

Associations between SARS-CoV-2 Infection or COVID-19 Vaccination and Human Milk Composition: A Multi-Omics Approach

Sneha Couvillion¹, Ernesto S. Nakayasu¹, Bobbie-Jo M. Webb-Robertson¹, Isabella Yang¹, Josie Eder¹, Carrie D. Nicora¹, Lisa M. Bramer¹, Yuqian Gao¹, Alisa Fox², Claire DeCarlo², Xiaoqi Yang², Mowei Zhou³, Ryan M. Pace^{4,5}, Janet E. Williams⁶, Mark A. McGuire⁶, Michelle K. McGuire⁴, Thomas O. Metz¹, Rebecca L. Powell^{2*}

¹Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA

²Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

³Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA

⁴Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho 83844, USA

⁵College of Nursing, University of South Florida, Tampa, FL 33612, USA

⁶Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho 83844, USA

21

*Address of correspondence to RL Powell: rebecca.powell@mssm.edu

23

24

Running title: Association between COVID-19 and human milk composition

25

26

27 **ABSTRACT**

28 The risk of contracting SARS-CoV-2 via human milk-feeding is virtually non-existent. Adverse
29 effects of COVID-19 vaccination for lactating individuals are not different from the general
30 population, and no evidence has been found that their infants exhibit adverse effects. Yet, there
31 remains substantial hesitation among this population globally regarding the safety of these
32 vaccines. Herein we aimed to determine if compositional changes in milk occur following
33 infection or vaccination, including any evidence of vaccine components. Using an extensive
34 multi-omics approach, we found that compared to unvaccinated individuals SARS-CoV-2
35 infection was associated with significant compositional differences in 67 proteins, 385 lipids, and
36 13 metabolites. In contrast, COVID-19 vaccination was not associated with any changes in lipids
37 or metabolites, although it was associated with changes in 13 or fewer proteins. Compositional
38 changes in milk differed by vaccine. Changes following vaccination were greatest after 1-6 hours
39 for the mRNA-based Moderna vaccine (8 changed proteins), 3 days for the mRNA-based Pfizer
40 (4 changed proteins), and adenovirus-based Johnson and Johnson (13 changed proteins)
41 vaccines. Proteins that changed after both natural infection and Johnson and Johnson vaccine
42 were associated mainly with systemic inflammatory responses. In addition, no vaccine
43 components were detected in any milk sample. Together, our data provide evidence of only
44 minimal changes in milk composition due to COVID-19 vaccination, with much greater changes
45 after natural SARS-CoV-2 infection.

46 **IMPORTANCE**

47 The impact of the observed changes in global milk composition on infant health remain
48 unknown. These findings emphasize the importance of vaccinating the lactating population
49 against COVID-19, as compositional changes in milk were found to be far less evident after

50 vaccination compared to SARS-CoV-2 infection. Importantly, vaccine components were not
51 detected in milk after vaccination.

52

53 **BACKGROUND**

54 Human milk is considered the gold standard for infant nutrition, and all leading health
55 organizations recommend human milk-feeding exclusively for 6 months and alongside other
56 forms of nutrition for at least 2 years [1]. Human milk provides individualized combinations and
57 concentrations of all the essential nutrients as well as a host of immune cells, microbes, and
58 immunomodulatory components that provide protection to the infant during a period
59 characterized by an immature immune system. As such, there is substantial evidence
60 demonstrating the benefits of human milk in protecting infants against a wide range of infections
61 [2, 3]. Despite its benefits, human milk can also serve as a vehicle of vertical transmission for a
62 small subset of pathogens, including HIV, Zika, and Ebola viruses [4, 5]. At the onset of the
63 COVID-19 pandemic, there was a major concern regarding potential SARS-CoV-2 transmission
64 via human milk-feeding. This resulted in various public health organizations recommending that
65 SARS-CoV-2-infected people avoid chest/breastfeeding and/or separate from their infants, often
66 with adverse consequences to establishment of the chest/breastfeeding relationship, in some
67 cases irrevocably [6]. In response, and to characterize the milk immune response to SARS-CoV-
68 2 infection, we and others analyzed milk obtained during and after SARS-CoV-2 infection for
69 viral RNA, viable SARS-CoV-2, and SARS-CoV-2-specific antibodies [7-9]. Although a
70 handful of studies identified SARS-CoV-2 RNA in a small number of milk samples, the
71 preponderance of evidence indicated that milk is not a vehicle of SARS-CoV-2 transmission [10-
72 12].

73 Amid determining whether human milk-feeding was safe while the lactating parent was
74 infected with SARS-CoV-2, researchers and the public simultaneously faced a second global
75 crisis related to human milk-feeding and the COVID-19 pandemic: the novel COVID-19
76 vaccines were not evaluated for safety in the lactating population. As such, some countries
77 recommended that these vaccines not be offered to lactating people, and there was and remains
78 hesitation among this population globally regarding the safety of these vaccines for their infants
79 [13, 14], even with the finding that particularly the mRNA-based vaccines induced a robust
80 antibody response in human milk [15, 16].

81 To date there have been limited reports comparing differences in milk composition
82 associated with SARS-CoV-2 infection, and importantly there remains a substantial knowledge
83 gap concerning the impact of COVID-19 vaccines on human milk composition. To our
84 knowledge, there are only two peer-reviewed reports of detailed examinations of the molecular
85 composition of milk following infection, and no published studies on compositional changes due
86 to vaccination. Zhao *et al.* reported alterations in the milk proteome and metabolome and Arias-
87 Borrego and co-authors examined changes in minerals and metabolites, all after infection with
88 SARS-CoV-2 [17, 18]. Here we employed a more holistic multi-omics (metabolomic, proteomic,
89 and lipidomic) approach to: 1) characterize and compare the composition of milk produced by
90 SARS-CoV-2-infected participants to that produced by participants prior to vaccination; and 2)
91 characterize and compare composition of milk produced before and after the first dose of Pfizer,
92 Moderna, Johnson and Johnson (Janssen; J&J) COVID-19 vaccines, using each vaccinated
93 person as their own control.

94

95 **RESULTS**

96 Study participants were 26 to 41 years old (average of 32 years) and from <1 to 30 months
97 postpartum (average of 8 months) (Table S1). Analytes were extracted from milk samples using
98 MPLEX [19] and analyzed using mass spectrometry-based proteomics, metabolomics, and
99 lipidomics (see Methods for details). Tables S2 - S4 list detailed data on compounds exhibiting
100 significant changes compared to control samples.

101

102 **Association of SARS-CoV-2 Infection and Changes in Milk Composition**

103 Proteomics

104 SARS-CoV-2 infection was associated with changes to 67 proteins in milk compared to control
105 samples in the 7 days following infection, with 43 proteins exhibiting significant increases and
106 24 proteins exhibiting significant decreases (Fig. 1). Pathway enrichment analysis indicated that
107 these proteins were mainly associated with systemic inflammatory responses to SARS-CoV-2
108 and various other infections (e.g. hepatitis C, measles, influenza A) and inflammatory conditions
109 (e.g. NOD-like receptor signaling, JAK-STAT signaling and inflammatory bowel disease) (Fig.
110 1B). The last regulated pathway was the aldosterone synthesis and secretion pathway (Fig. 1).

111

112 Lipidomics.

113 SARS-CoV-2 infection was associated with changes to 385 lipid molecular species in milk (195
114 increased and 190 decreased) (Fig. 2). These lipids were from 5 classes and 21 subclasses of
115 lipids (Fig. 2C). Of note, 66 species of triacylglycerols increased, while 61 fatty acids and 57
116 diacylglycerols decreased (Fig. 2). Among the glycerophospholipids, phosphatidylethanolamine
117 and lysophosphatidylethanolamine were the most regulated subclasses with 44 and 19

118 upregulated lipids, respectively (Fig. 2). There was also a reduction in 20 fatty acid esters of
119 hydroxyl fatty acids (generally anti-inflammatory lipids) and an increase in 8 ceramide species
120 (generally considered pro-inflammatory lipids) (Fig. 2). These results show that the SARS-CoV-
121 2 infection likely impacts milk lipid composition, in general elevating pro-inflammatory lipids
122 and reducing anti-inflammatory ones.

123

124 **Metabolomics.**

125 SARS-CoV-2 infection was associated with changes to 13 metabolites in milk (4 increased, 9
126 decreased) (Fig. 2). Eight of the 9 downregulated metabolites were fatty acids (Fig. 2), cross-
127 validating the lipidomics observations described above. Of note, 4-acetamidophenol (also known
128 as the anti-inflammatory drug acetaminophen), and ascorbic acid (vitamin C) and its degradation
129 intermediate, threonic acid, were upregulated after infection (Fig. 2).

130

131 **Association of COVID-19 Vaccination and Changes in Milk Composition**

132 **Proteomics, Lipidomics and Metabolomics.**

133 Vaccination was not associated with any changes in lipid or metabolite evaluated (Fig. 2).
134 However, milk proteomic profiles differed by vaccination type and timing (Fig. 1). At 1-6 h,
135 milk produced by women receiving the Moderna vaccine exhibited changes in 8 proteins, while
136 those receiving the J&J vaccine exhibited a change in only 1 protein (Fig. 1). Milk composition
137 did not change after receiving the Pfizer vaccine (Fig. 1). At 12-24 h, J&J exhibited changes to 6
138 proteins, while Moderna and Pfizer exhibited changes to 2 and 1 proteins, respectively (Fig. 1).
139 At day 3, milk produced by participants receiving the J&J vaccine exhibited changes to 13

140 proteins, while that produced by participants receiving the Moderna and Pfizer vaccines
141 exhibited changes to 2 and 4 proteins, respectively (Fig. 1). At day 7, milk produced by
142 participants receiving the J&J vaccine exhibited changes to 2 proteins, while that produced by
143 participants receiving the Moderna and Pfizer vaccines exhibited changes to 1 protein each (Fig.
144 1).

145 Only the J&J vaccine resulted in changes sufficient to perform a pathway enrichment analysis.
146 Similar to SARS-CoV-2 infection, enriched proteins were associated with systemic
147 inflammatory responses to SARS-CoV-2 and various other infections and inflammatory
148 conditions (Fig. 1). Notably, unlike infection, vaccination was not associated with the NOD-like
149 receptor signaling, aldosterone synthesis and secretion, and inflammatory bowel disease
150 pathways (Fig. 1). Conversely, vaccination was also associated with the herpesvirus, necroptosis,
151 RIG-I-like receptor signaling, and NF-kappa B signaling pathways (Fig. 1).

152

153 Evaluation of milk samples for the presence of vaccine components

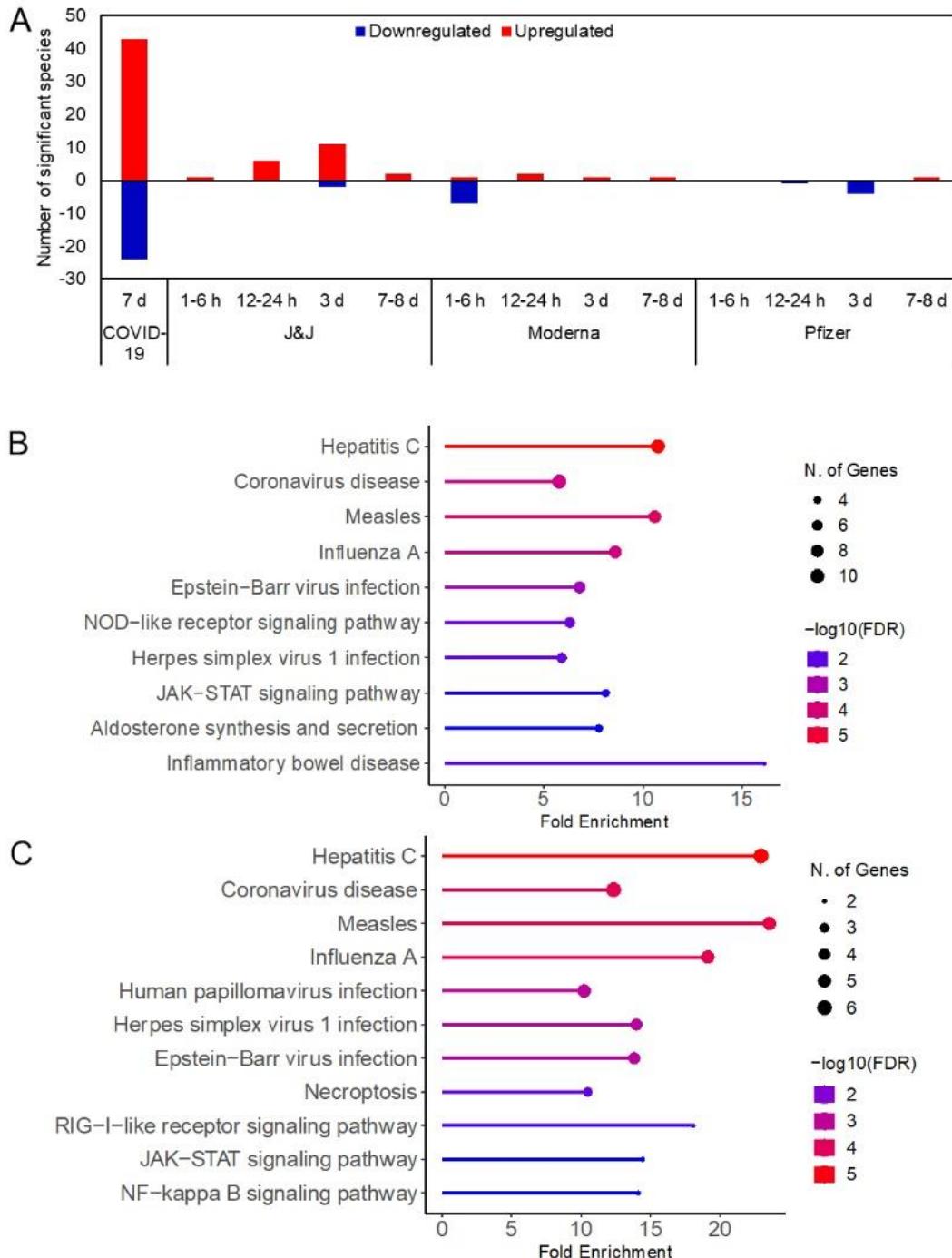
154 To assess if vaccine components enter the milk, we investigated the presence of unique
155 components of each vaccine in the samples. For the mRNA vaccines, we searched for the
156 synthetic lipid compound ALC-0315 in the Pfizer vaccine and SM-102 in the Moderna vaccine
157 (Sup Figs. 1-2). For the J&J vaccine, we performed de novo sequencing of the peptides in the
158 J&J vaccine itself to determine viral protein sequences. No adenoviral proteins were detected in
159 any of the milk samples. To conclude, despite the mass spectrometry sensitivity no vaccine
160 components were detected in the milk samples.

161

162 **Discussion**

163 There is now global consensus that the risk of contracting COVID-19 via human milk-
164 feeding is virtually non-existent, and the benefits of continuing to chest/breastfeed during and
165 after infection and vaccination are substantial [20, 21]. Adverse effects of vaccination for
166 lactating individuals are generally mild and transitory and not different from the general
167 population, and there exists no clear evidence that infants fed milk produced by recently-
168 vaccinated people exhibit adverse effects [22, 23]. While several publications have reported the
169 presence of trace amounts of vaccine mRNA in a small subset of milk samples [24, 25], the
170 physiological significance remains undetermined. Nonetheless, there remains a substantial
171 hesitancy among some lactating individuals regarding COVID-19 vaccination.

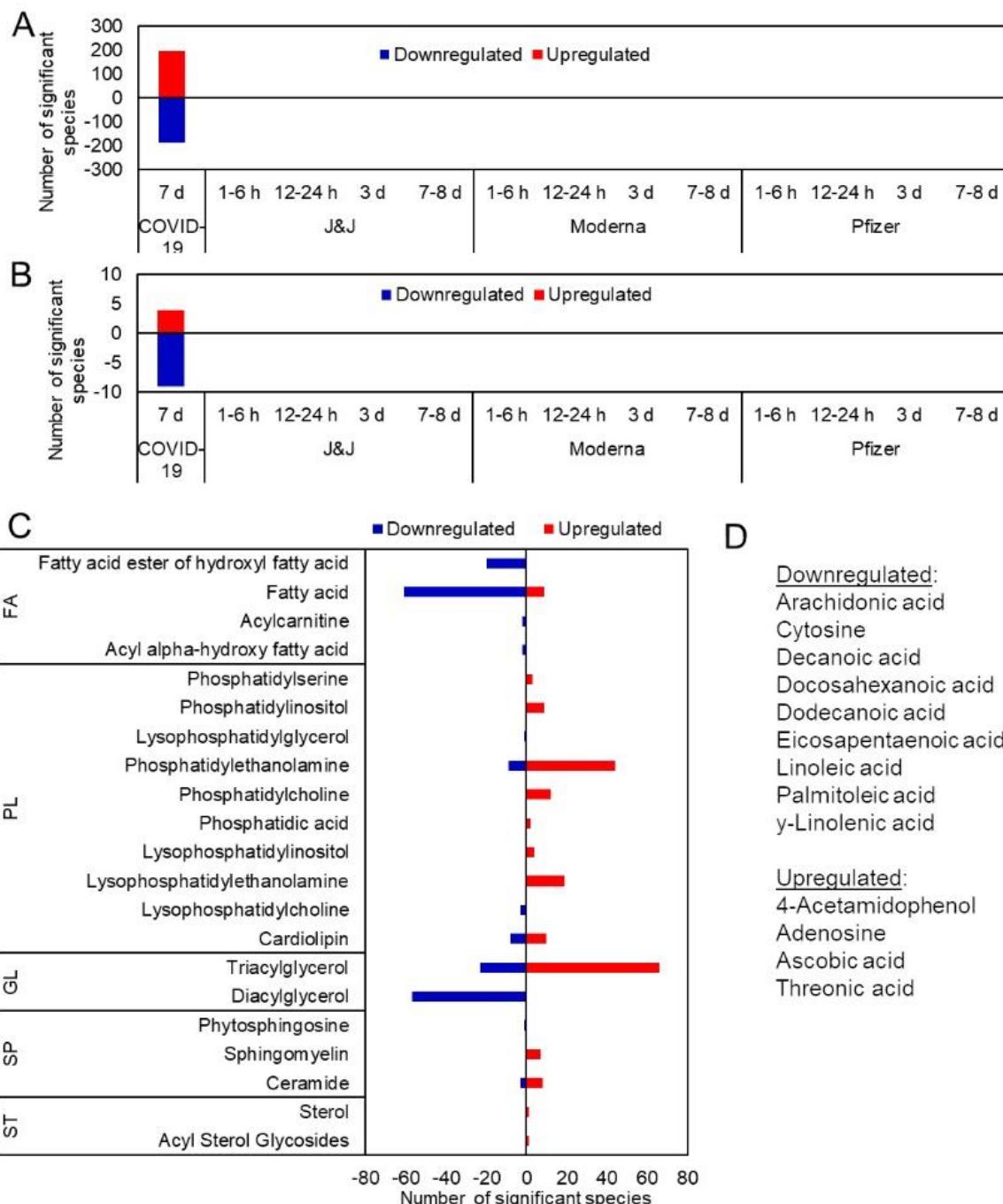
172 In the present study we used advanced ‘multi-omics’ approaches to determine if
173 compositional changes (including vaccine components) in milk occur after SARS-CoV-2
174 infection or vaccination. Our extensive analyses showed that multiple compositional changes
175 occur in milk produced within 7 days of confirmed SARS-CoV-2 infection. These changes are
176 highly consistent with a systemic inflammatory response associated with SARS-CoV-2 and
177 various other infections. Interestingly, we also identified both acetaminophen and vitamin C in
178 milk produced by SARS-CoV-2 infected individuals, which likely reflects consumption by
179 participants to alleviate symptoms of illness. To the best of our knowledge, this is the first study
180 to demonstrate such changes occurring in human milk. While SARS-CoV-2 infection elicited
181 changes to over 65 milk proteins, vaccines elicited changes in 13 or fewer proteins at any time
182 point. Notably, the kinetics of the changes measured in milk produced following vaccination
183 were minimal, with Moderna elicited changes in only 8 proteins at 1-6 h after vaccination, while
184 Pfizer changes in 4 proteins at 3 days after vaccination, their highest points. The J&J adenovirus-


185 vectored vaccine was designed to elicit an anti-viral inflammatory response as adjuvant to and
186 vehicle of SARS-CoV-2 immunogen. Consequently, it was not surprising that, compared to the
187 mRNA vaccines, the J&J vaccine elicited the most change in milk composition, (13 changed
188 proteins at 3 days). SARS-CoV-2 infection induced changes in 395 lipids and 13 metabolites,
189 while none of the vaccines induced changes in the lipidomic and metabolomic profiles. The
190 impact on infant health of these changes remains unknown; however, these findings emphasize
191 the importance of vaccinating lactating individuals against COVID-19, as compositional changes
192 in milk were far fewer than those observed after vaccination. Furthermore, we found no evidence
193 of vaccine components in any milk sample produced after vaccination.

194

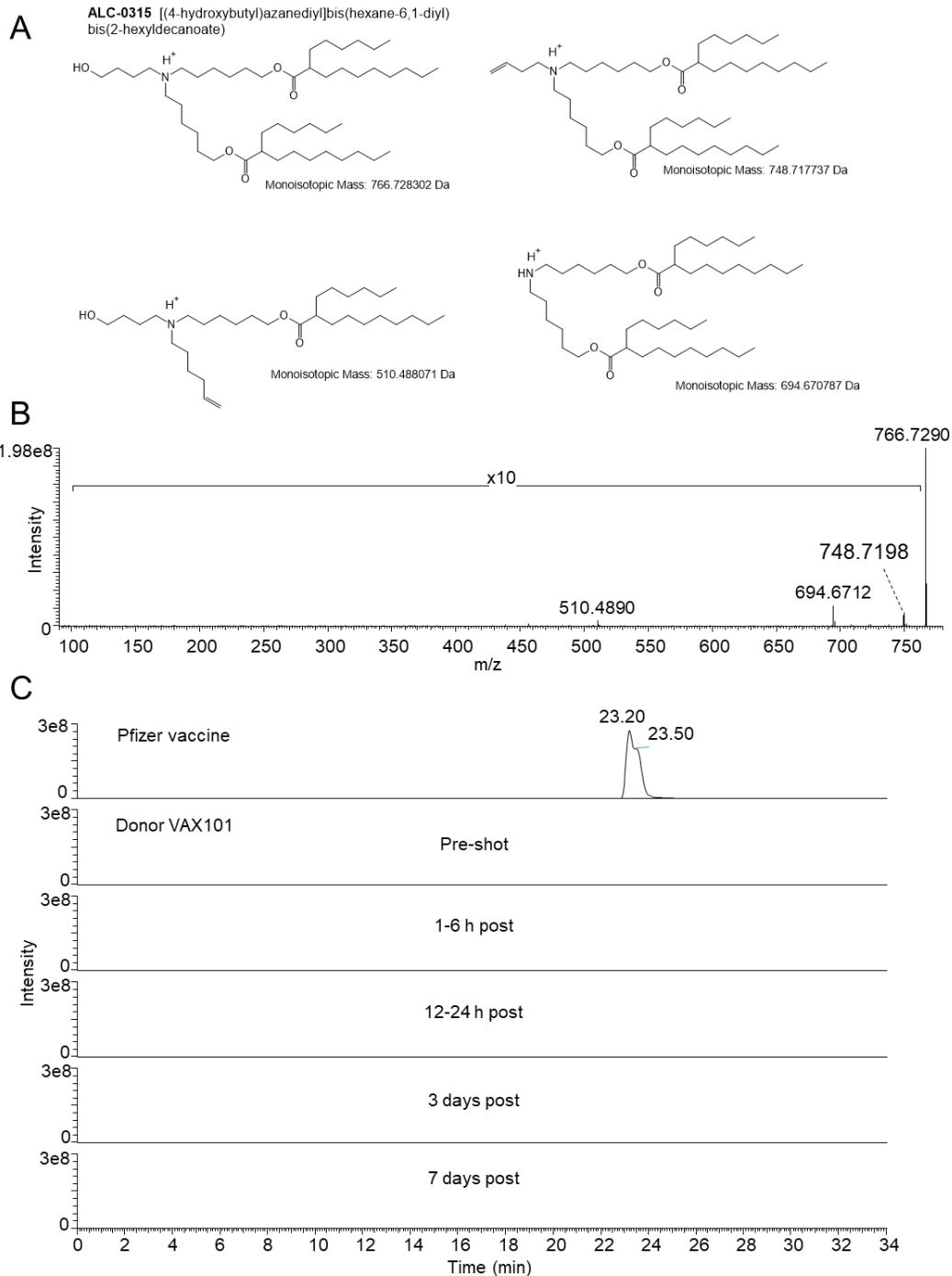
195 **Acknowledgments**

196 Funding for this project was obtained from the National Science Foundation (IOS-BIO 2031753
197 and 2031715), the Bill and Melinda Gates Foundation (INV-016943), and the Icahn School of
198 Medicine at Mount Sinai. A portion of the research was performed on a project award
199 (doi.org/10.46936/ltds.proj.2021.60066/60000403) from the Environmental Molecular Sciences
200 Laboratory (EMSL), a U.S. Department of Energy Office of Science User Facility located at
201 Pacific Northwest National Laboratory (PNNL) and sponsored by the Biological and
202 Environmental Research program. COVID-19 vaccines were generously donated by the Idaho
203 Department of Health and Welfare. We are grateful to all the study participants and the following
204 individuals who assisted in sample collection: Dr. Kimberly Lackey, Christina Pace, Beatrice
205 Caffé, and Alexandra Navarrete. Omics analyses were performed in the EMSL. Battelle operates
206 PNNL for the DOE under contract DE-AC05-76RLO01830.


207

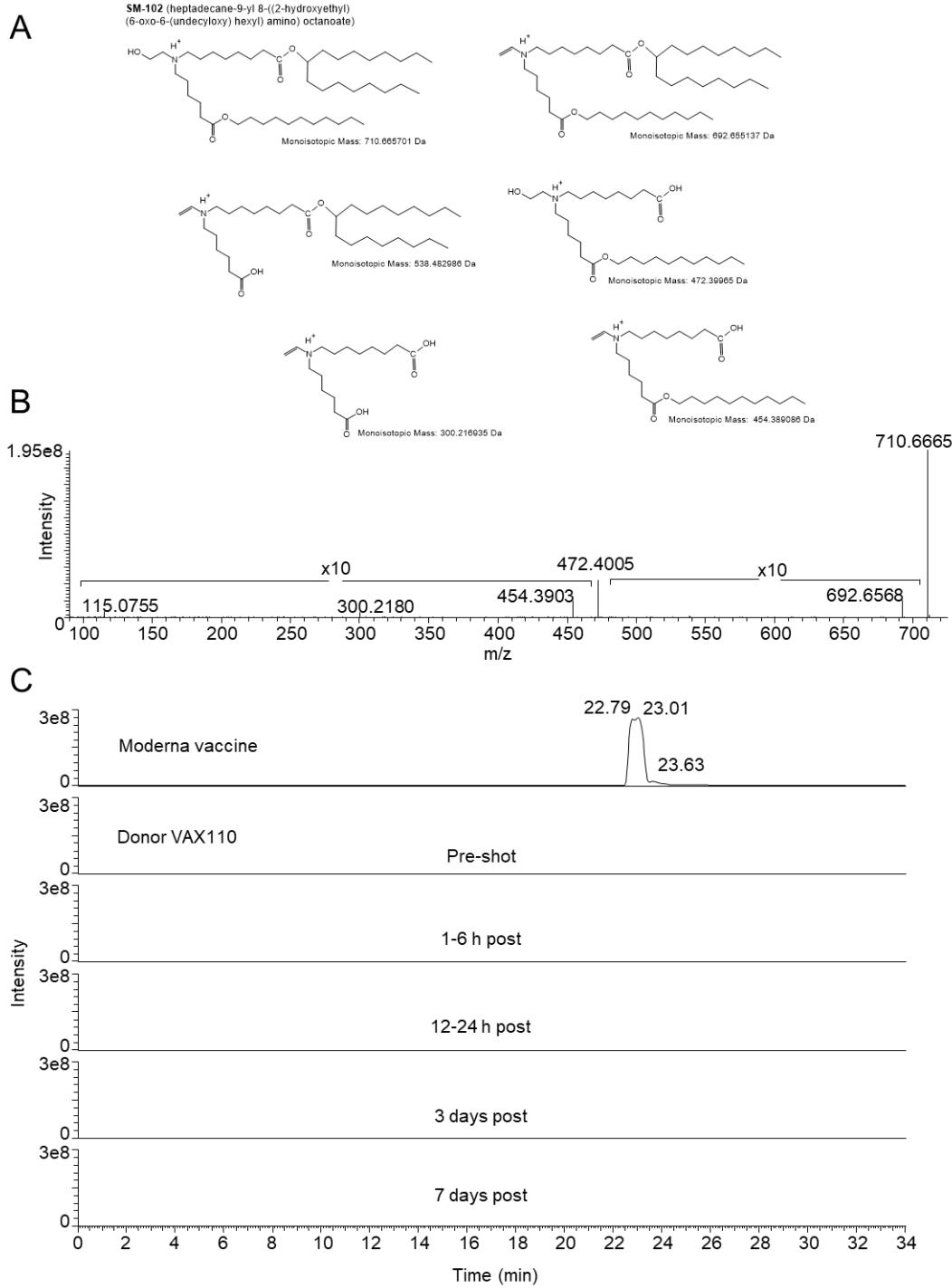
208

209 **Figure 1: COVID-19 vaccination results in minimal impact on milk proteomic composition**
210 **in comparison to SARS-CoV-2 infection.** (A) Number of proteins that significantly increased
211 (red) or decreased (blue) in milk produced after SARS-CoV-2 infection (COVID-19) or COVID-
212 19 vaccination. All comparisons were made to the pre-dose time point. (B-C) Pathway
213 enrichment analysis indicates altered milk proteins are related to systemic inflammatory and
214 immunomodulatory pathways. (A) SARS-CoV-2 infection. (B) Post J&J vaccination. The
215 pathway enrichment analysis included significant proteins from all 4 time points.


216

217

218 **Figure 2: COVID-19 vaccination results in minimal impact on milk lipid and metabolic**
219 **composition in comparison to SARS-CoV-2 infection.** Number of (A) lipids and (B)


220 metabolites that significantly increased (red) or decreased (blue) after SARS-CoV-2 infection
221 (COVID-19) or COVID-19 vaccination. (C) Lipid classes that were regulated in SARS-CoV-2
222 infection. (D) List of metabolites that were regulated in SARS-CoV-2 infection. FA: fatty acid;
223 PL: (glycero)phospholipid; GL: glycerolipid; SP: sphingolipid; ST: sterol.

224

225 **Supplemental Figure 1 – Analysis of the Pfizer vaccine component ALC-0315.** (A) Structure
226 of ALC-0315 and predicted fragments that can be generated in the mass spectrometer. (B)
227 Tandem mass spectrum of ALC-0315. (C) Extracted-ion chromatogram of ALC-0315 in the data
228 from donor VAX101. Importantly, the peak ALC-0135 was not detected in any of the milk
229 samples when analyzed with MS Dial.

230

231

232 **Supplemental Figure 2 – Analysis of the Moderna vaccine component SM-102.** (A) Structure
233 of SM-102 and predicted fragments that can be generated in the mass spectrometer. (B) Tandem
234 mass spectrum of SM-102. (C) Extracted-ion chromatogram of SM-102 in the data from donor
235 VAX110. Importantly, the peak SM-102 was not detected in any of the milk samples when
236 analyzed with MS Dial.

237 **MATERIALS AND METHODS**

238 Participant Information and Milk Collection Procedures

239 Participants in this study have been previously described [8, 16]. All participants gave informed
240 consent. Participants receiving a vaccine were eligible to have their milk samples included in this
241 analysis if they were ≥ 18 years of age, lactating, had no history of a suspected or confirmed
242 SARS-CoV-2 infection, and were scheduled to be vaccinated with the Pfizer, Moderna, or J&J
243 COVID-19 vaccines (original formulations available in 2021). Participants were asked to collect
244 ~30mL of milk per sample into a clean container according to the requested schedule using
245 electronic or manual pumps in their homes. Samples were collected before the vaccination and 1-
246 6 h, 12-24 h, 3 d and 7 d after the vaccination. Sample collection procedures for these individuals
247 was approved by the institutional review board (IRB) at Mount Sinai Hospital (IRB 19-01243).
248 Infection study participants were eligible to have their milk samples included in this analysis if
249 they were ≥ 18 years of age, lactating, and had tested positive for SARS-CoV-2 infection in the
250 previous 7 days. Sample collection procedures for this cohort was approved by the Institutional
251 Review Board (IRB) at the University of Idaho (IRB 20-056 & 20-060). Participants self-
252 collected up to 30 mL of milk using provided sterile, single use collection kits. All milk was
253 frozen in participants' home freezers until transferred via local transportation or shipping; milk
254 was then stored at -80 °C.

255

256 Protein, Metabolite and Lipid Extraction (MPLEX)

257 Aliquots of NIST SRM 1953 Organic Contaminants in Non-fortified Human Milk (NIST,
258 Gaithersburg, MD) were used as quality control (QC) samples. Milk samples were blocked and

259 randomized into sample batches of 30 along with a QC milk aliquot. Milk batches were allowed
260 to thaw for ~45 min inside a biological safety cabinet (BSC) and extracted using MPLEX
261 according to standard protocol [19]. Notably, MPLEX inactivates pathogenic viruses and bacteria
262 with exposed lipid layers, including Middle Eastern Respiratory Syndrome coronavirus [26]. A 1
263 mL cold (-20 °C) cholorform:methanol working mix (prepared 2:1 (v/v) along with lipid-internal
264 standard (IS) TG 60:1 (20:0-20:1-20:0 D5-TG); TG 44:1 (14:0-16:1-14:0 D5-TG) (Avanti Polar
265 Lipids, Birmingham, AL) and metabolite-IS 13C-glucose, 13C-sorbitol, 13C-succinic acid
266 (Sigma, St. Louis, MO) was pipetted into a chloroform compatible 2-mL Sorenson Multi™
267 SafeSeal™ microcentrifuge tubes (Sorenson bioscience, Salt Lake City, UT) inside an ice-block.
268 Cold water and 50 µL of milk sample was added to make a final ratio of 8:4:3
269 chloroform:methanol:water/sample, vortexed and allowed to incubate in the ice block for 15 min.
270 The samples were centrifuged at 12,000 *xg* for 10 min to separate the polar, non-polar phases and
271 the protein interlayer. Metabolite samples included 400 µL of the upper polar phase and 400 µL
272 of the lower non-polar phase. The lipid samples included 400 µL of the lower non-polar phase.
273 The remaining protein interlayer was rinsed with 500 µL of cold 100% methanol, vortexed and
274 centrifuged for 5 mins to pellet the protein and the wash layer was added to the metabolites vial.
275 Protein pellets were lightly dried under a nitrogen stream and stored at -80°C. Metabolite and
276 lipid samples were dried in a vacuum centrifuge and 500 µL 2:1 (v:v) cold chloroform:methanol
277 was added to the lipids; this was stored along with the dry metabolites at -20°C.

278

279 **Protein Digestion**

280 The protein interlayer was processed by adding 200 µL of 8M urea in 100 mM triethylammonium
281 bicarbonate, pH 8.0 (TEAB) to the protein pellets and vortexed into solution. A bicinchoninic

282 acid assay (Thermo Scientific, Waltham, MA USA) was performed to determine protein
283 concentration for quality control. Following the assay, 10 mM dithiothreitol was added to the
284 samples and incubated at 60 °C for 30 min with constant shaking at 800 rpm. Reduced cysteine
285 residues were alkylated by adding 400 mM iodoacetamide (Sigma-Aldrich) to a final
286 concentration of 40 mM and incubating in the dark at room temperature for 1 h. Samples were
287 then diluted 8-fold to prepare for digestion with 100 mM TEAB, 1 mM CaCl₂ and sequencing-
288 grade modified porcine trypsin (Promega, Madison, WI) was added to all protein samples at a
289 1:50 (w/w) trypsin-to-protein ratio for 3 h at 37 °C. Digested samples were desalted using a 4-
290 probe positive pressure Gilson GX-274 ASPEC™ system (Gilson Inc., Middleton, WI) with
291 Discovery C18 100 mg - 1 mL solid phase extraction tubes (Supelco, St. Louis, MO), using the
292 following protocol: 3 mL of methanol was added for conditioning followed by 2 mL of 0.1%
293 trifluoroacetic acid (TFA) in water. The samples were acidified to 0.1% TFA then loaded onto
294 each column followed by 4 mL of 95:5 water:acetonitrile, 0.1% TFA . Samples were eluted with
295 1 mL 20:80 water:acetonitrile, 0.1% TFA. The samples were concentrated to ~100 µL using a
296 vacuum centrifuge.

297

298 **Tandem Mass Tag (TMT) Isobaric labeling**

299 A bicinchoninic acid assay was performed to determine the peptide concentration for TMT
300 Isobaric labeling. To generate a common universal reference, 2 µg of peptide from each sample
301 was combined and the pool was assayed for accuracy. Note that in large-scale studies that
302 compare samples across multiple TMT sets, distribution plots can be generated by calculating the
303 peptide intensity ratios of each channel to a common universal reference within each set [27].

304 For each TMT set, 30 µg of the pooled reference and 30 µg from each sample was aliquoted into
305 new tubes for labeling and dried completely in a vacuum centrifuge.

306 Samples were randomized into 20 sets including a global pool in each plex to ensure correlation
307 across sets. Each sample was diluted in 40 µL 500 mM HEPES, pH 8.5 [28] and were labeled
308 using amine-reactive 16-plex TMT kits (Thermo Scientific, Rockford, IL) according to the
309 manufacturer's instructions. Briefly, 250 µL of anhydrous acetonitrile was added to each 5 mg
310 reagent, vortexed and allowed to dissolve for 5 min with occasional vortexing. Reagents (10 µL)
311 were then added to each sample and incubated for 1 h at room temperature with shaking at 400
312 rpm. Each sample was then diluted with 30 µL 20% acetonitrile. A portion from each sample
313 was collected as a premix to run on a mass spectrometer to ensure complete labeling. The
314 samples were frozen at -80 °C until the results showed good labeling. At that point, the frozen
315 samples were thawed, and the reaction was quenched by adding 3 µL of 5% hydroxylamine to
316 each sample with incubation for 15 min at room temperature, shaking at 400 rpm. The samples
317 within each set were combined and completely dried. Each of the 20 sets were desalted using the
318 Discovery C18 50 mg - 1 mL solid phase extraction cartridges as described above and once again
319 assayed to determine the final peptide concentration. An equal mass of peptide from each set was
320 fractionated using high pH reversed-phase liquid chromatography (LC) into 24 fractions each
321 and stored at -20 °C until LC-MS/MS analysis.

322

323 **Proteomics Analysis**

324 A Waters nano-Acquity dual pumping ultra high-performance liquid chromatography (UPLC)
325 system (Milford, MA) was configured for on-line trapping of a 5 µL injection at 5 µL/min for 10
326 min followed by reversed-flow elution onto the analytical column at 200 nL/min. The trapping

327 column was slurry packed in-house using 360 μm o.d. x 150 μm id fused silica (Polymicro
328 Technologies Inc., Phoenix, AZ) Jupiter 5 μm C18 media (Phenomenex, Torrance, CA) with 2
329 mm sol-gel frits on either end. The analytical column was slurry packed in-house using Waters
330 BEH 1.7 μm particles packed into a 35 cm long, 360 μm O.D. x 75 μm I.D. column with an
331 integrated emitter (New Objective, Inc., Littleton, MA). Mobile phases consisted of (A) 0.1%
332 formic acid in water and (B) 0.1% formic acid in acetonitrile with the following gradient profile
333 (min, %B): 0, 1; 10, 8; 105, 25; 115, 35; 120, 75; 123, 95; 129, 95; 130, 50; 132, 95; 138, 95;
334 140, 1. MS analysis was performed using a Thermo Eclipse mass spectrometer (Thermo
335 Scientific, San Jose, CA). The ion transfer tube temperature and spray voltage were 300 °C and
336 2.4 kV, respectively. Data were collected for 120 min following a 27 min delay from when the
337 trapping column was switched in line with the analytical column. MS spectra were acquired from
338 300-1800 m/z at a resolution of 120k (AGC target 4e5) and while the top 12 FT-HCD-MS/MS
339 spectra were acquired in data dependent mode with an isolation window of 0.7 m/z and at an
340 orbitrap resolution of 50K (AGC target 5e4) using a fixed collision energy (HCD) of 32 and a 30
341 sec exclusion time.

342 Tandem mass spectra were extracted and had mass errors corrected with mzRefinery [29].
343 Peptides were identified by searching against the SARS-CoV2 (downloaded on March 2, 2022)
344 and human Swiss-Prot proteins (downloaded on June, 20, 2021) from the Uniprot
345 Knowledgebase using MS-GF+ [30]. The searching parameters included 20 ppm parent mass
346 tolerance, trypsin digestion in at least one of the peptide termini, methionine oxidation as
347 variable modification, and cysteine carbamidomethylation and N-terminal/lysine TMT
348 derivatization as invariable modifications. The intensities of the TMT reporter ions were
349 extracted with MASIC [31] and used for quantitative analysis.

350 For the analysis of adenoviral proteins, the J&J vaccine was digested with trypsin and analyzed
351 by LC-MS/MS as described above. Peptide sequences were determined by *de novo* sequencing
352 using the PEAKS software (Bioinformatics Solutions Inc.). Identified peptides were blasted
353 against the Uniprot Knowledgebase and the matched full protein sequences were retrieved and
354 appended to the searched sequences for MS-GF+ as described above.

355

356 **Lipidomics Analysis**

357 Total lipid extracts were analyzed using liquid chromatography electrospray ionization tandem
358 mass spectrometry comprised of a Thermo Vanquish Flex UPLC system interfaced with a
359 Thermo Lumos mass spectrometer. Prior to analysis, samples were reconstituted in 10%
360 chloroform and 90% methanol, 10 μ L of which was injected onto a reversed phase Waters CSH
361 column (3.0 mm x 150 mm x 1.7 μ m particle size), maintained at 42 °C and separated over a 34
362 min gradient (mobile phase A: acetonitrile:water (40:60) containing 10 mM ammonium acetate;
363 mobile phase B: acetonitrile:isopropanol (10:90) containing 10 mM ammonium acetate) at a flow
364 rate of 250 μ L/min with the following gradient profile (min, %B) 0, 40; 2, 50; 3, 60; 12, 70; 15,
365 75; 17, 78; 19, 85; 22, 99; 34, 99. Waters Acuity UPLC CSH C18 VanGuard Pre-column
366 (130 \AA , 1.7 μ M packing and dimensions of 2.1 mm by 5 mm) was added to the analytical column
367 to guard against sample particulate. Samples were analyzed in both positive and negative
368 ionization modes using HCD (higher-energy collision dissociation) and CID (collision-induced
369 dissociation) fragmentation mechanisms. The Fusion Lumos HESI source parameters were set as
370 follows: spray voltage 3.5 or 3.4 kV for positive and negative modes respectively; capillary
371 temperature 350 °C; S lens RF level 30 arbitrary units; aux gas heater temperature 350 °C;
372 sheath, auxiliary, and sweep gas flows of 50, 10, and 1, respectively. Full MS scan data were

373 acquired at a resolving power of 120,000 FWHM at m/z 200 with the scanning range of m/z
374 200–1800. The data dependent acquisition parameters used to obtain product ion spectra were as
375 follows: loop count 12 alternating between CID and HCD, isolation width of 2 m/z units, default
376 charge state of 1, activation Q value of 0.18 for CID, HCD resolving power of 7,500 FWHM at
377 m/z 200, normalized collision energies for CID of 38 with detection in the ion trap and stepped
378 collision energy of 25, 30, and 35 for HCD with detection in the orbitrap. Lipid identifications
379 and associated integrated peak area data were generated using MS-DIAL [32]. All
380 identifications and integrated peaks were manually validated and exported for statistical analysis.
381 For the detection of vaccine components in the milk samples, synthetic lipid structures and their
382 possible tandem mass fragments were drawn in ChemSketch (ACDLabs). Tandem mass spectra
383 and extracted-ion chromatograms were analyzed manually with Xcalibur (Thermo Scientific).

384 **Metabolomics Analysis**

385 Metabolites were analyzed using reversed phase (RP) and hydrophilic interaction
386 chromatography (HILIC) separations on a Thermo Fisher Scientific Q Exactive Plus mass
387 spectrometer (Thermo Scientific, San Jose, CA) coupled with a Waters Acquity UPLC H class
388 liquid chromatography system (Waters Corp., Milford, MA). Metabolite extracts were
389 reconstituted in 100 μ L of 80% LC-MS grade acetonitrile and 20% nanopure water. RP
390 separations were performed by injecting 5 μ L of sample onto a Thermo Scientific Waters
391 Acquity UPLC BEH C18 column (130 \AA , 1.7 μ m, 2.1 mm ID X 100 mm L) preceded by a
392 Acquity UPLC BEH C18 Vanguard Pre-Column (130 \AA , 1.7 μ m, 2.1 mm ID X 5 mm L) heated
393 to 40 $^{\circ}$ C. Metabolites were separated using a 15-min gradient with data collected on the first 10
394 min. Data were acquired in both positive and negative mode with separate injections. The

395 gradient used was identical, but the solvent composition was different between the modes. The
396 positive mode mobile phase A consisted of 0.1% formic acid in nanopure water with the mobile
397 phase B consisting of 0.1% formic acid in LC-MS grade methanol, while the negative mode
398 mobile phase A consisted of 6.5 mM ammonium bicarbonate in nanopure water at a pH of 8.0
399 with the mobile phase B consisting of 6.5 mM ammonium bicarbonate in 95% LC-MS grade
400 methanol and 5% nanopure water. The gradient used was as follows (min, flowrate in mL/min,
401 %B): 0,0.35,5; 4,0.35,70; 4.5,0.35,98; 5.4,0.35,98; 5.6,0.35,0.5; 15,0.35,0.5. HILIC separations
402 were performed by injecting 3 μ L of sample onto a Waters Acquity UPLC BEH Amide column
403 (130 \AA , 1.7 μ m, 2.1 mm ID X 100 mm L) preceded by a Acquity UPLC BEH Amide Vanguard
404 Pre-Column (130 \AA , 1.7 μ m, 2.1 mm ID X 5 mm L) heated to 40 $^{\circ}$ C. Metabolites were separated
405 using a 21-min gradient with data collected for the first 16 min. For HILIC, data were acquired
406 in both positive and negative mode in separate injections using the same mobile phase
407 compositions. The HILIC mobile phase A used consisted of 0.125% formic acid and 10 mM
408 ammonium formate in nanopure water with a mobile phase B consisting of 0.125% formic acid
409 and 10mM ammonium formate in 95% LC-MS grade acetonitrile and 5% nanopure water. The
410 gradient used was as follows (min, flowrate in mL/min, %B): 0,0.4,100; 2,0.4,100; 5,0.4,70;
411 5.7,0.4,70; 7,0.4,40; 7.5,0.4,40; 8.25,0.4,30; 10.75,0.4,100. For both RP and HILIC separations
412 the Thermo Fisher Scientific Q Exactive was equipped with a HESI source and high flow needle
413 with the following parameters: spray voltage of 3.6 kV in positive mode and 3 kV in negative
414 mode, capillary temperature of 350 $^{\circ}$ C in positive mode and 275 $^{\circ}$ C in negative mode, aux gas
415 heater temp of 325 $^{\circ}$ C in positive mode and 300 $^{\circ}$ C in negative mode, sheath gas at 45 L/min in
416 positive mode and 30 L/min in negative mode, auxiliary gas at 15 L/min in positive mode and 25
417 L/min in negative mode, and spare gas at 1L/min in positive mode and 2 L/min in negative

418 mode. Metabolites were analyzed at a resolution of 70 k and a scan range of 70 to 1000 m/z for
419 parent ions followed by data dependent MS/MS HCD fragmentation on the top 4 ions with a
420 resolution of 17.5 K and stepped normalized collision energies of 20, 30, and 40. Metabolite
421 identifications and associated integrated peak area data were generated using MS-DIAL. All
422 identifications and integrated peaks were manually validated and exported for statistical analysis.

423 **Statistical and Pathway Analyses**

424 Statistical analysis first included quality control analysis, removing any lipids, metabolites, and
425 peptides that were not identified in enough samples for a repeated measures analysis of variance
426 (rANOVA) model. A sample-sample correlation and principal component analysis were utilized
427 to assess any sample level issues and one sample, a subject receiving the Moderna vaccine at the
428 third time point, showed poor correlation with the sample set. Further evaluation identified a data
429 processing issue where the lipids software stopped collecting data during the analysis. This was
430 the only sample removed prior to statistical analysis from the lipid data. There were no identified
431 outliers in the metabolomics data. The positive and negative mode lipidomics data, each
432 metabolomic dataset, and the proteomics data were then normalized to median abundance.

433 To evaluate the change in milk composition over time between the vaccinated women rANOVA
434 was performed where lipid, metabolite or protein abundance is the response variable, time is the
435 within subject variable, and the vaccine is the predictor variable. For the comparison of the milk
436 produced by women with COVID-19 versus that produced by vaccinated women a two-sample t-
437 test was utilized. Given that many lipids, metabolites, and proteins are highly correlated a meta-
438 analysis approach to multiple test correction was applied [33] using R package *poolr* by Cinar
439 and Viechtbauer (2022), estimating the correction using the correlation matrix for each pair of
440 biomolecules. Finally, an adjusted p-value threshold that controls the family-wise error rate to

441 0.05 using the Sidak multiple comparison. The functional pathway enrichment analysis was done
442 using DAVID Knowledgebase [34]. Only the KEGG pathways were used for our analysis, and
443 they were filtered with an enrichment p-value ≤ 0.05 .

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460 **Supplemental Table 1: Type of vaccine administered, age, months postpartum, and**
461 **race/ethnicity for vaccinated participants and days since COVID-19 diagnosis, age, months**
462 **postpartum, and race/ethnicity for infected participants.**

Vaccinated Participant ID	Vaccine	Age	Months postpartum	Race/Ethnicity
VAX101a	Pfizer	36	2	White, Non-Hispanic
VAX107a	Pfizer	33	7	White, Non-Hispanic
VAX108a	Pfizer	34	11	Asian or Pacific Islander
VAX109a	Pfizer	41	8	White, Non-Hispanic
VAX119a	Pfizer	37	11	White, Non-Hispanic
VAX136a	Pfizer	NA	NA	NA
VAX144a	Pfizer	31	7	White, Non-Hispanic
VAX166a	Pfizer	47	7	White, Non-Hispanic
VAX180a	Pfizer	32	1	White, Non-Hispanic
VAX182b	Pfizer	34	9	White, Non-Hispanic
VAX186a	Pfizer	NA	< 1	NA
VAX187a	Pfizer	35	2	Asian or Pacific Islander
VAX191a	Pfizer	31	4	Asian or Pacific Islander
VAX195a	Pfizer	36	6	Asian or Pacific Islander
VAX205a	Pfizer	32	8	Asian or Pacific Islander
VAX206b	Pfizer	38	11	White, Non-Hispanic
VAX207a	Pfizer	39	21	White, Non-Hispanic
VAX208a	Pfizer	35	3	White, Non-Hispanic
VAX210a	Pfizer	34	10	White, Non-Hispanic
VAX212a	Pfizer	27	5	White, Non-Hispanic
VAX213a	Pfizer	35	4	White, Non-Hispanic
VAX217a	Pfizer	31	12	White, Non-Hispanic
VAX221a	Pfizer	33	1	White, Non-Hispanic
VAX226a	Pfizer	32	< 1	White, Non-Hispanic
VAX237a	Pfizer	32	5	White, Non-Hispanic
VAX110a	Moderna	37	< 1	White, Non-Hispanic
VAX112c	Moderna	37	6	White, Non-Hispanic
VAX114a	Moderna	30	12	Multiracial
VAX117a	Moderna	34	5	White, Non-Hispanic
VAX133a	Moderna	34	7	White, Non-Hispanic
VAX134a	Moderna	NA	< 1	NA
VAX150a	Moderna	38	2	White, Non-Hispanic
VAX169a	Moderna	31	5	White, Non-Hispanic
VAX185a	Moderna	38	11	White, Non-Hispanic
VAX190a	Moderna	39	2	Multiracial
VAX192a	Moderna	34	4	White, Non-Hispanic
VAX198a	Moderna	33	2	Asian or Pacific Islander
VAX211a	Moderna	33	< 1	White, Non-Hispanic
VAX214a	Moderna	34	35	White, Non-Hispanic

VAX216a	Moderna	37	4	White, Non-Hispanic
VAX227a	Moderna	36	18	White, Non-Hispanic
VAX228a	Moderna	NA	NA	NA
VAX231a	Moderna	33	12	White, Non-Hispanic
VAX232a	Moderna	32	9	White, Non-Hispanic
VAX233a	Moderna	33	10	White, Non-Hispanic
VAX234a	Moderna	39	9	White, Non-Hispanic
VAX235a	Moderna	37	8	White, Non-Hispanic
VAX236a	Moderna	40	1	White, Non-Hispanic
VAX148a-J	J&J	38	3	White, Non-Hispanic
VAX149a-J	J&J	36	7	White, Non-Hispanic
VAX151a-J	J&J	33	8	White, Non-Hispanic
VAX153a -J	J&J	30	6	White, Non-Hispanic
VAX154a-J	J&J	41	3	White, Non-Hispanic
VAX163a-J	J&J	35	< 1	White, Non-Hispanic
VAX164a-J	J&J	32	13	Asian or Pacific Islander
VAX165a-J	J&J	28	17	Multiracial
VAX171a-J	J&J	32	8	White, Non-Hispanic
VAX172a-J	J&J	NA	NA	White, Hispanic or Latino
VAX173a-J	J&J	31	7	White, Non-Hispanic
VAX177a-J	J&J	30	7	White, Non-Hispanic
COV406d	J&J	34	14	White, Hispanic or Latino

Infected Participant ID	Days post positive test	Age	Months postpartum	Race/Ethnicity
LC1	2	40	8	White, Non-Hispanic
LC21	2	26	5	White, Non-Hispanic
LC23	3	26	6	White, Non-Hispanic
LC25	6	41	17	White, Non-Hispanic
LC26	12	30	< 1	White, Non-Hispanic
LC29	3	37	30	White, Hispanic or Latino
LC31	1	39	10	White, Non-Hispanic
LC32	2	32	4	White, Non-Hispanic
LC34	3	36	4	White, Non-Hispanic
LC37	9	38	2	White, Non-Hispanic
LC4	4	32	8	White, Non-Hispanic
LC40	4	32	13	White, Non-Hispanic
LC41	3	31	< 1	White, Non-Hispanic
LC42	3	39	7	White, Non-Hispanic
LC44	4	33	5	White, Non-Hispanic
LC45	5	36	7	White, Non-Hispanic
LC47	6	26	13	White, Non-Hispanic
LC48	5	26	6	White, Hispanic or Latino
LC50	8	30	2	White, Non-Hispanic

LC52	8	30	< 1	White, Non-Hispanic
LC53	5	33	3	White, Hispanic or Latino
LC54	6	29	8	White, Non-Hispanic
LC55	5	36	21	White, Non-Hispanic
LC6	3	29	3	White, Non-Hispanic
LC8	5	30	7	White, Hispanic or Latino

463

464 **Complete proteomics, lipidomics, and metabolomics data can be found at:**

465 <https://figshare.com/account/home#/projects/200344>

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480 References

- 481 1. Pediatrics, A.A.o., *Newborn and Infant Breastfeeding*, A.A.o. Pediatrics, Editor. 2022: Itasca, IL
- 482 2. Frank, N.M., et al., *The relationship between breastfeeding and reported respiratory and*
483 gastrointestinal infection rates in young children. BMC Pediatr, 2019. **19**(1): p. 339.
- 484 3. Ardic, C. and E. Yavuz, *Effect of breastfeeding on common pediatric infections: a 5-year*
485 prospective cohort study. Arch Argent Pediatr, 2018. **116**(2): p. 126-132.
- 486 4. Jones, C.A., *Maternal transmission of infectious pathogens in breast milk*. J Paediatr Child Health,
487 2001. **37**(6): p. 576-82.
- 488 5. Lawrence, R.M. and R.A. Lawrence, *Breast milk and infection*. Clin Perinatol, 2004. **31**(3): p. 501-
489 28.
- 490 6. Spatz, D.L., et al., *Promoting and Protecting Human Milk and Breastfeeding in a COVID-19*
491 *World*. Front Pediatr, 2020. **8**: p. 633700.
- 492 7. Chambers, C., et al., *Evaluation for SARS-CoV-2 in Breast Milk From 18 Infected Women*. JAMA,
493 2020. **324**(13): p. 1347-1348.
- 494 8. Pace, R.M., et al., *Characterization of SARS-CoV-2 RNA, Antibodies, and Neutralizing Capacity in*
495 *Milk Produced by Women with COVID-19*. mBio, 2021. **12**(1).
- 496 9. Pace, R.M., et al., *Milk From Women Diagnosed With COVID-19 Does Not Contain SARS-CoV-2*
497 *RNA but Has Persistent Levels of SARS-CoV-2-Specific IgA Antibodies*. Front Immunol, 2021. **12**:
498 p. 801797.
- 499 10. Centeno-Tablante, E., et al., *Transmission of SARS-CoV-2 through breast milk and breastfeeding: a living systematic review*. Ann N Y Acad Sci, 2021. **1484**(1): p. 32-54.
- 500 11. Kunjumon, B., et al., *Breast Milk and Breastfeeding of Infants Born to SARS-CoV-2 Positive*
501 *Mothers: A Prospective Observational Cohort Study*. Am J Perinatol, 2021. **38**(11): p. 1209-1216.
- 502 12. Dumitriu, D., et al., *Outcomes of Neonates Born to Mothers With Severe Acute Respiratory*
503 *Syndrome Coronavirus 2 Infection at a Large Medical Center in New York City*. JAMA Pediatr,
504 2021. **175**(2): p. 157-167.
- 505 13. Chawanpaiboon, S., et al., *Breastfeeding women's attitudes towards and acceptance and*
506 *rejection of COVID-19 vaccination: Implementation research*. Vaccine, 2023. **41**(6): p. 1198-1208.
- 507 14. Bianchi, F.P., et al., *COVID-19 vaccination hesitancy in pregnant and breastfeeding women and*
508 *strategies to increase vaccination compliance: a systematic review and meta-analysis*. Expert
- 509 *Rev Vaccines*, 2022. **21**(10): p. 1443-1454.
- 510 15. Henle, A.M., *Increase in SARS-CoV-2 RBD-Specific IgA and IgG Antibodies in Human Milk From*
511 *Lactating Women Following the COVID-19 Booster Vaccination*. J Hum Lact, 2023. **39**(1): p. 51-
512 58.
- 513 16. Yang, X., et al., *Comparative Profiles of SARS-CoV-2 Spike-Specific Human Milk Antibodies Elicited*
514 *by mRNA- and Adenovirus-Based COVID-19 Vaccines*. Breastfeed Med, 2022. **17**(8): p. 638-646.
- 515 17. Zhao, Y., et al., *Omics study reveals abnormal alterations of breastmilk proteins and metabolites*
516 *in puerperant women with COVID-19*. Signal Transduct Target Ther, 2020. **5**(1): p. 247.
- 517 18. Arias-Borrego, A., et al., *Metallomic and Untargeted Metabolomic Signatures of Human Milk*
518 *from SARS-CoV-2 Positive Mothers*. Mol Nutr Food Res, 2022. **66**(16): p. e2200071.
- 519 19. Nakayasu, E.S., et al., *MPLEX: a Robust and Universal Protocol for Single-Sample Integrative*
520 *Proteomic, Metabolomic, and Lipidomic Analyses*. mSystems, 2016. **1**(3).
- 521 20. Team, W., *Breastfeeding and COVID-19*, WHO, Editor. 2020, WHO: Geneva.
- 522 21. CDC, *Coronavirus Disease (COVID-19) and Breastfeeding*. 2020.
- 523 22. Romero Ramirez, D.S., et al., *Evaluation of Adverse Effects in Nursing Mothers and Their Infants*
524 *After COVID-19 mRNA Vaccination*. Breastfeed Med, 2022. **17**(5): p. 412-421.

526 23. Muyldermans, J., et al., *The Effects of COVID-19 Vaccination on Lactating Women: A Systematic*
527 *Review of the Literature*. Front Immunol, 2022. **13**: p. 852928.

528 24. Hanna, N., et al., *Detection of Messenger RNA COVID-19 Vaccines in Human Breast Milk*. JAMA
529 *Pediatr*, 2022. **176**(12): p. 1268-1270.

530 25. Low, J.M., et al., *Codominant IgG and IgA expression with minimal vaccine mRNA in milk of*
531 *BNT162b2 vaccinees*. NPJ Vaccines, 2021. **6**(1): p. 105.

532 26. Burnum-Johnson, K.E., et al., *MPLEX: a method for simultaneous pathogen inactivation and*
533 *extraction of samples for multi-omics profiling*. Analyst, 2017. **142**(3): p. 442-448.

534 27. Nakayasu, E.S., et al., *Tutorial: best practices and considerations for mass-spectrometry-based*
535 *protein biomarker discovery and validation*. Nat Protoc, 2021. **16**(8): p. 3737-3760.

536 28. Hutchinson-Bunch, C., et al., *Assessment of TMT Labeling Efficiency in Large-Scale Quantitative*
537 *Proteomics: The Critical Effect of Sample pH*. ACS Omega, 2021. **6**(19): p. 12660-12666.

538 29. Gibbons, B.C., et al., *Correcting systematic bias and instrument measurement drift with*
539 *mzRefinery*. Bioinformatics, 2015. **31**(23): p. 3838-40.

540 30. Kim, S. and P.A. Pevzner, *MS-GF+ makes progress towards a universal database search tool for*
541 *proteomics*. Nat Commun, 2014. **5**: p. 5277.

542 31. Monroe, M.E., et al., *MASIC: a software program for fast quantitation and flexible visualization*
543 *of chromatographic profiles from detected LC-MS(/MS) features*. Comput Biol Chem, 2008.
544 **32**(3): p. 215-7.

545 32. Tsugawa, H., et al., *A lipidome atlas in MS-DIAL 4*. Nat Biotechnol, 2020. **38**(10): p. 1159-1163.

546 33. Galwey, N.W., *A new measure of the effective number of tests, a practical tool for comparing*
547 *families of non-independent significance tests*. Genet Epidemiol, 2009. **33**(7): p. 559-68.

548 34. Sherman, B.T., et al., *DAVID: a web server for functional enrichment analysis and functional*
549 *annotation of gene lists (2021 update)*. Nucleic Acids Res, 2022. **50**(W1): p. W216-W221.

550