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Abstract

Belief networks are a powerful tool for knowledge discovery that provide concise, under-
standable probabilistic models of data. There are methods grounded in probability theory to
incrementally update the relationships described by the belief network when new information
is seen, to perform complex inferences over any set of variables in the data, to incorporate
domain expertise and prior knowledge into the model, and to automatically learn the model
from data. This paper concentrates on part of the belief network induction problem, that of
learning the quantitative structure (the conditional probabilities), given the qualitative struc-
ture. In particular, the current practice of rote learning the probabilities in belief networks can
be significantly improved upon. We advance the idea of applying any learning algorithm to
the task of conditional probability learning in belief networks, discuss potential benefits, and
show results of applying neural networks and other algorithms to a medium sized car insurance
belief network. The results demonstrate from 10 to 100% improvements in model error rates
over the current approaches.
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1 Introduction

Belief networks have been accepted as a tool for knowledge discovery in databases for
several years now, and have been a growing focus of machine learning research for the past
decade. Several uses have been demonstrated in the literature in domains as distinct as
document retrieval, medical diagnosis, and telecommunications (D’Ambrosio, 1994; Ezawa
and Norton, 1995; Park et al., 1995). A common need across all of these application domains
is for robust, flexible and powerful methods for the automatic induction of belief networks.
Along with the obvious savings in time and effort, well-constructed automated techniques
often’lead to improved models, and can help data analysts develop deeper insight into the
processes hidden in the data by making it easier to experiment with new ideas.

The main goal of this paper is to influence the current pattern of thought on the effective
induction of belief network probabilities. This paper advocates the application of standard
machine learning techniques to this problem together with, or in place of, the rote learning
techniques that are most common today. We do not address the task of learning the structure
of the network.

The conditional probability table (CPT) of a node (variable) in a belief network stores
the probabilistic relation between that variable and its parents as a table of conditional
probabilities. There is one CPT per node in the network. Inducing the CPTs is a learning
problem. Each is a potentially unique function from the parent variables to the child, and
thus should be open to a wide range of learning techniques. The current approach in most all
cases is to learn the conditional probability tables with a simple statistical counting method
(“bookkeeping”) that can be likened to the rote learning done by chess and checkers programs
back in the 60’s (Samuel, 1963). The bookkeeping approach is seductive because it is the
easiest method to implement, is very understandable, and leads to Dirichlet distributions.
Dirichlets have nice theoretical properties that can lead to effective measurements of accuracy
during inference (Musick, 1993). However, the power and flexibility of being able to apply
any machine learning technique to CPT learning has advantages that can not be ignored.
The following is a brief argument for incorporating machine learning techniques into the
statistically oriented techniques that are currently in force. The rest of the paper backs
these arguments up with results of an implementation of these concepts.

e Unsupervised Generalization: Generalization is the heart of the ability to learn and
discover new knowledge. It can be argued that most machine learning algorithms generalize
-by assuming the existence of certain dependencies in the data and generalizing based
on those. On the other hand, most statistical techniques (certainly bookkeeping) tend
to assume independence in the data (unless specifically stated with a distribution or a
correlation matrix), and so do not generalize unless instructed to. The successes in both
fields make it clear that each approach has its place in modeling data.

e Sparse Data: Sparse training data is an unavoidable condition in CPT learning. The
size of a CPT is the number of unique parent instantiations (columns) times the number
of child values (rows.. see Table 1), and in a practical application can be immense. The
situation is aggravated by the fact that the training data will not be evenly distributed
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throughout a table. What often happens is that a small fraction of the columns in a table
will together have a very high probability, and thus take in the bulk of the data. The set
of low probability columns rarely see relevant data. The implication is that to “cover”
a table with training data, the number of samples already likely to be needed must be
multiplied by the inverse of the probability of the lowest probability parent instantiation.
Bookkeeping further compounds the problem by requiring a significant amount of data
supplied to each column in a CPT in order to produce viable estimates. Machine learning
algorithms generalize across the data and often produce excellent results under sparse data
conditions.

o Flexibility: Each CPT is a different learning problem, with unique characteristics. We
can take advantage of the uniqueness by applying the algorithm that best fits the learning
task. For tables where a linear relationship is expected between child and parent variables,
apply linear regression. When the CPT is moderate sized and well covered by data,
apply bookkeeping. When the data is sparse or the relation between child and parents is
unknown, apply neural nets or decision trees. This ability to tailor the choice of algorithm
to match problem characteristics can make a substantial difference in overall performance.

¢ Problem Reduction: In terms of the complexity of the learning task, the bookkeeping
algorithm has a much more difficult job than other approaches. For example, if all variables
have 5 values, and node X; has four parents, then the CPT for X; has 3125 cells or 625
columns for bookkeeping to learn. A effective neural network applied to the same problem
(with a construction similar to what we use in Sections 2.2 and 3) need only learn 76
parameters.

The paper continues in Section 2 with a description of the algorithms that have been
implemented and applied to the CPT learning problem. Section 3 explains the experimental
methodology, and discusses the results of the implementation including comparisons between
bookkeeping and other learning alternatives. Section 4 wraps up with a brief conclusion.

2 Methods Used for Learning CPTs

This section describes the bookkeeping (BOOK), neural network (NN), and combination
(COMB) algorithms that we have applied to the CPT learning phase of inducing a belief
network from training data. We assume that the structure of the belief network is given.
Formal details are kept to a minimum in this section; the interested reader can find in-
depth descriptions of how these methods and others can be constructed and applied to CPT
learning in (Musick, 1994).

2.1 Bookkeeping

Bookkeeping is a simple matter of counting the training samples that are relevant to each
cell in the CPT. Assuming uninformative priors and sampling without replacement, the
application of standard statistical inference methodology leads to the conclusion that the
counts of relevant samples are actually the parameters that describe a beta distribution for
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Figure 1: A Smoker Belief Net

This is a belief net showing a simplistic relation between smoking, bronchitis and having parents that smoke.

each cell! of the CPT. A beta distribution §(a,b) is similar in shape to a normal that is a
bit skewed, and has a mean of 3.

Table 1 contains the CPTs for the belief network in Figure 1, and depicts what happens
on a bookkeeping update. The CPTs on the left are the original tables with a uniform
prior, the CPTs on the right show what happens after updating for one example of Parents
smoke = 0, Smoker = 1 and Disease = bronchitis. Each bullet shows where the sample
“hits” in each particular table. When the sample hits a cell in the table, the a parameter
is incremented, and the rest of the cells in that column have their b parameter incremented.
Consider the Pr(D/S) table, in particular the probability that a patient has bronchitis given
that he smokes (this cell was “hit” by the sample). This probability starts at a prior of 1 /3,
and after the sample increases to 1/2, while the probability of Disease = halitosis starts at
1/3 and drops to 1/4. Thus for bookkeeping each complete sample is relevant to an entire
column in every CPT. Note also that bookkeeping makes a strong independence assumption;
a sample relevant to one column in a CPT is independent of any other column in that CPT.

2.2 Neural Networks

The job of the neural network is to produce a density function for each column of the CPT,
without any predetermined requirements on the family of functions that could be discovered.
Figure 2 is a graphical example of applying neural networks to learn three of the tables in
the Dog Out problem (Charniak, 1991). Let T; be the CPT for node X;, and m;; be a unique
parent instantiation for the node. The general process for learning a CPT with NN is for
each T;:

1. Retrieve from the database the instances that are relevant to T;.
2. Construct a neural network N N7, and initialize it.

3. Train N Nr. on the samples, where the value of the variable X; serves as the classification
of each datum. )

10r more generally, a Dirichlet for each column of the table.
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Table 1: Updating the CPTs
This shows the process of updating from the original CPTs on the left to the new CPTs on the right, after seeing a sample of
P=0,S=1,D=b.

4. Apply input combination 7;; to the neural network and read off the distribution for the
CPT column Pr(X;|II;) from the output units.

5. Normalize the output and write the values into the CPT for the belief network.
6. Repeat steps 4 and 5 for all input combinations m;; through .

The network used for the results described below is a 3-layer feed forward network con-
structed to learn density functions, and incorporates ideas of momentum and adaptive pa-
rameters. A network can be built for any combination of input/output variables, including
nodes with binary, discrete, continuous, and nominal values. Details of the construction and
mapping into CPT learning can be found in (Musick, 1994). Note that while bookkeeping
provides a distribution for each cell in the CPT, neural networks in general will only provide
a point probability.

It should be made clear that this paper is not trying to promote this particular neural
network construction as the best for the problem of CPT learning. In fact, we do not make
that claim for any of the algorithms proposed here. Our claim is that effective CPT learning
requires the ability to apply a wide range of learning techniques; this construction is used to
demonstrate that point.

2.3 COMB

COMB is probably the most interesting approach tested. COMB combines both BOOK
and NN learning approaches within one CPT. The combination is done by choosing to learn
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Flgure 2: Applying Neural Nets to Dog Out

The belief network on the right is for the Dog Out problem, with variables FO = Family Out, BP = dog has Bowel Problems,
LO = outside Lights Out, DO = the Dog is Outside, and HB = you can Hear the dog Barking. The neural network on the left
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shows the structure of the networks in the belief network CPTs, and also happens to be the size of a network applied to the
same problem. The goal is to predict whether or not the dog is outside, based on whether the outside lights are on, if the dog

is barking, and so on.

data-rich columns with BOOK and the data-poor columns with NN. Specifically, columns
with 20 samples or less are learned with NN, columns with more are learned with BOOK.
Results are combined on a column by column basis instead of cell by cell since any one
sample is relevant to exactly one column. The improvement in the overall model error rate
- with COMB is impressive.

3 Results and Comparisons
This section describes the results of an implementation of the above ideas.
3.1 Experimental Methodology

The belief network used in this paper is a realistic, moderately sized car insurance network
(Russell et al., 1995) with 27 binary, discrete, nominal, and continuous nodes, 52 arcs and
over 1400 conditional probabilities. The goal is to help predict how much financial risk is
incurred from various policy holders given data about age, socio-economic class, and so on.
Keep in mind that in high volume industries like insurance or finance, a 1% improvement in
risk assessment could be quite valuable.

We need an objective measure of model error rates as a basis from which to compare
the different approaches. To enable this, the training data has been generated in a very
particular way. Figure 3 is taken to be “The” belief network Bs that represents the actual
process occurring in the real world. This network is then used to generate a large database
(typically on the order of one hundred thousand samples) which is used as the data seen
by BOOK, NN, and COMB. The induced belief network Bp has the same structure as Bs,
but the CPTs are constructed using a random sample from the large database. The learned
belief net Bp is then compared to “The” belief net Bs for model evaluation.

Two methods are used to score the models, the mean error, and the weighted error. The
mean error is the square root of the mean squared error between the predicted probability
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F1gure 3: Car Insurance Database

This is the model of an insurance database, it includes binary, nominal, discrete and continuous variables.

and the correct probability from all cells-in all of the CPTs. The weighted error is the same
thing, but with each error weighted by the probability of that related event occurring. Note
that one implication of the mean error scoring system is that a data-rich column counts
the same as a data-poor column. The mean error metric makes sense in domains where the
data-poor columns of the CPT are valuable but scarse data points (for example, drug testing
in the medical domain, where the cost of each sample might be a human life). The weighted
error metric is more useful when the cost of an error is the same for high and low probability
columns.

Finally, all of the results that follow stem from running this process 10 times: generate a
random sample of the given size, pass the sample to three separate processes BOOK, NN
and COMB, learn the CPTs, then generate the error measurements.

3.2 Experiments

Figures 4 and 5 show the learning performance as the total number of samples is varied
from 50 to 1000. The learning curves in Figure 4 were built using the mean error metric,
the curves in Figure 5 using the weighted error metric.

The most obvious basic trend is that no matter which error metric is used, for low numbers
of samples NN significantly outperforms BOOK. In fact, based on other tests we have run
(more than five different belief nets, and different learning algorithms including decision
trees) it is fair to say that when the data is sparse relative to the size of the overall learning
task, the more traditional machine learning algorithms like neural nets and decision trees
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Figure 4: Car Insurance Database, Mean Error Metric
The results of applying NN, BOOK and COMB to the car insurance database as the sample size is increased to 1000 samples.
This graph uses the mean error metric. BOOK is the topmost curve, COMB the bottommost.
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Figure 5: Car Insurance Database, Weighted Probability Metric
The results of applying NN, BOOK and COMB to the car insurance database as the sample size is increased to 1000 samples.
This graph uses the weighted error metric. The BOOK curve starts high and ends in the middle.
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Figure 6: Error As A Function Of Samples Per Column
The results of applying NN and BOOK to the car insurance database on 100 samples.

significantly outperform BOOK.

The second noticeable aspect of these figures is that there seems to be very different
stories being told by the two error metrics. The mean error metric shows NN doubling the
performance of BOOK all the way out to 1000 samples and more, while the weighted error
metric shows BOOK beginning to outperform NN at about 350 samples. The explanation of
this is that the low-probability columns (data-poor columns) in all the CPTs far outnumber
the medium and high probability columns. BOOK is expected to perform very well for CPT
cells and columns for which there is alot of data, and it is exactly these columns that the
weighted error metric is weighting more heavily.

The most interesting feature is that the new algorithm, COMB, consistently outperforms
both NN and BOOK. COMB uses NN to learn low-probability columns, and BOOK to learn
high probability columns. Even with the weighted error metric on the largest sample (1000
instances), the contribution from NN on the data-poor columns in COMB leads to more
than a 10% improvement over the BOOK error rate.

In order to get a better feeling for where and how the improvements are taking place,
we clustered columns in the CPTs according to the relative sparseness of the training data.
Based on this, Figure 6 should be interpreted as follows: The X axis represents the columns
in the CPTs that have seen < 10 samples, 10 to 20 samples, and so on, up to the last point
on the axis which represents all of the rest of the columns, all of which are data-rich. The
Y axis is the mean error over those clusters. The general expectation is for high error on
the data-poor columns to the left, and low error on the data-rich columns to the right. The
error metric used for this graph is mean error.

What we see from this graph is that for the CPT columns with relatively little data (less



than 50 samples per column), NN outperforms BOOK at all points along the curve.

4 Conclusion

We tested have several other belief networks and learning algorithms in addition to what is
described here, and the results can all be boiled down to the same general conclusions. The
nature of the CPT learning problem is that even in the face of massive data sets, data will be
sparse for large CPTs. Bookkeeping requires large amounts of data in order to be effective.
Machine learning oriented algorithms tend to be more accurate under sparse data conditions.
Finally, the ability to freely tailor any learning algorithm to match the unique characteristics
of each CPT has the potential to dramatically improve the predictive performance of any
belief network model.

References

(Charniak, 1991) E. Charniak. Bayesian networks without tears. AI Magazine, 12(4):50-63,
- 1991.

(D’Ambrosio, 1994) B. D’Ambrosio. Symbolic probabilistic inference in large bn2o0 networks.
In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages
128-135, 1994.

(Ezawa and Norton, 1995) K. Ezawa and S. Norton. Knowledge discovery in telecommuni-
cation services data using bayesian networks. In Proceedings of the First International
Conference on Knowledge Discovery and Data Mining, pages 100-105, 1995.

(Musick, 1993) R. Musick. Maintaining inference distributions in belief nets. In Proceedings
of the Ninth Conference on Uncertainty in Artificial Intelligence, 1993.

(Musick, 1994) R. Musick. Belief Network Induction. PhD thesis, UCB Tech Report CSD-
95-863. University of California, Berkeley, Berkeley, CA, 1994.

(Park et al., 1995) Y. Park, Y. Han, and K. Choi. Automatic thesaurus construction using
bayesian networks. In Proceedings of the Fourth International Conference on Information
and Knowledge Management, pages 212-217. ACM Press, 1995.

(Russell et al., 1995) S. J. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning
in probabilistic networks with hidden variables. In Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence, Montreal, Canada, 1995. Morgan
Kaufmann Publishers.

(Samuel, 1963) A. Samuel. Some studies in machine learning using the game of checkers. In
E. A. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-Hill, New
York, 1963.

*This work was performed under the auspi
S ' pices of the U.S. Depart
by Lawrence Livermore National Laboratory under contract N(F)). wT%s?Eng?Zggy

9



Technical Information Department - Lawrence Livermore National Laboratory
University of California - Livermore, California 94551

Recycled
Recyclable




