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Section 1: Executive Summary

The project titled “Developing an Energy-Conscious Traffic Signal Control System for
Optimized Fuel Consumption in Connected Vehicle Environments” addresses energy-related
challenges associated with adaptive traffic control systems by integrating connected vehicles
(CV) and connected infrastructure (CI). The system developed in this project, a CV-based
adaptive traffic control system, aims to improve fuel consumption in mixed traffic environments
by capitalizing on emerging CV and CI communication technologies, as well as leveraging
recent advances in Artificial Intelligence (Al), optimization, and edge computing.

The system was tested at the MLK Smart Corridor, an urban testbed managed by the University
of Tennessee at Chattanooga (UTC) and the City of Chattanooga. The system was validated
through extensive simulations, both Software-in-the-Loop (SILS) and Hardware-in-the-Loop
(HILS), and was further implemented and tested in real-world conditions at several intersections
along the corridor.

The Fuel Consumption Performance Index (FC-PI) and the Ecological Performance Index (Eco-
PI) were developed as the key components for evaluating the system’s impact on fuel
consumption and emissions. These metrics provided a comprehensive means of understanding
the impact of traffic signal control optimization in mixed traffic environments.

The report presents an in-depth analysis of the Eco-PI, FC-PI, adaptive traffic control system
integration, and the testing and field implementation of the system. The results demonstrate
significant reductions in fuel consumption and emissions, showcasing the system’s capability to
contribute to more sustainable urban traffic management. The report also documents the

challenges encountered and recommendations for scaling and further improving the system.
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Section 2: Introduction

The growing complexity of urban traffic systems and the increasing need for efficient
transportation management have driven the development of advanced traffic control systems.
This project aimed to address the challenge of optimizing fuel consumption in connected vehicle
(CV) environments through the development of an energy-conscious traffic signal control
system. This research leverages deep-learning techniques for real-world vehicle counting and
integrates these observations into an adaptive traffic control system, specifically tailored for
connected and intelligent transportation infrastructure.

Motivation

The primary motivation behind this work was to enhance traffic management efficiency and
minimize emissions from vehicles. Traditional traffic signal control systems often fall short in
achieving optimal performance due to their reliance on outdated technologies and lack of real-
time data integration. By incorporating deep learning-based vehicle detection and advanced
adaptive control algorithms, this research sought to improve fuel efficiency and reduce the
environmental impact of traffic.

Objectives

This report details the comprehensive research and development undertaken to achieve these
goals. This project was executed in several stages, including the development of a deep learning-
based framework for vehicle detection, the integration of hardware-in-the-loop (HIL) simulation
for testing adaptive control strategies, and the implementation of field tests to evaluate system
performance in real-world scenarios. The culmination of this work is an innovative traffic signal

control system designed to meet the demands of a modernizing traffic environment
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Section 3: Methodology

3.1 Deep Learning Framework

The primary objective of this part of the research is centered around accurately counting the
number of vehicles present in each lane at various intersections. To accomplish this task, we
have developed a sophisticated framework based on YOLOv7. This framework has been
carefully designed and implemented to efficiently process and analyze traffic data obtained from
GRIDSMART systems. By leveraging the capabilities of YOLOv7, we aim to provide a robust
and effective solution for automating vehicle counting tasks, thereby contributing to improved

traffic management and enhanced transportation planning.
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Fig. 1: System Pipeline
Initially, as a proof of concept, we picked one intersection, Central, and subsequently, four

distinct approaches were formulated, each corresponding to a specific geographic direction of a
lane (East, West, North, and South).

To validate the feasibility and effectiveness of these approaches, comprehensive data was
collected, capturing the necessary “proof of concept” for all four directions. The acquired data
was then meticulously annotated using the CVAT annotation tool, where a total of 2000 images
were manually labeled to facilitate the training process. YOLOvV7 was used as our object

detectors due to its accurate results compared to its predecessors.
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Fig. 2: Intersection at MLK Blvd and Central Ave.
After testing on the Central intersection, using the initially annotated 2000 images, we

determined that additional data was needed for other approaches because of variation in camera
locations. To address this, we annotated an additional 1200 images, specifically targeting the
unseen approaches to expand the dataset. Using the trained YOLOvV7 model in inference mode,
we obtained preliminary annotation data from various times of day, including night, early
morning, and morning periods. This dataset, consisting of 5100 images, was reformatted and
uploaded to CVAT for revision and accuracy checks. In total, 8310 images (2000+1200+5110)
were accurately annotated and used for retraining the model, ensuring robustness and
adaptability to different traffic scenarios.

To ensure the system operates fast enough, maintaining a maximum delay of 1 second (a crucial
requirement for controlling traffic lights based on real-time occupancy data), we deployed the
framework across two virtual instances. The first instance, equipped with a Tesla V100 GPU
(32GB), handles five intersections each with four approaches. The second instance, running on a

P100 GPU (12GB), manages three intersections. Through extensive testing, we verified that the
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system processes at least 3 frames per second per intersection per approach, effectively ensuring
a real-time environment.

The vehicle counts for each intersection and approach are stored in files and made available via a
RESTful API This API, built using Flask, was chosen for its simplicity and ability to handle
high throughput with minimal overhead. Flask’s lightweight architecture makes it ideal for real-
time applications, as it allows fast, asynchronous requests and responses, significantly reducing
latency. By employing Flask’s threaded mode, we ensure that the API can handle multiple
requests simultaneously without blocking, making it capable of delivering real-time traffic data
quickly enough to meet the system’s 1-second maximum delay requirement.

3.2 DGMARL System Development

3.2.1 Model Overview
The DGMARL framework formulates the traffic signal control problem as a Multi-Agent

Markov Decision Process (MDP). Each intersection is represented as a node in a spatial-temporal
graph, and the roads between intersections are modeled as edges. The reinforcement learning
agents control the signal phases at each intersection, to maximize a cumulative reward defined
by the reduction in vehicle delays, stops, and environmental impacts (measured by Eco-PI).

Figure 3 shows the architecture of DGMARL. The S -
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agent generates actions to control the traffic lights at the corresponding intersection.

e The DGMARL integrates the black-box reinforcement learning framework and traffic
dynamics derived from the temporal and spatial correlation between intersections.

3.2.2 Simulation Environment
The VISSIM micro-simulator was used to test and evaluate the DGMARL model. The network

was configured with real-world traffic data from MLK Blvd during peak hours observed on Dec.

ip Tp) = ip



UTC DE-EE0009208 Final Technical Report

15th, 2022. The state and reward functions were derived from VISSIM, with simulations
conducted for durations ranging from 1 to 24 hours to evaluate performance under varying traffic
conditions.

3.2.3 Mathematical Model
Initially, a mathematical model was developed to optimize traffic signal timing based on

observed demand at intersections along MLK Blvd, using the VISSIM micro-simulation
platform for evaluation. The model tracked traffic data such as vehicle occupancy, signal start
times, and cycle duration, and then identified optimal phase durations while considering
constraints like maximum cycle length. Initial tests showed a 12.32% improvement in Eco-PI,
but further adjustments, such as modifying green light durations, increased performance to
40.12%. Integrating a dynamic stop penalty further enhanced overall performance by 45.63%
though some intersections, like Magnolia, showed mixed results. However, this method was
preliminary and did not include constraints like red clearance, but it provided valuable insights
into traffic flow, helping to identify key elements for developing a machine learning model to
optimize traffic signal timing.

3.2.4 Integrating Math Model with DGMARL
We developed a multi-agent learning model using the Advantage Actor Critic (A2C) policy and

integrated it with the VISSIM network for MLK Blvd through a DGMARL-compatible Python
script and COM interface. The DGMARL algorithm employs a neural network-based “critic” to
estimate the state-value function and an “actor” to update policy distribution based on the critic’s
recommendations. The model was trained and validated across multiple scenarios, incorporating
constraints like minimum phase duration and maximum cycle lengths. We have analyzed the
model’s performance under various conditions, adjusting parameters such as the number of
episodes, learning rate, simulation duration, batch size, and learning frequency.

Input and output of the DGMGRL model is shown in Table 1.
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Table 1: Input and Output of DGMARL

DGMARL Input

Runtime Properties Needed from Field Sub algorithm — Eco_PI Calculation Static Properties or Configurations available
from the field

1. Detector's value - Traffic Occupancy Vehicle_ID, LanelD, Vehicle_speed Intersection Id, Associated Signal Controller Id,
2. Eachsignal's current status Signal Group ids and Associated Phases,

3. Number of vehicles in each lane - every second Left turn phases, Link Ids and Lanes -
associated to phases, Detectors Ids associated
to phases, MinGreen, RedClearanceTime,
YellowTime, Ped Recall, Walk time, Flashing
Don't Walk time

DGMARL Output

Action:
0 : Stay in current phase
1 & Phase_id: Switch to the Phase_id which has highest traffic demand

3.2.5 Integration Pedestrian Recall and Physical Constraints to DGMARL
To adhere to existing field constraints and provide a safe environment for users, we have

included safety measures such as pedestrian recall, minimum green duration, and maximum
cycle length as constraints in DGMARL.

In the initial effort, since pedestrian input was not yet configured in VISSIM, we treated
pedestrian requests as recalls, using default timings for “pedestrian walk™ and “flashing don’t
walk” whenever the phase was green. The minimum phase duration was set to the higher value
between the configured minimum green duration and pedestrian recall timing. However, the
maximum cycle length constraint caused delays, as the DGMARL agent had to serve fixed phase
sequences even when there was no traffic demand. To resolve this, we removed the maximum
cycle constraint and introduced a phase sequence-free model in the next effort. This
improvement allowed DGMARL to switch to the phase with the highest traffic occupancy. We
also included right-turn movements in the Eco-PI calculation to account for stops and delays
caused by yielding to oncoming traffic. Also, we integrated an optimization frequency parameter
(At) to account for data communication latency between the field and VISSIM, trained and tested
the model with a 5-second optimization frequency.

3.3 Digital Twin System Design

The design philosophy of the digital twins is driven by the need to address a few key challenges.
Traditional traffic management systems often rely on static timing for traffic signals and are slow
to respond to real-time changes in traffic flow. This results in congestion, delays, and
inefficiency. A system that can utilize real-time data from sensors and GPS-enabled vehicles to
dynamically adjust traffic control systems would be a much-improved alternative. This helps
improve traffic flow, reduce congestion, and optimize road usage by reacting instantly to
changing conditions. A sign of robustness in a system is the ability to use current and historical

information to gain foresight into how a system may change over time. The availability of real-
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time data offers the opportunity to employ deep analytics in the form of machine learning models
to predict incidents ahead of time. Prior explorations of digital twins and the incorporation of
streaming field data have shown the necessity to accommodate data flaws. These come in many
forms and varying degrees, from data being riddled with gaps or entirely missing.

To handle the scaling of such a deeply integrated system, a three-tier approach was adopted for
this study. Each tier is incrementally more complex than the previous. The primary differences
are in the method of the simulation itself and the data sources. The simpler models allowed for
more efficient testing of changes in the development of algorithms with faster than real-time trial
runs. A breakdown of the Tiers is as follows:

e Tier 1 involved a VISSIM model that was prepopulated with archived data. The data is
manually incorporated into the model through the VISSIM interface itself.

e Tier 2 was developed to test the ingestion of data in a pseudo real-time environment. The
archived data was periodically streamed to the VISSIM model which dynamically
adapted to the changes.

e Tier 3 is the real-time digital twin which uses data streamed directly from the field
devices. This data is then ingested by VISSIM, and the model is updated accordingly.

Tier 1

The incorporation of archived data into the VISSIM model directly results in the simplest version
of the digital twin. This model serves as a foundation for subsequent development stages. Data,
such as traffic volumes, signal timings and turn movements, are incorporated into the simulation
in advance, enabling the testing of optimization algorithms in a controlled environment. By using
archived data, scenario testing can be done efficiently without the added complexities of real-
time data.

The MLK corridor Tier 1 model is prepopulated with one minute aggregate traffic volume data
and ten-minute turn movement data provided by the City of Chattanooga. Two versions were
created for the same tier, for both the PM peak and 24-hour traffic scenarios.

Tier 2

With the successful creation of a Tier 1 model, a few key modifications were made to bring it
closer to real world elements. The method of incorporating archived data was changed to that of

a streaming model. The SPaT, traffic volumes, and turn count data were communicated to the

10



UTC DE-EE0009208 Final Technical Report

model during its runtime unlike the Tier 1 method of loading it prior to a simulation run. This
incremental advancement in the model helped lay the groundwork for the Tier 3 system.

Tier 3

The final tier integrates real-time data streams into the simulation model. By utilizing actual field
data, the model becomes a real-time representation of the smart corridor, capable of reflecting
live traffic conditions. Modifications in this tier include the ingestion of real-time volume, turn
count, and SPaT data, enabling the model to continuously adjust based on live data inputs. The
consistent data streams from the MLK corridor allowed for real-time performance monitoring
and optimization of traffic signal timings for fuel efficiency.

3.4 Digital Twin Model Development
3.4.1 Digital Twin Modules
In this study, the Digital Twin is developed using vehicle real-time and historic volume count,

turn count, and Signal Phasing and Timing (SPaT) data available from approximately 2.1 miles
of Martin Luther King Smart Corridor, Chattanooga, Tennessee, consisting of 11 signalized
intersections. A smart corridor Digital Twin model architecture typically includes four key

components as shown in Figure 4.
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Fig. 4: Digital Twin Architecture
Module 1: Raw Data Stream Processing Module - includes processing of raw data to parse,

format, and store the data in a database. From the physical MLK Smart Corridor, the left,

11
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through, and right turn vehicle counts per lane at the 11 intersections are obtained. This data is
processed to obtain approach level (Eastbound, Westbound, Northbound, and Southbound)
volume and turn counts. Further, 10 Hz Signal Phase and Timing (SPaT) data is obtained from
the signal controllers in the corridor.

Module 2: Dynamic Data-Driven Traffic Simulation Module - includes PTV-Vissim microscopic
traffic simulation model of the Smart Corridor, dynamically driven using volume, turn
movement ratios, and signal indications data (from Module 1). In this implementation,
intersection approach level 1-minute aggregate volume counts, 10-minute aggregate turn counts
data, and signal timing are dynamically driven using PTV-Vissim’s COM module. Using COM
the signal indications can be driven using external SPaT (Signal Phasing and Timing) data or
PTV-Vissim’s internal Ring Barrier Controller (RBC) module.

Module 3: Prediction and Optimization Module or Simulation Testbed Application Module -
consists of tools and algorithms to process simulation outputs based on the requirements of the
application. This module contains processes or algorithms that are driven using outputs from the
Digital Twin simulation. In this study, the outputs such as detector occupancy, each direction
approach level vehicle count aggregates, vehicle velocity, and current signal state, etc are
generated from the PTV-Vissim simulation model in the Dynamic Data Driven Traffic
Simulation Module are used as inputs for prediction and optimization for the signal timing plan.
Module 4: Real Time Data Broker Module - handles real time dynamic data transactions between
modules. This module consists of a Flask based web service to handle data
transactions/communication between other three modules.

3.4.2 Three-Tier Incremental Framework for Digital Twin Development
The three-tier incremental framework used for the MLK Smart Corridor study is described in this

section. The framework includes the development of structures for execution of replicate trials
faster than real time, enabling efficient testing and development of algorithms and applications in
the first two tiers, leading to the development of the final digital twin in the last tier.

Tier 1 - Development of Prepopulated Offline Simulation

The developed Vissim model provides the base simulation construction (Vissim link and
connector layout, signal placement, etc.) that is harnessed in all three Tiers. While basic Vissim
model development is often a partially manual process, the authors advise the development of

scripts for converting archived data into the input file formats utilized by the underlying

12
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simulation, enabling the ability to efficiently test developed algorithms under different conditions
(e.g., weekday vs weekend, growth scenarios, etc.). Minimization of the manual effort required
to test differing scenarios is critical to the overall usability and effectiveness of such a platform.
Scripts used for data preparation and prepopulating Vissim model may be found at

https://github.com/hunter- guin-gatech/MLK Digital Twin. Detailed guidance for developing

the underlying Vissim model may be found in Hunter, 2021 (1).

In this tier, for the MLK corridor, the Vissim simulation model of the corridor is populated with
one-minute volume and ten-minute aggregate turn movement ratio data for a representative time
period. In Tier 1, traffic signals are controlled using Vissim's Ring Barrier Controller (RBC)
feature which emulates typical signal control features found in most traffic signal controllers
deployed in the field. For example, the MLK corridor signal timing plans and phase diagrams
provided by the City of Chattanooga were used to configure the RBCs. For the MLK case study
two versions of the prepopulated Vissim model were created: 1) a PM peak model that simulates
the 3 PM to 6 PM period, and 2) a 24- hour version that simulates an entire day. These models
provide an efficient means for developing and testing optimization algorithms on a simulation
testbed much faster than real time. These models are used to conduct initial studies for
development of local and global signal timing optimization algorithms.

Tier 2 - Development of Pseudo Digital Twin (Driven with Archived Data)

The goal of Tier 2 is the development of a dynamically driven simulation model, i.e., data is
streamed to the model during runtime rather than pre-populated prior to model execution as in
Tier 1. Dynamic streaming data includes volumes (demand), intersection turn ratios, and SPaT
data. The model differs from the model in Tier 1 in its ability to drive the simulation during
runtime using archived field data streams in their original formats. Further, it is highlighted that
in this model the signal indications are controlled using field received SPaT messages, not the
internal Vissim RBC. Thus, the implemented signal phase times will match the field directly,
rather than relying on the accuracy of the simulation signal control emulator (i.e., Vissim's RBC
feature).

This effort includes development of the digital twin architecture modules (Figure 4). It differs
from the real time data-driven digital twin (Tier 3) as it simulates data from an archival data
stream rather than a real time stream. The key developments found in Tier 2 related to the digital

twin architecture (Figure 4) include:

13
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* Module 1: Development and integration of hardware and software for receiving and
processing of data streams in sync with wall clock time.

* Module 2: Integration of the Tier 1 simulation model into the system, enabling volume
and signal control to be driven by external data streams.

*  Modules 3 and 5: Development of the application specific functions. In this case study
this involved the development of the traffic signal optimization algorithms for module 3
and the second simulation instance for module 5, which ingests SPaT data from module 3
instead of field SPaT data.

* Module 4: Development of a Flask [28] based web service to handle data
transactions/communication between modules, and fetching of archival volume, turn
counts, and SPaT data from the database.

Tier 2 introduces two significant benefits in the three-tier approach to the digital twin platform.
Firstly, it contains the development of the digital twin architecture necessary to utilize real time
(or wall clock time) data streams. Importantly, the ability to utilize archived data streams to
simulate real time streams allows for simplified error checking in dynamic execution of system
components. Secondly, Tier 2 allows for replicability under identical streamed field conditions
when testing developed optimization algorithms or other smart corridor applications.

The Tier 2 platform can be used to simulate any day as long as the archived data is available for
that day. This allows for testing and refinement of different strategies implemented in Module 3,
capturing the variations across days of the week, holidays, and special events. Vissim's inbuilt
evaluation measures such as route travel time and delay, approach queue length, etc., are used by
Module 3 for evaluation and optimization.

Tier 3 - Development of Real Time Data Driven Digital Twin
Tier 3 contains the development of the digital twin driven using real time streaming volume, turn

count, and SPaT data. Module developments from Tier 2 are utilized with minor modifications.
The key modifications made in Tier 3 are:
* Module 1: Data ingestion programs are created to receive and process real time data from
field devices and inject the processed data into relational MySQL database tables. The
system input configuration is modified to point to the database tables for real time data

streams instead of streams generated from archived data.

14
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* Module 2: Model verification, validation, and calibration may be extended to validate real
time simulation performance.
* Module 4: Service configuration modified to point to real time database tables instead of
archived data tables.

3.5 Fuel Consumption Performance Index (Eco FC-PI)
The goal of this task is to develop an environmental-based objective function for control
optimization. To achieve this goal, we developed a novel performance measure referred to as
Ecological Performance Index (Eco-PI). The Eco-PI is a performance measure that characterizes
impact of signal timings on excessive FC and vehicular emissions at signalized intersections by
looking at how various operational and traffic conditions impact unnecessary vehicular stops at
controlled intersections. Eco-Pl is a scalable performance measure that can be estimated on
various spatial levels—from an Eco-PI for a specific traffic movement (related to a signal phase)
through an Eco-PI for a whole intersection (in order to be able to find the right balance for
various traffic movements) to an Eco-PI for the entire road network.
The development of the Eco-PI is based on the well-known concept of Performance Index, a
performance measure which has been used for decades in traffic signal optimization processes to
derive a right balance of delays versus stops when optimizing traffic signals (2-9). The PI
achieves balance through a linear combination of delays and stops (mainly for major through
movements), where the key factor is the stop penalty “K”, which represents a weighting factor,
or a stop equivalency measured in seconds of delay. However, the PI is neither properly defined
(especially from the point of its technical derivation), nor is it comprehensively evaluated for
several impacting factors. A more technical outcome of these omissions is the fact that the PI is
used as a single deterministic formula (6-8), as opposed to being a family of relationships that
depend on several operational factors. Specifically, the contemporary signal optimization
practice assigns a constant value (e.g., 10 seconds) to the K and it does not recognize it as a
parameter that is dependent on various operational conditions.
The goal of using the Eco-PI is to reduce fuel consumption and various pollutant emissions
caused by traffic signals. However, previous studies (9-7/0) have shown that one or more
pollutant criteria do not linearly correlate with FC. That suggests that most likely an Eco-PI that
minimizes other emissions/pollutant criteria. Therefore, we defined the Eco-PI as a generic

performance measure that can be derived to reduce FC and any other pollutants (e.g., HC, CO,

15
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NOx, CO, and PMs). As a consequence, a specific intersection or a network Eco-PI could be
defined as one from a family of similar PIs, all based on different environmental factors. For

example, FC-PI, HC-PI, CO-PI, NOx-PI, CO;-PI, and PMs-PI are all members of the Eco-PI

family that are derived specifically to reduce FC, HC, CO, NOx, CO., and PMs, respectively.
Our research, however, focused on a methodology to derive an FC-PI considering impacts of
various operation conditions (e.g., cruising speed) on the K value.

3.4.1 Major Factors Impacting Stop-Related Fuel Consumption
When developing an FC-PI, the K factor becomes the number of seconds of delay that consume

the same amount of fuel equivalent to the action of stopping (deceleration and acceleration).
Thus, the value of K is significantly impacted by the FC experienced during a stopping
maneuver, which eventually impacts the total value of FC-PI. The major factors (driving
conditions) that impact FC during a stop at a signalized intersection are those that impact the
acceleration phase of the entire stop-and-go maneuver. While the same, or other, factors may
significantly impact the deceleration phase too, such impacts are usually of much lower
significance as much less fuel is always consumed during the deceleration phase. Thus, it is
logical to pay more attention to what happens on the acceleration side of the maneuver, which is
the major driving phase for increased FC. For this reason, we mainly focused on those factors
that impact FC mainly during the acceleration phase, which are: 1. Distribution of vehicular
types and engines; 2. Proportion of heavy vehicles in fleet distribution; 3. Driver’s behavior; 4.
Road gradient; 5. Cruising speed; and 6. Wind effect.

3.4.2 Development of the FC-PI
Observing the kinematics and dynamics of a vehicle stopping at an intersection microscopically,

shown in fig. 5, was the essence of deriving the FC-PI. When a vehicle stops at a signalized
intersection, it must go through three driving phases, as shown in fig. 5a. Firstly, the vehicle
decelerates from its original cruising speed to zero (deceleration phase)> secondly, the vehicle
waits for the signal to turn green, during which time the vehicle’s engine idles (idling phase).
Thirdly, once the signal turns green, the vehicle accelerates from zero to its cruising speed
(acceleration phase). Those three phases form the concept of the “Cruising Speed Stop Profile”
(CSSP), where cruising speed after acceleration is assumed to be the same as before the

deceleration phase.
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Fig. 5: Dynamics and Kinematics of a Stopped Vehicle
Part b of Fig. 5 shows the CSSP of the same vehicle, where the speed foes from its cruising value
to zero, and then back to the cruising value. Part ¢ shows how acceleration changes during the
process, which directly impacts FC, shown in part d. It can be stated that for CSSP, the total
amount of fuel consumed is:
FCcssp = FCp + FC; 4+ FCy

Where: FCcssp — total fuel consumed during a CSSP [gallons, liters, or grams], FCp — fuel
consumed during the deceleration phase; [same unit as FCcssp], FCi — fuel consumed during the
idling phase; [same unit as FCcssp], FCa - fuel consumed during the acceleration phase; [same
unit as FCcssp].
While the FC curves shown in Figure 1d are hypothetical, it is obvious that fuel consumed
during the acceleration mode is by far greater than fuels consumed either during braking or
idling at the intersection. While this simple concept (including FC) has not been shown in
relation to the PI concept before, it has been clear since late ‘60s (/0) that idling mode can be
associated with ‘pure’ delay (stopped delay, to be more precise) while braking and acceleration
are associated with a full stop, or a car’s maneuver to decelerate from its cruising speed to zero
and then accelerate back to the cruising speed. That suggests that it is crucial to separate 'delays'
from 'stops’, the two commonly used traffic performance measures for signalized intersections.
Such separation is achieved only by separately identify extra FC attributed to a stopping event
FCp, (FCp + FC,) from that attributed to the stopped delay (FC;) (or waiting time in the queue
at traffic signals).

Now, following that the K factor is the number of seconds of delay that consume the same
amount of fuel consumed by a stopping event, we can say that FCp, is equal to an equivalency
factor ‘constant’ (K,) multiplied by the F(;, as expressed in Equation 2.
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FCDA :Ke - FCI

2

By rearranging Equation 2, the unitless constant (K,) can be expressed as shown in
Equation 3.

_ FCp + FC,

e —

FC,

3)

The idling phase duration varies based on the red interval’s length. Therefore, the next

step is to divide FC; by the total idling time (T}) in seconds, as shown in Equation 4. That is
important to assign the number of seconds of stopped delay that is equivalent to a stopping event,
which is the stop penalty (K).

K_(FCD-}_FCA).TI
B FC,

4

Final Technical Report

Naturally, K values will be different for various movements based on several factors. For

example, it is obvious that total fuel consumed on a movement with a high truck percentage in

the fleet will be larger than total fuel consumed on a movement with light-duty vehicles only.
Thus, we define a movement-specific K; for each movement i:

movement, and a given analysis period (e.g., an hour), as:

n
FC
FC—Plzz Di+( >

i=1

_ (FCp + FCy); - Ty

i

FCy,
Next, one can define an FC-Performance Index (FC-PI) for a network of traffic signals with i

+ FCA)i ) Tli ]

FC,,

i

)

(6)

While all of the variables have been introduced above, the index i applies to each eligible
movement in the network and the # is the total number of eligible movements.

3.4.3 Investigating Impact of Operating Factors Contributing to Eco-PI

When investigating the individual impact of a particular factor (e.g., vehicle type) on FC, all

other factors (e.g., cruising speed, road gradient, fleet distribution, driver behavior, and wind
speed) were kept constant, at their default values (discussed next). A total of 74 experiments
were designed to cover a wide range of variables for each of the investigated operational

condition factors. Table 2 shows a summary of the variables that were tested individually for

each investigated factor. It should be noted that we adopted various vehicle types from CMEM.

Table 2 Variables for various operational conditions impacting FC

Vehicle type Fleet distribution Driver behavior Road gradient Cruising speed Wind effect
Variable FC (g) Variable FC(g) Variable FC(g) Variable FC(g) Variable FC(g) Variable FC (g)
LDV1 56.6 100:0 56.6 Funcl 457 -7 34.8 20 16.1 50 tailwinds 473.8*
LDV2 572 99:1 62.5 Func2 472 -6 37.6 25 21.8 40 tailwinds 505.6
LDV3 555 98:2 68.7 Func3  49.5 -5 40.8 30 27.2 30 tailwinds 510.8
LDV4 525 97:3 74.4 Func4 519 -4 43.5 35 36.7 20 tailwinds 513.3
LDV5 578 96:4 80.1 Func5 532 -3 46.3 40 46.4 10 tailwinds 525.6
LDV6 54.6 95:5 86.5 Func6 554 2 49.6 45 56.6 No wind 549.0
LDV7 555 94:6 92.3 Func7  56.3 -1 52.7 50 70.3 10 headwinds 587.2
LDVS 59 93:7 98.4 Func8 584 0 56.6 55 85.5 20 headwinds 628.5
LDV9 587 92:8 104.1  Func9  60.5 1 59.2 60 106.6 30 headwinds 690.8
LDV10 111.2 91:9 110.9  Funcl0 62.2 2 63.7 65 135.3 40 headwinds 835.4
LDV11 56.8 90:10 117.6  Funcll  63.7 3 67.1 50 headwinds 979.5
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LDV12 559 Funcl2 654 4 71.1  Not applicable

HDDV1 816.5 5 75.0 *Values are for
HDDV2 894.4 Not applicable Not applicable 6 80.2 HDDVs
HDDV3 549.0 7 85.6

Fig. 6 shows the process of modeling traffic at the testbed intersection, performing various
experiments, post-processing data trajectories from VISSIM, estimating FC (based on trajectories)
in the CMEM, and post-processing FC estimates in Matlab to compute the value of K. A default
value for each of the evaluated factors was identified, as a reference value used when comparing
FC results, to ensure consistent comparisons. Light-duty vehicle 1 (LDV1), Heavy-duty vehicle
Diesel vehicle 3 (HDDV3), no heavy vehicles, 12 deterministic acceleration-deceleration
functions, level terrain, 45 MPH, and no wind were selected as default values for LD vehicle type,
HDD vehicle type, driving behavior, road gradient, cruising speed, and wind speed, respectively.

I Input data | [ Traffic simulation I I Data processing module I l Fuel consumption model l

4 1- Intersection topology / \ / N\ / - N\
VISSIM ‘ *_m

the mind of movement

Tewe-Dratance Proile

MATLAB
1- Simulation 1- Extract stop profiles 1- Process stop profiles
- T : in the Batch model of
ime  speed  Acceleration " oare
by, (seconds) (mph) (mph/second) CMEM
— 1 45 0
2- Traffic volumes 2 434 -1.6
Link | Bound | Volume ' ’ ’
1 S8 330 0 0 0
2 NB 143 0 0 0
3 we 622 2- Trajectory file (FZP)
4 EB 1304 i . .
3-Speed limit N-1 423 1.9
o s 4 N 45 27

(AR R REN
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n

N

3- Outcomes
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Fig. 6: VISSIM-Matlab-CMEM connection
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3.4.4 Developing Regression Equations Based on Simulation

The amount of consumed fuel (in grams), for a CSSP representing each of the various
experiments, are presented in Table 2. For each of the results from Table 2, the values of K are
illustrated (for each variable individually) as a function of a specific FC factor in Fig. 7.

Each of the charts in Fig. 7 (except 7c) includes 13 data series out of which 12 represent
deterministic deceleration-acceleration functions investigated in the study, and the bold line
represents an average of those 12 data series. Fig. 7c is an exception because it already shows the
impact of various driving behaviors on K value. Results of the experiments with various vehicle
types (columns 1 and 2 in Table 2) show that each vehicle type consumes a different amount of
fuel. Such difference in FC is mainly apparent when comparing LDVs and HDDVs between
various vehicle types as visualized in Fig. 7, which illustrates the FC results during the same
CSSP regime for three vehicle types: LDV10, LDV11, and HDDV3. The variations in FC
between different vehicle types will result in various K values as shown in fig. 7a, which depict
that stop penalty ranges between 118-second to 250-second for various LDV's

Such a conclusion can also be reached by observing the stop penalties of HDDVs, which resulted
in ~9-15 times higher values than the stop penalty from the LDVs. These facts are expected to
result in a significant impact on the K value, when calculated for a fleet of vehicles with a high
HDDYV percentage.

Fig. 7b shows that the K factor follows an approximately linear relationship with an increase in
the percentage of HDDVs. Based on fig. 7b, we can conclude that every increase of 1% of
HDDVs in the fleet costs around 11 seconds of extra waiting-idling time (based on the
equivalent FC) for every additional stop at a traffic signal. Similarly, every increase of 1% of the
road gradient costs 6 to 11 seconds of extra waiting-idling time, as shown in fig. 7c.

As seen from fig. 7d, there is no clearly recognizable pattern to correlate variations of the K
factor with some intuitive expectations related to different driving behaviors, because such
behaviors are usually based on unique mental and physical characteristics of the drivers.
Nevertheless, the impact of those differences is significant on the K value (ranging from 105 to
147 seconds for various deceleration-acceleration functions).

In relation to the cruising speed, the K factor growth seems to follow an exponential equation, as

shown in fig.7e. This is especially observable for cruising speeds higher than 45 MPH. This
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finding can be interpreted as if stopping a vehicle at a higher cruising speed introduces a much
more significant interruption than stopping a vehicle traveling at a slower speed.

Results of the wind speed and direction have shown, as expected, that headwinds cause the
HDDV to generate more energy (which requires more fuel) to overcome the energy of the wind
blowing in the opposite direction. Those results are reflected on the K value as depicted in fig.
7f; thus, they confirm the importance of including wind effect in K calculations, especially for
fleets with a high percentage of HDDVs. To summarize, the results indicate that the K factor
should be much larger than used by current signal timing practices and that it should be defined
differently for various traffic movements and intersections, depending on their operating and

traffic conditions.
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Fig.7: Impact of various operational condition on stop penalty (K); DB: driver behavior
Finally, fig. 8 presents regression equations to compute the K factor considering the individual

impacts of percentage of heavy vehicles in fleet, road gradients, cruising speeds, and wind
effects. It should be noted that when developing a regression equation for one of the four above-
mentioned factors, the default values of all of the other factors (and the 12 deterministics driving
behavior functions (shown in fig. 7d) were used. Also, those equations were developed with the
assumption that the final cruising speed is the same as the initial cruising speed.
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Fig. 8: Regression models to computer stop penalty
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Table 3 presents the coefficient of determination and the range of each of the developed
regression equations, based on existing simulation results.
Table 3 Regression equations to compute the stop penalty

Factor Equation Range R?
Xy % of HDV K = 129.37 - ¢00615%pnv Xppy = [0,10] 0.6273
Xgg: Road gradient (%) K =122.19 - ¢00648%rc Xpe = [—7,7] 0.8335
X.s: Cruising speed (mph) K = 14.761 - 00467 %cs Xqs = [20,65] 0.9645

Xwg: Wind effect (mph) K = 0.1613 - x5 + 9.6642 - xpp + 1244.6  xz = [-50,50]  0.9389

It should be noted that the equations in Table 3 can be used to compute the K factor required to
minimize FC, but not necessarily any of the pollutant emissions. Fig. 9 shows the difference in
the K values required to minimize various pollutant emissions and FC under various cruising
speeds with all other operation conditions are identical. One can conclude, from fig. 9, that the
stop penalty has a different value for each pollutant criteria at each speed. For example, a K
value of 70 seconds will minimize HC at a speed of 45-mph, whereas a much larger K of 225
seconds is needed to minimize NOx at the same speed. While some of the criteria yield to very
similar Ks (for like cruising speeds), e.g., FC and CO2, the others are quite different (e.g., HC
and NOx). A careful analysis of these values could help us define signal optimization strategies
for various areas in the cities based on their sensitivity to particular emission and pollution
criteria.
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Fig. 9: Impact of a single stop-and-go event of excess emissions
3.4.5 Data Required for Eco-PI Computation
Each of the delays, number of stops, and the stop penalty must be determined in order to
compute the Eco-PI. Considering that two most important data types needed for delay and
number of stops estimations are volumes (vehicular arrivals) and signals phasing and timing
data, they are examined in Table 4. Data are organized per attribute (e.g., type, source, etc.) and
their utilization in optimization procedures, offline (pretimed), online (adaptive), and online CV
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(adaptive CV). Please note that several data sources might be considered to collect the necessary
data in some instances (see Vehicle arrivals downstream in Table 4).

As concluded before, all of the tested operating factors have significant impact on the stop
penalty. For that reason, it is crucial to include the impact of all of those operating factors on the
stop penalty when computing the Eco-PI. Table 5 presents the data required to include each of
the factors with a major impact on the stop penalty. Finally, Table 6 summarizes the cruising
speeds and road gradients for individual signalized intersections at M.L. King Blvd. Initial speed
and final speed in Table 6 represents the cruising speeds at the start of the deceleration phase and
after the end of the acceleration phase, respectively. Also, EB, WB, NB, SB, RT, TH, and LT
stand for Eastbound, Westbound, Northbound, Southbound, Right-turn, Through, and Left-turn,
respectively.

Table 4 Required data for estimating delay and number of stops

Optimization
type \ Data Type Source Spatial coverage Temporal coverage Importance
attribute
Vehicle arrivals downstream
Offline - Traffic GridSmart Intersection 15-minutes bins / Hich
Pretimed counts TMCs / Counts movement Second-by-second &
Online - Traffic GridSmart Intersection .
Adaptive counts Counts movement Second-by-second High
Online CV - Traffic Exact location of . .
Adaptive CV counts CV data (BSM) vehicle Same as Online Medium
Vehicle arrivals upstream
Offline - Traffic GridSmart After upstream Aggregated based on
. . . second-by-second Low
Pretimed counts Counts ntersection data
Online - Traffic flow GridSmart After upstream Second-by-second / .
. Counts / Video . . TBD (resolution of High
Adaptive rate intersection . .
data video analytics)

Online CV — Traffic flow Exact location of .
Adaptive CV rate CV data (BSM) vehicle Second-by-second Medium
Signal phasing and timing data

Offline - Signal timing  Signal timing Intersection . .

Pretimed elements sheets movement Peak period or hour High

Online - Signal timing GridSmart Intersection .

Adaptive elements Events movement Second-by-second High
Onlln? Cv- Signal timing Same as Online Same as Online Same as Online Medium
Adaptive CV elements
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Table S Required data for each of the factors impacting the stop penalty

Optimization
type \ Data Type Source Spatial coverage = Temporal coverage Importance
attribute
Fleet composition and Vehicle type
Ofﬂ.l ne- Vehicle shape GridSmart Intersection Second-by-second Medium
Pretimed Counts movement
Online - Video data / Intersection TBD (resolution of
Adaptive Vehicle shape GridSmart movement video analytics) High
P Counts / Second-by-second
Online CV — Exact vehicle ~CV data (Embed  Exact location of Second-by-second Hich
Adaptive CV model in BSM) vehicle Y &
Driving behavior
Offline - Trajectory ~ Probe Gps/  Loiore & After - Second-by-second / .
. X StopLine/ TBD TBD (resolution of High
Pretimed data Video data . . )
(camera view) video analytics)
Onlm? - Trajectory Video data TBD .(camera TBD (resolutlgn of Medium
Adaptive data view) video analytics)
. Same as Online
Online CV — Trajectory CV data (BSM), . e .
Adaptive CV data individual cy  nd formultiple  Second-by-second High
intersections
Road gradient
Offline - Grade of the Maps with Intersection .
Pretimed terrain altitude approach NA High
Onlm? ) Grade O.f the Same as Offline Same as Offline Same as Offline Low
Adaptive terrain
Online CV — Grade of the Same as Offline  Exact location of Second-by-second Medium
Adaptive CV terrain +BSM vehicle Y
Cruising speed
Offline - . Intersection .
Pretimed Speed limit Google maps approach NA High
) Video data TBD (camera TBD.(tempor.al
Online - Speed . view) / resolution of video .
. Lo /GridSmart . . Medium
Adaptive distribution . Intersection analytics) / Second-
Realtime
movement by-second
Online CV - Speed Exact location of .
Adaptive CV distribution ~ CV data (BSM) vehicle Second-by-second Medium
Wind effect
Offline - Wind speed
Pretimed & direction Dark Sky TBD TBD Low
Online - Wind speed .
Adaptive & direction Dark Sky (API) TBD TBD Medium
Online CV — Wind speed . . .
Adaptive CV & direction Dark Sky (API) Same as Online Same as Online Medium
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Table 6 Cruising speeds and road gradients on intersections of the area of study

Intersection Parameter/movement

EB EB EB WB WB WB NB NB

RT TH LT RT TH

LT RT TH

NB
LT

SB SB
RT TH

Carter St

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

-0.8 -0.8 -0.8

30 30 30 25 25
30 30 30 25 25
-0.1 -0.1
0.3 0.3

0.2 -0.2 0.4

25 30 30
25 30 30
-0.1 0.1 0.1
0.1 04 0.2

30
25
0.1
0.1

30 30
25 30
-0.4 -0.4
0.3 -0.1

Broad St

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

30
20
0.2
0.5

30 30
25 30
0.2 0.2
1.1 0.8

25 25
30 30
-1.6 -1.6
0.3 -0.1

25 30 30
25 30 20
-1.6 -0.2 -0.2
0.0 0.9 0.3

30
25
-0.2
0.0

20 20
25 30
0.0 0.0
-0.3 0.0

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

25 25 25
25 30
1.5 1.5

2.0 -1.1

25 25
30 25
-1.9 -1.9
-1.9 -1.7

1.5
1.0

25 30 30
30 25 30
-1.9 -0.5 -0.5
03 1.9 -1.7

30
25
-0.5
-1.3

30 30
25 30
1.5 1.5
-0.9 1.1

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

25 25 25
25 30
1.9 1.9

14 1.3

25 25
30 25
-1.0 -1.0
0.3 -1.9

1.9
0.7

25 30 30
30 25 30
-1.0 -0.9 -0.9
-0.1 1.3 0.6

30
25
-0.9
-1.7

30 30
30 25
-1.1 -1.1
-2.3 0.0

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

25 25 25
25 30
1.3 1.3

-1.1 1.9

25 25
30 25
1.7 1.7
2.2 -1.0

1.3
1.3

25 30 30
30 25 30
1.7 -1.7 -1.7
1.1 -1.2 1.8

30
25
-1.7
-0.8

30 30
30 25
-3.7
-1.3

Initial speed (mph)
Final speed(mph)

Deceleration slope (%) -1.6

Acceleration slope (%)

25
30

25 25
25 30
-1.6 -1.6
-1.5 1.7

25 25
30 25
23 23

0.8 44 0.9

25 30 30
30 25 30
23 -11 -1.1
0.3 -14 5.0

30
25
-1.1
1.2

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

-0.5
-0.3

25
30

25 25
25 30

25 25
30 25
-0.5 -0.5 -1.0 -1.0
1.1 1.9 2.2 0.3

25 30 30
30 25 30
-1.0 0.4 04
-0.5 1.1 1.8

30
25
0.4
0.7

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)

Acceleration slope (%) -2.3

25
30
0.3

25 - - 25
25 - - 25
03 - - -15
14 - - 0.3

25 30 -
30 25 -
-1.5 3.3 -
-19 1.3 -

30
25
3.3
0.9

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

-1.8

25
30
3.3

25 25
25 25
33 4.3
3.7 -3.2

25 30
30 25
-4.3 3.2
-2.6 3.6

30
25
3.2
-2.0

30 30
30 25
-1.8 -1.8
-3.1 -1.6

30
30
-1.8
2.4

Central St | Magnolia S{ Peeples St | Douglas St | Houston St| Lindsay St| Georgia St| Market St

Initial speed (mph)
Final speed(mph)

Deceleration slope (%) -5.4 -54 -54

Acceleration slope (%)

35 35 35
30 35 35
5.8
5.1

30

1.2 -5.5 -1.5

35 30
30 35
5.8 -1.7
5.1 -5.7

30
-1.7

30 30 30 30
35 30 35 30
-1.7 -0.4 -0.4 -0.4

-14 2.6 44 1.1

-3.3
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3.6 Evaluation of Analytical Models for Eco-PI estimation

Analytical models for EcoPI estimation were introduced in the proposed framework for the
development of constraints for local optimization mainly to relate available traffic data (e.g.,
volumes, arrivals on green) and signal timing parameters (e.g., green times, cycle length) with
EcoPI value. As defined earlier, the main performance measures for EcoPI estimation are delay
(dm;), number of stops (N, ), and stop penalty (K, ), which need to be estimated per movement
(m) of each intersection (i). Thus, we define the EcoPI as:

8
EcoPI},,,, = Z dm; + Kin; * N, (7)

m=1

038 CLI(1~ gm,/CLY)

A 1—POG,,, . 1= Y,

™1 —g,,./CL CL
" 1= I, * <gmi) * POGm,
1—POG,,, * CL}/gp.

x [1 + Vm; * . g;./cu L (9)
l
1— gy,./CL
Ny, = 0.9 X # (10)
»

l

where:

EcoPI},,,,= Eco performance index of intersection i,

m= movement number of the intersection (for standard four-legged intersection my,,, = 8),
i= intersection number,

dm;= stopped delay at movement m of intersection i (sec/veh),

PE,, ;= progression adjustment factor at movement m of intersection ,

K, ;= stop penalty of movement m of intersection i,

Np,;= number of stops at movement m of intersection i,

CL' = cycle length at intersection i (sec),

gm;= green time for movement m of intersection i (sec),

Ym;= 1atio of volume and saturation flow rate at movement m of intersection i,

POG,;= percentage of arrivals on green at movement m of intersection i.
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An important traffic characteristic that needs to be included in the analytical models for EcoPI is
the percentage of vehicles arriving on green POG. The POG accounts for vehicular arrival patterns,
which is a traffic flow characteristic that (in addition to traffic volume) impacts the EcoPI. Thus,
if analytical models do not account for POG appropriately, such EcoPl estimates may be
inaccurate and unreliable. We recently noticed that the previously proposed analytical model for
estimating number of stops (eq. 7) is not very accurate when estimating performance of
coordinated movements. We reviewed several other models from the literature and decided to
update the analytical formulation of EcoPI, to improve estimation of the number of stops. We
decided to use the model proposed by Bonneson (2008) because it is capable of accounting for
arrival patterns while estimating the number of stops (/4). The formulation of the subject model

1s as follows:
dg,,
1 - P0Gy, <1 + —‘)

mj

IF d,, <(1=PO0Gy,)gmXm, = Nm; = (23)

1— P0Gy, Xy,

(1-POG,,,) (1, — da,,
IF day,, > (1= P0G )gmXm; > Nm; = Ty — (1 —mzlJo(Gml)g axl)
mi miJImidm;

(24)

1
+ —) (25)

Tdm

da,, = 0.5(147Sz, ) (r !

am: .
m; i

where:

T = effective red duration (C L' — gm,;) for movement m of intersection i (sec),

Gm ;= volume during cycle for movement m of intersection i (veh),

X, = volume-to-capacity ratio (= qp; %) for movement m of intersection i,
migmi

Sm ;= saturation flow rate for movement m of intersection i (veh/h or veh/s),

dami: deceleration-acceleration delay for movement m of intersection i (sec),

Tam; » Tdm,~ acceleration, deceleration rate for movement m of intersection i (f#/s°),

S Ry — running speed for movement m of intersection i (mph).

For this reason, our revised formulation of EcoPI (Eq. 7) now consists of equations 1-2 and
equations 4-6.

We evaluated EcoPl estimates (from analytical models) against ground truth from the
microsimulation model (which represents virtual reality). We arbitrarily selected intersection in
the downtown area of the examined network (i.e., Martin Luther Blvd and Market Street), and
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estimated EcoPIs on a cycle-by-cycle basis for specific protected movements (e.g. through flows)
or permitted (or protected/permitted) traffic movements (e.g., left-turn flows). It needs to be stated
that estimation of EcoPIs for protected/permissive movements relies on similar models for delays
and number of stops as shown previously. However, slight modifications of analytical models exist
due to the specifics of traffic operations in protected/permissive phases and can be found elsewhere
(2). Obtained results are presented in Figure 10. In general, estimations of EcoPlIs for the high-
traffic through movements (observe part @) and b) of Figure 10) are reliable and they have resulted
in high correlations with the ground truth values (obtained from simulation). However, when one
observes analytical estimates for protected/permissive left-turn movements (see part ¢) and d) of
Figure 10), it is found that the two data sets are not equally well correlated.
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Fig. 10: Comparison between analytically derived and ground truth EcoPI

Overall, we find that the EcoPls estimated by using one of the proposed analytical models are
acceptable for three reasons: 1. Major movements of the network are those served with exclusive
phases (e.g., through coordinated movements) and for those movements, the EcoPIs estimates are
reliable; 2. Although the accuracy of analytical models for estimation of EcoPIs for
protected/permitted movements is lower, a general trend between two datasets still exists; 3.
Amount of traffic for protected/permitted phases contributes much less (in the overall intersection
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EcoPI) than those of the protected. In the later stages of research, analytical models will be
calibrated based on real-world data to further improve their accuracy. For current research efforts,
we recommend using the existing analytical models.

4.2.1 Evaluation of Framework for Development of Constraints for Local/Global Optimization

Development of constraints for local/global optimization starts by determining the minimum cycle
length (CL,;,,) that ensures enough green time to service previously stopped vehicles, i.e., vehicles
that arrived on red (AoR). Previously proposed formula for CL,; (Equation 11) was evaluated,
and some inconsistencies were found.

' L
l J—
Clinin = ZAORmicmical oy

1= osxcr

previous

Therefore, we replaced Equation 11 with Equation 12 as the new one better ensures that queued
vehicles are always served with a given CL! .. .

CLiyin = Li + (AoRyy + AoRy; + AORys + AoRpy) * hege  (12)
where:
CL,;,= minimum cycle length (s),

L;= total lost time per cycle per intersection (i) (s):

Li:z Ly, (13)
ml

Ly , = (l1m' + Yt + AT — €1) (14)
where:
L¢m,= lost time per phase ¢ that serves specific movement group (m') (s),
l1,,/= start-up lost time (usually, 1, = 25) (s),
Y= yellow (s),
ar,,»= all red (s),
e,,’= used time during yellow and all-red (usually, e,,; = 25) (s),
hgqt= saturation headway (s),

AoRy ,= maximum arrivals on red for phase ¢ that controls movement group m’(vehicles per
m

lane):
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AoRy , ={AoRy; ..., A0Ry, }  (15)
where:

AoR g4 _,= arrivals on red for each movement m in movement group m’ associated with phase
m
¢ (vehicles per lane).

Based on the Equation 16, the minimum green time required to accommodate vehicles of
a particular movement group are calculated as:

gmin¢m, = L¢m/ + AOR(I)m/ * hoqe  (16)

It needs to be stated here that in the cases when calculated g,,in b is lower than
m

recommended (currently deployed) minimum green time in the signal controller, the value from
signal controller should be adopted for safety purposes.

To calculate upcoming cycle length and corresponding green times for each intersection in
the network, we use Equations 17 and 18. Further, we select maximum of minimum cycle lengths
for each intersection to determine the minimum cycle length for the entire group (or network)
( C Lgroup

min

CLI™2YP = (CL )  (17)

min

For each intersection where a group CL?' °*? is supposed to be operational, we evaluate 60

min
cycle lengths with incremental increase of CL%Z“pfor A (where A = [1, ... ,60]) to find
most appropriate (from the perspective of EcoPl) minimum cycle length for the
group

entire group/network (CL ). Although a wide range of cycles was evaluated, the

Mingcopr
implementation of appropriate cycle time for the upcoming cycle will depend on the value of the
cycle time in the previous cycle.

Calculated C L“zlrm . is supposed to allow proper coordination of all intersections within

the same group, and represents a minimum CL for local/global optimization procedures. While

rou . . . Tro . rou
group  the difference between the minimum CLY2“?  and increased CLI 2P +
MINEcoPI MINEcoPI MINEcopI

A is used to distribute extra green times according to a number of vehicles arriving on red, stop

increasing CL

penalty factor (K) and total volumes during cycle as shown in Equation 18:

AoR,,. * K, . . for ¢,_
)X mi mi qmlf ¢14 (18)

' _ group group
Gextension1-4 ((CL ort T ) —cL ZAORmi * K * Qm;

mmE mmEcoPI

Such green times (Gextensioni—4) are added to minimum green times previously computed by using

the Equation 16. Finally, to determine network cycle length that will be used as C L‘fnr if;fp for
EcoPl
local/global optimization purposes, we calculate EcoPI for each CLY°"P + A and each

MINEcopPI
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intersection in the network on the cyclical level. Since traffic distribution at each intersection can

be quite distinctive, and therefore EcoPlIs can be different too, we define C L“fnr i‘:fp , asa CL that

EcoP

results in the lowest total EcoPI for multiple intersections.

group
Mingeopy
observed. We restrict our focus on two characteristic intersections in the network to illustrate how
group

Mingeopy

are intersections of Martin Luther King Blvd and Broad Street and Martin Luther King Blvd. and
Market Street, labeled as intersections 2 and 3 in Figure 8, respectively. Intersection 2 is non-

critical, its volumes are relatively low and thus the optimum conditions (on a local level) might
group
mingeop

Figure 8 illustrates how EcoPI change with each CL + A, when two intersections are

values of EcoPI change for CL + A at one non-critical and one critical intersection, which

exist for values of cycle length lower than CL |- However, Intersection 3, which represents

group

o . . . l . . .
a critical intersection, has a CL;,;,,, which is, in most cycles, selected as a C LminEcoPl

group
mingco

lines in fig. 11). Therefore, by increasing CL, intersection 2 usually does not benefit in terms of
EcoPI (observe orange lines in fig. 11). Such a trend can be explained by the fact that higher cycle

. Thus, any

increase in CL o1 by A, will improve EcoPI at intersection 3, up to a certain point (see gray

lengths tend to increase delay, which is one component of the EcoPl). Finally, when EcoPlIs of
group
Lminz‘coPl

compromise solution between best-performing cycle lengths from both intersections (see part a)

both intersections are added together, one can observe that the resulting C is a

of fig. 11). In this way, CLfnri‘;Ep . is determined as an input for other optimization procedures.
Cco

. . . group “q . . .
Green times associated with the CL .. are already allocated, within each intersection, as
EcoPl
discussed previously.
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Fig. 11: Impact of non-critical and critical intersection CLs on minimum group CLs

3.7 Local Optimization

Adaptive traffic control systems (ATCSs) have been in use since 1970s but have only received

significant attention in the U.S. within the last ten years. In that period, the number of deployed

systems increased by 600% (/3). The two main factors contributing to such trends are the

emergence of ATCSs brands customized for the U.S. market and the promotion of these systems'

benefits within the research and traffic signal community (/4). In essence, ATCSs adjust signal

timings to accommodate spatial and temporal changes in traffic flow in a real-time manner. So

far, there are more than 20 commercially available ATCSs brands around the world. Each system

is slightly different in its internal logic that governs the decision-making process of these real-

time traffic signal controllers. Traffic signal performance measures (TSPMs) represent feedback

between ATCSs operations (or provided capacity) and vehicular arrival patterns (demand). The

operational objective of ATCSs (e.g., smooth traffic flow, balanced capacity, etc.) highly

depends on the performance measures (e.g., delay, queue profiles, degree of saturation, etc.) that

are used by the algorithm to develop new signal timing elements. So far, ATCSs were developed

with an explicit focus on mobility-related performance measures (/5-79). A limited number of
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studies focused on the development of signal timing parameters that will consider the impact on
the environment in the offline signal retiming procedures (20-21). Few attempts were made to
develop online (real-time) ATCSs that are ecologically aware (22). However, such systems were
tested in a simulation environment at a single intersection level without considering realistic
constraints imposed by real-world networks (i.e., coordination of multiple intersections, various
road users, etc.). Thus, ecologically-aware ATCSs were not developed for field implementation
purposes so far. Also, part of the problem lies in the fact that analytical fuel consumption and
emissions performance measurements were lacking (until recently (23)). Objective of this project
task is to develop an ecological Adaptive Traffic Control System (Eco-ATCS) based on the Eco-
Performance Index (Eco-PI) that will be ready for field deployments.

The first stage of developing, validating, and fine-tuning Eco-ATCS will be carried out in a high-
fidelity micro-simulation tool Vissim (24). The simulation approach consists of three main
components: 1) A reliable (properly calibrated and validated) microsimulation model of the real-
world network (MLK Boulevard in Chattanooga, TN), 2) An adaptive signal control logic that
minimizes Eco-PI, and 3) Vissim’s Component Object Model (COM) that allows communication
between items 1 and 2. Such a simulation approach is a viable tool for testing various adaptive
signal control logic strategies and has been used in previous research (25-27). The use of a high-
fidelity microsimulation environment will allow for the development of solutions that are ready
for field deployment.

The typical ATCSs architecture consists of local and global-level signal timing optimizers (26).
At the local (or intersection) level, ATCSs seek to find a local optimum solution, whereas, on the
global (network) level, the system seeks to find a global optimum that coordinates multiple
intersections. In other words, local signal timing parameters (e.g., cycle lengths, splits) are
initially optimized for each intersection individually. Once a local optimum is found for each
intersection, the global optimizer seeks to find values for those signal timing parameters (i.e.,
offsets, phase sequences) that will result in optimum signal performance (i.e., minimum Eco-PI)
on the network level. Within each optimization stage, it is necessary to define optimization
constraints (e.g., minimum and maximum allowable units of time to serve particular
movements). The following section provides details of the process to determine local control

constraints.
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3.7.1 Constraints for Local Optimization
The development of constraints for local optimization consists of two modules: 1) initialization

and 2) real-time module. Within the initialization, it is imagined that the ATCS does not operate
in a fully adaptive mode and, therefore, signal timing parameters that will be deployed in the
field should provide enough time to effectively clear the queues at the local intersection level.
Another important aspect of the initialization module is that it should provide a good basis for
the estimation of cyclical TSPMs before the real-time module is activated. Specifically, if signals
were set to operate in a free actuated mode (no cycle length imposed) in the Initialization
module, estimation of cyclical TSPMs would not be viable. The transition between initialization
and real-time module can occur either based on predefined rules (e.g., traffic volumes reach a
certain level) or preset agency requirements (e.g., adaptive regime starts operating at a specific
time of the day). The Initialization procedure is outlined in the left part of the chart flow

presented in fig. 12.

Local Constraints Development

Initialization module Real-time module
Start | Calculate minimum green time required to
Start serve the queued vehicles

l

Distribute extragreen time based on
. factor (K*AoG) per movement/intersection
No Obitain data for previous cylce: and evaluate new CLisplits based on
1) Signal Phasing and Timing data Eco-Pl
2) Arrival flow rates
3) Type of Detected Vehicle l

Evaluated CL's
provide reduction of Eco-PI
compared to previous CL on
network level

> Yes

Obtain data for pre-initialization period: Compute and store data per movement
1) Intersection geometry (each cycle):
2) Posted speed limits 1) Delay 2) Number of stops (AOR)

3) Volumes and % of HV 3) POG 4) K factor & 5) Eco-PI

l Y
Determine base signal timing parameters:
1) Set yellow and red intervals
2) Compute CLmin using critical volumes

3) Select max of min CL
4) Distribute green using critical volumes

— T

No
Select minimum Eco-Pl-based CL of all s
@ intersections for network level deployment ‘ Local Optimizer ‘

Keep the old CLand green
times

Propose new CL and green
Evaluate range of CL's for upcoming cylce spits
for each intersection based on estimated

Eco-PI I

Fig. 12: Framework for Local Constraints Development
Once the Real-time module is initiated, data from the previous cycle from each intersection in
the network are collected. These data contain signal phasing and timing data as well as
information about arrival flow rates and composition of the traffic flows (as illustrated in the

right part of the chart flow in fig. 12). Based on such data (obtained for each intersection
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movement), the main performance measures (which are used for derivation of the Eco-PI can be

calculated by using the Equations 19-22).
8

EcoPl} ., = z dm; + Km; * N, (19)

m=1
. -\ 2
0.38 * CL'(1 — g, /CLY)
mi = 1= Y, | *Plng - 20)
e 1-POG; 1= Y,
™1 —g,../CL CL!
" L= Ym, * <gmi) * POGm,
1—POG,,, * CL'/ g,
* [1 + Y, * — g:n./CLi L (21)
L
1— gpm./CL
Ny, = 0.9 % 1= Gmi/CH (22)
1= Y,

Where:

EcoPI},,,,= Eco Performance Index of intersection i,

m= Movement number of the intersection (for standard four-legged intersection m,,,,, = 8),
i= Intersection Number,

dm;= Stopped Delay (sec/veh) at movement m of intersection i,

PE,, ;= Progression adjustment factor at movement m of intersection ,
K, ;= Stop Penalty value of movement m of intersection i,
Np,;= Number of Stops at movement m of intersection {,

CL' = Previous cycle length at intersection i (sec),
gm;= Green time for movement m of intersection ,

Ym;= Ratio of volume and saturation flow rate at movement m of intersection i,
POG,, ;= Percentage of Arrivals on Green at movement m of intersection i.
mj

Further, the Real-time module will utilize 20 candidate cycle length values in a range of CL' £ A,
where A represents an integer value between 0 and 10, and CL’ value

represents the previous local cycle length. For a range of new cycle lengths, the algorithm will

evaluate their performance in terms of the Eco-PI. To compute the green time (gy,,), for each
incremental change of cycle length, a distribution of green times (based on Ky, ;) will be used.

Cycle length with the lowest EcoPI},,,;, will give the optimal cycle length of the intersection i

(ie., CL%coPI)-
Since each intersection might have a different CLE,p; it is necessary to select the maximum

cycle length from those identified for each intersection, as this approach will provide
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accommodation of flows on a critical intersection and ensure proper coordination for later phases
of the signal optimization process. Such a maximum cycle length will then represent the
minimum cycle length constraint for the local optimization, and it is computed by using equation
23. Such group cycle length should not be confused with cycle length that might result from
network optimization, it is only an input which ensures that the cycle length values from network
optimization satisfy local requirements.

CLgeopt = (CLicopr)  (23)
After the group cycle length is defined, only “critical” intersection (with the highest CL) that
drives the group cycle length C nggz?, will have properly allocated green splits. Therefore, it is
necessary to recompute green splits for all other “non-critical” intersections. In particular, the

difference between proposed CL%,op; and minimum cycle length (C Ll;ninq), that is needed to

serve the queued vehicles, will be used to distribute green time among the approaches based on
numbers of vehicles arriving on green and their stop penalty. Minimum cycle length to serve

queued vehicles is computed by using a modified Webster’s formula or equation 24-28:

Total Lost Time

Clei"q - ZAORmicritical o
0.5 x CL!
Green time allocation per phase will be based on following set of equations 25-28:

i (A0R1,5)

Gming, = Clining ¥ m @
i (AOR,;)

Gming, = Clining ¥ m @0
i (AOR;,)

Imings = Cmeq X m (27)

Iming, = CLiminq % ng%éim 0

group

Once the minimum green times are calculated, we use the remaining cycle time (CL%.,p;

C L‘;m-nq) to allocate additional green time for each phase. Such process will be based on weighted
Arrivals on Green (A0Gy,; ) and movement stop penalty factor Ky, (i.e., AoGp,; * Ky ;) that will

be computed for each movement. This approach will be applied to estimate which movements
cost more (in terms of fuel consumption) if vehicles (which could otherwise arrive on green) are

stopped. Based on the calculated measure, critical movements will be identified (but instead of
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being based on the volumes such critical movements will be assessed from an Eco-impact
perspective). For those movements, additional green time (that will be added to the minimum

green times necessary to serve the queues) will be calculated by using equation 29.
— group '
Yextension1—-4 = (CLEcoPI - Cleinq)

critical movement based on AoGy,; * Kp,; for phase 1 — 4 29
X
Y.critical movement based on K(AoG) (29)

Finally, by using equation 30, the total green for each phase will be calculated.

Gtotaly_y = Iming;_, + Gextension1-4 (30)

In such a way, minimum ( Iming, ,) and maximum green ( Jrotaly,_ ,) times and minimum Cycle
length (CL%,0p7) are developed.

3.7.2 Output from Local Constraints Development

The Real-time module will output proposed green times for each intersection, and the network-
level EcoPI will be estimated to document whether such a change of cycle will lead to a
performance improvement. If yes, new cycle length, and corresponding minimum and maximum
green times, will be reported as outputs from the local constraint procedure and provided as input
for further fine-tuning within the local and network optimizers. Let us suppose that the newly
suggested cycle length and belonging splits do not provide performance improvement on the
network level. In that case, outputs from the previous cycle will be reported as desirable values

for following optimization steps.
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Section 4: Simulation and Testing

4.1 DGMARL Testing

The date used to train the DGMARL model was collected 12/15/2022. The DGMARL model
was first trained for 100 episodes with a simulation resolution of 1 second. We then tested the
model with 10 random seed values during the PM-peak period and observed an average of
29.88% improvement in Eco-PI over a 3-hour period as shown in Fig. 13. However, the Pine and
Peeples intersections exhibited negative performance compared to actuated results as shown in
Fig. 14.

When we tested the model with a 24-hour simulation, we observed an overall performance
improvement of 44.27%.

Node Avg. Actuated Avg. Eco_Pi ?r:ir:x;: ;:{t’
Pine 22681.66 21303.76 6.07%
Carter 53663.61 30104.53 43.90%
Broad 63145.29 39928.84 36.77%
Market 68661.05 42168.49 38.58%
Georgia 43645.22 37380.67 14.35%
Lindsay 20206.95 1237634 38.75%
Houston 15349.9 10990.3 28.40%
Douglas 17793.43 11099.54 37.62%
Peeples 1203.59 1079.455 10.31%
Magnolia 4765.637 3555.876 25.39%
Central st 79283.93 637746 19.56%

[ Total | 390400.3 | omre2a [ a0mew |

Fig. 13: PM-Peak 3-hour EcoOPI; Data: 12/15/2022
Simulation resolution: 1 second; Random seeds: 12, 25, 45, 41, 32, 37, 27, 44, 29, 22

Seed Node Actuated DGMARL Eco_Pi %
25 | Peeples 1140.254 1266.929 -11.11%
45 | Pine 23362.24 23609.16 -1.06%
27 | Peeples 1094.578 | 1320.751 -20.66%
29 | Pine 22963.07 23901.18 -4.09%

Fig. 14: Pine and Peeples Eco-PI impact

4.1.1 Sharing DGMARL Packages and Output for Integration Testing

We created actuated Eco-PI calculation and DGMARL model packages and shared them with
ORNL team for testing. Additionally, we generated 11 “Signal Timing” output files, one for each
intersection, and shared them with the Pitt and Georgia Tech team for testing purposes. The
format of the signal timing output file is illustrated in Fig. 15, and it contains details such as
simulation timing, random seed value used, version of VISSIM network file used, and the date of
the test. A detailed description of the signal timing format can be found in Fig. 16.
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7] dgmarl_signalstatus_9065_test_10800_seed_21_2_1 - Notepad

File Edit Format View Help

Signal Status

Date: 2023-84-24 @9:35:32.951739
Vissim File: D:\Viji\NEWVissim_December2022\SentBy_Somdut\2023-84-12_PM-peak_Dec15-2022_Model\MLKCorridor_PMpeak_2022-12-15_v5.inpx
Time: @ - 10800

Seed: 21

Intersection : 2
Signal Groups : 1, 2, 3, 4, 19

0.0, 0, 0, 0,

>

;;;;;

;;;;;;;

;;;;;;;;

;;;;;;;;

;;;;;;;;

;;;;;;;;

> 9, 9,

;;;;;;;;

::::::::

;;;;;;;;

;;;;;;;;

COPOOPOOOOOO®

COPOOPOOOOOO®

COPOOPOOOOOO®

OO

OO

PO
°

0, 0,0
0, 0, 0
0, 0, 0
0, 0,0
0, 0,0
o, 0, 0,
0, 0,0
0, 0, 0
0, 0,0
0, 0,0
0, 0, 0
0, 0, 0

>

;;;;;;;;

;;;;;;;

Fig. 16: Signal Timing Output Template
4.1.2 Model Integration Testing
We provided support for integration testing and identified an issue with handling the red phase

during signal switching in the DGMARL output of “Signal Timing.” While DGMARL was
designed to switch signal phases, it did not serve the red phase before switching to green, unlike
the VISSIM RBC controller. To address this, we updated DGMARL’s signal update function to
match VISSIM’s yellow and red clearance timings, using a 0.1 second simulation resolution. For
example, a 2/4 second red clearance at the Pine intersection was accurately replicated.
Additionally, we addressed differences in protected-permissive left signals between the actuated
VISSIM file and field configurations.

e Red Phase: changing the simulation resolution significantly impacts the Eco-PI formula,
as the stop delay component must align with the new resolution. This modification affects
the reward calculation in the reinforcement learning algorithm, requiring the DGMARL
model to be retrained. Additionally, incorporating the red phase before switching to green
has a notable effect on Eco-PI performance, necessitating further retraining to improve
the model’s understanding of the environment and its decision-making process.

4.2 Digital Twin: VISSIM Model Verification, Validation, and Calibration

Verification - Verification confirms that the built model operates as intended. This requires
stepping through the model in detail to ensure its construction and operation is as expected.
Verification of the simulation construction is conducted primarily within Tier 1. Verifications in
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Tier 2 and Tier 3 relate to the integration of the dynamic data streams. A detailed checklist of the
items considered when verifying a model may be found in (7).

As a data verification example for the MLK model, volume balance checks were conducted for a
typical PM Peak period (May 11, 2021) to identify any errors in the detector data received, or the
Vissim model network. Identification of any significantly erroneous data points and
implementation of the necessary corrections is critical to attaining simulation behavior and
output that is an accurate reflection of the field conditions. For the MLK case study, the volume
balance verification check involved confirming the equality between the intersection field
detector volumes at each approach and the expected volumes as computed from the exit counts
of the immediate upstream intersection. For a few intersections, up to a 20% difference in these
volumes were observed. The reason for these differences were tracked to mid-block sources and
sinks that were not initially included in the model, as well as some detector issues that were
subsequently addressed.

Validation and Calibration - Validation seeks to confirm the validity of the model (e.g., how well
key field and simulated performance measures agree) while calibration seeks to adjust
underlying simulation parameters to achieve a valid model (/). For example, in the MLK case
study, one parameter considered for validation and calibration was the headway distributions at
exit detectors, determined using archived per vehicle record data. Headway distributions for the
field versus simulation were compared, as this parameter significantly influences the number of
vehicles that may be processed at an intersection approach. Fig. 17 plots show this comparison at
two detectors for two intersections on the MLK Smart Corridor. In these figures, the overlap of
histograms (blue and orange) is shown in gray.
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Fig. 17: Saturation headway distribution comparison - field vs simulation plots at (a) MLK @ Magnolia Eastbound
approach detector, and (b) MLK (@ Houston Westbound approach detector.

The plots serve as an initial check of the model's departure headway calibration and a

demonstration that the model is operational. The field and Vissim generated headway
distributions are observed to be similar, but there are some differences in the shape of the

41



UTC DE-EE0009208 Final Technical Report

distributions, which indicate the potential for improvements with further calibration of the
Vissim saturation headway parameters. Other parameters included in the validation and
calibration were related to the vehicle speed distributions and critical route travel times.
Additional information on calibration and validation for Vissim simulation may be found in
Hunter 2021 (/).

4.3 Software-in-the-Loop (SIL) Simulation

The PITTS team connected all 11 intersections on the MLK corridor in Vissim to SEPAC m60
controllers. For each controller, port numbers are assigned, and necessary files are created. First,
11 virtual controllers were connected with default signal timing plans to verify the established
connection. Once the connection was established through assigned port numbers. The PITTS team
used software called TACTICS to upload field signal timing plans for all 11 intersections from the
MLK corridor. In fig. 18, one can see all 11 virtual machines representing field controllers working
with the help of the management system of SEPAC TACTICS.

TACTICS - management

system of SEPAC

11 virtual controllers

On

Fig. 18: View of Siemens SEPAC SILS
In fig. 19 it can be observed that the signal status is the same in both platforms meaning that the

communication is established properly. In addition, the EB approach has two vehicles placing a
call and that vehicle call can also be observed in TACTICS.
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~ Fig. 19: Field signal timing plans operating in SILS environment at Broad @MLK

To test different implementation methods using the developed ATCS module, the authors used an
1 1-intersection corridor along MLK Blvd, in Chattanooga, Tennessee (fig. 20). The software used
for this study, Vissim, was chosen because it is a widely used tool to model various traffic
operations. Vissim simulation model of this network has been properly calibrated, validated, and
used in some of the previous studies.
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Fig. 20: Test-bed network

Intersections in the corridor of interest are equipped with Siemens m60 controllers. Each controller
has SEPAC 5.40 software and as such is created as a virtual machine and connected to Vissim. At
each update interval, the ATCS module collects data from Vissim through the COM interface and
calculates new signal timing parameters as explained in one of the previous subsections. Then, the
NTCIP software, which acts as a translator between Vissim and SEPAC, creates the necessary
messages to modify the dynamic objects, such as current pattern, cycle length, offset, splits, of the
SEPAC software (Fig. 21). Note that NTCIP software maintains constant connection between
SEPAC and Vissim even when no signal timing modifications are needed.
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Fig. 21: Architecture of SILS

4.3.1 Experimental Design

To assess different methods for implementing ATCS in the field, numerous scenarios can be
created. However, the authors focused on three major criteria, as illustrated in Figure 22. Firstly,
vehicular demand varied between low, medium, and high levels. Each vehicular demand was
modeled to maintain the average volume-to-capacity ratio (v/c ratio) within specific bounds, as
indicated in Figure 22. The purpose of such a modeling approach was to avoid oversaturated
conditions, which could hinder the benefits of any adaptive traffic control logic. Secondly, the
different update intervals were tested. Both PM and DC methods were tested for all update
intervals. However, it was not feasible to implement the PC method on a cycle-by-cycle basis, and
thus, it was not tested with such an update rate; instead, the pattern was changed every 5 or 10
min. Thirdly, the PC method was coupled with three transition logics (Dwell, Shortway2,
Shortway+) as described previously.
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Fig. 22: Experimental design

In total, 36 VISSIM simulation models were prepared and tested, with 9 models (3 demand levels
x 3 update intervals) for each of the PM and DC methods (18 in total), and 18 models for the PC
method (3 demand levels x 2 update intervals x 3 transition logics). The analysis for each scenario
used 1h of data collected after a 20-minute warm-up period for each scenario.

4.3.2 Total Network Delay and Total Number of Stops

Fig. 23 shows comparison of various methods and update intervals for the entire network. The
results indicate that frequent signal timing changes, such as cycle-by-cycle updates, lead to a
significant increase in total delay across all of the analyzed traffic demands.

For low-demand scenarios, total delay remains relatively similar across all implementation
methods except for PC-Shortway+-5min and DC-10-min methods. When considering medium
demand, the PM-10-min performs the best. Among the PC methods, Shortway+-10min
outperforms the others for medium demand. It is important to note that, in all scenarios, the PM-
10 min method consistently performs the best.
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As for PC methods, PC-Dwell-10min slightly outperforms Shortway+-10min for both low
and high-demand scenarios.
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Fig. 23: Total delay and number of stops in the network

4.3.3 Implementation of Adaptive Logic to the SILS Environment

Before field deployment of Eco-ATCS, it is necessary to ensure that all the constraints are met and
that the Eco-ATCS performs as expected. Having developed a fully operating SILS environment,
the PITT team started exploring the possibilities of implementing Eco-ATCS to field controllers.
First, PITT identified three ways of implementing various optimization logics to the actual field
controller:

1. Changing Time-of-day (TOD) plans
2. Manipulation of vehicle calls
3. Using holds, omits and force-off.

The first approach had several unfavorable aspects, including its high memory requirement and
limited flexibility compared to the other two approaches. As a result, it was determined that the
first approach is unsuitable for implementation.

To implement Eco-ATCS, or in other words optimization output, to an actual controller NTCIP
software must be used. Through NTCIP software NTCIP messages are sent to controller in form
of hold/omit/force offs or “manipulated’ detection calls. The controller then relays the phase status
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back to the NTCIP software, which converts it to a .json file and transmits it back to the Vissim
microsimulation environment. It is worth noting that once Eco-ATCS is deployed in the field, there
will be no messages sent back to the Vissim digital twin. Furthermore, the digital twin will solely
rely on detection input from the field sensors.

In Fig. 24, the framework for offline Eco-ATCS implementation is explained. First, the output
from the UTC server is obtained in the form of a text file. DGMARL output is then converted to a
file readable to NTCIP in the data reader module. The converted output contains second by second
phase statuses. As such, information from the text file is sent to the main NTCIP module and then
in the form of a NTCIP message it is sent to SEPAC m60. It is important to note that, in this offline
implementation, the SEPAC m60 receives detection output from Vissim, while Vissim receives
signal status directly from the SEPAC m60 (which is provided by the DGMARL output).
Additionally, the NTCIP software acts as a mediator between Vissim and the SEPAC m60 by
transmitting messages that are readable to both Vissim (.json files) and the SEPAC m60 (NTCIP
messages).
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Fig. 24: Framework for Offline Adaptive Logic Implementation

4.4 Hardware-in-the-Loop (HIL) Simulation
4.4.1 Integration of Communication Model in Hardware-in-the-Loop Architecture

To test and account for the effects of communications in the HIL environment, ORNL tested the
CAVE lab and the RealSim toolchain to architect the HIL environment. Fig. 25 shows how the
communication model is integrated in the CAVE lab HIL architecture.
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Fig. 25: CAVE lab HIL architecture including communication model

A similar HIL architecture (using SUMO instead of VISSIM) was applied to another project in
the CAVE lab to quantify the effect of communication latencies on a lane merging coordination
algorithms application (Fig. 26).
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Fig. 26: Example of CAVE lab application quantifying the effect of communications on connected vehicles during
traffic merging optimization
The plan was to use the same HIL architecture except for the use of VISSIM instead of SUMO
for this project. However, the VEINS VANET simulator used in the project was found to be very
complex and it did not run real time which is a prerequisite for HIL applications.
Communications models used in the CAVE lab HIL environment are typically statistical models
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as they run faster than real time and yet they can capture some of the complexity of the physical
systems. Hence, the next step was to convert the VEINS VANET model into a real time
statistical model that can be imported into the ORNL HIL architecture.

4.4.2 Vehicle Hardware-in-the-Loop Architecture

In this project one key goal was to conduct hardware in the loop testing of a real vehicle in
ORNL’s CAVE lab subjected to virtual road load and traffic conditions. The ORNL CAVE Lab
HIL architecture is shown in Figure 27. It comprises the real vehicle under test, the VISSIM
environment for traffic simulation, IPG CarMaker for the virtual vehicle environment, the HIL
system to interact between the models and the vehicle actuators, and an external traffic controller
coordinating the various road network components.

Hardware Layout Diagram of ORNL CAVE Laboratory egend -
Controller
Dyno
Controller VISSIM
Host PC
R ——
IPG CarMaker

Host PC
ORNL Vehicle on Dyno

Driver (Human

Hub Dyno or Automated) Hub Dyno
(Steerable) (Steerable)

HIL Rack

HIL
Vehicle Processing PC

ECUs

Navigation I HIL1/0 and
Controller Interface

Hub Dyno On Board
Unit (OBU)

Road Side
Unit
(RSU)

Figure 27: CAVE lab HIL architecture diagram

The digital twin model of MLK Smart Corridor in Chattanooga developed using the VISSIM
(2022) was integrated into the CAVE lab using the IPG CarMaker-VISSIM interface.
Software-in-the-loop simulation (SILS) Mode Test: To reach the goal of conducting experiment
with real vehicle in the loop in the realistic traffic scenario of MLK Smart Corridor simulated in
VISSIM, first the architecture implementation was tested in Software-in-loop simulation (SILS)
mode without an actual vehicle. Figure 28 shows a real-time simulation of the HIL environment
running on the dSPACE system, but without the real vehicle in the loop. The road network and
traffic simulation are modeled in VISSIM, the road load estimation, driver model and 3D
visualization are handled by CarMaker, the dSPACE software and hardware interacts with the
real vehicle under test.
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Figure 28: HIL architecture demonstration with VISSIM in the CAVE lab

In this configuration (CarMaker and VISSIM), the Carmaker driver model must be used to
control vehicle speed as it calculates target speed and corresponding accelerator, and pedal
position based on traffic information from VISSIM. VISSIM does not provide a target speed for
the EGO vehicle, so the CarMaker driver model cannot be bypassed. Initially, issues with the
CarMaker driver model prevented running a closed loop with the actual vehicle in the CAVE lab
as the CarMaker driver tends to request maximum acceleration pedal during cruise operation
though it regulates speed properly in all other conditions. After fixing some of these issues, a
proof-of-concept experiment using an actual vehicle was conducted as described in the next
section.

Proof of concept of HIL integration using Ford Mach E: A proof of concept Hardware-in-the-
loop (HIL) architecture set up with Ford Mach E was accomplished. This included integration
and synchronization on software end using the Real Sim interface - latest Vissim MLK model,
IPG Carmaker for vehicle dynamics, dSpace to connect to the physical vehicle and control the
Rototest dyno in CAVE lab. Figure 29 shows the skeleton of the HIL architecture integration
with the physical vehicle in the CAVE lab. For this integration, at the hardware level, real-time
vehicle CAN bus data is retrieved and recorded on the dSPACE box.
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Figure 29: HIL architecture integrating Vissim MLK model with Ford Mach E

A preliminary experiment was conducted as a proof of concept to test the appropriateness of the
HIL set up. The ego vehicle was run for ~1.95 miles of the entire corridor. The current and
voltage of the battery were collected using vehicle CAN bus data along with the vehicle speed.
Figure 30 shows the cumulative power consumption (primary axis) and speed of vehicle
(secondary axis) with progress in simulation time. The total energy consumed is: ~0.651 kWh
which estimated the MPGe =~102.
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Figure 30: Power consumption and speed of ego vehicle in the MLK Vissim simulation for a single run across the
corridor in Eastbound direction.

Proof of concept of HIL integration where signal control is driven externally using DGMARL:
For the experiment, CarMaker in-built vehicle model was used while the car tire dynamics and
car body were updated to represent Ford MachE. The carmaker following parameters were
updated/tuned for realizing ego vehicle following behavior. For the comparison of vehicle
energy consumption while driving on the corridor for two cases when the 1) corridor has
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actuated signal timing plan, versus 2) corridor has DGMARL signal timing implementation. For
the experiment, in the two scenarios, the same ego vehicle entry location, time, and Vissim
traffic demand input was used. To implement DGMARL signal implementation in the developed
HIL architecture, IPG “Start with Automation” feature was used. This was implemented for
DGMARL driven co-simulation. Figure 31 and Figure 32 show the ego vehicle energy
consumption and ego vehicle speed (mph) during the simulation run for the two scenarios. This
provided a baseline test of differences in vehicle energy consumption with different signal plan
implementation. This was not an exhaustive test to particularly determine that one plan works
better than the other in all cases. It was learned during this process that it will take effort and
time to conduct several tests if we use CAVE experiments to evaluate the impact of signal timing
plan of vehicle fuel consumption.
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Figure 31: Actuated signal controls Ego vehicle speed and cumulative energy consumption — Mach E
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Figure 32: DGMARL signal controls Ego vehicle speed and cumulative energy consumption — Mach E

Lastly, AVL Plutron Fuel Flow Meter (FFM) was purchased and installed on a Toyota RAV4 in
the CAVE laboratory with an intention to test the actual fuel consumption on the vehicle. Figure
33 shows the installed FFM on RAV 4. The CAN configuration to measure FFM readings was
also completed and tested using short vehicle runs without it being on the MLK corridor
(Vissim). However, it was realized that due to recent changes in software compatibility between
IPG, Vissim, and dSpace, the ego vehicle with FFM HIL experiment will take more effort than
expected. We expect to solve the compatibility issues as part of the Real-Sim effort.

Figure 33: AVL Plutron Fuel Flow eerinstalled on RAV4 in CAVE Laboratory

54



UTC DE-EE0009208 Final Technical Report

Section 5: Findings and Results

5.1 DGMARL Testing Outcomes

Training existing DGMARL model with 105 episodes. Performed multiple tests to validate the
results. Pine, Georgia, Peeples, and Magnolia intersections are having their performance
impacted as shown in Fig. XX
e Test Scenarios
o 1 Hour Simulation:
m Overall Eco-PI improved by 16.63%
m Overall stop delay improved by 43.80%
m  Number of stops reduced by 15.13%
o 3 Hour Simulation
m Overall Eco-PI improved by 15.29%
m  Overall stop delay improved by 43.96%
m  Number of stops reduced by 10.05%

3000 Eco P PM-peak 1-hour simulation Node Actuated DON AR,

4500 Pine 1264.765704  1360.566  -7.57%
5 " Actusted EDGMARL Carter 1938.054917  1549.567  20.05%
S 2000 Broad 2806.981228  2083.691  25.77%
& 2500 Market 4466.239603  2809.791  37.09%
%, 2000 Georgia 1664.027442 2078297  -24.90%
g i;‘:g Lindsay 1019.277417 873.994  14.25%

500 II II Il n_ Houston 704.1671827 610.716  13.27%

0 Douglas 652.0101882 604.659 7.26%
0 %@0 &* e ch,e & & & &\é o}\y @s‘ Peeples., 77.02113721 107.426  -39.48%
& ¥ @ F & F S Magnolia 2525771327 285.469  -13.02%
Intersections Central St 3385.80875 2834.15  16.29%
Total 18230.9307 15198.326  16.63%
Fig. 34: PM-peak 1 Hour Simulation Test Results

14000 Eco_Pi PM-peak 3-hours simulation Mo astliareed Lol o

12000 Pine 4089.825891 4240.674  -3.69%
- ®Actuated = DGMARL Carter 7304.622662 5631.773  22.90%
E Broad 8252.061816 6076.327  26.37%
g Market 12434.08111 8737.537  29.73%
&, 6000 Georgia 4957.651198 5769.946 -16.38%
g 2000 Lindsay 3431.395635 3284.548  4.28%

Houston 2734.583124 2591.272  5.24%

II II Il Douglas 1936.988007 1703.281  12.07%

e 4 ° ¢ o & Peeples 291.1535964 261.231  10.28%
€ & @”’ & & ‘\o‘) & Qzé? ‘yof &s” Magnolia 693.0480542 807.524 -16.52%
ereection Central St 10266.42646 8665.133  15.60%

Total 56391.83755 47769.246  15.29%

Fig. 35: PM-peak 3 Hour Simulation Test Results
After DGMARL fine tuning to account for LDVs and HDVss

Tables 7-11
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Total Eco_Pl — 5% HDV

Test - 80007
Actuated

Pine 26991.12
Carter 57094.26
Broad 64535.16
Market 95568.8
Georgia 34127.16
Lindsay 25395.81
Houston 21812.12
Douglas 24803.67
Peeples 1957.362
Magnolia 4593.444
Central St 78523.56

435402.5

Total Eco_Pl — 3% HDV

Total Eco_PI — 1% HDV

DGMARL
30428.89
46794.52
51103.28
68690.66
41003.34
22719.74
16759.19
34139.17

2421.52
4420.578
48949.88
367430.8

26576.07
45916.48
49426.02
58018.87
37918.21
20094.77
14239.56
32822.78
1830.014
5516.213
42307.93
334666.9

24861.13
38906.22

41201.3
54420.59

33941.8
17900.08
14551.83
31266.32
1881.436
4327.243
38970.97

Test - 80009
Actuated DGMARL

Pine 26876.46
Carter 56642.02
Broad 64473.02
Market 82221.34
Georgia 35025.02
Lindsay 24921.98
Houston 20555.69
Douglas 25899.19
Peeples 1422.154
Magnolia  4618.953
CentralSt  72600.75

415256.6
Test - 80011

Actuated DGMARL

Pine 22414.17
Carter 48304.07
Broad 56874.65
Market 85438.29
Georgia 29541.67
Lindsay 21951.49
Houston 19898.14
Douglas 21451.33
Peeples 1587.332
Magnolia 3861.027
Central St 66225.3

377547.5

5.1.1 Fine Tuning DGMARL

302228.9

%

Test - 80008
Actuated

-12.74% pine 24956.75
18.04% carter 55420.46
20.81% Broad 62387.07
28.12% Market 93576.75
-20.15% Georgia 32370.87
10.54% Lindsay 24614.08
23.17% Houston 21726.01
-37.64% Douglas 22691.93
-23.71% Peeples 2156.546
3.76% Magnolia 4685.571
37.66% Central St 73120.13
15.61% 417706.2

Total Eco_Pl — 2% HDV

Test - 80010
Actuated D

1.12% Pine 24081.56
18.94% Carter 50174.58
23.34% Broad 58851.8
29.44% Market 75300.72
-8.26% Georgia 31339.99
19.37% Lindsay 22369.66
30.73% Houston 21062.65
-26.73% Douglas 21579.61
-28.68% Peeples 1672.345
-19.43% Magnolia  4023.593
41.73% CentralSt  68926.94
19.41% 379383.5

-10.92%
19.46%
27.56%
36.30%

-14.89%
18.46%
26.87%

-45.75%

-18.53%

-12.07%
41.15%
19.95%

Total Eco_Pl — 4% HDV

DGMARL %

27515.2
46314.24
51228.14
60697.98
38559.85
20679.51
16187.48
32832.43
1811.461
4880.236
43622.82
344329.3

GMARL %

24793.27
45763.32
46836.02
53083.14
34086.17
18513.47
14610.07
31090.11
1751.771
4327.326
42560.51
317415.2

Final Technical Report

-10.25%
16.43%
17.89%
35.14%

-19.12%
15.99%
25.49%

-44.69%
16.00%

-4.15%
40.34%
17.57%

-2.96%
8.79%
20.42%
29.51%
-8.76%
17.24%
30.64%
-44.07%
-4.75%
-7.55%
38.25%
16.33%

The DGMARL model was fine-tuned to address red clearance using a simulation resolution of
0.1 seconds. This adjustment also included resolving protected-permissive left signal issues. The

Eco-PI function was updated to accommodate the 0.1 second time step, and stop penalty

calculations were corrected. Following these updates, testing was conducted using both 3-hour
and 24-hour scenarios, with the results shared with the larger team for integration testing. The
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DGMARL execution time was improved by implementing multi-threading techniques, which
also enhanced the Actuated COM solution for Eco-PI observation. The primary sources of
slowness in DGMARL were the signal state updates in VISSIM through COM and additional
validations before switching the signal state. However, in the field, DGMARL is expected to run
faster since it won’t perform signal state updates. Future work will test whether reducing the

frequency of Eco-PI observations to 1 second can further enhance execution speed.
Table 12

Model Simulation Original Timing Improved Timing Output(s)

Hour(s)

1-hour 2 hours, 34 minutes 23 minutes, 59 seconds Eco_P, Vehicles in Net, Signal
Actuated

3-hours Around 5 hours 1 hour, 4 minutes State

1-hour 3 hours, 38 minutes 1 hour, 36 minutes Eco_PI, Vehicles in Net, Signal
DGMARL State, Node State and other

3-hours Around 12 hours 4 hours, 55 minutes details

A maximum green constraint was added to DGMARL to handle pedestrian and minimum recall
times. Additionally, vehicle count and speed-related inputs were removed from the model, and it
was retrained and tested based on these changes. Then DGMARL model was trained by
integrating Light Duty Vehicle (LDV) and Heavy Duty Vehicle (HDV) formulas into the Eco-PI
function. The model was then tested with varying percentages of HDVs at 5%, 4%, 3%, and 1%.
The test configurations included a simulation resolution of 0.1 seconds, Version 5 of the VISSIM
network, 3 hour simulations, and a random seed of 21.

Additional Fine-Tuning to DGMARL:

e Vehicle Count Input Enhancement: the vehicle count input feature was reintroduced due
to the availability of a computer vision module in the field, allowing vehicle count data to
be included in the input features for DGMARL

e Intersection Coordination Validation: validation of intersection coordination was
conducted, and preliminary testing indicated a slightly higher Eco-PI improvement
without message passing compared to with message passing, as shown in the figures
below.

e Message Passing Enhancement: the input to the DMGARL neural networks was
enhanced by aggregating traffic states direction-wise, along with neighboring states,
resulting in a 24.72% improvement in Eco-PI during one hour simulation.

e Visualization of Intersection Coordination: Vehicle trajectory reports were developed for
both eastbound and westbound directions. Since DGMARL optimizes Eco-PI by
considering traffic from both main and side streets, achieving a green wave is not always
possible, as the model adjusts green lights based on traffic from all approaches.

e Reports for Unique Vehicles: Reports were developed to track unique vehicles at
intersections during green and red signals, as well as AOR/AOG. While the reports
showed differences between Actuate and DGMARL, they didn’t fully capture
coordination
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e Change in Vehicle Stop State Consideration: The vehicle stop state was redefined as a
speed less than or equal to 3 mph, instead of 0. This adjustment resulted in a slight
decrease in Eco-PI to 21.37% during one-hour simulation testing shown in Table 13.

Table 13
Without Message Passing Previous approach — With Message Passing
1-hr sim Actuated DGMARL % 1-hrsim Actuated DGMARL %
Pine 8532.522 9078.161 -6.39% Pine 8532.522 8832.619 -3.52%
Carter 15010.87 10692.89 28.77% Carter 15010.87 10918.25 27.26%
Broad 22306.46 14976.2 32.86% Broad 22306.46 15447.74 30.75%
Market 29651.8 24204.07 18.37% Market 29651.8 23137.99 21.97%
Georgia 13007.5 12652.69 2.73% Georgia 13007.5 13723.71 -5.51%
Lindsay 7422.028 7334.966 1.17% Lindsay 7422.028 6644.614 10.47%
Houston 5200.612 3425.311 34.14% Houston 5200.612 3930.351 24.43%
Douglas 9298.906 10600.68 -14.00% Douglas 9298.906 11076.56 119.12%
Peeples 520.0162 926.8122 -78.23% Peeples 520.0162 850.8524 63.62%
Magnolia 1783.23 1488.852 16.51% Magnolia 1783.23 1624.885 8.88%
Central St 25359.28 15550.25 38.68%
Central St 25359.28 16730.18 34.03%
138093.2 110930.9 19.67% 138093.2 112917.8 18.23%

1-hr Actuated DGMARL %

Pine 6956.699 6963.358 -0.10%
Carter 12658.01 8579.315 32.22%
Broad 18768.45 12117.76 35.44%
Market 25233.92  17294.65 31.46%
Georgia 10705.41 10331.45 3.49%
Lindsay 5786.092 4716.866 18.48%
Houston 5362.982 3488.379 34.95%
Douglas 7093.474 9352383 -31.84%
Peeples 356.3135 612.2733 -71.84%
Magnolia 1459.848 1867.387 -27.92%
Central St 22217.69 12457.45 43.93%

116598.9 8778123 I2A2%
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Vehicle Count

Trajectory report of Vehicles traveled >= 8000 ft
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* 51 vehicles traveled> 8000 ft in actuated.

Time duration: 0 to 1200s * The same vehicles trajectory is projected in the DGMARL report
EAST BOUND

Actuated: Vehicles Trajectory (East Bound) DDGMARL: Vehicles Trajectory (East Bound)

Actuated - AOG and AOR - Douglas

“Time (seconds)

Fig 36: Eastbound: Trajectory report of vehicles traveled >= 8000ft
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Fig.37: Arrival on green and arrival on red

Stopped vehicles speed <=3mph

1-hr Actuated DGMARL %

Pine 8206.608 8684.976 -5.83%
Carter 14024.69 9850.864 29.76%
Broad 20510.14 14065.34 31.42%
Market 25329.8 19325.07 23.71%
Georgia 12172.99 12002.76 1.40%
Lindsay 6382.125 5499.636 13.83%
Houston 5902.847 3450.75 41.54%
Douglas 8050.33 10011.97 -24.37%
Peeples 487.9753 822.1571 -68.48%
Magnolia 1607.838 2164.154 -34.60%
Central St 24768.92 14336.55 42.12%

1274443 100214.2

Fig. 38: Overall Eco-PlI in I hour simulation

e Vehicles Speed < 3 MPH Considered as Stopped: The DGMARL
model and Eco—PI formula were updated to classify vehicles as
stopped when their speed is < 3 MPH. This change impacted the previously

observed Eco-PI, reducing it from approximately 24% to 20% as shown in Fig. 38.
e Improving Intersection Coordination: Intersection coordination was improved by

increasing attention to oncoming traffic by two hops, leading to an increase in Eco-PI
from 20.89% to an average of 26.52%. The number of stops was reduced by 17.91%
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while the stop delay decreased from 44.04% to 33.49% as shown in Fig. XX and XX.
The increase in stops occurred as the model adjusted green time for high upcoming
traffic, reducing acceleration and deceleration, which in turn, impacts fuel consumption
positively. This model was trained and tested using five runs with a random seed value of
21, yielding consistent improvements in Eco-PI, stops, and delays.
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Table 14: DGMARL-Improved Intersections Coordination and Average Eco-PI: 26.52%

Actuated Previous Alg. New Alg. Test 1 New Alg. Test 2 New Alg. Test 3 New Alg. Test 4 New Alg. Test 5
Pine 8185.241 8684.976 | -6.11% 7979.621 | 2.51% | 7116.527 | 13.06% |6990.358 | 14.60% |[6896.521| 15.74% [7154.246| 12.60%
ICarter 13902.52 | 9850.864 | 29.14% | 13424.57 | 3.44% | 13761.67 | 1.01% [13776.82| 0.90% |[14400.02| -3.58% [13914.22| -0.08%
Broad 20382.28 | 14065.34 | 30.99% | 13822.61 | 32.18% | 14478.4 | 28.97% |14857.32| 27.11% |14301.52| 29.83% |13946.63| 31.57%

Market 25006.75 | 19325.07 | 22.72% | 18557.74 | 25.79% | 18310.03 | 26.78% |17891.16| 28.45% |17042.08| 31.85% [17959.51| 28.18%

Georgia 12131.55 | 12002.76 | 1.06% [ 11204.29 | 7.64% | 12203.93 | -0.60% [12497.34| -3.02% [12278.29| -1.21% [11561.31] 4.70%

Lindsay 6376.639 | 5499.636 | 13.75% | 4274.406 | 32.97% | 4912.883 | 22.95% |4447.026 | 30.26% |4352.152| 31.75% [4581.422| 28.15%

Houston 5871.748 3450.75 | 41.23% | 3893.175 | 33.70% | 3520.334 | 40.05% |3275.001 | 44.22% |2794.201 | 52.41% [3913.558| 33.35%

Douglas 8050.33 10011.97 | -24.37% | 5327.777 | 33.82% | 5357.547 | 33.45% |5453.206 | 32.26% | 6156.63 | 23.52% [5732.179| 28.80%

Peepl 487.9753 | 822.1571 | -68.48% | 308.687 | 36.74% | 305.2768 | 37.44% |278.1765| 42.99% |330.3526| 32.30% |321.9541| 34.02%

M li 1597.224 | 2164.154 | -35.49% | 1451.924 | 9.10% | 1386.026 | 13.22% |1293.778| 19.00% |1224.132| 23.36% [1300.444| 18.58%

Central St | 24678.95 | 14336.55 | 41.91% | 12856.28 | 47.91% 12287 50.21% [12419.58 | 49.68% |12208.88| 50.53% |13097.94| 46.93%

126671.2 | 100214.2 | 20.89% | 93101.09 | 26.50% | 93639.63 | 26.08% |93179.76 | 26.44% |91984.79| 27.38% (93483.41) 26.20%

Table 15: DGMARL-Improved Intersections Coordination and Average STOPS: 17.91%

Actuated Previous Alg. New Alg. Test 1 New Alg. Test 2 New Alg. Test 3 New Alg. Test 4 New Alg. Test 5

Pine 285 313 -9.82% 194 31.93% 192 32.63% 182 36.14% 191 32.98% 181 36.49%
ICarter 339 371 -9.44% 291 14.16% 289 14.75% 297 12.39% 284 16.22% 304 10.32%
Broad 455 490 -7.69% 387 14.95% 412 9.45% 403 11.43% 417 8.35% 396 12.97%
Market 598 643 -7.53% 582 2.68% 563 5.85% 557 6.86% 522 12.71% 546 8.70%
Georgia 355 404 -13.80% 373 -5.07% 394 -10.99% 395 -11.27% 397 -11.83% 380 -7.04%
Lind 171 214 -25.15% 130 23.98% 142 16.96% 141 17.54% 141 17.54% 143 16.37%
Houston 155 130 16.13% 110 29.03% 110 29.03% 98 36.77% 86 44.52% 113 27.10%
Douglas 232 287 -23.71% 156 32.76% 145 37.50% 146 37.07% 179 22.84% 159 31.47%
Peepl 24 33 -37.50% 16 33.33% 16 33.33% 15 37.50% 17 29.17% 16 33.33%

gnoli; 45 76 -68.89% 27 40.00% 29 35.56% 27 40.00% 29 35.56% 26 42.22%
Central St 633 542 14.38% 433 31.60% 425 32.86% 426 32.70% 425 32.86% 457 27.80%

3292 3503 -6.41% 2699 2717 2688 2721

Table 16: DGMARL-Imrpoved Intersections Coordination and Average DELAY: 33.49%

Actuated Previous Alg. New Alg. Test 1 New Alg. Test 2 New Alg. Test 3 New Alg. Test 4 New Alg. Test 5
Pine 2954.1 2995.5 -1.40% 4601.7 -55.77% 3771.2 -27.66% | 3875.8 -31.20% 3556.3 |-20.39% | 4025.7 |-36.28%
ICarter 8156.6 3308.1 59.44% 8628.8 -5.79% 8996.8 -10.30% | 8847.7 -8.47% 9655.2 |-18.37% | 8942.4 | -9.63%
Broad 13416.9 6256.6 53.37% 7598.4 43.37% 7862.9 41.40% 8310.2 38.06% 7723.3 | 42.44% | 7746.3 | 42.26%
Market 15011.7 8389.2 44.12% 8537.3 43.13% 8367 44.26% | 8296.3 44.73% 7956.9 | 47.00% | 8523.2 | 43.22%
Georgia 6234.1 5310.7 14.81% 5133 17.66% 5630 9.69% 5706 8.47% 5394.2 | 13.47% | 5300.3 | 14.98%
Lindsay 3451.8 1668.8 51.65% 2059.9 40.32% 2415.8 30.01% | 2077.5 39.81% 1952.9 |43.42% | 2126.2 | 38.40%
Houston 3096.8 1101.9 64.42% 1889.1 39.00% 1595.3 48.49% | 1554.7 49.80% 1303.5 [ 57.91% | 1894.7 | 38.82%
Douglas 3542.7 4593 -29.65% 2425.3 31.54% 2705.2 23.64% | 2726.2 23.05% 2845.9 | 19.67% | 2800.5 | 20.95%
Peepl 113.1 217.3 -92.13% 46.9 58.53% 45.1 60.12% 41.4 63.40% 57.5 49.16% 51.5 54.47%
Magnoli: 689.1 494.9 28.18% 897.9 -30.30% 816.9 -18.55% 779.8 -13.16% 659.4 4.31% 802.5 |-16.46%
Central St 14033.1 5226.2 62.76% 5274.2 62.42% 4957.3 64.67% | 5122.8 63.49% 4880.9 | 65.22% | 5311.2 | 62.15%
70700 39562.2 | 44.04% 47092.5 47163.5 |33.29% 0 47524.5
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e Visualization—Heatmap Analysis for Stops and Delays: Developed heatmaps to analyze
stops and delays observed in the DGMARL. With the previous version of the model, the
analysis indicated that while DGMARL effectively reduces delays, it also leads to an
increase in the number of stops. After improving the model with the coordination, one of
the test results is shown in fig. 39, comparing stop reduction between Actuated and
DGMARL. Fig. 40 shows the delay reduction comparison, and Fig. 41 illustrates the
difference in stops and delays between DGMARL and Actuated. The color shading
indicates the increase or decrease in DGMARL performance.
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Difference in Stops: DGMARL - Actuated Difference in Average Delay: DGMARL - Actuated
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Fig. 41: Difference in Stops and Delays (DGMARL minus Actuated)

e Model Development: a new version of the DGMARL model was developed to reduce
pedestrian and driver waiting times. Comparative analysis was conducted using three
scenarios: pedestrian recall, automated pedestrian detection, and push-button requests.
The automated pedestrian detection with dynamic signal timing showed significant
performance improvements over the traditional pedestrian recall system

e Model Overview: the model, titled Optimizing Traffic Signal Control to Enhance
Transportation Efficiency and Maximize Pedestrian Benefits in the Road Network, uses
an objective function that considers vehicle Eco-PI, driver delays, and pedestrian waiting
times. Inputs include vehicle presence, count, average speed, signal state, pedestrian
volume, and waiting time. The output determines whether to switch or stay in the current
phase, with the phase sequence being free but prioritized by the highest occupancy
(vehicles or pedestrians). Key constraints enforced include minimum green time,
pedestrian recall, and yellow and red clearance times.

e (Comparative Analysis: The model compared real-time signal timing configurations,
automated pedestrian detection, and phase activation based on traffic demand.
Additionally, it dynamically adjusted the pedestrian signal timing based on traffic
demand. The effectiveness of automated detection and dynamic timing was evaluated
alongside push-button requests, showing significant performance improvements in all

metrics.
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e Data: vehicle data and signal timing were based on real-time observations from

December 15, 2022. Pedestrian data were randomly generated, with the same volumes

applied to both actuated and DGMARL models for consistency.

e Experiment: The experiment was conducted during a PM-peak hour simulation involving

458 pedestrians and 2825 vehicles. Notably, this test was performed before the

coordination improvements, so the issue of increased vehicle stops still existed. Eco-PI

was measured per second, and the test revealed that DGMARL with dynamic pedestrian

signal timing adhered to minimum serving time constraints efficiently.

e Scenario Comparisons: In the scenario comparisons, DGMARL with automated detection

and dynamic timing, including push-button activation, improved vehicle Eco-PI 27.14%,

reduced delay by 58.73%, and decreased pedestrian waiting time by 60.62% on average

compared to actuated signal timing with pedestrian recall. Vehicle stops increased by

4.67% with pedestrian recall, while it was only 0.97% with automated detection and

dynamic timing as shown in Fig. 43.

e Pedestrian Serving Time and Stop Delay: DGMARL with automated pedestrian detection

and dynamic timing reduced pedestrian waiting time by 60.55% compared to actuated

signal timing with pedestrian recall, and by 48.46%

Performance Measurement

Value

Total no. of pedestrians arrived
Total no. of vehicles traveled
Actuated: Avg. of peds. serving time
DGMARL PedRecal: Avg. of peds. serving time
DGMARL Automated: Avg. of peds serving time

458
2825
22.51s
22.51s
21.84s

Fig. 42: Overall Traffic and Serving State
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PedRecall_Veh.Traffic (lEESINEG7E1% 33.91%
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Fig. 43: Automated pedestrian traffic detection with
dynamic pedestrian signal timing performance

improvements compared to pedestrian recall.
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Fig. 45:(23) Vehicles Eco-PI and drivers waiting time comparison

5.2 Comparing Fuel Consumption and Emissions in DGMARL and RBCs

Both the optimization mode]l DGMARL and the ring barrier controller (RBC) were simulated in
VISSIM and CMEM to investigate their individual impacts on FC and various emissions. For this
particular analysis, we focused on evaluating FC and emissions of light-duty vehicles. As depicted
in fig. 46, we extracted vehicle trajectories from the VISSIM model and then prepared the data
for the CMEM emissions model using Python scripting. Subsequently, the results were obtained
in g/mile.

| Vissim model |

COM interface

@ python

1- Get
Vehicle type
Vehicle distribution
Desired speed
Driving behavior
Link gradient

N Time VehID Speed HC (gram) CO(gram) NOx (gram) fuel (gram) CO2(gram)
2- Run simulation RE 004641 01X 00ISI21 076D 206226
= 3626 004959 0150559 OQO0197S4 0899146 2450008
N6 OMISE2 OOKS QOS5  OSRM  136RS1
176 00667 021399 O0031SS 126X 34338

-
3 Trajectory file
(FzZP)

4- Extract sto vauﬁk\

3549 0033698 0099746 000088 06046 1640413
3536 004114 01472 0019219 088735 2405333
3738 0029311 O0O08S31S OQOOP07 OSION6 1400083
NE 00054 010026 O0O00MS O0REN4 17157
4034 0045463 0138942 OOUS2 QSIS 2264934
3678 0034679 0102966 0QO0X71 O61S61 1650877
3653 0035048 010405 Q004 02 1712191

HBO® YA N awN .

—
Fig. 46: Processing trajectories in CMEM emissions model

In Table 17, the values for fuel consumption (FC) and emissions for the entire network are

presented. It is evident that DGMARL effectively reduces all emissions, except for NOx, which

shows a slight increase of 2.93%. On average, other emissions and FC are reduced by

approximately 5%. It is important to note that DGMARL optimizes traffic signals specifically to
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decrease Eco-PI (footprint at signalized intersections due to traffic signal control). Therefore, to
fully comprehend the benefits of DGMARL, it becomes necessary to investigate FC and emissions
at the intersection level, which will be discussed in the latter part of this report.

Table 17: CMEM results - MLK corridor

RBC DGMARL Difference (%)
Hydrocarbons (g/mile) 11.81 11.21 -5.04%
Carbon Monoxide (g/mile) 94.57 90.33 -4.48%
Nitrogen Oxides (g/mile) 1.51 1.55 2.93%
Carbon Dioxide (g/mile) 249.59 237.41 -4.88%
Fuel Consumption (g/mile) 603.20 573.25 -4.97%

Furthermore, the Pitt team investigated how fuel consumption (FC) and various emissions changed
over the simulation period by calculating their values every minute. However, as depicted in fig.
47, not many conclusions could be drawn from the data presented.

HC —CO NOx FC —CO02

Difference (%)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103 106 109 112 115 118 121 124 127 130 133 136 139 142 145 148 151 154 157 160 163 166 169 172 175178
One Minute Intervals

Fig. 47: CMEM results per minute — MLK corridor
To gain a comprehensive understanding of the changes occurring throughout the simulation

period (1 hour), the Pitt team developed fig. 48 illustrating the cumulative fuel consumption (FC)
and emissions per minute. The graph clearly demonstrates that DGMARL optimization leads to
significant reductions in CO2 emissions and fuel consumption. These findings highlight the
positive impact of the DGMARL module on improving environmental impacts and fuel
consumption.
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Figure 48: Cumulative emissions and FC

4.2.1 Evaluating FC and Emissions per Intersection
To delve into the fuel consumption (FC) and emissions per intersection, the network needed to be
divided based on the links that connect to specific intersections. In essence, only links associated
with the nodes were utilized for the analysis of emissions and FC at each intersection. The vehicle
trajectories were meticulously tracked during the time they were present in the node, as illustrated
in fig. 49. This approach allowed for a detailed examination of the emissions and FC at individual

intersections.

7
7

Market @MLK

Fig. 49: FC and emissons analysis per intesection
The results from the analysis described earlier are presented in fig. 50. As observed, there is a
slight increase in NOx emissions in the DGMARL model at certain intersections. However, in
contrast, the other emissions and fuel consumption (FC) exhibit consistent reductions across
almost all intersections. This outcome indicates that the DGMARL approach effectively mitigates
environmental impacts and reduces FC in the majority of cases.
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Fig. 50: CMEM results per intersection

Furthermore, the comparison between DGMARL and RBCs is illustrated in fig. 51. It can be
observed that there are slight increases in HC and NOx emissions at certain intersections when
using DGMARL, while at other intersections, there is a notable reduction in both FC and

emissions. Moving forward, the UTC team will conduct a thorough investigation of critical
intersections, such as Georgia, Lindsay, Houston, and Magnolia, to gain deeper insights into the
performance of the optimization module at these intersections. This analysis will aid in identifying
specific areas where further improvements can be made to reduce emissions and FC.

15

Difference (%)

-20

-25
Pine Carter Broad

HC (%) —=—CO (%)

Georgia
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Lindsay Houston Douglas Peeples Magnolia Central

Fig. 51 Difference achieved by DGMARL per intersection
Despite certain intersections experiencing an increase in emissions, the overall

environmental footprint at the intersections has been effectively reduced by nearly 10%. It is
essential to bear in mind that table 18 encompasses all FC and emissions across the entire network,
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whereas Table 18 focuses solely on the results per intersection, where the impact of DGMARL is
most apparent. This distinction is crucial as the Eco-PI metric specifically quantifies the footprint
generated at intersections due to traffic signal control.
Table 18: Average difference achieved across all intersections
Average Difference (%)
HC CO NOx FC CO,
2.4% -7.6% -1.0% -8.0% -10.7%

5.3 Real-World Testing

Field implementation tests were critical to the development and testing of this project. These tests
were instrumental in validating the practical functionality and reliability of the Eco-Adaptive
Traffic Control System (Eco-ATCS) in field conditions. In fig. 52, the framework for online Eco-
ATCS implementation is explained. First, the output from the UTC server is obtained through an
API connection. DGMARL output is then converted to a readable version by NTCIP in the data
reader module. The converted output contains second by second phase statuses. As such,
information is sent to the main NTCIP module and then in the form of NTCIP message it is sent

to the SEPAC m60 controller.
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Fig. 52: Framework for Online Adaptive Logic Implementation

5.3.1 Field Testing of DGMARL and Development Updates

Our primary focus has been on field testing and enhancing data integration. Key developments
include the creation of an interface to connect and read field inputs, particularly Signal Phase and
Timing (SPaT) data and vehicle arrival information. SPaT data retrieved from GridSmart via a
custom API developed by the CUIP data collection team, which has been successfully integrated
with DGMARL. Vehicle arrivals are observed using Computer Vision, with the data collection

team’s custom API sending observed vehicle counts per lane to DGMARL to determine traffic
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state and occupancy. Since the field testing only provides vehicle counts, DGMARL was
updated with custom logic to estimate vehicle occupancy based on arrival patterns. Additionally,
DGMARL has been untethered from VISSIM and is now connected to the field’s SPaT
configurations, incorporating specific parameters such as minimum green, yellow duration, red
clearance, and pedestrian serving times. To ensure accurate time measurement for signal
durations, DGMARL now uses the field controller’s timestamp from the SPaT input.

We also enhanced DGMARL to handle pedestrian push button requests. This involved analyzing
GridSmart input fields to determine the phase associated with a push button press. DGMARL
was updated to prioritize pedestrian requests over vehicle demand and hold active requests if the
current phase already has a green signal. This ensures all phases receive either a minimum green
or pedestrian recall serving time.

Field testing, issue resolution, and integration were critical milestones. DGMARL was tested to
align with NTCIP module expectations for signal status input. Integration testing involved three
modules: Computer Vision for Vehicle Observation, DGMARL, and NTCIP, successfully
conducted at the Peeples intersection in the MLK corridor. INitial testing on the LAB_ M60
machine, using Georgia intersection signal timing plans, revealed issues like the left phase
servicing problems and red flashing lights, which were resolved by adjusting lane index
configurations and improving the NTCIP application code.

Following multiple trials on the LAB_M60 machine, testing moved to real intersections, starting
with Peeples, where signal timing synchronization was verified. The scope was then expanded to
include additional intersections—Peeples, Douglas, Houston, Georgia, Market, and Broad. This
phase culminated in a successful demonstration on October 23, 2023, covering Lindsay, Georgia,
Market, and Broad intersections, showcasing effective integration and control of real
intersections with minimal vehicle queues and efficient pedestrian push button handling.

5.3.2 Tests Conducted in September 2023

The first test, the "Communication test," was conducted to ensure uninterrupted communication
with the field controller located at Peeples @ MLK. Upon executing the NTCIP software
developed by the Pitt team, we achieved consistent data reception from the controller. This
successful test outcome confirmed that the Eco-ATCS was effectively and reliably

communicating with the field controller, a pivotal step in the system's real-world deployment.
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The second test, known as the "Detection suppression test," aimed to prevent the Gridsmart
system from initiating detection calls. Initially, we intended to modify the dynamic value of the
detection calls object through NTCIP software, which would normally register as zero when no
detection calls were present but would change when a detection call occurred, such as when a car
was detected in a specific phase. However, we encountered an obstacle in the form of the City of
Chattanooga's SEPAC software version 5.2, which did not support this object. In our lab tests,
we had used SEPAC 5.3, which did include this functionality. Consequently, the Gridsmart
system was able to place calls during this field test, resulting in an unsuccessful outcome. For
subsequent tests in September 2023, we manually disconnected Gridsmart by adjusting the port
settings of the controller.

The third test involved the "use of commands," where our objective was to ensure the successful
placement of "Hold," "Call," and "Force Off" commands to field controller through NTCIP
software. During this test, we executed these commands without any issues, marking it as a
successful test. This successful validation of command execution is crucial as it demonstrates the
NTCIP software's capability to respond to DGMARL instructions effectively and implement
those instructions in the field controller.

Finally, the actual implementation test was conducted with the main objective of ensuring that
the integration of the DGMARL and NTCIP software could effectively control an intersection.
Initially, the plan was to facilitate the integration of DGMARL and NTCIP through a common
file. This file was intended to be created and written by DGMARL, and then read by NTCIP
software. However, during the field test, a simple issue arose when both DGMARL and NTCIP
software attempted to access the file. As a result, an API was developed to facilitate information
exchange between DGMARL and NTCIP software. In this API setup, DGMARL employs the
'SET' command to specify the desired phase status, while NTCIP software uses the 'GET!
command to read this desired phase status. The desired phase status defined by DGMARL
comprises four statuses: red, yellow, green, and the next green. The NTCIP software successfully
matched the phase status in the controller with the desired phase statuses identified by
DGMARL.

Throughout the tests conducted in September, the objective of controlling an intersection was
achieved. The testing process unfolded in several steps. Firstly, we tested the communication

between the field controller and the NTCIP software. Once we had confirmed the stability of this
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communication, we proceeded with the detection suppression test. The third step involved
verifying the successful implementation of commands like “Hold”, “Call”, and “Force Off”.
Finally, we conducted the intersection control test, during which it became evident that the
integration of NTCIP software and DGMARL was capable of effectively controlling an
intersection.

However, it is worth noting that these tests revealed several issues. For instance, the detection
suppression test did not yield the desired results. Therefore, we manually disabled the GridSmart
system by adjusting the port settings of the controller. Additionally, DGMARL encountered
challenges in serving pedestrian demand at intersections lacking pedestrian recalls. Considering
these issues, we have scheduled an additional week of testing in October to address and resolve

these issues.

5.3.3 Tests Conducted in October, 2023

During the field tests conducted in October, the GridSmart detection system was manually
disabled to suppress detection calls. The primary goal was to automate this process, as well as to
enable the automatic activation of the GridSmart detection system when needed. To achieve this,
the NTCIP software underwent modifications. The new version of the NTCIP software was
initially tested at PITTS Lab using the Siemens m60 controller with SEPAC 5.3. Subsequently, it
underwent testing at the UTC research center, this time with a Siemens m60 controller equipped
with SEPAC 5.2. In both instances, the modified NTCIP software successfully managed the
disabling and enabling of the GridSmart detection system. Following these initial steps, the new
version of the NTCIP software was employed for all the tests described below.

The UTC team was tasked with integrating pedestrian push button calls into DGMARL. Once
this integration was complete, an initial test was planned using a controller located in the UTC
research center. This controller was mimicking the traffic controller at Georgia (@ MLK.
DGMARL received real-time traffic data throughout the testing process. In addition to real
traffic data, pedestrian push button calls were generated using additional equipment attached to
the controller, which allowed for the placement of both vehicle and pedestrian calls.

The goal of this test was to ensure that DGMARL could receive information regarding pedestrian
push button calls and allocate sufficient green time for pedestrians. During the tests, all

pedestrian push button calls were successfully served, indicating the test's success.
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The integration of pedestrian push button calls was initially tested at Peeples @ MLK in the
field, given its lower pedestrian demand. To confirm the presence of a pedestrian push button
call, a UTC lab member initiated a test pedestrian call. The primary objective was to ensure that
pedestrian push button calls were effectively serviced. It was observed that DGMARL could
provide adequate green time when pedestrians were waiting for service, thus confirming the
success of this test. Subsequently, the same test was conducted for the intersections at Houston
@ MLK, Douglas @ MLK, and Lindsay @ MLK. In each case, the integration of DGMARL and
NTCIP software successfully allocated sufficient green time for pedestrians.

During the field tests, it was observed that if a vehicle call had been placed by GridSmart
previously, it was not possible to remove that call. Consequently, DGMARL's desired phase
status could differ from the controller's phase status. The phase sequence was not entirely under
DGMARL's control due to existing vehicle calls. To address this issue, in addition to Hold,
Force Off, and Call commands, the Omit command was introduced. With the implementation of
the Omit command, the phase sequence became fully controllable. For example, if a Hold
command was issued for a phase, other phases were omitted. When it was necessary to change
the active phase, the Omit command was removed for the next phase, and a Call command was
placed for that phase. Additionally, a Force Off command was issued for the current running
phase. This way, whenever it was necessary to change the running phase, only the next phase, as
determined by DGMARL, became available, and the controller was compelled to serve the phase
specified by DGMARL.

The modified version of the NTCIP software was initially tested using the controller located at
the UTC research center. During this test, it was observed that, even in the presence of calls, the
controller followed the phase sequence determined by DGMARL. Consequently, the test was
successful.

Following this, the modified NTCIP software was tested at Georgia @ MLK, Broad @ MLK,
and Market (@ MLK intersections. These intersections were selected because they experience
higher vehicle and pedestrian demand compared to others. Therefore, these intersections had
calls placed by GridSmart before DGMARL started operating. During these tests, it was
confirmed that the phase sequence was controlled by DGMARL, and the integration of
DGMARL and NTCIP software successfully managed these intersections individually.
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The final test was to control multiple busier intersections. The main goal was to ensure that the
integration of DGMARL and NTCIP software could control multiple intersections
simultaneously, while also ensuring that pedestrians were being served. In this test, the
DGMARL and NTCIP software integration successfully controlled Georgia (@ MLK, Broad @
MLK, and Market @ MLK intersections.
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Section 6: Conclusion

This project has successfully addressed key challenges associated with optimizing traffic signal
control in urban environments. Through the integration of connected vehicle (CV) and connected
infrastructure (CI) communication technologies, and leveraging recent advances in Al,
optimization, and edge computing, we have developed a sophisticated adaptive traffic signal
control system to reduce fuel consumption and improve traffic flow.

The primary accomplishments of this project can be summarized into several achievements, each
contributing to the goal of sustainable urban traffic management.

e Advanced System Development: The DGMARL system was developed to formulate the
traffic signal control problem as a Multi-Agent Markov Decision Process. The
architecture integrated Al technologies such as the Advantage Actor Critic (A2C)
reinforcement learning model. This system successfully modeled intersections and
coordinated signal timing to minimize environmental impacts, thereby optimizing traffic
flow and reducing emissions.

e Development of Fuel Consumption Performance Index (Eco FC-PI): The FC-PI was
developed as a critical component for evaluating the system’s impact on fuel
consumption and emissions. This metric provided a means for understanding the
relationship between traffic signal control and the reduction of fuel consumption.

e Extensive Testing and Validation: The system was tested through a series of experiments
that included both Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL)
simulations, followed by real-world testing on the MLK Smart Corridor, an urban
corridor managed by the University of Tennessee at Chattanooga (UTC). The system’s
performance was validated under real-world conditions demonstrating significant
improvements in both operational efficiency and environmental metrics.

e Digital Twin Development: A three-tier twin system was developed to enable real-time
traffic simulation and optimization. This digital twin framework consisted of pre-
populated offline simulations, pseudo-real-time simulations driven with archived data,
and real-time simulations using live field data streams. Each tier incrementally increased
the complexity and capability of the system, ultimately enabling for a real-time traffic

management model
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e Real-World Field Deployment: One of the most significant aspects of this research was
the field deployment of the developed Eco-Adaptive Traffic Control System (Eco-
ATCS). Successful integration with actual traffic controllers, pedestrian systems, and
dynamic data streams demonstrated the system’s readiness for real-world deployment.

Challenges and Lessons Learned

e Integration Complexity: one of the significant challenges encountered was the integration
of the DGMARL model with existing traffic infrastructure. The project required
considerable efforts to align various components, such as pedestrian recalls, signal
phasing, and adaptive timing. Addressing these integration challenges has provided
valuable insights into the requirements for deploying Al-based traffic solutions at scale.

e Pedestrian System Limitations: Initially, pedestrian push-button systems were not
effectively integrated,leading to limitation in serving pedestrian demand at intersections
without pedestrian recalls. Through multiple testing phases, we were able to develop
mechanisms that ensured pedestrian requests were served adequately, but these initial
setbacks underscored the importance of comprehensive, cross-system integration.

e Model Training and Real-World Adaptation: The adaptation of the DGMARL model to
match the real-world requirements posed challenges in training and retraining,
particularly due to differences between simulation environments and the actual physical
environment. This highlighted the need for adaptable training methods that incorporate
field-specific constraints, such as traffic dynamics, pedestrian movement, and
infrastructure variability.

Broader Impacts

The results of this project have implications beyond traffic management and urban mobility. By
developing technologies that reduce fuel consumption and emissions, this project aligns with
broader efforts to combat climate change and promote sustainability in urban spaces.
Furthermore, the deployment of Al-drive systems provides a blueprint for integrating emerging

technologies in city infrastructure in many ways beyond traffic management.
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Section 7: Future Work

Continued Development of DGMARL and Eco-ATCS

The DGMARL framework demonstrated success in coordinating multiple intersections through a
decentralized graph-based, multi-agent reinforcement learning approach. Future work could
expand on this by refining integration testing with real-time data and improving adaptability to
fluctuating traffic patterns using reinforcement learning adjustments. Additionally, enhancements
such as incorporating pedestrian recall, minimum green duration, and improved phase sequence
controls were partially implemented and could be expanded to optimize performance in diverse
traffic conditions.

Expansion of Fuel Consumption Performance Index (FC-PI)

The development of FC-PI involved significant testing of operational conditions impacting fuel
consumption, such as road gradient and vehicle types. Future directions might include expanding
the FC-PI to account for additional pollutants like CO2 and PM, and refining regression models
to better align with real-world conditions. Additional testing on road gradient and varying fleet
compositions may further validate and enhance the FC-PI, particularly in mixed traffic
environments

Digital Twin Expansion and Real-Time Testing

Further development of the digital twin model, particularly with integration into ORNL’s HIL
(Hardware-in-the-Loop) framework, is recommended. The current VISSIM-based model has
successfully been tested for compatibility with CarMaker for real-time vehicle simulation, but
real-time application has shown limitations due to software compatibility. Future efforts should
aim to overcome these limitations and improve the model’s real-time adaptability for broader
application in connected vehicle environments.

Advanced Field Testing and Scalability

The next steps involve enhancing DGMARL’s field testing capabilities by leveraging real-time
data from traffic monitoring systems like GRIDSMART and improving the latency in vehicle
occupancy data processing. The integration with systems such as Flask-based RESTful API has
already shown promise for real-time adaptability, suggesting scalability to larger traffic networks

if latency concerns can be mitigated.
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Public Engagement and Policy Integration

To ensure the system’s success, public engagement and policy considerations will be crucial.
The model’s data, including fuel consumption and emissions reduction metrics, could be
valuable for demonstrating benefits to stakeholders and policymakers. Expanding community
outreach and engagement with the city planning departments for further alignment with local and

federal energy-conscious traffic management initiatives could also enhance long-term adoption
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Section 9: Appendices

Appendix A: Figures

GRIDSMART

Data Rotate & Crop Manualy Label Caiifit

to Cover Each Each Zone Yolo_v7 Per Lane
Direction "Lane"

Inference on Data

Revise

Re-train Annotation

Fig. 1: System Pipeline

Fig. 2: Intersection at MLK Blvd and Central Ave.
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Fig. 6: VISSIM-Matlab-CMEM connection
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Fig. 10: Comparison between analytically derived and ground truth EcoPI
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Node Avg. Actuated Avg. Eco_Pi ::’;’5:::: ;:2
Pine 22681.66 21303.76 6.07%
Carter 53663.61 30104.53 43.90%
Broad 63145.29 39928.84 36.77%
Market 68661.05 142168.49 38.58%
Georgia 43645.22 37380.67 14.35%
Lindsay 20206.95 12376.34 38.75%
Houston 15349.9 10990.3 28.40%
Douglas 17793.43 11099.54 37.62%
Peeples 1203.596 1079.455 1031%
Magnolia 4765.637 3555.876 25.39%
Central St 79283.93 63774.6 19.56%

| Total | 390400.3 273762.4 2088% |

g) Cycle 7

h) Cycle 8
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Fig. 11: Impact of non-critical and critical intersection CLs on minimum group CLs
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o] 3) POG 4)K factor & 5) Eco-PI

Evaluate range of CL's for upcoming cylce
for each intersection based on estimated
Eco-PI

Select minimum Eco-Pl-based CL of all
intersections for network level deployment

Real-time module

|

Calculate minimum green time required to
serve the queued vehicles

l

Distribute extra green time based on
factor (K*A0G) per movement/intersection
and evaluate new CL/splits based on
Eco-PI

—

l

Evaluated CL's
provide reduction of Eco-PI
compared to previous CL on
network level

Propose new CL and green

splits

Keep the old CL and green
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Fig. 12: Framework for Local Constraints Development
Fig. 13: PM-Peak 3-hour EcoOPI; Data: 12/15/2022
Simulation resolution: 1 second,; Random seeds: 12, 25, 45, 41, 32, 37, 27, 44, 29, 22
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Node Avg. Actuated Avg. Eco_Pi Cpp R GIES
Improvement
Pine 22681.66 21303.76 6.07%
Carter 53663.61 30104.53 43.90%
Broad 63145.29 39928.84 36.77%
Market 68661.05 42168.49 38.58%
Georgia 43645.22 37380.67 14.35%
Lindsay 20206.95 12376.34 38.75%
Houston 15349.9 10990.3 28.40%
Douglas 17793.43 11099.54 37.62%
Peeples 1203.596 1079.455 10.31%
Magnolia 4765.637 3555.876 25.39%
Central St 79283.93 63774.6 19.56%
[ Total [ 390400.3 [ amsre2a | 20ssw |
Seed Node Actuated DGMARL Eco_Pi %
25 | Peeples 1140.254 1266.929 -11.11%
45 | Pine 23362.24 23609.16 -1.06%
27 | Peeples 1094.578 1320.751 -20.66%
29 | Pine 22963.07 23901.18 -4.09%

View Help

Fig. 14: Pine and Peeples Eco-PI impact

7] dgmarl_signalstatus_S065_test_10800_seed_21_2_1 - Notepad

2023-04-24 09:35:32.951739
Vissim File: D:\Viji\NEWVissim_December2022\SentBy_Somdut\2023-04-12_PM-peak_Dec15-2022_Model\MLKCorridor_PMpeak_2022-12-15_v5.inpx
@ - 10800
Seed: 21

2

Signal Groups :
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Fig. 15: Signal Timing Output
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Fig. 16: Signal Timing Output Template
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Fig. 21: Architecture of SILS
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Fig. 22: Experimental design
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Fig. 23: Total delay and number of stops in the network
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Fig. 25: CAVE lab HIL architecture including communication model
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Hardware Layout Diagram of ORNL CAVE Laboratory
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Figure 27: CAVE lab HIL architecture diagram
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Figure 29: HIL architecture integrating Vissim MLK model with Ford Mach E
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Figure 30: Power consumption and speed of ego vehicle in the MLK Vissim simulation for a single run across the
corridor in Eastbound direction.
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Figure 31: Actuated signal controls Ego vehicle speed and cumulative energy consumption — Mach E
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Figure 32: DGMARL signal controls Ego vehicle speed and cumulative energy consumption — Mach E
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Figure 33: AVL Plutron Fuel Flow eerinstalled on RA V;l in CAVE Laboratory

3000 Eco P PM-peak 1-hour simulation Node Actuated e ST
4500 Pine 1264.765704 1360.566  -7.57%
S oo " Actusted EDGMARL Carter 1938.054917  1549.567  20.05%
S 2000 Broad 2806.981228  2083.691  25.77%
2 2500 Market 4466.239603 2809.791  37.09%
%, 2000 Georgia 1664.027442  2078.297  -24.90%
g 1;‘:3 Lindsay 1019.277417 873.994  14.25%
500 “ II Il I Houston 704.1671827 610.716  13.27%
0 - Douglas 652.0101882 604.659 7.26%
« & Q,@Q y‘* zo&, (\b,;b* & °o°> zf %\\ @s* Peeples: 77.02113721 107.426  -39.48%
& @ & & ¢S Magnolia 252.5771327 285.469  -13.02%
Intersections Central St 3385.80875 2834.15  16.29%
Total 18230.9307 15198.326  16.63%

Fig. 34: PM-peak 1 Hour Simulation Test Results

14000 Eco_Pi PM-peak 3-hours simulation i Lol REMANE o
12000 Pine 4089.825891 4240.674  -3.69%
mActuated mDGMARL Carter 7304.622662 5631.773  22.90%
B 10000 Broad 8252.061816 6076.327  26.37%
g Market 12434.08111 8737.537  29.73%
€, 6000 Georgia 4957.651198 5769.946 -16.38%
g sooo Lindsay 3431.395635 3284.548  4.28%
2000 |I I I Houston 2734.583124 2591.272  5.24%
I II Il Douglas 1936.988007 1703.281  12.07%
o . N . . « Peeples 291.1535964 261.231  10.28%
,b(.& ‘o’ © & o Q\@ o\\ ,b\"’ . 0,
& & (’oo & ‘\oo o Q& RO Magnolia 693.0480542 807.524 -16.52%
tereection Central St 10266.42646 8665.133  15.60%
Total 56391.83755 47769.246  15.29%

Fig. 35: PM-peak 3 Hour Simulation Test Results
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+ Trajectory report of Vehicles traveled >= 8000 ft * 51 vehicles traveled> 8000 ft in actuated.
* Time duration: 0 to 1200s * The same vehicles trajectory is projected in the DGMARL report
* EAST BOUND

Actuated: Vehicles Trajectory (East Bound) DGMARL: Vehicles Trajectory (East Bound)
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Fig 36: Eastbound: Trajectory report of vehicles traveled >= 8000ft

Stacked Bar Chart of Vehicles by AOG/AOR for Each

Total Number of Unique Vehicles

carter Broad Maket  Georgia  Undsay Dougas  Peeples  Magnola  Central St
Intersection

Fig.37: Arrival on green and arrival on red

Stopped vehicles speed <=3mph

1-hr Actuated DGMARL %

Pine 8206.608 8684.976 -5.83%
Carter 14024.69 9850.864 29.76%
Broad 20510.14 14065.34 31.42%
Market 25329.8 19325.07 23.71%
Georgia 12172.99 12002.76 1.40%
Lindsay 6382.125 5499.636 13.83%
Houston 5902.847 3450.75 41.54%
Douglas 8050.33 10011.97 -24.37%
Peeples 487.9753 822.1571 -68.48%
Magnolia 1607.838 2164.154 -34.60%
Central St 24768.92 14336.55 42.12%

1274443 100214.2

Fig. 38: Overall Eco-PlI in I hour simulation
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Fig 39: Actuated vs DGMARL-Stops Reduced by 17.35%
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Fig. 40: Actuated vs DGMARL—Delay Reduced by 32.78%
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Fig. 41: Difference in Stops and Delays (DGMARL minus Actuated)
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Performance Measurement Value

Total no. of pedestrians arrived 458

Total no. of vehicles traveled 2825
Actuated: Avg. of peds. serving time 22.51s
DGMARL PedRecal: Avg. of peds. serving time 22.51s
DGMARL Automated: Avg. of peds serving time || 21.84s

Fig. 42: Overall Traffic and Serving State
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Fig. 43: Automated pedestrian traffic detection with Fig. 44: Pedestrian

dynamic pedestrian signal timing performance
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Fig. 45:(23) Vehicles Eco-PI and drivers waiting time comparison
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Vissim model | CMEM Emissions Model for HDVs or LDVs
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Fig. 46: Processing trajectories in CMEM emissions model
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Fig. 47: CMEM results per minute — MLK corridor
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Fig. 49: FC and emissions analysis per intersection
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Appendix B: Tables
Table 1: Input and Output of DGMARL

DGMARL Input

Static Properties or Configurations available
from the field

Runtime Properties Needed from Field Sub algorithm — Eco_PI Calculation

Intersection Id, Associated Signal Controller Id,
Signal Group ids and Associated Phases,
Left turn phases, Link Ids and Lanes -

1. Detector's value - Traffic Occupancy Vehicle_ID, LanelD, Vehicle_speed
2. Eachsignal's current status

3. Number of vehicles in each lane - every second
associated to phases, Detectors Ids associated
to phases, MinGreen, RedClearanceTime,
YellowTime, Ped Recall, Walk time, Flashing
Don't Walk time

DGMARL Output

Action:
0: Stay in current phase
1 & Phase_id: Switch to the Phase_id which has highest traffic demand

Table 2 Variables for various operational conditions impacting FC

Vehicle type  Fleet distribution Driver behavior Road gradient Cruising speed Wind effect
Variable FC (g) Variable FC(g) Variable FC(g) Variable FC(g) Variable FC(g) Variable FC (g)
LDV1 56.6 100:0 56.6 Funcl 457 -7 34.8 20 16.1 50 tailwinds 473.8*
LDV2 572 99:1 62.5 Func2 472 -6 37.6 25 21.8 40 tailwinds 505.6
LDV3 555 98:2 68.7 Func3  49.5 -5 40.8 30 27.2 30 tailwinds 510.8
LDV4 525 97:3 74.4 Func4 519 -4 43.5 35 36.7 20 tailwinds 513.3
LDV5 578 96:4 80.1 Func5 532 -3 46.3 40 46.4 10 tailwinds 525.6
LDV6 54.6 95:5 86.5 Func6 554 2 49.6 45 56.6 No wind 549.0
LDV7 555 94:6 92.3 Func7  56.3 -1 52.7 50 70.3 10 headwinds 587.2
LDVS 59 93:7 98.4 Func8 584 0 56.6 55 85.5 20 headwinds 628.5
LDV9 587 92:8 104.1  Func9  60.5 1 59.2 60 106.6 30 headwinds 690.8
LDV10 111.2 91:9 110.9  Funcl0 62.2 2 63.7 65 135.3 40 headwinds 835.4
LDV11 56.8 90:10 117.6  Funcll  63.7 3 67.1 50 headwinds 979.5
LDV12 559 Funcl2 654 4 71.1
HDDV1 816.5 5 75.0 Not applicable *Values are for
HDDV2 894.4 Not applicable Not applicable 6 80.2 HDDVs
HDDV3 549.0 7 85.6
Table 3 Regression equations to compute the stop penalty
Factor Equation Range R?
Xyt % of HDV K = 129.37 - 00615 %pnv Xpuy = [0,10] 0.6273
Xgg: Road gradient (%) K =122.19 - ¢00648%rc Xpe = [—7,7] 0.8335
X.s: Cruising speed (mph) K = 14.761 - 00467 %cs Xes = [20,65] 0.9645
Xy s Wind effect (mph) K = 01613 - xyz2 + 9.6642 - xyyp + 12446 x5 = [-50,50] 0.9389
Table 4 Required data for estimating delay and number of stops
Optimization
type \ Data Type Source Spatial coverage Temporal coverage Importance
attribute
Vehicle arrivals downstream
Offline - Traffic GridSmart Intersection 15-minutes bins / High
Pretimed counts TMCs / Counts movement Second-by-second
Online - Traffic GridSmart Intersection .
Adaptive counts Counts movement Second-by-second High
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Online CV - Traffic Exact location of . .
Adaptive CV counts CV data (BSM) vehicle Same as Online Medium
Vehicle arrivals upstream

Offline - Traffic GridSmart After upstream Aggregated based on
. . . second-by-second Low
Pretimed counts Counts ntersection data
Online - Traffic flow GridSmart After upstream Second-by-second / .
. Counts / Video . . TBD (resolution of High
Adaptive rate intersection . .
data video analytics)

Online CV — Traffic flow Exact location of .
Adaptive CV rate CV data (BSM) vehicle Second-by-second Medium
Signal phasing and timing data

Offline - Signal timing  Signal timing Intersection . .

Pretimed elements sheets movement Peal period or hour High

Online - Signal timing GridSmart Intersection .

Adaptive elements Events movement Second-by-second High
Onlln? cv- Signal timing Same as Online Same as Online Same as Online Medium
Adaptive CV elements
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Table S Required data for each of the factors impacting the stop penalty

Optimization
type \ Data Type Source Spatial coverage = Temporal coverage Importance
attribute
Fleet composition and Vehicle type
Ofﬂ.l ne- Vehicle shape GridSmart Intersection Second-by-second Medium
Pretimed Counts movement
Online - Video data / Intersection TBD (resolution of
Adaptive Vehicle shape GridSmart movement video analytics) High
P Counts / Second-by-second
Online CV — Exact vehicle ~CV data (Embed  Exact location of Second-by-second Hich
Adaptive CV model in BSM) vehicle Y &
Driving behavior
Offline - Trajectory ~ Probe Gps/  Loiore & After - Second-by-second / .
. X StopLine/ TBD TBD (resolution of High
Pretimed data Video data . . )
(camera view) video analytics)
Onlm? - Trajectory Video data TBD .(camera TBD (resolutlgn of Medium
Adaptive data view) video analytics)
. Same as Online
Online CV — Trajectory CV data (BSM), . e .
Adaptive CV data individual cy  nd formultiple  Second-by-second High
intersections
Road gradient
Offline - Grade of the Maps with Intersection .
Pretimed terrain altitude approach NA High
Onlm? ) Grade O.f the Same as Offline Same as Offline Same as Offline Low
Adaptive terrain
Online CV — Grade of the Same as Offline  Exact location of Second-by-second Medium
Adaptive CV terrain +BSM vehicle Y
Cruising speed
Offline - . Intersection .
Pretimed Speed limit Google maps approach NA High
) Video data TBD (camera TBD.(tempor.al
Online - Speed . view) / resolution of video .
. Lo /GridSmart . . Medium
Adaptive distribution . Intersection analytics) / Second-
Realtime
movement by-second
Online CV - Speed Exact location of .
Adaptive CV distribution ~ CV data (BSM) vehicle Second-by-second Medium
Wind effect
Offline - Wind speed
Pretimed & direction Dark Sky TBD TBD Low
Online - Wind speed .
Adaptive & direction Dark Sky (API) TBD TBD Medium
Online CV — Wind speed . . .
Adaptive CV & direction Dark Sky (API) Same as Online Same as Online Medium
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Table 6 Cruising speeds and road gradients on intersections of the area of study

Intersection Parameter/movement

EB EB EB WB WB WB NB NB

RT TH LT RT TH

LT RT TH

NB
LT

SB SB
RT TH

Carter St

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

-0.8 -0.8 -0.8

30 30 30 25 25
30 30 30 25 25
-0.1 -0.1
0.3 0.3

0.2 -0.2 0.4

25 30 30
25 30 30
-0.1 0.1 0.1
0.1 04 0.2

30
25
0.1
0.1

30 30
25 30
-0.4 -0.4
0.3 -0.1

Broad St

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

30
20
0.2
0.5

30 30
25 30
0.2 0.2
1.1 0.8

25 25
30 30
-1.6 -1.6
0.3 -0.1

25 30 30
25 30 20
-1.6 -0.2 -0.2
0.0 0.9 0.3

30
25
-0.2
0.0

20 20
25 30
0.0 0.0
-0.3 0.0

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

25 25 25
25 30
1.5 1.5

2.0 -1.1

25 25
30 25
-1.9 -1.9
-1.9 -1.7

1.5
1.0

25 30 30
30 25 30
-1.9 -0.5 -0.5
03 1.9 -1.7

30
25
-0.5
-1.3

30 30
25 30
1.5 1.5
-0.9 1.1

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

25 25 25
25 30
1.9 1.9

14 1.3

25 25
30 25
-1.0 -1.0
0.3 -1.9

1.9
0.7

25 30 30
30 25 30
-1.0 -0.9 -0.9
-0.1 1.3 0.6

30
25
-0.9
-1.7

30 30
30 25
-1.1 -1.1
-2.3 0.0

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

25 25 25
25 30
1.3 1.3

-1.1 1.9

25 25
30 25
1.7 1.7
2.2 -1.0

1.3
1.3

25 30 30
30 25 30
1.7 -1.7 -1.7
1.1 -1.2 1.8

30
25
-1.7
-0.8

30 30
30 25
-3.7
-1.3

Initial speed (mph)
Final speed(mph)

Deceleration slope (%) -1.6

Acceleration slope (%)

25
30

25 25
25 30
-1.6 -1.6
-1.5 1.7

25 25
30 25
23 23

0.8 44 0.9

25 30 30
30 25 30
23 -11 -1.1
0.3 -14 5.0

30
25
-1.1
1.2

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

-0.5
-0.3

25
30

25 25
25 30

25 25
30 25
-0.5 -0.5 -1.0 -1.0
1.1 1.9 2.2 0.3

25 30 30
30 25 30
-1.0 0.4 04
-0.5 1.1 1.8

30
25
0.4
0.7

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)

Acceleration slope (%) -2.3

25
30
0.3

25 - - 25
25 - - 25
03 - - -15
14 - - 0.3

25 30 -
30 25 -
-1.5 3.3 -
-19 1.3 -

30
25
3.3
0.9

Initial speed (mph)
Final speed(mph)
Deceleration slope (%)
Acceleration slope (%)

-1.8

25
30
3.3

25 25
25 25
33 4.3
3.7 -3.2

25 30
30 25
-4.3 3.2
-2.6 3.6

30
25
3.2
-2.0

30 30
30 25
-1.8 -1.8
-3.1 -1.6

30
30
-1.8
2.4

Central St | Magnolia S{ Peeples St | Douglas St | Houston St| Lindsay St| Georgia St| Market St

Initial speed (mph)
Final speed(mph)

Deceleration slope (%) -5.4 -54 -54

Acceleration slope (%)

35 35 35
30 35 35
5.8
5.1

30

1.2 -5.5 -1.5

35 30
30 35
5.8 -1.7
5.1 -5.7

30
-1.7

30 30 30 30
35 30 35 30
-1.7 -0.4 -0.4 -0.4

-14 2.6 44 1.1

-3.3
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Tables 7-11

Total Eco_Pl — 5% HDV
Test - 80007

Actuated DGMARL
Pine 26991.12 30428.89
Carter 57094.26 46794.52
Broad 64535.16 51103.28
Market 95568.8 68690.66
Georgia 34127.16 41003.34
Lindsay 25395.81 22719.74
Houston 21812.12 16759.19
Douglas 24803.67 34139.17
Peeples 1957.362  2421.52
Magnolia 4593.444 4420.578
Central St 78523.56 48949.88

435402.5 367430.8

Total Eco_Pl — 3% HDV

Test - 80009 Test - 80010
Actuated DGMARL %
Pine 26876.46 26576.07 1.12% Pine
Carter 56642.02 45916.48  18.94% Carter
Broad 64473.02 49426.02  23.34% Broad
Market 82221.34 58018.87  29.44% Market
Georgia 35025.02 37918.21 -8.26% Georgia
Lindsay 24921.98 20094.77  19.37% Lindsay
Houston  20555.69 14239.56  30.73% Houston
Douglas 25899.19 32822.78 -26.73% Douglas
Peeples 1422.154 1830.014 -28.68% Peeples
Magnolia  4618.953 5516.213 -19.43% Magnolia
CentralSt  72600.75 42307.93  41.73% Central St
415256.6 334666.9 19.41%
Total Eco_PI — 1% HDV
Test - 80011
Actuated DGMARL
Pine 22414.17 24861.13
Carter 48304.07 38906.22
Broad 56874.65 41201.3
Market 85438.29 54420.59
Georgia 29541.67 33941.8
Lindsay 21951.49 17900.08
Houston 19898.14 14551.83
Douglas 21451.33 31266.32
Peeples 1587.332 1881.436
Magnolia  3861.027 4327.243
Central St 66225.3 38970.97
377547.5 302228.9

Test - 80008
Actuated

-12.74% pine 24956.75
18.04% carter 55420.46
20.81% Broad 62387.07
28.12% Market 93576.75
-20.15% Georgia 32370.87
10.54% Lindsay 24614.08
23.17% Houston 21726.01
-37.64% Douglas 22691.93
-23.71% Peeples 2156.546
3.76% Magnolia 4685.571
37.66% Central St 73120.13
15.61% 417706.2

Total Eco_Pl — 2% HDV

110

Actuated DGMARL

24081.56
50174.58

58851.8
75300.72
31339.99
22369.66
21062.65
21579.61
1672.345
4023.593
68926.94
379383.5

-10.92%
19.46%
27.56%
36.30%

-14.89%
18.46%
26.87%

-45.75%

-18.53%

-12.07%
41.15%
19.95%

Total Eco_Pl — 4% HDV

DGMARL %

27515.2
46314.24
51228.14
60697.98
38559.85
20679.51
16187.48
32832.43
1811.461
4880.236
43622.82
344329.3

24793.27
45763.32
46836.02
53083.14
34086.17
18513.47
14610.07
31090.11
1751.771
4327.326
42560.51
317415.2

%

Final Technical Report

-10.25%
16.43%
17.89%
35.14%

-19.12%
15.99%
25.49%

-44.69%
16.00%
-4.15%
40.34%
17.57%

-2.96%
8.79%
20.42%
29.51%
-8.76%
17.24%
30.64%
-44.07%
-4.75%
-7.55%
38.25%
16.33%
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Table 12
Model Simulation Original Timing Improved Timing Output(s)
Hour(s)
Actuated 1-hour 2 hours, 34 minutes 23 minutes, 59 seconds Eco_ P, Vehicles in Net, Signal
3-hours Around 5 hours 1 hour, 4 minutes State
1-hour 3 hours, 38 minutes 1 hour, 36 minutes Eco_PI, Vehicles in Net, Signal
DGMARL State, Node State and other
3-hours Around 12 hours 4 hours, 55 minutes details
Table 13
Without Message Passing Previous approach — With Message Passing
1-hr sim Actuated DGMARL % 1-hr sim Actuated DGMARL %
Pine 8532.522 9078.161 -6.39% Pine 8532.522 8832.619 -3.52%
Carter 15010.87 10692.89 28.77% Carter 15010.87 10918.25 27.26%
Broad 22306.46 14976.2 32.86% Broad 22306.46 15447.74 30.75%
Market 29651.8 24204.07 18.37% Market 29651.8 23137.99 21.97%
Georgia 13007.5 12652.69 2.73% Georgia 13007.5  13723.71 -5.51%
Lindsay 7422.028 7334.966 117%  Lindsay 7422.028  6644.614 10.47%
Houston 5200.612 3425.311 34.14% Houston 5200.612 3930.351 24.43%
Douglas 9298.906 1060068 -14.00%  pgglas 9298.906  11076.56  -19.12%
Peeples 520.0162 926.8122 -78.23% Peeples 520.0162 850.8524 63.62%
Magnolia 1783.23 1488.852 16.51% Magnolia 1783.23 1624.885 8.88%
Central St 25359.28 15550.25 38.68%
Central St 25359.28 16730.18 34.03%
138093.2 110930.9 19.67% 138093.2 112917.8 18.23%

1-hr

Pine
Carter
Broad
Market
Georgia
Lindsay
Houston
Douglas
Peeples
Magnolia
Central St
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Actuated DGMARL %

6956.699 6963.358 -0.10%
12658.01 8579.315 32.22%
18768.45 12117.76 35.44%
25233.92 17294.65 31.46%
10705.41 10331.45 3.49%

5786.092 4716.866 18.48%
5362.982 3488.379 34.95%
7093.474 9352.383 -31.84%
356.3135 612.2733 -71.84%
1459.848 1867.387 -27.92%
22217.69 12457.45 43.93%

116598.9  87781.23|N2A2%
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Table 14: DGMARL-Improved Intersections Coordination and Average Eco-PI: 26.52%

8185.241 | 8684.976 | -6.11% | 7979.621 | 2.51% | 7116.527 | 13.06% |6990.358 | 14.60% |6896.521| 15.74% [7154.246| 12.60%

13902.52 | 9850.864 | 29.14% | 13424.57 | 3.44% | 13761.67 | 1.01% [13776.82| 0.90% |14400.02| -3.58% [13914.22| -0.08%

20382.28 | 14065.34 | 30.99% | 13822.61 | 32.18% | 14478.4 | 28.97% |14857.32| 27.11% |14301.52| 29.83% [13946.63| 31.57%

25006.75 | 19325.07 | 22.72% | 18557.74 | 25.79% | 18310.03 | 26.78% |17891.16| 28.45% |17042.08| 31.85% [17959.51| 28.18%

12131.55 | 12002.76 | 1.06% [ 11204.29 | 7.64% | 12203.93 | -0.60% [12497.34| -3.02% [12278.29| -1.21% [11561.31] 4.70%

6376.639 | 5499.636 | 13.75% | 4274.406 | 32.97% | 4912.883 | 22.95% |4447.026 | 30.26% |4352.152| 31.75% [4581.422| 28.15%

5871.748 3450.75 | 41.23% | 3893.175 | 33.70% | 3520.334 | 40.05% |3275.001 | 44.22% |2794.201) 52.41% [3913.558| 33.35%

8050.33 10011.97 | -24.37% | 5327.777 | 33.82% | 5357.547 | 33.45% |5453.206 | 32.26% | 6156.63 | 23.52% [5732.179| 28.80%

487.9753 | 822.1571 | -68.48% | 308.687 | 36.74% | 305.2768 | 37.44% |278.1765| 42.99% |330.3526| 32.30% |321.9541| 34.02%

1597.224 | 2164.154 | -35.49% | 1451.924 | 9.10% | 1386.026 | 13.22% |1293.778| 19.00% |1224.132| 23.36% [1300.444| 18.58%

24678.95 | 14336.55 | 41.91% | 12856.28 | 47.91% 12287 50.21% [12419.58| 49.68% |12208.88| 50.53% [13097.94| 46.93%

126671.2 | 100214.2 | 20.89% | 93101.09 | 26.50% | 93639.63 | 26.08% |93179.76 | 26.44% |91984.79| 27.38% (93483.41) 26.20%

Table 15: DGMARL-Improved Intersections Coordination and Average STOPS: 17.91%

285 313 -9.82% 194  [31.93%| 192 [3263% | 182 | 36.14% | 191 |32.98%| 181 |36.49%
339 371 -9.44% 291 |14.16% | 289 | 14.75% | 297 12.39% | 284 |16.22% | 304 |10.32%
455 490 -7.69% 387 | 14.95% | 412 9.45% | 403 1143% | 417 | 835% | 396 |12.97%
598 643 -7.53% 582 2.68% 563 5.85% | 557 6.86% 522 |12.71% | 546 | 8.70%
355 404 | -13.80% 373 5.07% | 394 |-1099%| 395 |-11.27% | 397 |-11.83%| 380 |-7.04%
171 214 | -25.15% 130  |23.98% | 142 [1696% | 141 | 17.54% | 141 |17.54% | 143 |16.37%
155 130 16.13% 110  [29.03%| 110 |29.03%| 98 36.77% 86  |4452% | 113 |27.10%
232 287 | -23.71% 156 |32.76% | 145 [37.50% | 146 | 37.07% | 179 |22.84% | 159 |31.47%
24 33 -37.50% 16 33.33% 16 3333% | 15 37.50% 17 |2917%| 16 |33.33%
45 76 -68.89% 27 40.00% 29 35.56% | 27 40.00% 29  |3556% | 26 |42.22%
633 542 14.38% 433 |31.60% | 425 [32.86% | 426 | 32.70% | 425 [32.86% | 457 |27.80%
3292 3503 | -6.41% | 2699 2717 2688 2721
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Table 16: DGMARL-Imrpoved Intersections Coordination and Average DELAY: 33.49%

Actuated Previous Alg. New Alg. Test 1 New Alg. Test 2 New Alg. Test 3 New Alg. Test 4 New Alg. Test 5

Pine 2954.1 2995.5 -1.40% 4601.7 -55.77%| 3771.2 |-27.66% | 3875.8 -31.20% | 3556.3 |-20.39% | 4025.7 |-36.28%
Carter 8156.6 3308.1 59.44% 8628.8 -5.79% 8996.8 |-10.30% | 8847.7 -8.47% 9655.2 |-18.37% | 8942.4 | -9.63%
Broad 13416.9 6256.6 53.37% 7598.4 43.37% 7862.9 41.40% | 8310.2 38.06% 7723.3 | 42.44% | 7746.3 | 42.26%
Market 15011.7 8389.2 44.12% 8537.3 43.13% 8367 44.26% | 8296.3 44.73% 7956.9 | 47.00% | 8523.2 | 43.22%
Georgia 6234.1 5310.7 14.81% 5133 17.66% 5630 9.69% 5706 8.47% 5394.2 | 13.47% | 5300.3 | 14.98%
Lindsay 3451.8 1668.8 51.65% 2059.9 40.32% 2415.8 30.01% | 2077.5 39.81% 1952.9 |43.42% | 2126.2 | 38.40%
Houston 3096.8 1101.9 64.42% 1889.1 39.00% 1595.3 48.49% | 1554.7 49.80% 1303.5 | 57.91% | 1894.7 | 38.82%
Douglas 3542.7 4593 -29.65% 2425.3 31.54% 2705.2 23.64% | 2726.2 23.05% 2845.9 | 19.67% | 2800.5 | 20.95%
Peeples 113.1 217.3 -92.13% 46.9 58.53% 45.1 60.12% 41.4 63.40% 57.5 49.16% 51.5 54.47%
Magnolia 689.1 494.9 28.18% 897.9 -30.30% 816.9 -18.55% 779.8 -13.16% 659.4 4.31% 802.5 |-16.46%
Central St 14033.1 5226.2 62.76% 5274.2 62.42% 4957.3 64.67% | 5122.8 63.49% 4880.9 | 65.22% | 5311.2 | 62.15%

70700 39562.2 | 44.04% 47092.5 | 33.39% | 47163.5 | 33.29% | 47338.4 | 33.04% 45986 |34.96% |47524.5|32.78%

Table 17: CMEM results — MLK corridor

RBC DGMARL Difference (%)
Hydrocarbons (g/mile) 11.81 11.21 -5.04%
Carbon Monoxide (g/mile) 94.57 90.33 -4.48%
Nitrogen Oxides (g/mile) 1.51 1.55 2.93%
Carbon Dioxide (g/mile) 249.59 237.41 -4.88%
Fuel Consumption (g/mile) 603.20 573.25 -4.97%

Table 18: Average difference achieved across all intersections
Average Difference (%)

HC CO NOx FC CO,
2.4% -7.6% -1.0% -8.0% -10.7%
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Appendix C: Equations
FCCSSP:FCD+FCI+FCA (1)
FCDA :Ke " FCI (2)
FCp + FC,
=— 3
(FCD+ FCA)' TI
= 4
Kk FC, @
FCp + FCy); - Ty.
FCy;
- (FCp + FC,);* T,
FC—Plzz D, + —2 At b, (6)
e FCIi
=1
8
EcoPli ., = z dm; + Kin; * N, (7)
m=1
. 2
0.38 * CL'(1 — g, /CLY)
mi = 1= Y, | *Phng )
1—-POG,,; 1= Ym,
Phni =T gr el CI
mi 1= Ym; ( ')*POGmi
mi
1= P0Gy, * CL'/gm,
. : 9
* ll + Vim; * 1= gmi/CL‘ 9
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1- gmi/CLi

N,.=09x 10
CLL . = L 11
min 1 ZAORmicritical ( )
0.5 x Cngrevious

CLiyin = Li + (AoRyy + AoRy; + A0Ry3 + AoRyy) * hege (12)

Li:z Ly, (13)
ml

Ly ,= (llm, + Yt + AT — €7) (14)
AoRy , ={AoRy; ..., A0Ry, }  (15)
gmin¢m, = L¢m/ + AOR(I)m/ * hoqe  (16)

min

Lo = (i) (17)

(18)

MiNgcop] Mingeopy

) X AORmi * Kml’ * qmi fOT' ¢1—4

. _ group . group
Yextension1-4 ((CL + A) CL ZAORmi * Kmi * qmi

8
EcoPl},,, = z dm; + Km; * N, (19)

m=1

0.38 % CLI(1 — gy, /CLY)’
1 - ymi

* PEy, (20)

mi
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e 1-POG; 1= Y,
™1 —g,,./CL CL!
1— POG,y,, * CLi/gm.l
# (14 Yy, * L — L (21)
[ mi 1—gm,/CL
1—g,./CL
N, = 0.9 X Lo gmidCl oy

1= Y,

CLYop? = (CLicopy)  (23)

Total Lost Time

i —
CLminq - ZAORmL- e (24’)
~ 0.5xCL
_ CLl (A0R1.5) 2L
gminql - ming XW ( )
leritical
. (AOR, )
Iming, = Cleinq XW (26)
leritical
gminqg - minq ZAORm ( )
leritical
. (AOR,g)
Iming, = Cleinq XW (28)
leritical

_ group i
Yextension1-4 — (CLECOPI - CLminq)

critical movement based on AoG,; * Kp,; for phase 1 — 4 29
X
Y.critical movement based on K(AoG) (29)

Gtotaly_y = Iming;_, + Gextension1-4 (30)
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