DOE/MC/31182 - 5201
(DE96004482)

Fractal Modeling of Natural Fracture
Networks

Final Report
June 1994 - June 1995

Martin V. Ferer
B.H. Dean
Charles Mick

April 1996

Work Performed Under Contract No.: DE-FG21-94MC31 182

For

U.S. Department of Energy

Office of Fossil Energy

Morgantown Energy Technology Center
Morgantown, West Virginia

By
West Virginia University Research Corporation
Morgantown, West Virginia

DISTRIBUTION OF THIS DOCUMENT 18 UNLIMHED . MASTE |

4

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manu-
facturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from the Office of
Scientific and Technical Information, 175 Oak Ridge Turnpike,
Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, VA 22161; phone orders accepted at (703) 487-4650.

DOE/MC/31182 - 5201
(DE96004482)
Distribution Category UC-132

Fractal Modeling of Natural
Fracture Networks '

Final Report
June 1994 - June 1995

Martin V. Ferer
B.H. Dean
Charles Mick

Work Performed Under Contract No.: DE-FG21-94MC31182

For
U.S. Department of Energy
Office of Fossil Energy
Morgantown Energy Technology Center
P.O. Box 880
Morgantown, West Virginia 26507-0880

By
West Virginia University Research Corporation
Department of Chemical Engineering
P.O. Box 6845
Morgantown, West Virginia 26506-6315

April 1996

Objectives

West Virginia University will implement procedures for a fractal analysis of
fractures in reservoirs. This procedure will be applied to fracture networks in outcrops
and to fractures intersecting horizontal boreholes. The parameters resulting from this
analysis will be used to generate synthetic fracture networks with the same fractal

characteristics as real networks.

Background

Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture
network.! Reliable characterization of the actual fracture network in the reservoir is
severely limited. The location and orientation of fractures intersecting the borehole can be
determined, but the length of these fractures cannot be unambiguously determined.
Fracture networks can be determined for outcrops, but there is little reason to believe that
the network in the reservoir should be identical
because of the differences in stresses and history.
Seismic techniques do provide some large scale
(resolution of tens or hundreds of feet)

information about the fracture density and

average fracture orientation, although there is -

some controversy about interpretation of the
§a?

multi-component surface seismic data, especially Serl

regarding which layer is being probed. > Lan
Fig.l1 Outcrop Fractures at MWX site.

Furthermore, independent of the
Shows the primary fractures (Set 1) and the

assumption of fractal behavior, it is known that
secondary fractures (Set 2).

typical fractures in the second set should begin
and end at fractures of the first set.2 This effect is commonly observed in real fracture

networks from outcrop studies, for example 92% of the secondary fractures in the MWX

outcrop (Fig. 1) satisfy this criterion.3 Imposing this constraint upon the secondary

fractures increases the visual similarity between our networks and the real network over
simulated networks from other fractal modeling schemes.*

Because of the lack of detailed information about the actual fracture network,
modeling methods must represent the porosity and permeability associated with the
fracture network, as accurately as possible with very little apriori information. Three rather |
different types of approaches have been used: i) dual porosity simulations, ii)'stochastic’
modeling of fracture networks, and iii) fractal modeling of fracture networks. The dual
porosity approach is a natural extension of the gridding schemes widely used in describing
reservoirs, however in assuming mesoscopic scale (tens or hundreds of feet) averagés of
fracture porosities and permeabilities, they may be smoothing the very heterogeneities
which control the recovery. This may limit reliability for strongly anisotropic fracturing.
That is, even if fractures are located randomly throughout the grid-block so that an
average porosity may be sensible, the conductivity of similar fractures differ widely
invalidating assumptions of an average permeability.

Stochastic models which assume a variety of probability distributions of fracture
characteristics have been used with some success in modeling fracture networks.5-7 The
advantage of these stochastic models over the dual porosity simulations is that real
fracture heterogeneities are included in the modeling process. On the other hand these
stochastic models need information about all features of the actual fracture network to
provide the most accurate modeling. In the highest level (most accurate) model for each
set of fractures with a given orientation, one needs to determine the probability
distribution of i) the location of independent fractures ii) the location of fracture clusters
or swarms ii1) locations of fractures within clusters, iv) cluster lengths, v) fracture
lengths, vi) fracture apertures, and vii) fracture orientations. The less reliable the
information determining these probability distributions; the less reliable the fracture
network. Reliable information about many aspects of the real fracture network is
impossible to determine; the assumption of self-similar fractal behavior (if valid) enables us
to predict features of one aspect of the distribution from other aspects of the distribution;
i.e. i), ii), and iii) result from the box-counting along the borehole which, in turn, predicts

features of the distributions for iv), v), and vi) for self-similar fractal networks.

Aspects of fractal geometry have been applied to mimic the heterogeneity
associated with layering in real reservoirs for a number of years. In these cases, the
variation in permeability with height at the borehole was found to obey fractal statistics,3
and the correlations implicit in fractal geometries allowed them to interpolate between the
known permeabilities at the bdrehole in such a way that results from flow models agreed
with analyses of production logs and tracer breakthrough.® Examples in the open‘
literature reporting the use of fractal geostatistics to treat naturally fractured reservoirs are
less common.#10 If a set of natural fractures is described by a self-similar fractal
geometry, the self-similar, scale invariance of the fracture network implies relationships
among the fracture distribution, and the various length scales: clustering or fracture
correlation, fracture aperture, and fracture length. Therefore, if fracture networks obey a
self-similar fractal geometry, borehole data locating orientational sets of fractures, will
enable a determination of the fractal dimension and 'lacunarity’. This along with relatively
generic information about the typical aperture size and length of fractures,! will allow us
to produce a self-similar fractal network. The clustering occurs naturally in the fractal
network because of the correlations inherent in fractal geometries. The fractal parts of the
aperture size and length distributions (even the fracture shape distributions) should be the
same as the fractal parts of the fracture location vs. scale distributions.

In the sections following this introduction, we will i) present 'fractal' analysis of the
MWX site, using the box-counting procedure!!.12; ii) review evidence testing the fractal
nature of fracture distributions and discuss the advantages of using our 'fractal' analysis
over a stochastic analysis; iii) present an efficient algorithm for producing a self-similar

fracture networks which mimic the real MWX outcrop fracture network.

Project Description-Fractal Analysis

Mustrative Example Before analyzing the MWX outcrop (Fig. 1), one must
understand the box-counting procedure used in these tests as well as our method for
generating the fracture networks. As discussed later in this section, the box-counting
procedure automatically reproduces the random aspects of the distribution of fractures in

addition to reproducing the clustering obvious in Fig. 1.

For a simple example of the box-counting procedure consider the distribution of
fractures intersecting a length of borehole
(Fig.2a). To determine the fractal dimension as HI

I 2§

Fig. 2a Fractures intcrsecting a borchole.

well as the range of size scales over which the
distribution is fractal, one covers the array of
fractures by successively smaller and smaller rulers (one-dimensional 'boxes'), and then one
counts the number of 'boxes' or rulers covering one or more fractures. If the distribution

has a fractal dimension D, over a range of sizes, then

N = 4(A)”, ¢}
where N is the number of rulers which cover fractures, the constant A is called the
lacunarity, and the scale A determines the length of the rulers (L/A). If one covers the

24 fractures in Fig.2 by a ruler of o | J.

L.
fractures; with two rulers of length t — -+ >

L/2 (near the bottom of Fig.2b) both)

length L , (shown at the bottom of

U e L

Fig.2b) one ruler covers the SN A

et

—

Fig. 2b The lower half of the figure shows the fractures in

cover fractures, with four rulers of _. . o
N Fig. 2a with the scale rulers ‘covering' the set of fractures

length L/4 all 4 cover fractures, but grom a ruler of length L. proceeding upwards to rulers of
with 8 rulers of length L/8, only 6 length L/64 just below the fractures. The top half shows the
cover fractures. This is continued same set of ‘covering’ rulers of length L/128.

down to 128 rulers of length L/128 as shown in Table I.

Since there are only 24 fractures, at scales smaller than L/128; there will only be 24
rulers covering fractures. A log-log plot of the box-counting for Fig. 2 is shown in Fig.3
below. The fractal relationship is given by the solid line N = 2.12 A®®, except at large and
small scales for the following reasons. At small A, (coarse scales L, L/2 and L/4), N
equals the number of rulers (N = A) because all the rulers cover fractures. In later
sections we refer to this as the initial covering I regime. At very large A, (very fine scales
L/256 and L/1024), only 24 rulers are covered because there are only 24 fractures and

there is no more detail in the fracture pattern - so that the box-counting 'cuts-off' or

'saturates' at 24. Hence, for this fracture pattern, the pattern is fractal between the initial

covering and cutoff regimes (over the Table 1
_ . Length of Rulers Number of Rulers

range of scales A= 8 to 128) with a fractal (LIA) Covering Fractures (\)
dimension of 1.5 and a lacunarity of 2.12. L 1
L2 2
The ruler counting for this 1-d slice of the L/3 Il
. L/8 6
2-d fracture network gives an exponent: 716 3
D,- 1, i.e. the actual 2-d fractal dimension L£32 13
; Li64 17
minus one. L/128 24
o L1256 24
Before continuing, it should be 171024 21

pointed out that this fracture pattern was generated by our algorithm to have a lacunarity
of 2.12 and a fractal dimension of 1+ 1 over the range of scales from L/8 to L/128. The
algorithm used to generate this pattern is described in a following section.

It is important to realize, however, that if the distribution of fractures in Fig. 2a
were completely random (i.e., if there were no |
clustering of fractures) the points from the box-
counting Would obey a linear relationship (N = A)
up to cutoff. That is, each box (on the average)
would contain one fracture up to the total number
of fractures (in this case N, =24); at finer

scales the one fracture would randomly occupy

one of the smaller boxes. However, because of A
} Fig. 3 Fractal Plot for Fig.2.
clustering, groups of fractures are closer together g '8
than average. Therefore, when using the box-counting procedure, the linear regime ends

before N = N

1o

> and one enters the 'fractal' or clustering regime where some boxes are
empty and others have several fractures much closer together than average. The box-

counting procedure then provides a method for characterizing (and thus for reproducing)

this clustering.

Results
MWX Outcrop First the primary set of fractures in Fig.l were analyzed. A series of

eight lines (boreholes) of length L

100 ¢ ARAL | AN A RS A |

were drawn through the set of primary :
Treactas regime = ¢ 923

3493 e ——
procedure was used on each of these //
* boreholes. The results for the number - : /
of boxes covering fractures vs. the)

scale A is shown in Fig.4. ' /

1 PPN ‘ Mot |

The initial covering regime persisted . 10 100
Celta

fractures, and the box-counting

L et
RN Sy

Rulers Covereg
o

rveeeTy

I
k .
W SOV WY

(o]
(&)
<

until scale 16. The cutoff regime
Fig. 4. or the primary fractures. the box-counting from

the ‘boreholes’ on the MWX outcrop (Fig.1), shows the

initial covering (the linear increase, N = A, up to the

began at scale 80. In-between the
data are well represented by the fractal

ower law N = 49 A”*®_ indicating a
P 8 clustering or fractal regime), the fractal regime, and the
fractal dimension D, = 143. It should .08 regime.

be noted that at intermediate scales the simple doubling rule: A = 2", (c.f. Figs. 2 & 3 and
Table I) was used to provide more data in the fractal regime.

The secondary set of fractures in Fig.1 were analyzed in the same way. A series
lines of length L, perpendicular to these secondary fractures, were drawn through the
secondary fractures, the box-counting was performed and the values N(A) were
averaged. Fig.5 shows the plot of N vs. A and indicates that for these secondary fractures
the initial covering regime persists until scale 6 - and that the cutoff regime begins at scale

AO 343

40. Between the number of rulers the fractal power law: N =347 applies;
indicating a fractal dimension D, ~ 134. Again, intermediate scales were used to provide

more data in the fractal regime.

To determine the length distribution from the data provided by M. McKoy,3 we

plot the total number of fractures with lengths greater than a given length L, ML), vs. L.

It should be noted that this total number M(L)

with lengths { > L is the integral of the
number density of fractures n({) with length
¢ integrated from ! =L up to the one fracture
of maximum length ;

ie. N(L) = LL"' n(t)di.

This graph of the data is shown in Fig.6. It is
fit by the characteristic exponential cutoff for
the greatest lengths L > 14, and by a fractal
law for the smallest

power lengths

(4 <L <14). For a self-similar fractal
fracture network, the number density should
be given by n(!) = it ~P1: so the total number
is:

"D/_ll

N(L ='—'——""'7
(L) (-0,

Hence, the data is consistent with a fractal

dimension; Df = 148,

This data does not determine
unambiguously whether or not the clustering
regime is rigorously fractal. That is, this data
does not favor a strictly power law regime (i.e.
fractal behavior) between the linear, initial
covering regime, and cutoff. However, the
power law assumption used to draw the lines

does represent a good fit to the box-counting

B b e 4t]

rylers covered

beita
Fig. § For the secondary fractures, the box-
counting from the borecholes' on the MWX
outcrop (Fig.1), shows the initial covering
(the characteristic lincar regime). the fractal

regime. and the cutoff regime.

N(L) vs. L (logarithmic)

1000 - ——
: This raoh smows 2 linear 1t for =
N (FaCLUre iengih's If tne fange °
. 4-314, 3r¢ ar exgonent at cut-off -
. in (e range 12->36
Plnear 0‘3'\\\
10 N
! 1290~ 04TL .
1 - I <
100
fracture iength

Fig. 6. The number of fractures V(L) with
lengths greater than L plotted against L.
This shows the exponential cutoff for the
larger lengths and the fractal regime for the

smaller lengths.

data. Therefore, at worst, by assuming that the intermediate regime is fractal, we may be

only providing a good approximation to the data. If the assumption of fractal clustering
only provides a good approximation to the true clustering, our simulated fracture
networks will represent a good approximation to the actual fracture network - which is all
that is necessary.

On the other hand, it is encouréging that the power laws from the box counting

and length distributions are all consistent with the same fractal dimension: D, = 14, to

within a realistic uncertainty from the data fitting. This equality of fractal dimensions from
all length measures is the hallmark of self-similar fracture networks.

A program to carry out the box-counting procedure and return the fractal
dimension and lacunarity has been developed in order to process multiple sets of data from
various boreholes. To test these programs as well as the routines for simulating the
fracture networks, numerous trial runs have been performed to analyze the "borehole

fractures" from simulated networks.

Box-counting Results and Analysis - (Robert Pietsch #1) Horizontal Borehole Data

The box-counting program performs three major functions: i) MWX data scan, ii)
implements the box-counting algorithm, and iii) performs a least squares analysis. The
data scan function is used to read in the data and can be easily modified for different data
formats. The least squares analysis is an optional function - and was not used in this
report since the box-counting results were transferred to a an external file and processed
graphically instead of numerically.

In practice, the initial orientation and ruler length of the borehole sample (from the
MWX data set) are specified by the user. These parameters are then modified to carry out
the box-counting procedure. The degree of deviation from the borehole is then checked
and stored in a generic array. If this value is too low, the corresponding fracture
_orientation is not included in the final analysis of the box-counting procedure. The ruler

initial ruler length

increment variable is initialized using the value: . Delta is initially set

equal to one and then doubled at each iteration. While the ruler increment is less than the -

modified initial ruler length, a check is performed to see if the number from the fracture

orientation column falls within the specified

range. If so, the variable ‘rufers_covered - Bi"““f"ﬁ"“ *fl°”l°"ff‘ 8°'°T=

is incremented by 1. The loop continues g e]

until the value of ‘rulers covered’ equals § 1acot ’_//"""

the total number of fractures; indicating % e /"' 1

that saturation has been reached. These /

values may then be stored in a separate "’ /

datafile for further graphical analysis. ‘/ et etttk aeam s
The results for a typical box- Lo e ey

counting run using the Robert Pietsch Fig. 7 Box-counting results.

data are shown in Fig.7. Our analysis shows that in the fractal regime: A = 800 — 7000,

the total number of fractures is given by: N = 765 A", implying that D, = 14.

Are Fracture Networks Fractal?
There is evidence that real fracture networks are fractal both in outcrops where

Barton and others found a fractal dimension of D, = 155, for different fracture systems,13

as well as from underground data in the Fanay-Augéres uranium minel® where they found
a varying fractal dimension. The variation in their fractal dimension may result from use
of too great a range of scales. As we saw for very large scales, all the rulers are covered
so their finding a ‘fractal dimension' of 2 at large scales is not surprising. Similarly, at very
small scales one approaches a limit where the number of ‘boxes' covered equals the
number of fractures so the fractal dimension approaches 1; this may be an artifact of the
neglect of small aperture fractures (micro-cracks which may be significant in determining
number at their 0.005 meter scale).

The length of the fractures has been found to be fractal,!4 and the shape of the
fractures has also been determined to be fractal!3-17. This suggests that all features of the
fractures may be fractal: distributions of i) centers, ii) lengths, iii)widths, and iv) shapes.
The evidence that the shapes are fractal suggests that porosities and permeabilities may

also obey fractal statistics. If all geometrical aspects of the fracture distribution are fractal

10

with the same fractal dimension, the fracture distribution is self-similar. This may seem to
be a very unusual occurrence, but in fact many examples of development (or growth)
which occur in random media (like the development of fractures in stressed rock
formations) have a self-similar geometry. The first level of our geostatistical modeling will
assume a self-similar fractal geometry for the fracture distribution. Higher levels of our
geostatistical modeling could use actual measurements to determine the fractal distribution

of (e.g.) the fracture widths.

The Fracture Generation Algorithm

Here we describe the implementation and design of an algorithm that was developed to

generate a 2-d fracture networks. As we have BEGIN

dviscussed, the primary assumption in our model is initalize
that the network geometry is fractal - i.e. has a self- veite_progrum_parameters to fle
similar or scale invariant geometry. Using this gmme‘inh;'d‘mmc'm
information we have developed a program to fopley el et
T * REPEAT

generate complete 2-d fracture outcrop networks i G2-G2-1
- genarate_horizontal _fractures
using only the lacunarity, fractal dimension, initial UNTIL G2~ ¥ specfed
covering, and cutoff parameters obtained from MWX Eliminate_redundant_fractures
Y
data. Read_Fract_2 Data
. Y
The PASCAL programming language was for i2:=1 to # of honz. fractures do
~———~——% begin
chosen to emphasize both modularity and structure in | Gencrate_Fractures_ Along_Fractures
] © Assign_Lengths_to_Fracts_Along_Fracts
the development of the algorithm. Since the end ‘
END

PASCAL syntax is completely analogous to

pseudocode used in general algorithm descriptions, Fig. 8. Procedure Flowchart for
the program can be easily modified by others or 2d_frac.pas
converted to another programming language at a later time.
The algorithm is most clearly d'es_cn'bed by reference to the proceduré flowchart in
Fig.8. The body of the program (Appendix A) consists primarily of variable and

procedure declarations whose execution begin on p.36. The procedures listed on p.36

11

(and in Fig.8) define the highest level of program hierarchy. All other procedures declared

in the body of the program are called from within these procedures.

The most general descriptidn of the program is obtained by examining Fig.8. In

the broadest sense the program performs 2 tasks (separated by the dotted line):

(1) Generates a horizontal fracture set.

(2) Generates a vertical fracture set - consistent with the fracture set in (1)

To generate the horizontal fracture set the program first generates a 1-dimensional

fracture set along a lefi-justified line extending downward in the vertical direction (see

Fig.10). This is accomplished by the procedure GENERATE INITIAL FRACTURE SET

whose flowchart is given in Fig.9. The first step in the procedure initializes the first row

in the 2-dimensional ruler array L[j k], where i=1.2
and k can range from 1 to 2"’ =8192 as declared
using the TYPE and VAR clauses at the beginning
of the program. The range of the for loop given by
the vanable Ri is the initial number of rulers chosen
to cover the fracture set in a 1-1 ratio. If a fracture
is covered by a ruler, than the value of the array
corresponding to this specific ruler is given the value
1. Conversely, an empty ruler site is given the value
0.

Having initialized the L[1,/]] array the
GENERATE INITIAL FRACTURE

divides each ruler into two new rulers (by mapping

procedure

each ruler variable in L[1,/]] to two new ruler

PROCEDURE
(generate_initial_fracture_set)

BEGIN

\J
fori:=1 to Ri do
7 begin
i LILi)=1
—— end
\j
» repeat
G:=G+]
generation_parity
gencrate_ld_fractures
display the fractures
1 R:=2*R
— until G=One_d_Generations
\J
END

Fig. 9 Flowchart for the
Zenerate_initial_fracture_set
procedure.

variables in L[2,/]). To accomplish this task the procedure begins the repeat...until loop

shown in Fig.9 and increments the counting variable G (initially = 0) to the value of 1.
The GENERATION _PARITY procedure then determines if G is odd or even and assigns

the variables e and f the values (1 and 2) or (2 and 1) respectively, depending on whether

G is odd or even.

Next, the procedure randomly chooses one of the 2 new rulers in L[2,k] for each
of the rulers in L[1,i] and assigns this ruler a value of 1 - while giving the other ruler a
value of 0. In this way, the covered fractures of the initial level are brought down to the

next level of 2 x R, rulers. The remaining rulers are then assigned fractures according to

the distribution:
.‘\- = IADf—l, (2)
where N is the number of fractures, / is the lacunarity, D, is the fractal dimension, and

5 = Uotal length of Jracture set = D The progress of the algorithm is checked by displaying

number of rulers

the fracture locations graphically as the

(=]
it

program is running. After a single pass through

the loop the number of rulers, R, is doubled and

the whole process begins again. At the next

~D N~y

iteration the parity of G will change, as will the

values of e and f according to the previous

: 2d fraceure locations ¢

[Nl

assignment. Using the mapping:
Lle.il—> L[f.Jj}.
the values of L[2, j] provide input for the next)

IO ~nmmnow

[111

P ¢ is 2 23

iteration and the values of L[1, /] are replaced horcontatpuston by wns:

with new fracture assignments in the next ruler o 19 1.4 fractare generation output. The

data is represented graphically by a series of

doubling. The output at this stage of the small line segments with extension in the x

program is shown in Fig.10 and is analogous to direction.
Fig.2a. Using D, =15, I = 2.12, with an initial covering of 4, we obtain 24 fractures
with 4x2° = 128 rulers after 5 generations. For the Robert Pietsch data (c.f. Fig.7); the

1-d fracture output is shown in Fig.11 using D, = 14, / = 765, with an initial covering of

800.

Continuing with the generation of the horizontal fracture set the program enters

the repeat...until loop shown directly above the
dotted line in Fig.8 and increments the counting
variable G2 (initially = 0) to the value of 1. The
| loop executes the:

i GENERATE_HORIZONTAL_FRACTURES
\ i procedure to produce a vertical fracture set for

l-dfracture locations | each value of the grid step in the x direction.

, Fig.12 shows the procedure flowchart:

CHRETTTIY - LTI R ERTERTED TR ER U LRI L H T E AT

In the first iteration PROCEDURE
(gererate_horizontal_fractures)
: © (G2=1) the procedure
————, (G=Dthep BEGIN
‘ -) . v
Horizontal Position (arbitrary) assigns a length (£ G2 then
Fig. 11. 1-d fracture generation output (extension in the x- | ! ,\,sign_p,,cﬁ:e_mgm
using Robert Pietsch data. .. ‘ end
direction) to each v
display the fractures on screen
- . , . '
fracture site. To obtain the fracture length we assume a (G2 then
oge . . . % begin
probability density function given by - Count_Ended_Fractures
oD display the fractures on screen
p(Ly=4L "7, (3) ifnwded'>0lhen
. . F————% begin
where L is the fracture length and A4 is a constant. The |!! Add_nceded fractures
i Assign_New_Fracture_Lengths
probability that a given fracture will have a length <.' || ——— °';“
. ~——————— end
(greater than 2 arbitrary units) is then given by the distribution -)
. END
function:
P(2<L<L’)y = j AL dL = [L— 2":-"].(4) .
L 2-D » _ Fig. 12. Procedure flowchart

b
for

Since the fracture must have a length between 2 and 100 -generate_horizontal_fractures

(according to the distribution), the constant A is determined from

100 -
P(2<L5100)=1=J' AL, : (5)

Py

so that
(Df - 2) ‘

4 = 2=Dp00

. (2-D,) '
- ()"

(6)

Substituting (6) into (4) then gives
)(2 - f)f)

P(L') =)

- (2
2

- LI)(Df—z)
1-

() (o

—

Generating a random number s; between 01 (labeled as s3 in the
ASSIGN FRACTURE_LENGTHS procedure) and then setting this equal to (7), we can

solve for the length L’ to obtain:

1
v =051 ()77)+ ()77 T ®)

Next, we generate a second random number s, between 0 —1 and calculate the final
fracture length from

L=s,L". 9)
In this way, the fracture sites are assigned lengths in the horizontal direction. Using the

parameters D, =15, /=27, and R, = 16 we obtain 29 fractures with 6x2° =128 rulers

after 3 generations giving the output shown in Fig.13.

Referring to Fig. 6 we notice that to the left of L ~ 14 (linear regime) the leﬁgth
assignments may be made using the procedure outlined above. To the right of L ~ 14
(exponential cutoff) we have a non-linear distribution and so we must use:

Py(L) = 129 ¢ **7E, (10)

To incorporate the data from region II into our fracture generation program (while
avoiding having to solve a non-linear function for L') we are modifying the program by
reading in the values from (3) and (10) into an array for each fracture length L’ between 2
and 100. Generating a random number between 2 and 100, we can then determine the
corresponding fracture length from the array.

At the next iteration, G2 is greater than 1 and the program will step forward by a
specified amount in the x-direction (= (G2 - 1) x step) to determine (using the previous
length assignments) how many fractures extend past this point. If fractures have ended,
new fracture assignments must be made to maintain the distribution in (2). The number of

fractures that have not crossed the grid point are counted by the procedure

15

COUNT _ENDED FRACTURES and stored in the variable needed. If fractures have
ended, the procedure ADD NEEDED FRACTURES is called as shown in Fig.12. To

guarantee that the new fracture

f~l

assignments produce a fractal

distribution, we must reverse the

ruler doubling process and reassign

EECIE RN T Y R S W

fractures that have crossed the 290 ?—

specified grid point to half as many se ;

rulers used in the final step of the : [R
initial 1-d fracture generation - herszomal ponnon rarburary wnits) €2

process. The unoccupied fracture Fig. 13. Lengthsare assigned to the initial fracture
sites are then assigned new fractures set.
following the same procedure described for the initial fracture generation.

After new fractures have been added (beginning from x =(G2-1)x step) the
ASSIGN NEW FRACTURE LENGTHS procedure uses (8) and then (9) to determine their

length. The x, and x, coordinates (endpoints) for each of the fractures are stored in the

arrays Lfx1[i] and Lfx2[j] and the whole process continues until the distribution is

generated for the specified number of

"

horizontal site locations. The

endpoints of the fractures along with

their vertical position are written to

the file FRACT_1.DAT for each Proy T ==

-hn-"\(|..:]

s = =
value of the gridstep x given above ¢ :=¢ — —
by the 7p —
DISPLAY FRAC EXTENSIONS) P TR T P

harzontal position (arbirary smts) X
procedure. The output is shown in .
) Fig. 14 Horizontal fracture outcrop
Fig.14 . The parameters used were

D,=15,1=27, and R, =16 which were determined from the MWX outcrop using the

box counting procedures described in a previous section.

16

To generate the vertical fracture set we first generate a fracture distribution along
each of the horizontal fractures by applying our 1-d generation algorithm to each fracture
in the datafile FRACT_1.DAT. Since the horizontal fracture positions were previously
stored at each value of the gridstep, a fracture crossing » gridpoints is stored » times by
the DISPLAY FRAC EXTENSIONS procedure. Therefore, before we can assign vertical

fractures along each of the horizontal fractures we

must first eliminate all duplicate fractures from the (.ui”_m:hf?iﬁ?;meg_an,
data set. This is accomplished by the BEGIN
v
ELIMINATE REDUNDANT FRACTURES for i:=0 to R2-1 do
- - =% begin
procedure listed below the dotted line in Fig.8. The [{ . fmmmm,fs occupted) then
. : —~o= begi
result of this operation is stored in a new file: |! :1:—1%;'1‘[&]
: H <=L [i2]-be*i- e 2
2 1ni 1 ‘ rt_fract
FRACT_2.DAT. After obtaining a unique set of | hoose.the wacs Bacane_belus
horizontal fractures we reinitialize our variables by || j ""elsemhegreyvanaties
. . . 4 | if(not at fracture boundary) then
reading in the FRACT 2DAT values with the ! S begin
. i o draw the fracture .
READ FRAC 2 DATA procedure as shown in Fig.8. P (e o frac_Ad fie
Starting in the upper left hand corner of Fig.14 || | else y2:y1
and proceeding downward vertically, the program — ‘E;"‘
produces a fractal distribution (using a parameter set |~ 7
END

determined from the vertical fracture data) along the

first fracture in the data set. In our.model we assume Fig. 15 Procedure flowchart for

that vertical fractures can only begin or end along a 4SS£§_‘§§3?§?§5@%€%§“
horizontal fracture. In this case, we need only find the

next horizontal fracture below each vertical fracture site to determine the fracturé
endpoint and therefore its’ length. To begin the process the program enters the for loop
below the READ FRAC 2 _DATA procedure in Fig.8. If the i2-th horizontal fracture has
a length greater than a certain number of units, the program executes the
GENERATE FRACTURES ALONG_FRACTURES procedure to generate a fracture set
along the i2-th fracture. The flowchart for this procedure is completely analogous to the

flowchart given in Fig.9 except that in this case we use a slightly different 1-d fracture

17

generation procedure (GENERA TE_ID FRACTURES2) to incorporate the vertical
fracture parameters and new fractal distribution function. ‘

After producing a fracture distribution along the i2-r4 horizontal fracture, the
program executes the
ASSIGN LENGTHS TO_FRACTURES ALONG_FRACTURES procedure whose flowchart is given
in Fig.15. The outer for loop in the procedure scans through all rulers of the fracture
distribution just produced by the GENERATE FRACTURES ALONG FRACTURES

procedure. If a fracture

site is occupied then the . **° _ T

vertical position of the ssof 7T T P

horizontal fracture is

stored in the variable

250 }— ; ; : : [———

L - S]

. o = ’

yi. The location of the ook | ; s
fracture along the i2-th ¢ E=————r .

s 150k i I : . = o
horizontal fractures’ ;| [

i act : :‘*_ e T —
length is then stored as ¢ bE—= : ——

22 47 [L 169 128 142

X, f /. Now that we have horizontal posinon (arburary units) E
the x and y values of Fig. 16. 2-d Fracture Outcrop Data generated by 2d_frac?2. pas.

the vertical fractures’ starting point - we scan the fracture set (using the SORT
FRACTURES and CHOOSE THE NEXT FRACTURE BELOW procedures) to find the
vertical position of the next horizontal fracture beneath our given fracture. This position
is thén stored as y2. If the value of y2 corresponds to a fracture within the boundaries of
the network (and not at an adjacent grid site starting at the top of the screen) then the
vertical fracture is displayed and its’ position stored in the file: FRAC 3.DAT. The
program terminates when the horizontal fractures have been scanned and vertical fractures
are generated along their lengths. Using the identical parameters that were used for

Fig.14 along with the parameters D, ..., = 1.2,/ =1, and R, ,,..0 = 4; We obtain the

s "vertical

output shown in Fig.16 which may be compared with the MWX data in Fig.1.

18

Conclusions & Future Work
To model the fracture outcrop networks occurring in naturally fractured tight-gas
reservoirs we have taken an approach that incorporates:

A) Fractal Analysis of Available Data:

We characterize the MWX fracture data using' four parameters (for the distribution of
both horizontal and vertical fractures): i) Lacunarity, ii) Fractal Dimension, iii) Initial
Covering Scale, and iv) Cutoff - determined from the distribution of fracture lengths.
B) Fracture Generation: |
We generate self-similar fracture networks using data from 1) with an algorithm that
incorporates fractal geostatistics.
From our work we have found that there are several advantages in an approach that uses
fractal statistics:

1) The networks produced by our model appear to be in agreement with actual
fracture networks but do not require extensive apriori knowledge of the network. Using
data from isolated borehole sites we can generate entire networks with an algorithm that
assumes a self-similar or scale invariant geometry. |

i) We are able to generate horizontal and vertical fractures separately (although
not independently) using distinct parameter sets in each case. The fractures can then be
analyzed and combined later to produce complete self-consistent networks.

ii) Since the data is generated using a statistical approach, the algorithms require
relatively little computer time to produce completé networks

iv) Evidence suggests that real fracture networks obey fractal statistics.

The characterization and analysis of the network data produced by our algorithms is not
yet complete. By varying other parameters such as gridsize, fracture length, and the
horizontal/vertical orientation of fractures, we believe that it will be possible to generate
fracture distribution patterns that are ‘optimally similar’ in the fractal/statistical sense - to
real fracture networks occurring in nature.

Currently we are analyzing the distribution of fractures along horizontal boreholes
in the Austin Chalk and fracture lengths from nearby outcrops. The results from this

analysis will be used to produce simulated fracture networks.

19

References

‘1. Skopec, R. A., JPT. December 1993, 1168, (1993).

2. Davidge, R. W. "Mechanical Behavior of Ceramics." 1979 Cambridge University
Press. New York.

3. McKoy, M, private communication. (1994).

4. Xie, H. "Fractals in Rock Mechanics." Geomechanics Research Series. Kwasniewski
ed. 1993 A. A. Balkema. Rotterdam.

5. McKoy, M., Development of Stochastic Fracture Porosity Models and Application
to the Recovery Efficiency Test (RET #1) Well in Wayne County, West Virginia
(1993).

Long, J. C. S. and D. M. Billaux, Wat. Resources Res. 23, 1201, (1987).

7. Billaux, D, J. P. Chiléé, K. Hestir and J. C. S. Long, Int. J. Rock Mech., Min. Sci.
& Geomech. Abstr. 26, 281, (1989).

8. Hewett, T. A. "SPE 15386 Fractal Geostatistics for reservoir hetero's.” 1986 Soc.
of Pet. Eng. Richardson, TX. '

9. Matthews, J. L., A. S. Emanuel and K. A. Edwards, JPT. 1139, (1989).

10. Chiles, J., Math. Geol. 20, 631, (1988). |

11. Feder, J. "Fractals." 1988 Plenum Press. New York.

12. Mandelbrot, B. B. "The Fractal Geometry of Nature." 1982 W. H. Freeman
Publishers. New York.

13. LaPointe, P.R., Iht. J. Rock Mech,, Min. Sci. & Geomech. Abstr. . 25, 421, (1988).

14. Heffer, K. J. and T. G.. Bevan, fracture length scaling (1990).

15. Roach, D.E., A. D. Fowler and W. K. Fyson, Geology. 21, 759, (1993).

16. Roach, D. E. and A. D. Fowler, Computers & Geosci. 19, 849, (1993).

17. Maloy, K. J,, A. Hansen, E. L. Hinrichsen and S. Roux, Phys. Rev. Lett. 213,

(1992).

20

Appendix A: Program Listing: 2d_frac.pas

(Pascal Source,* 670 lines)

PROGRAM td_frac2; {--- Program declaration ---}
USES crt,graph; {--- Libraries that will be used ---}

TYPE
ruler=array[1..2,1..8192] of integer;
one_d_array=array[1..1600] of real;

VAR {—- Variables are explained as encountered ---}
1,
il,

GO R

o
;

[P I S I
Pl

GEerAr™e Q0”3

nl,
needed,
Magnif,
step,

t compiled and developed using Borland - Turbo Pascal Version 7.0 under DOS 6.22 on a 486DX2-66
with 16MB of memory. The fracture network figures were produced with Afathematica ver. 2.2.1 running

under Hindows 3.11.

21

u,

y_step,

One_d_Generations,
One_d_Generations2,
Two_d_Generations: integer;
L :ruler;
temp,

xfl,

xf2,

X,

<y,

sX,

Sy,

Ix,

ly,

Lf,

s3,

s4,

Yy,

sl,

s2,

yl,

y2,

y3,

Lacunarity,

Lacunarity?2,

Fractal Dim,

Fractal_Dim2,

f_lenth ‘real;
Lfx1,

Lfx2,

Lfyl :one_d_array,
x1,

x2,

Fractures,

Resolution,

Gnumber,

Covered :string[6];
datafile,

datafile2,

datafile3 ;text;
writel string[1];
write :boolean;

22

FUNCTION N(d:integer):integer, {--—- This function gives the distribution of the
horizontal fractures---}
BEGIN
N:=Round(Lacunarity*Exp((Fractal_Dim-1)*In(d)))
END;

FUNCTION N2(d:integer):integer. {--- This function gives the distribution of the
vertical fractures—)

BEGIN
N2:=Round(Lacunarity2*Exp((Fractal_Dim2-1)*In(d)));
END;
PROCEDURE initialize; {-—— [nitialize graphics screen and scaling
parameters ---}
BEGIN

clrscr;randomize;G:=0,G2:=0;
Magnif =3;count_f:=0;
cl:=detect;c2:=0;initgraph(cl,c2,'c:\tp\BGT');
setbkcolor(3);
SetFillStyle(EmptyfFill,0);
nl:=8; writel:='0";write:=false;
cx:=100;cy:=100*(getmaxy/getmaxx),
sx:=50;{getmaxx/nl;}sy:=0.8*getmaxy/nl;
settextjustify(centertext,centertext);
outtextxy(trunc(getmaxx/2),10,"2-D Fractures'),
delay(1000);

END;

PROCEDURE display_initial_frac_data; {--- Display various parameters on-screen ---}
BEGIN
k:=0;
fori:=1to R do
begin
if L{f,i}=1 then k:=k+1;
end;
setcolor(4);
outtextxy(Trunc(0. 1 *getmaxx), Trunc(0.95*getmaxy), Rulers ='),
outtextxy(Trunc(0.14*getmaxx+22), Trunc(0.98*getmaxy),'Starting Fractures = =");
outtextxy(Trunc(0.14*getmaxx+13),Trunc(0.92*getmaxy), Initial Covering =');
str(R,Resolution);
str(k,Fractures);
setcolor(15);
outtextxy(Trunc(0.175*getmaxx), Trunc(0.95*getmaxy),Resolution);
outtextxy(Trunc(0.315*getmaxx), Trunc(0.98*getmaxy+0),Fractures);
str(Ri,Resolution);

23

outtextxy(Trunc(0.295*getmaxx), Trunc(0.92*getmaxy),Resolution);
END;

PROCEDURE generation_parity; {-- Determine if G is odd or even --}
BEGIN
if (G/2-trunc(g/2)) >0 then
begin
e=1;
f:=2;
end;
if (G/2-trunc(g/2)) =0 then
begin
e=2;
f=1;
end;
END;

PROCEDURE display 1d_fractures; {--- Display Fract. along y at a previous Gen. ----}
BEGIN
ly:=0.7*getmaxy/R,
for i:=0 to R-1 do
begin
if (i/2-trunc(i/2)) >0 then setcolor(9);
if (1/2-trunc(i/2)) =0 then setcolor(12);
line(trunc(sx),trunc(cy+ly*i),
trunc(sx),trunc(cy+ly*(i+0.95))),
if (L{e,i+1]=1) then
begin
putpixel(trunc(sx),trunc(cy+ly*i+ly/2),15);
end;
end;
END;

PROCEDURE display 1d_fractures2; {--- Display Fract. along y at the final Gen. ----}
BEGIN
ly:=0.7*getmaxy/(2*R);
for i:=0 to 2*R-1 do
begin .
if (/2-trunc(i/2)) >0 then setcolor(9);
if (1/2-trunc(i/2)) =0 then setcolor(12);
line(trunc(sx),trunc(cy+ly*i),
trunc(sx),trunc(cy+ly*(i+0.95)));
if (L[fi+1]=]) then
begin -
putpixel(trunc(sx),trunc(cy+ly*i+ly/2),15),

24

end;
end;
END;

PROCEDURE display_1d_fractures3; {-- Thzs backs up to R 2 and shows Lfe,i] --}
BEGIN
ly:=0.7*getmaxy/(R/2),
for i:=0 to trunc(R/2)-1 do
begin
if (V2-trunc(i/2)) >0 then setcolor(13);
if (/2-trunc(i/2)) =0 then setcolor(4);
line(trunc(sx-15),trunc(cy+ly*i),
trunc(sx-15),trunc(cy+ly*(i+0.95)));
if (L[e,i+1]=1) then
begin
© putpixel(trunc(sx-1 5) trunc(cy+ly*i+ly/2),15),
end,
end;
END;

PROCEDURE display_1d_fractures4; {--- Show fractures by pixel at each Gen. ---}
BEGIN :
ly:=0.7*getmaxy/(R);
for j:=0 to R-1 do
begin :
if (3/2-trunc(j/2)) >0 then setcolor(9),
if (j/2-trunc(j/2)) =0 then setcolor(12);
line(trunc(sx+(G2-1)*Step*Magnif),trunc(cy+ly*j),
trunc(sx+(G2-1)*Step*Magnif), trunc(cy+ly*(|+0 95)));
if (L[f,j+1]=1) then
begin
putpixel(trunc(sx+(G2-1)*Step*Magnif),trunc(cy+ly*j+ly/2),15);
end,;
end,
END; -
PROCEDURE display_fractures_yl; {--- Show fractures at a previous stage ---}
BEGIN
Ix:=Abs(Lfx2[i2]-Lfx1[i2])/(R2);
for i1:=0 to R2-1 do
begin
if (11/2-trunc(i11/2)) >0 then setcolor(1);
if (11/2-trunc(i1/2)) =0 then setcolor(1);
line(trunc(sx+(Lfx1[i2]+Ix*i1)*Magnif+3) trunc(Lfy1[i2]),
trunc(sx+(Lfx1[i2]+Ix*(i11+0.95))*Magnif+3),trunc(Lfy1[i2]));
if L[e,il1+1]=1 then

begin
putpixel(trunc(sx+(Lfx1[i2]+Ix*i1+1x/2)*Magnif+3), trunc(Lfy1[i2]),15);
end;
end,
END;

PROCEDURE display_fractures_y2;
BEGIN
Ix:=Abs(Lfx2[i2]-Lfx1[i2])/(2*R2),
for i1:=0 to 2*R2-1 do
begin . ,
if (11/2-trunc(i1/2)) >0 then setcolor(1),
if (11/2-trunc(i1/2)) =0 then setcolor(1);
line(trunc(sx+(Lfx1[i2}+Ix*i1)*Magnif+3) trunc(Lfy1[i2]),
trunc(sx+(Lfx1[i2]+Ix*(i1+0.95))*Magnif+3),trunc(Lfy 1 [i2]));
if L[f,11+1]=1 then
begin .
putpixel(trunc(sx+(Lfx 1[i2]+Ix*i1+Ix/2)*Magnif+3), trunc(Lfy1[i2]),15);
end;
end;
END;

PROCEDURE display_frac_extensions;
BEGIN :
ly:=0.7*getmaxy/R; {--This gives the ruler lengths in the y-direc. ----}
if g2=1 then {--Create datafile fract_I.dat ---}
begin
assign(datafile,'c:\tp\files\FRACT _1. DAT'),
rewrite(datafile);
end;
Bar(trunc(sx+490),trunc(cy), trunc(getmaxx),trunc(cy+340)); {--- Erase old data
Jfrom the screen ---}
fori:=0 to R-1 do
begin
if (L[f,i+1]=1) then
begin
count_fi=count_f+1;
str((g2-1),Gnumber);
Lfy1[i+1]:=cy+ly*i+ly/2;
writeln(datafile, Lfx1[i+1]:3:2," ' Lfx2[i+1]:3:2,' " Lfy1{i+1]:3:2); {-—write to
Sract_l.dat ---}
setcolor(1);
line(trunc(sx+Lfx1[i+1]*Magnif+3),trunc(Lfy1{i+1]), {-- display the fractures
on screen —-} _
trunc(sx+Lfx2[i+1]*Magnif+3),trunc(Lfy1[i+1]));

26

setcolor(8);
if (G2-1)>0 then {--- Draw the gridlines on the screen ---}
line(trunc(sx+(G2-1)*Step*Magnif), trunc(cy),
trunc(sx+(G2-1)*Step*Magnif), trunc(cy+ly*(R-1)+ly/2));
if Step>=10 then {--- Print the grid values on the screen ---}
begin)
setcolor(8);
str((g2-1)*step,Gnumber);
outtextxy(trunc(sx+(G2-1)*Step*Magnif+0),trunc(cy-20), Gnumber);
str((g2-1),Gnumber);
outtextxy(trunc(sx+(G2-1)*Step*Magnif+0),trunc(cy+345),Gnumber),
end;
end,
end;
END;

PROCEDURE generate_1d_fractures; {--- 1-d Algorithm - Generates Vertical
Slices along x--}
BEGIN
fori:=1 toRdo {-- Divide Measuring Scale and Bring down Fractures --}
begin
if L[e,i]=1 then {- If fractures are present, add fractures below -}
begin
forj=1to 1 do
begin
s:=random(2)+1,
if s=1 then
begin
L[f2*i-1]:=1,
L{f,2*i] =0;
end;
if s=2 then
begin
L[f.2*i-1]:=0;
L{f.2*i] =1,
end;
end;
end
else {-- If no fractures are present, add spaces ----}
begin
L[f,2*i-1]:=0;
L{f,2*i] =0,
end;
end,

27

for i:=1 to (N(2*R)-N(R)) do {~----- Add fractures according to distributution ----}
begin
repeat
s:=random(R)+1;
until (L{e,s]=1) and not ((L[f,2*s-1]=1) and (L[f.2*s]}=1));
if L[f,2*s-1]=1 then L[f,2*s]:=1 else L[f,2*s-1]:=1;
end;
END;
PROCEDURE generate_1d_fractures2;
BEGIN
forii=1 to R2do {-- Divide Measuring Scale and Bring down Fractures --}
begin ‘
if L[e,i]=1 then {-- If fractures are present, add fractures below -}
begin
forj=1to 1 do
begin
s:=random(2)+1;
if s=1 then
begin
L{f2*i-1]-=1;
L[f,2*i] :=0;
end;
if s=2 then
begin
L[f.2*i-1]:=0;
L{f2*] =1,
end;
end,
end
else {- If no fractures are present, add spaces -—-}
begin
L{f,2*i-1]:=0;
L{f,2*1] :=0;
end;
end,

fori:=1 to (N2(2*R2)-N2(R2)) do {-—---- Add fractures ----}
begin
repeat
s:=random(R2)+1;
until (L[e,s]=1) and not ((L[f,2*s-1]=1) and (L[f,2*s]=1));
if L[f,2*s-1]=1 then L[f,2*s]).:=1 else L[f,2*s-1]}:=1;
end,
END;

28

PROCEDURE Assign_Fracture_Lengths; {—- Assign lengths to horizontal fractures---}
BEGIN
if G2=1 then {---- Assign initial lengths to fractures —-}
begin ~
fori:=1 toRdo
begin
if L[f,i]=1 then
begin
s3:=(random(100)+1)/100;
LE=Exp((2/3)*Ln((Exp(1.5*Ln(100))-Exp(1.5*Ln(2)))*s3));
s4:=(random(100)+1)/100;

Lfx1[i]:=0;
Lfx2[i];=s4*Lf,
end;
end;
end;
END,;
PROCEDURE Count_Ended_Fractures; {~—- count horizontal fractures that have
ended—}
BEGIN
fori:=1 to Rdo {-—-- If a fracture has ended, count it --- }
begin
if (L[f,i]=1) and (Lfx2[i]<(G2-1)*Step) then
begin
needed:=needed+1;
L[fi}:=0;
Lix1[i}:=(G2-1)*Step;
Lfx2[i]:=0;
end;
end;
END;

PROCEDURE Display_Grid_info; {—- display grid values on screen---}
BEGIN
str(needed, Gnumber);outtextxy(trunc(sx+(G2-2)* Step*Magnif+7),trunc(cy-
40),Gnumber);
setcolor(15);outtextxy(trunc(22),trunc(cy-40),'Need:');
outtextxy(trunc(22),trunc(cy-20),'Grid:");
. END; |

PROCEDURE Add_needed_fractures; {---add horizontal fractures that have ended ---}
BEGIN
for i:=1 to needed do
begin

29

repeat v
Bar(trunc(sx-45),trunc(cy-10),
trunc(sx-20),trunc(cy+335));
s:=random(round(R/2))+1;
str(s,resolution);setcolor(14); _
outtextxy(trunc(sx-30), Trunc(cy-17+ly*2*s).resolution);
until (L{e,s]=1) and not ((L[f,2*s-1]=1) and (L[f.2*s]=1));
if L[f,2*s-1]=1 then
begin
L[f,2*s]:=1;
Lfx1[2*s]:=(G2-1)*Step;
end
else
begin
L[f2*s-1]:=1;
Lfx1[2*s-1]:=(G2-1)*Step;
end;
display 1d_fractures4; {--- show the new fracture positions as they are added ---}
end;
END;

PROCEDURE Assign New_Fracture_Lengths; {-— Assign lengths to new fractures ---}
BEGIN
fori:=1toR do
begin
if (L[f,i]=1) and (Lfx1{i]=(G2-1)*Step) then
begin
s3:=(random(100)+1)/100;
Lf=Exp((2/3)*Ln((Exp(1.5*Ln(100))-Exp(1.5*Ln(2)))*s3));
s4:=(random(100)+1)/100;
Lfx2[1]:=(G2-1)*Step + s4*Lf,
end;
end;
END;

PROCEDURE generate_horizontal_fractures; {~-- procedure for generating horiz.
fracture set ---}
BEGIN
needed:=0; {--- Initialize this variable for the next generation ---}
if G2=1 then {-—-Assign fracture lengths for the initial generation ---}
Assign_Fracture_Lengths;

display_frac_extensions;
display_1d_fractures4;

if G2>1 then
begin

Count_Ended_Fractures,

Display_Grid_info;

display_1d_fractures3;

display_1d_fractures4,

if needed>0 then

begin :

Add_needed_fractures; ,
Assign_New_Fracture_Lengths;

end; S
end;
END;
PROCEDURE generate_initial_fracture_set;;
BEGIN
fori:=1 to Ri do {--- Set the first Level Fractures --}
begin
L[1,i]:=1;
end;
G:=0;
repeat {--- start 1-d fracture generation ------ -}
G:=G+1;. . {~--- G Counts the Generations -------- -}
generation_parity; {-—is G odd or even ? wweeeeeceecaeca-2}
generate_1d_fractures, {---- Algorithm —-------------}

display_1d_fractures;
display_1d_fractures2;
R:=2*R; {-- double the scale resolution --}
until G=One_d_Generations; {--- end of /-d loop --}
END;
PROCEDURE Eliminate_redundant_fractures;,
BEGIN
reset(datafile);
m:=0;
while not Eof{datafile) do {~-- Read in values and count how many from fract_1.dat--
-} :
- begin
m:=m+l;
readin(datafile, Lfx1[m],Lfx2{m],Lfy1[m]);
end;
close(datafile);
fori:=1 tomdo
begin
if Lfy1[i]<>(-1) then
begin

for ;=1 tomdo
begin
if (i<>j) and ((LfxI[i]J=Lfx1[j]) and (Lfx2[i]=Lfx2[j]) and (L& 1{i]=LEy1[j])
then : '
Lfyl[j}:=-1;
end;
end:;
end,
Assign(datafile,'c:\tp\files\FRACT_2.DAT"), {---Create file of unique fractures---}
Rewrite(datafile);
for i:=]1 to m do
begin
if Lfy 1[i]<>(-1) then
begin
writeln(datafile Lfx1{1]:3:2," "|Lfy1[i]):3:2,'",
Lfx2[i]:3:2, Lfy1{i]:3:2):
end,;
end;
close(datafile);
END;

PROCEDURE Generate_Fractures_Along_Fractures; {-- assign fractures along horiz.
Jfractures--}
BEGIN
R2:=Ri2;
fori:=1toR do {--- Set the first Level Fractures --}
L[1,i]:=1,
G:=0;
repeat
G:=G+1;
generation_parity;
generate_1d_fractures2;
display_fractures_yl;
display_fractures_y2;
R2:=2*R2;
until G=One_d_Generations2;
END;

32

PROCEDURE Switch(Var a,b:Real); {--- This is used in the sorting procedure ---}
Var
c:real;
BEGIN
c:=a,
a:=b;
b:=c;
END;

PROCEDURE Sort_fractures;, - {--- sor! the fractures to assign vertical fractures to next
one below ---}
Var
i3,i4:integer;
BEGIN
fori3:=2toudo
begin
for i4:=u DownTo i3 do
begin
if (Lfy1[i4-1]>Lfy1[i4]) then
begin
Switch(Lfy1[i4], Lfy1[i4-1]);
Switch(Lfx1[i4] , Lfx1[i4-1]);
Switch(Lfx2[i4] , Lfx2[i4-1]);
end,
end;
end;
END;

PROCEDURE Choose_The_Next_Fracture_Below; {--- Go through sorted list --}
VAR
i5:integer;
BEGIN
i5:=0;
repeat
i5:=15+1;
until (Lfy1{i5]>y1) and (xf1>=Lfx1[i5]) and (xf1<=L£x2[i5});
y2:=Lfy1[iS};
END;

PROCEDURE Read_Fract_2_Data;
VAR
i5:integer;
BEGIN
15:=0;

33

reset(datafile); {—-- datafile is Frac 2.dat ----}
while not Eof{datafile) do
begin
i5:=15+1;
readIn(datafile Lfx1[i5].Lfy1[iS],Lfx2[iS].Lf1[i5]);
end;
u:=is;
close(datafile);
END;

PROCEDURE Assign_Lengths_to_Fracts_Along_Fracts; {— generate and display
vertical fractures --} A
BEGIN '
fori:=0 to R2-1do {-— Assign lengths to fractures ---}
begin
if L[f,i+1]=1 then
begin
yl:=Lfyl[i2];
Ix:=Abs(Lfx2[i2]}-Lfx1[i2])/(R2);
xfl:=Lfx1[i2]+Ix*i+lx/2;
xf2:=Lfx2[i2]+Ix*i+Ix/2;
Sort_Fractures;
Choose_The_Next_Fracture_Below;
setcolor(1);
Read_Fract_2 Data;
if (y2>=0) and (y2<=500) then
begin
Line(Trunc(sx+(xf1)*Magnif+3), Trunc(y1),
Trunc(sx+(xf1)*Magnif+3), Trunc(y2));
Append(datafile3); -
writeln(datafile3,xf1:3:2,' 'y1:3:2,"",
xf1:3:2,'"y2:3:2);
close(datafile3);
end
else y2:=yl;
end,
end;
END,

PROCEDURE write_program_parameters_to_file; {~—- make a datafile of the
parameters used ---}
BEGIN
Assign(datafile3,'c:\tp\files\fr_text.dat');
- Rewrite(datafile3);
writeln(datafile3,Lacunarity:3:2,' ' Lacunarity2:3:2,' ',

34

Fractal_Dim:3:2,'' Fractal_Dim2:3:2,"",
Step,' ',One_d_Generations,' ',One_d_Generations2);
close(datafile3);
END;

35

BEGIN {--—--- The Program starts here and executes the procedures-------- -}
initialize;

write_program_parameters_to_file;
generate_initial_fracture_set;

display_initial_frac_data; {--— displays initial program info ------}

G2:=0; {-— initialize G2 —-}
REPEAT {----- Start 2-d fracture generation ------}
G2:=G2+1; :

generate_horizontal_fractures;
UNTIL G2=Two_d_Generations;

close(datafile); {--- Datafile is Frac l.dat, containing the endpoints of the horizontal
Sractures ---}

Eliminate_redundant_fractur €S, {--Remove duplicate fractures from frac_I.dat and save as frac_2.dar -
2} :

Read_Fract_2 Data; {---Reintialize variables with unique fracture values ---}

Assign(dataﬁle3,'c:\tp\ﬁles\fract_3.dat'); {—- Create the datafile: fract 3.dat to store vertical

Sfractures ---}

Rewrite(datafile3);
close(datafile3);

fori2:=1 toudo {--- w is the total number of horizonal fractures ---)
begin
if Abs(fo2[12]-fo 1 [12])>=20 then {- start vertical fractures only along horizon. fractures with length 2

20 umts -}
begin
Generate_Fractures_Along_Fractures;
Assign_Lengths_to_Fracts_Along_Fracts;
end;
end;

setcolor(14); .

outtextxy(trunc(0.8*getmaxx),20,'Done."); {--- Print a message that the program is
Sfinished ---}

readin; {--- wait until a key is pressed ---}

closegraph; {--- exit from graphics mode ---}
END. {------- Program ends here ---—---—--—- -}

