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ABSTRACT
This paper evaluates the accuracy of the Hermitian form of the downfolding procedure using the double unitary coupled cluster (DUCC) 
ansatz on the benchmark systems of linear chains of hydrogen atoms, H6 and H8. The computational infrastructure employs the occupation-
number-representation codes to construct the matrix representation of arbitrary second-quantized operators, allowing for the exact 
representation of exponentials of various operators. The tests demonstrate that external amplitudes from standard single-reference coupled 
cluster methods that sufficiently describe external (out-of-active-space) correlations reliably parameterize the Hermitian downfolded effective 
Hamiltonians in the DUCC formalism. The results show that this approach can overcome the problems associated with losing the variational 
character of corresponding energies in the corresponding SR-CC theories.

I. INTRODUCTION

Applying many-body methods for dimensionality/cost reduc-
tion (DCR) of ab initio formulations is imperative in expanding the
range of system sizes amenable to accurate many-body formulations
in chemistry and material sciences. These techniques play a vital
role in embracing new computational paradigms associated with the
emergence of quantum computing and machine learning (ML) tech-
niques. Accurate and rigorous DCR techniques are also critically
needed to drive the design of new approaches capable of capturing
the sparsity inherent to broad classes of correlated quantum sys-
tems. For example, these formalisms are instrumental in effectively
using early quantum computing resources, commonly referred to
as the noisy intermediate-scale quantum (NISQ) devices,1–4 where
DCR methods primarily focus on minimizing the number of qubits
required to represent a given quantum problem. One should men-
tion several techniques developed to take full advantage of the
ubiquitous Variational Quantum Eigensolver (VQE) approach5–16

in addressing problems beyond the situation where few electrons are
correlated.

In the context of quantum chemistry, the utilization of DCR
techniques is linked to the partitioning of electron correlation effects

into static and dynamic partitions and capturing them in the many-
body effective Hamiltonians acting in active spaces. The coupled
cluster (CC) formalism17–25 has been found to be particularly effec-
tive in capturing and separating the various effects. It provides
a natural means of expressing effective Hamiltonians in terms of
many-body correlation effects. The CC-driven DCR techniques can
provide a mathematically rigorous platform for a broad utilization
of deep neural networks (DNNs)26–31 to learn the form of effec-
tive interactions in the small-dimensionality spaces, opening in this
way prospects of performing affordable high-accuracy/interaction-
driven simulations of chemical systems as envisioned in Refs. 32
and 33.

We have recently introduced and tested downfolding tech-
niques based on the double unitary coupled cluster (DUCC)34 ansatz
to address the above-mentioned problems. This formalism falls into
a broad class of unitary wave function ansatzen for describing the
ground states of correlated systems.35–45 The downfolding proce-
dure utilizes the properties of the ground-state DUCC ansatz, which,
in analogy to single-reference sub-system embedding sub-algebras
(SES-CC),46–48 allows us to construct effective Hamiltonians that
integrate out-of-active-space degrees of freedom usually identi-
fied with dynamical correlation effects. In contrast to the SES-CC
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approach, the DUCC formalism yields the Hermitian form of the
effective Hamiltonian in the active space.

The DUCC-driven downfolded Hamiltonians and other
CC-based downfolding techniques, such as the driven similarity
renormalization group or active-space embedding theory,4,49 are
natural theoretical frameworks for the development of various
CC-based embedding schemes. Recently, several approximations
have been tested to validate the efficiency of the downfolding pro-
cedure. These approximations, due to the non-commutativity of
the components defining DUCC operators, were based on (1) the
maximum rank of the commutator expansions, (2) the limited rank
of interactions included in the downfolded Hamiltonians (one-
and two-body interactions), and (3) the choice of the approximate
form of the external amplitudes [usually extracted from the single-
reference CC (SR-CC) model with singles and doubles (CCSD)].23

The DUCC-based techniques are also integral parts of the dis-
tributed algorithms based on the quantum flow approaches,47,50

which can increase the system size limit that is tractable by NISQ
devices and pave the road for novel formulations that capture the
general-type sparsity of correlated quantum systems.

Our team has recently developed a novel full configuration
interaction (FCI) code called stringMB,48 which employs a string-
based approach to emulate quantum systems and represent oper-
ators in matrix form. This code has been integrated into the
NWChem software, enabling us to (1) work with the exact repre-
sentations of operator exponents and (2) leverage various sources
for external CC amplitudes. This allows us to focus strictly on the
role of SR-CC amplitudes by removing the ambiguity of the other
approximations as we include the exact representation of the oper-
ator exponentials and all many-body ranks of interactions. In this
study, we investigate the impact of higher-rank external excitations
obtained through CCSD,23 CCSDT,51–53 and CCSDTQ54–56 simula-
tions, as well as the active space size, on the accuracy of ground-state
energies for small benchmark systems H6 and H8 representing
linear chains of hydrogen atoms.

II. THEORY
The DUCC formulations have been amply discussed in recent

papers (see Refs. 32–34). Here, we overview only the salient fea-
tures of these approaches. While the SES-CC technique46,47 forms
the basis for non-Hermitian downfolding, the DUCC expansions
provide its Hermitian formulations. The Hermitian form of the
downfolded Hamiltonian is obtained as a consequence of utilizing
active-space-dependent DUCC representation of the wave function

∣Ψ⟩ = eσext eσint ∣Φ⟩, (1)

where σext and σint, referred to as external and internal cluster
operators, are general-type anti-Hermitian operators41 (see also
Ref. 57),

σ†
int = −σint, (2)

σ†
ext = −σext. (3)

The exactness of the expansion (1) is contingent upon the conver-
gence of the infinite series, resulting in the multiple-step utilization
of the Baker–Campbell–Hausdorff formula.33 We will assume that

these expansions are convergent. In analogy to the non-Hermitian
case, the σext and σint operators are defined by parameters [see Eqs.
(30), (32), and (35) of Ref. 33] carrying only active spin-orbital labels
and those with at least one in-active spin-orbital label, respectively.
The DUCC ansatz employs analogous type of the cluster operator
partitioning as discussed in the active-space58–60 and tailored CC
formulations.61,62

The use of the DUCC ansatz (1), in analogy to the SES-CC
case, leads to an alternative way of determining energy, which can be
obtained by solving the active-space Hermitian eigenvalue problem,

Heffeσint ∣Φ⟩ = Eeσint ∣Φ⟩, (4)

where

Heff
= (P +Qint)H̄ext(P +Qint) (5)

and

H̄ext = e−σext Heσext. (6)

The Qint operator is a projection onto excited (with respect to ∣Φ⟩)
configurations in complete active space (CAS), and the projection
onto the reference function is denoted as P. When the external clus-
ter amplitudes are known (or can be effectively approximated), the
energy (or its approximation) can be calculated by diagonalizing the
Hermitian effective/downfolded Hamiltonian (5) in the active space
using various quantum or classical diagonalizers. It should also be
stressed that for constructing effective Hamiltonians, only the σext
operator is needed (σint is only needed to represent its eigenvec-
tor). For well-defined active spaces [corresponding to small values of
parameters defining σext operators discussed in Eqs. (30) and (32) of
Ref. 33], it is reasonable to assume that many-body series mentioned
in the previous paragraph are convergent. The DUCC techniques
provide a framework for a hierarchical structure of many-body
approximations to construct effective Hamiltonians of increasing
accuracies.

Although the DUCC downfolding procedure results in the
effective Hamiltonians defined in active spaces, their properties
differ from those of effective Hamiltonians used in the genuine
multi-reference CC (MR-CC) approaches.21,63–68 The main differ-
ence is a different, single-reference type characterization of the exci-
tation manifold included in σext compared to MR-CC methods. For
example, typical manifestation of the intruder-state problem is asso-
ciated with the appearance of excessively large MR-CC amplitudes
defined by high-lying active and low-lying in-active spin-orbitals.
These amplitudes are not present in the DUCC downfolding for-
malism. The proper choice of the active space provides large values
of denominators in the perturbative analysis of σext amplitudes. An
additional factor in eliminating the intruder-state problem is the
variational character of the ground-state eigenvalue of Heff when an
exact form of e−σext Heσext can be determined.

For quantum computing applications, a second-quantized rep-
resentation of Heff is required. In the light of the non-commuting
character of components defining the σext operator, to this end, one
has to rely on the finite-rank commutator expansions, i.e.,

H̄ext ≃ H +
MaxR

∑
i=1

1
i!
[. . . [H, σext], . . .], σext]i, (7)



where MaxR stands for the length of commutator expansion. Due
to the numerical costs associated with the contractions of multi-
dimensional tensors, only approximations based on including low-
rank commutators are feasible. In recent studies, approximations
based on single, double, and part of triple commutators were
explored, where one- and two-body interactions were retained in the
second quantized form of Heff. In practical applications, one also has
to determine the approximate form of σext. For practical reasons, we
used the following approximation:

σext ≃ Text − T†
ext, (8)

where Text can be defined through the external parts of the typical
SR-CC cluster operators.

For further advancing of the CC downfolding techniques, two
questions need to be addressed: (1) what is the impact of the choice
of Text on the quality of ground-state energy of Heff? and (2) what are
the energy values corresponding to the untruncated (exact) form of
Heff? We answer these questions using the stringMB code that allows
us to deal with the exact matrix representations of second quantized
operators and their functions in the FCI space.

III. IMPLEMENTATION
For interacting fermionic systems, the action of the cre-

ation/annihilation operators for the electron in the pth spin-orbital
(ap/a†

p) on the Slater determinants can be conveniently described
using the occupation number representation, where each Slater
determinant is represented as a vector,

∣nM nM−1 . . . ni+1 ni ni−1 . . . n1⟩, (9)

where the occupation numbers ni are equal to either 1 (electron
occupies the ith spin orbital) or 0 (no electron is occupying the
ith spin orbital) and M stands for the total number of spin-orbitals
used to describe the quantum system and M = 2N, in which N is the
number of orbitals.

The following formulas give the non-trivial action of cre-
ation/annihilation operators on the state vectors:

a†
i ∣nM nM−1 . . . ni+1 0 ni−1 . . .n1⟩

= (−1)∑
i−1
k=1nk ∣nM nM−1 . . . ni+1 1 ni−1 . . .n1⟩, (10)

ai∣nM nM−1 . . . ni+1 1 ni−1 . . .n1⟩

= (−1)∑
i−1
k=1nk ∣nM nM−1 . . . ni+1 0 ni−1 . . .n1⟩. (11)

Using the occupation-number representation, the stringMB
code allows one to construct a matrix representation (A) of general
second-quantized operators A, where A can be identified with elec-
tronic Hamiltonian, the external part of the cluster operator Text,
and the exponents of Text − T†

ext, i.e.,

H → H, (12)

Text → Text, (13)

eσext ≃ eText−T†
ext → eText−T†

ext , (14)

e−σext ≃ e−(Text−T†
ext) → e−(Text−T†

ext), (15)

H̄ext → H̄ext, (16)

Heff
→ Heff. (17)

Moreover, the stringMB can extract the sub-blocks of matrices or
their products corresponding to arbitrary active space. This feature
is used to form matrix representations of the effective Hamiltonians
Heff.

IV. RESULTS
Owing to the memory requirements (associated with the stor-

age of matrix representations of the operator) of the stringMB
code, we can deal with relatively small systems yet epitomizing
situations encountered in the calculations for larger systems and
processes. For this reason, we employed ubiquitous models cor-
responding to the linear chains of hydrogen atoms: H6 and H8
models. By varying the distance between neighboring hydrogens
(RH–H), one can smoothly transition from the single-reference char-
acter of the ground-state wave function for smaller RH–H distances
(≃2.0 a.u. or less) to quasi-degenerate regime (2.75 and 3.00 a.u.)—a
typical situation encountered in bond breaking/forming processes.

TABLE I. Comparison of energies (in Hartree) of the downfolded Hamiltonians for the linear H6 system in the STO-3G basis set based on various sources of the external
amplitudes Text used to approximate the σext operator (σext ≃ Text − T†

ext). All simulations used restricted Hartree–Fock molecular orbitals 2, 3 and 4, 5 as active occupied and
virtual orbitals, respectively. In the linear chain of the H atoms, the geometry is defined by the distance between neighboring hydrogen atoms (RH–H) in a.u.

RH–H FCI SD SDT SDTQ DUCC-SD DUCC-SDT DUCC-SDTQ

1.50 −3.199 566 −3.199 332 −3.199 601 −3.199 566 −3.199 324 −3.199 562 −3.199 566
1.75 −3.245 936 −3.245 603 −3.246 054 −3.245 936 −3.245 547 −3.245 923 −3.245 936
2.00 −3.217 699 −3.217 277 −3.218 047 −3.217 699 −3.217 040 −3.217 655 −3.217 697
2.25 −3.156 624 −3.156 266 −3.157 559 −3.156 621 −3.155 447 −3.156 484 −3.156 618
2.50 −3.085 398 −3.085 691 −3.087 713 −3.085 380 −3.083 217 −3.084 962 −3.085 374
2.75 −3.016 841 −3.019 512 −3.022 159 −3.016 770 −3.012 642 −3.015 537 −3.016 758
3.00 −2.957 646 −2.967 326 −2.969 163 −2.957 405 −2.948 732 −2.953 850 −2.957 384



TABLE II. Comparison of energies (in Hartree) of the downfolded Hamiltonians for the linear H8 system in the STO-3G basis set based on various sources of the external
amplitudes Text used to approximate the σext operator (σext ≃ Text − T†

ext). All simulations used restricted Hartree–Fock molecular orbitals 3, 4 and 5, 6 as active occupied and
virtual orbitals, respectively. In the linear chain of the H atoms, the geometry is defined by the distance between neighboring hydrogen atoms (RH–H) in a.u.

RH–H FCI SD SDT SDTQ DUCC-SD DUCC-SDT DUCC-SDTQ

1.50 −4.235 775 −4.235 111 −4.235 846 −4.235 775 −4.235 071 −4.235 757 −4.235 774
1.75 −4.315 273 −4.314 347 −4.315 504 −4.315 273 −4.314 173 −4.315 222 −4.315 271
2.00 −4.286 011 −4.284 844 −4.286 688 −4.286 013 −4.284 235 −4.285 862 −4.286 005
2.25 −4.208 339 −4.207 232 −4.210 169 −4.208 337 −4.205 334 −4.207 876 −4.208 316
2.50 −4.114 829 −4.115 000 −4.119 502 −4.114 795 −4.109 473 −4.113 350 −4.114 739
2.75 −4.023 783 −4.029 321 −4.035 510 −4.023 578 −4.013 082 −4.018 712 −4.023 447
3.00 −3.944 748 −3.972 672 −3.978 401 −3.943 920 −3.912 005 −3.921 323 −3.943 614

TABLE III. The DUCC-CCSDTQ results (in Hartree) for the H8 model (RH–H = 2.0 a.u.) were obtained with the STO-3G basis
set for various choices of active spaces.

DUCC-CCSDTQ DUCC-CCSDTQ DUCC-CCSDTQ
FCI ({3, 4, 5, 6}) ({2, 3, 6, 7}) ({1, 2, 7, 8})

−4.286 011 −4.286 005 −4.285 865 −4.285 853

TABLE IV. The DUCC-CCSDTQ results (in Hartree) were obtained for various
geometries of the H8 model in the STO-3G basis set for the {2, 3, 4, 5, 6, 7}-
generated active space (see the text for details). In the linear chain of the H atoms, the
geometry is defined by the distance between neighboring hydrogen atoms (RH–H) in
a.u.

RH–H FCI CCSDTQ DUCC-CCSDTQ

2.00 −4.286 011 −4.286 013 −4.286 008
2.50 −4.114 829 −4.114 795 −4.114 782
3.00 −3.944 748 −3.943 920 −3.944 137

These benchmark systems are commonly used to assess the accu-
racy of ab initio methodologies in dealing with strong correlation
effects. We employed the STO-3G basis set69 in all calculations
and restricted Hartree–Fock (RHF) molecular bases composed of

6 and 8 molecular orbitals for H6 and H8 systems, respectively. The
systems of linear chains of hydrogen atoms allow for the evalua-
tion of the downfolding procedure for the most extreme conditions;
while most chemical systems have apparent subspaces containing
the most important correlation effects, the strong correlation regime
in the H6 and H8 systems (RH–H = 3.0 a.u.) has no obvious choice
of the active space for the ground-state problem. According to the
wave function analysis for large separations, all orbitals fall into the
category of “important” or “active” orbitals, and, therefore, the role
that the choice of SR-CC amplitudes plays in parameterizing σext is
amplified. The results of our simulations for H6 and H8 systems are
summarized in Tables I–VI.

In Table I, we collected CC and DUCC results obtained for
active space defined by two highest occupied orbitals (orbitals
2 and 3) and two lowest virtual orbitals (orbitals 4 and 5) (we will
invoke {2, 3, 4, 5} active space naming convention). The canonical

TABLE V. Comparison of the CASSCF(4,4), active-space FCI, DUCC-CCSDTQ, and PDS(3)/PDS(4) energies for H6 and H8
model systems. The PDS(3)/PDS(4) approaches were applied to evaluate the ground-state energy of the DUCC-CCSDTQ
effective Hamiltonians. The {2, 3, 4, 5}- and {4, 5, 6, 7}-generated active spaces were used for H6 and H8 systems,
respectively.

H6 H6 H8 H8
Method (RH–H = 2.0 a.u.) (RH–H = 3.0 a.u.) (RH–H = 2.0 a.u.) (RH–H = 3.0 a.u.)

HF −3.105 850 −2.675 432 −4.138 199 −3.572 347
CASSCF(4,4) −3.175 370 −2.856 832 −4.205 528 −3.699 677
Active-space FCI −3.166 938 −2.802 092 −4.190 602 −3.665 605
FCI −3.217 699 −2.957 646 −4.286 011 −3.944 748
DUCC-CCSDTQ −3.217 697 −2.957 384 −4.286 005 −3.943 614
PDS(3) −3.214 888 −2.953 067 −4.283 332 −3.941 223
PDS(4) −3.217 234 −2.956 712 −4.285 622 −3.943 349



TABLE VI. Comparison of energies obtained with finite commutator expansion (CCSDTQ based) for the downfolded
Hamiltonians and exact downfolding (DUCC-CCSDTQ) for H6 and H8 models in the STO-3G basis set.

H6 H6 H8 H8
MaxR/method (RH–H = 2.0 a.u.) (RH–H = 3.0 a.u.) (RH–H = 2.0 a.u.) (RH–H = 3.0 a.u.)

MaxR = 0 −3.166 938 −2.802 092 −4.190 602 −3.665 605
MaxR = 1 −3.269 110 −3.116 145 −4.382 423 −4.228 605
MaxR = 2 −3.218 732 −2.976 207 −4.288 761 −3.986 313
MaxR = 3 −3.217 344 −2.949 796 −4.285 044 −3.927 241
MaxR = 4 −3.217 693 −2.956 814 −4.285 985 −3.941 744
MaxR = 5 −3.217 699 −2.957 632 −4.286 012 −3.944 383
MaxR = 10 3.217 697 −2.957 384 −4.286 005 −3.943 615
DUCC-CCSDTQ −3.217 697 −2.957 384 −4.286 005 −3.943 614
FCI −3.217 699 −2.957 646 −4.286 011 −3.944 748

CCSD, CCSDT, and CCSDTQ energies (the corresponding columns
are denoted as SD, SDT, and SDTQ) are compared to the FCI ones
and lowest eigenvalues of the downfolded Hamiltonian in the active
space for CCSD (DUCC-SD), CCSDT (DUCC-SDT), and CCSDTQ
(DUCC-SDTQ) sources of the external amplitudes Text to calculate
σext(h) according to formula (8). In the weakly correlated regimes,
the external amplitudes are well described at all levels of SR-CC
methods, so any choice of SR-CC amplitudes well parameterizes σext,
resulting in comparable accuracy with respect to the FCI energies.
However, for larger RH–H distances, the quality of Text matters. For
example, for larger distances, only Text defined at the CCSDTQ level
yields DUCC-SDTQ energies of the CCSDTQ/FCI quality for all
geometries. Other approaches, CCSD and CCSDT, for larger values
of RH–H, provide energies significantly below the FCI ones. How-
ever, it is interesting to notice that the corresponding eigenvalues of
DUCC-SD and DUCC-SDT can reinstate the variational character
of ground-state energy despite using Text stemming from CCSD and
CCSDT calculations, which is an important property of the DUCC
approach.

The CC and DUCC results for various geometries of the H8
system are collected in Table II. In this case, we also used active
spaces defined by the two highest occupied orbitals (orbitals 3 and
4) and the two lowest virtual orbitals (orbitals 5 and 6). For the
equilibrium geometry, including the triple and quadruple excita-
tions in the external cluster operator, results in the near-FCI quality
of the DUCC results. The accuracy of the DUCC-SD formalism is
also satisfactory (less than 0.7 milliHartree error with respect to
the FCI result), showing the effectiveness of the DUCC formalism
in compressing the dynamical correlation effects even in the case
when a simple form of external amplitudes is invoked. In anal-
ogy to the H6 case, one can observe the variational breakdown of
the CCSD and CCSDT results for the larger H–H separations and
restoration of the variational character by the corresponding DUCC
formulations.

The DUCC case of downfolding, based on approximate σext
operators, as in the case when parameterized with SR-CC ampli-
tudes, is active-space specific (the so-called cluster amplitudes’
universal problem discussed in Ref. 47). However, to explore to
what extent the DUCC downfolding formalism depends on the
active space definition, in Table III, we collected DUCC-CCSDTQ

energies for the H8 model with RH–H = 2.0 a.u. and three model
spaces defined by the {3, 4, 5, 6}, {2, 3, 6, 7}, and {1, 2, 7, 8} orbitals.
One can see that although the DUCC-CCSDTQ energies are not
equal, the energy discrepancies between results corresponding to
various active spaces do not exceed 0.16 milliHartree.

FIG. 1. Schematic representation of the many-body structure of the effective Hamil-
tonian in the normal product form (with respect to the reference function) defined
for the smallest possible active space spanned by a single Slater determinant cor-
responding to the reference function ∣Φ⟩. The spin-orbital indices i, j, k, . . . refer to
spin-orbitals occupied in ∣Φ⟩. The black rectangles and ovals refer to the Hugen-
holtz diagrammatic representation of anti-symmetrized effective interaction and
cluster amplitude vertices, respectively.



The effect of the size of the active space is discussed in Table IV,
where we collated the DUCC-CCSDTQ results obtained for various
geometries of H8 and large {2, 3, 4, 5, 6, 7}-generated active space.
As expected, the increase in the active space size results in more
accurate DUCC-CCSDT energies, especially for large distances. As
discussed in Ref. 70, a powerful aspect of downfolded Hamiltonians
is that the reduced dimensionality allows for higher-order descrip-
tion (excitations) to be included in the presence of external cor-
relations through the effective Hamiltonian. This is demonstrated
as the DUCC-CCSDTQ results surpass the CCSDTQ accuracy for
RH–H = 3.0 a.u. due to the fact that higher-than-quadruple exci-
tations are included in the diagonalization of the downfolded
Hamiltonian in the active space.

The simplest active space that can be used by the DUCC
formalism is defined by a reference function ∣Φ⟩, i.e., when all
occupied spin-orbitals are considered active and when there are
no active virtual orbitals. All correlation effects are compressed
to the reference-occupied orbitals and encapsulated in interactions

between electrons in the reference function. In this case, all oper-
ator expressions contributing to Heff (or its normal product form
Heff

N ; Heff
N = Heff

− ⟨Φ∣Heff
∣Φ⟩) can be represented as the product of

the particle number operators, np = a†
pap, for p’s corresponding to

occupied spin-orbital indices denoted as i, j, k, . . . (see Fig. 1), i.e.,

∏
α

ni(α). (18)

The DUCC-CCSD and DUCC-CCSDTQ energies for this case
are shown in Fig. 2 and compared with CCSD, CCSDTQ, and FCI
ones. As seen from Fig. 2 (top panel), each DUCC formalism defines
effective interactions correlating electrons in occupied spin-orbitals
that significantly improve the quality of the RHF model. The DUCC-
CCSD errors with respect to the FCI energies for RH–H = 2.0 a.u.
and RH–H = 3.0 a.u. amount to 0.92 and 20.52 milliHartree, respec-
tively, whereas analogous errors for the DUCC-CCSDTQ are equal
to 0.08 and 3.70 milliHartree, respectively. These errors should be
compared to RHF energy errors of 118.85 and 282.21 milliHartree.

FIG. 2. Comparison of ground-state energies [reported as total energies (top panel) and errors (bottom panel) with respect to the FCI results] obtained with the DUCC, CC,
and FCI methods for the smallest active space defined by the reference function ∣Φ⟩ of the H6 model system in the STO-3G basis set.



From the point of view of quantum computing application, it
is essential to evaluate the performance of techniques to approxi-
mate the many-body forms of the downfolded Hamiltonians and
the potential accuracies of quantum solvers. To this end, we will
analyze the finite rank expansion for Eq. (7) and the variant
of the Connected Methods Expansion (CMX)71–76 based on the
Peeters–Devreese–Soldatov (PDS) functional,77,78 which has been
recently explored in the context of quantum computing.79–81 In
this paper, we will apply low-rank PDS formulations PDS(3) and
PDS(4) (for details, we refer the reader to Refs. 77 and 78) to iden-
tify ground-state energies of the downfolded Hamiltonians. It is
worth noting that the low ranks of the PDS approach can be effec-
tively implemented on quantum computers. The PDS results are
collated in Table V, providing Hartree–Fock, complete active space
self-consistent field (using four active electrons distributed over
four active orbitals), and active-space FCI energies. For H6 and H8
models, we used {2, 3, 4, 5}- and {4, 5, 6, 7}-generated active spaces,
respectively. Before discussing the PDS results, we should stress the
efficiency of the downfolding procedures (here illustrated in the
example of the DUCC-CCSDTQ approach) in capturing the out-of-
active-space correlation effect. This is best illustrated by comparing
DUCC-CCSDTQ vs CASSCF(4,4) and active-space FCI energies.
Despite using the same active space definitions, the CASSCF(4,4)
and active-space FCI energies for all geometries of H6 and H8, in
contrast to the DUCC-CCSDTQ approach, are characterized by sig-
nificant errors with respect to the FCI energies. Although, in many
cases, quantum simulations are performed for small dimensionality
active spaces using bare Hamiltonians, the quality of the results can
be significantly improved without a significant increase in quantum
computing resources by using a downfolded form of the Hamilto-
nian. As seen from Table V, the PDS(3) can provide much better
quality results than active-space FCI. The PDS(4) can further refine
the accuracies of the PDS(3) approach, reducing the errors with
respect to exact DUCC-CCSDTQ energies to within 0.7 milliHartree
for H6 and H8 model systems. In the last part of our discussion, we
analyze the accuracies of the finite rank (MaxR) approximations for
downfolded Hamiltonians. The results for H6 and H8 models are
collected in Table VI. The convergence of the commutator expan-
sions is illustrated in the example of the tenth-rank commutator
expansion. In all cases discussed in Table VI, MaxR = 10 approxi-
mation reproduces virtually the exact DUCC-CCSDTQ energies. In
practical applications based on the many-body form of the down-
folded Hamiltonian, only low-rank commutator expansions (MaxR

= 1, . . ., 4) are numerically feasible (the MaxR = 0 corresponds to the
active-space FCI results). One can observe that for weakly correlated
situations (RH–H = 2.0 a.u.), MaxR = 3 provides a satisfactory approx-
imation of the exact DUCC-CCSDTQ energies. For a strongly
correlated case (RH–H = 3.0 a.u.), the inclusion of the fourth rank
commutators (MaxR = 4) is needed. In practical applications, how-
ever, all expansions are based on the mixing of MaxR = n contribu-
tions with n + 1-rank commutators stemming from the Fock matrix
terms to reinstate the so-called perturbative balance (see Ref. 70
for the discussion). For example, MaxR = 1 case epitomizes a situa-
tion where the perturbative balance is violated, and non-variational
energies can be obtained. Therefore, for the strongly correlated
cases, we recommend the expansions based on the inclusion of MaxR
= 3 or MaxR = 4 terms with the Fock-operator-dependent terms orig-
inating in the fourth and fifth commutators, respectively. While the

TABLE VII. Comparison of energies (in Hartree) obtained with various all-orbital CC
approximations and the DUCC-SD(solver) procedure defined using the nine lowest-
energy active orbitals for the H8 model in the cc-pVDZ basis set. The details of
the DUCC-SD(solver) approach are described in Sec. IV. The distance between
neighboring hydrogen atoms (RH-H) is defined in a.u.

RH–H CCSD CCSDT CCSDTQ DUCC-SD(solver)

2.00 −4.471 759 −4.476 680 −4.476 653 −4.478 331
3.00 −4.210 982 −4.220 303 −4.214 348 −4.214 710

STO-3G basis set helps validate the downfolding procedures, more
extensive basis sets that adequately capture short-range dynamical
correlation effects are required in realistic applications. To address
this challenge, we have implemented a two-step strategy, referred to
as the DUCC-SD(solver) procedure, which utilizes two steps: (1) CC
active space downfolding and (2) solving downfolded Hamiltonians
using the CCSD approach. We employ this procedure to H8 in the
cc-pVDZ basis set (including 40 orbitals) and active spaces defined
by the 9 lowest RHF orbitals. Due to the size of the FCI problem
in the cc-pVDZ basis set, we use the approximate form of down-
folding defined by the commutator expansion that includes single
and double commutators and part of triple commutator defined
by the Fock operator (as defined in Ref. 70). The external cluster
operator σext is approximated by Text − T†

ext, where Text is obtained
in the CCSD calculations. In the effective Hamiltonian, we include
one- and two-body interactions only. The results of cc-pVDZ sim-
ulations are shown in Table VII. The DUCC-SD(solver) results are
in qualitative agreement with the CCSDTQ results for two geome-
tries considered, where the absolute values of errors with respect
to the CCSDTQ energies amount to 1.7 and 0.4 milliHartree for
2.0 and 3.0 a.u. geometries, respectively. This is in contrast to the
6.6 and 3.7 milliHartree errors of canonical CCSD. This DUCC-
SD(solver) procedure efficiently captures the dynamical correlation
of the cc-pVDZ basis while including important higher-order cor-
relation effects, which are captured by the diagonalization of the
effective Hamiltonians in the active space.

V. CONCLUSION
A series of calculations were conducted to examine the impact

of approximations on external cluster amplitudes on CC down-
folded energies. Simple model systems, H6 and H8 linear chains,
were utilized to continuously vary the extent of correlation effects
from weakly to strongly correlated regimes (with RH–H ranging from
2.0 to 3.0 a.u.). The results showed that while the external clus-
ter amplitudes from SR-CCSD calculations were satisfactory for the
weakly correlated situation, for the strongly correlated case, the
effect of triply and quadruply excited external clusters could no
longer be neglected. The downfolding procedure acted as a stabi-
lizer and could restore the variational character of energies despite
the fact that external amplitudes were obtained from SR-CC calcu-
lations that suffer from the variational collapse. Furthermore, the
downfolded energies obtained for various active spaces on the H8
systems (including those that did not include essential correlation
effects) had only small discrepancies, demonstrating the approxi-
mate invariance of downfolding energies for various active spaces.



This was the case for all SES-CC types of active spaces for com-
mutative SR-CC formulations. In addition, it was shown that the
downfolded Hamiltonians could be effectively diagonalized with
low-order PDS formulations for both weakly and strongly correlated
regimes.

The assessment of the impact of the maximum rank of the
commutator expansion on the precision of downfolded energies is
an integral aspect of the analysis associated with practical appli-
cations of CC downfolding procedures. Our findings demonstrate
that an increase in the degree of correlation effects necessitates the
inclusion of higher rank commutators. In particular, for H6/H8
RH–H = 2.0 a.u., the inclusion of single, double, and triple commu-
tators is sufficient to achieve a favorable agreement with the FCI
energies. However, for RH–H = 3.0 a.u., higher-order commutators
(quadruple/pentuple) must be incorporated into the approximation.
It should be noted, however, that for the RH–H = 3.0 a.u. scenario,
an active space that can distinguish between static and dynamical
correlation effects cannot be constructed (i.e., all orbitals must be
considered active). Nonetheless, as Table VI demonstrates, the cor-
responding commutator-rank expansion rapidly converges to the
FCI energies.

The results of downfolding for the smallest active space defined
by a single Hartree–Fock determinant are auspicious. Although
this model generally involves higher-rank interactions (e.g., three-
and higher many-body interactions), it is possible to utilize the
downfolding procedure to achieve high-accuracy energies by cor-
relating electrons in the occupied spin-orbitals only. Furthermore,
in this case, all second quantized operators can be represented as
products of particle number operators corresponding to occupied
spin-orbitals. This approach can also guide machine learning mod-
els in determining effective interactions in the occupied spin-orbital
space.
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