. Thus
some degradation of the pattern might be expected. However, the effect of liquefying the layer is
likely to be felt quite locally, i.e. under the tip. We believe that the observation of an essentially
unperturbed pattern is most consistent with the third possibility. The displacement is expected
to be more difficult for the long chain molecules resulting in a higher friction which is
experimentally observed (Figure 3b). This is also consistent with the differences observed
between alkylsilanes on mica vis a vis thiols on gold: in the former case, the tip/monolayer
interactions tend to be destructive at high force loadings while in the latter case, the monolayer
more easily accommodates high pressure form the tip. This derives from the differences in
structure between the two types of film: the lateral bonding in the silane-based layers implies
that neighboring molecules are essentially connected to a perturbed molecule and thus moves
together with it, while in the alkanethiol case the molecules are sufficiently mobile to readjust
their positions under pressure.

CONCLUSIONS

We have shown that LFM and FMT provide excellent image contrast for patterned SAMs of
alkanethiols of different chain lengths adsorbed on a gold substrate. The observed lower friction
over the long chain surface regions correlates with a higher “softness” detected for the long chain
regions by FMT. This is even true for a patterned SAM consisting surface regions of quite
similar chain length , i. e. C18/C16. To clarify the role of the substrate as well as the effects of
disorder and coverage complementary measurements, including spectroscopic methods, are in
progress. The observation of a reversible image contrast reversal in the friction map as the
applied load is increased and decreased again strongly supports an underlying mechanism in
which the thiols are adsorbed to the substrate but laterally displaced/bent.
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etc...)!? During the intervening years, the code has followed and sometimes nurtured the development of computing
technology. Briefly, the first multipurpose code version, MCS, was written in 1963.3 The first public release of the

neutron photon code, MCNP was in the mid-70s.*> The 1980’s saw the release of MCNP3, MCNP3A, and
MCNP3B which brought the code into standard Fortran and incorporated features such as generalized sources,
repeated structures, criticality, multigroup option, and tally plotting. The 90’s are the decade of version 4. MCNP4

was released in 1990 (MCNP4.2 was distributed from RSIC in 1991) and was specifically designed for UNIX operat-

ing systems. MCNP4 also included electron transport based upon the Integrated Tiger Series (ITS),%6 shared memory

multitasking, thick target bremsstrahlung, and better random number control. MCNP4A was released in 1993 and
included such features as dynamic memory allocation, X-window graphics, and distributed processor

multiprocessing35 . MCNP4B is expected to be released in about one year’s time, 1997, and a few of its features will
be presented later.

During the years of development the code system has been at the forefront of Monte Carlo methods and techniques,
of experimental benchmarking and comparison, and of computer innovations and applications. Many innovations
have been incorporated into the code after undergoing a thorough validation program; some, like those mentioned
above, have withstood the test of time while others have not and have been eliminated (such as the ablility to run in
obsolete operating systems or once more collided flux estimators.) Similarly, specific capabilities, such as importance
sampling or weight window generation, have been implemented in such a way as to allow the skilled user to take
advantage of them while not penalizing the neophyte. This constant improvement is a reflection of the MCNP philos-
ophy of “Quality, Value and New Features” in action. The issue of quality is of paramount importance and will be dis-
cussed later with respect to software quality assurance. Put simply, quality means that the code and models are the
best and most accurate available. Coupled closely to the quality component is the value component which is exempli-
fied by extensive documentation and portability; the value is the usability of the code. Finally, we need new features
to keep the code robust but new features never take precedence over quality or value.

Let me discuss quality assurance in more detail. The most important aspect of the MCNP code development effort is

software quality assurance(SQA)’. This is evidenced in many ways but I will focus on a few which illustrate how fea-
tures are incorporated in the code. First there is the validation of the capability or feature. Does the enhancement
improve the code performance in actual problems while not conflicting with other existing capabilities? The valida-
tion effort requires an extensive set of code runs to be done and compared to experimental data or other independent
runs to demonstrate that the feature is performing as expected. A typical suite of runs is illustrated by the validation of

the differential operator technique reported by G. McKinney and J. Iverson in LA- 1309839 where over a hundred
independent code runs were done to show that this new feature performed as expected and was consistent with previ-
ous results. Typically, this benchmarking effort is documented internally to Los Alamos with several detailed techni-
cal memoranda and a final Los Alamos technical report. Once documented, the feature undergoes multiple reviews
before incorporation in the code. This evolutionary process reflects how the physics models have improved or numer-
ical techniques have advanced, and we expect to see MCNP to continue to improve along these lines in the future.

Another important aspect of SQA is that the lines of codes are indeed performing as expected on any platform. This

involves the test suite!® which comes with the code and is derived from the validation runs and related experience.
When the code is installed on any platform, it is required to give the same answers on a set of test problems; devia-
tions indicate that there is an error in the installed code and it should be reinstalled or that there is another hardware/
software problem. Hardware problems may have no significant impact on code accuracy but the test set usually
catches most of these problems. Thus we require passing of all test problems for a successful installation. In point of
fact this may sound pretty easy, but it actually has many subtleties. This subtlety is illustrated by a recent installation

of MCNP on a 64-bit workstation with multiple processors.11 Much of the hardware/software architecture was pecu-
liar to that workstation, and was different from the 64 bit architecture of Cray mainframes. Moreover, the results from
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