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ABSTRACT

We present a status report on the ongoing analysis of the 3D Ising model with nearest-neighbor interac-
tions using the Monte Carlo Renormalization Group (MCRG) and finite size scaling (FSS) methods on 643,
128%, and 256° simple cubic lattices. Qur MCRG estimates are K2, = 0.221655(1)(1) and v = 0.625(1).
The FSS results for K¢ are consistent with those from MCRG but the value of » is not. Qur best estimate
n = 0.025(6) covers the spread in the MCRG and FSS values. A surprise of our calculation is the estimate
w &= 0.7 for the correction-to-scaling exponent. We also present results for the renormalized coupling ggr
along the MCRG flow and argue that the data supports the validity of hyperscaling for the 3D Ising model.
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1. Introduction

The 3D Ising model has, over the last 25 years, been used to test the accuracy of various analytical and
numerical methods for solving Statistical Mechanics systems. In 1992 we presented results for the critical
behavior of the 3D Ising model from simulations on 64 and 128° lattices using the Monte Carlo Renor-
malization Group (MCRG) method [1]. While that work improved on previous MCRG estimates [2] [3]), it
left us with four unanswered questions. The first and most tantalizing was —— are the exponents rational
numbers, s.e. v = 0.625 and n = 0.025. Second, a more precise determination of the corrections-to-scaling
exponent is needed as it is the largest source of systematic errors. Third, we wanted to resolve/understand
the differences between our MCRG and existing finite size scaling/ ¢-expansion results. Lastly, we wanted
to investigate whether hyperscaling holds for this model. This talk is a summary of the current status of our
calculations. _

In order to address these issues we have extended the calculations in the following ways. We have made
higher statistics runs on 643, 128% and 256° lattices at K = 0.221652 and 0.221655. On these lattices
we have evaluated, in addition to correlation functions needed for MCRG studies, quantities needed for
finite size scaling (FSS) analysis and the calculation of the renormalized coupling gr. As a result we have
- better estimates of the critical coupling K¢,,, the exponents v and 7 from both MCRG and finite-size scaling
(including histogram re-weighting) analysis, and can address the issue of hyperscaling violations. We find
that our new estimate of the corrections-to-scaling exponent w = 0.7 is significantly smaller than that from
other methods. This difference needs to be understood.

All the simulations have been done on the Thinking Machines CM-5 (at the ACL at LANL) and CM-
5E (at TMC) computers. We used the Swendsen-Wang cluster update algorithm (4] and a 250-long 64-bit
wide shift-register (Kirkpatrick-Stoll) random number generator in each vector unit. The new results agree
with our previous calculation and those in [2] and [3]. Each of these calculations used a different random
number generator, so their consistency suggests that there is no obvious bias in the sequence of random
numbers generated (see P. Coddington’s talk on random number generators at this workshop). Our most
extensive results are at K, = 0.221655, which is our present best estimate of the critical coupling. At
this coupling the statistical sample consists of 600K, 500K, and 400K measurements on 64°, 1282, and 256°
lattices respectively.

The details of our implementation of the MCRG method are the same as in [1]. The only change is
that we have added 3 more even couplings (fer a total of 56) and one more odd couplings (total 47). The
original 53 even and 46 odd couplings were contained in either a 3 x 3 square or a 23 template [1]. The
new couplings are those obtained by adding a fourth spin along the cartesian axis to the 3 x 3 template. At
K. = 0.221655, the highest blocked lattice is 4%, while at K, = 0.221652 1t is only 8% on 128° and 256°
lattices.

We store the magnetization and energy for each configuration, from which we can calculate quantities
like the specific heat, susceptibility, Binder’s cumulant U = 3 — {m*)/(m?)?, etc.. These results are then
evaluated as a function of K, in a small neighborhood of Kjimuiation, using the histogram re-weighting
method [5]. The finite size analysis of these quantities follows the work of Ferrenberg and Landau [6], i.e.
without corrections to scaling terms. To calculate ggr, we also need the finite lattice correlation length £.
This is calculated in two ways:

(ZS(w,y,Z)ZS(z,y,O)) 2o ae” s,

> (1.1)
5(0)?
(27r) (S(k) ) =&

where S(k) = 3_, . . s(z,y,2)e % We have investigated the 5 lowest momenta but present results using
only the lowest, k, = 27 /L, as it has the best signal. With £ in hand we calculate the renormalized coupling
defined as [7)

_ (L\a {m*)
g-(K,L) = (5) (3 ) - (1.2)
This is expected to scale as '

gr(K’L) ~ L-w‘ . (13)
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where w* = (y+dv —24)/v is referred to as the anomalous dimension of the vacuum. If hyperscaling holds
then gp — finite non-zero constant as L — co. We present results for gr both at K, = 0.221655, and along
the subsequent MCRG flow to the fixed point. We also discuss the non-commutability of the two limits,
L — o0 and K — K°¢, and its consequences for tests of hyperscaling.

For the purpose of error analysis the data have been divided into bins of size 10,000 measurements. All
errors are then calculated by a single elimination jackknife procedure over these bins. This talk is organized
as follows. We first summarize the MCRG results, then compare them with FSS estimates, and finally
discuss gg and hyperscaling.

2. Nearest-Neighbor Critical Coupling K¢

We calculate K¢, using the two lattice MCRG method. The results for the two starting couplings
Ko, = 0.221652 and 0.221655 and for the two pairs of lattices, 256 versus 128% and 128% versus 64°, are
shown in Table 1, where for ease of comparison we have also reproduced results from [1]. We expect the
deviations K°(co) — K¢(n), where n is the blocking step, to converge by the geometric factor A,/A: as a
function of the blocking level n. For the 3D Ising model A,/A¢ = 6, and our data for K¢, (see Table 1) do
roughly show convergence by this factor.

For both starting couplings the data show that the new estimates from the 1283/64% lattices analysis
are consistent with our earlier results and give K¢S, = 0.221652. However, the 2563/128° results show better
convergence with respect to blocking steps, and also show a systematic shift at all blocking levels compared
to the 128%/643 data. Our new estimate from 256%/128% comparison is K2,, = 0.221655 % 0.000001 where
only the statistical error has been quoted. This shift in K¢, with lattice size shows that there could still be
finite size corrections at the level of statistical errors, i.e. a systematic error of +0.000001. So our final best
estimate is

(2.1)

which is consistent with the recent result 0.2216546(10) obtained using FSS analysis by Blote et al. [8]. In
view of this we take the results at K, = 0.221655 to represent the critical point values.

K, = 0.221655 % 0.000001 "'2-000001 ’

Level | 0.2216550 | 0.2216520 | 0.2216550 | 0.2216540 | 0.2216520 | 0.2216440
njm | 2563/128° | 256%/128% | 128%/643 | 128%/64° | 128%/64° | 1283/643
New New New 1] New [1]
2/1 217+ 11 184+15 | 095+13 | 070+16 | 04623 | 095417
3/2 469+ 9 458 +£18 | 413415 | 406 £ 18 | 39427 | 417422
4/3 | 537+10 | 534+21 | 504+16 | 500£21 | 501+£31 | 50824
5/4 | 549+10 | 549422 | 523+16 | 51426 | 51637
6/5 547 £ 10 '

Table 1. Estimates of K¢,, as a function of the blocking level and Ksimuiation. For brevity only the last
three decimal places have been quoted, so 547 & 10 is short for 0.2216547 + 0.0000010. We have
included our old data from [1] to facilitate comparison. The quoted errors are the statistical errors
after averaging the data over the 56 even operators. The data show a systematic shift between the

2563/128% and 1283 /643 lattices.

3. Correlation length exponent v

The correlation length exponent v is determined from the leading even eigenvalue A; of the linearized
transformation matrix 7,

(3.1)




where b = 2 is the scale factor of the majority rule blocking transformation. Our preferred data for A,
(K sim = 0.221655) is shown in Table 2 as a function of the blocking step and lattice size. There are three
possible sources of systematic errors that affect the L — oc and K — K, estimates for A;. These are

1. The number of operators measured, i.e. the truncation errors in evaluating eigenvalues from a finite
dimensional 7. We find that the number of operators needed to achieve convergence increases with the
blocking level n. We find that with the 56 even operators operators the eigenvalues show convergence at
all levels. (The sameis truein the sector of odd interactions from which we extract the exponent ). Even
at the highest blocked level there is no detectable variation after including 30 operators. Unfortunately,
the convergence with the number of operators is not monotonic and there is no independent way of
confirming that the results have converged. Thus, we cannot estimate the possible error due to lack of
convergence, and guess that if present it is smaller than the statistical error.

2. Finite size effects on blocked lattices. It has been observed in [1], [2], and [3] that finite size effects are
discernible only when blocking from 8% — 43 lattices or smaller. The correction increases the estimate
of A;. In Ref. [3] the correction in A3™* was estimated to be 0.02. Our estimate based on comparing
256°,1283,643 lattices is ~ 0.01. Applying +0.01 as the correction to our 256° lattices data, we get the
lower limit A\§~* = 3.008 corresponding to v = 0.6294. We discuss the L — oo limit below.

3. Error in the estimate of K¢,,. The value of A, also increases with K¢S, as shown by the data in Figures 1,
2, and in Ref. [2]. The dependence of A; on K¢, is marginal on the first couple of blocking levels and
then increases rapidly with n for n > 3. Since our estimate of K¢ is converging from below, our results
at K = 0.221655 may underestimate A;.

The bottom line is that the systematic effects discussed in items 2 and 3 will tend to increase A, or equivalently
decrease v.

At An
256° 1283 643 256° 1283 64°

0/1 1 2.681(2) | 2.685(2) | 2.684(3) | 5.4948(06) | 5.4941(06) | 5.4948(08)
1/2 | 2.843(2) | 2.847(2) | 2.847(2) | 5.5050(02) | 5.5052(02) | 5.5050(03)
2/3 | 2.930(3) | 2.930(3) | 2.930(3) { 5.5501(02) | 5.5499(03) | 5.5494(07)
3/412.969(3) | 2.973(4) | 2.971(5) | 5.5741(04) | 5.5745(08) | 5.5701(21)
4/5 | 2.995(5) | 2.985(7) 5.5845(11) | 5.5826(31)

5/6 | 2.998(7) 5.5850(31)

Table 2. Estimates of Ay and Ay, as a function of the blocking level and lattice size for K = 0.221655.

Finally, we are interested in the value of A; at the fixed point. To obtain this we extrapolate A; versus
the blocking level n using [1]

)\t(n) = /\: + G,tb—wn . (32)

where w = /v is the leading correction-to-scaling exponent. There are two issues that need to be addressed
in doing this extrapolation in the number of blocking steps n (i.e. the L — oo limit). The first is the value
of w and the second is whether the fit should exclude the first few blocking steps to avoid transients, to
account for which requires further corrections to the leading behavior shown in Eq.(3.2). The calculation of
w is discussed in the next section and our present estimate w = 0.7 is surprisingly low. We, therefore present
an analysis for w = 0.7 and 0.85, where the second estimate is roughly what is given by other methods (FSS,
e-expansion, etc. See [9] for a very recent survey). The question of transients is completely empirical, .e.
we neglect data at initial blocking steps until 2 ~ 1.

On basis of the quality of the fit to the K = 0.221655, L = 256 data the best estimates for the two
extreme values of w are

A
At

3.028(3) = v = 0.6256( 5)
3.033(6) == v = 0.6247(10)

(w=085, n=2-6),

3.3
(w=0.70, n=3-6). (3.3)
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Fig. 1: Estimates of A as a function of the blocking level n for simulations at different
couplings K. The best estimate of the extrapolated value with w = 0.70 is from
the fit to the diamonds skipping n = 0,1 points. The fit to all the diamond points
is, for comparison, shown by the dotted line.

These two estimates are consistent, we therefore take the mean value and the larger of the two errors to get
our present best estimate v = 0.625(1). To improve this result will require a better estimate of w and data
on larger lattices (more blocking steps).

4. Correlation function exponent 7
The correlation function exponent 7 is given by

log /\h
logb

n=d+2-2 = d+2- 2y, , (4.1)
where b = 2, d = 3 and Ay, is the largest eigenvalue of 7.g constructed from odd interactions. The discussion
of the type and sign of the various systematic errors in the extraction of Ap is the same as for A;. The raw
data are shown in Table 2, and the value of finite size correction we apply to A3~ is 0.002. Then, from the
L = 256 data (A$7* = 5.587(3)) we get the upper bound n = 0.0359(16).

To extrapolate to L — oo we proceed in exactly the same way as for A;. However, as exemplified by
Fig. 3, the points at n = 4,5 show significant deviations from the linear fits. Even though the fit with
w = 0.85 is somewhat better, the n = 5 point raises questions about the validity of the linear extrapolation.
There are two possibilities. One, the value flattens out at Ap = 5.59, in which case n» = 0.034. Second, the
points at higher blocking levels are not well determined (the systematic and statistical errors are larger than
our estimates), and the linear extrapolation is valid. In the latter case one gets

li

5.603(4) => 75 = 0.028(2) (w=085 n=2~5),
5610(5) = 75 = 0.024(3) (w=0.70, n=2-5).

Ah

A (4.2)

il
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'Fig. 2: Estimates of \; as a function of the blocking level n for simulations at different
couplings K. The best estimate of the extrapolated value with w = 0.85 is from
the fit to the diamonds skipping n = 0,1 points. The fit to all the diamond points
is, for comparison, shown by the dotted line.

For error estimates we have used the difference between the extrapolated values with fits ton = 1 — 5 and
n = 2 — 5 points. The bottom line is that even though we have improved the estimates for Ay on lattices

of size up to L =>256, there is still a large ambiguity in the determination of # due to the extrapolation to
L = oc.

5. Corrections-to-scaling exponent w

As should be clear from the above discussion, a precise estimate of w is very important in order to take
the. L — oo limit. In a MCRG calculation the correction-to-scaling exponent is determined from the sub-
leading eigenvalue A2 in the even sector; w = ~y;2 = log A; 2/ logh. Only if w is known can the exponents
v and 7, calculated along a critical RG flow, be extrapolated to the fixed point using Eq. (3.2). We have
therefore spent considerable effort in estimating w.

With our current data we have overcome the statistical problem that plagued the data in [1]. The
second and third eigenvalue no longer merge into a complex pair when the number of operators is > 15.
However, we have opened another pandora’s box as shown by the data in Table 3. The value of w decreases
both with the number of operators and blocking steps, settling down to the result

W~ 070 = f=wy~0.44 (5.1)

a value significantly smaller than the world average, § = 0.54(3), of estimates obtained using other methods
as presented in [9]. The only comment we have at present is the amusing observation that the value of w
starts off at =~ 0.85 on the first blocking step and with 10 operators, but finally seems to setties down at
~ 0.70. Clearly, this issue requires further attention.
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Fig. 3: Estimates of A, as a function of the blocking level n for simulations on 256° lattices
at K = 0.221655. The same data is plotted for w = 0.70 and 0.85, and for each
case we show linear fits to n = 2 — 5 points. The quality of these fits is not good.

10 Ops | 20 Ops | 30 Ops | 40 Ops | 50 Ops
0.90(3) | 1.01(4) | 0.97(4) | 0.98(4) | 0.97(4)
0.85(3) | 0.83(4) | 0.79(4) | 0.80(4) | 0.79(4)
0.81(3) | 0.76(4) | 0.73(4) | 0.72(4) | 0.73(4)
0.79(3) | 0.74(4) | 0.70(4) | 0.67(4) | 0.67(4)
0.75(3) | 0.73(3) | 0.70(3) | 0.70(3) | 0.70(3)

Ot W N

Table 3. Estimates of w as a function of the blocking level and the number of operators used in constructing
the transformation matrix Tog. The data is for K = 0.221655.

6. Finite size scaling using the histogram re-weighting method.

We use the histogram re-weighting method [5] to estimate (1) the position of the maximum for various
thermodynamic quantities, (ii) the value at this maximum, and (iii) the value of K at the point of crossing
of U and gg for two different size lattices. The method consists of building a histogram H(E,m), i.e.
the number of configurations with energy E and magnetization m, using an equilibrium (canonical) Monte
Carlo simulation at temperature Kgim. With this histogram, the equilibrium probability distribution at
other temperatures K is
_ H(E,m)exp[AKE]

X pm H(E,m)explAKE]’

where AK = K — K,;,. The average value of any function of E and m, Q(E, m), at coupling K is then

Pg(E,m)

(6.1)

6




given by
(Qx(E,m)) =Y Q(E,m)Px(E,m). (6.2)

Bm

The values of thermodynamic derivatives with respect to K are obtained from Monte Carlo measurements
of correlation functions,

Q) _ ‘
—% = (QE) - (Q)E). (6.3)

Again, by using the re-weighting technique these correlation functions can be evaluated at all temperatures
in a certain neighborhood of Kg;y,. Thus, the location and magnitude of the peaks or crossings points can
be obtained from simulations at a single temperature. :

The propagation of errors under this re-weighting is not straightforward and has been dealt with by
Ferrenberg and by Swendsen in their talks at this meeting. In the current analysis the error estimates
are the naive statistical ones, obtained using the single elimination Jackknife procedure over bins of 10,000
measurements and ignoring all correlations and uncertainty in determining H(E,m). Thus, the central value
and errors at K # Kgip, are highly correlated with those at Kg;p,.

We only present results for Kg;m = 0.221655 as these have higher statistics and correspond to our
estimate of the infinite volume K.. With this and re-weighted data generated from it in hand we use the
appropriate finite size scaling relations to derive estimates of the critical exponents and temperature.

20000 .
10000

5000 -

dQ/dK | ey

= 0.6348(48) (U)
0.6298(27) (log |m|)
v = 0.6295(27) (log m?)

1000 1 1 ] | | 1

50 100 200
L

Fig. 4: Estimates of v from the finite size scaling of the maxima of the derivatives of U,
logm and logm? with respect to K. '

2000 -

0O ¢ 0O
<
i

Estimate of »: This is obtained from the finite size scaling of the maxima of thermodynamic derivatives of
U, log|m|, and logm? [6]. For example, d(logm?)/dK = (m®E)/(m?) — (E) is calculated as a function of
K using the histogram H(E,m) to re-weight the data. FSS analysis to extract v is done keeping only the
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leading term in the scaling behavior

49 = alY’(1+bL7¥+...),,

= (6.4)

max

as we cannot reliably include correction terms with data at only 3 values of L. Linear fits to the maximum
value versus L!/” are shown in Fig. 4. The quality of the fits is exceedingly good, and the final results are

v =0.6348(48) U
v = 0.6298(27)
v = 0.6295(27)

log |m| (6.5)

logm? .

The values obtained from the derivative of log |m| and logm? agree, while that from U is higher by its 1o
error estimate. These estimates are higher than the MCRG value by roughly one combined o.

0.2222 LU B N Y L A N B N B B B B B
: K,= 0.2216645(16) Im| ]
B ozzzmeswn; :: . ]
= 0.2218556(13) lo
0.222 —i';- 0.2216568(16) log m* _
| K= 0.2216508(43) C, e, ]
K = 0.22166543(8) ¥
™ K= 0.2216523(12) x'~log m -
- K = 0.2216625(16) {m|-log m® .
| Kpu= 0.2216550 l ]
o 0.2218 __ _
5 y ]
¥ X~log m—
o<~ m-log m?|
!
0.2216 | ou
= u N
| et 1esf ot ]
O 22 1 4 | I IO T | I ' T N S l 1

0 0.0005  0.001
v (b=0.625)

Fig. 8: Estimate of KC(L) obtained from the FSS analysis of dzﬁ'erent thermodynamic
quantities assuming v = 0.625.

0:.0015

Critical Coupling K.: K. has been calculated in two different ways. One, we considered the location
of the maxima of different thermodynamic derivatives as a function of system size. The finite size scaling
behavior of these K (L) is [6],

K(Ly=Kc+d L7V (1400~ +...), (6.6)
where the values of ¢’ and b’ are different for each thermodynamic quantity. The three data points for

each quantity shown in Fig. 5 have been joined together by straight lines to highlight the deviations from
linearity. With just three lattice sizes we cannot include the correction term (i.e. w), to take into account the
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deviations from linearity. In all quantities, the magnitude of these deviations is surprisingly large considering
that the data of Ferrenberg and Landau [6] show a good fit to the linear form at smaller (L = 12 —96) lattice
sizes. We do not understand this discrepancy at present. Since x’ and m converge from above while log |m)|
and logm? approach it from below, we have constructed linear combinations, x’ — log {m| and |m| — logm?,
that show much smaller corrections. As pointed out in [6], the quantity farthest away from K, is C, and it
gives K. with the largest errors.

Fig. 5 was generated using v = 0.625. To determine K, we show, in Table 4, the variation with v of
K, obtained using the data from 128% and 256° lattices to extrapolate to L = oc. We find that there is no
significant variation with v in the canonical range of values 0.62 — 0.635. Different observables give K, in
the range 0.221653 — 0.221656 with a typical statistical error of 0.000002. For our best estimates we take
the mean of the various estimates (excluding that from C,) with v = 0.625. The result is

K. = 0.2216544(20)(15) (6.7)

where the first error is statistical and the second is an estimate of the systematic error based on the variation
with observable type. This value is lower than that obtained by Ferrenberg and Landau [6], but consistent
with our MCRG result.

Observable v = 0.62 v =0.625 v =0.63 v =0.635
Im] 0.2216559(22) | 0.2216553(22) | 0.2216551(22) | 0.2216543(23)

U 0.2216538(24) | 0.2216539(24) | 0.2216541(24) | 0.2216543(24)
log|m| | 0.2216547(17) | 0.2216547(18) | 0.2216548(18) | 0.2216548(18)
log m? 0.2216545(21) | 0.2216545(21) | 0.2216546(21) 0.2216547(21)
c, 0.2216544(58) | 0.2216540(58) | 0.2216536(58) | 0.2216531(59)

X 0.2216555(10) | 0.2216554(11) | 0.2216553(11) | 0.2216553(11)

X' —loglm| | 0.2216540(17) | 0.2216540(17) | 0.2216540(18) | 0.2216540(18)
Im| — logm? | 0.22165209(21) | 0.2216529(21) | 0.2216529(21) | 0.2216529(21)

Table 4. FSS estimates of K<, from different observables as a function of v.

A second estimate of K, is given by the point of crossing of U(L) and g,(L) calculated on two lattices
of different sizes. Again, the use of re-weighting trick to extend the data to temperatures in the vicinity of
Ksim is essential. Qur results are shown in Figs. 6 and 7. The final values, taken from the crossing point of
L = 128 and L = 256 lattices data, are

K7 =0.2216560 U(K,) = 1.409,

(6.8)
K3~ =0.2216551 g.(K.)=5.23.

No error estimates are given as the data versus K is highly correlated, and these correlations have not been
taken into account in the analysis. It is interesting to note that the estimate of crossing point obtained from
L = 64 and L = 128 lattices is ~ 0.221652, indicating a convergence from below. Also, the estimates from

the two pairs of lattice sizes are in very good agreement with the corresponding results obtained from MCRG
analysis.

Critical Exponent y: We estimate y from the finite size scaling of the susceptibility using a linear fit to
log x versus log L. Using our data at K = 0.221655 for L= 64%,128% and 256° lattices we obtain,

v/v = 1.9754(64). (6.9)

(To allow detailed comparison with the results in [6] we also give the value /v = 1.9719(41) obtained using
x'.) Using the hyperscaling relation n = 2 —v/v we now get 1 = 0.0246(64). This estimate is consistent with
the MCRG result obtained assuming the validity of the linear approximation. We thus quote 1 = 0.025(6)
as our best value since it covers the various estimates.
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Fig. 6: Plot of U as a function of K obtained from the histogram re-weighting method.

The crossing point value of U from 128 and 256 lattices and the location, K, are the
indicated. Note that the values and error estimates are highly correlated. L
7. Renormalized coupling gr and hyperscaling ‘ot

It has been pointed out by Baker and Kawashima [10] that the two limits L — o0 and K —
do not commute and that there is a discontinuity in the value of g, when calculated in the following two
ways. Our approach, which is to fix K = K*°(c0) and then slowly take the thermodynamic limit versus the;,
“right” way which is to always keep L/{ large and fixed (the precise value depends on the model and shoul
be representative of the thermodynamic limit) while taking K — K°. Note that the field-theoretic valye,
gr = 23.73(2) [11] is an estimate representative of the “right” order of limits. Nevertheless, one can establish
hyperscaling by our non-perturbative approach if it can provide a non-zero lower bound on the value of ggip;,

The data for gr in the vicinity of K¢ is shown in Fig. 7. One expects an increase in the slope with
lattice size as the discontinuity due to the interchange of limits becomes sharper with lattice size. Thisvig a
borne out by the data. On the other hand the crossing value shows a small decrease between the 128%/64°
and 2563/1283 lattices, i.e. the data does not converge from below. Based on our data (2 crossing points)

we guess that gr(oo) = 5. We regard this non-zero result as a weaker verification of hyperscaling than one
would have liked.

Another necessary condition to test whether hyperscaling holds, on basis of the data for gg in Fig. 7, is
whether it is representative of the fixed point value. To check this we have also calculated gr on the blocked
lattices. The data on 256% — 128% — 643 — 323 lattices is virtually identical, indicating that our estimate
does not change along the flow to the fixed point. On smaller lattices the two methods for calculating £ give
different results and the use of finite lattice versus continuum energy-momentum dispersion relation makes

a difference. We therefore consider our data on lattices smaller than 32% unreliable for the purposes of this
test.
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Fig. 7: Plot of gp as a function of K obtained from the histogram re-weighting method.
The crossing point value of gg from 128 and 256 lattices and the location, K, are
indicated. Note that the values and error estimates are highly correlated.

8. Conclusions

Our new results K¢, = 0.221655(1), v = 0.625(1), and n = 0.025(6) are an improvement over the
previous MCRG values. These values continue to support the notion that the exponents are rational. We
have also reconciled the disagreement between finite size scaling and MCRG results for K¢, and y by a
comparative study using the same data. The value of the exponent v from the two methods, however, shows
a significant difference. One possible explanation is the lack of various corrections-to-scaling terms in our
FSS analysis.

The big surprise of the current MCRG analysis is the result w = 0.7, which is significantly lower than
all previous estimates. This issue clearly needs to be investigated further.

The convergence of g}, defined to be the crossing point value in the limit L — co, seems to be from
above. Thus, our data does not provide the desired lower bound to validate hyperscaling. We estimate
gr(L = o0) from data at the two crossing points to be ~ 5. If this non-zero value withstands further
scrutiny, then we will have established that hyperscaling holds for the 3D Ising model.
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