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ABSTRACT

Neutron imaging systems are important diagnostic tools for characterizing the physics of inertial confinement fusion reactions at the National
Ignition Facility (NIF). In particular, neutron images give diagnostic information on the size, symmetry, and shape of the fusion hot spot and
surrounding cold fuel. Images are formed via collection of neutron flux from the source using a system of aperture arrays and scintillator-based
detectors. Currently, reconstruction of fusion source geometry from the collected neutron images is accomplished by solving a compu-
tationally intensive maximum likelihood estimation problem via expectation maximization. In contrast, it is often useful to have simple
representations of the overall source geometry that can be computed quickly. In this work, we develop convolutional neural networks (CNNs)
to reconstruct the outer contours of simple source geometries. We compare the performance of the CNN for penumbral and pinhole data and
provide experimental demonstrations of our methods on both non-noisy and noisy data.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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I. INTRODUCTION

Recently, the National Ignition Facility (NIF) at the Lawrence
Livermore National Laboratory successfully attained thermonuclear
ignition, a milestone supported significantly by an array of diagnos-
tics.! Critical among these tools is the neutron imaging system (NIS),
which is instrumental in analyzing the fusion reaction’s geome-
try.” The fusion source images reconstructed by using this system
provide essential details about the fusion hot spot’s size, symme-
try, and shape, as well as the surrounding cold fuel. These images
have been indispensable for inertial confinement fusion (ICF)
research, including groundbreaking experiments that have led to
ignition.

The NIS uses a solid gold array consisting of large circular
and semi-circular penumbra, as well as small triangular pinholes, as
shown in Fig. 1(a). The penumbra is used primarily for pointing,
while the pinholes are used for finer shape reconstruction details.

Neutrons in the 14 MeV range are ejected from the implosion hot
spot and pass through the array to a scintillator-based detection
system to generate a neutron aperture image.” Due to the long mean-
interaction length of neutrons, the aperture array is elongated to
~20 cm, as shown in Fig. 1(b), to ensure only neutrons that have
passed through the penumbra or pinholes are detected.

The NIS reconstructs source geometries from the neutron aper-
ture image via an iterative Bayesian approach.’ A key component of
this reconstruction is finding an elliptical contour that approximates
the overall shape of the source. In addition to giving important infor-
mation about the overall size and shape, the elliptical contour aids in
determining source location within the field of view, as well as diag-
nosing the quality of the full pixel-by-pixel reconstruction. In this
paper, we develop an approach using deep neural networks (DNNs)
to predict the elliptical contour. In particular, we train a convolu-
tional neural network (CNN) to predict the major and minor axes
size of the ellipse from a neutron aperture image.
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FIG. 1. (a) Front-face view of the NIS-3 aperture. This array contains 3 semi-circular penumbra and 72 triangular apertures. The apertures within the green boxes were used

in this study. (b) Depth-wise view of the NIS-3 aperture.

CNNs have transformed the realm of image processing, show-
casing their capability to learn from extensive datasets.” Unlike
traditional image processing methods that depend on manually
crafted features—restricting their adaptability and increasing the
time humans must invest—CNNs demand less time from analysts
and in certain cases can be more accurate. Furthermore, they often
require less computation time when making predictions compared
to other algorithms. For more information on comparison between
CNN s and hand-crafted image processing techniques, see Refs. 6-8.

We show that CNNs can create fast and accurate approx-
imations of these elliptical contours. CNNs consist of a set of
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convolution filters that determine spatially relevant features within
an image. These features are then passed into a feedforward neural
network for prediction. See the work by Goodfellow et al.” for a more
detailed introduction to CNNs.

Il. SOURCE RECONSTRUCTION

In an ICF experiment, the NIS diagnostic generates an aperture
image as shown in Fig. 2(a). To create an image of the fusion source
as shown in Fig. 2(b), a suite of iterative Bayesian inference algo-
rithms processes the aperture image. The source is reconstructed

10"
35

Image Plane Source Plane

(©)

FIG. 2. (a) Example of a neutron aperture image, /, produced by aperture array for line-of-sight NIS-1. (b) Example of a reconstructed circular source distribution S with radius
25 um. Color intensity represents neutrons per pixel. (c) Coordinate system notation (not to scale). Figures in panels (a) and (c) are reproduced with permission from Volegov
et al., Rev. Sci. Instrum. 85, 023508 (2014). Copyright 2014 AIP Publishing LLC and Rev. Sci. Instrum. 85, 123506 (2014). Copyright 2014 AIP Publishing LLC.
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over three nearly orthogonal lines of sight, enabling the observation
of the source from multiple perspectives.

Considering a source denoted as S and an aperture point spread
function represented by K, the aperture image I, captured by the
detector, is expressed as

Na
I(u) = ZI: /VK,v(u —p;+d,v—q,)S(v)dv. (1)

In this formula, N, signifies the total count of apertures, d represents
the scintillator’s center, and p, along with q, denote the coordinates
of aperture 7’s central axis on the detector and source planes, respec-
tively. The vectors u and v designate positions within the detector
and source planes, respectively [refer to Fig. 2(c)].

In addition to a full reconstruction, it is often useful to cre-
ate a simpler reconstruction that gives general shape characteristics
for the source. For this purpose, we create simple elliptical recon-
structions that approximate the shape of the outer contour of the
source. An example of an outer contour is shown by the white
circle in Fig. 2(b). These elliptical reconstructions serve several pur-
poses. First, the elliptical reconstruction is computationally cheaper
than the full reconstruction and allows for a quick look at the
source shape. Second, the elliptical reconstruction can be used to
diagnose and confirm the accuracy of the full reconstruction by
comparing general shape characteristics. Third, the elliptical recon-
struction is used in improving and understanding the metrology of
the apertures.'’

lll. EXPERIMENTAL RESULTS
A. Dataset and preprocessing

Our objective is to employ a CNN to predict an elliptical source
contour from the neutron aperture image. For this purpose, we

ARTICLE pubs.aip.org/aip/rsi

create a dataset consisting of aperture images as the input to the
model and the corresponding source contours as the output. A CNN
typically requires thousands of data points to train effectively. How-
ever, only a few hundred data points are available from experiments
conducted at the NIF. Therefore, we use synthetic data generated via
the forward model'' formulated in Eq. (1). This approach involves
specifying the source’s location and shape and then simulating its
projection through the aperture array to produce an aperture image.
For each simulation, we obtain a data point consisting of the aper-
ture image and the major and minor axes parameters specifying the
elliptical contour.

In general, the information provided to the reconstruction
algorithm is affected by both aperture type and its pointing loca-
tion. In order to compare the performance for various types of
apertures, we create two separate datasets with different types of
aperture projections. The first dataset consists of images with cir-
cular penumbra apertures only, as shown in Fig. 3(a). The second
dataset consists of images with penumbra and triangular pinholes,
as shown in Fig. 3(b). The penumbra often has much higher neu-
tron counts per pixel due to its wide field-of-view and thus is much
brighter in the image compared to the pinholes. For the penum-
bra models, we generate aperture images consisting of all three
penumbras. For the pinhole and penumbra models, we generate all
three penumbras, as well as a selection of 12 pinhole apertures. The
12 pinholes are chosen based on their pointing location in the source
plane field-of-view. For the best performance, the selection of pin-
holes should cover as much of the field-of-view as possible. The
pointing of the selected pinholes and penumbra is shown in Fig. 4.
We see here that the selected pinholes cover a large portion of the
field of view. In general, each additional pinhole typically allows for
more accurate reconstructions by covering more of the field-of-view
at the cost of additional computation time to generate the data.

We generated 10201 data points for both the penumbra-only
models, as well as the penumbra and pinhole models. We generate
source ellipse sizes in 1 ym increments between 25 and 125 ym in
both the horizontal and vertical direction. This results in a variety of

(a)

(b)

FIG. 3. Neutron aperture images for line-of-sight NIS3 generated via the forward model equation (1). (a) Only penumbra apertures are projected; (b) penumbra and a subset

of 12 pinholes are projected. The number labels correspond to the labels in Fig. 4.
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FIG. 4. Pointing location of each selected pinhole and penumbra in the source
plane field-of-view for the NIS-3 line of sight at the NIF. The numbers correspond
to the apertures labeled in Fig. 3(b).

sources to train and test our model, including circular, prolate, and
oblate sources, as well as small and large sources.

Our data undergo several preprocessing steps before being
used. First, the size of the aperture images is decreased from 1000
x 1000 pixels to 400 x 400 pixels, eliminating extraneous space and
reducing the computational demands for both training and infer-
ence phases. Following this size reduction, we normalize the data
using the following equation:

lizu @)
o

Here, I; represents the ith aperture image in our collection, with
¢ and o denoting the mean and standard deviation of all pixels across
the training dataset. Considering that pixels in neutron images cor-
respond to neutron counts, often numbering in the thousands, direct
input of these images into the CNN leads to parameter explosion and
training instability. Normalization adjusts the overall distribution of
the training dataset to a mean of 0 and a standard deviation of 1, thus
scaling pixel values down to a narrower range while preserving their
distribution.

We center the images on the brightest pixel in the central
penumbra and create nine additional versions of each image by
applying random shifts up to 10 ym. As a result, for each aperture
image, we have the original centered image along with nine altered
versions. This approach enhances the model’s ability to make accu-
rate predictions even when the apertures are slightly shifted within
the image.

After preprocessing, the resulting dataset contains 100 201 data
points. We allocate 80% of this dataset for training purposes and
the remaining 20% for testing. We also ensure that any given data
point and its shifted variants are all contained within the same subset
(training or testing).

ARTICLE pubs.aip.org/aip/rsi

B. Model and training parameters

For these experiments, we trained a CNN with 4 convolution
layers with a 5 x 5 convolution filter size and 40 output channels. We
apply a 2 x 2 max pooling on the output of each convolution layer.
The outputs of the final convolution layer are fed into a feedforward
neural network with a single hidden layer, which contains 64 nodes.
The hidden layer output is fed into a final layer with two nodes. The
first node predicts the horizontal axis size of the source ellipse shape,
while the second node predicts the vertical axis size. The output of
each convolution and hidden layer is fed through ReLU activations.
We use a training batch size of 8 and trained the model for a single
epoch with the ADAM optimizer'’ using a learning rate of 0.1.

We use the mean squared error loss function,

L= (X - %), 3)

=
agt

1

where n is the number of training data points, X; are the ellipse
parameters predicted by the CNN, and X; are the ground truth
ellipse parameters. In our experiments, we measure error using the
Euclidean distance between the ground truth and predicted ellipse
shapes. We built our CNN models using the PyTorch'’ framework.

C. Performance over various shapes

We show the results of a model trained on penumbra aper-
tures only in Fig. 5. This heatmap shows the error of the model for
various source shapes, with brighter colors indicating larger error.
We see that the model only performs well for circular contours.
As the contour becomes more prolate or oblate, the model error
increases. Thus, these results indicate that the penumbra alone is
not sufficient for determining overall source shape, especially for
non-circular contours.

NIS3/CNXI3_SA Euclidean error (um)
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40
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> 80
o 30
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10

40

40 60 80 100 120
shape size x (um)

FIG. 5. Performance for CNN trained with penumbra only—heatmap shows error
for various shapes and sizes of implosion. In general, the model only performs well
for circular sources.
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FIG. 6. Performance for CNN trained with penumbra and pinholes—heatmap
shows error for various shapes and sizes of implosion. The model trained with
pinholes significantly outperforms penumbra-only model and can accurately pre-
dict elliptical sources. It should be noted the color scale differs from Fig. 5 to more
clearly show the differential in performance over source sizes.

The results for the model trained on penumbra and pinholes
are shown in Fig. 6. We see that the performance greatly improves
over the penumbra-only model. The overall error has gone down
and additionally the model performs well for prolate and oblate
sources. We can see that for most sources, the error is less than
6 ym. Thus, when pinholes are included, the CNN offers an accurate
prediction for the elliptical contour. In addition, CNNs take only
seconds to make predictions, resulting in a fast and accurate contour
reconstruction.

D. Performance on noisy data

The previous experiments assumed a noise-free setting. How-
ever, noise present in experiments at the NIF can adversely affect
the integrity of the aperture images, potentially leading to inaccura-
cies in CNN predictions. To ensure the robustness of our models,
it is crucial that they maintain high performance in the presence
of noise. The types of noise that typically impact the neutron
imaging system are best characterized by Gaussian or Poisson dis-
tributions.!’ Figure 7 shows how CNN accuracy is affected as noise
levels increase. In particular, in Fig. 7(a), Gaussian noise with a zero
mean is introduced, and we observe the model’s average error across
50 validation set samples as the standard deviation varies. Similarly,
Fig. 7(b) shows the impact of applying a Poisson noise distribu-
tion with varying mean event numbers. The CNN shows stable
performance over low levels of noise under both noise models. In
addition, the model is more robust to Poisson noise compared to
Gaussian noise. However, as the noise level increases, we see a sharp
degradation in the CNN performance.

ARTICLE pubs.aip.org/aip/rsi
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FIG. 7. Performance of a CNN trained with pinholes and penumbra for varying
noise levels. (a) Gaussian noise is added; (b) Poisson noise is added. The perfor-
mance is strong for small levels of noise. It should be noted that noise is applied
to the normalized images whose pixel values lie heavily in a range between
—1and1.

In order to compare the noise levels to real NIF conditions,
we compute the signal-to-noise ratio (SNR) over the aperture image
datasets using the following equation:

1Y
SNRuvg = NZ %; (4)
i=1 Oi

where N is the number of aperture images in the dataset, 4, is the
mean of aperture image i, and o; is the standard deviation of image
i. As shown in the work by Saavedra et al.,'"* the SNR of a typical
NIF experiment is 1.636. We require that the CNN perform well
at or below this SNR level. The SNR values associated with vari-
ous levels of noise are plotted along the top x-axis of I'ig. 7. We see
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that the CNN does indeed perform well under expected NIF noise
conditions.

IV. CONCLUSION

In this paper, we have shown that neural networks can accu-
rately model the outer contour of an ICF source using elliptical
approximations. In particular, we show that convolutional neural
networks (CNNs) can predict these shapes using an entirely data-
driven approach, i.e., with no physical knowledge of the source or
aperture geometry. We also show that model accuracy is greatly
improved by including pinholes in the aperture image.

There are several possibilities for future work. Currently, the
CNN does not outperform traditional techniques in terms of accu-
racy. One possible improvement is to include additional pinholes
as well as increase the amount of training data. In addition, this
work used only a single CNN for prediction. However, we may
obtain more accurate and robust predictions using an ensemble of
models. We may also improve the performance of the model in
noisy environments by incorporating noise into the training data.
Finally, this work showed the feasibility of predicting source geome-
try characteristics using machine learning. We can further apply the
methodology derived in this paper to predict more complex con-
tours, e.g., non-elliptical contours that more accurately describe the
source geometry.
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