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Motivation

turbine stage

combustor
compressor

. TO,inlet y-1
compressor power ~  mc, —— (I ¥ —1)
Nc
Compressor power reduction as a function 0% 20% 30%
of diffuser total pressure drop
M=~9 21% ~11% ~4%
M=~7 24% ~16 % ~8%

Liu Z., Braun J., Paniagua G., Thermal Power Plant Upgrade via a Rotating Detonation Combustor and
Retrofitted Turbine with Optimized Endwalls, International Journal of Mechanical Sciences, 2020
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Objective

1. Assess the fluctuations (i), heat load (ii) and losses
(i) occurring within the coupled combustor and
downstream passage.

2. Analyze the influence of the downstream passage
(accelerating or diffusing) on the combustor
performance and isolated downstream passage
losses

3. determine a strategy to investigate diffusers at a
reduced computational cost for future optimization
of diffusing elements
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Outline

Methodology (solver description & validation)

|

3D unsteady analysis of the outlet profiles

|

Aerodynamic performance of the passage

|

Simulation of the isolated diffusing passage



Turbine Integrated High Pressure RDC (Purdue)

Oxidizer Inlet

Turbine stator
blades

K

Athmanathan V., Braun J., Ayers Z., Fisher J.M., Ayers Z., Fugger C., Roy S., Paniagua G., Meyer T., Detonation structure
evolution in an optically-accessible non-premixed H2-Air RDC using MHz rate imaging, AIAA Propulsion and Energy Forum




Modeling of the RDC

air inlet
Ptotals Ttotal

outlet: Pgtatic

fuel inlet: pPiotan Tiotal

CFD++ (Metacomp) as flow solver
Unsteady Reynolds Averaged Navier-
Stokes

Mesh ~ 40 million structured grid

Y+, max~1

One-step reaction mechanism (H,-air)
Ensure periodicity & convergence

0.05 Ppsaic[MPa] 5 500 TIK] 4000




CED vs Experiment

MHz imaging flow

——

3D URANS

200 khz Chemiluminescence
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Athmanathan V., Braun J., Ayers Z., Fisher J.M., Ayers Z., Fugger C., Roy S., Paniagua G., Meyer T., Detonation structure evolution

T 200 1523.08 2846.15 4169.23 an optically-accessible non-premixed H2-Air RDC using MHz rate imaging, AIAA Propulsion and Energy Forum, Orlando, January 2020



CED vs Experiment

OHF PLIF

I - PS Hsu V Athmanathan T Meyer M Slipchenko S. Roy| "Megakert:

. rate OH planar laser-induced fluorescence imagingQ™in
T 200 1123.08 2046.15 2969.23 rotating detonation combustor,” Opt. Lett., Oct. 2020. 8



numerical domain

inlet

Reduced computational domain

mesh
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Outline

Methodology (solver description & validation)

|

3D unsteady analysis of the outlet profiles

|

Aerodynamic performance of the passage

|

Simulation of the isolated diffusing passage
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Investigated geometries

straight

Converging-diverging
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Characterization of the accelerating passage: Mach number and flow anqgle across the channel
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Characterization of the accelerating passage: heat flux
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Characterization of the diffusing passage

Outlet
(p=7bar)

Converging-diverging diverging

L=0.15m

pstatic




Characterization of the diffusing passa
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Characterization of the diffusing passage: outlet profile
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Characterization of the diffusing passage:

heat flux
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(Ptot,out"Prot.in)/Prot.in [-]

Operating map
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Outline
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Aerodynamic performance of the passage

|
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Passage Inlet profile defined by the combustor
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Simulation of the isolated diffusing passage
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Inlet conditions to the diffusing passage

Inlet conditions :
combustor+diffuser
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Conclusions

Novel strategy to assess the performance of high-speed transition elements.
Specifically, accelerating and diffusing characterized through 3D URANS

Preliminary validation of the numerical tool was performed from published MHz chemiluminescence and OH PLIF
imaging.

The relevant quantities for the aero-thermal design of the turbine (flow angle, Mach number, total pressure, and total
temperature), as well as passage cooling requirements (through time-resolved convective heat flux) quantified

At low back pressures, resulting in accelerating passage for diverging geometries, the combustion zone covered 60%
of the passage length, and complete supersonic flow across the span was achieved. The combustion zone was
reduced to 20% for the diffusing passage with higher backpressure

The profiles for two different diffusing passages were investigated, a diverging and converging-diverging passage.
Significant changes were observed concerning the peak Mach numbers and flow angle variation in the flow's high
enthalpy region.

The isolated diffusing passage was modeled, and similar mass flow averaged total pressures signature across the axial
length was obtained, with a tenfold reduction in computational time.
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