SANQYE -11Hoc

CONF-960%9-- 5

Risk Management - What About Software?

Sharon K. Fletcher, Ph.D.; Sandia National Laboratories, Albuquerq?‘g }MYIC

mailing address: E’ VE @

S. K. Fletcher JUN g 3 1336
MS0449 “ N as
Sandia National Laboratories S S%Tl
Albuquerque, NM 87185-0449

email:
skfletc@sandia.gov

phone: (505)844-2251
fax: (505)844-9641

This work was performed at Sandia National Laboratories, which is operated by
Lockheed-Martin Corporation for the U.S. Department of Energy under contract DE-
AC04-94-A1.85000.

DISCLAIMER

This report was prepared as an account.of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

' mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT 1§ UNLMFED _

* MASTER

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

(&!‘.&—Q‘k‘ Pp\]oar *Cor z‘;eer re i@y 3

XXx-2

Risk Management - What About Software?

(author)

Abstract

Risks in software systems arise from many directions. There are risks that the
software is faulty, that the system may be attacked, that safety hazards exist, that the
system may be inoperable or untimely, that an abnormal event may cause
unexpected actions, etc. Risk analysis tools should support and document risk-
mitigation decisions, and facilitate.understanding of residual risks. These tools must
be based on a sound theory of risk, which does not exist today. Probabilistic risk
assessment techniques apply to physically-based systems where failure modes and
event dependence are fairly well understood. But they cannot be blindly applied to
software systems, which do not share these characteristics. Moreover, we need to
meld many diverse aspects of risk for software systems. This presentation will
explore some thought-provoking ideas about modeling, problem spaces, solution
approaches, math, decision friendly output, and the role of risk analysis in the
software lifecycle.

Introduction

Risk management is a well established concept in many fields, but software is not
one of them. Software risk management is very much in its infancy, and needs some
direction in order to evolve into a usable science. Most will agree that software is a
unique kind of animal. Its uniquenesses have important implications for developing
risk analysis and decision support tools.

Adopting a Viewpoint and Defining Risk

In a software system, risk can have many disparate sources - faults, errors, hazards,
abnormal events, unexpected environments, attacks, untimeliness, unavailability, the
system development process, operational procedures, maintenance, etc. Within the
software community, separate interest groups have formed to address some of these
risks, although not all have thought of their jobs as risk management. These include
security, safety, dependability, and development processes. Within each of these
areas, there are even more specialized interests, such as multi-level-security,
communications security, asset protection, hazops, first principles, fault tolerance,
database integrity, process maturity, testing, and configuration management. The
words “risk management” conjure up very different ideas within these different
interest groups.

II Software’s fivst uniqueness is that theve is no obvious corvect viewpoint!l

Any single focus from the above list is clearly inadequate. Choosing a viewpoint on
the problem is critically important, for the problem viewpoint restricts the solutions
that one is able to see. Perhaps the most basic and encompassing viewpaint to take
is that of correct system operation, achievable through an appropriate balance of
all other concerns. This viewpoint can span the entire lifecycle, including the
processes used for development, operation, and maintenance. It can also span all
aspects of the system that might contribute to risk, such as its architecture,
functions, information, interfaces, and environment. The “risks” to be managed can
be described in terms of failure to achieve and maintain the appropriate balance of
concerns, or “surety objectives”, for correct system operation.

Risk = the possibility of not maintaining a suvety objective II

What has been said so far for software systems could be said for any system. But
one of the unique things about software is the strong interdependence of surety
objectives. At the high level, it is easy to see that safety requires dependability,
security impacts availability, and these things would be true for any system. What
seems to be especially troublesome in software is the degree to which these
objectives become all mixed up and inseparable in a single implementation of a
system. There is heavy interaction among risk mitigators; that is, measures applied
to one objective will frequently impact others as well. Communications security is a
boon for data integrity, but a problem for timeliness and availability. Theoretically, a
fail-over design provides fault tolerance which improves correctness, but by its very
complexity may actually have the opposite effect. Access controls protect system
integrity, but may impede access to critical data in a crisis. A server architecture
enhances integrity by avoiding duplicated data, but may introduce a single point of
failure. The tradeoffs seem endless. And traceability is tough. Software, perhaps
more than any other domain, suffers from inseparability of surety objectives.

“ Software’s second uniqueness is insepavability of suvety objectives 'I

Understanding the Needs of the Software Community

Risk management and decision support tools for the software community must help
the system developer to identify, document, and balance risk mitigation over all
surety objectives. Each of these is explored in more detail below.

The first need is to identify risks. Any methodology for identifying risks in software
systems should encompass all surety objectives, cover the entire lifecycle, and
include operational dynamics. There are partial methodologies in use today which
emphasize one or another surety objective, and usually only one portion of the
system lifecycle. For example, a security risk analysis for operating system selection
based on confidentiality levels of data and users, a software development risk
analysis yielding process improvements for quality-schedule-budget, a safety risk
analysis yielding system design decisions (typically starting with a clean sheet of
paper for each safety risk to be considered, and not dealing with the interactions), a
disaster recovery risk analysis yielding operational contingency plans, a transaction-
oriented risk analysis emphasizing checkpoint-and-restart design to maintain data
integrity, and a physical security risk analysis emphasizing protection of assets.

The thought of covering all these bases in a single risk analysis is daunting, but it
can be made manageable with good tools and iterative refinement. The practical
cost of not doing so is heavy and often the downfall of entire projects. By not
considering and prioritizing the full breadth of risks, developers waste resources
addressing the wrong problems while the unrecognized real problems doom the
system or project to failure. It is human nature to solve what we know how to solve,
measure what we know how to measure, and build what we’ve built before, whether
or not it is what we need now.

The second need is to document risks and their mitigation. Documentation forms the
basis for certification and accreditation decisions. Even so, the rationale for surety
approaches is typically not well recorded. Risk mitigation often involves a
combination of technology and process, and a very strong technological solution can
be undermined by lax procedures. Additionally, it is important to understand original
intents so they are not violated by future changes. This brings out another important
and unique characteristic of software: maintenance means change. The heavy
interaction of risks and mitigators in software systems, discussed above, can give
rise to vulnerabilities if some mitigator is replaced without recognizing that it also
had a secondary role in mitigating other risks.

" Software’s thivd uniqueness is that maintenance means chunge'l

The third need is to balance risks. Balancing happens in several contexts. When
surety objectives compete, mitigating risk in one raises risk in the other, so a
balance must be found in which both are mitigated to an acceptable level. When
mitigating a single risk involves many mechanisms in many parts of the system,
balance means avoiding the strong door-weak window syndrome. Sometimes
balance means selecting the best mix of technology and procedure, or physical and
software controls. Balance can also mean cost/benefit considerations.

Theories of Risks

Probabilistic risk assessment (PRA) is a well established field, whose approaches
are routinely applied to critical systems applications such as nuclear reactors. PRA
consists of a suite of methodologies, using trees, graphs, tables, or block diagrams
to explore causes and effects. Once a system under study is modeled with a tree or
other construct, the model can be “solved” with the mathematics of probabilities.

A drawback to block diagrams is that they tend to adopt one narrow view of the
system, such as physical layout or process flow. Software’s first uniqueness tells us
this will not do. A drawback to table-based approaches is that they tend not to deal
with interactions across components or events, which is equivalent to assuming total
independence. Software’s second uniqueness tells us this will not do. In the tree
and graph techniques, risk quantification is based on conditional probabilities of
combinations and series of events leading up to undesirable events. The
mathematics used to combine probabilities assumes simple (ands and ors)
interactions of events, and probabilities that do not vary over time. PRA is typically
applied to assessing component failures in systems where these assumptions (this
“theory of risk’) hold. Software is not one of them.

However, the thought processes that go into probabilistic risk assessments are
generally applicable to software. We can use them if we're careful not to blindly
apply inappropriate mathematics and not to pull probabilities from the air with no
basis. In fact, what may be needed is different “solution” methods for existing PRA
approaches, i.e., a different “theory of risk” for software. But before we decide, we
should also consider that the software field gives us several more ways of looking at
things: data flow, control flow, state machines, Petri nets, Markov models, etc. And
we should consider Nancy Leveson’s admonition that software exhibits neither
unorganized complexity nor organized simplicity, but rather organized complexity.
This is a very important observation, for it tells us why we can never hope to analyze
software systems with probabilities, nor with analytic reduction.

Il Software’s fourth uniqueness is organized complexityl

A Theory of Risk for Software Systems

Graph techniques are a good match for representing many things about software, as
evidenced by the list in the previous paragraph. And a fairly recent innovation in the
PRA arena, a graph technique called the Influence Diagram, is gaining popularity for
its flexibility. Graphs also have visual appeal over trees because they eliminate
redundancy and can give one the system-at-a-glance, especially when they are
developed hierarchically via iterative refinement.

So, we select the graph. Now, what should the nodes and edges represent? The
focus of correct system operation by maintaining surety objectives, suggests that
paths through the graph could be system risk states that culminate in the negation of
some surety objective. So, nodes will be risk states, and edges will represent
transitions between states. Depending on the system at hand, the surety objectives
of interest, and the analyst's inclination, the graph might resemble process or
information flow, or a physical layout, but generally we wouldn't expect it to.
Typically, it will be more abstract, depicting events or states of the system in its
broadest context. Recalling that the user wants to identify, document, mitigate, and
balance risks, we should add a capability to insert mitigators, which would block or
lessen the possibility of state transitions. The analyst will want to experiment with
alternative mitigators at various points along a path, and with layering them (stacking
them up serially), and with tradeoffs to find acceptable balance. Figure 1 depicts a
general graph with mitigators. In the figure, tables accompany each mitigator and
accompany a threat which is being introduced into the graph. These tables
represent characteristics of threats and mitigators that the analyst can assess to
evaluate their relative strengths. For simplicity, this figure depicts mitigators on
paths between states, but more generally mitigators should be thought of as
standing off the paths and influencing multiple paths. This concept, which we
borrowed from Influence Diagrams, is what allows capture of the interactions
discussed earlier.

threat »

@ system state

) transition mitigator

characteristics & metrics

Figure 1. System Risk Graph

The picture is nice, and can stand on its own as a comprehensive and
comprehensible qualitative risk assessment. But we are not yet to a theory of risk.
The theory of risk is the function, the mathematics or logic, the calculations to be
made over the graph to measure the risk reduction that can be achieved and the
remaining residual risk. It is the model of how risk states, threats, and mitigators
interact to push us towards or keep us from hitting the undesirable states. It
includes the scales on which we measure these things, too. Here is where we must
throw out the traditional PRA “solution methods.” Instead, we seek a mathematical
model that works for organized complexity, for things measured on different scales,
and for data with wildly varying uncertainties.

We would be foolish to put precise mathematics to this today. As the field develops,
data will be more certain and more precision will emerge; future developers will need
to pay close attention to how uncertainties figure into calculations and to error
accumulation in computations. Today, we should seek to only slightly quantify the
qualitative assessment, perhaps with scales like L-M-H or 1-to-5. The interactions of
threats, mitigators, and states might be “computed” via logic or decision tables,
rather than formulas. The next step might be to investigate some of the newer
branches of mathematics that take into account various sources of uncertainty -

randomness, conflicting evidence, confusion, lack of information, etc. These
mathematics include possibilistic, fuzzy, evidential, and Dempster-Scheaffer.
:g::g Composition
Surety Obj Information | Transaction |Architecture | State Chng | Interfaces
Access ecavesdropping | spoofing epasswords eabnormal event | esoftware &
C | oA, C. failure eauthent. failure | exposedonnet | eaccess by repair | system policies
ontro s|acks features personnel mismatched
sunauthorized erepudiation *DBMS lacks sincomplete esincomplete input
Intearit modification s subversion integrity checks | updates dueto | ebad source
niegrity suntrained users | maintenance
einappropriate eoverload ssingle p.o.f. enatural disaster | epower
T access control | etimingdesign | ecommunications | esabotage interruption
Avallab'hty » {00 slow fault sabotage ¢in maintenance
eunauth, modific. | eunplanned emultiple copies | eshutdown- soutput
Utilit e accidental environment on servers out startup not misinterpreted
ity modification of synch synchronized
eincorrectdata | eout of tolerance | enctafail-safe | einappropriate sunchecked input
einsufficient design responss to
Safety information abnormal event

Figure 2. Software System Risk Matrix

Conclusions

The “theory of risk” development above is not applicable solely to software. It
applies to any system that is characterized by organized complexity. In fact,
software is always part of a larger system, and the boundaries of analysis can be set
inside or outside the software portion. We have customized this approach to
software by defining software-relevant surety objectives, and by identifying views of
software systems that are conducive to identifying risk we are concerned with. This
results in two axes of a matrix, shown in Figure 2. We carry out risk identification in
the matrix, then map the results to the graphical form and insert the mitigators. Our
analysis from that point is manual and very roughly quantitative, of the L-M-H sort.
The primary benefits we have derived are: we think much more broadly about risks
than we otherwise would, the graph documents our decisions about mitigators,
interactions of mitigators are depicted, we can what-if to our hearts’ content, and in
the end we must consciously accept the residual risk laid out before us..

Biography

References

1. Leveson, Nancy, Safeware: System Safety and Computers, Addison Wesley,
1995.

2. Wyss, Gregory D, et. al,, “Toward a Risk Based Approach to the Assessment of
the Surety of Information Systems”

3. Lim, J. J., et. al,, “Can Information Surety be Assessed with High Confidence?”

4. (math book)

