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Executive Summary

Every central heating and hot water system is unique, often lacking a Building Automation
System (BAS) for optimal operation, which leads to inefficient control settings based on
estimates. Building operators have long recognized that reducing the heating water supply
temperature (HTWS) in response to lower outdoor temperatures can decrease boiler energy
consumption. For condensing boilers, this adjustment enhances efficiency by increasing the
proportion of heating load met by return temperatures in the condensing regime. However,
studies indicate that improved outdoor air reset (OAR) optimization yields only modest savings,
less than 2%, with variations in effectiveness across different buildings. Reducing the heating
water supply temperature (HTWS) can significantly decrease energy consumption in both
condensing and non-condensing boilers by lowering indoor temperatures. Studies have shown
that in multifamily buildings, this approach can achieve energy savings of 4% to 16%, though
modeling efforts often underestimate actual savings due to overlooked overheating issues.

The potential energy savings from reducing overheating and high space heating loads can
significantly surpass those gained from improved boiler efficiency. Monitoring of over 100
multifamily boiler systems revealed that 80% could lower HTWS without compromising
comfort. Despite the substantial savings potential, actual savings vary widely, likely influenced
by the degree of uncontrolled heat flow in each system. This variability raises the challenge of
accurately quantifying expected energy savings from OAR curve changes, which has motivated
the development of a software tool to calculate these savings and identify other faults and energy
conservation measures (ECMs) effectively.

The project aimed to develop algorithms in a software tool for automating fault detection and
optimization analyses in multi-family boiler systems, significantly reducing engineering time and
improving cost-effectiveness. The key objectives were:

o to identify faults that could achieve over 15% energy savings

o reduce analysis time by over 80%

e provide accurate weather-adjusted savings estimates

e ensure a payback period of less than three years for optimization efforts.

This would facilitate ongoing commissioning systems in multifamily buildings by lowering
implementation costs and demonstrating sufficient savings to qualify as new Energy
Conservation Measures in utility programs.

The first project phase developed the Alpha version of the FDD tool, using NEI's manual
processes to analyze hydronic boiler data. This basic version was intended for initial testing and
iteration, built in Python for future integration into commercial platforms. Following Alpha
feedback, we created a more advanced Beta version, using both NEI’s existing field data and
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newly installed systems, suitable for wider testing and commercialization, focusing on tool
validation and deployment planning. The Beta version is ready for broader application, with
updated documentation and recommendations for future improvements based on field data and
user feedback.

Meeting the project objectives will enable widespread deployment of ongoing commissioning
systems for multifamily boilers by reducing implementation costs and demonstrating favorable
savings-to-investment ratios for qualifying as new Energy Conservation Measures (ECMs). We
developed algorithms that analyze boiler data, identify energy-wasting faults, and predict annual
energy savings from operational changes.

The Fault Detection and Diagnostic (FDD) tool, created in Python, ingests data from
PostgreSQL databases, applies FDD algorithms, and generates recommendations. Through
testing with NEI’s field data, we refined the algorithms and improved data visualizations for
quick issue triage. Initially focused on space heating, the tool expanded in Phase 2 to include
Domestic Hot Water modules for combined systems. We also enhanced energy savings
predictions by integrating building physics, addressing measurement inaccuracies, and enabling
evaluation of multiple ECMs using TMY data for forecasting.

Through testing on existing data sets, we have shown that the FDD tool can identify the
following key faults, each implemented as a software module:

Suboptimal Outdoor Temperature Sensor Placement ("Suboptimal Tout") — Detects missing or
poorly placed outdoor temperature sensors.

Outdoor Air Reset (OAR) Issues — Identifies missing or misconfigured OAR curves.

Warm Weather Shutdown and Summer-Winter Switch ("WWSD/SW-Switch") — Detects inactive
or misconfigured warm weather shutdown and seasonal switching.

Excess Boiler Cycling ("Excess Cycling"”) — Identifies instances of excessive boiler cycling.

Domestic Hot Water (DHW) Setpoint Misconfiguration — Detects improper DHW setpoints.

One of the most important aspects of this tool is the ability to measure and quantify the energy
saved from the implementation of the ECM. The key features related to this are as follows:

Prior Savings: NEI’s work on 100+ buildings in Massachusetts showed 80% realized an average
of 11% energy savings from remote monitoring and optimization.

Modeled Estimates: The tool uses engineering models to compare baseline and ECM cases,
estimating energy savings through changes like OAR curve and boiler settings.

Updated OAR Model: Early models assumed perfect control of heat flow. The updated version
accounts for building overheating, refining energy savings estimates.
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Updated ECM Data Model: Ingests an configuration file that specifies combinations of ECMs
(OAR settings, WWSD settings, and temperature sensor placement) to evaluate the impact of
remediation.

Tool Performance: Comparing the tool's analysis to manual methods, it matched 85% of
assessments, with high accuracy for OAR curve and temperature sensor faults, though false
positives were common.

NEI's manual analysis of over 100 monitored sites for the Massachusetts Clean Energy
Center(MassCEC ) project took about 10 hours per site, down from the original 16-20 hours,
with three hours spent on data QC and fault evaluation. The FDD tool significantly reduces this
time, allowing a full site analysis in just three minutes. It automates QC, fault detection, and
heating curve evaluation, enabling more frequent analysis and quicker response to operational
issues. A batch of five sites can be analyzed in 10 minutes, with an additional 40 minutes to
review outputs, representing a 94% reduction in time compared to manual methods.

To validate the model, NEI applied it to 19 OAR curve and WWSD changes at 12 Massachusetts
sites using ReMO platform data. Sites were limited to those with boilers serving only space
heating. Pre-ECM and post-ECM periods were compared to predict energy consumption after
OAR curve adjustments. Modeled savings were 12.8%, and observed savings were 11.3%, with
an average difference of 4.3%. The model predicted savings within 5% for 13 changes and
within +£10% for 16 changes, showing it effectively captures the energy impact of boiler
overheating and OAR curve changes.

The Simple Payback Period (SPP) is calculated by dividing boiler optimization costs by the
resulting cost savings. For nine multi-family properties, with an average annual space heating
cost of $11,000 and DHW heating cost of $7,000, a 15% savings yields an SPP of 2.6 years.
However, changes since the study such as rising hardware, labor, and natural gas costs, along
with supply chain challenges make current SPP difficult to estimate. Decarbonization and
electrification efforts also affect the relevance of gas-fired boilers, potentially shortening the
payback window before electrification occurs. Additionally, reactive maintenance and tenant
complaints may lead to overrides, reducing ECM persistence.

With the rapid shift towards electrification and the increased adoption of heat pumps, the FDD
tool is well-positioned to optimize existing systems, delivering quick savings in the short term
while also facilitating the implementation of electrification initiatives through its detailed
understanding of actual building heating loads. This support is critical for selecting new
equipment that is appropriately sized for specific loads, offering substantial initial cost-saving
opportunities and ensuring more efficient operation through improved load matching, an issue
frequently observed in current building data. Since high-efficiency condensing boilers remain the
most cost-effective option for many multi-family buildings, and fossil fuel-based systems are
still widespread, the FDD tool will continue to be a valuable resource for fault detection and
system optimization, maximizing energy savings.
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With these dual pathways for building heating and hot water systems, the FDD tool is capable of
serving buildings with their current systems for as long as they remain in use, while also
supporting a seamless and efficient transition to newer technologies. The methods developed
within the FDD tool can be adapted to future electrified systems, evolving as needed to drive
further optimization and address the common challenge of system overrides, which affect all
types of systems.
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Introduction

Every central heating and hot water system is unique. They are custom designed, plumbed, and
installed by teams with a range of technical capability. When there is no Building Automation
System (BAS) dynamically controlling system operation, individual pieces of equipment (e.g.,
boilers, pumps, etc.) are left to operate with little or no data feedback. Control settings are based
upon settings used at other buildings and best estimates and are not typically optimized based on
actual operating data.

Yet, building operators have realized for several decades that boiler energy consumption for
space heating can be reduced by reducing (aka resetting) the heating water supply temperature
(HTWS) as the outdoor air temperature (Tout) decreases (see Figure 1, from Landry et al. 2021).

200°F

180°F

160°F
N
140°F \

120°F \ \
100°F

80°F
-20°F 0°F 20°F 40°F 60°F 80°F
Outside Temperature

Boiler Supply Water Temperature

T
=4__—_- Outdpor Cutout

Figure 1: Example of an outdoor air reset (OAR) curve; from Landry et al. 2021

For condensing boilers, this can increase the portion of the space heating load met by heating
water return temperatures (HTWR) that occur in the condensing regime, increasing boiler
efficiency, 1 (see Figure 2, where HTWR = “Inlet water temperature”; from ASHRAE 2020).
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Figure 2: Example of how condensing boiler efficiency
varies as a function of inlet water temperature; (from
ASHRAE 2020)

Although condensing boilers can realize large efficiency-related savings when replacing non-
condensing boilers, the efficiency-driven savings from improved outdoor air reset (OAR)
optimization is quite modes. For example, modeling of the expected efficiency-driven savings
for 17 monitored commercial condensing boiler systems found that improved reset curve
parameters would reduce space heating energy consumption by less than 2% at all sites (Landry
et al. 2021), while another study by the same organization found an average of ~1.5% efficiency-
related savings at 10 sites from reset curve changes (range: 0-4%; Landry et al. 2016).!

In both condensing and non-condensing boilers, reducing HTWS at a given Tou can also reduce
space heating energy consumption by reducing indoor temperature (Tin) and, consequently,
effective space heating loads, Qin. As a field study by Hewett and Peterson (1984) found, boiler
systems are prone to overheating spaces due to a combination of high Ti, preferences by
inhabitants (sometimes accompanied by window opening), failed thermostatic zone valves (TV),
and/or poorly or uninsulated distribution piping that result in uncontrolled heat flow to spaces.
They showed that reducing HTWS(Tou) in multifamily buildings served by cast-iron boilers
decreased space heating energy consumption by between 4 and 16%, with a corresponding 1 to
4°F decrease in Tin measured in hallways. Figure 3 below shows how daily boiler energy
consumption as a function of daily Tour changed in the building that achieved the greatest savings
(when combined with a warm-weather shut-down [WWSD] temperature of Tou = 55°F; Hewett
and Peterson 1984).

1 We found similar results when analyzing OAR curve changes for >10 buildings, using manufacturer data for
boiler efficiency, n(HTWS), hourly TMY Tout data, and assuming space heating loads decreased linearly from the
design temperature, Tout,design, to a balance temperature, Tbal = 600F.
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Figure 3: Field data for boiler daily energy consumption as a function of heating degree days for boilers with
constant (top curve) and reset (lower curve) control; recreated from Hewlett and Peterson (1984).

Existing industry rules of thumb range from 1% savings per 1°F reduction in HTWS to “reduce
4°, save 1% 2. Beyond such basic approaches, Landry et al. (2021) attempted to model the
energy savings from decreasing OAR curve parameters based on the energy savings found in
prior studies for OAR curve changes, including Hewett and Peterson (1984). They found a
limited correlation between modeled and actual savings, on average underestimating savings by
40% (see Figure 3). This likely occurs because that model does not model the actual building
overheating (“load reduction savings™) occurring in specific buildings.

2 See: https://www.heat-timer.com/outdoor-reset-control-savings/ for the latter; the 1°F = ~1% savings comes from

discussions with practitioners.
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Figure 4: Engineering estimates versus actual savings for commercial boiler systems, from Landry et al.
(2021). The engineering estimates underestimated actual energy savings by an average of 40%

Clearly, the energy savings potential from reducing overheating and the resulting high space
heating loads can greatly exceed those from increasing boiler efficiency. Furthermore, the
prevalence appears to be acute in the roughly 2 million multi-family building with hydronic
heat?, i.e., monitoring of >100 multi-family boiler systems in colder climates by New Ecology
(2018) found that in 80% of them HTWS could be lowered without compromising comfort.
Although the savings potential can be large from OAR curve changes, the realized savings varies
greatly among buildings (Hewett and Peterson 1984, Davey and Connelly 2018, New Ecology
2018). Presumably, this varies with the degree of uncontrolled heat flow of that specific boiler
system. The challenge then becomes: how does one accurately quantify the expected energy
savings from potential changes to the OAR curve?

This is one of the central questions that led this project team down the path to develop a software
tool that can not only calculate these savings, but identify other faults and ECMs, in a cost-
effective manner.

Data Acquisition System

We include a summary of the sensors now typically deployed to help readers follow technical
discussions that follow.

3 The 2020 DOE EIA RECS estimated that 2.8 million buildings with 5+ units have steam or hot-water heating
systems, primarily in colder climates; we expect that a sizeable majority are hot-water systems.
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Table 1: Standard sensor package deployed in installations

Sensor Description

HTWS Space heating supply water temperature

HTWR Space heating return water temperature

HTG IN Heating Boiler Loop inlet temperature
HTG OUT Heating Boiler Loop outlet temperature

DHWS Potable DHW supply temperature

DHWR Potable DHW return temperature

HW Potable hot water temperature leaving tank or water heater delivered mixing valve
Cw Potable cold water supplied to the building

HWS 4 Supply water temperature to indirect heat exchanger (HX) of DHW storage tank
(PHWS)

HWR Return water temperature from indirect HX of DHW tank

(PHWR)
Ambient Boiler room air temperature

OA Outdoor air temperature (only installed in non-Modbus installations)

Figure 5 shows example sensor installations for both combined and separate systems
(connections to the Ambient and OA sensors not shown).

* HWS and HWR are the sensor names used in combined heating and DHW systems, while PHWS and PHWR are
used in separate systems (P for potable).
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Figure 5: Sensor location diagram for a combined boiler system

When the equipment on site has the capability for communications through industrial BAS
protocols such as MODBUS?, we can connect and integrate those data into our database. In
addition, the original deployment also allowed us to install relays on each non-MODBUS
capable boiler to provide boiler on/off data; those relays are not part of the current DAQ
specification.

5 The Modbus protocol is a standard employed by many boiler manufacturers to communicate with controllers.
Through this interface, a DAQ system is able to monitor and record the same internal sensor data a boiler may
expose to its controller. See www.modbus.org for further details.



http://www.modbus.org/
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Methodology

This project sought to develop and implement algorithms in a software tool that automates the
fault detection and optimization analyses and processes for multi-family boiler-system
optimization to significantly reduce the engineering time required to perform such analyses. This
will improve the cost-effectiveness and scalability of multi-family boiler-system optimization
and, hence, the energy savings realized.

The primary goal of this project was to remove cost barriers that currently prevent building
operators in multi-family buildings from gaining operational insight that can lead to energy and
maintenance savings. To achieve this goal, we identified the following four objectives:

1. Identify faults and recommendations that can achieve an average of 15%+ reduction in
space heating energy consumption

2. Reduce analysis time by 80%+ relative to manual approaches

3. Calculate weather-adjusted energy savings estimates that will be within £20% of
achieved energy savings, based on pre-ECM and post-ECM gas consumption data.

4. Achieve less than a three-year payback period for boiler optimization.

These objectives would enable the widespread deployment of ongoing commissioning systems
for multifamily boiler systems by 1.) reducing the cost of implementing systems in the field and
2.) demonstrating sufficient savings-to-investment ratios for the system to qualify as a new
Energy Conservation Measure (ECM) in utility energy efficiency (EE) programs.

The first phase of the project focused on developing the Alpha version of the FDD tool,
leveraging extensive existing investments by NEI in developing manual processes to analyze the
minute-level hydronic boiler system data. The Alpha version was intended to be a basic,
functional version of the tool that could be used for initial testing, refinement, and iteration. We
planned to develop software using an open-source programming language (Python), so the
resulting modules could later be integrated into commercial software tools or enterprise
platforms. Since the innovation in this project is primarily related to the automated discovery and
quantification of ECMs, this effort relied on manual data input and static output report files.
Interactive graphical user interface development was premature at that stage (while variables,
inputs, and outputs were fluid), but was to be considered in a later phase.

Based on feedback from Alpha testing, we developed a more mature Beta version of the tool that
was suitable for wider field testing and ready for integration into a commercially viable platform.
Phase 2 of the project focused on developing the Beta version of the tool, tool validation, and a
Commercialization Plan to scale tool deployment. Development of the Beta version leveraged
feedback and results from Alpha field-testing efforts to improve and refine the tool. The outcome
of the Beta version development was a software tool ready for more widespread testing, pilot
applications, and eventually, integration into a commercially viable platform. Software
documentation was updated for the Beta version. Based on field testing of the Beta version using
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both NEI’s existing field data and newly installed systems, as well as end-user feedback, we
developed a list of recommendations for future software updates and development for
commercialization.
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Results

Meeting the objectives listed above would enable the widespread deployment of ongoing
commissioning systems for multifamily boiler systems by 1) reducing the cost of implementing
systems in the field and 2) demonstrating sufficient savings-to-investment ratios for the system
to qualify as a new Energy Conservation Measure (ECM) in utility energy efficiency (EE)
programs.

We have synthesized the expert knowledge from NEI’s analysts and the technical literature with
physics-based models to develop algorithms that analyze boiler system data and identify several
high-priority, energy-wasting faults listed below. In addition, we developed algorithms that
predict how changes to boiler system operating parameters affect boiler energy consumption,
allowing us to predict the annual energy savings from specific parameter changes.

We then created a Fault Detection and Diagnostic analysis tool (“FDD Tool”) in python that can
ingest incoming data streams from a continuously updating PostgreSQL time-series database or
archived database of site-installed sensors, apply the FDD algorithms, and generate
recommendations.

Figure 6 and Figure 7 depict the overall flow of the tool and the types and the data taxonomy for
information flowing into the tool. Depending on the data available from a specific system, the
tool can work with different data inputs; we presented recommendations for sensor packages
based on available sensor data and a discussion of the trade-offs for the different fault detection
algorithms based on available data in the “Updated DAQ Specification and Data Requirements”
submitted to DOE (See Appendix A).
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Through testing the tool on existing NEI field data sets, we have refined the algorithms,
particularly the thresholds used to identify faults and to infer the operational status of boiler
system components (e.g., boiler pumps), and to incorporate feedback from NEI analysts to
create? effective and intuitive data visualizations that enable rapid triage of potential issues.
Phase 1, the tool focused primarily on space-heating faults, foremost in boilers serving space
heating alone. In Phase 2, further work on the Domestic Hot Water modules was completed,
notably for combination systems, i.e., those where boilers serve both space and water heating
loads. The FDD tool also provides a full suite of analysis and recommendations to optimize
heating plants that serve both heating and DHW needs (“combined” plants), and a narrower

10
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range of analysis and recommendations to optimize DHW operation (whether as part of a
combined heating + DHW or standalone DHW plants).

Our testing found that combined plants present a more challenging use case than standalone
heating plants.

Finally, a major component of the work done in Phase 2 involved developing new approaches to
greatly improve the energy savings prediction toolset to: (1) incorporate a more accurate model
of the underlying building physics; (2) account for the downstream impact of inaccurate boiler
outdoor air temperature (Tou) measurements on estimates; (3) integrate savings estimates from
implementation of multiple ECMs into a composite summary; (4) implement a new data model
that enables a user to evaluate the impact of a portfolio of ECMs; and (5) incorporate use of
TMY data for forward-looking predictions.

11



Discussion

A discussion of the progress we made towards meeting each objective below follows.

Objective 1: Identify faults and recommendations that can achieve an average of 15%+
reduction in space heating energy consumption

Through testing on existing data sets, we have demonstrated that we can identify the following
key faults, each implemented as a software module in the FDD tool:

1. Missing or suboptimal outdoor temperature sensor placement (“Suboptimal Tou”)
2. Missing or misconfigured outdoor air reset (OAR) curves (“OAR”)

3. Inactive or misconfigured warm weather shutdown (WWSD) and/or Summer-Winter
Switch (“WWSD/SW-Switch”)

4. Excess Boiler Cycling (“Excess Cycling”)
5. Misconfigured DHW setpoints (“DHW Setpoint™)

Examples and discussion of each fault detection module follow.

1. Missing or suboptimal outdoor temperature sensor placement (“Suboptimal Tou: ”)

This fault mode occurs when a site’s outdoor temperature sensor is either unavailable or presents
data quality issues. The FDD tool addresses two classes of data quality issues: sensors errors
(e.g., sensor readings do not change and/or report out of range values); and issues with sensor
placement. Sensor placement errors are detected by comparing local (onsite) temperature
measurements with publicly available weather station data, e.g., from the National Weather
Service.

The script generates a table () showing the following metrics. The output of the table varies
depending on whether analysis is conducted over the whole data capture (show by analysis pd
= False, ) or conducted by ECM Analysis Period (show by analysis pd=True, see ).

e Index column:

For analysis conducted over the full data captured, the index is:
<site>-<plant id>-‘All’ (for all data)
<site>-<plant id>-‘Last 12 Months’ (for last 12 months)

if analysis conducted by ECM Analysis Period, the index is:

<site>-<plant id>-<ECM Analysis Pd Idx>

e ECM Idx, ST, ET: Zero-indexed reference to the ECM Analysis period, with a value of
zero referencing the most recent data.

12



LastGoodReading: Last Valid Data Point.

SensorError%: Sensor error is defined as either an out of range (non-physical)
measurement or “invariant” sensor data (defined as < 3 deg delta between weekly
max/min reading). The output is coded red if more than 10% of hours in the last 12
months have a sensor error (for analysis conducted over full data capture), or if more than
10% of hours have a sensor error (for analysis conducted by ECM Analysis Period).

%HrsOutOfRange: An “hour out of range” is defined as an hour in which there is >10
°F discrepancy between the onsite Tout sensor and the weather station temperature
reading.

ValidHrs: Number of hours for which a valid t out reading was returned in this analysis
period. Coded red if there are fewer than 1000 hrs for analysis.

The t_out evaluation metrics compare the average error and mean average error (MAE) of t out
to t weather station measurements using several different data segmentation parameters:

Active Pts vs All Pts: If “-Active” is appended to the column name, the error includes
only points where the heating plant is ON. If “-Active” is not appended to the column
name, the error includes all data points (heating plant ON and OFF). Intuitively, one
might expect that focusing on temperature errors during active plant operation are the
most relevant metric, as active operation is what drives energy consumption. However,
looking at ONLY active points can mask a class of issues in which warm weather
shutdown occurs at the incorrect temperature due to bad local temperature measurements.

Time of day: Used to identify errors that vary based on diurnal factors, such as solar
loading. Data is grouped into three segments: 00:00 to 10:00 (nighttime), 10:00 to 15:00
(morning), and 15:00-24:00 (afternoon/evening). Note: times are in UTC, so subtract

four to five hours to convert to eastern time. %

AvgErr vs MAE: Results for both average and mean average error shown. We found
that Average Error is generally more predictive of the type of systematic issue that we are
trying to identify.

AvgErr-Active/MAE-Active: Average/Mean Average Error across the full data set,
including only heating plant “ON” points.

AvgErr, MAE: Average/Mean Average Error across the full data set, including heating
plant “ON” and “OFF” points.

6 Note

: this logic is currently hard-coded for eastern time zone. It would need to be updated for other time zones.
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e 1500-2400-Active / 0000-1000-Active / 1000-1500-Active: Average Error across
specific times of day, including only heating plant “ON” points.

e 1500-2400/0000-1000 / 1000-1500: Average Error across specific times of day,
including heating plant “ON” and “OFF” points.

e bad_ Tou: Set to True if any of the following conditions are met:
o Absolute value of AvgErr-Active is greater than 2.5 °F
o Absolute value of AvgErr is greater than 2.5 °F

o Absolute value of three or more of the time-of-day error metrics’ is greater than 2.5
°F

7 i.e., 1500-2400-Active / 0000-1000-Active / 1000-1500-Active / 1500-2400 / 0000-1000 / 1000-1500

14



ECM ldx ST ET LastGoodReading ValidHrs SensorErr% %HrsOutOfRange AvgErr-Active AvgErr MAE-Active MAE 1500-2400-Active 0000-1000-Active 1000-1500-Active 1500-2400 0000-1000 1000-1500 bad_tout
Al 2017-01-12  2019-06-18 2018-06-22 12,276 33% % 0.8 28 37 50 1.7 09 -0.6 57 2.1 0.1 True
Last12Months 2018-06-18 2019-06-18 2018-06-22 89 99% 0% -1.8 0.0 19 18 nan -1.8 nan 0.7 0.8 0.6 False
Al 2017-01-03 2019-02-28 2019-02-28 17,773 0% 2% 1.3 09 27 29 21 20 -1.2 18 1.7 22 False
Last12Months 2018-02-28 2019-02-28 2019-02-28 8,238 0% 2% 0.7 03 24 28 14 14 -1.7 12 1.1 2.8 False
Al 2017-01-03 2022-01-28 2022-02-17 41,326 0% 9% 24 16 47 47 09 52 -18 00 48 3.0 True
Last12Months 2021-02-18 2022-01-28 20220217 7,755 0% 2% 00 -03 34 35 0.3 19 -4.3 05 18 -4.5 False
Figure 8: Suboptimal Tout - Sample output for analysis conducted over full data capture

ECM Idx ST ET LastGoodReading ValidHrs SensorErr% %HrsOutOfRange AvgErr-Active AvgErr MAE-Active MAE 1500-2400-Active 0000-1000-Active 1000-1500-Active 1500-2400 0000-1000 1000-1500 bad tout

0 2018-09-28 2019-06-18 None 0 100% 0% nan nan nan nan nan nan nan nan nan nan False

1 2017-11-05 2018-06-22 2018-06-22 5236 0% 0% 05 02 17 18 0.2 -05 1.4 06 -0.3 1.2 False

2 2017-01-12 2017-06-15 2017-06-30 3,992 0% 20% 25 44 69 79 4.1 25 05 8.1 36 05 True

0 2018-01-08 2019-02-28 2019-02-28 9,369 0% 2% 09 05 25 28 1.6 16 15 1.3 13 2.5 False

1 2017-03-17 2018-01-07 2018-01-07 6,683 0% 2% 1.6 12 29 341 28 22 -1.2 23 20 2.2 False

2 2017-01-03 2017-03-16 2017-03-16 1,554 0% 2% 24 23 32 32 29 34 03 28 31 0.4 True

0 2021-01-07 2022-02-18 2022-02-17 8,756 0% 2% 02 -03 34 34 0.2 2.1 38 05 18 -4.3 False

1 2018-09-15 2021-01-06 2021-01-06 19,602 0% 12% 29 21 51 51 1.0 6.0 1.4 01 56 2.5 True

2 2017-01-03 2018-09-14 2018-09-14 12,963 0% 1% 32 20 51 52 16 6.0 -1.0 01 57 2.9 True

Figure 9: Suboptimal Tout - Sample output for analysis conducted by ECM Analysis Pd
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The Suboptimal Tou script also generates a series of plots () for each site that includes: (1) time
series of Tou, weather station, and error; (2) frequency of “Hours out of Range” > 10 °F, by
month; and (3) a heatmap of error by hour of the day for different periods of the year (All Year /
Oct-May / Jun-Sep):

e I[fanalyzing the full data capture, the heatmap displays data for (a) the full data capture
period and (b) the last 12 months of data.

e [fanalyzing data by ECM Analysis Period, the heatmap displays data for (a) all data
within in the ECM Analysis Period, and (b) Heating On-only points within the ECM
Analysis period. The (top) error frequency plot shows error frequency for all points
(blue) and for heating on-only points (red).

In the example shown below, there appear to have been a substantial placement issue in 2017, as
evidenced by the frequency of hours out of range throughout 2017 (see first half of the plots in
rows 1 and 2), with the error likely due to excess solar gains (row #3). As shown in row #4,
which shows an hourly heatmap for only the most recent 12 months, it appears that the error has
since been corrected.
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Figure 10: Example Suboptimal Tout Plots

2. Missing or misconfigured outdoor air reset (OAR) curves (“OAR”)

The OAR Analysis provides feedback about OAR performance for a cohort of sites, both for
sites with and without a known/expected OAR curve. For sites without a configured OAR, it
extracts an implied OAR curve by fitting OAR parameters to observed data and then provides
feedback as to whether the observed curve parameters fit within a valid operating window. For
sites that have an OAR curve specified, the tool compares the observed OAR behavior to the
expected behavior implied by the specified curve. Since OAR curves can change over time, e.g.,
from user overrides, the tool evaluates OAR curves at different points in time.
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To accomplish this, the tool generates a series of data visualizations and analyses that
characterize plant operation across multiple dimensions, including OAT-vs-HTWS trends,
WWSD temperature, S-W Switch status, qualitative assessment of t out placement, and DHW
state estimation for combination plant. In combination, these toolsets allow a user to estimate
plant configuration settings over time and estimate the energy impact of proposed or previously
implemented configuration changes.

An OAR Analysis is performed on one or more “ECM Analysis Periods”. An ECM Analysis
Period can be configured to automatically segment a data set by heating season, by OAR
configuration date(s), or using a custom set of dates.

The OAR Analysis tool generates two different data visualizations of the OAT-vs-HTWS trend:
a scatter plot visualization and a heatmap visualization.

The scatter plot data visualization () is implemented as a 2x2 matrix of scatter plots for each
combination of HTWS key (t htws/t system supply) and outdoor air temperature (Onsite
OAT (“t out”)/ Weather Station OAT (“t weather_station”), with each ECM Analysis Period
represent with a different color. If an end point is not available for the plant under evaluation,
the plots associated with that plant will be blank. Each ECM Analysis Period in each scatter plot
is overlaid with a parameterized OAR curve (either derived or configured) associated with that
time period. If a configured OAR curve is available, the configured curve is overlaid on each
plot. If the analysis uses a derived curve, the following logic drives the curve overlay:

e Ift htws andt weather station are available, HTWS/WS is overlaid on HTWS/WS
scatter plot®

e Ift system supply and t out are available, SST/ Tou is overlaid on SST/ Tou scatter plot’

e The “primary” curve fit (i.e., t htws primary /t out primary) is overlaid on HTWS/ Tou,
and SST/WS scatter plots

The scatter plot includes any points where the plant state estimation detects the plant is active:
for heating plants, this should correspond only to active heating calls; for DHW plants it includes
heating-only and DHW calls (plant_state=125 or plant_state=175). However, the derived curve
fit is extracted using only data points that are heating only (plant_state=125).

8 This plot represents a user perspective on heat delivery to the building: it shows actual outdoor temperature
conditions plotted vs actual supply temperature delivered to the heating loop

9 This plot represents a control-based perspective on heat delivery: it shows the primary boiler control variable
(t_out) plotted vs the primary output that the boiler controls (t_system_supply)
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Figure 11: Example scatter plot data visualization for a set of derived curves (left-hand plot) and configured curves (right—hand plot)

The heatmap data visualization () generates a single heatmap of t out primary vs t_htws primary for each ECM Analysis Period. '
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For sites with a configured OAR curve, an additional plot of (median error + 100 deg) as a function of OAT is displayed.

10 Note that the most recent ECM Analysis Period is indexed to zero

19




Pd 1. Pd 2; Pd 3;
2017-11-05 to 2019-06-18, N=0656 Hrs 2017-04-12 to 2017-11-05, N=1334 Hrs 2017-01-10 to 2017-04-12, N=872 Hrs

—— y=-0585x+(161.7), err=-0.26 —— y=-0.767x+(172.3), err=0.12 —— y=-0.657x+(176.1), err=-0.46

180

160

pply

' 140

g m_su

t_systel

-
o
o

100

80
40 40
t out t out t out
Pd 1: Post 2020-11-23 OAR Change Pd 2: Pre 2020-11-23 OAR Change Pd 3: Pre 2017-12-01 OAR Change Pd 4: Pre 2017-04-05 OAR Change

2020-11-23 to 2021-08-03, N=4132 Hrs 2017-12-01 to 2020-11-22, N=16205 Hrs 2017-04-05 to 2017-11-30, N=2016 Hrs 2017-01-04 to 2017-04-04, N=1711 Hrs

x+(190.7), x+(225.0), std=7.57 05x+(193.8), std=6.11 . 3x+(213.1),
Err + 100 Err + 100 —- Em+100 —- Err+ 100

180

160

! 140

t system_supply

o
5
S

100

tout tout tout tout

Figure 12: Example heatmap data visualizations for a plant with derived curves (top row) and configured curves (bottom row). For the configured curve
case, note that the second (Pd 2) plot appears to capture multiple OAR curves. For the derived curve case, note that Pd 2 covers only a narrow range of
outdoor air temperature (data goes from April through November), so there is insufficient data to derive an accurate curve across the plant’s full
operating envelope
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3. Inactive or misconfigured warm weather shutdown (WWSD) and/or Summer-Winter
Switch (“WWSD/SW-Switch”)

When Tou exceeds a building’s balance temperature, boiler space heating can usually be turned
off to eliminate standby losses in boilers serving only space heating. Similarly, many
jurisdictions specify times of year when landlords must provide heat, e.g., September 151
through June 15" in Boston, enabling the lock out of space heating outside that window. The tool
analyzes boiler operations to meet space-heating loads and determines the extent to which they
occur at warmer Tou or outside the heating season. The user can configure parameters to restrict
analysis to different subsets of data and/or modify the data displayed.

This module analyzes the extent to which the heating system in a heating plant or combination
plant operates at warm temperatures, and the extent to which the system operates during the non-
heating season. At a minimum, it requires OAT and HTWS to execute, but performance is
constrained if firing rate data is unavailable, and in the case of combination plants, if HWS is
unavailable.

If firing rate data is available, the WWSD tool also estimates of potential savings for two defined
WWSD thresholds, by default set to WWSD=62°F and WWSD=68°F. While this estimate
provides a useful first order approximation, the estimate has several issues: (1) it is generated in
isolation from other plant performance characteristics, and (2) data is not normalized to TMY
conditions. The energy savings analysis generated downstream of the OAR analysis provides a
more accurate, holistic estimate of potential energy savings from implementing this ECM; it also
generates energy savings estimates only for Group H1 plants (heating plants w/firing rate

data). !

WWSD analysis uses plant state estimation to demarcate periods when only the heating plant is
active:

e For heating plants with firing rate data (Group H1 plants), this corresponds to periods
with non-zero firing rate

e For combination plants, the WWSD tool treats time steps that are identified as heating-
only calls as “heating active”; time steps that are identified as DHW calls or plant-off are
treated as “heating off”. Note that if HWS data is not available, DHW calls will be
conflated with heating calls.

11 There are three specific issues with the WWSD savings estimate generated by this tool: (1) it does not account
for the impact of inaccurate temperature sensor readings due to suboptimal sensor placement. This may
mischaracterize the plant’s control logic. This issue is addressed in the cross-cutting energy savings analysis tool.
(2) When combined with other ECMs, savings are not necessarily additive: e.g., the energy savings impact estimated
from implementing a lower WWSD and modifying OAR curve operating points may be higher when these measures
are analyzed in isolation. The cross-cutting energy savings analysis tool calculates the integrated impact of ECMs;
(3) The WWSD tool does not have the ability to model the impact of implementing a WWSD differential.
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e For combination or heating plants without firing rate data, it is challenging to precisely
characterize runtimes, so the WWSD/S-W Switch script adopts a different methodology
for analyzing and visualizing plant data.

Methodology and results for plants with and without firing rate data are described below.

The WWSD/S-W Switch script outputs a table summarizing performance across all sites () and a
series of plots providing visualizations for all sites or a subset of sites, depending on how the
“show_all plots” parameter is configured (). The WWSD/S-W Switch table includes the
following metrics:

1. PctOn-65-70Deg: % of samples for Tou between 65-70 degree where heating
operation is on. (flags if >10% samples are on)

2. PctOn-70-75Deg: % of samples for Tou between 70-75 degree where heating system
is on (flags if >5% are on)

3. PctOn-Summer, PctofSummersHrsOn: % of samples and % of hours operational
during non-heating season. Raises a flag if there are any instances of system
operation.

4. PctSavings-GT<XX>, PctSavings-SWSwitch: Estimated savings if plant
implemented WWSD at the two defined WWSD temperatures, and if S-W switch
were implemented. WWSD estimates are generated by assuming that plant energy
above the WWSD is zero post ECM; S-W switch estimates are generated by assuming
that heating plant energy consumed between June 15" and Sept 15% is 0.

LastReading  |SummerHrs |PctOn-65-70Deg |PctOn-70-75Deg  [PctOn-Summer |PctOfSummerHrsOn  |PctSavings-GT62 |PctSavings-GT68 |PctSavings-SWSwitch
r

100 heating 20210416 2022-05-21 208" 29%” 20%” 0.0%" 0.0%" 0% 16% 0.0%
13combined 20070104 2000311 676" 15" % 208 14.6% nan% nan% nan%
§combined 20170103 2000205 | 49" 19" o 0.2%" 1.1% nan% nan% nan%
Oheating 20070004 2000219 | 457" 3% 0% 19.8%" 57.7%" 9.3%" 5.6% 5.6%
106 heating  2021-0419 20220525 | 1067 o’ 0" 0.0%" 0.0%" 01%" 00%" 0.0%
167heating 20210419 2020525 | 1067 o’ o’ 004 0.0% 0.1%" 00%" 0.0%
121 combined  2017-01:03 20220521 " 3955" i % 0.1% 0.9%" 5.1%" 1% 03%
27 combined  2017-03-09 20190820 5535 9" 7% 18% 6.2% nand%s nan% nan%
18 heating 2021113 20020525 | 0 % % 004 0.0% nan% nan% nan%
Jcombined 20200910 20210628 | 330" 8% 59" 0.0%" 0.3% nan% nan% nan%
7combined  2017-0110 20200205 | 3662 3%’ 19" 1% 168%" 5% 134 20%
gheating 20211201 2000525 0 0% 0" 004 0.0% nan% nan% nan%
lheating 202101 200055 0 o’ o 0.0%" 0.0% nan% nan% nan%

Figure 13: Example WWSD/SW Switch Summary table

If firing rate data is available, the WWSD/SW Switch script generates the following plots:

Scatter plot of the average heating system hourly duty cycle as a function of outdoor temperature
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e Heatmap of the average heating system hourly duty cycle as a function of outdoor
temperature

e A time series of heating system duty cycle overlaid with a plot of the summer shutdown
period
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Figure 14: WWSD/SW Switch example plots for two different sites
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Figure 14 shows example plots for two different sites. The left-hand plot shows data for a site
that is performing as expected. In this case, the heating system operation shuts down above ~65
degrees and is largely inactive during the summer months (see e.g., the third plot of ). The right-
hand plot shows data for a site that is not performing as expected. As shown, the heating system
is operational throughout the year, regardless of outdoor temperature or calendar.

For plants without firing rate data (Group H2 or C2 plants), plant state (“heating only on”,
“active dhw call”, or “plant off”) is determined by identifying periods with a rising supply
temperature. This temperature-based state estimation presents two complications with respect to
WWSD analysis:

1. The state estimation does not characterize heating system modulation: the plant state is
either marked in an active state, or an off state.

2. Temperature-based state estimation does not accurately measure heating system
runtime in cases where there is not measurable cycling of the supply temperature.
During warmer months, in which heating system calls are typically short and
infrequent, this may not be an issue; however, some plants exhibit minimal HTWS
cycling during cold weather conditions, presumably because the heating plant is on
nearly 100% of the time, and changes in modulation rate are not necessarily
accompanied by measurable step changes in the supply temperature.

For plants without firing rate data, the state estimation tool addresses this lack of cycling during
heating season using the following work-around: The heating system is marked as “active” every
30 minutes if the outdoor air temperature is less than 60 degrees and if there is no cycling
observed within that window. Said another way, heating calls are defined by EITHER a
sustained supply temperature rise OR (outdoor temperature < 60 degrees AND >30 minutes
since reasonable subset of plant operating points where the heating system is active across a
range of outdoor temperature conditions. However, this approach is not useful for characterizing
the plant’s duty cycle as a function of temperature.

As such, if firing rate is not available, rather than characterizing “duty cycle”, the tool
approximates the number of hours that the heating system is active per day as a function of
outdoor temperature.

Sample plots for H2 and C2 plants are shown in . In this case, the y-axis represents hours per
day when the heating plant is active. While this does not precisely measure duty-cycle, it does
provide an effective means of identifying plants that appear to be active during summer months
(e.g., in the example shown, the left-hand plot appears to have an effective WWSD, while the
right-hand plot shows extensive warm-weather operation).
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Figure 15: WWSD analysis for two sites. The left-hand site appears to be functioning near-optimally, as indicated by minimal operation during summer
months and a linear drop in heating system hours at rising temperature, with minimal operation about 65 degrees; the right-hand site appears to have
a significant issue with warm weather operation
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4. Excess Boiler Cycling (“Excess Cycling”)

Excessive boiler cycling increases boiler wear and wastes energy by increasing the number of
boiler air-purge cycles. The tool analyzes how frequently the boiler operates in a “high cycle
regime” (not necessarily a fault on its own) and the extent to which the heating system modulates
its output within a high cycle regime. Lack of modulation coupled with high cycling often
indicates excessive cycling that can be remediated by modifying boiler control parameters.

The boiler cycling analysis script generates a summary table (Figure 16) that includes the
following metrics:

e % High Cycle Hrs”, # High Cycle Hrs: A “high cycle hour” is defined as an hour with
5 or more boiler cycles. A “boiler cycle” is defined as an event in which firing rate goes
above 1% and then drops below 1%. Currently does not support analysis for sites
without firing rate, but this is in the pipeline.

e LowLoad%: Percentage of high cycle hours in which the firing rate is <=30%. If there
are no “high cycle” hours in the data set, LowLoad% = nan. Raises a flag if LowLoad% >
40%.

e HighLoad%: Percentage of high cycle hours in which the firing rate is >=90%. If there
are no “high cycle” hours in the data set, HighLoad% = nan. Raises a flag if HighLoad%
> 40%.

Site % High CycleHrs  #Hgh Cycle Hrs LowLoad% HghLoad%

29 2% 614 59% 1%
30 0% 3 nan% nan%
34 22% 3041 4% 9%
35 9% 2287 47% 7%

7 0% 5 nan% nan%

9 1% 520 99% 0%
20 0% 0 nan% nan%

2 0% 0 nan% nan%
22 0% 0 nan% nan%
24 28% 4953 63% 1%
25 0% 0 nan% nan%
11 8% 2454 90% 2%

Figure 16: Example excess cycling table
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The boiler cycling analysis script also generates a matrix of plots for each site (Figure 17):

e The first row shows histograms of firing rate (column 1) and turn-ons per hour (column
2). This gets displayed for all sites, regardless of the prevalence of high-cycle regimes.

e The final row shows turn-ons per hour as a function of firing rate

If more than 100 “high cycle” hours (defined as >=5 turn-ons per hour, as defined above) are
detected, two additional rows of plots are shown:

¢ The second row of plots shows the same two plots, but only includes high-cycle regimes.

e The third row shows average turn-ons per hour and a histogram of high-cycle events,
both as a function of OAT.

0.0% of hours have >=5 cycles/hr (5 out of 26942 hrs)

Firing Rate - All Regions

Turn Ons Per Hr - All Regions

2.9% of hours have >=5 cycles/hr (1044 out of 36172 hrs)

Firing Rate - All Regimes
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Figure 17: Example plots for two different sites; left hand site was not flagged; right-hand site was flagged for
presence of high-cycle operating regimes.

This FDD Tool module also includes an analysis of the heating plant duty cycle as a function of
OAT. This script plots either total Qin (use_firing rate=False) or total firing rate

(use_firing rate=True) as a function of outdoor air temperature, with data averaged over several
different timescales (Figure 18). Similar data is shown in tabular form (Figure 19).
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Figure 18: Total firing rate as a function of outdoor air temperature for two different sites. Data is shown over
three different time-scales (1-min, 1-hr, 24-hr)
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Figure 19: Total firing rate (TFR) and TFR > 50% as a function of outdoor air temperature.

shows boiler firing rate (summed across all boilers) as a function of outdoor air temperature for
two different sites (left and right plots). At both sites, at moderate temperatures (e.g., 40-55
deg), the plant runs at approximately steady state at a 20-30% modulation level. However, at
higher temperature (>55 degrees), if on, the firing rate is often near full load. To be clear, the
average duty cycle, when averaged over 1-hour or 24-hour periods, is reasonable given the
outdoor temperature condition — but when the plant cycles on, it cycles on to full power. This
type of behavior can indicate potential for one of a few ECMs. The site on the left is indicative
of a plant that is unable to modulate low enough to serve its heating load, so it cycles on and off
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at full power over a relatively wide temperature range; this could indicate that the boiler is over-
sized for this site, or that it’s a good candidate for a hybrid heat pump system. The right-hand
plot likely shows full-power cycling over a relatively narrow temperature band. This indicates
the plant is likely coming out of warm weather shutdown and tries to raise the supply
temperature as rapidly as possible. This could potentially be accomplished more efficiently by
operating the boiler at a lower firing rate.

5. Misconfigured DHW setpoints (‘DHW Setpoint”)
The DHW Setpoint Analysis module implements three fault detection algorithms:

o Low Domestic Hot Water Storage Temperature (HW): Identifies DHW systems with low
DHW storage temperatures, which can pose a legionella risk.

o High DHWS: Detects high DHW Supply temperatures (DHWS) that could pose a scald
risk and/or increase pipe heat losses.

o DHWS-DHWR Differential Out-of-Range: The relationship between DHWR and DHWS
can help uncover multiple faults, including recirculation pump reversal or frozen/failed
mixing valve (see DHW Fault documentation for additional discussion).

This toolset analyzes data from DHW plants or from combination plants, and polls data from
DHWS, DHWR, HW, and tank setpoint, but it will execute with any combination of these
endpoints available, albeit with reduced scope.

Tank setpoint data is not used for fault detection, rather HW is used as a proxy for in-tank
conditions. The logic for using HW in lieu of tank setpoint is that (a) it provides a measure of
actual water temperature; and (b) it does not require data collected via MODBUS or other BMS
protocols.

If HW data is not available, it is assumed that the site does not have a mixing valve.

The following default parameters are used but can be changed by the end-user.

Table 2: DHW fault identification parameters

Description Value

tank_setpoint_low HW Threshold to flag for low setpoint 140
dhw_setpoint_low DHWS threshold to flag for low setpoint 112
tank_setpoint_high HW Threshold to flag for high setpoint 140
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dhws_setpoint_high DHWS threshold to flag for high setpoint 130

dhws_rev_err_thresh Threshold above which to flag DHWR > DHWS 0.10

Note: Although tank setpoint low and tank setpoint high are configured to the same value, the
criteria for flagging these faults differ.

The time window for analysis, e.g., to see when changes may have occurred, may be configured
in two different ways:

o If“lookback days” is set to a value other than “None”, the analysis runs from
lookback days before the site’s most recent data point to the most recent data point.

e I[flookback days is set to “None”, the time window is bracketed by s¢ and ef (start and
end times)

o Ifstis setto “None”, start time is the first data point for the site
o Ifetis set to “None”, end time is the most recent data point for the site

For each DHW plant, the DHW fault assessment tool (a) displays several data visualizations for
each site to provide supporting context; and (b) checks observed operation relative to pre-defined
set points to identify possible fault conditions. The tool presents results of fault screens in a
summary table (Figure 20), along with supporting data.

Pct HW-Min DHWS- +
DHWS / L . ) tank_setpoint- N 90th% . 10th% . 10th%
DHWRErT DHWR> LowSetPtErr Daily  Min, Daily Most Recent Val PctDays ScaldRiskErr DHWS MixValveErr DHWS HighSetPtErr HW
DHWS Max Max
Site
1- False 3.4% True 139 131 nan 26.0% True 139 False 119 False 132
dhw
Site
2- False 0.6% True 136 135 133 95.4% True 138 True 130 False 135
dhw
Site
3- False 0.4% True 131 124 132 88.0% False 130 True 122 False 130
dhw
Site
4- False 0.6% True 138 124 nan 85.7% True 133 True 128 False 136
dhw
Site
5- True 18.7% False nan 135 132 0.0% True 137 False 120 False nan
dhw
Site
6- False 2.0% True 130 127 119 87.5% False 128 False 114 False 126
dhw
Site
7- False 0.3% True 134 129 134 90.6% True 136 True 128 False 132
dhw
Site
8- False 0.0% True 127 126 118 73.6% False 126 False 119 False 120
dhw
Site
9- False 0.1% True 120 121 nan 92.1% True 138 False 119 False 128
dhw

Figure 20: DHW Fault Summary output table
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identifies the following fault conditions:

“DHWR/DHWSETrr” — Indicates possible recirculation pump reversal or mixing valve issue.
This flag is raised if DHWR > DHWS for more than 10% of samples.

Supporting data: “Pct DHWR>DHWS” column shows the actual percentage. If nan
appears, it indicates that one or more required data point is missing.

“LowSetPtErr” — Indicates risk of /egionella bacteria growth. This flag is raised if more than
1% of days analyzed have a maximum HW < 140°F or maximum DHWS < 112°F.

Supporting data:
e 1% percentile values for the daily max value of HW and DHWS (“HW-Min, Daily
Max”, “DHWS-Min, Daily Max”)
e The most recent tank temperature set-point value;

e The percentage of days on which either the max HW or the max DHWS value was below
the relevant threshold

“ScaldRiskErr” — Indicates potential scalding risk due to excessive DHWS temperature. Flag
is raised if more than 10% of DHWS sensor measurements exceed 130°F.

Supporting data: 90" percentile DHWS shows the 90 percentile value for DHWS. If >130°F,
flag is raised.

“HighSetptErr” — Indicates potential to decrease DHW tank temperature set point to optimize
system energy use:

e For sites with a HW measurement: Raises a flag if >90% of HW measurements > 140°F

e For sites with no HW measurement, indicating no mixing valve, a HighSetptErr flag
occurs if >90% of DHWS measurement exceed 122 °F (low end of acceptable DHWS
range + 10°F).

“MixValveErr” — Indicates potential DHW mixing valve fault or high DHWS set point

setting. Raises a flag if a system has a mixing valve (i.e, HW is present) and >90% of DHWS
measurements >122°F (low setpoint + 10 degrees).

DHW Data Visualization

Two to three plots are generated for each site as seen in Figure 21. The third plot is generated
only if an error is detected. Note that the plot title summarizes results of the fault identification
screen.
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e Plot 1 - Time-series of the daily maximum value of HW, DHWS, and Tank Setpoint, as
available.

e Plot 2 - A box and whisker plot showing the range of values for (1) Daily Max HW and
DHWS (used to identify low set-point faults) and (2) A// HW and DHWS data points
(used to evaluate high set-point faults and scald risk) . The box boundaries represent the
25%M and 75™ percentile values; the whiskers represent the 5 and 95% percentile values.

e Plot 3 — A box and whisker plot to illustrate relationship between DHWS and DHWR.
The relationship between DHWR and DHWS helps identify multiple faults, including
recirculation pump reversal or a mixing valve issue. The tool only displays this figure if a
fault is detected (i.e., DHWR > DHWS for more than 10% of samples).

Note: DHWR > DHWS 15.0%
LowSetptErr: Min, Daily Max HW=130, DHWS=129
MixValveErr: 90% of DHWS Vals > 122 Deg
Tank High Setpoint: OK
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Figure 21: DHW fault detection data visualization
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The tool also generates a table (see Figure 22) showing statistical distributions of the “daily
max’’ values, with color coding indicating whether a data point is above/below the
“LowSetptErr” threshold (112°F for DHWS, 140°F for HW).

HW-1% HW-256% HW-50% HW-75% HW-99% DHWS-1% DHWS-25% DHWS-50% DHWS-75% DHWS-99%

Site 1-dhw 139 142 143 144 154 131 140 141 143 146
Site 2-dhw 136 139 139 140 148 135 137 138 138 145
Site 3-dhw 131 138 139 139 148 124 133 135 136 138
Site 4-dhw 138 139 139 139 140 124 133 133 134 136
Site 5-dhw nan nan nan nan nan 135 136 138 140 145
Site 6-dhw 130 132 132 133 134 127 128 129 129 131
Site 7-dhw 134 135 136 143 148 129 131 133 135 143
Site 8-dhw 127 128 128 128 129 126 127 127 127 134
Site 9-dhw 120 138 139 140 144 121 133 139 140 141

Figure 22: DHW analysis - statistical distribution report output table

Quantification of Energy Savings from ECM Implementation

Prior Energy Savings Estimates: NEI’s prior work on >100 multifamily buildings in
Massachusetts '? resulted in more than 80% of the sites realizing energy savings from remote
monitoring and optimization, with those 80% realizing an average savings of 11% based on pre-
/post- utility bill analyses. Since that was the first iteration of implementing changes in the field,
NEI generally had taken a more conservative approach to potential controls modifications to
minimize potential complaint calls until it better understood how changes affected system
performance.

Modeled Energy Savings Estimates: As described in the Boiler Efficiency document submitted to
DOE during BP1, the tool uses engineering models to estimate energy consumption for baseline
and post-ECM cases. First, the tool analyzes existing boiler performance data to derive
additional variables used in the physics-based models to characterize system energy
performance, such as boiler inlet temperatures as a function of Tou. With these models
established, the tool then exercises the model for a typical mean year (TMY 3) of weather data
for both the baseline and ECM cases, where the ECM case includes changes to physical
parameters (e.g., OAR curve parameters, (which, in turn, affect boiler efficiency), and when

12 This pilot project was funded by the Massachusetts Clean Energy Center (MassCEC). As such data from these
buildings may be referred to as MassCEC sites.
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boilers are allowed to fire (WWSD temperatures, W-S lock-out dates) '*. The difference between
the two cases equals the expected energy savings, assuming no other substantive changes.

Updated OAR-Driven Energy Savings Model: The initial implementation of the energy savings
described above modeled OAR-driven savings as a function of boiler efficiency while assuming
that the building’s underlying heat load remains unchanged. Such a model would apply for a
building with perfectly controlled heat flow into the building. A subsequent iteration sought
quantified the effect of building overheating due to, for example, failed thermostatic valves (TV)
that would result in uncontrolled heat flow into the building. The magnitude of the losses
associated with uncontrolled heat flow varies considerably as a function of the differential
between the HTWS and outdoor temperature, so modifying HTWS set points can have a sizeable
impact on building heat load. Our initial implementation of the building loss model assumed
fully controlled heat flow case (0% of TVs failed, i.e., best-case condition), and therefore
systematically under-estimated savings.

In practice, OAR-driven savings should fall somewhere between the controlled and uncontrolled
cases. The updated revision compares observed energy consumption relative to that predicted by
the controlled and uncontrolled cases to determine where along the continuum from “fully
controlled” to “fully uncontrolled” the system resides.

Integration of downstream impact of Tou error + composite savings estimates: Updates account
for the integrated impact of OAR curve modifications, warm weather shutdown (WWSD) set
point modifications, and remediation of temperature sensor placement.

Updated ECM Data Model: Ingests an Excel configuration file that specifies combinations of
ECMs (OAR settings, WWSD settings, and temperature sensor placement) to evaluate the
impact of remediation.

Comparison of ECMs Identified Manually and by the Tool

To evaluate the performance of the tool relative to manual analysis, an NEI analyst applied the
tool to 19 sites to determine if the targeted faults existed. For each site, the analyst compiled the
following information:

e Faults identified by the tool and manual analysis;
e Faults identified by the tool, not by manual analysis;
e Faults not identified by the tool, identified by manual analysis, and

e Time to complete analysis using the tool.

13 Handling changes in Tout sensor placement is more involved, as described in the documentation submitted to
DOE.
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We then analyzed those outcomes, deriving the information summarized in and below. In some
cases, the analyst was not able to come to a yes-no decision as to whether a fault exists, while in
others the tool lacked sufficient data to perform an analysis; both count as “skip.”

Analysis Faults Detected FDD Tool Faults Detected
Site Suboptimal |No Tout |Suboptimal [Excessive |No No S/W |High DHWS |Suboptimal [No Tout |Suboptimal |Excessive No S/W |High DHWS
MassCEC Site 1
MassCEC Site 2
MassCEC Site 3
MassCEC Site 4
MassCEC Site 5
MassCEC Site 6
MassCEC Site 7
MassCEC Site 8
MassCEC Site 9
MassCEC Site 10
MassCEC Site 11
MassCEC Site 12
MassCEC Site 13
MassCEC Site 14
MassCEC Site 15
MassCEC Site 16
MassCEC Site 17

MassCEC Site 18
MassCEC Site 19

Figure 23: Summary of fault detected from manual analysis and the tool. Green equals agreement, gold
disagreement, and yellow/peach unclear
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Figure 24: Alpha tool classification accuracy

Overall, the tool and the prior evaluation agreed on 85% of the assessments (excluding skips),
with the highest agreement found for Suboptimal/No OAR Curve and Tou Sensor faults.
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Eliminating the less-mature High DHWS fault, 88% of non-skipped assessments agreed. !4 In
general, we selected thresholds for faults that tend to flag sites for further investigation by the
analyst if the data suggest that a fault may exist; consequently, we likely flag more false
positives than if the tool were trying to yield the highest classification accuracy. In testing, false
positives accounted for half of the disagreements between the tool and prior evaluations.

Objective 2: Reduce analysis time by 80%+ relative to manual approaches

NEI used a manual process to analyze data from monitored sites during its MassCEC project
comprising >100 sites, reviewing data in SkySpark and entering key data points into a
spreadsheet for evaluation. Although this process successfully identified the key faults discussed
earlier, NEI found that

e Manual analysis processes, the first of three steps to deliver an ECM, consumed an
average of three (3) hours per site. This includes the time spent for data quality control
(QC), to conduct the heating curve analysis and evaluate other potential faults, incurred
each time a site is analyzed.

e The second step of specifying a new heating curve and DHW settings required about one
hour.

e The final step of ECM completion, including identification of needed repairs, the
implementation steps specific to the site and overall QC, takes about six (6) more hours.
In total, the current processes take a total of about 10 hours/site, down from the 16-20
hours/site indicated in the proposal.

Using a locally stored file, a full site analysis comprising data QC and fault evaluation takes
about three minutes on a laptop computer. The tool can run these analyses overnight or while the
analyst completes other activities, meaning that the analysis primarily spends time reviewing the
summary findings and associated plots and tables generated, evaluating data issues or unclear
performance issues flagged, and deciding what ECMs and fixes to recommend to different
property managers. Because the analyst can run the tool in the “background” with minimal
effort, site analyses can be performed much more frequently than before (e.g., monthly versus
once) for portfolios of sites, increasing the value of the tool and the energy savings realized
(since suboptimal operations are flagged sooner).

e FDD tool enables more savings by being able to run quickly/more often. Savings are
constantly under attack of overrides

¢ Identifying overrides closer to when they happen, and quickly identifying the date/time
they happened allow for the most informed conversations with site staff, rather than
thinking back further into the past. This increases trust, allows identification of other

14 This analysis was completed using an earlier Alpha version of the FDD tool. Because there was insufficient time
to repeat this analysis with later versions, it is worth noting that this may not represent the tool’s full capabilities.
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issues within the building that can be fixed, and reinforces the benefit of having the
monitoring more often.

¢ Identifying the time frame where changes happen is a new feature which doesn’t exist
within our manual analysis tool without iterations by the user

The NEI analyst recorded the time it took to run complete analyses with the tool to analyze the
performance of 19 existing buildings (see earlier discussion of Objective 1). On average, an
analysis of a batch of five sites took about:

¢ 10 minutes to configure and run the tool
¢ 40 minutes to review the tool outputs.
e or about 10 minutes per site. '°

This represents a 94% reduction from the three hours required for the manual approach,
exceeding our 80% reduction goal.

Objective 3: Calculate weather-adjusted energy savings estimates that will be within +20%
of achieved energy savings, based on pre-ECM and post-ECM gas consumption data.

As described in the discussion of Objective 1, we have developed a simple physics-based model
that uses connected boiler system data to characterize the extent of overheating occurring in each
building due to uncontrolled heat flow. The model also can be applied to predict the change
annual space heating energy consumption from changes in OAR curve parameters.

To validate the model, we applied this methodology to 19 different OAR curve and WWSD
changes made at 12 different sites in Massachusetts '® with boiler systems monitored using New
Ecology’s Remote Monitoring & Optimization (ReMO) platform that acquired HTWS, HTWR,
BFR, and Tou data (New Ecology 2023).!7. For more detail on data acquisition, please see Davey
and Connelly 2018 New Ecology 2018. To avoid confounding factors, we limited our analyses to
sites where the boilers only served space heating loads, i.e., they did not serve water heating
loads. '® For both cohorts, data were divided into “pre” and “post” periods that correspond to

15 Similarly, end-to-end testing of the tool found that running and reviewing complete analyses for three sites took a
total of 20 minutes.

16 Located mainly — but not all — in Greater Boston, the sites included masonry, concrete, and wood-frame buildings
constructed between 1900 and 2002 with 15 to >150 units on three to 16 stories. Each building had at least two
boiler that could serve space heating loads, with capacities ranging from a few to several hundred kBtuh.

17 The surface-mounted temperature sensors for HTWS and HTWR were both installed in the boiler room, with
HTWS typically located immediately downstream the heating water distribution pump(s) and HTWR downstream of
the piping manifold (if any) that combined separate heating water loop returns.

18 For boilers serving both space and water heating loads, we have developed data-driven techniques to disaggregate
boiler energy consumption time series between space and water heating.
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periods with different OAR curves. In all cases, we used the “pre” data to model the boiler plant
and then apply the model to the “post” period actual weather to predict “post” period
performance, ultimately comparing modeled (predicted) energy consumption to actual post-
ECM energy consumption. Figure 25 below shows an example of multiple OAR curves derived
from the connected boiler data (each data point shown is average temperature for an hour) for

one site.
e Pd5:y=-1.021x+(188.3)
e Pd4:y=-0.777x+(168.6)
180 A s Pd3:y=-0.713x+(162.1)
Pd 2: y=-0.975x+(186.2)
o ST e Pd1:y=-0.726x+(158.4)
160 A .
w
2 140
‘é ‘
—= J
T 120
100
80 -
0 20 40 60 80
Tout (°F)

Figure 25: Example of five OAR curves derived from connected boiler data for site 1020. The small points
represent hourly data, the larger points averages for 5°F Tout bins
Figure 26 presents pre and post hourly Qin data for another site, along with the ideal and
uncontrolled curves for the pre and post OAR curves, as well as the average Qin values
(triangles) for the 5°F Tou bins.
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Figure 26: Example of Qin analysis for site 1020, showing pre and post data relative to controlled and
uncontrolled heat flow cases

Table 3 summarizes the OAR curve changes made to the boiler systems.

Table 3: OAR curve parameters for the 19 changes evaluated at 12 sites. Format is: Tout /HTWS,max to Tout
/HTWS,min. All temperatures in °F

Period WWSD OAR Curve
Site Pre Post | Pre to Post Pre Post
1020 2 0 65 to 65 8/156 to 64/117 | 12/150 to 68/109
1020 3 2 70 to 65 0/169 to 64/119 | 8/156 to 64/117
1020 4 3 70to 70 16/172 t0 63/124 | 0/169 to 64/119
1020 4 0 70 to 65 16/172 to 63/124 | 12/150 to 68/109
1007 1 0 8310 75 10/180 to 70/120 | 10/170 to 65/115
1023 1 0 70 to 62 11/136 to 60/120 | 10/140 to 60/101
41 1 0 67 to 67 14/169 to 65/133 | 20/162 to 60/133
41 2 1 70to 67 34/169to 67/142 | 14/169 to 65/133
41 4 3 70to 65 29/170t0 62/145 | 25/161 to 69/131
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43 65 to 65 39/187 to 69/153 | 8/168 to 64/114
1009 67 to 62 33/175t0 68/123 | 14/175 to 60/119
1009 69 to 67 22/1761t0 65 121 | 33/175 to 68/123
1009 67 to 67 31/175to 64/115 | 18/1751t0 68/111
1013 70 to 62 10/169 to 68/102 | 5/173 to 60/100
1028 70 to 65 10/163 to 60/109 | 25/166 to 60/135

55 65 to 61 39/151t0o 67/138 | 14/170 to 60/115
1016 None 10/169 to 60/124 | 2/162to 61/117

23 70 to 62 13/168 to 60/137 | 3/162to 69/121

24 70 to 65 15/166 to 63/124 | 35/165to 61/120

For the 19 different OAR changes, we modeled the expected energy savings using the following
process:

Analyze boiler data from the “pre” period to calculate hourly space heating energy
consumption.

Calculate the total boiler system gas input (HHV), Qgas,in, for each hour by summing the
product of boiler firing rate (BFR) and boiler capacity for all boilers.

Estimate the average boiler efficiency for each boiler during each hour using a curve for
N(HTWR,BFR) derived from Lochinvar (2019).

Calculate the hourly Qin = Qgas,in,pre * n(HTWR,BFR)
Calculate the average Qin for each 5°F Tou bin for the entire “pre” period

Estimate Tou,design; since the boiler plants analyzed were in Boston, MA and vicinity,
we used Tout,design = 5°F.

Estimate Qin ,design from the hourly Qin data in the vicinity of Tin,design.

Calculate the Qin ,contr and Qin ,uncontr heat flow curves using the respective equations
above.

Calculate SC(Tout) for each 5°F Tou bin using the calculations described in Appendix C.

We then applied the SC(Tou) factors calculated for the “pre” period with the pre and post HTWS
values (Tou), 1.6., HTWS,new and HTWS,old, to calculate dQin (Tou) and, hence, the expected
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post space heating load and gas consumption, Qin ,post(Tou) and Qgas,in,post, taking into
account the impact of OAR curve changes on both space heating loads and boiler efficiency.
Finally, Qin ,post(Tou) is applied to local TMY Tou: data to calculate the total expected boiler
energy consumption for the entire “post” period. '® At all sites, we used the HTWS(Tou) curves
derived from the field data instead of those specified for the “pre” and “post” periods.
For all sites, we calculated the following metrics:

e “Modeled Savings”: Expected percent savings from OAR, WWSD, Ty sensor2°
Summer-Winter Switch 2! based on TMY data.

, and

e “Observed Savings”: Actual savings observed, after applying adjustments to normalize
bin frequency for pre- and post-ECM Qi -vs-temperature, based on TMY data.

Table 4 and Figure 27 summarize the comparisons of the modeled (predicted) and observed
(actual) savings. Although there is some scatter, the absolute values ?? of the modeled and
observed savings are 12.8% and 11.3%, respectively, with an average absolute difference of
4.3%.% For the 19 changes, the model predicted actual savings within £5% for 13 of them and
within +£10% for 16 of them. Taken together, these results strongly suggests that the new
approach effectively models the energy impact of overheating from boiler systems due to
uncontrolled heat flows and the impact of changing HTWS(Tout) on boiler energy consumption.

Interestingly, there is not always a strong correlation between SC values and the magnitude of
modeled savings. This reflects that the magnitude of changes to OAR curve parameters also has
a large impact on expected savings, e.g., the three sites with modeled savings exceeding 20% had
larger changes in the OAR curve parameters. In addition, we calculated savings based on the
actual Tout conditions during the post period. That is, the post period may include warmer or
colder conditions than TMY conditions, which can substantially affect the savings period for that
period. Finally, the magnitude of WWSD changes — and their savings — varies appreciably. For
these reasons, the typical annual savings from changing boiler control settings can vary

19 Since sites often implemented changes to WWSD measures, we also modeled their energy impact; see Appendix.
20 The Tout sensor was also moved at a few sites, which affects the Tout value used by the boiler system to
determine HTWS(Tout); we took that into account.

21 A summer-winter switch (SWS) locks out space heating functionality for a boiler system during a set time of the
year, e.g., mid-June through mid-September.

22 For cases with negative savings, typically due to an increase in OAR curve parameters, we calculated the absolute
value of savings by effectively switching the pre and post case, i.e., savings = (% savings)/(1-% savings).

23 Ignoring the outlier for site 41, between periods 4 and 3, the modeled and expected savings are 12.9% and 10.9%,
respectively, with an average absolute difference of 3.8%. At site 41, Tout during period 4 was very warm; as a
result, the impact of heat gains not captured by the model on total space conditioning loads increases as conduction
and infiltration loads driven by ~Tin-Tout decreases. Specifically, 48% of the post-ECM samples are >62.5 °F, i.e., a
Tout regime with very large savings from both OAR changes and WWSD changes. In short, the post period is not
very representative of the entire space heating season.
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appreciably from those shown; our analyses focused on evaluating the accuracy of the
algorithms.
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Table 4: Summary of Modeled and Observed Savings for OAR Changes at Different Sites. Negative Numbers
Represent an Increase in Energy Consumption

1020 2 10.8% 5.6% 5.2% 0.75
1020 3 2 9.5% -1.4% 10.9% 0.77
1020 4 3 10.4% 11.7% -1.3% 0.69
1020 4 0 16.9% 15.8% 1.1% 0.67
1007 1 0 11.1% 1.8% 9.3% 0.83
1023 1 0 12.4% -1.8% 14.2% 0.33
41 1 0 5.3% 9.0% -3.7% 0.59
41 2 1 22.5% 19.8% 2.7% 0.65
41 4 3 12.3% 24.6% -12.3% 0.52
43 1 0 27.4% 27.3% 0.1% 0.18
1009 1 0 17.9% 12.9% 5.0% 0.57
1009 2 1 -8.9% -2.1% -6.8% 0.68
1009 4 3 2.7% 2.6% 0.1% 0.60
1013 2 0 9.2% 10.7% -1.5% 0.82
1028 1 0 20.7% 23.7% -3.0% 0.34
55 2 1 14.0% 16.0% -2.0% 0.54
1016 1 0 8.1% 9.3% -1.2% 0.32
23 2 0 10.1% 12.7% -2.6% 0.65
24 2 1 -15.1% -14.7% -0.4% 0.68
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Figure 27: Comparison of modeled and observed savings percentages for the 19 OAR curve changes

The absolute values of the predicted and actual savings were 12.8% and 11.3%, respectively,
with an average absolute difference of 4.3%. For the 19 changes, the model predicted actual
savings for 13 within £5% and 16 within +10%. This indicates that the new approach effectively
models the energy impact of overheating from boiler systems due to uncontrolled heat flows and
the impact of changing OAR curve parameters on energy consumption.

Objective 4: Achieve <3 year payback period for boiler optimization.

Simple payback period (SPP) equals the cost of providing boiler optimization divided by the cost
savings from boiler optimization. We discuss each component of the SPP, followed by an SPP
evaluation.

Boiler Remote Monitoring and Optimization Costs

Implementation incurs sensor and telecoms costs and labor costs for sensor deployment, ECM
opportunity assessment, and field implementation of ECMs. The cost to a client for a basic
installation, minus any energy-efficiency program incentives, was approximately $7,900 at the
time of analysis. This cost includes all materials; labor for installation, configuration, and a
single optimization analysis2*; written recommendations, settings optimization and identification
of items needing repair?*. The cost also includes delivery of key alerts, such as ‘Not enough heat
being delivered to the building’ for the duration of the three-year contract.

24 After optimization of system settings, NEI enters the new settings into the database. A script flag and send internal
alerts if the systems operate outside of those new settings. NEI staff makes inquires to determine the circumstances
around the changes and determines the appropriate action going forward.

25 Repairs are indicated in almost all deployments. An example of a frequent repair made is replacement and/or
relocation and/or shielding of the system OA sensor. The contract fee excludes repairs, i.e., the client pays for
repairs as needed (less any relevant EE program incentives).
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Table 5: Representative Cost Breakdowns for a Three-year Deployment

Process Stage Category Current Target Cost
Costs %6

Deployment Material Cost, $ $1,400 $1,400
Labor Cost, $ (@ $135/hour) $2,000 $2,000
Deployment Total $3,400 $3,400

Monitoring Data/Cell Fees for Three Year $700 $700

Analysis thru ECM Labor Cost, $ (@ $135/hour) $1,350.%7 $540

ECM Implementation Labor Cost, $ (@ $135/hour) $1,350 $1,350

Overhead / Admin. 16% $1,100 $970
TOTAL COST $7,900 $6,960

Simple Payback Period: We evaluated the space heating and DHW gas consumption of nine
multi-family properties with 12 to 44 units. On average, they consumed just under $11,000 per
year for space heating and $7,000 %% per year for DHW heating, respectively. Fifteen percent
savings for both space and DHW heating yields about a 2.6-year SPP based on energy alone.

Based on these findings at the time, coupled with the demonstrated ability for the tool to
accurately identify ECMs that could collectively achieve 15% in savings, this objective’s
criteria had been met. However, much has changed since then.

It is very difficult to tell what the payback period would be if we were to attempt the same
analysis today. This is primarily due to the uncertainty of the implementation cost. New Ecology,
Inc. for example, is no longer installing its Remote Monitoring systems based on the DAQ spec
that formed the basis of obtaining the data used in the project. Beginning during the COVID-19
pandemic, supply chain issues led to several issues and challenges for the hardware stack used in
the DAQ systems. Rising hardware and labor costs have certainly increased the base cost for
installing and obtaining the data required to use the FDD tool. Given the testing we have already
completed to demonstrate cost-effectiveness, we are confident that using the FDD tool to
optimize a boiler system will remain cost-effective, should a data acquisition system already be
in place on site. The cost of natural gas had also risen during the same time frame, therefore the
increased savings in terms of costs could also mitigate some of the increase in base price>. The

26 These costs were captured as part of the study in October 2021.

27 As noted in the initial proposal to DOE, this represents a decrease from 16-20 hours/site to 10.
28 Based on $1.20/therm.

2 https://www.eia.gov/dnav/ng/ng pri sum a EPGO PRS DMcf a.htm
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initial cost of data acquisition could be quite high, though a thorough analysis of existing
commercially available DAQ systems was not within the scope of this project.

Another factor is that the market has transformed rapidly in the years since this project was first
conceived. Decarbonization and Electrification measures are now at the forefront of discussions
with many multi-family building owners. Therefore, the previously conceived longevity of gas-
fired boilers may no longer be a valid assumption. With potential replacement of gas boilers on

the horizon, the increased cost of data acquisition may not yield a payback period short enough

to warrant implementation prior to electrification.

One thing that is important to note and is relevant to evaluating a payback period, is the
anticipated persistence of any ECM implementation. As discussed in the introduction, the
heating and mechanical systems found in multi-family buildings tend to have a history of
reactive maintenance. When making adjustments to an OAR heating curve that could alter the
supply temperature of the radiators in conditioned spaces, there is a risk that reduced heat output
would lead to tenant complaints thus resulting in an override of the optimized settings.

Given that the primary data inputs for the FDD tool are sensors on the central heating plant
equipment only, the heating curve analysis cannot account for actual space temperature
conditions. To address that, we collected data from two buildings, using in-unit temperature data
loggers to assess the effects of implementing the ECMs identified with the FDD tool. The
findings from that study can be found in Appendix B.
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Path Forward and Concluding Thoughts

Throughout the development of the beta version of the FDD tool during Phase 2, we added many
new features to the software.

While the vast majority of the features for analyzing data collected on Heating and Domestic Hot
Water systems with condensing gas boilers have been included, the recommendations for future
improvements on this work can largely be broken down into three different categories:

1. How the tool is accessed and used
2. Where the data is sourced for running the tool

3. What systems the tool can be used with

Improving the user interface

Currently, in its beta form, the FDD tool must be used by an engineer who is comfortable with
setting up a software development environment and interacting to an extent with python code. In
a commercially available tool, a graphical user interface should be developed that removes all
visible code from the end-user. Additionally, the outputs of the tool, rather than being displayed
on the same screen as the interface for running the tool, should be made available as a
downloadable, formatted report — ideally in PDF and XLSX formats.

The abovementioned improvements are based around the assumption that the primary use of the
tool continues to be an occasional analysis of historical data collected for the purpose of
compiling a scope of work for changes that should be made to improve the performance of a
boiler system. This approach was initially developed as a result of the labor-intensive process to
extract the necessary data from the DAQ system, clean the data, and analyze it. An ideal use for
this tool, which can automate much of the process, may be to build it into a data acquisition
system or monitoring tool. In this scenario, a software system could automate the process of
loading new data into the tool, running with pre-set parameters on a scheduled basis, and a model
could be trained to identify significant changes in the outputs. These changes could trigger an
automated notification to a building owner or an engineer for review. This could allow earlier
and targeted fault detection and/or incremental recommendations to a boiler’s heating curve.

Opening up the data import system

There are currently two primary data input streams for the FDD tool. The first is a direct
connection the time-series SQL database that houses data collected by New Ecology’s ReMO
system. Due to uncertainty in the long-term viability of the ReMO service, an alternative method
was added, allowing the upload of formatted CSV files that could import data from any DAQ
system with similar specifications. However, this requires a potential laborious effort on the part
of the engineer to export and transform data into the appropriate CSV format.
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Given that the system is already designed around multiple data import options, it can be easily
modified to include additional data formats. For example, an importer designed to extract trend
log data from Building Management Systems could be built that may allow engineers to leverage
existing infrastructure to collect data rather than installing separate monitoring hardware. There
are also other commercially available monitoring tools with sensor packages comparable to the
system this FDD tool was designed to work with. Working with additional vendors could expand
the reach of the tool. New Ecology is actively seeking partnerships to develop a commercial
version of this tool that could be used in conjunction with other vendors’ hardware DAQ
systems.

Looking beyond boilers

As referenced in the earlier discussion of Objective 4 and the payback period, we face the
question: what is the role that a boiler optimization tool has in a world of rapid electrification and
decarbonization?

When we first embarked on this project, high efficiency condensing gas boilers were the most
cost effective and carbon efficient way to serve the heating and domestic hot water needs of
multi-family buildings. In the past five years, however, the landscape has shifted dramatically,
and many more building owners are planning for electrification of their heating and domestic hot
water systems, or already have transitioned to some form of a heat pump for space heating or hot
water. It is inevitable therefore, that this tool will need to be updated to detect faults in other
types of equipment while modeling energy consumption and savings potential from replacing
boilers with heat pumps or using a heat pump in a dual-fuel system. This will, of course, require
updates to the DAQ system. That being said, the use of the tool in its current version should
prove valuable in properly sizing a new heat pump system to replace a heating or domestic host
water boiler, and identifying ECMs that can help decarbonize a building over time on the path to
electrification.

The experience of New Ecology’s foray into producing, installing, and maintaining DAQ
systems for the primary goal of boiler optimization has led to many lessons learned. One of the
challenges New Ecology faced was that the primary selling point of advanced DAQ systems was
related to facility maintenance and not necessarily to potential energy savings. This coupled with
the fact that costs for implementing a real-time DAQ system have increased suggest that the
future of this tool may rely on data collected from DAQ systems already installed to serve
another purpose (i.e., on-board connected boilers, Building Management Systems, Connected
Thermostat systems, etc.).

There are several reasons a building owner or operator would choose to install such a system, not
necessarily due to ECM implementation. For example, from New Ecology’s field work
providing technical assistance to multi-family building owners and operators we have observed
the following:
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e Settings overrides happen all the time, on buildings that are ‘well-managed’ and those
that are not. Overrides are observed both with active managers and absentee managers.

¢ Since the beginning of this project, there has been a significant move to fewer
maintenance personnel and more buildings managed per person. These personnel have
less time to spend hands on with each building ‘listening” and getting to know the issues.

e The cost of mechanical equipment maintenance has gone up. Higher tech equipment
requires more maintenance and a more specialized skillset. This is happening at the same
time that maintenance budgets are being squeezed tighter. Having the detailed data gives
the equipment a voice about the issues it is running into, allowing for smarter
preventative maintenance and reduced no-heat or no-DHW calls while creating the
opportunity for greater and more sophisticated remote management of boiler systems.

This suggests the most likely path forward for the FDD tool we have developed is to develop
partnerships with commercially deployed DAQ systems that meet the needs of multi-family
building owners and operators. Through these partnerships, the FDD tool could be modified to
run in the background, or an export stream of data could be made available to a technical
assistance provider to run the FDD tool and provide ECM and savings reports.
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Appendix A. FDD Tool Data Use Requirements

This appendix elucidates tradeoffs between sensor instrumentation cost and FDD tool efficacy,
with a goal of identifying cost-optimized sensor packages.

The two primary drivers for sensor instrumentation cost that we investigated are:

- Recommended sensor packages that balance FDD feature set vs cost
- Sensor sample rate that balances FDD tool performance vs cost.

In this document, we develop recommendations for two tiers of sensor package: a “minimum
recommended package” that offers a lower-cost entry-level offering, and an “optimal
recommended package” that offers a higher-cost, full-featured product offering.

Recommended Sensor Packages

An FDD toolset “feasibility matrix” is shown in Table 1-3: it summarizes the scope of feasible
FDD analysis, based on the data available for a given plant type (DHW/Heating/Combination).
As indicated, the scope and approach of the FDD analysis varies depending on plant type and
data availability. There are certain degenerate cases included in the table (e.g., no OAT or
HTWS data available) for which there is insufficient data to perform meaningful diagnostics. In
addition, for several additional cases (C3, C4, D3), FDD performance is degraded so as not to
justify investment.

From the remaining options - H1/H2, C1/C2, and D1/D2 - we have proposed a “minimum
recommended sensor package” and an “optimal sensor package” for each plant type, as show in
Table 1-1. The resulting feasibility of downstream FDD toolsets is shown in Table 1-2, where
“Y” indicates that the specified module is feasible; “Y*” indicates that it is feasible but
performance is affected by the sensor package selection; and “N” indicates the test is infeasible.
The ”optimal DHW” package, which includes a DHW Flow sensor to support estimation of
piping energy loss and therefore energy savings estimates from DHW plant ECMs, has not been
tested. It is included here as a potential avenue for future investigation.

Discussion of the motivating factors and impacts of sensor selection is included below.
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Table 1-1 Downstream FDD analysis feasibility as a function of plant type and data availability

HW, WWSD /S-W | Heati DHW
HTWS/SST, |HWS, HWR DHWFlow | L OAR ! / & Boder |Suboptimal| DHW
Case Plant Type | OAT {1} DHWS, Firing Rate State Estimation ~ Switch Enesgy N ~ Enargy
HWTR {2} {3} Rate Analysis ; . Cyding | TOUT {6} | Setpaint _
DHWR {4} Analysis Savings (5} Savings {7}
- Comby/ Htg N X X X X X N/A - Insufficient data for analysis N ? ?
- Comby/ Htg X N X X X X N/A - Insufficient data for analysis ? ? ?
Heating Calls: N fini te + DHW OFF
a Combined ¥ v ¥ See DHW Plant Eniry v : honrzerafiring rate + ¥ ¥ ¥ ¥ ¥ See DHW Plant Entry
DHW Calls: Rising HWS + non—zero firing rate
Heating Calls: Rising HTWS curve with DHW off|
P Combined ¥ ¥ ¥ See DHW Plant Ertry N OR_aﬁume_-_; a heating call every 30 mimutes v v . . v See DHW Plant Entry
during heating season
DHW Calls: Rising HTWS +Rising HWS
a Combined ¥ v N See DHW Plant Entry y  |Heating Calls: Nonzerofiring rate ¥ ¥ N ¥ ¥ See DHW Plant Entry
DHW Calls: Not 1 rited
@ Combined v ¥ N See DHW Plant Entry p  |Mesting Calls: Non-zero firing rate v ¥ N N v See DHW Plant Entry
DHW Calls: Not 1 rited
_ Heating Calls: Same as (2 Heating Call
H1 Heat Y Y N/A N/A N/A Y Y Y Y Y Y N N/A
ne / / / DHW calls: N/A /
Heating Calls: Rising HTWS or once per hr with
H2 Heating Y Y N/A NfA NfA N 0AT<60 deg and HTWS below threshold Y Y N N Y N NfA
DHW Dalls: N/A
D1 DHW X X X Y Y X H g Calla: N/A N N/A NfA ¥ Y
DHW Calls: Non-zero firing rate
Heating Calls: N/A
D2 DHW X X X Y N X _ _I N/A NfA Y N
DHW Calls: Rising
D3 DHW X X X N N X N/A - Insufficient data for analysis N/A N N
Notes:
1 - Can be t_out ort_weather_station. Weather station is ideally used for building load-vs-OAT calaulations in En. Savings, t_out ideally used for other calcs. Both req'd for Sub-optimal TOUT.
2 - Can be t_htws or t_system_supply, ideally system supply. Inchuding both provides supply- and demand-side feedback for OAR Analysis.
3 - HWR only required for determining DHW priority cfg and estimating energy savings.
4 - Will execute with only one of HW and DHWS; only plants with mixing valve expected to have HW.
5 - Requires HTWR in addition to HTWS as currently implemented. Howewver, HTWR 1s used only for estimating baoiler efficiency as a function of outdoor temperature. This has a minor impact on savings estimates, sowe can i nt a default

value in the event that HTWR is not available.
6 - Requires t_out AND t_weather_station
7 - Not tested, potential future feature set
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Table 1-6: Recommended Sensor Packages, by plant type

Sensor Package | TOUT ﬂ
X

Heating - Min X X

Heating - Optimal X X X X X X

Comb - Min X X X X X X X

Comb - Optimal X X X X X X X X X X X

DHW - Min X X X X X

DHW - Optimal X X X X X X?

Table 1-7: FDD Feasibility for sensor package selections. “Y*” indicates that a given capability is feasible, but
performance is affected by the sensor package selection.

WWSD Heati
Subopt | AR SD | Boiler Mixin | "M | paw | DHW
Sensor State . ) / ] DHW g L.
Analysi Cyclin g Priorit | Energy
Pkg Est s S-W Setpt Valve Energy Savines
i
Tout Switch 8 v Savings y ving
Htg-Min b Y Y Y* N N/A N/A N N/A N/A
Htg-Opt Y Y Y Y Y N/A N/A Y N/A N/A
Comb-Min Y* Y Y Y* N Y Y N N N
Comb-Opt Y Y Y Y Y Y Y Y Y TBD
DHW-Min | N/A N/A N/A N/A N/A Y Y N/A N/A N
DHW-Opt | N/A N/A N/A N/A N/A Y Y N/A N/A TBD

Local Outdoor Air Temperature / Weather Station Outdoor Air Temperature (OAT): The
minimum viable sensor package should include BOTH a local OAT temperature measurement
and weather data from the closest publicly available weather station.

e Local OAT represents the control variable for the boiler’s outdoor air reset response.
e Supplementing local OAT with weather station data
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System Supply Temperature / HTWS + HTWR: A minimum viable sensor package includes
one of system supply temperature or HTWS, ideally system supply temperature. An optimal
sensor package includes system supply temperature, HTWS, and HTWR.

System supply temperature measurements show the temperature that the boiler is controlling to,
so offers the best indication of the boiler’s response to outdoor air temperature.

Including HTWS in addition to system supply temperature provides an indication of the supply
temperature delivered to the building, which can be used to help tune OAR curve settings.
HTWR (or more specifically, HTWS-HTWR) is used as part of energy savings calculations to
estimate boiler thermal efficiency as a function of OAT, HTWS, and firing rate. In general,
changes in boiler efficiency represent a small fraction of pre- to post-ECM changes in energy
consumption, so HTWR could theoretically be excluded from the optimal sensor package.
However, the marginal cost of the additional point is minimal, so its inclusion is recommended.
In the absence of firing rate data, either SST or HTWS can be used in combination with OAT to
implement state estimation for heating plants; or with OAT and HWS to implement state
estimation for combination plants.

HWS/HWR/DHW Pump State: A minimum viable package for combination plants includes
HWS. An optimal sensor package includes HWS and HWR for combination plants, and
optionally could include DHW pump state.

HWS is required to disambiguate heating calls from DHW calls during combination plant state
estimation. Without HWS available, characterizing OAR and WWSD behavior is challenging
because warm weather DHW calls pollute meaningful analysis of heating plant behavior.

DHW pump state can be used in lieu of HWS to identify DHW calls. However, we found HWS
temperature rise is an effective stand-in for DHW pump state, and is less costly to instrument.
The temperature differential between HWS and HWR is used to estimate DHW pump flow rate
and, in turn, DHW load. DHW load is used to (a) distinguish DHW energy from heating energy
during energy savings calculations; and (b) flag issues with plants that do not implement a DHW
priority mode.

Firing Rate: An optimal sensor package includes firing rate (or equivalent boiler load) data from
all boilers.

The optimal version of state estimation for combination plants and heating plants uses firing rate
data. In the absence of firing rate, HTWS or SST temperature rise (in combination with HW'S
data for combination plants) can act as a reasonable proxy for identifying heating calls, but with

some loss of performance.

In general, the HTWS derivative method is effective at identifying representative time steps that
occur during heating or DHW calls, but less effective at estimating plant run time, and not useful
for estimating modulation levels. Said another way, points identified by the HTWS derivative
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method as being “ON” have a high probability of being ON; but points identified as “OFF” have
a relatively high error rate, particularly during heat season. *°

Excluding firing rate data has the following impact on FDD functionality:

o State Estimation: Minor impact for heating and combination plants.

OAR Analysis is minimally affected by substitution of SST/HTWS for firing rate. Estimating
the OAR response from observed data only requires selection of a representative sample of points
when the heating plant is active across a broad range of OAT conditions.

o  WWSD/S-W Switch analysis is feasible, but capability is moderately affected. Rather than
precisely estimate duty cycle as a function of outdoor temperature, as is feasible with firing rate
available, the tool instead estimates “hours per day that the heating system is active”. This
provides an useful snapshot of how plant activity changes as a function of OAT, but with much
less granularity and precision than is feasible with firing rate data.
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30 The reason for high error during heating season is that under high duty cycle conditions, HTWS temperature
cycling may not be apparent. As such, in the absence of observed cycling, the HTWS derivative method chooses a
representative sample of points during cold weather conditions. For OAR analysis, because HTWS does not exhibit
cycling, these points will be reflective of the OAR response. However, plant runtimes are not accurately
characterized.
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Figure 1-28: Example WWSD plots with and without firing rate data. Left-side: WWSD visualization for plants
with firing rate. Right side: WWSD visualization for plants without firing rate. Top Row: Plants with apparently
effective WWSD controls; Bottom row: Plants without effective WWSD controls.

DHW Setpoint Analysis and Sub-optimal T, are independent of firing rate data.

Boiler Cycling Analysis is not currently implemented without firing rate data. It is theoretically

feasible to identify short cycling during moderate and warm-weather conditions using HTWS
derivatives, but this has not been tested.

Energy Savings Analysis is not feasible without firing rate data. Firing rate data is used to
estimate building heat load as a function of outdoor air temperature.

DHWR/DHWS/HW: An optimal sensor package includes DHWS, DHWR, and HW for sites
with a mixing valve, and DHWR + DHWS for sites without a mixing valve.

DHWS and HW are used to identify potential mixing valve errors and high/low setpoint issues.

Including DHWR can help flag potential recirculation pump reversal or mixing valve issues and
is minimal marginal cost once DHWS is included.

Tank setpoint is polled if available, but is not used to flag any fault conditions.

DHW Pump Flow Rate: Estimating DHW energy savings potential by reduced piping loss
requires an estimate of DHW demand, which in turn requires flow rate (in combination with

DHW supply loop temperature delta, DHWS-DHWR). This functionality is untested, but could
be considered as part of a future sensor package.
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Sensor Data Rates

Overview

As currently implemented, the FDD tool uses data collected at a 1-minute sample rate for
analysis. This sample rate imposes significant costs in terms of data bandwidth, data hosting,
and downstream processing.

While there is a real need for 1-minute sample rate data, these needs are constrained to a subset
of FDD analyses and can theoretically be consolidated into a single upstream step of the data
analysis pipeline. In so doing, we can implement a two-stage data processing pipeline in which
data is collected onsite at a 1-minute sample rate, undergoes an initial set of data analysis in near
real-time, and then is down-sampled to a 1-hour data rate and posted to a cloud-hosted database
for subsequent analysis by the FDD tool.

To be compatible with the proposed two-stage workflow, we need to segregate data analysis into
two stages, with the following requirements:

- Stage 1 — Consumes 1-minute data. Needs to be decoupled from and occur upstream of (i.e.,
prior to) any stage 2 calculations. In addition, stage 1 data processing will have limited access to
historical data: stage 1 should be designed to require no more than 24 hours of high-resolution
data. It can presumably rely on a limited amount of locally-accessible historical data — ideally
this would be constrained to historical averages, etc, but it may be feasible to give access to
down-sampled historical time-series data.

- Stage 2 - Consumes and performs all analysis using 1-hour data.

Table 1-3 audits the data resolution requirements of individual FDD tool modules as currently
implemented. These requirements are discussed in detail in the following section.
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Table 1-8: Data Resolution requirements for FDD tool modules

Data QC Requires 1-min data

State Estimation Requires 1-min data with at least 2-hours of historical
context. Requires historical metrics to identify HTWS
temperature rise threshold and minimum active HTWS
threshold if firing rate data is not available.

Suboptimal Tout Uses 60-min data. Weather station only available with 60-
min time step, so faster is not feasible.

OAR Analysis Uses 60-min data after dropping points where heating_on
is False.

WWSD / By default uses 1-min data, but has a flag (use_hourly) to

S-W Switch use 60 min data with minimal impact

Boiler Analysis - Short Cycling Requires 1-min data to calculate boiler turn-ons per hour;

uses 60-min data for all subsequent calculations

Boiler Analysis - Firing Rate vs OAT Requires 1-min data for visualization of firing rate vs OAT.
Could feasibly be replaced with

DHW Setpoint & Mixing Valve Currently uses 1-min data to characterize min/max DHWS
and HW quantiles. Using 1-hour data reduces the impact of
outlying points on the analysis, but effect appears relatively
minor. Alternatively, metrics could be modified to keep
current approach. Need to investigate DHWR>DHWS error
for 1-min vs 1-hr case.

Heating Energy Savings As implemented, uses 1-min data to estimate boiler
efficiency as f(OAT, HTWS, HTWR, firing rate), but
resamples to 60-min for all calculations downstream of
this. Combination plant analysis requires explicitly de-
coupling and pre-calculating heating-associated energy and
firing rates from DHW-associated energy and firing rate,
with methodology varying depending on DHW plant
configuration. Efficiency and energy calculations could
occur as part of a real-time down-sample.

DHW Priority DHW pump flow rate requires a list of standalone DHW call
energy use using two different estimation methodologies,
calculated from high-rate data. Also requires calculation of
DHW and heating loads from high-rate data. Subsequent
calculations feasible with 1-hr time step.
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Appendix B. Analysis of Indoor Temperatures as a
Function of OAR Curve Changes at Two Buildings

Introduction

Prior field testing and modeling demonstrated that the greatest energy savings from outdoor air
reset (OAR) curve adjustments that decrease HTWS are generated from reducing uncontrolled
heat flows from thermal distribution units (TDUSs, i.e., radiators and convectors) that overheat
rooms. The higher-than-intended Ti, effectively increases space heating loads and, thus, space
heating energy consumption. Our heat transfer modeling shows that uncontrolled heat flow
scales with HTWS- Tou;, which explains why decreases in HTWS can realize significant
decreases in space heating energy consumption — but only if a building has a large portion of
heat transfer surfaces with uncontrolled heat flow. Earlier work (e.g., Hewlett and Peterson
1984) showed that Ti, measured in the corridors of multifamily buildings could decrease by
several °F when HTWS was decreased, and we endeavored to make similar measurements to
explicitly link changes to HTWS to changes to Tix.

Toward that end, during the 2022-23 heating season NEI deployed extended memory Onset
HOBO T+rH data loggers in units of four multifamily buildings where they also implemented
OAR curve changes (i.e., HTWS[Tout]). No other efficiency measures were implemented over
the course of the winter. Due to data acquisition configuration problems, viable data sets were
only collected for two sites both before and after the OAR curve changes and one site had a very
limited number (three) of loggers deployed.

The table below summarizes the OAR parameters for the periods before (A) and after (B) the
OAR curve changes at the two buildings; data were collected each minute. At both buildings,
HTWS(Tout) was 10°F higher in Period B than in Period A; thus, the model would predict higher
Tin values during Period B in spaces with uncontrolled heat flows.

Table 9: OAR curve parameters for periods A and B

Period A Period A Period A Period B Period B Period B
Building HTWS,max HTWS,min SH1 HTWS,max HTWS,min SH1

/ Tout,min / Tou,max  Setpoint / Tout,min / Tout,max  Setpoint
#1 180/15 125/65 175 190/15 135/65 185
#2 165/10 115/70 185 175/10 125/70 180
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Findings

Since the average outdoor air temperatures at the two sites were very similar during the two
periods, ~37-38°F, we looked at the average Tin values in the monitored spaces to evaluate if
there were appreciable differences between the two periods. The two tables below summarize the
findings for the two buildings.

Table 10: Building #1 average Tin measurements for Periods A and B, all in oF (Tout,averages: A=37.5,

Unit (Floor)

Unit A (2)
Unit B (3)

Unit C (3)

Unit D (4)
Unit E (5)
Unit F (5)
Unit G (6)
Unit H (7)
Unit | (7)

Average

Period A

12/3/22-

1/22/23

68.3
N/A

75.4

80.8
81.2
67.7
72.8
65.7
68.9

72.6

B=37.3)
Period B
1/24/23-
3/21/23
68.7 0.5
N/A N/A Data through 1/8/23
71.9 (3.5) Data through
3/17/23
80.8 0.0
80.8 (0.4)
66.7 (1.0)
75.1 2.4
74.2 85
69.6 0.7
73.5 0.9

Table 11: Building # Tin data for Periods A and B, all in °F (Tout averages: A=37.1, B=38.5)

Unit #
(Floor)

Unit A
(1)

Unit B
(1)

Unit C
2)

Period A

12/6/22-

1/22/23

77.1

71.1

72.2

Period B  dTin

1/24/23-
4/3/23

7.7 0.7

73.2 2.2

73.4 1.2
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Average 734 74.8 1.3

As would be expected if there were a nontrivial degree of uncontrolled heat flow in the
buildings, the Tin averaged among the monitored spaces was about 1°F higher in the period with
the higher HTWS(Tou ), Period B.

We can use the Tin and Towe measurements, along with an estimate for the balance temperature,
Toal (e.g., 10°F less than Tin), to quantify the approximate energy impact of the change in Tis. The
space heating load, Qin, is proportional to (Tvai — Tout ). Assuming that Tvar = Tin — 10°F, the
increases in Tin measured for Buildings 1 and 2 would increase the space heating loads in Period
B by approximately 3.6% and 5.3% relative those expected given Tou in Period B.

Table 4: Comparison of Building 1 and 2 Change in Space Heating Loads

Building Tin,avg — dTin Expected %
Period A and B Change in Space

Heating Loads

Building #1 | 72.6->73.5 0.9 | 3.6%

Building #2 | 73.4->74.8 1.3 | 5.1%

NEI did not collect connected boiler performance data concurrently with the T/rH that would
allow quantification of the extent of overheating and the actual change in Qin 3! versus Tou for
each site. However, the room-level data may allow us to determine if the TDUs in a particular
unit exhibited evidence of uncontrolled heat flows.

The Figure below shows Tiy data for Unit A of Building #2. Ti, appears to have somewhat
greater variability during the first period (with lower HTWS), exhibiting periodic spikes.
Interestingly, Tin approached 95°F late during the evening of February 4" when Tou ~13°F,
toward the end of a historically cold (Tou ,min = -9°F) polar vortex event on February 3™ and 4
of 2023. Unit C also experienced large swings in Tis, including during the same event (e.g., from
~70°F in the morning to 84°F around 1PM).

31 Based on multiplying the boiler firing rate data by estimated boiler efficiency.
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In contrast, the unit with the greatest increase in Ti, experienced much smaller Ti, swings,
including during the polar vortex event on February 3™ and 4™ (see below). There was no clear
pattern for how Ti, varied as a function of Tou at Building #2.
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Looking at the unit-level data for Building #1, the data for Unit D show appreciable variability,
although the average Tin values did not change between periods. Note that the HDUs had plenty

of capacity during the early February polar vortex, with average Ti, on those days exceeding
80°F.
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Unit A also had a smaller (~0.5°F) dTin between the periods but a much lower average Tin, ~68-
69°F.
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In contrast to Unit D, during the polar vortex Tin in Unit A dropped just below 60°F for much of
the day, but then recovered. This could be consistent with either an inability of the heating
system to keep up under the extreme cold conditions or an increase in the set-point temperature
that afternoon.
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Despite having much higher average Tin values (~80°F), Unit E (below) also had a small (0.4°F)
dTin between periods A and B and low levels of Ti, variability. During the polar vortex, Tin
dropped to ~75°F. Taken together, it appears that this unit had effective Ti, control but could not
quite keep up with Ti, expectations during the extreme cold of February 4%,
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For another unit on the same floor, Unit F (below), the T, values showed appreciably more
variability, albeit around a much lower (~67°F) average temperature. During the polar vortex, Tin
fell below 60°F during the coldest part of the day (before noon) but recovered to its ~typical
range sooner than in other units.
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We also examined Unit H, which exhibited the greatest (~8.5°F) increase in the average Tin when
HTWS was increased during period B, as the very large dTin suggests it had a high degree of
uncontrolled heat flow.

100

95

Tin [F]

30-Mar

Surprisingly, the increase in Tiy did not coincide with the OAR curve parameter changes
(implemented on 1/23/23) but occurred later, i.e., Tin average rose from ~65°F on 2/6/23 to
>77°F on 2/10/23. Later, the daily average Tin rose from ~72°F on 3/5/23 to ~86°F on 3/8/23.
These significant jumps in Ti, suggest two potential scenarios: 1) changes to in-unit TDU
control; and/or 2) uncontrolled heat flow and deviations from the planned OAR curve change.
For example, the ~flat average Ti, after the 1/23/23 OAR curve change indicates effective HDU
regulation or that the OAR curve was not fully implemented, while the large Ti, increases noted
in early February and March would be consistent with uncontrolled heat flow combined with
unrecorded changes in OAR curve parameters and/or set-point changes reflecting a change in
comfort preferences or tenants.

Unit H was located on the top (seventh) floor of the building, so perhaps roof-driven heat
transfer affected Tin. However, another unit on the same floor (Unit I) showed a much smaller
change in Ti, (~0.7°F) and variability in Tix:
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Finally, we examined the Ti, behavior in Unit C, the one unit in Building #1 that experienced a
significant Ti, (3.5°F) decrease in period B. Given that increases in HTWS(Tou ) should increase
uncontrolled heat flows while controlled heat flows should not change, we found this change
surprising. The Ti, data suggest smaller (1-2°F) variations in Ti, around a ~75°F set point until
~mid January, i.e., well before the OAR curve change. After then, much larger (up to ~10°F)
swings in Tin occur and the average Tin decreases. While the decrease in Tin ( Tout ) would be
consistent with better control of heat flows, the large increase in Tin variability is not. Potential
explanations include significant changes in Ti, preferences occurred in mid-January (e.g., change
in occupancy), a change in HDU effectiveness (e.g., from inhabitant’s belongings), and/or a
change in thermostat effectiveness (e.g., thermostat exposed to solar heat gains).
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Taken together, these measurements indicate that a random sample of Tin measurements from a
small portion of units in a multi-family building cannot provide much insight into TDU
regulation and boiler system performance. That is, there are several reasons why changes in Ti,
could occur that cannot be readily understood without additional context. As demonstrated in the
energy savings analysis, our methodology to analyze connected boiler data provides much more
insight into boiler system performance and the degree of uncontrolled heat flow in a building.
Nonetheless, unit-level Tin data do provide crucial insights into actual comfort conditions, which
can certainly help optimize OAR curve parameters while maintaining comfort.
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If it is not possible to monitor Ti, in most units, we recommend sampling Ti, data from a larger
portion of units and/or measuring Tin in common spaces, €.g., central corridors, that would tend
to average Tin for a given floor.
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Appendix C: A Physics-based Model for Hydronic Heat
Transfer32

The fundamental problem with the existing approaches to quantifying the expected energy
savings from changes to the OAR curve is that they do not take into account the actual control of
boiler distribution systems in a specific building, i.e., the extent of uncontrolled heat flow-driven
overheating that occurs. To address this, we developed a basic model for heat transfer from the
hydronic distribution loop to indoor spaces and how heat distribution unit (HDU) control — or the
lack thereof — impacts effective space heating loads and boiler energy consumption. Figure 4
shows the basic model for heat transfer to and from a hydronically heated room.

B R R R Y B L R A R R e B

HTWS

I
]
=
=
S

o R T M A P

1
1.1
UA,in * UA, out

Qin = UA, in (HTWSRTin) UA in U4, tot =

Tin Tout

Qin+ HG = UA, out (Tin — Tout)

Figure 4: Conceptual model of room heat transfer with boiler system and outdoors.
Heat transfer from the heating loop to the space, Qin, equals:

Qin =~ UA,,(HTWSR — Tin)VRT (1)

where the variables are:

e HTWS: Heating loop supply water temperature, i.e., temperature entering the
radiator/convector (from now on referred to as a heat distributing unit, or HDU).

e HTWR: Heating loop return water temperature, i.e., temperature leaving the HDU.

e HTWSR: The average of HTWS and HTWR, i.e., 0.5*(HTWS + HTWR)

32 This appendix is an excerpt from Roth and Kromer 2024.
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e Tin: Room temperature.

e UAin: the overall heat transfer coefficient for an HDU, which varies as a function of
HTWS and Tin.
e VRT is the % of time the thermostatic valve (TV) is open.

A heat balance on the fluid flowing through the HDU shows that the change in flow thermal
energy equals the heat transferred to the space; here, m equals the water mass flow and cp the
water thermal capacitance:

mc ,(HTWS — HTWR) = UA;, (HTWSR — Tin) (2)
Similarly, the overall heat balance for the room equals:
Qin+ HG = UAyyu:(Tin — Tout) 3)

where HG equals internal plus solar heat gains while UA,y is the overall heat transfer coefficient
from the building to the outdoors from conduction, radiation, and infiltration. ** When Qin = 0,
i.e., when Tout equals the balance temperature, Tbal, at the indoor design temperature,
Tin,design:

HG = UA,y; (Tin,design — Thal) 4)

At Thbal, internal and solar heat gains exactly balance heat losses from conduction and
convection, i.e., space heating is required below Tbal. >*

Once values for some variables are known or estimated, we can solve for the other variables. For
example, if we can estimate Tin,design, Tbal, and UA,out, and assume VRT = 100% at design
conditions, we can solve for UA,in (at design conditions) and m:

UAoyt (Thal-Tout,design)
HTWSR(Tout,design)—Tin,design

UAip = )

UAin (HTWSR(Tout,destgn)—Tin,design)
me, = (6)
HTWSR(Tout,design)

33 This basic HDD formulation (i.e., PRISM) for space heating loads lumps conduction and infiltration heat losses
into a single UA term, assuming both conduction and infiltration vary linearly with Tin — Tout. Actual building
infiltration tends to exhibit appreciable nonlinearity, with an average exponent of ~0.65 (ASHRAE 2023).

3% In practice, Tbal can vary appreciably depending on the actual SHGs experienced by a building, as well as with
nonlinear wind-driven infiltration.
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The temperature difference for the water flowing through the HDU, dT, at other conditions
equals:

(HTWS[Tout]—Tln) UAin,new (7)
(HTWS,design—Tin,design) UAin,design )

dT(HTWS,Tin) = HTWS — HTWR = dTgesign

The last term takes into account that HDU output scales with (HTWS-Tin)", so UAi, scales with
(HTWS — Tin)™!, where n depends on the type of HDU. Based on ASHRAE (2020), n = 1.31 for
baseboard units (1.375 for SlantFin products) and 1.2 for cast-iron radiators. Although Tin
decreases as HTWS decreases (assuming VRT is constant), the change in Tin is typically small
relative to that in HTWS (see subsequent discussion).

To model how boilers can inadvertently overheat spaces, we next discuss system performance
with controlled and uncontrolled heat transfer from the boiler distribution system to the room.

Well Controlled Case

Thermostatic valves (TVs) regulate heat flow from the boiler supply loop to rooms that shut off
water flow through the HDU when the room achieves >’ its target temperature set-point, Tset.
That is, TV should turn on and off the valve such that Tin ~equals Tset. In that case, for any
HTWS and HTWR, the space heating load, Qload, and the controlled Qin, Qin,contr, both
decrease linearly from the heating load at Tout,design, Qin(Tout,design), to Tbal:

Qload = Qin,contr = UA, out(Tin — Tout) — HG = UA, out (Thal — Tout)

(Tbal—Tout)
(Tbal-Tout,design)

= Qin (Tout, design) * (8)

Uncontrolled Case

If the TV does not modulate effectively to control heat flow to the space, e.g., if the TV is stuck
open, the dynamics change appreciably as the heat flows continuously from the boiler system
into the room, i.e., VRT = 1.0 under all conditions. Since Tin is no longer controlled, it increases
to an equilibrium temperature, Tin,eq, where the heat flows balance:

Qin+ HG = UA;ymcp dT + HG = UA, out (Tin,eq — Tout) ©)

33 Or, in the case of thermostats with anticipation action, approaches Tset.
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Qin now equals the uncontrolled heat input into the space, Qin,uncontr, which is proportional to
the difference between HTW SR and Tout:

Qin, uncontr = Qin = UA, out (Tin,eq — Tout) — HG. (10)

Viewed another way, in the uncontrolled case heat transfer from the HDU at HTW SR to the
outdoors at Tout occurs through two heat transfer resistances, 1/UAi, and 1/UAou. The total UA,
UA tot, equals:

1 1
UA, tot = UAipn(Tout) + Uhout (1)

Consequently, Qin,uncontr is approximately proportional to the difference between HTWS and
Tout:

Qin, uncontr ~ UA.,:(HTWS — Tout) Cry. (12)

Here, the Ctv factor takes into account how UA,in varies as a function of the difference between
HTWSR and Tin,eq (see prior discussion and Appendix A). This expression neglects both
internal heat gain and the reality that heat transfer between the HDU and Tin,eq occurs at
HTWSR3s. As shown later, these simplifications do not appear to have a significant impact on
the accuracy of data-driven assessments of the degree of overheating from uncontrolled heat
flows for a specific boiler system or the predicted energy savings from decreasing HTWS. If we
assume that the HDUs would just meet the design heat load as design conditions, i.e., when Tout
= Tout,design and Tin(Tout,design) =Tin,design, VRT(Tin,design) = 100%, then Qin,uncontr is
also approximately proportional to Qin,design:

HTWS(Tout)—-Tout
HTWS(Tout,design—Tout,design

Qin, uncontr(Tout) = Qin, design Cry (13)

36 Although hydronic systems are often designed for dT~20°F, field data collected by New Ecology for >100
multifamily buildings found that dT did not approach that value for most boiler systems.
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We can also solve the energy balance and dT(HTWS,Tin) equations simultaneously to obtain
Tin,eq, where UAin,design and UAinnew are calculated for the HDU at the design and new HTWS
values:

mep HTWS dT(HTWS gesign Tidesign)UAinnew

UAoytTout+HG+

(HTWSdesign_ Tindesign) UAin,design (14)
mcp dT(HTWSdesign'deesign) UAin,new)

(HTWSdesign_ Tindesign) UAin,design

Tin,eq =

(UAout t

Unsurprisingly, a perpetually open TV can significantly increase indoor temperatures. Figure 5
shows Tin,eq as a function of Tout based on this methodology based on the following
assumptions: Tdesign = 0°F; Tset,design = 75°F Tout; VRT(Tout,design)=100% (for the
controlled case); HG = 10°F and a HTWS reset curve of (10,180) and (60,120).>” In that case,
our model shows the building experiences significant overheating, with the expected Tin,eq often
exceeding 80°F. Heat transfer from the room to the outdoors, which scales with Tin-Tout,
increases, so effective space heating loads do as well.

Impact of TV Function and Window Opening on Boiler Loads and Tin
100% 100

Load - TV Works

75%

& Load - No TV
$ [°5Y
3 o 0 8
° 50% 80 £
= £
c =
s

5% 7 :

25% 0 m===Tin-no TV
= = Tin-No TV + Window
0% 60 Opening
0 10 20 30 40 50 60
Tout, F

Figure 5: Example of modeled Tin and boiler output (Qin) as a function of Tout for three
control scenarios: TV Works, No TV (= failed TV), No TV + Window Open.

Elevated Tin,eq makes it more likely that inhabitants will open windows to moderate Tin, which
increases UAou and UAo for the entire system. We can estimate the increase in UAou by

37 The first term of the reset curve parameters specifies Tout (10°F) when HTWS reaches its maximum value
(180°F) while the second specifies the Tout (60°F) when HTWS reaches its minimum value (120°F).
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assuming people would operate windows to achieve a maximum, marginally acceptable indoor
temperature, Tin,max, In that case, the window-controlled Tin, Tin,cont, equals:

Tin,cont = MIN (Tin,equ , Tin,max). (15)

Since Tin is now fixed and VRT = 100%, we can readily solve for dT and then UAoutnew from a
room energy balance:

. HTWS—-Tin,cont UAinnew
dT = deesign

(16)

HTWSdesign_Tindesign UAin,design

mcp dT+HG
(Tin,cont—Tout)

(17)

UAout,new =

Calculations made for UAoutnew indicate that UAoy increases ~10-15% when Tout ~25-30°F, and
by >40% when Tout is 50°F relative to the windows closed case.

Estimating the Fraction of Controlled and Uncontrolled Heating Energy Consumption

As shown, uncontrolled heat flow can greatly increase Tin, effective building loads, and boiler
energy consumption. We now present an approach that uses data from connected boilers to
estimate the degree of overheating occurring in a building. Connected boilers acquire a range of
time-series data about boiler performance, such as boiler firing rates (BFR), outlet and return
temperatures, status and error codes, etc. and communicate it to the cloud. Building operators can
then access those data remotely (see Lochinvar 2023). We use the HTWSR, FiringRate, and Tout
data from connected boilers to evaluate the degree of overheating occurring for a specific boiler
System.

As shown earlier, a building with well-regulated heat flows from the boiler system will result in
space-heating loads that decrease approximately linearly from Tout,design to Tbal. In contrast,
space heating loads in buildings with uncontrolled Tin regulation will scale with (HTWSR —
Tout), with an abrupt drop-off around the warm-weather shut-down (WWSD) temperature (when
the system automatically locks out the boiler from firing). Thus, we can analyze the shape of
the boiler gas consumption (derived from BFR data) versus Tout curve to identify systems
that have appreciable overheating. Specifically, we expect boiler plants with Load (= Qin *
n) vs. Tout slopes that scale with (H-TWSR —Tout) and do not converge to negligible
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average BFR (i.e., negligible space-heating gas consumption) at Tbal (e.g., around ~55-
65°F) indicate significant overheating.

Uncontrolled heat flow yields a gas consumption vs. Tout curve similar to that shown in Figure 2
from Hewett and Peterson (1984), who reported Tin values in many buildings they investigated
ranging from the mid-70s to mid-80s, indicative of significant overheating relative to typical
design temperatures and likely window opening.

In practice, many buildings have a mix of controlled and uncontrolled heat flow from HDUs.
Then, the actual Qin to the building, Qin,actual, equals the product of the controlled and
uncontrolled cases with the fraction of HDU UA associated with each case, where SC equals the
fraction of HDUs with well-controlled heat flow.

Qin, actual = SC = Qin, contr(Tout) + (1 — SC)Qin, uncontr(Tout, HTWS) (18)

Figure 6 show conceptually to apply these basic models to estimate the actual extent and energy
impact of overheating in a building by comparing actual average hourly heating loads at different
Tout values to the fully controlled and uncontrolled cases. As in Figure 2, the upper red line
represents the Qin(Tout) curve for the uncontrolled case, the lower green curve the controlled
case, and the middle blue line a curve for an actual boiler system with some fraction of
uncontrolled heat flow, SC(Tout). As noted earlier, this assumes that the controlled (i.e., ideal)
and uncontrolled curves converge at Tout,design, i.e., that the HDU TVs are always fully open to
attain Tin,design at Tout,design. For the analysis that follows, this is likely a conservative
assumption for many buildings that have spare boiler and HDU capacity at design conditions.

QI n Controlled
curve SN Tt Actual curve

Tout, Thal
design Tout
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Figure 6: Conceptual diagram of boiler Qin versus Tout curves for ideal HDU control and
uncontrolled HDUs, with an example of an actual boiler system with uncontrolled heat flow in
~60% of spaces.

Modeling Energy Impact of Uncontrolled Heating Energy Consumption and OAR Curve
Changes

Using BFR and HTWS data from connected boilers and Tout weather data, we can assess
SC(Tout) for each 5°F Tout bin by calculating the difference between Qin,actual and
Qin,ideal(Tout) divided by the difference between Qin,uncontr(Tout) and Qin,contr(Tout) given
the boiler system’s HTWS(Tout):

SC (Tout) _ Qin,actual(Tout)— Qin,contr(Tout) (19)

Qin,uncontr(Tout)—Qin,contr (Tout)

We can then calculate Qin for any conditions:

. . . SCxCty* (HTWS(Tout)—Tout 1-SC) (Thal-Tout
Qin(Tout) = Qin(Tout, deSLgn)[ ry+ (HTWS(Tout) ) -se)( out)
HTWS(Tout,design)—Tout,design Thbal-Tout,design

(20)

We can use this expression to model and predict the energy impact of changes to the OAR curve
parameters, i.e., HTWS(Tout). Crucially, changes in HTWS(Tout) only result in savings from
reducing overheating in portions of the distribution system with uncontrolled heat flows, as
system portions with well-controlled heat flows effectively modulate Qin as loads change. >
Consequently, systems with load curves closer to the uncontrolled case can achieve significant
overheating/load-related savings, as decreasing HTWS directly decreases Qin for uncontrolled
flows. In contrast, systems with load curves closer to the controlled case will realize smaller
savings from the same OAR curves, since a smaller portion of the heat distribution is
uncontrolled. Figure 7 show an example of this approach applied to two OAR curves, with Tbal
= 60°F and SC = 0.59; the actual SC would be calculated using BFR data.

38 In the extreme case where heat flow is perfectly controlled, the savings from modifying the HTWS curve are
driven entirely by nominal changes in boiler efficiency as a function of temperature and firing rate.
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Figure 7: Modeled example of how lowering HTWS (Tout; left) decreases Qin,uncontr(Tout),
shown relative to ideal (controlled) case (right).

Assuming the portion of the system with uncontrolled heat flows does not change when
HTWS(Tout) changes, e.g., due to window opening, we can estimate the reduction in space-
heating heat into the building from changes in HTWS for each Tout bin, dQin(Tout), and the
percentage change in Qin, OAR,save,load (Tout), taking into account changes in Cyv:

dQin (Tout) =
SCx Qin (Tout,design)« [Cry faio1a (HTWSo1q (Tout)—Tout)— Crynew (HTWSpey (Tout)-Tout) | @1)
(HTWS(Tout,design)—Tout,design)

%O0ARsave, load(Tout) =

SCx[Crv faitora (HTWSo1q (Tout) —Tout)— Crynew (HTWSpey (Tout) — Tout) |
* Cry . o1d (HTWS 14 (Tout)-Tout)
(HTWS,design — Tout,design)

(22)

sc
(HTWS(Tout,design)—Tout,design)*

+(1—SC)( Thal-Tout )} ’

Tbal-Tout,design

One thing to note is that if the load curve is linear with Tout and the change in HTWS(Tout), i.e.,
dHTWS(Tout)/Tout, is constant over a temperature range, the magnitude of the hourly savings
would be the same for those Tout bins (not accounting for changes in UAj, and UA« that will
“bend” down the theoretical uncontrolled load curve). The percentage savings will, however,
increase as Tout increases, since the magnitude of the baseline load decreases while the quantity
of energy saved remains constant. In practice, these calculations can become very sensitive as
Tout approaches the estimated Tbal. Since the ideal load becomes small under those conditions,
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uncontrolled heat flows likely dominate space heating. Consequently, it may be reasonable to
assume that SC = 1 when Tout approaches Tbal. *°

To obtain a representative estimate of annual savings from the OAR curve changes, we apply the
SC(Tout) values to TMY data, multiplying dQin(Tout) for each Tout bin by the hours/year in
that bin in a typical mean year (TMY). Any incremental savings from increased boiler efficiency
would be calculated based on the difference between Qin to obtain a difference in boiler energy,
Qgas, i.e., Qin divided by n(Tout), for the baseline and reduced load cases.

39 If HTWS were decreased below the minimum required to meet the space heating load at a given Tout, with
functioning TVs fully open, Tin would fall below Tin,design. The model assumes that HTWS(Tout) is not decreased
to an extent that this occurs.
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