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ABSTRACT

Ensuring power grid resiliency, forecasting climate conditions, and optimization of transportation infrastructure
are some of the many application areas where data is collected in both space and time. Spatiotemporal
modeling is about modeling those patterns for forecasting future trends and carrying out critical decision-
making by leveraging machine learning/deep learning. Once trained offline, field deployment of trained
models for near real-time inference could be challenging because performance can vary significantly depending
on the environment, available compute resources and tolerance to ambiguity in results. Users deploying
spatiotemporal models for solving complex problems can benefit from analytical studies considering a plethora
of system adaptations to understand the associated performance-quality trade-offs.

To facilitate the co-design of next-generation hardware architectures for field deployment of trained models,
it is critical to characterize the workloads of these deep learning (DL) applications during inference and
assess their computational patterns at different levels of the execution stack. In this paper, we develop
several variants of deep learning applications that use spatiotemporal data from dynamical systems. We
study the associated computational patterns for inference workloads at different levels, considering relevant
models (Long short-term Memory, Convolutional Neural Network and Spatio-Temporal Graph Convolution
Network), DL frameworks (Tensorflow and PyTorch), precision (FP16, FP32, AMP, INT16 and INT8), inference
runtime (ONNX and AI Template), post-training quantization (TensorRT) and platforms (Nvidia DGX A100 and
Sambanova SN10 RDU).

Overall, our findings indicate that although there is potential in mixed-precision models and post-training
quantization for spatiotemporal modeling, extracting efficiency from contemporary GPU systems might be
challenging. Instead, co-designing custom accelerators by leveraging optimized High Level Synthesis frame-
works (such as SODA High-Level Synthesizer for customized FPGA/ASIC targets) can make workload-specific
adjustments to enhance the efficiency.

1. Introduction

iterations, resulting in more computation than traditional DL models.
These models are deployed across a variety of applications, from edge

Graphics Processing Units (GPUs) are well positioned to be the
de facto training architecture, owing to mature vendor-supported soft-
ware ecosystems to tackle the computational challenges for supporting
evolving machine learning models. As such, the training performance
of contemporary foundational models at scale generally depends on
the capacity of the GPU computing infrastructure [1-4]. However,
while training performance is important to scale models to extraor-
dinarily large number of parameters, once these are deployed, their
effectiveness depends only on inference.

Inference takes precedence over training because once a model is
deployed, it continuously processes new, unseen data to make predic-
tions or decisions. Inference, especially in recurrent or autoregressive
networks (such as predicting the next word), often requires multiple
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devices of all sizes and types to single-machine servers and large data
centers, where performance requirements vary based on the specific use
case. Achieving high performance in inference involves optimizing for
latency, accuracy, energy efficiency, area efficiency, or a combination
of these metrics. To address the evolving machine learning workloads
and diverse inference use cases, vendors and researchers are developing
new specialized hardware and software solutions [5-7].
Contemporary inference workloads for a wide range of application
scenarios currently utilize very diverse hardware platforms — from
general-purpose Central Processing Units (CPUs) and GPUs to domain-
specific Artificial Intelligence Accelerators (AIA) with various levels of
specialization to the models and use cases, leveraging reconfigurable
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Table 1

Current spatiotemporal modeling applications — models, platforms and precision considerations. The underlined models are studied as part of this paper.

Domain Models used Numerical precision Hardware platforms Post training optimization & quantization
FP16/AMP  FP32 FP64 CPU GPU AIA ONNX  INT8 FP16
Weather Forecasting ~ LSTM, CNN, [10-12] [10,11,13]  [12,14]  [10-12] [10] [15,16] [171 [18,19]1  [18,19]
Power Systems 2;‘;\?°E‘RE"‘€SL [20] [21-23] [24-26]  [22,26,27]  [2528]  [20,29,30]  [29] [28,30]  [30,31]
Traffic Forecasting Transformer [32,33] [32] [33] [34] [32,35,36] [32] [32,36] [35]
Custom Domain General » Capture unique characteristics of the inference workloads for
accelerators specific purpose spatiotemporal modeling using suitable CNN, LSTM, and STGCN

Flexibility Portability
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Fig. 1. Platforms for contemporary inference workloads.

architectures such as coarse-grained reconfigurable arrays (CGRAs) or
field programmable gate arrays (FPGAs) or even application specific
integrated circuits (ASICs), as shown in Fig. 1.

On the other hand, despite the investments around foundational
models, practitioners must adapt existing deep learning models ac-
cording to specific application scenarios. One important area where
there are no standard models to represent the domain is spatiotemporal
modeling, used to capture temporal relationships in data, which is
particularly relevant due to the pervasiveness of time series prediction.

In time series prediction, historical sequences from a set of spatially
correlated sensors are used to train a model, and, given a history of
observations, the trained model is used to predict the evolution of the
dynamical system in time. When a system consists of several interre-
lated nodes (not necessarily interconnected), the problem becomes a
multivariate time series prediction that typically requires spatiotempo-
ral data for model training and inference. Fig. 2 depicts the data flow
in a typical multivariate time series prediction application.

Unlike cross-sectional data (e.g., images), time-series data inges-
tion is usually interleaved to maintain the original sequence, posing
challenges to parallelization in the context of machine learning pre-
diction. Consequently, spatiotemporal modeling applications can spend
relatively longer times for data transfer, transformation, and memory
accesses compared to floating-point computation-intensive DL applica-
tions, as mentioned in [8,9] in the context of model training. Therefore,
execution characteristics of spatiotemporal modeling cannot be extrap-
olated from existing machine learning benchmarks. For training and
inference of arbitrary machine learning models, data is typically di-
vided into mini-batches. For spatiotemporal data, a mini-batch consists
of multiple overlapping windows, which can significantly increase the
memory requirements for maintaining halos. Running inference on
large time series data, preprocessed in near real-time while ensuring
data quality and consistency across temporal and spatial dimensions,
necessitates a profound understanding of spatiotemporal models for
dynamic systems, especially given hardware constraints on memory,
runtime, and communication.

While these factors impact both training and inference in general,
inference in spatiotemporal modeling depends on the granularity of
the prediction, and as such, can leverage specific optimizations in
the underlying model architecture, floating-point precision, hardware
architecture, and underlying software methodologies. In this work, we
discuss various aspects of spatiotemporal inference workloads, such as,
characterizing the underlying computational motifs for co-design, ap-
plying various software optimizations to leverage mixed-precision, ana-
lyze the performance on diverse platforms, and ultimately devising spe-
cialized and efficient hardware solutions. Specifically, the contributions
of this work are as follows:

architectures on Power Grid and Climate datasets.

Describe the underlying computational motifs of prevalent spa-
tiotemporal models and quantify performances for standalone
transformation/mixed-precision model adaptations at different
levels.

Explore methodologies to optimize spatiotemporal workloads —
evaluating contemporary AI/ML frameworks (e.g., PyTorch and
Tensorflow), numerical precisions (AMP, INT8, INT16, FP16,
FP32, and FP64), hardware platforms (NVIDIA A100™ and Sam-
banova RDU™), and quantization methodologies (via ONNX, Al
Template and NVIDIA™ TensorRT).

Employ the SODA HLS toolchain to develop highly specialized
inference accelerators (targeting both FPGA and ASIC) for spa-
tiotemporal models and discuss relevant optimizations by exploit-
ing reduced precision and the inherent parallelism in the model
layers.

The rest of the paper is organized as follows. We motivate the
work and provide a brief background on spatiotemporal modeling in
Section 2. We discuss related work in Section 3. Section 4 discusses
the main principles behind our proxy application and outlines our
methodology. Section 5 analyzes the baseline performance/scalability,
quantifies the impact of the computational motifs, and discusses custom
accelerators via HLS. Section 7 concludes the paper.

2. Motivation and background

Spatiotemporal modeling is still an emerging area for Machine
Learning/Deep Learning (DL) space with potential to impact power
systems [37], climate analysis [38,39], and transportation [40], among
many other critical real-world applications [41]. For instance, the 2023
Urban Mobility Report by Texas A&M [42] revealed that spatiotem-
poral models can optimize the traffic flow, mitigating congestion by
up to 20%. Similarly, the National Oceanic and Atmospheric Admin-
istration’s 2023 Science Report [43] highlighted a 15% improvement
in hurricane forecasting accuracy, enabling disaster preparedness and
diminishing the severity of extreme weather events, thereby potentially
saving lives and reducing economic losses. Furthermore, in power
grid management, Pacific Gas & Electric (PG&E, California) reported
a 10% reduction in peak demand and a 5% reduction in energy waste,
attributable to the deployment of spatiotemporal models for optimizing
energy storage integration [44]. Additionally, in the agriculture con-
text, the implementation of these models has yielded a 15% increase in
crop yields and a 20% reduction in water consumption [45].

Since these models are applicable across a wide range of use cases,
their real-world implementation and operational environments differ
significantly between applications. The deployment environments ex-
hibit unique hardware configurations, with constraints on computing
power, memory, and communication bandwidth. Table 1 categorizes
some studies from three such application domains and indicates their
corresponding configurations, including variety in model architectures,
floating-point precision, hardware architectures, and post-training op-
timizations and quantization.
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Fig. 2. Spatiotemporal models, crucial for applications such as extreme weather forecasting and assessing cascading power grid failures, face unique challenges due to overlapped
time-series data (i.e., windows). Our study is a quantitative assessment of the impact of data, model architecture, ML frameworks and software/hardware optimizations on

spatiotemporal inference workloads.

2.1. Model architecture

Prior to Deep Learning (DL), statistics and numerical methods were
commonplace for spatiotemporal modeling. DL offers major advan-
tages in considering larger datasets and learning complex relationships,
thereby enhancing the accuracy and efficiency of spatiotemporal mod-
els. DL models typically used in spatiotemporal modeling belong to
the fraternity of sequence-to-sequence modeling like Recurrent Neural
Network (RNN) [46], Long Short-Term Memory (LSTM) [47], Graph
Neural Networks (GNN) [48], and Transformer [49]. Recently, pre-
trained foundational models based on language model architecture
(LLMs) have been used for time series forecasting [50]. Often, the DL
models designed for spatiotemporal modeling stack one or more of
these layers together, which are then further customized (including the
size of the historical window, prediction window, and the time scale)
to suit the application needs.

Studying the underlying computational patterns for emerging spa-
tiotemporal models can lead to new insights to improve the software
and hardware stack design for their inference workloads, enabling the
identification of new features and co-design appropriate solutions de-
pending on the use case. We consider relatively established spatiotem-
poral modeling architectures — LSTM, CNN, and STGCN - across various
execution models and implementation variants. Each architecture of-
fers distinct advantages: LSTM enables recurrence, CNN minimizes
computational complexity, and STGCN incorporates spatial relation-
ships. Additionally, Transformers and LLM-based foundational models
are also gaining traction as promising alternatives, but their effec-
tiveness in long-term time series forecasting, particularly regarding
prediction accuracy and computational cost, remains an open research
question [51].

2.2. Floating-point precision

Since training and inference in DL models for spatiotemporal mod-
eling are data-intensive, floating-point precision is a key parameter
that can vary depending on the numerical accuracy requirements of
the application. For instance, while ML/DL applications for environ-
mental monitoring (temperature, humidity forecasting) can work with
reduced floating-point precision, many power-system applications, such
as power flow calculation and transient stability analysis, require
double-precision to retain relatively high accuracy [24]. Due to the

need for specialization, commodity hardware might be sub-optimal
for the deployment of particular spatiotemporal models. For instance,
weather/traffic forecasting stations might require optimizing for power
efficiency and quicker turnaround times, whereas power system simu-
lations can exploit data-center scale GPUs or AI/ML accelerators (AIA),
supporting higher throughput for the associated computations.

2.3. Hardware specialization

The generation of highly specialized accelerators is critical, espe-
cially for inference. These can be implemented on FPGAs or even ASICs
to reduce latency of inference from streaming inputs when attached
directly to the data source (e.g., at the edge, near the experimental
instruments) or perhaps to the network where data are collected. How-
ever, designing a highly specialized accelerator requires knowledge of
hardware description languages (HDLs) or the availability of tools that
could generate the accelerators starting from the high-level specifica-
tions of the algorithms. These tools are commonly known as High-Level
Synthesis (HLS) tools. Conventional HLS approaches start from general-
purpose programming languages such as C or C++ and often need
vendor-specific pragma and significant code restructuring to achieve
performance. In this work, we employ the SODA Synthesizer [52], a so-
lution composed of a high-level Optimizer (SODA-OPT [53]), developed
with the MLIR compiler framework [54], and a state-of-the-art HLS tool
(PandA-Bambu [55]), which allows generating specialized accelerators
for FPGAs or ASICs starting from high-level models in PyTorch and Ten-
sorFlow with minimal developer interaction. Recent enhancements in
the frontend compiler have enabled the generation of ML accelerators
for INT8 precision to maximize the throughput. Since spatiotemporal
computations are data-driven, non-traditional dataflow based archi-
tectures have emerged that can exploit parallelism and optimize data
movements for sparse and dense computations associated with the
model training and inference. The Reconfigurable Data Architecture
(RDA) [56] from Sambanova AI™ is a tiled architecture consisting
of reconfigurable units and fast on-chip data delivery networks for
execution of dataflow graphs.

Ultimately, the choice of diverse inputs, ML frameworks, source-
to-source transformations enhancing operator fusion, and, quantiza-
tions, lead to distinct computational workloads, which can be ana-
lyzed through low-level profiling, to identify the potential scenarios for
further optimizations.



3. Related work

Benchmarking suites. Prior work on workload characterization of DL
systems has primarily focused on architectures and models that domi-
nate the industry [57,58]. In addition, several inference benchmarking
suites, including MLPerf Inference [59], have been developed in the
past for the performance characterization of these real-world deep
learning models. However, these previous studies have rarely explored
time-series prediction and modeling. Recent studies examine time-
series prediction in the context of Al-based Internet-of-Things (IoT)
applications on edge architectures [60,61]. However, they did not
capture the full spectrum of floating-point precision, hardware con-
figurations, and post-training quantization. Our work contributions
bridge this gap for modernizing spatiotemporal modeling workloads’
characterization.

Spatiotemporal modeling and characterizing inference workload. Huang
et al. lay the direction for benchmarking deep learning systems in the
context of time series [8] and highlight that most of the work in this
area has been concentrated toward model accuracy/interpretability and
not performance characterization. Existing studies on workload charac-
terization of recurrent networks have focused on applications related to
natural language processing, speech processing, and machine transla-
tion [62], and/or limited the analysis to performance characterization
based on training time, accuracy, or energy consumption [63-65].
Gawande et al. [66] carried out performance and power scaling analysis
of important CNN training workloads on two architectures: (a) NVIDIA
DGX-1 (8 Pascal P100 GPUs interconnected with NVLink) and (b) a
cluster with Intel Knights Landing (KNL) CPUs interconnected with
Intel Omni-Path. Recent work analyzing spatiotemporal models focuses
on characterizing the training workloads on GPGPU systems, which
exhibit diverse computational patterns [9]. Specifically for inference,
Liu et al. [67] proposed an adaptive DNN inference acceleration frame-
work to accelerate DNN inference by fully utilizing the end-edge—cloud
collaborative computing. Choudhary et al. [68] proposed pruning as an
optimization problem to improve DNN run-time inference performance
by pruning low-impacting parameters (filters) and their corresponding
feature maps. Unlike current research on performance characterization
of general AI/ML applications, our goals are to quantify the patterns
of the underlying computational motifs on contemporary AI/ML plat-
forms, such that more specialized accelerators can be developed for
these applications.

High-level synthesis of inference workload. HLS tools are crucial in con-
verting software algorithms into efficient hardware designs. Commer-
cial solutions usually translate general-purpose programming languages
(C/C++), heavily annotated with tool-specific pragmas that specify op-
timizations and hardware information, into hardware designs in Verilog
or VHDL. While using these solutions does not need knowledge of HDLs,
they still require expertise in hardware design and the ability to write
and restructure algorithms in imperative languages. Several solutions
propose translating models described in high-level programming frame-
works into code that commercial HLS tools can ingest. PyLog [69]
provides a custom high-level compilation infrastructure that transforms
Python programs into annotated C/C++ code for Xilinx Vivado HLS.
The hls4 ml [70] framework translates machine learning models by
selecting operators from a library of C/C++ templates optimized for
Vivado HLS or Siemens Catapult C. ScaleHLS [71] leverages the MLIR
framework to perform high-level transformations (e.g., computational
graph and loop optimizations) and regenerate annotated C code for
Vivado HLS. Jaksié¢ et al. [72] proposed using FPGAs and OpenCL to
accelerate the learning process of Conditional Restricted Boltzmann
Machine (CRBM). Cadenelli et al. [73] proposed offloading throughput-
oriented genomics workloads in using OpenCL on GPUs and FPGAs.
These tools provide a bridge between high-level machine learning
frameworks and hardware generation. Still, they have limited flexibil-
ity: they only support specific high-level frameworks and backend HLS

tools, and they generate code at a different (higher) level of abstrac-
tion after applying hardware-related optimizations, potentially losing
a considerable amount of semantic information in the process. The
SODA Synthesizer [52] combines MLIR and HLS to build an integrated
open-source toolchain, optimizing input models at appropriate levels
of abstractions without the need to generate intermediate C/C++, and
offering a wide choice of FPGA or ASIC targets in the backend.

4. Methodology

In this section, we cover the main components of our study on
inference workloads for spatiotemporal modeling. First, we probe the
time-series data loading process and identify fundamental computation
patterns as motifs of interest. Next, we elaborate on the structure of the
studied spatiotemporal models, followed by discussions on precision
and post-training quantization via external inference runtimes. Finally,
we discuss our HLS compiler-driven strategies for system design.

4.1. Data loading

In a time-series dataset, the sequence of the data points must
be preserved to ensure correctness, adding concurrency constraints.
Higher concurrency can be achieved by loading the data into batches.
For instance, when the GPU is inferring on a specific batch of data,
the CPU can prefetch the next batch to avoid the GPU contention for
the next iteration. Our studies use both TensorFlow and PyTorch frame-
works, which provide optimized data processing interfaces: tf.data.
Dataset and torch.utils.data.Dataloader. These data pro-
cessing interfaces can use multiple threads or processes to optimize the
1/0 performance. For the Graph Neural Network (GNN) model (dis-
cussed below), we use Deep Graph Library’s (DGL) [74] GraphLoader,
ie, dgl.dataloading.GraphDatalLoader to load the graph in
batches.

4.2. Computational motifs

To study the impact of the diverse computational patterns of the
inference workloads associated with various spatiotemporal models, we
organize them into high-level motifs. These motifs can be considered as
the building blocks of the deep learning models and are multifarious
in practice. We aim to generalize the motifs according to compute
patterns based on the underlying tasks (e.g., all variations of a particular
operation are classified under the same motif).

We identify three common motifs— Matrix-Matrix Multiplication,
Elementwise operations, and Data transformations, which are respec-
tively denoted as mmm, elem, and data in the rest of the paper. Here,
mmm captures operations related to tensor contractions or matrix-matrix
multiplication (e.g, different versions of gemm). Next, elem denotes el-
ementwise operations, including the arithmetic and gradient operations
applied to tensors. Finally, data depicts data transformations: layout
conversion, bias, reduction, activation, and residual connections.

4.3. Spatiotemporal models

We now briefly discuss the spatiotemporal models implemented
for this study. For each model, the corresponding computation graph
captures the model’s layers, the input/output dimensions, and the asso-
ciated motifs used to implement a specific layer. The solid blue arrows
in the graph represent transformations: permutations, reshaping, and
transpose of the tensors.
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Fig. 3. LSTM layers.
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Fig. 4. CNN layers.
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Long Short Term Memory (LSTM). LSTM [47] is an extension of recur-
rent neural network (RNN) [46], which was originally designed for
sequential data. In RNN, the system’s current state depends on the
previous state. RNNs have the concept of “memory” that helps them
retain the past to generate the next output of the sequence. However,
RNNs are only effective when the history is small and typically perform
poorly in practice when learning long-range dependencies in the data.
Long Short-Term Memory (LSTM) networks were developed to address
these limitations by improving the gradient flow within the network
using multiple gates. Fig. 3 depicts the computation graph of the LSTM
model, which includes a Lambda layer to select an LSTM layer with 64
nodes followed by a dense layer with 4080 nodes.

Convolutional Neural Network (CNN). The convolution layer is primar-
ily designed to process visual data and fundamentally differs from
an LSTM layer. Several studies in the past have used CNN for time-
series prediction [75,76]. We developed a unidirectional Convolutional
Neural Network (CNN) for the time-series prediction. Fig. 4 depicts the
computation graph of the trained CNN model. It includes a Conv1lD
layer with 256 nodes followed by a dense layer with 4080 nodes.

Graph Neural Network (GNN). Graph Neural Network (GNN) is a pow-
erful tool for spatiotemporal modeling because it can combine node
feature information with the graph structure by recursively passing
neural messages along the edges of the input graph. GNNs can be
combined with recurrent networks, exploiting both spatial and temporal
dimensions. Fig. 5 shows the computational graph of the STGCN model
used in this study; three Conv2D layers are used to encode the temporal
dimension and a Graph Convolution Network (GCN) is used to encode
the relationship between the entities. We implemented STGCN using
Amazon™ Deep Graph Library (DGL) [74].

4.4. Floating-point precision

Our TensorFlow/PyTorch variants were trained using three floating-
point precision policies — Automated Mixed Precision (AMP), FP32,
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Input: (2048, 2, 60, 68)
Conv2D {mmm, elem, data}
Output: (2048, 16, 59, 68)
(permute)
Input: (2048, 59, 68, 16)
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(permute)
Input: (2048, 16, 59, 68)
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Output: (2048, 32, 57, 68)
(transpose)
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GCN {mmm, elem, data}
Output: (2048, 32, 57, 68)
(transpose)
Input: (2048, 32, 57, 68)
Conv2D {mmm, elem, data}
Output: (2048, 64, 53, 68)
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Output: (2048, 64, 30, 68)
(permute)
Input: (2048, 30, 68, 64)
LayerNorm {data}
Output: (2048, 30, 68, 64)
(permute)
Input: (2048, 64, 30, 68)
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$

Fig. 5. STGCN layers.

and FP64. In both TensorFlow and PyTorch, enabling the AMP policy
causes the model network layers to use FP16 for weights and FP32 for
the data. Even without enabling mixed-precision, the runtime might use
TensorFloat —32 or TF32 mode for matrix operations on NVIDIA™ A100
GPUs. The TF32 type uses the same numerical precision as FP16 (10
bits) but has the range of FP32 (8 bits).

4.5. Inference runtimes for post-training graph optimization

Computational graphs of Deep Neural Network (DNN) architec-
tures comprise of numerous compute-intensive tasks, and the degree
of the complexity and size of the DNNs ultimately affect the perfor-
mance of inference. The computational graphs can be optimized with-
out changing the model itself (post-training quantization) via runtimes
that can automatically intercept and convert the tasks in the model to
high-performance implementations. We discuss two such post-training
inference runtimes for the spatiotemporal models considered.

4.5.1. ONNX

Open Neural Network eXchange (ONNX) [77] is a format specifica-
tion that defines a standard set of operators — the building blocks of
machine learning and deep learning models, and a standard file format
to enable practitioners to use the models with a variety of frameworks,
tools, runtimes, and compilers. We exported PyTorch/Tensorflow FP32
models to the ONNX format using opset version 13 with constant
folding enabled and later used it for inference using the onnxrun-
time. We were unable to evaluate STGCN with ONNX because the DGL
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Fig. 6. Taxonomy of high-level synthesis frameworks.

GraphLoader is currently unsupported.''*:*> PyTorch provides an in-
built API: torch.onnx.export for model transformation. Likewise,
TensorFlow offers tf2onnx routine to convert TensorFlow models to
ONNX format. The ONNX runtime provides several graph optimizations
to improve the performance, ranging from node eliminations to more
complex node fusions and layout optimizations.

4.5.2. Al template

Al Template (AIT) [78] is a Python framework for transforming
models into high-performance templatized C++ GPU code for accel-
erating inference. AIT consists of two layers— a front-end layer for
various graph transformations to optimize the computational graph and
a back-end layer to generate C++ templates for the GPU target. In ad-
dition, AIT maintains a minimal dependency on external libraries. For
example, the generated runtime library for inference is self-contained
and only requires GPU vendor libraries (i.e., NVIDIA CUDA runtime).
Currently, AIT does not support LSTM and GCN models, and the Tensor-
Flow framework. Therefore, we could only convert the PyTorch-based
CNN model using AIT.

4.6. Post-training quantization

Most deep learning applications use FP32 for inference [8]. How-
ever, lower precision types, especially INT8, can offer a significant
efficiency (performance per energy unit) advantage. Post-training or
model quantization is a conversion technique that can reduce the
model size (i.e., decreasing the memory consumption) while improving
the runtime latencies, with minor degradation in the model accuracy.
PyTorch, TensorFlow, and ONNX support quantization in their model
formats and frameworks, which can be leveraged by GPU devices
using the ONNX plugin in the NVIDIA TensorRT library. NVIDIA™ Ten-
sorRT™ [79] is an asynchronous interface for enhancing deep learning
inference via customizable optimization profiles.

PyTorch, TensorFlow, and ONNX support TensorRT through Torch-
TensorRT, TF-TRT, and ONNX-TensorRT, respectively. Post-training
INT8 quantization could either be dynamic or static. Dynamic quanti-
zation calculates the quantization parameters (scale and zero point)
for activations during the model execution, trading off performance
with accuracy compared to the static option. Static quantization, on
the other hand, first runs the model using a portion of the training
dataset called the calibration data. During these runs, the quantization
parameters are computed for each activation and written as constants
to the quantized model, which are finally used for all the inputs.
We used static post-training quantization due to a better performance
prospect.

4.7. High-level synthesis

Fig. 6 shows an overview of the SODA Synthesizer. The SODA
toolchain has three main components: a compiler frontend [53] to
interface with high-level programming frameworks that automatically
search, outline, tile, and pre-optimize relevant code regions to generate

1 https://github.com/dmlc/dgl/issues/3418
2 https://github.com/dmlc/dgl/issues/4442
3 https://github.com/dmlc/dgl/issues/5379

high-quality accelerators through HLS; A compiler backend [55], to
perform HLS, generate Verilog code and interface with external tools
that compile the final design to be deployed into a FPGA; and a Design
Space Exploration (DSE) engine that enables an optimized selection of
compiler parameters, resulting in the generation of faster accelerators.
As shown in the picture, SODA can also generate the glue code needed
to orchestrate the execution of the outlined accelerators.

This flow allows domain scientists to easily move from model to
hardware implementation of accelerators and explore hardware design
parameters. Leveraging the trained TensorFlow models (both FP32
and Post-Training Quantized), we outlined the key layers of the com-
putational motifs and applied the high-level compiler optimizations
provided by SODA-OPT. These include the decision on the size of each
outlined operator (while tiling the operations to different magnitudes)
and HLS-specific optimizations of the intermediate representation (IR),
such as loop unrolling, common sub-expression and dead-code elimina-
tion, and memory optimization (early alias analysis, scalar replacement
of aggregates, temporary buffer allocation, alloca buffer promotion),
and the number of memory channels for the accelerator. The optimiza-
tions happen automatically, and the generated accelerator designs are
then synthesized with the backend logic synthesis tools. In this paper,
we target a Xilinx Virtex 7 FPGA (XC7VX690). Hence, our HLS tool
(Bambu) generates Verilog optimized for FPGAs and scripts for Xilinx
Vivado.

5. Experimental evaluation

We discuss the evaluation of the inference workloads on diverse
platforms in this section, explained in Section 4. First, we discuss the
platform details in Section 5.1. Next, we mention the input datasets
used in the experiments and batching information in Section 5.2.
NVIDIA A100 GPU is our baseline experimental platform, and we
consider various combinations of mixed-precision models and external
runtimes as discussed in Section 5.3, listed in Table 2. Next, we discuss
the experiments associated with external inference runtimes to exploit
mixed-precision models in Section 5.4. Post-training quantization is
discussed in Section 5.5, to leverage operations with integer precision.
Apart from NVIDIA A100 GPU, we use an Al Accelerator (AIA), namely
the SambaNova Reconfigurable Dataflow architecture, discussed in
Section 5.6. Finally, we discuss provisioning custom accelerators via
the SODA toolchain in Section 5.7.

5.1. Platforms, software and definitions

Platform details. We use three platforms in our evaluation, resembling
the inference hardware spectrum in Fig. 1. The code used in this study
is available at https://github.com/pnnl/ProxyTSPRD. Relevant details
regarding software/hardware are listed below.

» GPU: Single Nvidia™ DGX-2 “Ampere” A100 GPU (108 SMs)
with 40 GB HBM2 memory/GPU and two-way 128-core AMD
EPYC™ 7742 CPUs at 2.25 GHz, 256MB L3 cache, 8 memory
channels, and 1TB DDR4 memory. We use CUDA 11.6, Tensorflow
2.12 [80] (TF), PyTorch 2.0.1+cull7 [81] (PT) and Distributed
Graph Library (DGL v1.1.0+cull6) [74].
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Table 2
Inference variants considered (for NVIDIA A100).

Categories Variants LSTM CNN STGCN
PT TF PT TF PT TF
AMP v v v v v X
Mixed Precision FP32 v v v v v v
FP64 v/ v/ v/ v/ X X
Inference runtime ONNX v v ’ / X X
Al Template X X v X X X
ONNX-TRT-INT8 v v v/ v X X
. L ONNX-TRT-FP16 v v v v X X
Post Training Quantization TE-TRT-INT8 X v X v X X
TF-TRT-FP16 X v X v/ X X
+ AIA: SambaNova SN10™ Reconfigurable Dataflow Unit (RDU) s CNN LSTM
. - @
system [56], 8x SN10 RDUs with 6 channels/RDU and 4 tiles/ 544 - - ™ Dataset
° [ [ mm |EEE 64 Bus (Grid)
RDU, 256 GB DDR4 memory/channel (total, 12TB memory). We 822 | i = (SD (Climate)
L, Mm (b H ==

use a single RDU, comprising of 4 tiles - a tile consists of discrete
compute and memory units interconnected into a mesh topology
via switches. We used SambaFlow 1.16.2 which at the time of
study supported Python 3.7.6, and PyTorch 1.10.24+cpu.

HLS: SODA Synthesizer V15.07, DNN model implemented and
synthesized with TensorFlow 2.9, MLIR 15 (LLVM 15.0.7), Bambu
0.98, targeting a Xilinx Virtex 7 (XC7VX690) FPGA. Simula-
tion performed with Verilator, area obtained with Xilinx Vivado
2020.2 post place-and-route.

We compute the inference time as the total time over batches of the data,
excluding the time to compute the loss function (we use this metric as
execution time performance). We evaluate model accuracy using Mean
Square Error (MSE), where lower values indicate better performance.

GPU workloads. For the GPU variants, we use Nvidia™ Nsight™ Profiler
to examine the underlying workloads and quantify the percentage of
the overall time spent by specific CUDA Runtime API and kernel motifs
(categorized in Section 4.2). We follow this format to identify a specific
GPU variant:

{TF|PT},{Runtime-Precision}.

For example, TF, AMP refers to the Tensorflow model with AMP
(Runtime-Precision to be substituted from Table 2). We use the
following notations to depict the share of the overall time taken by a
group of arithmetic kernels and the CUDA Runtime API functions for
inference on the GPU platforms.

CUDA Runtime API (modules) grouping:

xfer Host—device data transfers.

mem Memory (de)allocation and initialization.

event Event management (e.g., synchronizations).

stream Stream management (enabling task concurrency).

mod Module management (e.g., loading external kernels).

exec Execution control (e.g., launching kernels).

dev Device synchronization.
Above classification is based on the NVIDIA™ CUDA™ Runtime API
modules’; we aggregate the %-time of the individual routines belonging
to a specific group (a group corresponds to particular CUDA™ Runtime
API module). Apart from the xfer and mem groups (both are part of
the CUDA™ Runtime Memory Management module), every other group
is associated with a distinct CUDA™ Runtime API module.

GPU kernels:
mmm Half/Single/Double precision matrix-matrix multiplication/
tensor contractions on GPU SMs and tensor cores.
elem Elementwise operations on tensors, direct copying data to
kernels, applying bias, etc.

4 https://docs.nvidia.com/cuda/cuda-runtime-api/modules.html#modules
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Fig. 7. Speedup by increasing the batch size relative to batch size of 8.

data Data transformation functions, e.g., splitting/slicing tensors,
FFT, etc.
We combine similar operations into representative motifs, excluding
%-contributions less than 1% of the overall time.

5.2. Data and batching

The raw time-series from each of these scenarios is transformed into
sliding windows ( Fig. 2), which are then further divided into batches.
Fig. 7 shows the impact of batch size on inference runtime. While the
larger batch sizes can converge faster, they are hard to fit into the
memory. The batch size is 2048 because that was the largest batch size
we could fit into the memory of NVIDIA™ A100 GPU for the STGCN
model. We noticed a speedup of 3x for CNN and 4x for LSTM with a
batch size of 2048 relative to the batch size of 8. On the SambaNova
SN10 RDU, we used a batch size of 64 (our version of SambaFlow
resulted in compilation errors for larger batch sizes). For HLS system
design, focusing on real-time processing of the workloads, we consider
a batch size of 1 (also amenable to FPGA devices with limited memory).

IEEE 64-bus system (power systems). We used simulated data from an
IEEE68-bus system [82], where 68 denotes the number of nodes, and
for each node, the data consists of two columns — frequency and
voltage. The data is generated over multiple scenarios where each
scenario corresponds to a unique configuration (e.g., load changes) of
the power network and data. We use 140 scenarios to analyze the
inference workload in this study.

Integrated surface dataset (climate). Historical temperature and humid-
ity data sampled at an hourly basis for the last 20 years from 162
stations across the United States were extracted from the Integrated
Surface Database (ISD) from National Centers for Environmental In-
formation (NCEI) of National Oceanic and Atmosphere Administration
(NOAA) [83]. The data was transformed into monthly files prior to
processing.

5.3. Baseline performance on NVIDIA A100 GPU

Fig. 8 compares the performance of the three models implemented
in PyTorch and Tensorflow for both power systems and climate datasets.
Fig. 9 depicts the profiles (demonstrating the overall percentage of time
taken by a particular workload) for the power grid data (increasing
magnitude of data does not affect the time distribution). DGL has
limited support for Tensorflow and only supports distributed graphs
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Fig. 9. Baseline profiles of LSTM, CNN and STGCN on A100 using Grid data (X-axis:
{ML framework, Precision}). Top of the broken line: CUDA API, Bottom: Computational
motifs.

when using dgl.dataloader for PyTorch. Therefore, only FP32 re-
sults were collected for the STGCN model implemented in Tensorflow.
STGCN with the designated batch size of 2048 with FP64 led to out-
of-memory errors for multiple Tensorflow/PyTorch versions. The key
takeaways from this section are the following:

FP64 Tensorflow is about 25% faster than PyTorch.

AMP results are close to FP32 (FP32 in A100 may internally use
TF32°) but depicts 1.6x benefit over FP64.

For PyTorch variants, ~50% of the time in CUDA is spent in
stream management operations (associated with asynchronous
data transfers), divided between querying the computation graph
and synchronizing operations.

For Tensorflow variants, about 25%-70% of CUDA time is spent
in kernel launches.

For PyTorch models, > 50% of the overall time is spent in ten-
sor contractions, whereas for Tensorflow, elementwise and data
transformation operations take >70% of the time.

The motifs categorized as data correspond to data manipulation/
transformation between model layers. Since STGCN is the largest
among the three models, the time spent in data is relatively
higher.

In terms of accuracy, the average MSE for FP32 implementations of
LSTM, CNN, and STGCN are 2.2¢72, 1.1e4, and 1.8¢~3 respectively, with
a corresponding standard deviation of 2¢3, 5.1¢=5, and 1.2¢™2 across
different runs over the dataset collected from IEEE 64 bus system.

5.4. Unified and interoperable inference runtimes

This section analyzes the performance and constituent workloads of
different variants using ONNX and Al Template (AIT) runtimes for the
power grid dataset.

5 https://discuss.pytorch.org/t/torch-cuda-amp-cannot-speed-up-on-
al00/120525
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Fig. 10. Inference performance on NVIDIA A100 using ONNX runtime (X-axis: model
precision).
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Fig. 11. Profiles of LSTM and CNN on A100 using ONNX on Grid data (X-axis: {ML
framework, Precision}).

Open Neural Network eXchange (ONNX). Figs. 10 and 11 demonstrate
the performance and profile of GPU ONNX variants for LSTM and CNN
models.

The key takeaways from this section are:
Performance of ONNX models is comparable to GPU baseline
results, except FP64.
Data transfer and synchronizations are dominant compared with
the GPU baseline.
Like GPU baseline, stream operations are significant for PyTorch-
converted ONNX models.
Tensor contractions and elementwise operations are the dominant
workloads, except for CNN PyTorch (nearly 100% of time in
tensor contractions).
80% of the overall CUDA runtime API is in data transfers, memory
management and synchronizations.
In terms of accuracy, the average MSE for ONNX models varied by
2.2¢7* for the LSTM and 1.2¢~> for the CNN.

AI template. Al Template supports multiple batch sizes: 1, 8, 16, 64,
and 256. For a batch size of 256, the inference time for PyTorch-based
CNN through AIT is 47 s. Like ONNX, AIT spends significant time in
tensor contractions, as shown in Fig. 12. About 70% of the time in
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Fig. 14. Profiles for post-training quantization using TensorRT on A100 using grid data
(X-axis: {ML framework, Precision}).

CUDA API is spent performing stream operations. Regarding accuracy,
the average MSE for AIT is 9¢=3 for the CNN model.

5.5. Post-training quantization

PyTorch, TensorFlow, and ONNX support quantization on NVIDIA
GPUs through TensorRT. We were unable to evaluate Torch-TensorRT
due to a driver compatibility issue on our NVIDIA DGX-2 based evalu-
ation platform.® Therefore, for post-training quantization, we currently
consider Tensorflow-TensorRT (TF-TRT) and ONNX-TensorRT (ONNX-
TRT) variants. A portion of the training data was used to calibrate the
model for INT8 quantization for both TF-TRT and ONNX-TRT. Figs. 13
and 14 demonstrate the execution-time performance and workload
characterization. The takeaways from this section are:

+ CUDA Event management operations are high for TF-TRT, as
consistent with the GPU and ONNX variants, when compared
with ONNX-TRT. We speculate this is due to the overhead of
registering events on streams, corroborated by equally high kernel
launch overheads.

» Loading quantization related modules during the inference takes
about 30% of the time spent in CUDA API.

6 https://forums.developer.nvidia.com/t/tensorrt-for-cuda-11-4-
requested/185903
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Fig. 15. Baseline performance on Sambanova SN10 RDU (4 tiles). Broken lines indicate
A100 performance with batch size: 64.

+ Relatively balanced spread of workloads for TF-ONNX, between
tensor contractions and elementwise operations.
In terms of accuracy, we noticed a slightly increased MSE of 4.7¢~% and
1.2¢™* for the quantized LSTM and CNN models, respectively.

5.6. Performance on sambanova SN10 RDU

Fig. 15 demonstrates the performance of LSTM and CNN models
compared to GPU baseline for IEEE 64 Bus (Grid) dataset, implemented
in PyTorch, on a single Sambanova RDU (4 tiles). For SambaNova
SN10, the SambaFlow software stack generates a compiled model from
the original PyTorch model, optimizing the computational graph. Mod-
els execute with (default) BF16 precision on the SambaNova RDU
system. BF16 (or bfloat16) maintains the same numerical range as FP32
(8 bits) but a significantly lower precision (7 bits, vs. 23 bits for FP32).
Since DGL and PyTorch Graph have limited Sambanova RDU platform
support, STGCN was not considered. Performance comparison indicates
about 1.7x speedup compared to the corresponding AMP GPU baseline.
Sambanova benchmarks used a batch size of 64 (higher batch sizes led
to out-of-memory errors), therefore, GPU runs were also carried out
on a batch size of 64. The results were compared to the AMP version
because Sambanova uses BF16 for weights and biases to optimize the
performance. The average MSE was observed to be 0.075 and 0.072 for
CNN and LSTM, respectively, for the data collected for the IEEE 64-bus
system. The relatively higher MSE is speculated due to the precision
loss owing to default BF16 usage.

5.7. Custom accelerators via SODA HLS toolchain

HLS tools are crucial in converting software algorithms into efficient
hardware designs. Custom hardware accelerators allow for optimized
execution of spatiotemporal algorithms. They can be tailored to harness
available parallelism and leverage custom datatypes while enhancing
performance and energy efficiency.

We discuss the experimental approach used while synthesizing dif-
ferent accelerators with the SODA toolchain. First, we describe the CNN
model of Fig. 4 in TensorFlow and subsequently translate it to the MLIR
framework. Utilizing SODA-OPT, the compiler frontend of the SODA
toolchain, we perform a series of experiments at varying granularities.
These include synthesizing a single accelerator for the entire model,
generating distinct accelerators for each layer, outlining reusable tiles
of different sizes for the most computationally expensive layer, and ap-
plying SODA-OPT’s optimization pipeline. Furthermore, we investigate
the benefits of increasing the number of channels to alleviate memory
bottlenecks, which become more pronounced after exposing parallelism
through structural optimizations. In prior work [52,53], SODA has been
used to synthesize accelerators for layers of image classification models.
This is the first time SODA is employed to synthesize accelerators for
spatiotemporal models. This is also the first time presenting results
for accelerators synthesized with INT8 precision since support for non-
FP32 models has just been added. Our experiments aim to showcase the
versatility and effectiveness of SODA in custom accelerator generation
for deep learning models.
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5.7.1. Results

Fig. 16 presents execution latency (in million of clock cycles) of
CNN layers at different precision: FP32, and post-training quantiza-
tion in 32-bit (I32) and 8-bit (I8) integers. We also report the total
execution latency for the end-to-end synthesis of the entire network
in FP32. The results reported here consider the latency of memory
access to the FPGA’s internal BRAMs, which is a reasonable assumption
since the synthesized models fit the FPGA’s internal memory. Synthesis
of individual accelerators in FP32 provides a speed-up of 1.2x over
synthesizing the entire network. Moving from FP32 to I32 halves
the execution latency, providing a speed-up of 2.5x over the entire
network. Further, moving from 132 to I8 only increases performance
(reduces execution latency) by 1.5x for the 4x data reduction. The
reason is that while the synthesizer can reduce the number of states for
the accelerators (due to simpler functional units that can be chained in
a single operation), the overall execution latency remains limited by the
memory operations, which still execute across two memory channels.
This provides an overall speed-up of 3.2x with respect to the entire
network. The Dense layer is the operator that contributes the most to
the overall execution time, corresponding to 89%, 88%, and 90% of the
total execution time, respectively, for FP32, 132, and I8 precision.

Since the Dense Layer is the most significant contributor to the
execution delay, we used SODA-OPT to outline and optimize accelera-
tors to speed up the computation of tiles of the Matrix Multiplication,
the underlying algorithm of the Dense layer. We synthesize designs at
FP32 precision with different parameters for tile sizes (a single element
unoptimized accelerator, 4 X 4 x 4,8 x 8 x 8) and collect performance
and area results post place-and-route. We plot the results in Fig. 17
discussing the Quality of Results (QoR), ie., the trade-off between
performance and area. For each configuration, we provide speed-up and
area overhead (increase in resource utilization) for just the tiled designs
and the tiled designs with the full set of SODA-OPT optimizations. We
can see an expected trend, i.e., as optimizations are applied, the area
increases, but so does the execution speed. It is interesting to note that
for small tiles, the speed-up to area increase in area ratio is bigger than
one (i.e., the designs are more area efficient). In contrast, for larger tiles,
the area overhead is slightly larger than the increase in performance.
The reason is an increase in routing complexity on the FPGA (as we
report results post place-and-route).

Our final experiment aims to discern the primary factors contribut-
ing to the achieved speed-up. Fig. 18 provides an ablation study of the
optimizations applied through SODA to the FP32 accelerators for the
Dense layer. We consider varying tile sizes (TN, where N is the size of a
dimension of the tri-dimensional tensor) and varying numbers of mem-
ory channels (CN, where N is the number of memory channels) with
and without SODA-OPT high-level IR optimizations. Surprisingly, we
see that some structural modifications, such as increasing the number
of memory channels, impact the execution latency in different ways, de-
pending on the combined use of other high-level optimizations. Without
high-level optimizations, we even see a reduction in performance when
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Fig. 18. Ablation study of SODA optimizations when varying tile size and number of
memory channels with and without SODA-OPT optimizations.

more memory channels are used, which should have increased memory
parallelism (and thus improve execution latency). To effectively use
more memory channels, additional optimizations are necessary.

When enabling the SODA-OPT high-level optimization pipeline [53]
we obtain a substantial difference in performance, with speed ups of 5x
over the unoptimized baseline (No Opt.). With SODA-OPT optimiza-
tions, increasing structural parameters (size of the tiles and number
of memory channels), significantly improves the execution latency,
achieving up to 37x speed up for the largest design (T8_C8 OPT) over
our baseline.

6. Discussion

In this section, we highlight and summarize the key takeaways from
the comprehensive analysis of runtimes and workload profiles.

Disparities in ML/DL platforms

Workload characterization reveals disparities in the implementation
and execution of various ML frameworks and inference runtime en-
gines. For example, PyTorch relies heavily on CUDA streams, while
TensorFlow uses CUDA mod and exec. This distinction also applies to
ONNX-based implementations (see Fig. 11). Inference runtime engines,
like ONNX and Al Template, aim to optimize the graph further and
transfer operations to well-optimized mmm motifs. The mmm motif
reached as high as 95% for ONNX-based and 90% for AI Template-
based implementations of PyTorch CNN models. This demonstrates the
ability of inference runtime engines to reduce reliance on data and
shift the workload to already optimized kernels. However, for LSTM,
a recurrent network, runtime inference engines could not achieve such
high mmm operation runtimes. Overall, while implementation dispari-
ties exist, these software-based optimizations can enhance performance
for inference in spatiotemporal modeling.



Spatiotemporal models are data intensive

Performance analysis on the NVIDIA A100 GPU reveals that re-
gardless of the model, deep learning (DL) framework, or precision,
spatiotemporal models primarily spend about 80% of CUDA time on
data movement and launch-related operations. This trend is similarly
reflected in computational motifs, albeit with some exceptions. While
the time spent on elem and data motifs exceeds 50%, except for some
cases, it is significantly higher than that spent on matrix-matrix mul-
tiplication (mmm) operations. Specifically, for spatiotemporal graph
convolutional network (STGCN), which involves extensive data transfer
and manipulation, mmm operations are nearly negligible. Given that the
data expands in the order of O(T'xW), where T is the length of the time
series and W depicts the size of the sliding window, spatiotemporal
models are inherently data-intensive. Consequently, kernels optimizing
mmm operations have minimal impact on the performance of spatiotem-
poral models. Custom accelerators tailored for spatiotemporal models
should prioritize parallelizing data operations.

Inference runtime engines

Unified and interoperable inference runtime engines, such as ONNX
and AI Template, employ various graph optimizations to enhance per-
formance. These optimizations encompass graph-level transformations,
including minor graph simplifications, node eliminations, and more
complex node fusions and layout optimizations. Though, similar to GPU
runs, ONNX and AI Template also spend roughly 80% of CUDA time
on data movement (xfer, mem) and launch-related operations (dev), the
optimized graph is allocating more time to matrix-matrix multiplication
(mmm) motifs by optimizing data motifs. This adjustment enables the
spatiotemporal models to benefit from kernel-level optimizations.

Speedup with post-training quantization on custom accelerator

Post-training quantization offers significant optimization for DL in-
ference by reducing data size, particularly beneficial for data-intensive
spatiotemporal modeling. We explored post-training quantization using
ONNX-TensorRT and TensorFlow-TensorRT for INT8 and FP16 preci-
sion, as well as HLS-Synthesis for INT8 and INT32 precision. Quantiza-
tion often involves sacrificing precision to achieve speed gains. While
we did not observe a speedup on GPU (due to overhead) with quanti-
zation, we did notice a speedup of 2.5x and 3.75x with INT32 and INT8
quantization, respectively. On the GPU (as depicted in Fig. 14), the
performance gains are offset by the increased data operations required
to run the quantized model. In an attempt to achieve performance gain
through quantization, we noticed an increase of 9% in the reported
MSE for the CNN architecture. Additionally, we observed high memory
consumption for PyTorch-based INT8 quantization, which was not
seen in TensorFlow-based INT8 quantization. Despite these challenges,
post-training quantization remains promising due to its data reduction
benefits. Currently, the current data processing requirements outweigh
the gains from quantization on GPU, but this could potentially be
mitigated with custom accelerators.

Custom hardware showing performance gain over GPUs

We observed speedups of 1.7x with Sambanova and 5x with SODA-
OPT. Sambanova’s Reconfigurable Dataflow Unit (RDU) architecture,
tailored for deep learning workloads, appears to offer potentially supe-
rior performance compared to general-purpose GPUs. While we were
unable to verify this through profiling due to limited options in Sam-
banova, our HLS synthesis revealed that certain structural modifi-
cations, such as increasing the number of memory channels, affect
execution latency differently depending on the combined use of other
high-level optimizations. Interestingly, without these optimizations, we
observed a decrease in performance when more memory channels were
used, despite the expectation of increased memory parallelism. This
indicates that additional optimizations are required to effectively utilize
additional memory channels.

7. Conclusion

Organizing multivariate timeseries data into overlapping windows
in spatiotemporal modeling introduces redundancies in data processing
and substantially amplifies data movements and associated transfor-
mations. De facto optimizations targeted for image and text-based
Deep Learning applications may not translate to efficient solutions for
spatiotemporal inference workloads, which is a common application
underpinning several critical infrastructures. Inference workloads for
spatiotemporal modeling demonstrate significant optimization poten-
tial — as shown by our experiments and analysis on GPU, AIA, and
reconfigurable platforms. Our multi-level analysis of the computa-
tional patterns underlying the inference workloads reveal essential gaps
that must be bridged for achieving sustainable performance improve-
ments of spatiotemporal models on next-generation software/hardware
platforms. Analyzing the possible combinations of the spatiotemporal
inference workloads can provide broad empirical justifications and
trade-offs guiding real-world application deployments.

For instance, automatic mixed-precision and post-training quanti-
zation (to exploit integer precision) can offer spatiotemporal models
some performance advantage over full precision, however, the benefits
diminish for 32-bit model precision on GPU. Likewise, kernels opti-
mizing matrix multiplication operations can have minimal impact on
the overall performance of spatiotemporal models. Custom accelerators
tailored for spatiotemporal models can prioritize reducing the memory
access bottlenecks (e.g., increased memory channels). Kernel-level op-
timizations in inference runtime engines can enhance GPU utilization
and mitigate framework disparities, but their impact varies depending
on architectural specifics.

Consequently, for successful real-world deployment, it is crucial to
consider a broader range of performance metrics beyond just prediction
accuracy when selecting models. We observe Sambanova’s Reconfig-
urable Dataflow Unit (RDU) architecture improves the inference time
by 1.7x (due to BF16 precision and efficient data parallelism) and
synthesizing custom accelerators via the SODA compiler toolchain
(aiming for higher resource utilization) demonstrated 5x improvement
over GPUs. Future research directions can explore further kernel-level
optimizations at different levels (high-level runtime API, device porta-
bility layer, compiler intermediate representation, etc.) to inform the
design of emerging machine learning platforms optimized for efficient
processing of the spatiotemporal inference workloads.
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