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Executive Summary 
 

Every central heating and hot water system is unique, often lacking a Building Automation 
System (BAS) for optimal operation, which leads to inefficient control settings based on 
estimates. Building operators have long recognized that reducing the heating water supply 
temperature (HTWS) in response to lower outdoor temperatures can decrease boiler energy 
consumption. For condensing boilers, this adjustment enhances efficiency by increasing the 
proportion of heating load met by return temperatures in the condensing regime. However, 
studies indicate that improved outdoor air reset (OAR) optimization yields only modest savings, 
less than 2%, with variations in effectiveness across different buildings. Reducing the heating 
water supply temperature (HTWS) can significantly decrease energy consumption in both 
condensing and non-condensing boilers by lowering indoor temperatures. Studies have shown 
that in multifamily buildings, this approach can achieve energy savings of 4% to 16%, though 
modeling efforts often underestimate actual savings due to overlooked overheating issues. 

The potential energy savings from reducing overheating and high space heating loads can 
significantly surpass those gained from improved boiler efficiency. Monitoring of over 100 
multifamily boiler systems revealed that 80% could lower HTWS without compromising 
comfort. Despite the substantial savings potential, actual savings vary widely, likely influenced 
by the degree of uncontrolled heat flow in each system. This variability raises the challenge of 
accurately quantifying expected energy savings from OAR curve changes, which has motivated 
the development of a software tool to calculate these savings and identify other faults and energy 
conservation measures (ECMs) effectively. 

The project aimed to develop algorithms in a software tool for automating fault detection and 
optimization analyses in multi-family boiler systems, significantly reducing engineering time and 
improving cost-effectiveness. The key objectives were: 

• to identify faults that could achieve over 15% energy savings  

• reduce analysis time by over 80% 

• provide accurate weather-adjusted savings estimates 

• ensure a payback period of less than three years for optimization efforts.  

This would facilitate ongoing commissioning systems in multifamily buildings by lowering 
implementation costs and demonstrating sufficient savings to qualify as new Energy 
Conservation Measures in utility programs. 

The first project phase developed the Alpha version of the FDD tool, using NEI's manual 
processes to analyze hydronic boiler data. This basic version was intended for initial testing and 
iteration, built in Python for future integration into commercial platforms. Following Alpha 
feedback, we created a more advanced Beta version, using both NEI’s existing field data and 



Optimizing Hydronic Heating for Comfort and Performance; New Ecology, Inc. 

viii 

newly installed systems, suitable for wider testing and commercialization, focusing on tool 
validation and deployment planning. The Beta version is ready for broader application, with 
updated documentation and recommendations for future improvements based on field data and 
user feedback. 

Meeting the project objectives will enable widespread deployment of ongoing commissioning 
systems for multifamily boilers by reducing implementation costs and demonstrating favorable 
savings-to-investment ratios for qualifying as new Energy Conservation Measures (ECMs). We 
developed algorithms that analyze boiler data, identify energy-wasting faults, and predict annual 
energy savings from operational changes. 

The Fault Detection and Diagnostic (FDD) tool, created in Python, ingests data from 
PostgreSQL databases, applies FDD algorithms, and generates recommendations. Through 
testing with NEI’s field data, we refined the algorithms and improved data visualizations for 
quick issue triage. Initially focused on space heating, the tool expanded in Phase 2 to include 
Domestic Hot Water modules for combined systems. We also enhanced energy savings 
predictions by integrating building physics, addressing measurement inaccuracies, and enabling 
evaluation of multiple ECMs using TMY data for forecasting. 

Through testing on existing data sets, we have shown that the FDD tool can identify the 
following key faults, each implemented as a software module: 

Suboptimal Outdoor Temperature Sensor Placement ("Suboptimal Tout") – Detects missing or 
poorly placed outdoor temperature sensors. 

Outdoor Air Reset (OAR) Issues – Identifies missing or misconfigured OAR curves. 

Warm Weather Shutdown and Summer-Winter Switch ("WWSD/SW-Switch") – Detects inactive 
or misconfigured warm weather shutdown and seasonal switching. 

Excess Boiler Cycling ("Excess Cycling") – Identifies instances of excessive boiler cycling. 

Domestic Hot Water (DHW) Setpoint Misconfiguration – Detects improper DHW setpoints. 

 

One of the most important aspects of this tool is the ability to measure and quantify the energy 
saved from the implementation of the ECM. The key features related to this are as follows:  

Prior Savings: NEI’s work on 100+ buildings in Massachusetts showed 80% realized an average 
of 11% energy savings from remote monitoring and optimization. 

Modeled Estimates: The tool uses engineering models to compare baseline and ECM cases, 
estimating energy savings through changes like OAR curve and boiler settings. 

Updated OAR Model: Early models assumed perfect control of heat flow. The updated version 
accounts for building overheating, refining energy savings estimates. 
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Updated ECM Data Model: Ingests an configuration file that specifies combinations of ECMs 
(OAR settings, WWSD settings, and temperature sensor placement) to evaluate the impact of 
remediation.  

Tool Performance: Comparing the tool's analysis to manual methods, it matched 85% of 
assessments, with high accuracy for OAR curve and temperature sensor faults, though false 
positives were common. 

NEI's manual analysis of over 100 monitored sites for the Massachusetts Clean Energy 
Center(MassCEC ) project took about 10 hours per site, down from the original 16-20 hours, 
with three hours spent on data QC and fault evaluation. The FDD tool significantly reduces this 
time, allowing a full site analysis in just three minutes. It automates QC, fault detection, and 
heating curve evaluation, enabling more frequent analysis and quicker response to operational 
issues. A batch of five sites can be analyzed in 10 minutes, with an additional 40 minutes to 
review outputs, representing a 94% reduction in time compared to manual methods. 

To validate the model, NEI applied it to 19 OAR curve and WWSD changes at 12 Massachusetts 
sites using ReMO platform data. Sites were limited to those with boilers serving only space 
heating. Pre-ECM and post-ECM periods were compared to predict energy consumption after 
OAR curve adjustments. Modeled savings were 12.8%, and observed savings were 11.3%, with 
an average difference of 4.3%. The model predicted savings within ±5% for 13 changes and 
within ±10% for 16 changes, showing it effectively captures the energy impact of boiler 
overheating and OAR curve changes. 

The Simple Payback Period (SPP) is calculated by dividing boiler optimization costs by the 
resulting cost savings. For nine multi-family properties, with an average annual space heating 
cost of $11,000 and DHW heating cost of $7,000, a 15% savings yields an SPP of 2.6 years. 
However, changes since the study such as rising hardware, labor, and natural gas costs, along 
with supply chain challenges make current SPP difficult to estimate. Decarbonization and 
electrification efforts also affect the relevance of gas-fired boilers, potentially shortening the 
payback window before electrification occurs. Additionally, reactive maintenance and tenant 
complaints may lead to overrides, reducing ECM persistence. 

With the rapid shift towards electrification and the increased adoption of heat pumps, the FDD 
tool is well-positioned to optimize existing systems, delivering quick savings in the short term 
while also facilitating the implementation of electrification initiatives through its detailed 
understanding of actual building heating loads. This support is critical for selecting new 
equipment that is appropriately sized for specific loads, offering substantial initial cost-saving 
opportunities and ensuring more efficient operation through improved load matching, an issue 
frequently observed in current building data. Since high-efficiency condensing boilers remain the 
most cost-effective option for many multi-family buildings, and fossil fuel-based systems are 
still widespread, the FDD tool will continue to be a valuable resource for fault detection and 
system optimization, maximizing energy savings. 
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With these dual pathways for building heating and hot water systems, the FDD tool is capable of 
serving buildings with their current systems for as long as they remain in use, while also 
supporting a seamless and efficient transition to newer technologies. The methods developed 
within the FDD tool can be adapted to future electrified systems, evolving as needed to drive 
further optimization and address the common challenge of system overrides, which affect all 
types of systems. 
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Introduction 
Every central heating and hot water system is unique. They are custom designed, plumbed, and 
installed by teams with a range of technical capability. When there is no Building Automation 
System (BAS) dynamically controlling system operation, individual pieces of equipment (e.g., 
boilers, pumps, etc.) are left to operate with little or no data feedback. Control settings are based 
upon settings used at other buildings and best estimates and are not typically optimized based on 
actual operating data. 

Yet, building operators have realized for several decades that boiler energy consumption for 
space heating can be reduced by reducing (aka resetting) the heating water supply temperature 
(HTWS) as the outdoor air temperature (Tout) decreases (see Figure 1, from Landry et al. 2021). 

 

 

Figure 1: Example of an outdoor air reset (OAR) curve; from Landry et al. 2021 

 

For condensing boilers, this can increase the portion of the space heating load met by heating 
water return temperatures (HTWR) that occur in the condensing regime, increasing boiler 
efficiency, η (see Figure 2, where HTWR = “Inlet water temperature”; from ASHRAE 2020). 
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Although condensing boilers can realize large efficiency-related savings when replacing non-
condensing boilers, the efficiency-driven savings from improved outdoor air reset (OAR) 
optimization is quite modes. For example, modeling of the expected efficiency-driven savings 
for 17 monitored commercial condensing boiler systems found that improved reset curve 
parameters would reduce space heating energy consumption by less than 2% at all sites (Landry 
et al. 2021), while another study by the same organization found an average of ~1.5% efficiency-
related savings at 10 sites from reset curve changes (range: 0-4%; Landry et al. 2016).0F

1  

In both condensing and non-condensing boilers, reducing HTWS at a given Tout can also reduce 
space heating energy consumption by reducing indoor temperature (Tin) and, consequently, 
effective space heating loads, Qin. As a field study by Hewett and Peterson (1984) found, boiler 
systems are prone to overheating spaces due to a combination of high Tin preferences by 
inhabitants (sometimes accompanied by window opening), failed thermostatic zone valves (TV), 
and/or poorly or uninsulated distribution piping that result in uncontrolled heat flow to spaces. 
They showed that reducing HTWS(Tout) in multifamily buildings served by cast-iron boilers 
decreased space heating energy consumption by between 4 and 16%, with a corresponding 1 to 
4oF decrease in Tin measured in hallways. Figure 3 below shows how daily boiler energy 
consumption as a function of daily Tout changed in the building that achieved the greatest savings 
(when combined with a warm-weather shut-down [WWSD] temperature of Tout = 55oF; Hewett 
and Peterson 1984). 

 
1 We found similar results when analyzing OAR curve changes for >10 buildings, using manufacturer data for 
boiler efficiency, η(HTWS), hourly TMY Tout data, and assuming space heating loads decreased linearly from the 
design temperature, Tout,design, to a balance temperature, Tbal = 60oF. 

Figure 2: Example of how condensing boiler efficiency 
varies as a function of inlet water temperature; (from 

ASHRAE 2020) 
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Figure 3: Field data for boiler daily energy consumption as a function of heating degree days for boilers with 
constant (top curve) and reset (lower curve) control; recreated from Hewlett and Peterson (1984). 

 

Existing industry rules of thumb range from 1% savings per 1oF reduction in HTWS to “reduce 
4°, save 1%”1F

2. Beyond such basic approaches, Landry et al. (2021) attempted to model the 
energy savings from decreasing OAR curve parameters based on the energy savings found in 
prior studies for OAR curve changes, including Hewett and Peterson (1984). They found a 
limited correlation between modeled and actual savings, on average underestimating savings by 
40% (see Figure 3). This likely occurs because that model does not model the actual building 
overheating (“load reduction savings”) occurring in specific buildings. 

 
2 See: https://www.heat-timer.com/outdoor-reset-control-savings/ for the latter; the 1oF = ~1% savings comes from 
discussions with practitioners.  
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Figure 4: Engineering estimates versus actual savings for commercial boiler systems, from Landry et al. 
(2021). The engineering estimates underestimated actual energy savings by an average of 40% 

 

Clearly, the energy savings potential from reducing overheating and the resulting high space 
heating loads can greatly exceed those from increasing boiler efficiency. Furthermore, the 
prevalence appears to be acute in the roughly 2 million multi-family building with hydronic 
heat2F

3, i.e., monitoring of >100 multi-family boiler systems in colder climates by New Ecology 
(2018) found that in 80% of them HTWS could be lowered without compromising comfort. 
Although the savings potential can be large from OAR curve changes, the realized savings varies 
greatly among buildings (Hewett and Peterson 1984, Davey and Connelly 2018, New Ecology 
2018). Presumably, this varies with the degree of uncontrolled heat flow of that specific boiler 
system. The challenge then becomes: how does one accurately quantify the expected energy 
savings from potential changes to the OAR curve? 

This is one of the central questions that led this project team down the path to develop a software 
tool that can not only calculate these savings, but identify other faults and ECMs, in a cost-
effective manner.  

Data Acquisition System 
We include a summary of the sensors now typically deployed to help readers follow technical 
discussions that follow.  

 

 

 
3 The 2020 DOE EIA RECS estimated that 2.8 million buildings with 5+ units have steam or hot-water heating 
systems, primarily in colder climates; we expect that a sizeable majority are hot-water systems. 
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Table 1: Standard sensor package deployed in installations 

Sensor Description 

HTWS Space heating supply water temperature 

HTWR Space heating return water temperature 

HTG IN Heating Boiler Loop inlet temperature 

HTG OUT Heating Boiler Loop outlet temperature 

DHWS Potable DHW supply temperature 

DHWR Potable DHW return temperature 

HW Potable hot water temperature leaving tank or water heater delivered mixing valve 

CW Potable cold water supplied to the building 

HWS3F

4 
(PHWS) 

Supply water temperature to indirect heat exchanger (HX) of DHW storage tank 

HWR 
(PHWR) 

Return water temperature from indirect HX of DHW tank 

Ambient Boiler room air temperature 

OA Outdoor air temperature (only installed in non-Modbus installations) 

 

Figure 5 shows example sensor installations for both combined and separate systems 
(connections to the Ambient and OA sensors not shown). 

 
4 HWS and HWR are the sensor names used in combined heating and DHW systems, while PHWS and PHWR are 
used in separate systems (P for potable). 
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Figure 5: Sensor location diagram for a combined boiler system 

When the equipment on site has the capability for communications through industrial BAS 
protocols such as MODBUS4F

5, we can connect and integrate those data into our database. In 
addition, the original deployment also allowed us to install relays on each non-MODBUS 
capable boiler to provide boiler on/off data; those relays are not part of the current DAQ 
specification.  

 
5 The Modbus protocol is a standard employed by many boiler manufacturers to communicate with controllers. 
Through this interface, a DAQ system is able to monitor and record the same internal sensor data a boiler may 
expose to its controller. See www.modbus.org for further details. 

http://www.modbus.org/
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Methodology 
This project sought to develop and implement algorithms in a software tool that automates the 
fault detection and optimization analyses and processes for multi-family boiler-system 
optimization to significantly reduce the engineering time required to perform such analyses. This 
will improve the cost-effectiveness and scalability of multi-family boiler-system optimization 
and, hence, the energy savings realized.  

The primary goal of this project was to remove cost barriers that currently prevent building 
operators in multi-family buildings from gaining operational insight that can lead to energy and 
maintenance savings. To achieve this goal, we identified the following four objectives: 

1. Identify faults and recommendations that can achieve an average of 15%+ reduction in 
space heating energy consumption  

2. Reduce analysis time by 80%+ relative to manual approaches  

3. Calculate weather-adjusted energy savings estimates that will be within ±20% of 
achieved energy savings, based on pre-ECM and post-ECM gas consumption data. 

4. Achieve less than a three-year payback period for boiler optimization.  

These objectives would enable the widespread deployment of ongoing commissioning systems 
for multifamily boiler systems by 1.) reducing the cost of implementing systems in the field and 
2.) demonstrating sufficient savings-to-investment ratios for the system to qualify as a new 
Energy Conservation Measure (ECM) in utility energy efficiency (EE) programs.  

The first phase of the project focused on developing the Alpha version of the FDD tool, 
leveraging extensive existing investments by NEI in developing manual processes to analyze the 
minute-level hydronic boiler system data. The Alpha version was intended to be a basic, 
functional version of the tool that could be used for initial testing, refinement, and iteration. We 
planned to develop software using an open-source programming language (Python), so the 
resulting modules could later be integrated into commercial software tools or enterprise 
platforms. Since the innovation in this project is primarily related to the automated discovery and 
quantification of ECMs, this effort relied on manual data input and static output report files. 
Interactive graphical user interface development was premature at that stage (while variables, 
inputs, and outputs were fluid), but was to be considered in a later phase.  

Based on feedback from Alpha testing, we developed a more mature Beta version of the tool that 
was suitable for wider field testing and ready for integration into a commercially viable platform. 
Phase 2 of the project focused on developing the Beta version of the tool, tool validation, and a 
Commercialization Plan to scale tool deployment. Development of the Beta version leveraged 
feedback and results from Alpha field-testing efforts to improve and refine the tool. The outcome 
of the Beta version development was a software tool ready for more widespread testing, pilot 
applications, and eventually, integration into a commercially viable platform. Software 
documentation was updated for the Beta version. Based on field testing of the Beta version using 
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both NEI’s existing field data and newly installed systems, as well as end-user feedback, we 
developed a list of recommendations for future software updates and development for 
commercialization. 
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Results 
Meeting the objectives listed above would enable the widespread deployment of ongoing 
commissioning systems for multifamily boiler systems by 1) reducing the cost of implementing 
systems in the field and 2) demonstrating sufficient savings-to-investment ratios for the system 
to qualify as a new Energy Conservation Measure (ECM) in utility energy efficiency (EE) 
programs.  

We have synthesized the expert knowledge from NEI’s analysts and the technical literature with 
physics-based models to develop algorithms that analyze boiler system data and identify several 
high-priority, energy-wasting faults listed below. In addition, we developed algorithms that 
predict how changes to boiler system operating parameters affect boiler energy consumption, 
allowing us to predict the annual energy savings from specific parameter changes.  

We then created a Fault Detection and Diagnostic analysis tool (“FDD Tool”) in python that can 
ingest incoming data streams from a continuously updating PostgreSQL time-series database or 
archived database of site-installed sensors, apply the FDD algorithms, and generate 
recommendations. 

Figure 6 and Figure 7 depict the overall flow of the tool and the types and the data taxonomy for 
information flowing into the tool. Depending on the data available from a specific system, the 
tool can work with different data inputs; we presented recommendations for sensor packages 
based on available sensor data and a discussion of the trade-offs for the different fault detection 
algorithms based on available data in the “Updated DAQ Specification and Data Requirements” 
submitted to DOE (See Appendix A). 
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Figure 6: Boiler analysis tool flowchart 

Figure 7: Boiler analysis tool data taxonomy 
Through testing the tool on existing NEI field data sets, we have refined the algorithms, 
particularly the thresholds used to identify faults and to infer the operational status of boiler 
system components (e.g., boiler pumps), and to incorporate feedback from NEI analysts to 
create? effective and intuitive data visualizations that enable rapid triage of potential issues. 
Phase 1, the tool focused primarily on space-heating faults, foremost in boilers serving space 
heating alone.  In Phase 2, further work on the Domestic Hot Water modules was completed, 
notably for combination systems, i.e., those where boilers serve both space and water heating 
loads. The FDD tool also provides a full suite of analysis and recommendations to optimize 
heating plants that serve both heating and DHW needs (“combined” plants), and a narrower 
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range of analysis and recommendations to optimize DHW operation (whether as part of a 
combined heating + DHW or standalone DHW plants). 

Our testing found that combined plants present a more challenging use case than standalone 
heating plants.  

Finally, a major component of the work done in Phase 2 involved developing new approaches to 
greatly improve the energy savings prediction toolset to: (1) incorporate a more accurate model 
of the underlying building physics; (2) account for the downstream impact of inaccurate boiler 
outdoor air temperature (Tout) measurements on estimates; (3) integrate savings estimates from 
implementation of multiple ECMs into a composite summary; (4) implement a new data model 
that enables a user to evaluate the impact of a portfolio of ECMs; and (5) incorporate use of 
TMY data for forward-looking predictions. 
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Discussion 
A discussion of the progress we made towards meeting each objective below follows.  

Objective 1: Identify faults and recommendations that can achieve an average of 15%+ 
reduction in space heating energy consumption 
Through testing on existing data sets, we have demonstrated that we can identify the following 
key faults, each implemented as a software module in the FDD tool: 

1. Missing or suboptimal outdoor temperature sensor placement (“Suboptimal Tout”) 

2. Missing or misconfigured outdoor air reset (OAR) curves (“OAR”) 

3. Inactive or misconfigured warm weather shutdown (WWSD) and/or Summer-Winter 
Switch (“WWSD/SW-Switch”) 

4. Excess Boiler Cycling (“Excess Cycling”) 

5. Misconfigured DHW setpoints (“DHW Setpoint”) 

Examples and discussion of each fault detection module follow. 

 

1. Missing or suboptimal outdoor temperature sensor placement (“Suboptimal Tout ”) 
This fault mode occurs when a site’s outdoor temperature sensor is either unavailable or presents 
data quality issues.  The FDD tool addresses two classes of data quality issues: sensors errors 
(e.g., sensor readings do not change and/or report out of range values); and issues with sensor 
placement.  Sensor placement errors are detected by comparing local (onsite) temperature 
measurements with publicly available weather station data, e.g., from the National Weather 
Service.   

The script generates a table () showing the following metrics.  The output of the table varies 
depending on whether analysis is conducted over the whole data capture (show_by_analysis_pd 
= False, ) or conducted by ECM Analysis Period (show_by_analysis_pd=True, see ). 

• Index column:  

For analysis conducted over the full data captured, the index is: 

<site>-<plant_id>-‘All’ (for all data)  

<site>-<plant_id>-‘Last 12 Months’ (for last 12 months) 

if analysis conducted by ECM Analysis Period, the index is: 

<site>-<plant_id>-<ECM Analysis Pd Idx> 

 

• ECM Idx, ST, ET: Zero-indexed reference to the ECM Analysis period, with a value of 
zero referencing the most recent data.  
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• LastGoodReading: Last Valid Data Point. 

• SensorError%:  Sensor error is defined as either an out of range (non-physical) 
measurement or “invariant” sensor data (defined as < 3 deg delta between weekly 
max/min reading).  The output is coded red if more than 10% of hours in the last 12 
months have a sensor error (for analysis conducted over full data capture), or if more than 
10% of hours have a sensor error (for analysis conducted by ECM Analysis Period).   

• %HrsOutOfRange:  An “hour out of range” is defined as an hour in which there is >10 
oF discrepancy between the onsite Tout sensor and the weather station temperature 
reading.   

• ValidHrs: Number of hours for which a valid t_out reading was returned in this analysis 
period.  Coded red if there are fewer than 1000 hrs for analysis. 

 

The t_out evaluation metrics compare the average error and mean average error (MAE) of t_out 
to t_weather_station measurements using several different data segmentation parameters: 

 

• Active Pts vs All Pts: If “-Active” is appended to the column name, the error includes 
only points where the heating plant is ON.  If “-Active” is not appended to the column 
name, the error includes all data points (heating plant ON and OFF).  Intuitively, one 
might expect that focusing on temperature errors during active plant operation are the 
most relevant metric, as active operation is what drives energy consumption.  However, 
looking at ONLY active points can mask a class of issues in which warm weather 
shutdown occurs at the incorrect temperature due to bad local temperature measurements.   

• Time of day: Used to identify errors that vary based on diurnal factors, such as solar 
loading.  Data is grouped into three segments: 00:00 to 10:00 (nighttime), 10:00 to 15:00 
(morning), and 15:00-24:00 (afternoon/evening).  Note: times are in UTC, so subtract 
four to five hours to convert to eastern time.5F

6 

• AvgErr vs MAE: Results for both average and mean average error shown.  We found 
that Average Error is generally more predictive of the type of systematic issue that we are 
trying to identify. 

• AvgErr-Active/MAE-Active: Average/Mean Average Error across the full data set, 
including only heating plant “ON” points. 

• AvgErr, MAE: Average/Mean Average Error across the full data set, including heating 
plant “ON” and “OFF” points. 

 
6 Note: this logic is currently hard-coded for eastern time zone.  It would need to be updated for other time zones. 
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• 1500-2400-Active / 0000-1000-Active / 1000-1500-Active: Average Error across 
specific times of day, including only heating plant “ON” points. 

• 1500-2400 / 0000-1000 / 1000-1500: Average Error across specific times of day, 
including heating plant “ON” and “OFF” points. 

• bad_ Tout: Set to True if any of the following conditions are met: 

o Absolute value of AvgErr-Active is greater than 2.5 oF  

o Absolute value of AvgErr is greater than 2.5 oF 

o Absolute value of three or more of the time-of-day error metrics6F

7 is greater than 2.5 
oF 

 
7 i.e., 1500-2400-Active / 0000-1000-Active / 1000-1500-Active / 1500-2400 / 0000-1000 / 1000-1500 
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Figure 8: Suboptimal Tout – Sample output for analysis conducted over full data capture 

 

 

 
Figure 9: Suboptimal Tout – Sample output for analysis conducted by ECM Analysis Pd 
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The Suboptimal Tout script also generates a series of plots () for each site that includes: (1) time 
series of Tout, weather station, and error; (2) frequency of “Hours out of Range” > 10 oF, by 
month; and (3) a heatmap of error by hour of the day for different periods of the year (All Year / 
Oct-May / Jun-Sep): 

• If analyzing the full data capture, the heatmap displays data for (a) the full data capture 
period and (b) the last 12 months of data.   

• If analyzing data by ECM Analysis Period, the heatmap displays data for (a) all data 
within in the ECM Analysis Period, and (b) Heating On-only points within the ECM 
Analysis period.  The (top) error frequency plot shows error frequency for all points 
(blue) and for heating on-only points (red). 

In the example shown below, there appear to have been a substantial placement issue in 2017, as 
evidenced by the frequency of hours out of range throughout 2017 (see first half of the plots in 
rows 1 and 2), with the error likely due to excess solar gains (row #3).  As shown in row #4, 
which shows an hourly heatmap for only the most recent 12 months, it appears that the error has 
since been corrected.  
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Figure 10: Example Suboptimal Tout Plots 

 

2. Missing or misconfigured outdoor air reset (OAR) curves (“OAR”) 
The OAR Analysis provides feedback about OAR performance for a cohort of sites, both for 
sites with and without a known/expected OAR curve. For sites without a configured OAR, it 
extracts an implied OAR curve by fitting OAR parameters to observed data and then provides 
feedback as to whether the observed curve parameters fit within a valid operating window.  For 
sites that have an OAR curve specified, the tool compares the observed OAR behavior to the 
expected behavior implied by the specified curve. Since OAR curves can change over time, e.g., 
from user overrides, the tool evaluates OAR curves at different points in time. 
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To accomplish this, the tool generates a series of data visualizations and analyses that 
characterize plant operation across multiple dimensions, including OAT-vs-HTWS trends, 
WWSD temperature, S-W Switch status, qualitative assessment of t_out placement, and DHW 
state estimation for combination plant.  In combination, these toolsets allow a user to estimate 
plant configuration settings over time and estimate the energy impact of proposed or previously 
implemented configuration changes. 

An OAR Analysis is performed on one or more “ECM Analysis Periods”.  An ECM Analysis 
Period can be configured to automatically segment a data set by heating season, by OAR 
configuration date(s), or using a custom set of dates. 

The OAR Analysis tool generates two different data visualizations of the OAT-vs-HTWS trend: 
a scatter plot visualization and a heatmap visualization. 

The scatter plot data visualization () is implemented as a 2x2 matrix of scatter plots for each 
combination of HTWS key ( t_htws / t_system_supply) and outdoor air temperature (Onsite 
OAT  (“t_out”) / Weather Station OAT (“t_weather_station”), with each ECM Analysis Period 
represent with a different color.  If an end point is not available for the plant under evaluation, 
the plots associated with that plant will be blank.  Each ECM Analysis Period in each scatter plot 
is overlaid with a parameterized OAR curve (either derived or configured) associated with that 
time period.  If a configured OAR curve is available, the configured curve is overlaid on each 
plot.  If the analysis uses a derived curve, the following logic drives the curve overlay:  

• If t_htws and t_weather_station are available, HTWS/WS is overlaid on HTWS/WS 
scatter plot7F

8 

• If t_system_supply and t_out are available, SST/ Tout is overlaid on SST/ Tout scatter plot8F

9 

• The “primary” curve fit (i.e., t_htws_primary / t_out_primary) is overlaid on HTWS/ Tout, 
and SST/WS scatter plots 

The scatter plot includes any points where the plant state estimation detects the plant is active: 
for heating plants, this should correspond only to active heating calls; for DHW plants it includes 
heating-only and DHW calls (plant_state=125 or plant_state=175).  However, the derived curve 
fit is extracted using only data points that are heating only (plant_state=125). 

 
8 This plot represents a user perspective on heat delivery to the building: it shows actual outdoor temperature 
conditions plotted vs actual supply temperature delivered to the heating loop 
9 This plot represents a control-based perspective on heat delivery: it shows the primary boiler control variable 
(t_out) plotted vs the primary output that the boiler controls (t_system_supply) 
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Figure 11: Example scatter plot data visualization for a set of derived curves (left-hand plot) and configured curves (right—hand plot) 

 

The heatmap data visualization () generates a single heatmap of t_out_primary vs t_htws_primary for each ECM Analysis Period.9F

10  
For sites with a configured OAR curve, an additional plot of (median error + 100 deg) as a function of OAT is displayed. 

 
10 Note that the most recent ECM Analysis Period is indexed to zero  
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Figure 12: Example heatmap data visualizations for a plant with derived curves (top row) and configured curves (bottom row).  For the configured curve 
case, note that the second (Pd 2) plot appears to capture multiple OAR curves.  For the derived curve case, note that Pd 2 covers only a narrow range of 

outdoor air temperature (data goes from April through November), so there is insufficient data to derive an accurate curve across the plant’s full 
operating envelope 
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3. Inactive or misconfigured warm weather shutdown (WWSD) and/or Summer-Winter 
Switch (“WWSD/SW-Switch”) 
When Tout exceeds a building’s balance temperature, boiler space heating can usually be turned 
off to eliminate standby losses in boilers serving only space heating. Similarly, many 
jurisdictions specify times of year when landlords must provide heat, e.g., September 15th 
through June 15th in Boston, enabling the lock out of space heating outside that window. The tool 
analyzes boiler operations to meet space-heating loads and determines the extent to which they 
occur at warmer Tout or outside the heating season. The user can configure parameters to restrict 
analysis to different subsets of data and/or modify the data displayed. 

This module analyzes the extent to which the heating system in a heating plant or combination 
plant operates at warm temperatures, and the extent to which the system operates during the non-
heating season.  At a minimum, it requires OAT and HTWS to execute, but performance is 
constrained if firing rate data is unavailable, and in the case of combination plants, if HWS is 
unavailable.  

 

If firing rate data is available, the WWSD tool also estimates of potential savings for two defined 
WWSD thresholds, by default set to WWSD=62°F and WWSD=68°F.  While this estimate 
provides a useful first order approximation, the estimate has several issues: (1) it is generated in 
isolation from other plant performance characteristics, and (2) data is not normalized to TMY 
conditions.  The energy savings analysis generated downstream of the OAR analysis provides a 
more accurate, holistic estimate of potential energy savings from implementing this ECM; it also 
generates energy savings estimates only for Group H1 plants (heating plants w/firing rate 
data).10F

11  

WWSD analysis uses plant state estimation to demarcate periods when only the heating plant is 
active: 

• For heating plants with firing rate data (Group H1 plants), this corresponds to periods 
with non-zero firing rate 

• For combination plants, the WWSD tool treats time steps that are identified as heating-
only calls as “heating active”; time steps that are identified as DHW calls or plant-off are 
treated as “heating off”. Note that if HWS data is not available, DHW calls will be 
conflated with heating calls.  

 
11 There are three specific issues with the WWSD savings estimate generated by this tool: (1) it does not account 
for the impact of inaccurate temperature sensor readings due to suboptimal sensor placement.  This may 
mischaracterize the plant’s control logic.  This issue is addressed in the cross-cutting energy savings analysis tool.  
(2) When combined with other ECMs, savings are not necessarily additive: e.g., the energy savings impact estimated 
from implementing a lower WWSD and modifying OAR curve operating points may be higher when these measures 
are analyzed in isolation.  The cross-cutting energy savings analysis tool calculates the integrated impact of ECMs; 
(3) The WWSD tool does not have the ability to model the impact of implementing a WWSD differential. 
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• For combination or heating plants without firing rate data, it is challenging to precisely 
characterize runtimes, so the WWSD/S-W Switch script adopts a different methodology 
for analyzing and visualizing plant data.   

Methodology and results for plants with and without firing rate data are described below. 

The WWSD/S-W Switch script outputs a table summarizing performance across all sites () and a 
series of plots providing visualizations for all sites or a subset of sites, depending on how the 
“show_all_plots” parameter is configured ().  The WWSD/S-W Switch table includes the 
following metrics: 

1. PctOn-65-70Deg: % of samples for Tout between 65-70 degree where heating 
operation is on. (flags if >10% samples are on)     

2. PctOn-70-75Deg: % of samples for Tout between 70-75 degree where heating system 
is on (flags if >5% are on) 

3. PctOn-Summer, PctofSummersHrsOn: % of samples and % of hours operational 
during non-heating season.  Raises a flag if there are any instances of system 
operation.   

4. PctSavings-GT<XX>, PctSavings-SWSwitch: Estimated savings if plant 
implemented WWSD at the two defined WWSD temperatures, and if S-W switch 
were implemented.  WWSD estimates are generated by assuming that plant energy 
above the WWSD is zero post ECM; S-W switch estimates are generated by assuming 
that heating plant energy consumed between June 15th and Sept 15th is 0. 

 

 

If firing rate data is available, the WWSD/SW Switch script generates the following plots: 

Scatter plot of the average heating system hourly duty cycle as a function of outdoor temperature  

Figure 13: Example WWSD/SW Switch Summary table  
 

Site PlantType FirstReading LastReading SummerHrs PctOn-65-70Deg PctOn-70-75Deg PctOn-Summer PctOfSummerHrsOn PctSavings-GT62 PctSavings-GT68 PctSavings-SWSwitch
102 heating 2021-04-16 2022-05-21 206 29% 20% 0.0% 0.0% 7.0% 1.6% 0.0%

13 combined 2017-01-04 2020-03-11 6476 4% 2% 2.0% 14.6% nan% nan% nan%
8 combined 2017-01-03 2020-02-06 4922 1% 0% 0.2% 1.1% nan% nan% nan%
9 heating 2017-01-04 2021-02-19 4572 23% 20% 19.8% 57.7% 9.3% 5.6% 5.6%

106 heating 2021-04-19 2022-05-25 1067 0% 0% 0.0% 0.0% 0.1% 0.0% 0.0%
167 heating 2021-04-19 2022-05-25 1067 0% 0% 0.0% 0.0% 0.1% 0.0% 0.0%
121 combined 2017-01-03 2022-05-21 3955 4% 2% 0.1% 0.9% 5.1% 1.2% 0.3%

27 combined 2017-03-09 2019-08-20 5535 9% 7% 1.8% 6.2% nan% nan% nan%
181 heating 2021-11-23 2022-05-25 0 2% 2% 0.0% 0.0% nan% nan% nan%

3 combined 2020-09-10 2021-06-28 330 8% 5% 0.0% 0.3% nan% nan% nan%
7 combined 2017-01-10 2020-02-06 3662 3% 1% 1.2% 16.8% 5.2% 1.3% 2.0%

176 heating 2021-12-01 2022-05-25 0 0% 0% 0.0% 0.0% nan% nan% nan%
177 heating 2021-12-01 2022-05-25 0 0% 0% 0.0% 0.0% nan% nan% nan%
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• Heatmap of the average heating system hourly duty cycle as a function of outdoor 
temperature  

• A time series of heating system duty cycle overlaid with a plot of the summer shutdown 
period
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Figure 14: WWSD/SW Switch example plots for two different sites 
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Figure 14 shows example plots for two different sites.  The left-hand plot shows data for a site 
that is performing as expected. In this case, the heating system operation shuts down above ~65 
degrees and is largely inactive during the summer months (see e.g., the third plot of ). The right-
hand plot shows data for a site that is not performing as expected. As shown, the heating system 
is operational throughout the year, regardless of outdoor temperature or calendar. 

For plants without firing rate data (Group H2 or C2 plants), plant state (“heating only on”, 
“active dhw call”, or “plant off”) is determined by identifying periods with a rising supply 
temperature.  This temperature-based state estimation presents two complications with respect to 
WWSD analysis: 

1. The state estimation does not characterize heating system modulation: the plant state is 
either marked in an active state, or an off state. 

2. Temperature-based state estimation does not accurately measure heating system 
runtime in cases where there is not measurable cycling of the supply temperature.  
During warmer months, in which heating system calls are typically short and 
infrequent, this may not be an issue; however, some plants exhibit minimal HTWS 
cycling during cold weather conditions, presumably because the heating plant is on 
nearly 100% of the time, and changes in modulation rate are not necessarily 
accompanied by measurable step changes in the supply temperature.   

 
For plants without firing rate data, the state estimation tool addresses this lack of cycling during 
heating season using the following work-around: The heating system is marked as “active” every 
30 minutes if the outdoor air temperature is less than 60 degrees and if there is no cycling 
observed within that window.  Said another way, heating calls are defined by EITHER a 
sustained supply temperature rise OR (outdoor temperature < 60 degrees AND >30 minutes 
since reasonable subset of plant operating points where the heating system is active across a 
range of outdoor temperature conditions.  However, this approach is not useful for characterizing 
the plant’s duty cycle as a function of temperature.   

As such, if firing rate is not available, rather than characterizing “duty cycle”, the tool 
approximates the number of hours that the heating system is active per day as a function of 
outdoor temperature.    

Sample plots for H2 and C2 plants are shown in .  In this case, the y-axis represents hours per 
day when the heating plant is active. While this does not precisely measure duty-cycle, it does 
provide an effective means of identifying plants that appear to be active during summer months 
(e.g., in the example shown, the left-hand plot appears to have an effective WWSD, while the 
right-hand plot shows extensive warm-weather operation).
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Figure 15: WWSD analysis for two sites. The left-hand site appears to be functioning near-optimally, as indicated by minimal operation during summer 
months and a linear drop in heating system hours at rising temperature, with minimal operation about 65 degrees; the right-hand site appears to have 

a significant issue with warm weather operation 
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4. Excess Boiler Cycling (“Excess Cycling”) 
Excessive boiler cycling increases boiler wear and wastes energy by increasing the number of 
boiler air-purge cycles. The tool analyzes how frequently the boiler operates in a “high cycle 
regime” (not necessarily a fault on its own) and the extent to which the heating system modulates 
its output within a high cycle regime. Lack of modulation coupled with high cycling often 
indicates excessive cycling that can be remediated by modifying boiler control parameters.  

The boiler cycling analysis script generates a summary table (Figure 16) that includes the 
following metrics: 

• % High Cycle Hrs”, # High Cycle Hrs: A “high cycle hour” is defined as an hour with 
5 or more boiler cycles.  A “boiler cycle” is defined as an event in which firing rate goes 
above 1% and then drops below 1%.  Currently does not support analysis for sites 
without firing rate, but this is in the pipeline. 

• LowLoad%:  Percentage of high cycle hours in which the firing rate is <=30%.  If there 
are no “high cycle” hours in the data set, LowLoad% = nan. Raises a flag if LowLoad% > 
40%. 

• HighLoad%:  Percentage of high cycle hours in which the firing rate is >=90%.  If there 
are no “high cycle” hours in the data set, HighLoad% = nan.  Raises a flag if HighLoad% 
> 40%. 

 

 

 

Figure 16: Example excess cycling table 

 

Site % High Cycle Hrs # Hgh Cycle Hrs LowLoad%   HghLoad%
29 2% 614 59% 1%
30 0% 3 nan% nan%
34 22% 3041 4% 9%
35 9% 2287 47% 7%

7 0% 5 nan% nan%
9 1% 520 99% 0%

20 0% 0 nan% nan%
2 0% 0 nan% nan%

22 0% 0 nan% nan%
24 28% 4953 63% 1%
25 0% 0 nan% nan%
11 8% 2454 90% 2%
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The boiler cycling analysis script also generates a matrix of plots for each site (Figure 17): 

• The first row shows histograms of firing rate (column 1) and turn-ons per hour (column 
2). This gets displayed for all sites, regardless of the prevalence of high-cycle regimes. 

• The final row shows turn-ons per hour as a function of firing rate 

If more than 100 “high cycle” hours (defined as >=5 turn-ons per hour, as defined above) are 
detected, two additional rows of plots are shown: 

• The second row of plots shows the same two plots, but only includes high-cycle regimes.   

• The third row shows average turn-ons per hour and a histogram of high-cycle events, 
both as a function of OAT. 

 
Figure 17: Example plots for two different sites; left hand site was not flagged; right-hand site was flagged for 

presence of high-cycle operating regimes. 

This FDD Tool module also includes an analysis of the heating plant duty cycle as a function of 
OAT. This script plots either total Qin (use_firing_rate=False) or total firing rate 
(use_firing_rate=True) as a function of outdoor air temperature, with data averaged over several 
different timescales (Figure 18).  Similar data is shown in tabular form (Figure 19).    
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Figure 18: Total firing rate as a function of outdoor air temperature for two different sites.  Data is shown over 
three different time-scales (1-min, 1-hr, 24-hr) 

 

 

Figure 19: Total firing rate (TFR) and TFR > 50% as a function of outdoor air temperature. 

shows boiler firing rate (summed across all boilers) as a function of outdoor air temperature for 
two different sites (left and right plots).  At both sites, at moderate temperatures (e.g., 40-55 
deg), the plant runs at approximately steady state at a 20-30% modulation level.   However, at 
higher temperature (>55 degrees), if on, the firing rate is often near full load.  To be clear, the 
average duty cycle, when averaged over 1-hour or 24-hour periods, is reasonable given the 
outdoor temperature condition – but when the plant cycles on, it cycles on to full power. This 
type of behavior can indicate potential for one of a few ECMs.  The site on the left is indicative 
of a plant that is unable to modulate low enough to serve its heating load, so it cycles on and off 



 

30 

at full power over a relatively wide temperature range; this could indicate that the boiler is over-
sized for this site, or that it’s a good candidate for a hybrid heat pump system.  The right-hand 
plot likely shows full-power cycling over a relatively narrow temperature band.  This indicates 
the plant is likely coming out of warm weather shutdown and tries to raise the supply 
temperature as rapidly as possible.  This could potentially be accomplished more efficiently by 
operating the boiler at a lower firing rate.   

 

5. Misconfigured DHW setpoints (“DHW Setpoint”) 
The DHW Setpoint Analysis module implements three fault detection algorithms: 

• Low Domestic Hot Water Storage Temperature (HW): Identifies DHW systems with low 
DHW storage temperatures, which can pose a legionella risk.  

• High DHWS: Detects high DHW Supply temperatures (DHWS) that could pose a scald 
risk and/or increase pipe heat losses. 

• DHWS-DHWR Differential Out-of-Range: The relationship between DHWR and DHWS 
can help uncover multiple faults, including recirculation pump reversal or frozen/failed 
mixing valve (see DHW Fault documentation for additional discussion). 

This toolset analyzes data from DHW plants or from combination plants, and polls data from 
DHWS, DHWR, HW, and tank setpoint, but it will execute with any combination of these 
endpoints available, albeit with reduced scope.   

Tank setpoint data is not used for fault detection, rather HW is used as a proxy for in-tank 
conditions.  The logic for using HW in lieu of tank setpoint is that (a) it provides a measure of 
actual water temperature; and (b) it does not require data collected via MODBUS or other BMS 
protocols. 

 

If HW data is not available, it is assumed that the site does not have a mixing valve.   

 

The following default parameters are used but can be changed by the end-user. 

 

Table 2: DHW fault identification parameters 

Name Description Value 

tank_setpoint_low HW Threshold to flag for low setpoint 140 

dhw_setpoint_low DHWS threshold to flag for low setpoint 112 

tank_setpoint_high HW Threshold to flag for high setpoint 140 
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dhws_setpoint_high DHWS threshold to flag for high setpoint 130 

dhws_rev_err_thresh Threshold above which to flag DHWR > DHWS 0.10 

Note: Although tank_setpoint_low and tank_setpoint_high are configured to the same value, the 
criteria for flagging these faults differ. 

 

The time window for analysis, e.g., to see when changes may have occurred, may be configured 
in two different ways: 

• If “lookback_days” is set to a value other than “None”, the analysis runs from 
lookback_days before the site’s most recent data point to the most recent data point. 

• If lookback_days is set to “None”, the time window is bracketed by st and et (start and 
end times)  

o If st is set to “None”, start time is the first data point for the site 

o If et is set to “None”, end time is the most recent data point for the site 

For each DHW plant, the DHW fault assessment tool (a) displays several data visualizations for 
each site to provide supporting context; and (b) checks observed operation relative to pre-defined 
set points to identify possible fault conditions.  The tool presents results of fault screens in a 
summary table (Figure 20), along with supporting data. 

 

Figure 20: DHW Fault Summary output table 
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identifies the following fault conditions:  

“DHWR/DHWSErr” – Indicates possible recirculation pump reversal or mixing valve issue. 
This flag is raised if DHWR > DHWS for more than 10% of samples.  

Supporting data: “Pct DHWR>DHWS” column shows the actual percentage.  If nan 
appears, it indicates that one or more required data point is missing. 

“LowSetPtErr” – Indicates risk of legionella bacteria growth. This flag is raised if more than 
1% of days analyzed have a maximum HW < 140oF or maximum DHWS < 112oF. 

Supporting data:  

• 1st percentile values for the daily max value of HW and DHWS (“HW-Min, Daily 
Max”,  “DHWS-Min, Daily Max”) 

• The most recent tank temperature set-point value;  

• The percentage of days on which either the max HW or the max DHWS value was below 
the relevant threshold 

 “ScaldRiskErr” – Indicates potential scalding risk due to excessive DHWS temperature.  Flag 
is raised if more than 10% of DHWS sensor measurements exceed 130oF.  

Supporting data: 90th percentile DHWS shows the 90th percentile value for DHWS. If >130oF, 
flag is raised. 

 

“HighSetptErr” – Indicates potential to decrease DHW tank temperature set point to optimize 
system energy use: 

• For sites with a HW measurement: Raises a flag if >90% of HW measurements > 140oF 

• For sites with no HW measurement, indicating no mixing valve, a HighSetptErr flag 
occurs if >90% of DHWS measurement exceed 122 oF (low end of acceptable DHWS 
range + 10oF).  

“MixValveErr” – Indicates potential DHW mixing valve fault or high DHWS set point 
setting.   Raises a flag if a system has a mixing valve (i.e, HW is present) and >90% of DHWS 
measurements >122oF (low setpoint + 10 degrees). 

 

DHW Data Visualization 
Two to three plots are generated for each site as seen in Figure 21.  The third plot is generated 
only if an error is detected.  Note that the plot title summarizes results of the fault identification 
screen. 
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• Plot 1 - Time-series of the daily maximum value of HW, DHWS, and Tank Setpoint, as 
available.  

• Plot 2 - A box and whisker plot showing the range of values for (1) Daily Max HW and 
DHWS (used to identify low set-point faults) and (2) All HW and DHWS data points 
(used to evaluate high set-point faults and scald risk) . The box boundaries represent the 
25th and 75th percentile values; the whiskers represent the 5th and 95th percentile values. 

• Plot 3 –  A box and whisker plot to illustrate relationship between DHWS and DHWR. 
The relationship between DHWR and DHWS helps identify multiple faults, including 
recirculation pump reversal or a mixing valve issue. The tool only displays this figure if a 
fault is detected (i.e., DHWR > DHWS for more than 10% of samples). 

 

 

 

Figure 21: DHW fault detection data visualization 
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The tool also generates a table (see Figure 22) showing statistical distributions of the “daily 
max” values, with color coding indicating whether a data point is above/below the 
“LowSetptErr” threshold (112oF for DHWS, 140oF for HW). 

 

 
Figure 22: DHW analysis – statistical distribution report output table 

 

Quantification of Energy Savings from ECM Implementation 
Prior Energy Savings Estimates: NEI’s prior work on >100 multifamily buildings in 
Massachusetts11F

12 resulted in more than 80% of the sites realizing energy savings from remote 
monitoring and optimization, with those 80% realizing an average savings of 11% based on pre-
/post- utility bill analyses. Since that was the first iteration of implementing changes in the field, 
NEI generally had taken a more conservative approach to potential controls modifications to 
minimize potential complaint calls until it better understood how changes affected system 
performance. 

Modeled Energy Savings Estimates: As described in the Boiler Efficiency document submitted to 
DOE during BP1, the tool uses engineering models to estimate energy consumption for baseline 
and post-ECM cases.  First, the tool analyzes existing boiler performance data to derive 
additional variables used in the physics-based models to characterize system energy 
performance, such as boiler inlet temperatures as a function of Tout. With these models 
established, the tool then exercises the model for a typical mean year (TMY3) of weather data 
for both the baseline and ECM cases, where the ECM case includes changes to physical 
parameters (e.g., OAR curve parameters, (which, in turn, affect boiler efficiency), and when 

 
12 This pilot project was funded by the Massachusetts Clean Energy Center (MassCEC). As such data from these 
buildings may be referred to as MassCEC sites. 
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boilers are allowed to fire (WWSD temperatures, W-S lock-out dates)12F

13. The difference between 
the two cases equals the expected energy savings, assuming no other substantive changes. 

Updated OAR-Driven Energy Savings Model: The initial implementation of the energy savings 
described above modeled OAR-driven savings as a function of boiler efficiency while assuming 
that the building’s underlying heat load remains unchanged.  Such a model would apply for a 
building with perfectly controlled heat flow into the building.  A subsequent iteration sought 
quantified the effect of building overheating due to, for example, failed thermostatic valves (TV) 
that would result in uncontrolled heat flow into the building.  The magnitude of the losses 
associated with uncontrolled heat flow varies considerably as a function of the differential 
between the HTWS and outdoor temperature, so modifying HTWS set points can have a sizeable 
impact on building heat load.  Our initial implementation of the building loss model assumed 
fully controlled heat flow case (0% of TVs failed, i.e., best-case condition), and therefore 
systematically under-estimated savings. 

In practice, OAR-driven savings should fall somewhere between the controlled and uncontrolled 
cases.  The updated revision compares observed energy consumption relative to that predicted by 
the controlled and uncontrolled cases to determine where along the continuum from “fully 
controlled” to “fully uncontrolled” the system resides.   

Integration of downstream impact of Tout error + composite savings estimates: Updates account 
for the integrated impact of OAR curve modifications, warm weather shutdown (WWSD) set 
point modifications, and remediation of temperature sensor placement.   

Updated ECM Data Model: Ingests an Excel configuration file that specifies combinations of 
ECMs (OAR settings, WWSD settings, and temperature sensor placement) to evaluate the 
impact of remediation.  

 

Comparison of ECMs Identified Manually and by the Tool 
To evaluate the performance of the tool relative to manual analysis, an NEI analyst applied the 
tool to 19 sites to determine if the targeted faults existed. For each site, the analyst compiled the 
following information: 

• Faults identified by the tool and manual analysis; 

• Faults identified by the tool, not by manual analysis;  

• Faults not identified by the tool, identified by manual analysis, and 

• Time to complete analysis using the tool. 

 
13 Handling changes in Tout sensor placement is more involved, as described in the documentation submitted to 
DOE. 
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We then analyzed those outcomes, deriving the information summarized in  and  below. In some 
cases, the analyst was not able to come to a yes-no decision as to whether a fault exists, while in 
others the tool lacked sufficient data to perform an analysis; both count as “skip.”  

 

 

Figure 23: Summary of fault detected from manual analysis and the tool. Green equals agreement, gold 
disagreement, and yellow/peach unclear 

 

 

 

Figure 24: Alpha tool classification accuracy 

Overall, the tool and the prior evaluation agreed on 85% of the assessments (excluding skips), 
with the highest agreement found for Suboptimal/No OAR Curve and Tout Sensor faults. 

Site Suboptimal No Tout Suboptimal Excessive No No S/W High DHWS Suboptimal No Tout Suboptimal Excessive No No S/W High DHWS 
MassCEC Site 1 y n y n n n y n y n n n y
MassCEC Site 2 y n y n n n n y n y n n n n

MassCEC Site 3 y n y n n u y n y n y n
MassCEC Site 4 y n y y n n y y
MassCEC Site 5 y n y n n n n y n y y n n n
MassCEC Site 6 y n y u y n n y y y n
MassCEC Site 7 y n u y y n y y n y n n y
MassCEC Site 8 y n y y y y y y n y y y n
MassCEC Site 9 y n y y n n y y n y y n n y
MassCEC Site 10 y n y y y y n n n n y
MassCEC Site 11 y n y n n n y y n n n n y
MassCEC Site 12 y n y u n n y y n y n n y
MassCEC Site 13 y n y y n y y y n y y n y y
MassCEC Site 14 y n y n n y y y n y y y y y
MassCEC Site 15 y n y y n n n y n n n n y
MassCEC Site 16 y n u u n n n y n n y y
MassCEC Site 17 y n y n n n y y n n n n
MassCEC Site 18 y n n n n y y y n n n y
MassCEC Site 19 y n y n n y y y n y n n y
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Eliminating the less-mature High DHWS fault, 88% of non-skipped assessments agreed.13F

14  In 
general, we selected thresholds for faults that tend to flag sites for further investigation by the 
analyst if the data suggest that a fault may exist; consequently, we likely flag more false 
positives than if the tool were trying to yield the highest classification accuracy. In testing, false 
positives accounted for half of the disagreements between the tool and prior evaluations. 

 

Objective 2: Reduce analysis time by 80%+ relative to manual approaches  
NEI used a manual process to analyze data from monitored sites during its MassCEC project 
comprising >100 sites, reviewing data in SkySpark and entering key data points into a 
spreadsheet for evaluation. Although this process successfully identified the key faults discussed 
earlier, NEI found that  

• Manual analysis processes, the first of three steps to deliver an ECM, consumed an 
average of three (3) hours per site. This includes the time spent for data quality control 
(QC), to conduct the heating curve analysis and evaluate other potential faults, incurred 
each time a site is analyzed.  

• The second step of specifying a new heating curve and DHW settings required about one 
hour.  

• The final step of ECM completion, including identification of needed repairs, the 
implementation steps specific to the site and overall QC, takes about six (6) more hours. 
In total, the current processes take a total of about 10 hours/site, down from the 16-20 
hours/site indicated in the proposal. 

Using a locally stored file, a full site analysis comprising data QC and fault evaluation takes 
about three minutes on a laptop computer. The tool can run these analyses overnight or while the 
analyst completes other activities, meaning that the analysis primarily spends time reviewing the 
summary findings and associated plots and tables generated, evaluating data issues or unclear 
performance issues flagged, and deciding what ECMs and fixes to recommend to different 
property managers. Because the analyst can run the tool in the “background” with minimal 
effort, site analyses can be performed much more frequently than before (e.g., monthly versus 
once) for portfolios of sites, increasing the value of the tool and the energy savings realized 
(since suboptimal operations are flagged sooner). 

• FDD tool enables more savings by being able to run quickly/more often. Savings are 
constantly under attack of overrides 

• Identifying overrides closer to when they happen, and quickly identifying the date/time 
they happened allow for the most informed conversations with site staff, rather than 
thinking back further into the past. This increases trust, allows identification of other 

 
14 This analysis was completed using an earlier Alpha version of the FDD tool. Because there was insufficient time 
to repeat this analysis with later versions, it is worth noting that this may not represent the tool’s full capabilities. 
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issues within the building that can be fixed, and reinforces the benefit of having the 
monitoring more often.  

• Identifying the time frame where changes happen is a new feature which doesn’t exist 
within our manual analysis tool without iterations by the user 

 

The NEI analyst recorded the time it took to run complete analyses with the tool to analyze the 
performance of 19 existing buildings (see earlier discussion of Objective 1). On average, an 
analysis of a batch of five sites took about: 

• 10 minutes to configure and run the tool 

• 40 minutes to review the tool outputs. 

• or about 10 minutes per site.14F

15  

This represents a 94% reduction from the three hours required for the manual approach, 
exceeding our 80% reduction goal. 

 
Objective 3: Calculate weather-adjusted energy savings estimates that will be within ±20% 
of achieved energy savings, based on pre-ECM and post-ECM gas consumption data.  
As described in the discussion of Objective 1, we have developed a simple physics-based model 
that uses connected boiler system data to characterize the extent of overheating occurring in each 
building due to uncontrolled heat flow. The model also can be applied to predict the change 
annual space heating energy consumption from changes in OAR curve parameters.  

 

To validate the model, we applied this methodology to 19 different OAR curve and WWSD 
changes made at 12 different sites in Massachusetts15F

16 with boiler systems monitored using New 
Ecology’s Remote Monitoring & Optimization (ReMO) platform that acquired HTWS, HTWR, 
BFR, and Tout data (New Ecology 2023)16F

17. For more detail on data acquisition, please see Davey 
and Connelly 2018 New Ecology 2018. To avoid confounding factors, we limited our analyses to 
sites where the boilers only served space heating loads, i.e., they did not serve water heating 
loads.17F

18 For both cohorts, data were divided into “pre” and “post” periods that correspond to 

 
15 Similarly, end-to-end testing of the tool found that running and reviewing complete analyses for three sites took a 
total of 20 minutes. 
16 Located mainly – but not all –  in Greater Boston, the sites included masonry, concrete, and wood-frame buildings 
constructed between 1900 and 2002 with 15 to >150 units on three to 16 stories. Each building had at least two 
boiler that could serve space heating loads, with capacities ranging from a few to several hundred kBtuh.   
17 The surface-mounted temperature sensors for HTWS and HTWR were both installed in the boiler room, with 
HTWS typically located immediately downstream the heating water distribution pump(s) and HTWR downstream of 
the piping manifold (if any) that combined separate heating water loop returns. 
18 For boilers serving both space and water heating loads, we have developed data-driven techniques to disaggregate 
boiler energy consumption time series between space and water heating. 
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periods with different OAR curves. In all cases, we used the “pre” data to model the boiler plant 
and then apply the model to the “post” period actual weather to predict “post” period 
performance, ultimately comparing modeled (predicted) energy consumption to actual post-
ECM energy consumption.  Figure 25 below shows an example of multiple OAR curves derived 
from the connected boiler data (each data point shown is average temperature for an hour) for 
one site.  

 

Figure 25: Example of five OAR curves derived from connected boiler data for site 1020. The small points 
represent hourly data, the larger points averages for 5oF Tout bins 

Figure 26 presents pre and post hourly Qin data for another site, along with the ideal and 
uncontrolled curves for the pre and post OAR curves, as well as the average Qin  values 
(triangles) for the 5oF Tout bins.  
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Figure 26: Example of Qin  analysis for site 1020, showing pre and post data relative to controlled and 
uncontrolled heat flow cases 

Table 3 summarizes the OAR curve changes made to the boiler systems. 
 

Table 3: OAR curve parameters for the 19 changes evaluated at 12 sites. Format is: Tout /HTWS,max to Tout 
/HTWS,min. All temperatures in oF  

 Period  WWSD OAR Curve  

Site Pre Post Pre to Post Pre Post 

1020 2 0 65 to 65 8/156 to 64/117 12/150 to 68/109 

1020 3 2 70 to 65 0/169 to 64/119 8/156 to 64/117 

1020 4 3 70 to 70 16/172 to 63/124 0/169 to 64/119 

1020 4 0 70 to 65 16/172 to 63/124 12/150 to 68/109 

1007 1 0 83 to 75 10/180 to 70/120 10/170 to 65/115 

1023 1 0 70 to 62 11/136 to 60/120 10/140 to 60/101 

41 1 0 67 to 67 14/169 to 65/133 20/162 to 60/133 

41 2 1 70 to 67 34/169 to 67/142 14/169 to 65/133 

41 4 3 70 to 65 29/170 to 62/145 25/161 to 69/131 
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43 1 0 65 to 65 39/187 to 69/153  8/168 to 64/114 

1009 1 0 67 to 62 33/175 to 68/123 14/175 to 60/119 

1009 2 1 69 to 67 22/176 to 65 121 33/175 to 68/123 

1009 4 3 67 to 67 31/175 to 64/115 18/175 to 68/111 

1013 2 0 70 to 62 10/169 to 68/102 5/173 to 60/100 

1028 1 0 70 to 65 10/163 to 60/109 25/166 to 60/135 

55 2 1 65 to 61 39/151 to 67/138 14/170 to 60/115 

1016 1 0 None 10/169 to 60/124 2/162 to 61/117 

23 2 0 70 to 62 13/168 to 60/137 3/162 to 69/121 

24 2 1 70 to 65 15/166 to 63/124 35/165 to 61/120 

 

For the 19 different OAR changes, we modeled the expected energy savings using the following 
process: 

• Analyze boiler data from the “pre” period to calculate hourly space heating energy 
consumption. 

• Calculate the total boiler system gas input (HHV), Qgas,in, for each hour by summing the 
product of boiler firing rate (BFR) and boiler capacity for all boilers. 

• Estimate the average boiler efficiency for each boiler during each hour using a curve for 
η(HTWR,BFR) derived from Lochinvar (2019).  

• Calculate the hourly Qin  = Qgas,in,pre * η(HTWR,BFR)  

• Calculate the average Qin  for each 5oF Tout bin for the entire “pre” period 

• Estimate Tout,design; since the boiler plants analyzed were in Boston, MA and vicinity, 
we used Tout,design = 5oF.  

• Estimate Qin ,design from the hourly Qin  data in the vicinity of Tin,design. 

• Calculate the Qin ,contr and Qin ,uncontr heat flow curves using the respective equations 
above.  

• Calculate SC(Tout) for each 5oF Tout bin using the calculations described in Appendix C. 

 

We then applied the SC(Tout) factors calculated for the “pre” period with the pre and post HTWS 
values (Tout), i.e., HTWS,new and HTWS,old, to calculate dQin (Tout) and, hence, the expected 
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post space heating load and gas consumption, Qin ,post(Tout) and Qgas,in,post, taking into 
account the impact of OAR curve changes on both space heating loads and boiler efficiency. 
Finally, Qin ,post(Tout) is applied to local TMY Tout data to calculate the total expected boiler 
energy consumption for the entire “post” period.18F

19 At all sites, we used the HTWS(Tout) curves 
derived from the field data instead of those specified for the “pre” and “post” periods. 

For all sites, we calculated the following metrics: 

• “Modeled Savings”: Expected percent savings from OAR, WWSD, Tout sensor19F

20, and 
Summer-Winter Switch20F

21 based on TMY data. 

• “Observed Savings”: Actual savings observed, after applying adjustments to normalize 
bin frequency for pre- and post-ECM Qin -vs-temperature, based on TMY data. 

 

Table 4 and Figure 27 summarize the comparisons of the modeled (predicted) and observed 
(actual) savings. Although there is some scatter, the absolute values21F

22 of the modeled and 
observed savings are 12.8% and 11.3%, respectively, with an average absolute difference of 
4.3%.22F

23 For the 19 changes, the model predicted actual savings within ±5% for 13 of them and 
within ±10% for 16 of them. Taken together, these results strongly suggests that the new 
approach effectively models the energy impact of overheating from boiler systems due to 
uncontrolled heat flows and the impact of changing HTWS(Tout) on boiler energy consumption. 

Interestingly, there is not always a strong correlation between SC values and the magnitude of 
modeled savings.  This reflects that the magnitude of changes to OAR curve parameters also has 
a large impact on expected savings, e.g., the three sites with modeled savings exceeding 20% had 
larger changes in the OAR curve parameters. In addition, we calculated savings based on the 
actual Tout conditions during the post period. That is, the post period may include warmer or 
colder conditions than TMY conditions, which can substantially affect the savings period for that 
period.  Finally, the magnitude of WWSD changes – and their savings – varies appreciably. For 
these reasons, the typical annual savings from changing boiler control settings can vary 

 
19 Since sites often implemented changes to WWSD measures, we also modeled their energy impact; see Appendix. 
20 The Tout sensor was also moved at a few sites, which affects the Tout value used by the boiler system to 
determine HTWS(Tout); we took that into account. 
21 A summer-winter switch (SWS) locks out space heating functionality for a boiler system during a set time of the 
year, e.g., mid-June through mid-September. 
22 For cases with negative savings, typically due to an increase in OAR curve parameters, we calculated the absolute 
value of savings by effectively switching the pre and post case, i.e., savings = (% savings)/(1-% savings). 
23 Ignoring the outlier for site 41, between periods 4 and 3, the modeled and expected savings are 12.9% and 10.9%, 
respectively, with an average absolute difference of 3.8%. At site 41, Tout during period 4 was very warm; as a 
result, the impact of heat gains not captured by the model on total space conditioning loads increases as conduction 
and infiltration loads driven by ~Tin-Tout decreases. Specifically, 48% of the post-ECM samples are >62.5 oF, i.e., a 
Tout regime with very large savings from both OAR changes and WWSD changes. In short, the post period is not 
very representative of the entire space heating season. 
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appreciably from those shown; our analyses focused on evaluating the accuracy of the 
algorithms.  
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Table 4: Summary of Modeled and Observed Savings for OAR Changes at Different Sites. Negative Numbers 
Represent an Increase in Energy Consumption 

 Period Savings   

Site Pre Post Modeled Observed Difference SC 

1020 2 0 10.8% 5.6% 5.2% 0.75 

1020 3 2 9.5% -1.4% 10.9% 0.77 

1020 4 3 10.4% 11.7% -1.3% 0.69 

1020 4 0 16.9% 15.8% 1.1% 0.67 

1007 1 0 11.1% 1.8% 9.3% 0.83 

1023 1 0 12.4% -1.8% 14.2% 0.33 

41 1 0 5.3% 9.0% -3.7% 0.59 

41 2 1 22.5% 19.8% 2.7% 0.65 

41 4 3 12.3% 24.6% -12.3% 0.52 

43 1 0 27.4% 27.3% 0.1% 0.18 

1009 1 0 17.9% 12.9% 5.0% 0.57 

1009 2 1 -8.9% -2.1% -6.8% 0.68 

1009 4 3 2.7% 2.6% 0.1% 0.60 

1013 2 0 9.2% 10.7% -1.5% 0.82 

1028 1 0 20.7% 23.7% -3.0% 0.34 

55 2 1 14.0% 16.0% -2.0% 0.54 

1016 1 0 8.1% 9.3% -1.2% 0.32 

23 2 0 10.1% 12.7% -2.6% 0.65 

24 2 1 -15.1% -14.7% -0.4% 0.68 
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Figure 27: Comparison of modeled and observed savings percentages for the 19 OAR curve changes 

The absolute values of the predicted and actual savings were 12.8% and 11.3%, respectively, 
with an average absolute difference of 4.3%. For the 19 changes, the model predicted actual 
savings for 13 within ±5% and 16 within ±10%. This indicates that the new approach effectively 
models the energy impact of overheating from boiler systems due to uncontrolled heat flows and 
the impact of changing OAR curve parameters on energy consumption. 

 

Objective 4: Achieve <3 year payback period for boiler optimization.  
Simple payback period (SPP) equals the cost of providing boiler optimization divided by the cost 
savings from boiler optimization. We discuss each component of the SPP, followed by an SPP 
evaluation. 

Boiler Remote Monitoring and Optimization Costs 

Implementation incurs sensor and telecoms costs and labor costs for sensor deployment, ECM 
opportunity assessment, and field implementation of ECMs. The cost to a client for a basic 
installation, minus any energy-efficiency program incentives, was approximately $7,900 at the 
time of analysis. This cost includes all materials; labor for installation, configuration, and a 
single optimization analysis23F

24; written recommendations, settings optimization and identification 
of items needing repair24F

25. The cost also includes delivery of key alerts, such as ‘Not enough heat 
being delivered to the building’ for the duration of the three-year contract. 

 

 
24 After optimization of system settings, NEI enters the new settings into the database. A script flag and send internal 
alerts if the systems operate outside of those new settings. NEI staff makes inquires to determine the circumstances 
around the changes and determines the appropriate action going forward. 
25 Repairs are indicated in almost all deployments. An example of a frequent repair made is replacement and/or 
relocation and/or shielding of the system OA sensor. The contract fee excludes repairs, i.e., the client pays for 
repairs as needed (less any relevant EE program incentives). 
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Table 5: Representative Cost Breakdowns for a Three-year Deployment 

Process Stage Category Current 
Costs25F

26 
Target Cost 

Deployment Material Cost, $ $1,400 $1,400 

 Labor Cost, $ (@ $135/hour) $2,000 $2,000 

 Deployment Total $3,400 $3,400 

Monitoring Data/Cell Fees for Three Year $700 $700 

Analysis thru ECM Labor Cost, $ (@ $135/hour) $1,35026F

27 $540 

ECM Implementation Labor Cost, $ (@ $135/hour) $1,350 $1,350 

Overhead / Admin. 16% $1,100 $970 

 TOTAL COST $7,900 $6,960 

 

Simple Payback Period: We evaluated the space heating and DHW gas consumption of nine 
multi-family properties with 12 to 44 units. On average, they consumed just under $11,000 per 
year for space heating and $7,00027F

28 per year for DHW heating, respectively. Fifteen percent 
savings for both space and DHW heating yields about a 2.6-year SPP based on energy alone.  

 

Based on these findings at the time, coupled with the demonstrated ability for the tool to 
accurately identify ECMs that could collectively achieve 15% in savings, this objective’s 
criteria had been met. However, much has changed since then. 

 

It is very difficult to tell what the payback period would be if we were to attempt the same 
analysis today. This is primarily due to the uncertainty of the implementation cost. New Ecology, 
Inc. for example, is no longer installing its Remote Monitoring systems based on the DAQ spec 
that formed the basis of obtaining the data used in the project. Beginning during the COVID-19 
pandemic, supply chain issues led to several issues and challenges for the hardware stack used in 
the DAQ systems. Rising hardware and labor costs have certainly increased the base cost for 
installing and obtaining the data required to use the FDD tool. Given the testing we have already 
completed to demonstrate cost-effectiveness, we are confident that using the FDD tool to 
optimize a boiler system will remain cost-effective, should a data acquisition system already be 
in place on site. The cost of natural gas had also risen during the same time frame, therefore the 
increased savings in terms of costs could also mitigate some of the increase in base price28F

29.  The 

 
26 These costs were captured as part of the study in October 2021. 
27 As noted in the initial proposal to DOE, this represents a decrease from 16-20 hours/site to 10. 
28 Based on $1.20/therm. 
29 https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PRS_DMcf_a.htm 

https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PRS_DMcf_a.htm
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initial cost of data acquisition could be quite high, though a thorough analysis of existing 
commercially available DAQ systems was not within the scope of this project. 

Another factor is that the market has transformed rapidly in the years since this project was first 
conceived. Decarbonization and Electrification measures are now at the forefront of discussions 
with many multi-family building owners. Therefore, the previously conceived longevity of gas-
fired boilers may no longer be a valid assumption. With potential replacement of gas boilers on 
the horizon, the increased cost of data acquisition may not yield a payback period short enough 
to warrant implementation prior to electrification.  

One thing that is important to note and is relevant to evaluating a payback period, is the 
anticipated persistence of any ECM implementation. As discussed in the introduction, the 
heating and mechanical systems found in multi-family buildings tend to have a history of 
reactive maintenance. When making adjustments to an OAR heating curve that could alter the 
supply temperature of the radiators in conditioned spaces, there is a risk that reduced heat output 
would lead to tenant complaints thus resulting in an override of the optimized settings. 

Given that the primary data inputs for the FDD tool are sensors on the central heating plant 
equipment only, the heating curve analysis cannot account for actual space temperature 
conditions. To address that, we collected data from two buildings, using in-unit temperature data 
loggers to assess the effects of implementing the ECMs identified with the FDD tool. The 
findings from that study can be found in Appendix B. 
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Path Forward and Concluding Thoughts 
Throughout the development of the beta version of the FDD tool during Phase 2, we added many 
new features to the software. 

While the vast majority of the features for analyzing data collected on Heating and Domestic Hot 
Water systems with condensing gas boilers have been included, the recommendations for future 
improvements on this work can largely be broken down into three different categories:  

1. How the tool is accessed and used 

2. Where the data is sourced for running the tool 

3. What systems the tool can be used with 

 

Improving the user interface 
Currently, in its beta form, the FDD tool must be used by an engineer who is comfortable with 
setting up a software development environment and interacting to an extent with python code. In 
a commercially available tool, a graphical user interface should be developed that removes all 
visible code from the end-user. Additionally, the outputs of the tool, rather than being displayed 
on the same screen as the interface for running the tool, should be made available as a 
downloadable, formatted report – ideally in PDF and XLSX formats. 

The abovementioned improvements are based around the assumption that the primary use of the 
tool continues to be an occasional analysis of historical data collected for the purpose of 
compiling a scope of work for changes that should be made to improve the performance of a 
boiler system. This approach was initially developed as a result of the labor-intensive process to 
extract the necessary data from the DAQ system, clean the data, and analyze it. An ideal use for 
this tool, which can automate much of the process, may be to build it into a data acquisition 
system or monitoring tool. In this scenario, a software system could automate the process of 
loading new data into the tool, running with pre-set parameters on a scheduled basis, and a model 
could be trained to identify significant changes in the outputs. These changes could trigger an 
automated notification to a building owner or an engineer for review. This could allow earlier 
and targeted fault detection and/or incremental recommendations to a boiler’s heating curve. 

 

Opening up the data import system 
There are currently two primary data input streams for the FDD tool. The first is a direct 
connection the time-series SQL database that houses data collected by New Ecology’s ReMO 
system. Due to uncertainty in the long-term viability of the ReMO service, an alternative method 
was added, allowing the upload of formatted CSV files that could import data from any DAQ 
system with similar specifications. However, this requires a potential laborious effort on the part 
of the engineer to export and transform data into the appropriate CSV format. 
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Given that the system is already designed around multiple data import options, it can be easily 
modified to include additional data formats. For example, an importer designed to extract trend 
log data from Building Management Systems could be built that may allow engineers to leverage 
existing infrastructure to collect data rather than installing separate monitoring hardware. There 
are also other commercially available monitoring tools with sensor packages comparable to the 
system this FDD tool was designed to work with. Working with additional vendors could expand 
the reach of the tool. New Ecology is actively seeking partnerships to develop a commercial 
version of this tool that could be used in conjunction with other vendors’ hardware DAQ 
systems. 

 

Looking beyond boilers 
As referenced in the earlier discussion of Objective 4 and the payback period, we face the 
question: what is the role that a boiler optimization tool has in a world of rapid electrification and 
decarbonization? 

When we first embarked on this project, high efficiency condensing gas boilers were the most 
cost effective and carbon efficient way to serve the heating and domestic hot water needs of 
multi-family buildings. In the past five years, however, the landscape has shifted dramatically, 
and many more building owners are planning for electrification of their heating and domestic hot 
water systems, or already have transitioned to some form of a heat pump for space heating or hot 
water. It is inevitable therefore, that this tool will need to be updated to detect faults in other 
types of equipment while modeling energy consumption and savings potential from replacing 
boilers with heat pumps or using a heat pump in a dual-fuel system. This will, of course, require 
updates to the DAQ system. That being said, the use of the tool in its current version should 
prove valuable in properly sizing a new heat pump system to replace a heating or domestic host 
water boiler, and identifying ECMs that can help decarbonize a building over time on the path to 
electrification. 

The experience of New Ecology’s foray into producing, installing, and maintaining DAQ 
systems for the primary goal of boiler optimization has led to many lessons learned. One of the 
challenges New Ecology faced was that the primary selling point of advanced DAQ systems was 
related to facility maintenance and not necessarily to potential energy savings. This coupled with 
the fact that costs for implementing a real-time DAQ system have increased suggest that the 
future of this tool may rely on data collected from DAQ systems already installed to serve 
another purpose (i.e., on-board connected boilers, Building Management Systems, Connected 
Thermostat systems, etc.). 

There are several reasons a building owner or operator would choose to install such a system, not 
necessarily due to ECM implementation. For example, from New Ecology’s field work 
providing technical assistance to multi-family building owners and operators we have observed 
the following: 
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• Settings overrides happen all the time, on buildings that are ‘well-managed’ and those 
that are not. Overrides are observed both with active managers and absentee managers. 

• Since the beginning of this project, there has been a significant move to fewer 
maintenance personnel and more buildings managed per person. These personnel have 
less time to spend hands on with each building ‘listening’ and getting to know the issues. 

• The cost of mechanical equipment maintenance has gone up. Higher tech equipment 
requires more maintenance and a more specialized skillset. This is happening at the same 
time that maintenance budgets are being squeezed tighter. Having the detailed data gives 
the equipment a voice about the issues it is running into, allowing for smarter 
preventative maintenance and reduced no-heat or no-DHW calls while creating the 
opportunity for greater and more sophisticated remote management of boiler systems. 

This suggests the most likely path forward for the FDD tool we have developed is to develop 
partnerships with commercially deployed DAQ systems that meet the needs of multi-family 
building owners and operators. Through these partnerships, the FDD tool could be modified to 
run in the background, or an export stream of data could be made available to a technical 
assistance provider to run the FDD tool and provide ECM and savings reports. 
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Appendix A. FDD Tool Data Use Requirements 
 

This appendix elucidates tradeoffs between sensor instrumentation cost and FDD tool efficacy, 
with a goal of identifying cost-optimized sensor packages.   

The two primary drivers for sensor instrumentation cost that we investigated are: 

- Recommended sensor packages that balance FDD feature set vs cost 
- Sensor sample rate that balances FDD tool performance vs cost. 

 

In this document, we develop recommendations for two tiers of sensor package: a “minimum 
recommended package” that offers a lower-cost entry-level offering, and an “optimal 
recommended package” that offers a higher-cost, full-featured product offering. 

Recommended Sensor Packages 
An FDD toolset “feasibility matrix” is shown in Table 1-3: it summarizes the scope of feasible 
FDD analysis, based on the data available for a given plant type (DHW/Heating/Combination).  
As indicated, the scope and approach of the FDD analysis varies depending on plant type and 
data availability.  There are certain degenerate cases included in the table (e.g., no OAT or 
HTWS data available) for which there is insufficient data to perform meaningful diagnostics.  In 
addition, for several additional cases (C3, C4, D3), FDD performance is degraded so as not to 
justify investment.   

From the remaining options  - H1/H2, C1/C2, and D1/D2 - we have proposed a “minimum 
recommended sensor package” and an “optimal sensor package” for each plant type, as show in 
Table 1-1.  The resulting feasibility of downstream FDD toolsets is shown in Table 1-2, where 
“Y” indicates that the specified module is feasible; “Y*” indicates that it is feasible but 
performance is affected by the sensor package selection; and “N” indicates the test is infeasible.  
The ”optimal DHW” package, which includes a DHW Flow sensor to support estimation of 
piping energy loss and therefore energy savings estimates from DHW plant ECMs, has not been 
tested.  It is included here as a potential avenue for future investigation.   

Discussion of the motivating factors and impacts of sensor selection is included below.   
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Table 1-1 Downstream FDD analysis feasibility as a function of plant type and data availability  
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Table 1-6: Recommended Sensor Packages, by plant type 

Sensor Package TOUT WS 
SS
T 

HTW
S 

HTW
R 

Firing 
Rate 

HW
S 

HW
R 

DHW
S 

DHW
R 

HW 
DH
W 

Flow 

Heating - Min X X X          

Heating - Optimal X X X X X X       

Comb - Min X X X    X  X X X  

Comb - Optimal X X X X X X X X X X X  

DHW - Min X X       X X X  

DHW - Optimal X X       X X X X? 

 

 

Table 1-7: FDD Feasibility for sensor package selections.  “Y*” indicates that a given capability is feasible, but 
performance is affected by the sensor package selection. 

Sensor 
Pkg 

State 
Est 

Subopt
. 

Tout 

OAR 
Analysi

s 

WWSD 
/  

S-W 
Switch 

Boiler 
Cyclin

g 

DHW 
Setpt 

Mixin
g 

Valve 

Heatin
g 

Energy 
Savings 

DHW 
Priorit

y 

DHW 
Energy 
Savings 

Htg-Min Y* Y Y Y* N N/A N/A N N/A N/A 

Htg-Opt Y Y Y Y Y N/A N/A Y N/A N/A 

Comb-Min Y* Y Y Y* N Y Y N N N 

Comb-Opt Y Y Y Y Y Y Y Y Y TBD 

DHW-Min N/A N/A N/A N/A N/A Y Y N/A N/A N 

DHW-Opt N/A N/A N/A N/A N/A Y Y N/A N/A TBD 

 

Local Outdoor Air Temperature / Weather Station Outdoor Air Temperature (OAT):  The 
minimum viable sensor package should include BOTH a local OAT temperature measurement 
and weather data from the closest publicly available weather station. 

• Local OAT represents the control variable for the boiler’s outdoor air reset response. 
• Supplementing local OAT with weather station data  
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System Supply Temperature / HTWS + HTWR:  A minimum viable sensor package includes 
one of system supply temperature or HTWS, ideally system supply temperature.  An optimal 
sensor package includes system supply temperature, HTWS, and HTWR. 

 

• System supply temperature measurements show the temperature that the boiler is controlling to, 
so offers the best indication of the boiler’s response to outdoor air temperature.   

• Including HTWS in addition to system supply temperature provides an indication of the supply 
temperature delivered to the building, which can be used to help tune OAR curve settings. 

• HTWR (or more specifically, HTWS-HTWR) is used as part of energy savings calculations to 
estimate boiler thermal efficiency as a function of OAT, HTWS, and firing rate.  In general, 
changes in boiler efficiency represent a small fraction of pre- to post-ECM changes in energy 
consumption, so HTWR could theoretically be excluded from the optimal sensor package.  
However, the marginal cost of the additional point is minimal, so its inclusion is recommended. 

• In the absence of firing rate data, either SST or HTWS can be used in combination with OAT to 
implement state estimation for heating plants; or with OAT and HWS to implement state 
estimation for combination plants. 

 

HWS/HWR/DHW Pump State: A minimum viable package for combination plants includes 
HWS.  An optimal sensor package includes HWS and HWR for combination plants, and 
optionally could include DHW pump state. 

• HWS is required to disambiguate heating calls from DHW calls during combination plant state 
estimation.  Without HWS available, characterizing OAR and WWSD behavior is challenging 
because warm weather DHW calls pollute meaningful analysis of heating plant behavior.   

• DHW pump state can be used in lieu of HWS to identify DHW calls.  However, we found HWS 
temperature rise is an effective stand-in for DHW pump state, and is less costly to instrument.  

• The temperature differential between HWS and HWR is used to estimate DHW pump flow rate 
and, in turn, DHW load.  DHW load is used to (a) distinguish DHW energy from heating energy 
during energy savings calculations; and (b) flag issues with plants that do not implement a DHW 
priority mode. 

 

Firing Rate: An optimal sensor package includes firing rate (or equivalent boiler load) data from 
all boilers.  

The optimal version of state estimation for combination plants and heating plants uses firing rate 
data.  In the absence of firing rate, HTWS or SST temperature rise (in combination with HWS 
data for combination plants) can act as a reasonable proxy for identifying heating calls, but with 
some loss of performance.   

In general, the HTWS derivative method is effective at identifying representative time steps that 
occur during heating or DHW calls, but less effective at estimating plant run time, and not useful 
for estimating modulation levels.  Said another way, points identified by the HTWS derivative 
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method as being “ON” have a high probability of being ON; but points identified as “OFF” have 
a relatively high error rate, particularly during heat season.29F

30   

Excluding firing rate data has the following impact on FDD functionality: 

• State Estimation: Minor impact for heating and combination plants. 
• OAR Analysis is minimally affected by substitution of SST/HTWS for firing rate.  Estimating 

the OAR response from observed data only requires selection of a representative sample of points 
when the heating plant is active across a broad range of OAT conditions.   

• WWSD/S-W Switch analysis is feasible, but capability is moderately affected.  Rather than 
precisely estimate duty cycle as a function of outdoor temperature, as is feasible with firing rate 
available, the tool instead estimates “hours per day that the heating system is active”.  This 
provides an useful snapshot of how plant activity changes as a function of OAT, but with much 
less granularity and precision than is feasible with firing rate data. 

 

 
30 The reason for high error during heating season is that under high duty cycle conditions, HTWS temperature 
cycling may not be apparent.  As such, in the absence of observed cycling, the HTWS derivative method chooses a 
representative sample of points during cold weather conditions.  For OAR analysis, because HTWS does not exhibit 
cycling, these points will be reflective of the OAR response.  However, plant runtimes are not accurately 
characterized. 
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Figure 1-28: Example WWSD plots with and without firing rate data.  Left-side: WWSD visualization for plants 
with firing rate.  Right side: WWSD visualization for plants without firing rate.  Top Row: Plants with apparently 

effective WWSD controls; Bottom row: Plants without effective WWSD controls. 

• DHW Setpoint Analysis and Sub-optimal Tout are independent of firing rate data. 
• Boiler Cycling Analysis is not currently implemented without firing rate data. It is theoretically 

feasible to identify short cycling during moderate and warm-weather conditions using HTWS 
derivatives, but this has not been tested. 

• Energy Savings Analysis is not feasible without firing rate data.  Firing rate data is used to 
estimate building heat load as a function of outdoor air temperature.   

 

DHWR/DHWS/HW: An optimal sensor package includes DHWS, DHWR, and HW for sites 
with a mixing valve, and DHWR + DHWS for sites without a mixing valve.   

• DHWS and HW are used to identify potential mixing valve errors and high/low setpoint issues. 
• Including DHWR can help flag potential recirculation pump reversal or mixing valve issues and 

is minimal marginal cost once DHWS is included. 
• Tank setpoint is polled if available, but is not used to flag any fault conditions. 

 

DHW Pump Flow Rate: Estimating DHW energy savings potential by reduced piping loss 
requires an estimate of DHW demand, which in turn requires flow rate (in combination with 
DHW supply loop temperature delta, DHWS-DHWR).  This functionality is untested, but could 
be considered as part of a future sensor package.  
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Sensor Data Rates 
Overview 
As currently implemented, the FDD tool uses data collected at a 1-minute sample rate for 
analysis.  This sample rate imposes significant costs in terms of data bandwidth, data hosting, 
and downstream processing.   

While there is a real need for 1-minute sample rate data, these needs are constrained to a subset 
of FDD analyses and can theoretically be consolidated into a single upstream step of the data 
analysis pipeline.  In so doing, we can implement a two-stage data processing pipeline in which 
data is collected onsite at a 1-minute sample rate, undergoes an initial set of data analysis in near 
real-time, and then is down-sampled to a 1-hour data rate and posted to a cloud-hosted database 
for subsequent analysis by the FDD tool. 

To be compatible with the proposed two-stage workflow, we need to segregate data analysis into 
two stages, with the following requirements:  

- Stage 1 – Consumes 1-minute data.  Needs to be decoupled from and occur upstream of (i.e., 
prior to) any stage 2 calculations.  In addition, stage 1 data processing will have limited access to 
historical data: stage 1 should be designed to require no more than 24 hours of high-resolution 
data.  It can presumably rely on a limited amount of locally-accessible historical data – ideally 
this would be constrained to historical averages, etc, but it may be feasible to give access to 
down-sampled historical time-series data. 

- Stage 2  - Consumes and performs all analysis using 1-hour data.   
 

Table 1-3 audits the data resolution requirements of individual FDD tool modules as currently 
implemented.  These requirements are discussed in detail in the following section.   
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Table 1-8: Data Resolution requirements for FDD tool modules 

FDD Module Sample Rate Requirements 

Data QC Requires 1-min data 

State Estimation Requires 1-min data with at least 2-hours of historical 
context.  Requires historical metrics to identify HTWS 
temperature rise threshold and minimum active HTWS 
threshold if firing rate data is not available. 

Suboptimal Tout Uses 60-min data.  Weather station only available with 60-
min time step, so faster is not feasible. 

OAR Analysis Uses 60-min data after dropping points where heating_on 
is False.  

WWSD /  
S-W Switch 

By default uses 1-min data, but has a flag (use_hourly) to 
use 60 min data with minimal impact 

Boiler Analysis - Short Cycling Requires 1-min data to calculate boiler turn-ons per hour; 
uses 60-min data for all subsequent calculations 

Boiler Analysis - Firing Rate vs OAT Requires 1-min data for visualization of firing rate vs OAT.  
Could feasibly be replaced with  

DHW Setpoint & Mixing Valve Currently uses 1-min data to characterize min/max DHWS 
and HW quantiles.  Using 1-hour data reduces the impact of 
outlying points on the analysis, but effect appears relatively 
minor.  Alternatively, metrics could be modified to   keep 
current approach.  Need to investigate DHWR>DHWS error 
for 1-min vs 1-hr case. 

Heating Energy Savings As implemented, uses 1-min data to estimate boiler 
efficiency as f(OAT, HTWS, HTWR, firing rate), but 
resamples to 60-min for all calculations downstream of 
this.  Combination plant analysis requires explicitly de-
coupling and pre-calculating heating-associated energy and 
firing rates from DHW-associated energy and firing rate, 
with methodology varying depending on DHW plant 
configuration.  Efficiency and energy calculations could 
occur as part of a real-time down-sample. 

DHW Priority DHW pump flow rate requires a list of standalone DHW call 
energy use using two different estimation methodologies, 
calculated from high-rate data.  Also requires calculation of 
DHW and heating loads from high-rate data.  Subsequent 
calculations feasible with 1-hr time step. 
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Appendix B. Analysis of Indoor Temperatures as a 
Function of OAR Curve Changes at Two Buildings 
 

Introduction 
Prior field testing and modeling demonstrated that the greatest energy savings from outdoor air 
reset (OAR) curve adjustments that decrease HTWS are generated from reducing uncontrolled 
heat flows from thermal distribution units (TDUs, i.e., radiators and convectors) that overheat 
rooms. The higher-than-intended Tin effectively increases space heating loads and, thus, space 
heating energy consumption. Our heat transfer modeling shows that uncontrolled heat flow 
scales with HTWS- Tout, which explains why decreases in HTWS can realize significant 
decreases in space heating energy consumption – but only if a building has a large portion of 
heat transfer surfaces with uncontrolled heat flow. Earlier work (e.g., Hewlett and Peterson 
1984) showed that Tin measured in the corridors of multifamily buildings could decrease by 
several oF when HTWS was decreased, and we endeavored to make similar measurements to 
explicitly link changes to HTWS to changes to Tin.  

Toward that end, during the 2022-23 heating season NEI deployed extended memory Onset 
HOBO T+rH data loggers in units of four multifamily buildings where they also implemented 
OAR curve changes (i.e., HTWS[Tout]). No other efficiency measures were implemented over 
the course of the winter. Due to data acquisition configuration problems, viable data sets were 
only collected for two sites both before and after the OAR curve changes and one site had a very 
limited number (three) of loggers deployed.  

The table below summarizes the OAR parameters for the periods before (A) and after (B) the 
OAR curve changes at the two buildings; data were collected each minute. At both buildings, 
HTWS(Tout) was 10oF higher in Period B than in Period A; thus, the model would predict higher 
Tin values during Period B in spaces with uncontrolled heat flows. 

Table 9: OAR curve parameters for periods A and B 

 Period A Period A Period A Period B Period B Period B 

Building HTWS,max 
/ Tout,min 

HTWS,min 
/ Tout,max 

SH1 
Setpoint 

HTWS,max 
/ Tout,min 

HTWS,min 
/ Tout,max 

SH1 
Setpoint 

#1 180/15 125/65 175 190/15 135/65 185 

#2 165/10 115/70 185 175/10 125/70 180 
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Findings 
Since the average outdoor air temperatures at the two sites were very similar during the two 
periods, ~37-38oF, we looked at the average Tin values in the monitored spaces to evaluate if 
there were appreciable differences between the two periods. The two tables below summarize the 
findings for the two buildings. 

Table 10: Building #1 average Tin measurements for Periods A and B, all in oF (Tout,averages: A=37.5, 
B=37.3) 

Unit (Floor) Period A 

12/3/22-
1/22/23 

Period B 

1/24/23-
3/21/23 

dT Notes 

Unit A (2) 68.3  68.7  0.5   

Unit B (3) N/A   N/A  N/A  Data through 1/8/23 

Unit C (3) 75.4  71.9   (3.5) Data through 
3/17/23 

Unit D (4) 80.8  80.8  0.0   

Unit E (5) 81.2  80.8   (0.4)  

Unit F (5) 67.7  66.7   (1.0)  

Unit G (6) 72.8  75.1  2.4   

Unit H (7) 65.7  74.2  8.5   

Unit I (7) 68.9  69.6  0.7   

Average 72.6  73.5  0.9   

 

Table 11: Building # Tin data for Periods A and B, all in °F (Tout averages: A=37.1, B=38.5) 

Unit # 
(Floor) 

Period A 

12/6/22-
1/22/23 

Period B 

1/24/23-
4/3/23 

dTin 

Unit A 
(1) 

77.1  77.7  0.7  

Unit B 
(1) 

71.1  73.2  2.2  

Unit C 
(2) 

72.2  73.4  1.2  
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Average 73.4  74.8  1.3  

 

As would be expected if there were a nontrivial degree of uncontrolled heat flow in the 
buildings, the Tin averaged among the monitored spaces was about 1oF higher in the period with 
the higher HTWS(Tout ), Period B.  

We can use the Tin and Tout  measurements, along with an estimate for the balance temperature, 
Tbal (e.g., 10oF less than Tin), to quantify the approximate energy impact of the change in Tin. The 
space heating load, Qin, is proportional to (Tbal – Tout ). Assuming that Tbal = Tin – 10oF, the 
increases in Tin measured for Buildings 1 and 2 would increase the space heating loads in Period 
B by approximately 3.6% and 5.3% relative those expected given Tout  in Period B. 

Table 4: Comparison of Building 1 and 2 Change in Space Heating Loads  

Building Tin,avg – 
Period A and B 

dTin Expected % 
Change in Space 
Heating Loads 

Building #1 72.6 -> 73.5 0.9 3.6% 

Building #2 73.4 -> 74.8 1.3 5.1% 

 

NEI did not collect connected boiler performance data concurrently with the T/rH that would 
allow quantification of the extent of overheating and the actual change in Qin 30F

31 versus Tout  for 
each site. However, the room-level data may allow us to determine if the TDUs in a particular 
unit exhibited evidence of uncontrolled heat flows. 

The Figure below shows Tin data for Unit A of Building #2. Tin appears to have somewhat 
greater variability during the first period (with lower HTWS), exhibiting periodic spikes. 
Interestingly, Tin approached 95oF late during the evening of February 4th when Tout ~13oF, 
toward the end of a historically cold (Tout ,min = -9oF) polar vortex event on February 3rd and 4th 
of 2023. Unit C also experienced large swings in Tin, including during the same event (e.g., from 
~70oF in the morning to 84oF around 1PM).  

 
31 Based on multiplying the boiler firing rate data by estimated boiler efficiency. 
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In contrast, the unit with the greatest increase in Tin experienced much smaller Tin swings, 
including during the polar vortex event on February 3rd and 4th (see below). There was no clear 
pattern for how Tin varied as a function of Tout  at Building #2. 

 

Looking at the unit-level data for Building #1, the data for Unit D show appreciable variability, 
although the average Tin values did not change between periods. Note that the HDUs had plenty 
of capacity during the early February polar vortex, with average Tin on those days exceeding 
80oF. 
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Unit A also had a smaller (~0.5oF) dTin between the periods but a much lower average Tin, ~68-
69oF. 

 

In contrast to Unit D, during the polar vortex Tin in Unit A dropped just below 60oF for much of 
the day, but then recovered. This could be consistent with either an inability of the heating 
system to keep up under the extreme cold conditions or an increase in the set-point temperature 
that afternoon. 
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Despite having much higher average Tin values (~80oF), Unit E (below) also had a small (0.4oF) 
dTin between periods A and B and low levels of Tin variability. During the polar vortex, Tin 
dropped to ~75oF. Taken together, it appears that this unit had effective Tin control but could not 
quite keep up with Tin expectations during the extreme cold of February 4th.  

 

 

For another unit on the same floor, Unit F (below), the Tin values showed appreciably more 
variability, albeit around a much lower (~67oF) average temperature. During the polar vortex, Tin 
fell below 60oF during the coldest part of the day (before noon) but recovered to its ~typical 
range sooner than in other units. 
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We also examined Unit H, which exhibited the greatest (~8.5oF) increase in the average Tin when 
HTWS was increased during period B, as the very large dTin suggests it had a high degree of 
uncontrolled heat flow.  

 

Surprisingly, the increase in Tin did not coincide with the OAR curve parameter changes 
(implemented on 1/23/23) but occurred later, i.e., Tin average rose from ~65oF on 2/6/23 to 
>77oF on 2/10/23. Later, the daily average Tin rose from ~72oF on 3/5/23 to ~86oF on 3/8/23. 
These significant jumps in Tin suggest two potential scenarios: 1) changes to in-unit TDU 
control; and/or 2) uncontrolled heat flow and deviations from the planned OAR curve change. 
For example, the ~flat average Tin after the 1/23/23 OAR curve change indicates effective HDU 
regulation or that the OAR curve was not fully implemented, while the large Tin increases noted 
in early February and March would be consistent with uncontrolled heat flow combined with 
unrecorded changes in OAR curve parameters and/or set-point changes reflecting a change in 
comfort preferences or tenants.  

Unit H was located on the top (seventh) floor of the building, so perhaps roof-driven heat 
transfer affected Tin. However, another unit on the same floor (Unit I) showed a much smaller 
change in Tin (~0.7oF) and variability in Tin: 
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Finally, we examined the Tin behavior in Unit C, the one unit in Building #1 that experienced a 
significant Tin (3.5oF) decrease in period B. Given that increases in HTWS(Tout ) should increase 
uncontrolled heat flows while controlled heat flows should not change, we found this change 
surprising. The Tin data suggest smaller (1-2oF) variations in Tin around a ~75oF set point until 
~mid January, i.e., well before the OAR curve change. After then, much larger (up to ~10oF) 
swings in Tin occur and the average Tin decreases. While the decrease in Tin ( Tout ) would be 
consistent with better control of heat flows, the large increase in Tin variability is not. Potential 
explanations include significant changes in Tin preferences occurred in mid-January (e.g., change 
in occupancy), a change in HDU effectiveness (e.g., from inhabitant’s belongings), and/or a 
change in thermostat effectiveness (e.g., thermostat exposed to solar heat gains). 

 

Taken together, these measurements indicate that a random sample of Tin measurements from a 
small portion of units in a multi-family building cannot provide much insight into TDU 
regulation and boiler system performance. That is, there are several reasons why changes in Tin 
could occur that cannot be readily understood without additional context. As demonstrated in the 
energy savings analysis, our methodology to analyze connected boiler data provides much more 
insight into boiler system performance and the degree of uncontrolled heat flow in a building. 
Nonetheless, unit-level Tin data do provide crucial insights into actual comfort conditions, which 
can certainly help optimize OAR curve parameters while maintaining comfort. 
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If it is not possible to monitor Tin in most units, we recommend sampling Tin data from a larger 
portion of units and/or measuring Tin in common spaces, e.g., central corridors, that would tend 
to average Tin for a given floor. 
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Appendix C: A Physics-based Model for Hydronic Heat 
Transfer31F

32 
 

The fundamental problem with the existing approaches to quantifying the expected energy 
savings from changes to the OAR curve is that they do not take into account the actual control of 
boiler distribution systems in a specific building, i.e., the extent of uncontrolled heat flow-driven 
overheating that occurs. To address this, we developed a basic model for heat transfer from the 
hydronic distribution loop to indoor spaces and how heat distribution unit (HDU) control – or the 
lack thereof – impacts effective space heating loads and boiler energy consumption. Figure 4 
shows the basic model for heat transfer to and from a hydronically heated room. 

 

 

Figure 4: Conceptual model of room heat transfer with boiler system and outdoors. 

Heat transfer from the heating loop to the space, Qin, equals: 

𝑄𝑄𝑄𝑄𝑄𝑄 ≃ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����������� − 𝑇𝑇𝑇𝑇𝑇𝑇)𝑉𝑉𝑉𝑉𝑉𝑉           (1) 

 

where the variables are: 

• HTWS: Heating loop supply water temperature, i.e., temperature entering the 
radiator/convector (from now on referred to as a heat distributing unit, or HDU). 

• HTWR: Heating loop return water temperature, i.e., temperature leaving the HDU.  
• 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�����������: The average of HTWS and HTWR, i.e., 0.5*(HTWS + HTWR) 

 
32 This appendix is an excerpt from Roth and Kromer 2024. 
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• Tin: Room temperature. 
• UAin: the overall heat transfer coefficient for an HDU, which varies as a function of 

HTWS and Tin. 
• VRT is the % of time the thermostatic valve (TV) is open. 
 

A heat balance on the fluid flowing through the HDU shows that the change in flow thermal 
energy equals the heat transferred to the space; here, m equals the water mass flow and cp the 
water thermal capacitance: 

𝑚𝑚𝑐𝑐 𝑝𝑝(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) =  𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����������� − 𝑇𝑇𝑇𝑇𝑇𝑇)      (2) 
 

Similarly, the overall heat balance for the room equals: 

𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐻𝐻𝐻𝐻 = 𝑈𝑈𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜(𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)        (3) 
 

where HG equals internal plus solar heat gains while UAout is the overall heat transfer coefficient 
from the building to the outdoors from conduction, radiation, and infiltration.32F

33 When Qin = 0, 
i.e., when Tout equals the balance temperature, Tbal, at the indoor design temperature, 
Tin,design:  

𝐻𝐻𝐻𝐻 = 𝑈𝑈𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜  (𝑇𝑇𝑇𝑇𝑇𝑇, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)       (4) 
 

At Tbal, internal and solar heat gains exactly balance heat losses from conduction and 
convection, i.e., space heating is required below Tbal.33F

34 

Once values for some variables are known or estimated, we can solve for the other variables. For 
example, if we can estimate Tin,design, Tbal, and UA,out, and assume VRT = 100% at design 
conditions, we can solve for UA,in (at design conditions) and m: 

 

𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 =  𝑈𝑈𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)�������������������������������−𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

        (5) 

 

𝑚𝑚𝑐𝑐𝑝𝑝 =  𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)�������������������������������−𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)�������������������������������        (6) 

 

 
33 This basic HDD formulation (i.e., PRISM) for space heating loads lumps conduction and infiltration heat losses 
into a single UA term, assuming both conduction and infiltration vary linearly with Tin – Tout. Actual building 
infiltration tends to exhibit appreciable nonlinearity, with an average exponent of ~0.65 (ASHRAE 2023).  
34 In practice, Tbal can vary appreciably depending on the actual SHGs experienced by a building, as well as with 
nonlinear wind-driven infiltration. 
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The temperature difference for the water flowing through the HDU, dT, at other conditions 
equals: 

 

𝑑𝑑𝑑𝑑(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑇𝑇𝑇𝑇𝑇𝑇) = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≅ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]−𝑇𝑇𝑇𝑇𝑇𝑇)

(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛
𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (7). 

 
The last term takes into account that HDU output scales with (HTWS-Tin)n, so UAin scales with 
(HTWS – Tin)n-1, where n depends on the type of HDU. Based on ASHRAE (2020), n = 1.31 for 
baseboard units (1.375 for SlantFin products) and 1.2 for cast-iron radiators. Although Tin 
decreases as HTWS decreases (assuming VRT is constant), the change in Tin is typically small 
relative to that in HTWS (see subsequent discussion).  

To model how boilers can inadvertently overheat spaces, we next discuss system performance 
with controlled and uncontrolled heat transfer from the boiler distribution system to the room.  

Well Controlled Case 
Thermostatic valves (TVs) regulate heat flow from the boiler supply loop to rooms that shut off 
water flow through the HDU when the room achieves34F

35 its target temperature set-point, Tset. 
That is, TV should turn on and off the valve such that Tin ~equals Tset. In that case, for any 
HTWS and HTWR, the space heating load, Qload, and the controlled Qin, Qin,contr, both 
decrease linearly from the heating load at Tout,design, Qin(Tout,design), to Tbal: 

 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄𝑄𝑄, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑈𝑈𝑈𝑈, 𝑜𝑜𝑜𝑜𝑜𝑜(𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) − 𝐻𝐻𝐻𝐻 = 𝑈𝑈𝑈𝑈, 𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 

                                         = 𝑄𝑄𝑄𝑄𝑄𝑄 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ∗  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

     (8) 

Uncontrolled Case 
If the TV does not modulate effectively to control heat flow to the space, e.g., if the TV is stuck 
open, the dynamics change appreciably as the heat flows continuously from the boiler system 
into the room, i.e., VRT = 1.0 under all conditions. Since Tin is no longer controlled, it increases 
to an equilibrium temperature, Tin,eq, where the heat flows balance: 

 

𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐻𝐻𝐻𝐻 = 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 + 𝐻𝐻𝐻𝐻 = 𝑈𝑈𝑈𝑈, 𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇𝑇𝑇𝑇𝑇, 𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)    (9) 

 

 
35 Or, in the case of thermostats with anticipation action, approaches Tset. 
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Qin now equals the uncontrolled heat input into the space, Qin,uncontr, which is proportional to 
the difference between 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����������� and Tout: 

 

𝑄𝑄𝑄𝑄𝑄𝑄, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑈𝑈𝑈𝑈, 𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇𝑇𝑇𝑇𝑇, 𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) − 𝐻𝐻𝐻𝐻.    (10) 

 

Viewed another way, in the uncontrolled case heat transfer from the HDU at 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����������� to the 
outdoors at Tout occurs through two heat transfer resistances, 1/UAin and 1/UAout. The total UA, 
UA,tot, equals: 

 

𝑈𝑈𝑈𝑈, 𝑡𝑡𝑡𝑡𝑡𝑡 = 1
𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

+ 1
𝑈𝑈𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜

         (11) 

 

Consequently, Qin,uncontr is approximately proportional to the difference between HTWS and 
Tout:  

 

𝑄𝑄𝑄𝑄𝑄𝑄, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∼ 𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 𝐶𝐶𝑇𝑇𝑇𝑇.      (12) 

 

Here, the CTV factor takes into account how UA,in varies as a function of the difference between 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����������� and Tin,eq (see prior discussion and Appendix A). This expression neglects both 
internal heat gain and the reality that heat transfer between the HDU and Tin,eq occurs at 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�������������36. As shown later, these simplifications do not appear to have a significant impact on 
the accuracy of data-driven assessments of the degree of overheating from uncontrolled heat 
flows for a specific boiler system or the predicted energy savings from decreasing HTWS. If we 
assume that the HDUs would just meet the design heat load as design conditions, i.e., when Tout 
= Tout,design and Tin(Tout,design) =Tin,design, VRT(Tin,design) = 100%, then Qin,uncontr is 
also approximately proportional to Qin,design: 

 

𝑄𝑄𝑄𝑄𝑄𝑄, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ≅ 𝑄𝑄𝑄𝑄𝑄𝑄,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐶𝐶𝑇𝑇𝑇𝑇   (13) 

 
36 Although hydronic systems are often designed for dT~20oF, field data collected by New Ecology for >100 
multifamily buildings found that dT did not approach that value for most boiler systems.  
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We can also solve the energy balance and dT(HTWS,Tin) equations simultaneously to obtain 
Tin,eq, where UAin,design and UAin,new  are calculated for the HDU at the design and new HTWS 
values: 

 

𝑇𝑇𝑇𝑇𝑇𝑇, 𝑒𝑒𝑒𝑒 =  
𝑈𝑈𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐻𝐻𝐻𝐻+

𝑚𝑚𝑚𝑚𝑚𝑚 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑑𝑑𝑑𝑑�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛
�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑− 𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�𝑈𝑈𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜+
𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛
�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑− 𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�
    (14) 

 

Unsurprisingly, a perpetually open TV can significantly increase indoor temperatures. Figure 5 
shows Tin,eq as a function of Tout based on this methodology based on the following 
assumptions: Tdesign = 0oF; Tset,design = 75oF Tout; VRT(Tout,design)=100% (for the 
controlled case); HG = 10oF and a HTWS reset curve of (10,180) and (60,120).36F

37 In that case, 
our model shows the building experiences significant overheating, with the expected Tin,eq often 
exceeding 80oF. Heat transfer from the room to the outdoors, which scales with Tin-Tout, 
increases, so effective space heating loads do as well. 

 

 

Figure 5: Example of modeled Tin and boiler output (Qin) as a function of Tout for three 
control scenarios: TV Works, No TV (= failed TV), No TV + Window Open.   

Elevated Tin,eq makes it more likely that inhabitants will open windows to moderate Tin, which 
increases UAout and UAtot for the entire system. We can estimate the increase in UAout by 

 
37 The first term of the reset curve parameters specifies Tout (10oF) when HTWS reaches its maximum value 
(180oF) while the second specifies the Tout (60oF) when HTWS reaches its minimum value (120oF).  
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assuming people would operate windows to achieve a maximum, marginally acceptable indoor 
temperature, Tin,max, In that case, the window-controlled Tin, Tin,cont, equals:  

 

Tin,cont = MIN (Tin,equ , Tin,max).        (15) 

 

Since Tin is now fixed and VRT = 100%, we can readily solve for dT and then UAout,new from a 
room energy balance:  

 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻−𝑇𝑇𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛
𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

     (16) 

 

𝑈𝑈𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑+𝐻𝐻𝐻𝐻
(𝑇𝑇𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)        (17) 

 

Calculations made for UAout,new indicate that UAout increases ~10-15% when Tout ~25-30oF, and 
by >40% when Tout is 50oF relative to the windows closed case. 

Estimating the Fraction of Controlled and Uncontrolled Heating Energy Consumption 
As shown, uncontrolled heat flow can greatly increase Tin, effective building loads, and boiler 
energy consumption. We now present an approach that uses data from connected boilers to 
estimate the degree of overheating occurring in a building. Connected boilers acquire a range of 
time-series data about boiler performance, such as boiler firing rates (BFR), outlet and return 
temperatures, status and error codes, etc. and communicate it to the cloud. Building operators can 
then access those data remotely (see Lochinvar 2023). We use the 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�����������, FiringRate, and Tout 
data from connected boilers to evaluate the degree of overheating occurring for a specific boiler 
system. 

As shown earlier, a building with well-regulated heat flows from the boiler system will result in 
space-heating loads that decrease approximately linearly from Tout,design to Tbal. In contrast, 
space heating loads in buildings with uncontrolled Tin regulation will scale with (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����������� – 
Tout), with an abrupt drop-off around the warm-weather shut-down (WWSD) temperature (when 
the system automatically locks out the boiler from firing). Thus, we can analyze the shape of 
the boiler gas consumption (derived from BFR data) versus Tout curve to identify systems 
that have appreciable overheating. Specifically, we expect boiler plants with Load (= Qin * 
η) vs. Tout slopes that scale with (𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯����������� –Tout) and do not converge to negligible 
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average BFR (i.e., negligible space-heating gas consumption) at Tbal (e.g., around ~55-
65oF) indicate significant overheating. 

Uncontrolled heat flow yields a gas consumption vs. Tout curve similar to that shown in Figure 2 
from Hewett and Peterson (1984), who reported Tin values in many buildings they investigated 
ranging from the mid-70s to mid-80s, indicative of significant overheating relative to typical 
design temperatures and likely window opening. 

In practice, many buildings have a mix of controlled and uncontrolled heat flow from HDUs. 
Then, the actual Qin to the building, Qin,actual, equals the product of the controlled and 
uncontrolled cases with the fraction of HDU UA associated with each case, where SC equals the 
fraction of HDUs with well-controlled heat flow. 

 

𝑄𝑄𝑄𝑄𝑄𝑄, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑆𝑆 ∗ 𝑄𝑄𝑄𝑄𝑄𝑄, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + (1 − 𝑆𝑆𝑆𝑆)𝑄𝑄𝑄𝑄𝑄𝑄,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)  (18) 

 

Figure 6 show conceptually to apply these basic models to estimate the actual extent and energy 
impact of overheating in a building by comparing actual average hourly heating loads at different 
Tout values to the fully controlled and uncontrolled cases. As in Figure 2, the upper red line 
represents the Qin(Tout) curve for the uncontrolled case, the lower green curve the controlled 
case, and the middle blue line a curve for an actual boiler system with some fraction of 
uncontrolled heat flow, SC(Tout). As noted earlier, this assumes that the controlled (i.e., ideal) 
and uncontrolled curves converge at Tout,design, i.e., that the HDU TVs are always fully open to 
attain Tin,design at Tout,design. For the analysis that follows, this is likely a conservative 
assumption for many buildings that have spare boiler and HDU capacity at design conditions. 
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Figure 6: Conceptual diagram of boiler Qin versus Tout curves for ideal HDU control and 
uncontrolled HDUs, with an example of an actual boiler system with uncontrolled heat flow in 
~60% of spaces. 

Modeling Energy Impact of Uncontrolled Heating Energy Consumption and OAR Curve 
Changes 
Using BFR and HTWS data from connected boilers and Tout weather data, we can assess 
SC(Tout) for each 5oF Tout bin by calculating the difference between Qin,actual and 
Qin,ideal(Tout) divided by the difference between Qin,uncontr(Tout) and Qin,contr(Tout) given 
the boiler system’s HTWS(Tout): 

 

𝑆𝑆𝑆𝑆(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) =  𝑄𝑄𝑄𝑄𝑄𝑄,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)− 𝑄𝑄𝑄𝑄𝑄𝑄,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
𝑄𝑄𝑄𝑄𝑄𝑄,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑄𝑄𝑄𝑄𝑄𝑄,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

       (19) 

 

We can then calculate Qin for any conditions: 

 

𝑄𝑄𝑄𝑄𝑄𝑄(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑄𝑄𝑄𝑄𝑄𝑄(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) � 𝑆𝑆𝑆𝑆∗𝐶𝐶𝑇𝑇𝑇𝑇∗ (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ (1−𝑆𝑆𝑆𝑆) (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 �   

           (20) 

 

We can use this expression to model and predict the energy impact of changes to the OAR curve 
parameters, i.e., HTWS(Tout). Crucially, changes in HTWS(Tout) only result in savings from 
reducing overheating in portions of the distribution system with uncontrolled heat flows, as 
system portions with well-controlled heat flows effectively modulate Qin as loads change.37F

38 
Consequently, systems with load curves closer to the uncontrolled case can achieve significant 
overheating/load-related savings, as decreasing HTWS directly decreases Qin for uncontrolled 
flows. In contrast, systems with load curves closer to the controlled case will realize smaller 
savings from the same OAR curves, since a smaller portion of the heat distribution is 
uncontrolled. Figure 7 show an example of this approach applied to two OAR curves, with Tbal 
= 60oF and SC = 0.59; the actual SC would be calculated using BFR data. 

 

 
38 In the extreme case where heat flow is perfectly controlled, the savings from modifying the HTWS curve are 
driven entirely by nominal changes in boiler efficiency as a function of temperature and firing rate. 
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Figure 7: Modeled example of how lowering HTWS (Tout; left) decreases Qin,uncontr(Tout), 
shown relative to ideal (controlled) case (right). 

Assuming the portion of the system with uncontrolled heat flows does not change when 
HTWS(Tout) changes, e.g., due to window opening, we can estimate the reduction in space-
heating heat into the building from changes in HTWS for each Tout bin, dQin(Tout), and the 
percentage change in Qin, OAR,save,load (Tout), taking into account changes in CtV: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) =
𝑆𝑆𝑆𝑆∗ 𝑄𝑄𝑄𝑄𝑄𝑄 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∗ �𝐶𝐶𝑇𝑇𝑇𝑇,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)− 𝐶𝐶𝑇𝑇𝑇𝑇,𝑛𝑛𝑛𝑛𝑛𝑛 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)  �

(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
   (21) 

 

%𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) =
𝑆𝑆𝑆𝑆∗ �𝐶𝐶𝑇𝑇𝑇𝑇,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) −𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)− 𝐶𝐶𝑇𝑇𝑇𝑇,𝑛𝑛𝑛𝑛𝑛𝑛 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)  �

(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∗ �
𝑆𝑆𝑆𝑆∗ 𝐶𝐶𝑇𝑇𝑇𝑇,𝑜𝑜𝑜𝑜𝑜𝑜 �𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 

(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  + (1−𝑆𝑆𝑆𝑆)� 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��

  . (22) 

 

One thing to note is that if the load curve is linear with Tout and the change in HTWS(Tout), i.e., 
dHTWS(Tout)/Tout, is constant over a temperature range, the magnitude of the hourly savings 
would be the same for those Tout bins (not accounting for changes in UAin and UAtot that will 
“bend” down the theoretical uncontrolled load curve). The percentage savings will, however, 
increase as Tout increases, since the magnitude of the baseline load decreases while the quantity 
of energy saved remains constant. In practice, these calculations can become very sensitive as 
Tout approaches the estimated Tbal. Since the ideal load becomes small under those conditions, 



 

80 

uncontrolled heat flows likely dominate space heating. Consequently, it may be reasonable to 
assume that SC = 1 when Tout approaches Tbal.38F

39  

To obtain a representative estimate of annual savings from the OAR curve changes, we apply the 
SC(Tout) values to TMY data, multiplying dQin(Tout) for each Tout bin by the hours/year in 
that bin in a typical mean year (TMY). Any incremental savings from increased boiler efficiency 
would be calculated based on the difference between Qin to obtain a difference in boiler energy, 
Qgas, i.e., Qin divided by η(Tout), for the baseline and reduced load cases. 

 
39 If HTWS were decreased below the minimum required to meet the space heating load at a given Tout, with 
functioning TVs fully open, Tin would fall below Tin,design. The model assumes that HTWS(Tout) is not decreased 
to an extent that this occurs. 
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