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1 Introduction

The Euler equations are a subset of the magnetohydrodynamic (MHD) equations in the infinitely
collisional, unmagnetized limit. MHD modeling is central to many areas of plasma physics, ranging
from low-temperature glow discharges to inertial confinement fusion. An important aspect of the
Euler equations is their ability to describe states with discontinuities, such as shock waves. A
standard benchmark test for numerical implementation of the Euler equations is the Sod shock
tube [6]. In this test, the system is initialized at rest with a pressure and density discontinuity,
which results in a shock wave traveling into the low-pressure region and a rarefaction wave traveling
into the high-pressure region. Starting with the presentation of the Euler equations, a numerical
algorithm is presented here to solve these equations in one dimension. This is followed by an
overview of the Sod shock tube problem that includes the precise initial setup and the analytic
solution. Finally, the analytic solution is compared with results from numerical simulations.

2 Governing Equations

In the inviscid, unmagnetized limits, the ideal MHD equations reduce to the well-known Euler
equations, which are conservation laws for mass, momentum, and energy and are a prototypical
example of a hyperbolic system. In one-dimension, the Euler equations can be written as

∂w

∂t
+

∂F(w)

∂x
= 0, (1)

where the solution vector w and the flux F(w) are defined, respectively, as

w =

 ρ
ρu
E

 , and F(w) =

 ρu
ρu2 + P
(E + P )u

 . (2)

Here, ρ is the mass density, u is the fluid velocity, and E = ρu2/2+P/ (γ − 1) is the energy density
with P the fluid pressure and γ the adiabatic coefficient. For an ideal atomic gas, γ = 5/3. For

1



an ideal diatomic gas, which has additional degrees of freedom associated with vibrational and
rotational states, γ = 7/5 = 1.4.

The eigenvalues of the flux Jacobian ∂F/∂w are λ = [u± Cs, u], where Cs ≡
√

γP/ρ is the adia-
batic sound speed. These eigenvalues, along with their corresponding eigenvectors, are fundamental
to understanding solutions of the Euler equations in terms of Riemann invariants associated with
characteristic families. In layman’s terms, there exist certain scalar quantities that are constant
along trajectories governed by dx/dt = λ.

3 Numerical algorithm

The numerical algorithm used to solve Eqs. 1-2 is described in this subsection. The equations
are discretized with uniform spacing on a 1D grid (see Fig. 1). The flux divergence operator is
computed using a second-order finite-volume method. The discrete state vector lives at cell centers:
wi+1/2 =

[
ρi+1/2,mi+1/2, Ei+1/2

]
. The discrete fluxes are computed at cell interfaces. Starting with

the state variables at some time tn, the second-order predictor-correct method used to advance the
variables to time tn+1 is

Stage 1 : w
n+1/2
i+1/2 = wn

i+1/2 −
∆t

2

Fn
i+1 − Fn

i

∆x
, (3)

Stage 2 : wn+1
i+1/2 = wn

i+1/2 −∆t
F

n+1/2
i+1 − F

n+1/2
i

∆x
. (4)

Here, ∆x = xi+1 − xi is the uniform grid spacing and ∆t is the time step, which doesn’t necessarily
have to be uniform from step to step but is uniform for each stage of a given step. The finite-
volume method is preferred over finite-difference methods for hyperbolic conservation laws because
it conserves discrete definitions of the conserved variables to machine precision. This is because
whatever fluxes out of one cell in a time step is equal to that fluxed into the neighboring cell.

i-1 i i+1 i+2

x

i+3/2i+1/2i-1/2

state variables live at cell centers

fluxes computed at cell interfaces

Figure 1: One dimensional finite volume grid.

The most complicated part of the algorithm is how to compute the fluxes at the cell interface.
The simplest approach is to compute the fluxes point-wise at cell center using the cell-centered
state variables and then interpolate these fluxes to cell interfaces using a second-order centered
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interpolation. However, such an approach is known to result in spurious non-monotonic behavior of
the variables for a simple 1D convection problem. The solution to the 1D convection problem is to
use an upwind scheme where the flux at cell interfaces is computed using state variables upstream
of the direction of the flow. Upwind methods also work for the Euler equations, but one must
properly respect the characteristics of the nonlinear flux when formulating the stencil.

Here, we use the Lax-Friedrich flux-splitting approach [8, 5]. The first step in this method is to
write the state vector as w = (wR +wL) /2, where

wR,L = w± F

λmax

, (5)

and λmax = |u|+Cs is the maximum eigenvalue of the flux Jacobian, which is also referred to as the
flux-freezing speed. Similarly, the hyperbolic conservation law is replaced with the following set of
advection equations:

∂wR

∂t
+

∂FR

∂x
= 0, with FR = λmaxwR = F+ λmaxw, (6)

∂wL

∂t
+

∂FL

∂x
= 0, with FL = −λmaxwL = F− λmaxw. (7)

What this method essentially does is to decompose the state into left and right moving waves,
for which it is then straight-forward to solve numerically using standard upwinding schemes. One
difference between this scheme and the more sophisticated Godunov or Roe methods is that all
characteristics are upwinded using the maximum eigenvalue, which adds extra numerical diffusion
into the system. However, this scheme has advantages in that it is simpler to implement and it also
avoids entropy-violating solutions [5]. The discrete versions of Eqs. 6-7 are identical to the form
given in Eqs. 3-4. Numerical stability of this explicit scheme demands that ∆t < ∆x/λmax.

The analysis above where the state variable and fluxes are split is just a formality to understand
how to properly compute the fluxes. In practice, the discrete stencil for w is exactly as given in
Eqs. 3-4 with the flux at cell interfaces computed as

Fi =
FR,i + FL,i

2
. (8)

Using first-order upwinding, the left and right-going fluxes at the cell interfaces are FR,i = FR,i−1/2

and FL,i = FL,i+1/2, and the total flux can be written explicitly in terms of cell-centered quantities
as

Fi =
Fi−1/2 + λmax,i−1/2wi−1/2 + Fi+1/2 − λmax,i+1/2wi+1/2

2
. (9)

First order upwinding is stable, but it is too diffusive. A flux limiter is introduced in the following
subsection that can be used to make the flux second order accurate away from regions of sharp
gradients, such as shocks. The scheme will still be first-order accurate in the vicinity of shocks,
which is a requirement for ensuring monotonic behavior of the solution [7].

3.1 Flux limiter

The analysis here closely follows that in Sec. 4.1 Total Variation Diminishing (TVD) Schemes in
Ref. [7]. The right and left going fluxes in Eq. 8 can be written as

FR,i = F
(0)
R,i +∆FR,i, and FL,i = F

(0)
L,i +∆FL,i, (10)

3



where F
(0)
R,i = FR,i−1/2 and F

(0)
L,i = FL,i+1/2 are the first-order upwind fluxes and ∆FR,i and ∆FL,i are

yet-to-be-defined corrections. We define two second-order flux corrections for right-moving waves:

∆FRL,i =
FR,i−1/2 − FR,i−3/2

2
, and ∆FRR,i =

FR,i+1/2 − FR,i−1/2

2
. (11)

The first expression here is the left correction to a right moving wave and the second is the right
correction to a right moving wave. Similarly, we can define two second-order flux corrections for
left-moving waves:

∆FLL,i = −
FL,i+1/2 − FL,i−1/2

2
, and ∆FLR,i = −

FL,i+3/2 − FL,i+1/2

2
. (12)

There are various formulas, known as limiters, that combine the flux corrections given in Eqs. 11-
12 to formulate the final second-order flux corrections. We are only interested in a subset of second-
order limiter functions that maintain the TVD property of the algorithm. The simplest TVD limiter
is the minmod limiter where the smallest magnitude value is chosen but is zero if the left and right
corrections have opposite sign. This can be expressed as

minmod: ϕ (a, b) =
1

2
[sign (a) + sign (b)]min (|a|, |b|) . (13)

The final expressions for the left and right going fluxes given in Eq. 10 are

FR,i = F
(0)
R,i + ϕ (∆FRL,i,∆FRR,i) , and FL,i = F

(0)
L,i + ϕ (∆FLL,i,∆FLR,i) , (14)

with ϕ (a, b) defined in Eq. 13.

4 Sod shock tube problem

The Sod shock tube problem [6] is a Riemann problem for the Euler equations. The Riemann
problem is an initial value problem for hyperbolic equations where a piecewise constant initial state
has a single discontinuity. The initial state considered by Sod is described by

[ρ, u, P ] =

{
[1, 0, 1] , if x < x0,

[0.125, 0, 0.1] , if x > x0.
(15)

The initial profiles for x < x0 are referred to below as [ρL, uL, PL] and those for x > x0 are referred
to as [ρR, uR, PR]. The adiabatic invariant used for the Sod test is γ = 1.4. The solution to this
problem for t > 0 can be obtained analytically. The initial state and the analytic solution at t = 0.2
are shown in Fig. 2. The corresponding phase-space diagram of the different characteristics curves
that originate from x0 at t = 0 are shown in Fig. 3.

By examining the density profiles in Fig. 2, it is seen that the initial state evolves into five distinct
regions. The unperturbed regions far to the left and right of the initial discontinuity are referred to
as Region I and Region V, respectively. As the system evolves from its initial state, the high-pressure
region flows into the low-pressure region, resulting in a rarefaction wave propagating to the left and
a shock wave propagating to the right. In between these regions, there is a contact discontinuity
in the density associated with an entropy wave. This position separates the post-shocked gas from
Region V, which undergoes an entropy change, from pos-rarefaction gas originating from Region I
that has the same entropy as it did initially. Analytic solutions to each of these regions are given
in the following subsections.
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Figure 2: Initial state (dashed red curves) and analytic solution at t = 0.2 (solid black curves) for
the Sod shock tube problem. The adiabatic coefficient is γ = 1.4.

4.1 Region II: rarefaction fan

The rarefaction wave in Region II is the only region where the profiles are spatially non-uniform.
A rarefaction wave, also known as an expansion wave, is the result of mass leaving a high-pressure
region by flowing into a low-pressure region. Rarefaction waves belong to the characteristic family of
the Euler equations with the following Riemann invariants: s, R± = u±Cs/ (γ − 1), where s ≡ P/ργ

is the specific entropy. These invariants correspond to the eigenvalues u± Cs of the flux Jacobian,
which are associated with left and right moving waves, respectively. For a left-moving rarefaction
wave with homogeneous upstream conditions, the Riemann invariants associated with right-moving
characteristics originating upstream of the rarefaction fan (Region I) are constant everywhere, and
the solution in this region is self-similar such that the slopes of left-going characteristic curves
originating inside the expansion fan governed by dx/dt = u − Cs are constant (see Fig. 3 and
Appendix B). Thus, the equations governing the fluid quantities in Region II are

PII

ργII
=

PL

ργL
, uII +

2CII

γ − 1
=

2CL

γ − 1
,

x− x0

t
= uII − CII. (16)

This gives the following explicit formulas for the fluid quantities in Region II:

uII(x1 ≤ x ≤ x2) =
2

γ + 1

[
x− x0

t
+ CL

]
, (17)

ρII(x1 ≤ x ≤ x2) =

[
ργL
γPL

[
uII(x)−

x− x0

t

]2] 1
γ−1

, (18)

PII(x1 ≤ x ≤ x2) = ργII(x)
PL

ργL
. (19)

Setting uII(x1) = 0 in Eq. 17, the leading tip of the rarefaction wave that separates Region I and
Region II moves to the left with position given by

x1(t) = x0 − CLt. (20)
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Figure 3: Phase space diagram of characteristic curves for the Sod shock tube problem. Region
I is the high-pressure/high-density region to the left of the initial discontinuity. The left-going
rarefaction fan is in Region II. Region III is the post rarefaction gas. Region IV is the post-shock
gas. Region V is the low-pressure/low-density region to the right of the initial discontinuity.

It is readily seen that the expressions in Eqs. 17-19 agree with the values in Region I for x = x1.
The values must match the values in region III at x = x2. This gives the following equation for the
position at the right end of the rarefaction wave

x2(t) = x0 +

(
γ + 1

2
uIII − CL

)
t. (21)

x1(t) and x2(t) define the boundaries of the rarefaction expansion fan.
A relation that will be used below to close the system is the velocity at x2 in terms of the

pressure. Using Eqs. 17-19 evaluated at x2 given in Eq. 21, one obtains

uIII = uII (x2) =

√
(1−m4)P

1/γ
L

m4ρL

(
P

γ−1
2γ

L − P
γ−1
2γ

III

)
, (22)

where m2 ≡ (γ − 1) / (γ + 1) and we have used PII (x2) = PIII.

4.2 Region III: post-rarefaction region

Region III is the post-rarefaction region. This region is separated from the shock region by a contact
discontinuity in the density at position x3, which is also known as an entropy wave. Entropy waves
are associated with the eigenvalue λ = u and belong to the characteristic family of the Euler
equations with the following Riemann invariants: u, P . The velocity and pressure in this region
are the same as the post-shock values, but the entropy is different. The entropy is constant at all
positions to the left of x3, which have not experienced the entropy-producing shock. The values in
Region III are given by

uIII = uIV, PIII = PIV, ρIII = ρL

(
PIII

PL

)1/γ

. (23)
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The position of the contact discontinuity is given by

x3(t) = x0 + uIIIt. (24)

4.3 Region IV: post-shock region

Region IV is the post-shock region. Shock waves are discontinuous states that occur when a gas
moves at a speed greater than the local sound speed. The relationship between the states on either
side of a shock is governed by the Rankine-Hugoniot jump conditions, which are derived from the
conservation of mass, momentum, and energy in the frame moving with the shock speed us. The
shock front position and speed are given by

x4(t) = x0 + ust. (25)

us = uIV
ρIV

ρIV − ρR
. (26)

This relation for us comes directly from the conservation of mass in the frame moving with the
shock speed and using uR = 0. Post-shock values for the density and velocity can be expressed in
terms of the pressure on either side of the shock as

ρIV = ρR
PIV +m2PR

PR +m2PIV

, (27)

uIV = (PIV − PR)

√
1−m2

ρR (PIV +m2PR)
. (28)

The system of equations is closed, and all variables are determined in all regions by solving for
the pressure in Region III. This is done by equating the post-shock velocity in Region IV given
in Eq. 28 with the velocity at x2 given by Eq. 22 and using PIV = PIII, resulting in the following
nonlinear equation for PIII:√

(1−m4)P
1/γ
L

m4ρL

(
P

γ−1
2γ

L − P
γ−1
2γ

III

)
= (PIII − PR)

√
1−m2

ρR (PIII +m2PR)
. (29)

Equation 29 can be solved using a root finding method or a Newton method. For the parameters
of the Sod shock tube problem, the solution is PIII = 0.30310.

5 Simulation Results

Using the algorithm described in Sec. 3, results from numerical simulations of the Sod shock tube
problem are presented here. The algorithm is implemented in the COGENT framework [1, 3, 2].
The 1D grid ranges from x = 0 to x = 1 and Nx below denotes the number of grid points. Simulation
results at t = 0.2 are shown in Fig. 4 from a low-resolution simulation with Nx = 100 and a high-
resolution simulation with Nx = 1600. The low-resolution simulation results agree qualitatively
with the analytic solution. The high-resolution simulation agrees quantitatively with the analytic
solution.

The shock front separating regions IV and V is the most challenging one to resolve in the sod
shock tube problem. Fig. 5 shows convergence of the numerical solution near the shock front to the
analytic solution with increasing grid resolution.
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Figure 4: Numerical simulation results of the Sod shock tube problem at t = 0.2. The solid blue
curves are results from low-resolution (Nx = 100) simulations. The dashed green curves are results
from high-resolution (Nx = 1600) simulations. The initial state is shown by the dashed red curves
and the analytic solution at t = 0.2 is shown by the solid black curves.

A Euler Equations in Two Dimensions

The Euler equations in 2D are

∂w

∂t
+

∂F(w)

∂x
+

∂G(w)

∂y
= 0. (30)

where

w =


ρ
ρux

ρuy

E

 , F(w) =


ρux

ρu2
x + P

ρuyux

(E + P )ux

 , G(w) =


ρuy

ρuxuy

ρu2
y + P

(E + P )uy

 . (31)

The eigenvalues of the flux Jacobian ∂F/∂w are λ = [ux ± Cs, ux, ux]. The eigenvalues of the flux
Jacobian ∂G/∂w are λ = [uy ± Cs, uy, uy]. A commonly used flux freezing speed, which is computed
locally on the grid, for Lax flux splitting is |u|+ Cs [4, 7].

B Riemann Invariants for 1D Isentropic Flow

To better explain the solution in Region II, consider a 1D isentropic flow where the specific entropy
s = P/ργ is constant. The 1D Euler equations reduce to a two-variable system and can be written
in non-conservative form as [

ρ
u

]
t

+

[
u ρ
c2s
ρ

u

] [
ρ
u

]
x

=

[
0
0

]
. (32)
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Figure 5: Shock front resolution scan with grid spacing ∆x for the Sod shock tube problem.

The eigenvalues of this flux Jacobian are λ = u ± Cs. The left eigenvectors are L± = [±Cs/ρ, 1].
The Riemann invariants are given by

L± · dw = 0 ⇒ R± = u±
∫

Cs

ρ
dρ = u± 2Cs

γ − 1
= constant along

dx

dt
= u± Cs. (33)

With some effort, the original system given in Eq. 32 can be re-written as

∂R±

∂t
+ (u± Cs)

∂R±

∂x
= 0. (34)

Strictly speaking, R± are constant along characteristic curves with trajectories given by dx/dt =
ux ± Cs. However, since all right-going characteristics inside the expansion fan for the Sod shock
tube problem originate from the same uniform state on the left side of the initial discontinuity,
R+ is constant everywhere, not just along the associated characteristic curve, and the equation
for R+ is trivially satisfied. In this case, the equation for R− has self-similar solutions of the
form R−(x, t) = R− (x/t = u− Cs), which means that the associated characteristic curves have a
constant slope.
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