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Section 1: Executive Summary 

The project titled “Developing an Energy-Conscious Traffic Signal Control System for 

Optimized Fuel Consumption in Connected Vehicle Environments” addresses energy-related 

challenges associated with adaptive traffic control systems by integrating connected vehicles 

(CV) and connected infrastructure (CI). The system developed in this project, a CV-based 

adaptive traffic control system, aims to improve fuel consumption in mixed traffic environments 

by capitalizing on emerging CV and CI communication technologies, as well as leveraging 

recent advances in Artificial Intelligence (AI), optimization, and edge computing. 

The system was tested at the MLK Smart Corridor, an urban testbed managed by the University 

of Tennessee at Chattanooga (UTC) and the City of Chattanooga. The system was validated 

through extensive simulations, both Software-in-the-Loop (SILS) and Hardware-in-the-Loop 

(HILS), and was further implemented and tested in real-world conditions at several intersections 

along the corridor. 

The Fuel Consumption Performance Index (FC-PI) and the Ecological Performance Index (Eco-

PI) were developed as the key components for evaluating the system’s impact on fuel 

consumption and emissions. These metrics provided a comprehensive means of understanding 

the impact of traffic signal control optimization in mixed traffic environments. 

The report presents an in-depth analysis of the Eco-PI, FC-PI, adaptive traffic control system 

integration, and the testing and field implementation of the system. The results demonstrate 

significant reductions in fuel consumption and emissions, showcasing the system’s capability to 

contribute to more sustainable urban traffic management. The report also documents the 

challenges encountered and recommendations for scaling and further improving the system. 
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Section 2: Introduction 

The growing complexity of urban traffic systems and the increasing need for efficient 

transportation management have driven the development of advanced traffic control systems. 

This project aimed to address the challenge of optimizing fuel consumption in connected vehicle 

(CV) environments through the development of an energy-conscious traffic signal control 

system. This research leverages deep-learning techniques for real-world vehicle counting and 

integrates these observations into an adaptive traffic control system, specifically tailored for 

connected and intelligent transportation infrastructure. 

Motivation  

The primary motivation behind this work was to enhance traffic management efficiency and 

minimize emissions from vehicles. Traditional traffic signal control systems often fall short in 

achieving optimal performance due to their reliance on outdated technologies and lack of real-

time data integration. By incorporating deep learning-based vehicle detection and advanced 

adaptive control algorithms, this research sought to improve fuel efficiency and reduce the 

environmental impact of traffic.  

Objectives 

This report details the comprehensive research and development undertaken to achieve these 

goals. This project was executed in several stages, including the development of a deep learning-

based framework for vehicle detection, the integration of hardware-in-the-loop (HIL) simulation 

for testing adaptive control strategies, and the implementation of field tests to evaluate system 

performance in real-world scenarios. The culmination of this work is an innovative traffic signal 

control system designed to meet the demands of a modernizing traffic environment 
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Section 3: Methodology 

3.1 Deep Learning Framework 

The primary objective of this part of the research is centered around accurately counting the 

number of vehicles present in each lane at various intersections. To accomplish this task, we 

have developed a sophisticated framework based on YOLOv7. This framework has been 

carefully designed and implemented to efficiently process and analyze traffic data obtained from 

GRIDSMART systems. By leveraging the capabilities of YOLOv7, we aim to provide a robust 

and effective solution for automating vehicle counting tasks, thereby contributing to improved 

traffic management and enhanced transportation planning.  

 
Fig. 1: System Pipeline 

Initially, as a proof of concept, we picked one intersection, Central, and subsequently, four 

distinct approaches were formulated, each corresponding to a specific geographic direction of a 

lane (East, West, North, and South). 

To validate the feasibility and effectiveness of these approaches, comprehensive data was 

collected, capturing the necessary “proof of concept” for all four directions. The acquired data 

was then meticulously annotated using the CVAT annotation tool, where a total of 2000 images 

were manually labeled to facilitate the training process. YOLOv7 was used as our object 

detectors due to its accurate results compared to its predecessors.  
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Fig. 2: Intersection at MLK Blvd and Central Ave. 

After testing on the Central intersection, using the initially annotated 2000 images, we 

determined that additional data was needed for other approaches because of variation in camera 

locations. To address this, we annotated an additional 1200 images, specifically targeting the 

unseen approaches to expand the dataset. Using the trained YOLOv7 model in inference mode, 

we obtained preliminary annotation data from various times of day, including night, early 

morning, and morning periods. This dataset, consisting of 5100 images, was reformatted and 

uploaded to CVAT for revision and accuracy checks. In total, 8310 images (2000+1200+5110) 

were accurately annotated and used for retraining the model, ensuring robustness and 

adaptability to different traffic scenarios.  

To ensure the system operates fast enough, maintaining a maximum delay of 1 second (a crucial 

requirement for controlling traffic lights based on real-time occupancy data), we deployed the 

framework across two virtual instances. The first instance, equipped with a Tesla V100 GPU 

(32GB), handles five intersections each with four approaches. The second instance, running on a 

P100 GPU (12GB), manages three intersections. Through extensive testing, we verified that the 
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system processes at least 3 frames per second per intersection per approach, effectively ensuring 

a real-time environment.  

The vehicle counts for each intersection and approach are stored in files and made available via a 

RESTful API. This API, built using Flask, was chosen for its simplicity and ability to handle 

high throughput with minimal overhead. Flask’s lightweight architecture makes it ideal for real-

time applications, as it allows fast, asynchronous requests and responses, significantly reducing 

latency. By employing Flask’s threaded mode, we ensure that the API can handle multiple 

requests simultaneously without blocking, making it capable of delivering real-time traffic data 

quickly enough to meet the system’s 1-second maximum delay requirement.  

3.2 DGMARL System Development 

3.2.1 Model Overview 
The DGMARL framework formulates the traffic signal control problem as a Multi-Agent 

Markov Decision Process (MDP). Each intersection is represented as a node in a spatial-temporal 

graph, and the roads between intersections are modeled as edges. The reinforcement learning 

agents control the signal phases at each intersection, to maximize a cumulative reward defined 

by the reduction in vehicle delays, stops, and environmental impacts (measured by Eco-PI).  

Figure 3 shows the architecture of DGMARL. The 

architecture has the following features:  

● A spatial-temporal graph neural network is used to 

formulate the temporal and spatial features of the 

whole transportation network. Each intersection is 

modeled as a node of the graph and the roads 

connecting the two interactions are modeled as 

edges of the graph.  

● As a decentralized scheme, on each node, an 

Advantage Actor Critic (A2C) reinforcement learning 

agent generates actions to control the traffic lights at the corresponding intersection. 

● The DGMARL integrates the black-box reinforcement learning framework and traffic 

dynamics derived from the temporal and spatial correlation between intersections. 

3.2.2 Simulation Environment 
The VISSIM micro-simulator was used to test and evaluate the DGMARL model. The network 

was configured with real-world traffic data from MLK Blvd during peak hours observed on Dec. 

Fig. 3: DGMARL 
Architecture  
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15th, 2022. The state and reward functions were derived from VISSIM, with simulations 

conducted for durations ranging from 1 to 24 hours to evaluate performance under varying traffic 

conditions.  

3.2.3 Mathematical Model 
Initially, a mathematical model was developed to optimize traffic signal timing based on 

observed demand at intersections along MLK Blvd, using the VISSIM micro-simulation 

platform for evaluation. The model tracked traffic data such as vehicle occupancy, signal start 

times, and cycle duration, and then identified optimal phase durations while considering 

constraints like maximum cycle length. Initial tests showed a 12.32% improvement in Eco-PI, 

but further adjustments, such as modifying green light durations, increased performance to 

40.12%. Integrating a dynamic stop penalty further enhanced overall performance by 45.63% 

though some intersections, like Magnolia, showed mixed results. However, this method was 

preliminary and did not include constraints like red clearance, but it provided valuable insights 

into traffic flow, helping to identify key elements for developing a machine learning model to 

optimize traffic signal timing.  

3.2.4 Integrating Math Model with DGMARL 
We developed a multi-agent learning model using the Advantage Actor Critic (A2C) policy and 

integrated it with the VISSIM network for MLK Blvd through a DGMARL-compatible Python 

script and COM interface. The DGMARL algorithm employs a neural network-based “critic” to 

estimate the state-value function and an “actor” to update policy distribution based on the critic’s 

recommendations. The model was trained and validated across multiple scenarios, incorporating 

constraints like minimum phase duration and maximum cycle lengths. We have analyzed the 

model’s performance under various conditions, adjusting parameters such as the number of 

episodes, learning rate, simulation duration, batch size, and learning frequency. 

Input and output of the DGMGRL model is shown in Table 1.  
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Table 1: Input and Output of DGMARL 

 
 

3.2.5 Integration Pedestrian Recall and Physical Constraints to DGMARL 
To adhere to existing field constraints and provide a safe environment for users, we have 

included safety measures such as pedestrian recall, minimum green duration, and maximum 

cycle length as constraints in DGMARL. 

In the initial effort, since pedestrian input was not yet configured in VISSIM, we treated 

pedestrian requests as recalls, using default timings for “pedestrian walk” and “flashing don’t 

walk” whenever the phase was green. The minimum phase duration was set to the higher value 

between the configured minimum green duration and pedestrian recall timing. However, the 

maximum cycle length constraint caused delays, as the DGMARL agent had to serve fixed phase 

sequences even when there was no traffic demand. To resolve this, we removed the maximum 

cycle constraint and introduced a phase sequence-free model in the next effort. This 

improvement allowed DGMARL to switch to the phase with the highest traffic occupancy. We 

also included right-turn movements in the Eco-PI calculation to account for stops and delays 

caused by yielding to oncoming traffic. Also, we integrated an optimization frequency parameter 

(Δt) to account for data communication latency between the field and VISSIM, trained and tested 

the model with a 5-second optimization frequency.  

3.3 Digital Twin System Design 

The design philosophy of the digital twins is driven by the need to address a few key challenges. 

Traditional traffic management systems often rely on static timing for traffic signals and are slow 

to respond to real-time changes in traffic flow. This results in congestion, delays, and 

inefficiency. A system that can utilize real-time data from sensors and GPS-enabled vehicles to 

dynamically adjust traffic control systems would be a much-improved alternative. This helps 

improve traffic flow, reduce congestion, and optimize road usage by reacting instantly to 

changing conditions. A sign of robustness in a system is the ability to use current and historical 

information to gain foresight into how a system may change over time. The availability of real-
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time data offers the opportunity to employ deep analytics in the form of machine learning models 

to predict incidents ahead of time. Prior explorations of digital twins and the incorporation of 

streaming field data have shown the necessity to accommodate data flaws. These come in many 

forms and varying degrees, from data being riddled with gaps or entirely missing. 

To handle the scaling of such a deeply integrated system, a three-tier approach was adopted for 

this study. Each tier is incrementally more complex than the previous. The primary differences 

are in the method of the simulation itself and the data sources. The simpler models allowed for 

more efficient testing of changes in the development of algorithms with faster than real-time trial 

runs. A breakdown of the Tiers is as follows: 

● Tier 1 involved a VISSIM model that was prepopulated with archived data. The data is 

manually incorporated into the model through the VISSIM interface itself. 

● Tier 2 was developed to test the ingestion of data in a pseudo real-time environment. The 

archived data was periodically streamed to the VISSIM model which dynamically 

adapted to the changes.  

● Tier 3 is the real-time digital twin which uses data streamed directly from the field 

devices. This data is then ingested by VISSIM, and the model is updated accordingly.  

Tier 1  

The incorporation of archived data into the VISSIM model directly results in the simplest version 

of the digital twin. This model serves as a foundation for subsequent development stages. Data, 

such as traffic volumes, signal timings and turn movements, are incorporated into the simulation 

in advance, enabling the testing of optimization algorithms in a controlled environment. By using 

archived data, scenario testing can be done efficiently without the added complexities of real-

time data. 

The MLK corridor Tier 1 model is prepopulated with one minute aggregate traffic volume data 

and ten-minute turn movement data provided by the City of Chattanooga. Two versions were 

created for the same tier, for both the PM peak and 24-hour traffic scenarios.  

Tier 2 

With the successful creation of a Tier 1 model, a few key modifications were made to bring it 

closer to real world elements. The method of incorporating archived data was changed to that of 

a streaming model. The SPaT, traffic volumes, and turn count data were communicated to the 
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model during its runtime unlike the Tier 1 method of loading it prior to a simulation run. This 

incremental advancement in the model helped lay the groundwork for the Tier 3 system. 

Tier 3 

The final tier integrates real-time data streams into the simulation model. By utilizing actual field 

data, the model becomes a real-time representation of the smart corridor, capable of reflecting 

live traffic conditions. Modifications in this tier include the ingestion of real-time volume, turn 

count, and SPaT data, enabling the model to continuously adjust based on live data inputs. The 

consistent data streams from the MLK corridor allowed for real-time performance monitoring 

and optimization of traffic signal timings for fuel efficiency. 

3.4 Digital Twin Model Development 
3.4.1 Digital Twin Modules 
In this study, the Digital Twin is developed using vehicle real-time and historic volume count, 

turn count, and Signal Phasing and Timing (SPaT) data available from approximately 2.1 miles 

of Martin Luther King Smart Corridor, Chattanooga, Tennessee, consisting of 11 signalized 

intersections. A smart corridor Digital Twin model architecture typically includes four key 

components as shown in Figure 4. 

 
Fig. 4: Digital Twin Architecture 

Module 1: Raw Data Stream Processing Module - includes processing of raw data to parse, 

format, and store the data in a database. From the physical MLK Smart Corridor, the left, 
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through, and right turn vehicle counts per lane at the 11 intersections are obtained. This data is 

processed to obtain approach level (Eastbound, Westbound, Northbound, and Southbound) 

volume and turn counts. Further, 10 Hz Signal Phase and Timing (SPaT) data is obtained from 

the signal controllers in the corridor.  

Module 2: Dynamic Data-Driven Traffic Simulation Module - includes PTV-Vissim microscopic 

traffic simulation model of the Smart Corridor, dynamically driven using volume, turn 

movement ratios, and signal indications data (from Module 1). In this implementation, 

intersection approach level 1-minute aggregate volume counts, 10-minute aggregate turn counts 

data, and signal timing are dynamically driven using PTV-Vissim’s COM module. Using COM 

the signal indications can be driven using external SPaT (Signal Phasing and Timing) data or 

PTV-Vissim’s internal Ring Barrier Controller (RBC) module.  

Module 3: Prediction and Optimization Module or Simulation Testbed Application Module - 

consists of tools and algorithms to process simulation outputs based on the requirements of the 

application. This module contains processes or algorithms that are driven using outputs from the 

Digital Twin simulation. In this study, the outputs such as detector occupancy, each direction 

approach level vehicle count aggregates, vehicle velocity, and current signal state, etc are 

generated from the PTV-Vissim simulation model in the Dynamic Data Driven Traffic 

Simulation Module are used as inputs for prediction and optimization for the signal timing plan.  

Module 4: Real Time Data Broker Module - handles real time dynamic data transactions between 

modules. This module consists of a Flask based web service to handle data 

transactions/communication between other three modules. 

3.4.2 Three-Tier Incremental Framework for Digital Twin Development 
The three-tier incremental framework used for the MLK Smart Corridor study is described in this 

section. The framework includes the development of structures for execution of replicate trials 

faster than real time, enabling efficient testing and development of algorithms and applications in 

the first two tiers, leading to the development of the final digital twin in the last tier.  

Tier 1 - Development of Prepopulated Offline Simulation 

The developed Vissim model provides the base simulation construction (Vissim link and 

connector layout, signal placement, etc.) that is harnessed in all three Tiers. While basic Vissim 

model development is often a partially manual process, the authors advise the development of 

scripts for converting archived data into the input file formats utilized by the underlying 
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simulation, enabling the ability to efficiently test developed algorithms under different conditions 

(e.g., weekday vs weekend, growth scenarios, etc.). Minimization of the manual effort required 

to test differing scenarios is critical to the overall usability and effectiveness of such a platform. 

Scripts used for data preparation and prepopulating Vissim model may be found at 

https://github.com/hunter- guin-gatech/MLK_Digital_Twin. Detailed guidance for developing 

the underlying Vissim model may be found in Hunter, 2021 (1).  

In this tier, for the MLK corridor, the Vissim simulation model of the corridor is populated with 

one-minute volume and ten-minute aggregate turn movement ratio data for a representative time 

period. In Tier 1, traffic signals are controlled using Vissim's Ring Barrier Controller (RBC) 

feature which emulates typical signal control features found in most traffic signal controllers 

deployed in the field. For example, the MLK corridor signal timing plans and phase diagrams 

provided by the City of Chattanooga were used to configure the RBCs. For the MLK case study 

two versions of the prepopulated Vissim model were created: 1) a PM peak model that simulates 

the 3 PM to 6 PM period, and 2) a 24- hour version that simulates an entire day. These models 

provide an efficient means for developing and testing optimization algorithms on a simulation 

testbed much faster than real time. These models are used to conduct initial studies for 

development of local and global signal timing optimization algorithms. 

Tier 2 - Development of Pseudo Digital Twin (Driven with Archived Data) 

The goal of Tier 2 is the development of a dynamically driven simulation model, i.e., data is 

streamed to the model during runtime rather than pre-populated prior to model execution as in 

Tier 1. Dynamic streaming data includes volumes (demand), intersection turn ratios, and SPaT 

data. The model differs from the model in Tier 1 in its ability to drive the simulation during 

runtime using archived field data streams in their original formats. Further, it is highlighted that 

in this model the signal indications are controlled using field received SPaT messages, not the 

internal Vissim RBC. Thus, the implemented signal phase times will match the field directly, 

rather than relying on the accuracy of the simulation signal control emulator (i.e., Vissim's RBC 

feature). 

This effort includes development of the digital twin architecture modules (Figure 4). It differs 

from the real time data-driven digital twin (Tier 3) as it simulates data from an archival data 

stream rather than a real time stream. The key developments found in Tier 2 related to the digital 

twin architecture (Figure 4) include: 
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• Module 1: Development and integration of hardware and software for receiving and 

processing of data streams in sync with wall clock time. 

• Module 2: Integration of the Tier 1 simulation model into the system, enabling volume 

and signal control to be driven by external data streams. 

• Modules 3 and 5: Development of the application specific functions. In this case study 

this involved the development of the traffic signal optimization algorithms for module 3 

and the second simulation instance for module 5, which ingests SPaT data from module 3 

instead of field SPaT data. 

• Module 4: Development of a Flask [28] based web service to handle data 

transactions/communication between modules, and fetching of archival volume, turn 

counts, and SPaT data from the database. 

Tier 2 introduces two significant benefits in the three-tier approach to the digital twin platform. 

Firstly, it contains the development of the digital twin architecture necessary to utilize real time 

(or wall clock time) data streams. Importantly, the ability to utilize archived data streams to 

simulate real time streams allows for simplified error checking in dynamic execution of system 

components. Secondly, Tier 2 allows for replicability under identical streamed field conditions 

when testing developed optimization algorithms or other smart corridor applications. 

The Tier 2 platform can be used to simulate any day as long as the archived data is available for 

that day. This allows for testing and refinement of different strategies implemented in Module 3, 

capturing the variations across days of the week, holidays, and special events. Vissim's inbuilt 

evaluation measures such as route travel time and delay, approach queue length, etc., are used by 

Module 3 for evaluation and optimization. 

Tier 3 - Development of Real Time Data Driven Digital Twin 
Tier 3 contains the development of the digital twin driven using real time streaming volume, turn 

count, and SPaT data. Module developments from Tier 2 are utilized with minor modifications. 

The key modifications made in Tier 3 are: 

• Module 1: Data ingestion programs are created to receive and process real time data from 

field devices and inject the processed data into relational MySQL database tables. The 

system input configuration is modified to point to the database tables for real time data 

streams instead of streams generated from archived data. 
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• Module 2: Model verification, validation, and calibration may be extended to validate real 

time simulation performance. 

• Module 4: Service configuration modified to point to real time database tables instead of 

archived data tables. 

3.5 Fuel Consumption Performance Index (Eco FC-PI) 

The goal of this task is to develop an environmental-based objective function for control 

optimization. To achieve this goal, we developed a novel performance measure referred to as 

Ecological Performance Index (Eco-PI). The Eco-PI is a performance measure that characterizes 

impact of signal timings on excessive FC and vehicular emissions at signalized intersections by 

looking at how various operational and traffic conditions impact unnecessary vehicular stops at 

controlled intersections. Eco-PI is a scalable performance measure that can be estimated on 

various spatial levels–from an Eco-PI for a specific traffic movement (related to a signal phase) 

through an Eco-PI for a whole intersection (in order to be able to find the right balance for 

various traffic movements) to an Eco-PI for the entire road network. 

The development of the Eco-PI is based on the well-known concept of Performance Index, a 

performance measure which has been used for decades in traffic signal optimization processes to 

derive a right balance of delays versus stops when optimizing traffic signals (2-9). The PI 

achieves balance through a linear combination of delays and stops (mainly for major through 

movements), where the key factor is the stop penalty “K”, which represents a weighting factor, 

or a stop equivalency measured in seconds of delay. However, the PI is neither properly defined 

(especially from the point of its technical derivation), nor is it comprehensively evaluated for 

several impacting factors. A more technical outcome of these omissions is the fact that the PI is 

used as a single deterministic formula (6-8), as opposed to being a family of relationships that 

depend on several operational factors. Specifically, the contemporary signal optimization 

practice assigns a constant value (e.g., 10 seconds) to the K and it does not recognize it as a 

parameter that is dependent on various operational conditions.  

The goal of using the Eco-PI is to reduce fuel consumption and various pollutant emissions 

caused by traffic signals. However, previous studies (9-10) have shown that one or more 

pollutant criteria do not linearly correlate with FC. That suggests that most likely an Eco-PI that 

minimizes other emissions/pollutant criteria. Therefore, we defined the Eco-PI as a generic 

performance measure that can be derived to reduce FC and any other pollutants (e.g., HC, CO, 
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NOx, CO2, and PMs). As a consequence, a specific intersection or a network Eco-PI could be 

defined as one from a family of similar PIs, all based on different environmental factors. For 

example, FC-PI, HC-PI, CO-PI, NOx-PI, CO2-PI, and PMs-PI are all members of the Eco-PI 

family that are derived specifically to reduce FC, HC, CO, NOx, CO2, and PMs, respectively. 

Our research, however, focused on a methodology to derive an FC-PI considering impacts of 

various operation conditions (e.g., cruising speed) on the K value.  

3.4.1 Major Factors Impacting Stop-Related Fuel Consumption 
When developing an FC-PI, the K factor becomes the number of seconds of delay that consume 

the same amount of fuel equivalent to the action of stopping (deceleration and acceleration). 

Thus, the value of K is significantly impacted by the FC experienced during a stopping 

maneuver, which eventually impacts the total value of FC-PI. The major factors (driving 

conditions) that impact FC during a stop at a signalized intersection are those that impact the 

acceleration phase of the entire stop-and-go maneuver. While the same, or other, factors may 

significantly impact the deceleration phase too, such impacts are usually of much lower 

significance as much less fuel is always consumed during the deceleration phase. Thus, it is 

logical to pay more attention to what happens on the acceleration side of the maneuver, which is 

the major driving phase for increased FC. For this reason, we mainly focused on those factors 

that impact FC mainly during the acceleration phase, which are: 1. Distribution of vehicular 

types and engines; 2. Proportion of heavy vehicles in fleet distribution; 3. Driver’s behavior; 4. 

Road gradient; 5. Cruising speed; and 6. Wind effect. 

3.4.2 Development of the FC-PI 
Observing the kinematics and dynamics of a vehicle stopping at an intersection microscopically, 

shown in fig. 5, was the essence of deriving the FC-PI. When a vehicle stops at a signalized 

intersection, it must go through three driving phases, as shown in fig. 5a. Firstly, the vehicle 

decelerates from its original cruising speed to zero (deceleration phase)> secondly, the vehicle 

waits for the signal to turn green, during which time the vehicle’s engine idles (idling phase). 

Thirdly, once the signal turns green, the vehicle accelerates from zero to its cruising speed 

(acceleration phase). Those three phases form the concept of the “Cruising Speed Stop Profile” 

(CSSP), where cruising speed after acceleration is assumed to be the same as before the 

deceleration phase.   
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Fig. 5: Dynamics and Kinematics of a Stopped Vehicle 

Part b of Fig. 5 shows the CSSP of the same vehicle, where the speed foes from its cruising value 
to zero, and then back to the cruising value. Part c shows how acceleration changes during the 
process, which directly impacts FC, shown in part d. It can be stated that for CSSP, the total 
amount of fuel consumed is: 

𝐹𝐶!""# = 𝐹𝐶$ + 𝐹𝐶% + 𝐹𝐶& 
Where: FCCSSP – total fuel consumed during a CSSP [gallons, liters, or grams], FCD – fuel 
consumed during the deceleration phase; [same unit as FCCSSP], FCI – fuel consumed during the 
idling phase; [same unit as FCCSSP], FCA - fuel consumed during the acceleration phase; [same 
unit as FCCSSP]. 
While the FC curves shown in Figure 1d are hypothetical, it is obvious that fuel consumed 
during the acceleration mode is by far greater than fuels consumed either during braking or 
idling at the intersection. While this simple concept (including FC) has not been shown in 
relation to the PI concept before, it has been clear since late ‘60s (10) that idling mode can be 
associated with ‘pure’ delay (stopped delay, to be more precise) while braking and acceleration 
are associated with a full stop, or a car’s maneuver to decelerate from its cruising speed to zero 
and then accelerate back to the cruising speed. That suggests that it is crucial to separate 'delays' 
from 'stops’, the two commonly used traffic performance measures for signalized intersections. 
Such separation is achieved only by separately identify extra FC attributed to a stopping event 
𝐹𝐶$& (𝐹𝐶$ + 𝐹𝐶&) from that attributed to the stopped delay (𝐹𝐶%) (or waiting time in the queue 
at traffic signals). 

Now, following that the K factor is the number of seconds of delay that consume the same 
amount of fuel consumed by a stopping event, we can say that 𝐹𝐶$& is equal to an equivalency 
factor ‘constant’ (𝐾') multiplied by the 𝐹𝐶%, as expressed in Equation 2. 
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 𝐹𝐶$& 	= 𝐾' 	 ∙ 	𝐹𝐶% 	        (2) 
By rearranging Equation 2, the unitless constant (𝐾') can be expressed as shown in 

Equation 3. 

 𝐾' =
𝐹𝐶$ +	𝐹𝐶&

𝐹𝐶%
	 (3) 

The idling phase duration varies based on the red interval’s length. Therefore, the next 
step is to divide 𝐹𝐶% by the total idling time (𝑇%) in seconds, as shown in Equation 4. That is 
important to assign the number of seconds of stopped delay that is equivalent to a stopping event, 
which is the stop penalty (K).  

 𝐾 =
(𝐹𝐶$ +	𝐹𝐶&) ∙ 	𝑇%

𝐹𝐶%
	 (4) 

Naturally, K values will be different for various movements based on several factors. For 
example, it is obvious that total fuel consumed on a movement with a high truck percentage in 
the fleet will be larger than total fuel consumed on a movement with light-duty vehicles only. 
Thus, we define a movement-specific 𝐾( for each movement i: 

 𝐾( =
(𝐹𝐶$ +	𝐹𝐶&)( ∙ 	𝑇%(

𝐹𝐶%(
	 (5) 

Next, one can define an FC-Performance Index (FC-PI) for a network of traffic signals with i 
movement, and a given analysis period (e.g., an hour), as: 

 𝐹𝐶 − 𝑃𝐼 = 	.
)

(*+

𝐷( +	
(𝐹𝐶$ +	𝐹𝐶&)( ∙ 	𝑇%(

𝐹𝐶%(
	 ∙ 	𝑆( 	 (6) 

While all of the variables have been introduced above, the index i applies to each eligible 
movement in the network and the n is the total number of eligible movements.  
3.4.3 Investigating Impact of Operating Factors Contributing to Eco-PI 
When investigating the individual impact of a particular factor (e.g., vehicle type) on FC, all 
other factors (e.g., cruising speed, road gradient, fleet distribution, driver behavior, and wind 
speed) were kept constant, at their default values (discussed next). A total of 74 experiments 
were designed to cover a wide range of variables for each of the investigated operational 
condition factors. Table 2 shows a summary of the variables that were tested individually for 
each investigated factor. It should be noted that we adopted various vehicle types from CMEM. 
Table 2 Variables for various operational conditions impacting FC 

Vehicle type Fleet distribution Driver behavior Road gradient Cruising speed Wind effect 
Variable FC (g) Variable FC (g) Variable FC (g) Variable FC (g) Variable FC (g) Variable FC (g) 
LDV1 56.6 100:0 56.6 Func1 45.7 -7 34.8 20 16.1 50 tailwinds 473.8* 
LDV2 57.2 99:1 62.5 Func2 47.2 -6 37.6 25 21.8 40 tailwinds 505.6 
LDV3 55.5 98:2 68.7 Func3 49.5 -5 40.8 30 27.2 30 tailwinds 510.8 
LDV4 52.5 97:3 74.4 Func4 51.9 -4 43.5 35 36.7 20 tailwinds 513.3 
LDV5 57.8 96:4 80.1 Func5 53.2 -3 46.3 40 46.4 10 tailwinds 525.6 
LDV6 54.6 95:5 86.5 Func6 55.4 -2 49.6 45 56.6 No wind 549.0 
LDV7 55.5 94:6 92.3 Func7 56.3 -1 52.7 50 70.3 10 headwinds 587.2 
LDV8 59 93:7 98.4 Func8 58.4 0 56.6 55 85.5 20 headwinds 628.5 
LDV9 58.7 92:8 104.1 Func9 60.5 1 59.2 60 106.6 30 headwinds 690.8 
LDV10 111.2 91:9 110.9 Func10 62.2 2 63.7 65 135.3 40 headwinds 835.4 
LDV11 56.8 90:10 117.6 Func11 63.7 3 67.1  50 headwinds 979.5 
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LDV12 55.9 
 

Not applicable 

Func12 65.4 4 71.1 Not applicable 
*Values are for 

HDDVs 
HDDV1 816.5  

Not applicable 
5 75.0 

HDDV2 894.4 6 80.2 
HDDV3 549.0 7 85.6 

Fig. 6 shows the process of modeling traffic at the testbed intersection, performing various 
experiments, post-processing data trajectories from VISSIM, estimating FC (based on trajectories) 
in the CMEM, and post-processing FC estimates in Matlab to compute the value of K. A default 
value for each of the evaluated factors was identified, as a reference value used when comparing 
FC results, to ensure consistent comparisons. Light-duty vehicle 1 (LDV1), Heavy-duty vehicle 
Diesel vehicle 3 (HDDV3), no heavy vehicles, 12 deterministic acceleration-deceleration 
functions, level terrain, 45 MPH, and no wind were selected as default values for LD vehicle type, 
HDD vehicle type, driving behavior, road gradient, cruising speed, and wind speed, respectively. 

 
Fig. 6: VISSIM-Matlab-CMEM connection 
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3.4.4 Developing Regression Equations Based on Simulation 

The amount of consumed fuel (in grams), for a CSSP representing each of the various 

experiments, are presented in Table 2. For each of the results from Table 2, the values of K are 

illustrated (for each variable individually) as a function of a specific FC factor in Fig. 7.  

Each of the charts in Fig. 7 (except 7c) includes 13 data series out of which 12 represent 

deterministic deceleration-acceleration functions investigated in the study, and the bold line 

represents an average of those 12 data series. Fig. 7c is an exception because it already shows the 

impact of various driving behaviors on K value. Results of the experiments with various vehicle 

types (columns 1 and 2 in Table 2) show that each vehicle type consumes a different amount of 

fuel. Such difference in FC is mainly apparent when comparing LDVs and HDDVs between 

various vehicle types as visualized in Fig. 7, which illustrates the FC results during the same 

CSSP regime for three vehicle types: LDV10, LDV11, and HDDV3. The variations in FC 

between different vehicle types will result in various K values as shown in fig. 7a, which depict 

that stop penalty ranges between 118-second to 250-second for various LDVs 

Such a conclusion can also be reached by observing the stop penalties of HDDVs, which resulted 

in ~9-15 times higher values than the stop penalty from the LDVs. These facts are expected to 

result in a significant impact on the K value, when calculated for a fleet of vehicles with a high 

HDDV percentage.  

Fig. 7b shows that the K factor follows an approximately linear relationship with an increase in 

the percentage of HDDVs. Based on fig. 7b, we can conclude that every increase of 1% of 

HDDVs in the fleet costs around 11 seconds of extra waiting-idling time (based on the 

equivalent FC) for every additional stop at a traffic signal. Similarly, every increase of 1% of the 

road gradient costs 6 to 11 seconds of extra waiting-idling time, as shown in fig. 7c.  

As seen from fig. 7d, there is no clearly recognizable pattern to correlate variations of the K 

factor with some intuitive expectations related to different driving behaviors, because such 

behaviors are usually based on unique mental and physical characteristics of the drivers. 

Nevertheless, the impact of those differences is significant on the K value (ranging from 105 to 

147 seconds for various deceleration-acceleration functions). 

In relation to the cruising speed, the K factor growth seems to follow an exponential equation, as 

shown in fig.7e. This is especially observable for cruising speeds higher than 45 MPH. This 
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finding can be interpreted as if stopping a vehicle at a higher cruising speed introduces a much 

more significant interruption than stopping a vehicle traveling at a slower speed. 

Results of the wind speed and direction have shown, as expected, that headwinds cause the 

HDDV to generate more energy (which requires more fuel) to overcome the energy of the wind 

blowing in the opposite direction. Those results are reflected on the K value as depicted in fig. 

7f; thus, they confirm the importance of including wind effect in K calculations, especially for 

fleets with a high percentage of HDDVs. To summarize, the results indicate that the K factor 

should be much larger than used by current signal timing practices and that it should be defined 

differently for various traffic movements and intersections, depending on their operating and 

traffic conditions.  

 
a)vehicle type b) fleet distribution 

 
c) road gradient d) driving behavior 
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e) cruising speed f) wind effect 

Fig.7: Impact of various operational condition on stop penalty (K); DB: driver behavior 
Finally, fig. 8  presents regression equations to compute the K factor considering the individual 
impacts of percentage of heavy vehicles in fleet, road gradients, cruising speeds, and wind 
effects. It should be noted that when developing a regression equation for one of the four above-
mentioned factors, the default values of all of the other factors (and the 12 deterministics driving 
behavior functions (shown in fig. 7d) were used. Also, those equations were developed with the 
assumption that the final cruising speed is the same as the initial cruising speed. 

 
a)percentage of HDDVs in fleet  b) slope during acceleration phase 

 
c) cruising speed  d) aerodynamic effect of wind speed and direction 

Fig. 8: Regression models to computer stop penalty 
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Table 3 presents the coefficient of determination and the range of each of the developed 
regression equations, based on existing simulation results. 
Table 3 Regression equations to compute the stop penalty 

Factor Equation Range R2 
𝑥!"#:	% of HDV 𝐾 = 	129.37 ∙ 𝑒$.$&'(∙*!"# 		 𝑥!"# = [0, 10]	 0.6273 

𝑥+,:	Road gradient (%) 𝐾 = 122.19 ∙ 𝑒$.$&-.∙*$% 			 𝑥+, = [−7, 7]	 0.8335 
𝑥/0:	Cruising speed (mph) 𝐾 = 14.761 ∙ 𝑒$.$-&1∙*&' 	 𝑥/0 = [20, 65]	 0.9645 
𝑥23:	Wind effect (mph) 𝐾 = 	0.1613 ∙ 𝑥234 + 9.6642 ∙ 𝑥23 + 1244.6	 𝑥23 = [−50, 50]	 0.9389 

It should be noted that the equations in Table 3 can be used to compute the K factor required to 
minimize FC, but not necessarily any of the pollutant emissions. Fig. 9 shows the difference in 
the K values required to minimize various pollutant emissions and FC under various cruising 
speeds with all other operation conditions are identical. One can conclude, from fig. 9, that the 
stop penalty has a different value for each pollutant criteria at each speed. For example, a K 
value of 70 seconds will minimize HC at a speed of 45-mph, whereas a much larger K of 225 
seconds is needed to minimize NOx at the same speed. While some of the criteria yield to very 
similar Ks (for like cruising speeds), e.g., FC and CO2, the others are quite different (e.g., HC 
and NOx). A careful analysis of these values could help us define signal optimization strategies 
for various areas in the cities based on their sensitivity to particular emission and pollution 
criteria. 

 
Fig. 9: Impact of a single stop-and-go event of excess emissions 

3.4.5 Data Required for Eco-PI Computation 
Each of the delays, number of stops, and the stop penalty must be determined in order to 
compute the Eco-PI. Considering that two most important data types needed for delay and 
number of stops estimations are volumes (vehicular arrivals) and signals phasing and timing 
data, they are examined in Table 4. Data are organized per attribute (e.g., type, source, etc.) and 
their utilization in optimization procedures, offline (pretimed), online (adaptive), and online CV 
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(adaptive CV). Please note that several data sources might be considered to collect the necessary 
data in some instances (see Vehicle arrivals downstream in Table 4). 
As concluded before, all of the tested operating factors have significant impact on the stop 
penalty. For that reason, it is crucial to include the impact of all of those operating factors on the 
stop penalty when computing the Eco-PI. Table 5 presents the data required to include each of 
the factors with a major impact on the stop penalty. Finally, Table 6 summarizes the cruising 
speeds and road gradients for individual signalized intersections at M.L. King Blvd. Initial speed 
and final speed in Table 6 represents the cruising speeds at the start of the deceleration phase and 
after the end of the acceleration phase, respectively. Also, EB, WB, NB, SB, RT, TH, and LT 
stand for Eastbound, Westbound, Northbound, Southbound, Right-turn, Through, and Left-turn, 
respectively. 
Table 4 Required data for estimating delay and number of stops 

Optimization 
type \ Data 
attribute 

Type Source Spatial coverage Temporal coverage Importance 

Vehicle arrivals downstream 

Offline - 
Pretimed 

Traffic 
counts 

GridSmart 
TMCs / Counts 

Intersection 
movement 

15-minutes bins / 
Second-by-second High 

Online - 
Adaptive 

Traffic 
counts 

GridSmart 
Counts 

Intersection 
movement Second-by-second High 

Online CV – 
Adaptive CV 

Traffic 
counts CV data (BSM) Exact location of 

vehicle Same as Online Medium 

Vehicle arrivals upstream 

Offline - 
Pretimed 

Traffic 
counts 

GridSmart 
Counts 

After upstream 
intersection 

Aggregated based on 
second-by-second 

data 
Low 

Online - 
Adaptive 

Traffic flow 
rate 

GridSmart 
Counts / Video 

data 

After upstream 
intersection 

Second-by-second / 
TBD (resolution of 

video analytics) 
High 

Online CV – 
Adaptive CV 

Traffic flow 
rate CV data (BSM) Exact location of 

vehicle Second-by-second Medium 

Signal phasing and timing data 
Offline - 
Pretimed 

Signal timing 
elements 

Signal timing 
sheets 

Intersection 
movement Peak period or hour High 

Online - 
Adaptive 

Signal timing 
elements 

GridSmart 
Events 

Intersection 
movement Second-by-second High 

Online CV – 
Adaptive CV 

Signal timing 
elements Same as Online Same as Online Same as Online Medium 
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Table 5 Required data for each of the factors impacting the stop penalty 
Optimization 
type \ Data 
attribute 

Type Source Spatial coverage Temporal coverage Importance 

Fleet composition and Vehicle type 

Offline - 
Pretimed Vehicle shape GridSmart 

Counts 
Intersection 
movement Second-by-second Medium 

Online - 
Adaptive Vehicle shape 

Video data / 
GridSmart 

Counts 

Intersection 
movement 

TBD (resolution of 
video analytics) 

/ Second-by-second 
High 

Online CV – 
Adaptive CV 

Exact vehicle 
model 

CV data (Embed 
in BSM) 

Exact location of 
vehicle Second-by-second High 

Driving behavior 

Offline - 
Pretimed 

Trajectory 
data 

Probe GPS / 
Video data 

Before & After 
StopLine/ TBD 
(camera view) 

Second-by-second / 
TBD (resolution of 

video analytics) 
High 

Online - 
Adaptive 

Trajectory 
data Video data TBD (camera 

view) 
TBD (resolution of 

video analytics) Medium 

Online CV – 
Adaptive CV 

Trajectory 
data 

CV data (BSM), 
individual CV 

Same as Online 
and for multiple 

intersections 
Second-by-second High 

Road gradient 
Offline - 
Pretimed 

Grade of the 
terrain 

Maps with 
altitude 

Intersection 
approach NA High 

Online - 
Adaptive 

Grade of the 
terrain Same as Offline Same as Offline Same as Offline Low 

Online CV – 
Adaptive CV 

Grade of the 
terrain 

Same as Offline 
+ BSM 

Exact location of 
vehicle Second-by-second Medium 

Cruising speed 

Offline - 
Pretimed Speed limit Google maps Intersection 

approach NA High 

Online - 
Adaptive 

Speed 
distribution 

Video data 
/GridSmart 
Realtime 

TBD (camera 
view) / 

Intersection 
movement 

TBD (temporal 
resolution of video 
analytics) / Second-

by-second 

Medium 

Online CV – 
Adaptive CV 

Speed 
distribution CV data (BSM) Exact location of 

vehicle Second-by-second Medium 

Wind effect 

Offline - 
Pretimed 

Wind speed 
& direction Dark Sky TBD TBD Low 

Online - 
Adaptive 

Wind speed 
& direction Dark Sky (API) TBD TBD Medium 

Online CV – 
Adaptive CV 

Wind speed 
& direction Dark Sky (API) Same as Online Same as Online Medium 
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Table 6 Cruising speeds and road gradients on intersections of the area of study 
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3.6 Evaluation of Analytical Models for Eco-PI estimation 
Analytical models for EcoPI estimation were introduced in the proposed framework for the 
development of constraints for local optimization mainly to relate available traffic data (e.g., 
volumes, arrivals on green) and signal timing parameters (e.g., green times, cycle length) with 
EcoPI value. As defined earlier, the main performance measures for EcoPI estimation are delay 
(𝑑,(), number of stops (𝑁,(), and stop penalty (𝐾,(), which need to be estimated per movement 
(𝑚) of each intersection (𝑖). Thus, we define the EcoPI as: 

𝐸𝑐𝑜𝑃𝐼-.-/0( = .
1

,	*	+

𝑑,( + 𝐾,( ∗ 𝑁,( 										(7)	 

𝑑,( =
0.38 ∗ 𝐶𝐿(?1 − 𝑔,(/𝐶𝐿

(C3

1 − 𝑦,5

∗ 𝑃𝐹,( 										(8)	 

𝑃𝐹,( =
1 − 𝑃𝑂𝐺,(
1 − 𝑔,(/𝐶𝐿

( ∗
1 − 𝑦,( 		

1 − 𝑦,( ∗ G
𝐶𝐿(
𝑔,(

H ∗ 𝑃𝑂𝐺,(

∗ I1 + 𝑦,( 	 ∗
1 − 𝑃𝑂𝐺,( ∗ 𝐶𝐿

(/𝑔,(
1 − 𝑔,(/𝐶𝐿

( J										(9)	 

𝑁,( = 0.9 ×
1 − 𝑔,(/𝐶𝐿

(

1 − 𝑦,(
										(10)	 

where: 

𝐸𝑐𝑜𝑃𝐼-.-/0( = Eco performance index of intersection 𝑖,  

𝑚= movement number of the intersection (for standard four-legged intersection 𝑚,/4 = 8),  

𝑖= intersection number,  

𝑑,(= stopped delay at movement m of intersection 𝑖 (sec/veh),  

𝑃𝐹,(= progression adjustment factor at movement m of intersection 𝑖,  

𝐾,(= stop penalty of movement m of intersection 𝑖,  

𝑁,(= number of stops at movement m of intersection 𝑖,  

𝐶𝐿( = cycle length at intersection 𝑖 (sec),  

𝑔,(= green time for movement m of intersection 𝑖 (sec),  

𝑦,(= ratio of volume and saturation flow rate at movement m of intersection 𝑖,  

𝑃𝑂𝐺,(= percentage of arrivals on green at movement m of intersection 𝑖.  
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An important traffic characteristic that needs to be included in the analytical models for EcoPI is 
the percentage of vehicles arriving on green POG. The POG accounts for vehicular arrival patterns, 
which is a traffic flow characteristic that (in addition to traffic volume) impacts the EcoPI. Thus, 
if analytical models do not account for POG appropriately, such EcoPI estimates may be 
inaccurate and unreliable. We recently noticed that the previously proposed analytical model for 
estimating number of stops (eq. 7) is not very accurate when estimating performance of 
coordinated movements. We reviewed several other models from the literature and decided to 
update the analytical formulation of EcoPI, to improve estimation of the number of stops. We 
decided to use the model proposed by Bonneson (2008) because it is capable of accounting for 
arrival patterns while estimating the number of stops (14). The formulation of the subject model 
is as follows: 

𝐼𝐹	𝑑/65
	≤ ?1 − 𝑃𝑂𝐺,(C𝑔,(𝑋,5 →	𝑁,( =

1 − 𝑃𝑂𝐺,( P1 +
𝑑/65

	
𝑔,(

Q

1 − 𝑃𝑂𝐺,(𝑋,5

										(23)	 

𝐼𝐹	𝑑/65
> ?1 − 𝑃𝑂𝐺,(C𝑔,(𝑋,5 →	𝑁,( =

?1 − 𝑃𝑂𝐺,(C T𝑟,( − 𝑑/65
V

𝑟,( − ?1 − 𝑃𝑂𝐺,(C𝑔,(𝑋,5

										(24)	 

𝑑/65
= 0.5 T1.47𝑆565 	

V Y
1
𝑟/65 	

+
1
𝑟665

Z									(25)	 

where: 

𝑟,(= effective red duration (𝐶𝐿( − 𝑔,() for movement m of intersection 𝑖 (sec), 

𝑞,(= volume during cycle for movement m of intersection 𝑖 (veh), 

𝑋,5= volume-to-capacity ratio (= 𝑞,(
!75

865965
) for movement m of intersection 𝑖, 

𝑠,(= saturation flow rate for movement m of intersection 𝑖 (veh/h or veh/s), 

𝑑/65
= deceleration-acceleration delay for movement m of intersection 𝑖 (sec), 

𝑟/65 	
, 𝑟665

= acceleration, deceleration rate for movement m of intersection 𝑖 (ft/s2), 

𝑆565 	
= running speed for movement m of intersection 𝑖 (mph). 

For this reason, our revised formulation of EcoPI (Eq. 7) now consists of equations 1-2 and 
equations 4-6.  

We evaluated EcoPI estimates (from analytical models) against ground truth from the 
microsimulation model (which represents virtual reality). We arbitrarily selected intersection in 
the downtown area of the examined network (i.e., Martin Luther Blvd and Market Street), and 
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estimated EcoPIs on a cycle-by-cycle basis for specific protected movements (e.g. through flows) 
or permitted (or protected/permitted) traffic movements (e.g., left-turn flows). It needs to be stated 
that estimation of EcoPIs for protected/permissive movements relies on similar models for delays 
and number of stops as shown previously. However, slight modifications of analytical models exist 
due to the specifics of traffic operations in protected/permissive phases and can be found elsewhere 
(2). Obtained results are presented in Figure 10. In general, estimations of EcoPIs for the high-
traffic through movements (observe part a) and b) of Figure 10) are reliable and they have resulted 
in high correlations with the ground truth values (obtained from simulation). However, when one 
observes analytical estimates for protected/permissive left-turn movements (see part c) and d) of 
Figure 10), it is found that the two data sets are not equally well correlated. 

  

a) Main street exclusive phases b) Side street exclusive phases 

  

c) Main street in protected/permitted 
phases 

d) Side street protected/permitted phases 

Fig. 10: Comparison between analytically derived and ground truth EcoPI 

Overall, we find that the EcoPIs estimated by using one of the proposed analytical models are 
acceptable for three reasons: 1. Major movements of the network are those served with exclusive 
phases (e.g., through coordinated movements) and for those movements, the EcoPIs estimates are 
reliable; 2. Although the accuracy of analytical models for estimation of EcoPIs for 
protected/permitted movements is lower, a general trend between two datasets still exists; 3. 
Amount of traffic for protected/permitted phases contributes much less (in the overall intersection 
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EcoPI) than those of the protected. In the later stages of research, analytical models will be 
calibrated based on real-world data to further improve their accuracy. For current research efforts, 
we recommend using the existing analytical models. 

4.2.1 Evaluation of Framework for Development of Constraints for Local/Global Optimization 
Development of constraints for local/global optimization starts by determining the minimum cycle 
length (𝐶𝐿,()( ) that ensures enough green time to service previously stopped vehicles, i.e., vehicles 
that arrived on red (𝐴𝑜𝑅). Previously proposed formula for 𝐶𝐿,()(  (Equation 11) was evaluated, 
and some inconsistencies were found. 

𝐶𝐿,()( =
𝐿

1	 −	
∑𝐴𝑜𝑅,5785957:;

0.5 × 𝐶𝐿:;'<(.=8( 	

								(11)	 

Therefore, we replaced Equation 11 with Equation 12 as the new one better ensures that queued 
vehicles are always served with a given 𝐶𝐿,()( . 

𝐶𝐿,()( = 𝐿( + ?𝐴𝑜𝑅>+ + 𝐴𝑜𝑅>3 + 𝐴𝑜𝑅>? + 𝐴𝑜𝑅>@C ∗ ℎ8/-									(12)	 

where: 

𝐶𝐿,()( = minimum cycle length (s), 

𝐿(= total lost time per cycle per intersection (i) (s): 

𝐿( =.
,<

𝐿>6< 						(13)	 

𝐿>6< = ?𝑙+,< + 𝑦,< + 𝑎𝑟,< − 𝑒,<C									(14)	 

where: 

𝐿>6<= lost time per phase 𝜙 that serves specific movement group (𝑚A) (s), 

𝑙+,<= start-up lost time (usually, 𝑙+,< = 2𝑠) (s), 

𝑦,<= yellow (s), 

𝑎𝑟,<= all red (s), 

𝑒,<= used time during yellow and all-red (usually, 𝑒,< = 2𝑠) (s), 

ℎ8/-= saturation headway (s), 

𝐴𝑜𝑅>6<= maximum arrivals on red for phase 𝜙 that controls movement group 𝑚A(vehicles per 
lane): 
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𝐴𝑜𝑅>6< = f𝐴𝑜𝑅>+6< , . . . , 𝐴𝑜𝑅>@6<g 										(15)	 

where:  

𝐴𝑜𝑅>+B@6<= arrivals on red for each movement 𝑚 in movement group 𝑚A associated with phase 
𝜙 (vehicles per lane). 

 Based on the Equation 16, the minimum green time required to accommodate vehicles of 
a particular movement group are calculated as: 

𝑔,()>6<
= 𝐿>6< +	𝐴𝑜𝑅>6< ∗ ℎ8/-						(16)	 

It needs to be stated here that in the cases when calculated 𝑔,()>6<
 is lower than 

recommended (currently deployed) minimum green time in the signal controller, the value from 
signal controller should be adopted for safety purposes. 

To calculate upcoming cycle length and corresponding green times for each intersection in 
the network, we use Equations 17 and 18. Further, we select maximum of minimum cycle lengths 
for each intersection to determine the minimum cycle length for the entire group (or network) 
(𝐶𝐿,()

9;.=:).  

𝐶𝐿,()
9;.=: = ?𝐶𝐿,()( C							(17)	 

For each intersection where a group 𝐶𝐿,()
9;.=: is supposed to be operational, we evaluate 60 

cycle lengths with incremental increase of 𝐶𝐿,()
9;.=:

for ∆ (where ∆ = [1, ... ,60]) to find 

most appropriate (from the perspective of EcoPI) minimum cycle length for the 
entire group/network (𝐶𝐿,()=7>?@

9;.=: ). Although a wide range of cycles was evaluated, the 
implementation of appropriate cycle time for the upcoming cycle will depend on the value of the 
cycle time in the previous cycle.  

Calculated 𝐶𝐿,()=7>?@
9;.=:  is supposed to allow proper coordination of all intersections within 

the same group, and represents a minimum CL for local/global optimization procedures. While 
increasing 𝐶𝐿,()=7>?@

9;.=: , the difference between the minimum 𝐶𝐿,()=7>?@
9;.=: and increased 𝐶𝐿,()=7>?@

9;.=: +
∆ is used to distribute extra green times according to a number of vehicles arriving on red, stop 
penalty factor (K) and total volumes during cycle as shown in Equation 18: 

𝑔'4-')8(.)+B@ =	T(𝐶𝐿,()=7>?@
9;.=: + ∆) − 𝐶𝐿,()=7>?@

9;.=: V ×	
𝐴𝑜𝑅,( ∗ 𝐾,( ∗ 𝑞,( 	𝑓𝑜𝑟	𝜙+B@

∑𝐴𝑜𝑅,( ∗ 𝐾,( ∗ 𝑞,( 	
						(18)	 

Such green times (𝑔'4-')8(.)+B@) are added to minimum green times previously computed by using 
the Equation 16. Finally, to determine network cycle length that will be used as 𝐶𝐿,()=7>?@∗

9;.=:  for 

local/global optimization purposes, we calculate EcoPI for each 𝐶𝐿,()=7>?@
9;.=: + ∆ and each 
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intersection in the network on the cyclical level. Since traffic distribution at each intersection can 
be quite distinctive, and therefore EcoPIs can be different too, we define 𝐶𝐿,()=7>?@∗

9;.=:  as a CL that 

results in the lowest total EcoPI for multiple intersections. 

Figure 8 illustrates how EcoPI change with each 𝐶𝐿,()=7>?@
9;.=: + ∆, when two intersections are 

observed. We restrict our focus on two characteristic intersections in the network to illustrate how 
values of EcoPI change for 𝐶𝐿,()=7>?@

9;.=: + ∆ at one non-critical and one critical intersection, which 
are intersections of Martin Luther King Blvd and Broad Street and Martin Luther King Blvd. and 
Market Street, labeled as intersections 2 and 3 in Figure 8, respectively. Intersection 2 is non-
critical, its volumes are relatively low and thus the optimum conditions (on a local level) might 
exist for values of cycle length lower than 𝐶𝐿,()=7>?@

9;.=: . However, Intersection 3, which represents 

a critical intersection, has a 𝐶𝐿,()( , which is, in most cycles, selected as a  𝐶𝐿,()=7>?@
9;.=: . Thus, any 

increase in 𝐶𝐿,()=7>?@
9;.=:  by ∆, will improve EcoPI at intersection 3, up to a certain point (see gray 

lines in fig. 11). Therefore, by increasing CL, intersection 2 usually does not benefit in terms of 
EcoPI (observe orange lines in fig. 11). Such a trend can be explained by the fact that higher cycle 
lengths tend to increase delay, which is one component of the EcoPI). Finally, when EcoPIs of 
both intersections are added together, one can observe that the resulting 𝐶𝐿,()=7>?@∗

9;.=:  is a 
compromise solution between best-performing cycle lengths from both intersections (see part a) 
of fig. 11). In this way, 𝐶𝐿,()=7>?@∗

9;.=:  is determined as an input for other optimization procedures. 

Green times associated with the 𝐶𝐿,()=7>?@∗
9;.=:  are already allocated, within each intersection, as 

discussed previously.  

   

a) Cycle 1 b) Cycle 2 c) Cycle 3 
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d) Cycle 4 e) Cycle 5 f) Cycle 6 

   

g) Cycle 7 h) Cycle 8 i) Cycle 9 

   

j) Cycle 10 k) Cycle 11 l) Cycle 12 

Fig. 11: Impact of non-critical and critical intersection CLs on minimum group CLs 

3.7 Local Optimization 
Adaptive traffic control systems (ATCSs) have been in use since 1970s but have only received 

significant attention in the U.S. within the last ten years. In that period, the number of deployed 

systems increased by 600% (13). The two main factors contributing to such trends are the 

emergence of ATCSs brands customized for the U.S. market and the promotion of these systems' 

benefits within the research and traffic signal community (14). In essence, ATCSs adjust signal 

timings to accommodate spatial and temporal changes in traffic flow in a real-time manner. So 

far, there are more than 20 commercially available ATCSs brands around the world. Each system 

is slightly different in its internal logic that governs the decision-making process of these real-

time traffic signal controllers. Traffic signal performance measures (TSPMs) represent feedback 

between ATCSs operations (or provided capacity) and vehicular arrival patterns (demand). The 

operational objective of ATCSs (e.g., smooth traffic flow, balanced capacity, etc.) highly 

depends on the performance measures (e.g., delay, queue profiles, degree of saturation, etc.) that 

are used by the algorithm to develop new signal timing elements. So far, ATCSs were developed 

with an explicit focus on mobility-related performance measures (15-19). A limited number of 



UTC DE-EE0009208        Final Technical Report 

34 

studies focused on the development of signal timing parameters that will consider the impact on 

the environment in the offline signal retiming procedures (20-21). Few attempts were made to 

develop online (real-time) ATCSs that are ecologically aware (22). However, such systems were 

tested in a simulation environment at a single intersection level without considering realistic 

constraints imposed by real-world networks (i.e., coordination of multiple intersections, various 

road users, etc.). Thus, ecologically-aware ATCSs were not developed for field implementation 

purposes so far. Also, part of the problem lies in the fact that analytical fuel consumption and 

emissions performance measurements were lacking (until recently (23)). Objective of this project 

task is to develop an ecological Adaptive Traffic Control System (Eco-ATCS) based on the Eco-

Performance Index (Eco-PI) that will be ready for field deployments. 

The first stage of developing, validating, and fine-tuning Eco-ATCS will be carried out in a high-

fidelity micro-simulation tool Vissim (24). The simulation approach consists of three main 

components: 1) A reliable (properly calibrated and validated) microsimulation model of the real-

world network (MLK Boulevard in Chattanooga, TN), 2) An adaptive signal control logic that 

minimizes Eco-PI, and 3) Vissim’s Component Object Model (COM) that allows communication 

between items 1 and 2. Such a simulation approach is a viable tool for testing various adaptive 

signal control logic strategies and has been used in previous research (25-27). The use of a high-

fidelity microsimulation environment will allow for the development of solutions that are ready 

for field deployment. 

The typical ATCSs architecture consists of local and global-level signal timing optimizers (28). 

At the local (or intersection) level, ATCSs seek to find a local optimum solution, whereas, on the 

global (network) level, the system seeks to find a global optimum that coordinates multiple 

intersections. In other words, local signal timing parameters (e.g., cycle lengths, splits) are 

initially optimized for each intersection individually. Once a local optimum is found for each 

intersection, the global optimizer seeks to find values for those signal timing parameters (i.e., 

offsets, phase sequences) that will result in optimum signal performance (i.e., minimum Eco-PI) 

on the network level. Within each optimization stage, it is necessary to define optimization 

constraints (e.g., minimum and maximum allowable units of time to serve particular 

movements). The following section provides details of the process to determine local control 

constraints. 
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3.7.1 Constraints for Local Optimization 
The development of constraints for local optimization consists of two modules: 1) initialization 

and 2) real-time module. Within the initialization, it is imagined that the ATCS does not operate 

in a fully adaptive mode and, therefore, signal timing parameters that will be deployed in the 

field should provide enough time to effectively clear the queues at the local intersection level. 

Another important aspect of the initialization module is that it should provide a good basis for 

the estimation of cyclical TSPMs before the real-time module is activated. Specifically, if signals 

were set to operate in a free actuated mode (no cycle length imposed) in the Initialization 

module, estimation of cyclical TSPMs would not be viable. The transition between initialization 

and real-time module can occur either based on predefined rules (e.g., traffic volumes reach a 

certain level) or preset agency requirements (e.g., adaptive regime starts operating at a specific 

time of the day). The Initialization procedure is outlined in the left part of the chart flow 

presented in fig. 12. 

Fig. 12: Framework for Local Constraints Development 

Once the Real-time module is initiated, data from the previous cycle from each intersection in 

the network are collected. These data contain signal phasing and timing data as well as 

information about arrival flow rates and composition of the traffic flows (as illustrated in the 

right part of the chart flow in fig. 12). Based on such data (obtained for each intersection 
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movement), the main performance measures (which are used for derivation of the Eco-PI can be 

calculated by using the Equations 19-22). 

𝐸𝑐𝑜𝑃𝐼-.-/0( = .
1

,	*	+

𝑑,( + 𝐾,( ∗ 𝑁,( 									(19)	 

𝑑,( =
0.38 ∗ 𝐶𝐿(?1 − 𝑔,(/𝐶𝐿

(C3

1 − 𝑦,5

∗ 𝑃𝐹,( 								(20)	 

𝑃𝐹,( =
1 − 𝑃𝑂𝐺,(
1 − 𝑔,(/𝐶𝐿

( ∗
1 − 𝑦,( 		

1 − 𝑦,( ∗ G
𝐶𝐿(
𝑔,(

H ∗ 𝑃𝑂𝐺,(

∗ I1 + 𝑦,( 	 ∗
1 − 𝑃𝑂𝐺,( ∗ 𝐶𝐿

(/𝑔,(
1 − 𝑔,(/𝐶𝐿

( J								(21)	 

𝑁,( = 0.9 ×
1 − 𝑔,(/𝐶𝐿

(

1 − 𝑦,(
								(22)	 

Where: 
𝐸𝑐𝑜𝑃𝐼-.-/0( = Eco Performance Index of intersection 𝑖,  
𝑚= Movement number of the intersection (for standard four-legged intersection 𝑚,/4 = 8),  
𝑖= Intersection Number,  
𝑑,(= Stopped Delay (sec/veh) at movement m of intersection 𝑖,  
𝑃𝐹,(= Progression adjustment factor at movement m of intersection 𝑖,  
𝐾,(= Stop Penalty value of movement m of intersection 𝑖,  
𝑁,(= Number of Stops at movement m of intersection 𝑖,  
𝐶𝐿( = Previous cycle length at intersection 𝑖 (sec),  
𝑔,(= Green time for movement m of intersection 𝑖,  
𝑦,(= Ratio of volume and saturation flow rate at movement m of intersection 𝑖,  
𝑃𝑂𝐺,(= Percentage of Arrivals on Green at movement m of intersection 𝑖.  
Further, the Real-time module will utilize 20 candidate cycle length values in a range of 𝐶𝐿(±∆, 

where ∆ represents an integer value between 0 and 10, and 𝐶𝐿( value 

represents the previous local cycle length. For a range of new cycle lengths, the algorithm will 

evaluate their performance in terms of the Eco-PI. To compute the green time (𝑔,(), for each 

incremental change of cycle length, a distribution of green times (based on 𝐾,() will be used. 

Cycle length with the lowest 𝐸𝑐𝑜𝑃𝐼-.-/0(  will give the optimal cycle length of the intersection 𝑖 

(i.e., 𝐶𝐿CD.#%( ).  

Since each intersection might have a different 𝐶𝐿CD.#%(  it is necessary to select the maximum 

cycle length from those identified for each intersection, as this approach will provide 
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accommodation of flows on a critical intersection and ensure proper coordination for later phases 

of the signal optimization process. Such a maximum cycle length will then represent the 

minimum cycle length constraint for the local optimization, and it is computed by using equation 

23. Such group cycle length should not be confused with cycle length that might result from 

network optimization, it is only an input which ensures that the cycle length values from network 

optimization satisfy local requirements. 

𝐶𝐿CD.#%
9;.=: = ?𝐶𝐿CD.#%( C						(23)	 

After the group cycle length is defined, only “critical” intersection (with the highest 𝐶𝐿) that 

drives the group cycle length 𝐶𝐿CD.#%
9;.=:, will have properly allocated green splits. Therefore, it is 

necessary to recompute green splits for all other “non-critical” intersections. In particular, the 

difference between proposed 𝐶𝐿CD.#%
9;.=:  and minimum cycle length (𝐶𝐿,()B

( ), that is needed to 

serve the queued vehicles, will be used to distribute green time among the approaches based on 

numbers of vehicles arriving on green and their stop penalty. Minimum cycle length to serve 

queued vehicles is computed by using a modified Webster’s formula or equation 24-28: 

𝐶𝐿,()B
( =

𝑇𝑜𝑡𝑎𝑙	𝐿𝑜𝑠𝑡	𝑇𝑖𝑚𝑒

1	 −	
∑𝐴𝑂𝑅,5785957:;

0.5 × 𝐶𝐿( 	

											(24)	 

Green time allocation per phase will be based on following set of equations 25-28: 

𝑔,()BC 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅+,FC	
∑𝐴𝑂𝑅,5785957:;

											(25)	 

𝑔,()BD 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅3,GC	
∑𝐴𝑂𝑅,5785957:;

											(26)	 

𝑔,()BE 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅?,HC	
∑𝐴𝑂𝑅,5785957:;

											(27)	 

𝑔,()BF 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅@,1C	
∑𝐴𝑂𝑅,5785957:;

											(28)	 

Once the minimum green times are calculated, we use the remaining cycle time (𝐶𝐿CD.#%
9;.=: −

𝐶𝐿,()B
( ) to allocate additional green time for each phase. Such process will be based on weighted 

Arrivals on Green (𝐴𝑜𝐺,( ) and movement stop penalty factor 𝐾,( (i.e., 𝐴𝑜𝐺,( ∗ 𝐾,() that will 

be computed for each movement. This approach will be applied to estimate which movements 

cost more (in terms of fuel consumption) if vehicles (which could otherwise arrive on green) are 

stopped. Based on the calculated measure, critical movements will be identified (but instead of 
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being based on the volumes such critical movements will be assessed from an Eco-impact 

perspective). For those movements, additional green time (that will be added to the minimum 

green times necessary to serve the queues) will be calculated by using equation 29. 

𝑔'4-')8(.)+B@ =	T𝐶𝐿CD.#%
9;.=: − 𝐶𝐿,()B

( V

×	
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝐴𝑜𝐺,( ∗ 𝐾,( 	𝑓𝑜𝑟	𝑝ℎ𝑎𝑠𝑒	1 − 4

∑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝐾(𝐴𝑜𝐺) 										(29)	 

 

Finally, by using equation 30, the total green for each phase will be calculated. 

𝑔-.-/0CGF = 𝑔,()BCGF + 𝑔'4-')8(.)+B@														(30)	 

 

In such a way, minimum (𝑔,()BCGF) and maximum green (𝑔-.-/0BCGF) times and minimum Cycle 

length (𝐶𝐿CD.#%
9;.=:) are developed. 

3.7.2 Output from Local Constraints Development 

The Real-time module will output proposed green times for each intersection, and the network-

level EcoPI will be estimated to document whether such a change of cycle will lead to a 

performance improvement. If yes, new cycle length, and corresponding minimum and maximum 

green times, will be reported as outputs from the local constraint procedure and provided as input 

for further fine-tuning within the local and network optimizers. Let us suppose that the newly 

suggested cycle length and belonging splits do not provide performance improvement on the 

network level. In that case, outputs from the previous cycle will be reported as desirable values 

for following optimization steps. 
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Section 4: Simulation and Testing 

 4.1 DGMARL Testing  
The date used to train the DGMARL model was collected 12/15/2022. The DGMARL model 
was first trained for 100 episodes with a simulation resolution of 1 second. We then tested the 
model with 10 random seed values during the PM-peak period and observed an average of 
29.88% improvement in Eco-PI over a 3-hour period as shown in Fig. 13. However, the Pine and 
Peeples intersections exhibited negative performance compared to actuated results as shown in 
Fig. 14. 
When we tested the model with a 24-hour simulation, we observed an overall performance 
improvement of 44.27%. 

Fig. 13: PM-Peak 3-hour Eco0PI; Data: 12/15/2022 
Simulation resolution: 1 second; Random seeds: 12, 25, 45, 41, 32, 37, 27, 44, 29, 22 

 
Fig. 14: Pine and Peeples Eco-PI impact 

4.1.1 Sharing DGMARL Packages and Output for Integration Testing 
We created actuated Eco-PI calculation and DGMARL model packages and shared them with 
ORNL team for testing. Additionally, we generated 11 “Signal Timing” output files, one for each 
intersection, and shared them with the Pitt and Georgia Tech team for testing purposes. The 
format of the signal timing output file is illustrated in Fig. 15, and it contains details such as 
simulation timing, random seed value used, version of VISSIM network file used, and the date of 
the test. A detailed description of the signal timing format can be found in Fig. 16.  
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Fig. 15: Signal Timing Output 

 
Fig. 16: Signal Timing Output Template 

4.1.2 Model Integration Testing 
We provided support for integration testing and identified an issue with handling the red phase 
during signal switching in the DGMARL output of “Signal Timing.” While DGMARL was 
designed to switch signal phases, it did not serve the red phase before switching to green, unlike 
the VISSIM RBC controller. To address this, we updated DGMARL’s signal update function to 
match VISSIM’s yellow and red clearance timings, using a 0.1 second simulation resolution. For 
example, a 2/4 second red clearance at the Pine intersection was accurately replicated. 
Additionally, we addressed differences in protected-permissive left signals between the actuated 
VISSIM file and field configurations.  

● Red Phase: changing the simulation resolution significantly impacts the Eco-PI formula, 
as the stop delay component must align with the new resolution. This modification affects 
the reward calculation in the reinforcement learning algorithm, requiring the DGMARL 
model to be retrained. Additionally, incorporating the red phase before switching to green 
has a notable effect on Eco-PI performance, necessitating further retraining to improve 
the model’s understanding of the environment and its decision-making process.  

4.2 Digital Twin: VISSIM Model Verification, Validation, and Calibration 
Verification - Verification confirms that the built model operates as intended. This requires 
stepping through the model in detail to ensure its construction and operation is as expected. 
Verification of the simulation construction is conducted primarily within Tier 1. Verifications in 
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Tier 2 and Tier 3 relate to the integration of the dynamic data streams. A detailed checklist of the 
items considered when verifying a model may be found in (1). 
As a data verification example for the MLK model, volume balance checks were conducted for a 
typical PM Peak period (May 11, 2021) to identify any errors in the detector data received, or the 
Vissim model network. Identification of any significantly erroneous data points and 
implementation of the necessary corrections is critical to attaining simulation behavior and 
output that is an accurate reflection of the field conditions. For the MLK case study, the volume 
balance verification check involved confirming the equality between the intersection field 
detector volumes at each approach and the expected volumes as computed from the exit counts 
of the immediate upstream intersection. For a few intersections, up to a 20% difference in these 
volumes were observed. The reason for these differences were tracked to mid-block sources and 
sinks that were not initially included in the model, as well as some detector issues that were 
subsequently addressed. 
Validation and Calibration - Validation seeks to confirm the validity of the model (e.g., how well 
key field and simulated performance measures agree) while calibration seeks to adjust 
underlying simulation parameters to achieve a valid model (1). For example, in the MLK case 
study, one parameter considered for validation and calibration was the headway distributions at 
exit detectors, determined using archived per vehicle record data. Headway distributions for the 
field versus simulation were compared, as this parameter significantly influences the number of 
vehicles that may be processed at an intersection approach. Fig. 17 plots show this comparison at 
two detectors for two intersections on the MLK Smart Corridor. In these figures, the overlap of 
histograms (blue and orange) is shown in gray. 
 

          
                            (a)                                                                            (b) 
Fig. 17: Saturation headway distribution comparison - field vs simulation plots at (a) MLK @ Magnolia Eastbound 

approach detector, and (b) MLK @ Houston Westbound approach detector. 
 
The plots serve as an initial check of the model's departure headway calibration and a 
demonstration that the model is operational. The field and Vissim generated headway 
distributions are observed to be similar, but there are some differences in the shape of the 
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distributions, which indicate the potential for improvements with further calibration of the 
Vissim saturation headway parameters. Other parameters included in the validation and 
calibration were related to the vehicle speed distributions and critical route travel times. 
Additional information on calibration and validation for Vissim simulation may be found in 
Hunter 2021 (1). 

4.3 Software-in-the-Loop (SIL) Simulation 
The PITTS team connected all 11 intersections on the MLK corridor in Vissim to SEPAC m60 
controllers. For each controller, port numbers are assigned, and necessary files are created. First, 
11 virtual controllers were connected with default signal timing plans to verify the established 
connection. Once the connection was established through assigned port numbers. The PITTS team 
used software called TACTICS to upload field signal timing plans for all 11 intersections from the 
MLK corridor. In fig. 18, one can see all 11 virtual machines representing field controllers working 
with the help of the management system of SEPAC TACTICS.   

 
Fig. 18: View of Siemens SEPAC SILS 

In fig. 19 it can be observed that the signal status is the same in both platforms meaning that the 
communication is established properly. In addition, the EB approach has two vehicles placing a 
call and that vehicle call can also be observed in TACTICS. 
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Fig. 19: Field signal timing plans operating in SILS environment at Broad @MLK 

 
To test different implementation methods using the developed ATCS module, the authors used an 
11-intersection corridor along MLK Blvd, in Chattanooga, Tennessee (fig. 20). The software used 
for this study, Vissim, was chosen because it is a widely used tool to model various traffic 
operations. Vissim simulation model of this network has been properly calibrated, validated, and 
used in some of the previous studies. 
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Fig. 20: Test-bed network 

Intersections in the corridor of interest are equipped with Siemens m60 controllers. Each controller 
has SEPAC 5.40 software and as such is created as a virtual machine and connected to Vissim. At 
each update interval, the ATCS module collects data from Vissim through the COM interface and 
calculates new signal timing parameters as explained in one of the previous subsections. Then, the 
NTCIP software, which acts as a translator between Vissim and SEPAC, creates the necessary 
messages to modify the dynamic objects, such as current pattern, cycle length, offset, splits, of the 
SEPAC software (Fig. 21). Note that NTCIP software maintains constant connection between 
SEPAC and Vissim even when no signal timing modifications are needed.    
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Fig. 21: Architecture of SILS 

4.3.1 Experimental Design 
To assess different methods for implementing ATCS in the field, numerous scenarios can be 
created. However, the authors focused on three major criteria, as illustrated in Figure 22. Firstly, 
vehicular demand varied between low, medium, and high levels. Each vehicular demand was 
modeled to maintain the average volume-to-capacity ratio (v/c ratio) within specific bounds, as 
indicated in Figure 22. The purpose of such a modeling approach was to avoid oversaturated 
conditions, which could hinder the benefits of any adaptive traffic control logic. Secondly, the 
different update intervals were tested. Both PM and DC methods were tested for all update 
intervals. However, it was not feasible to implement the PC method on a cycle-by-cycle basis, and 
thus, it was not tested with such an update rate; instead, the pattern was changed every 5 or 10 
min. Thirdly, the PC method was coupled with three transition logics (Dwell, Shortway2, 
Shortway+) as described previously.   
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Fig. 22: Experimental design 

In total, 36 VISSIM simulation models were prepared and tested, with 9 models (3 demand levels 
x 3 update intervals) for each of the PM and DC methods (18 in total), and 18 models for the PC 
method (3 demand levels x 2 update intervals x 3 transition logics). The analysis for each scenario 
used 1h of data collected after a 20-minute warm-up period for each scenario. 
4.3.2 Total Network Delay and Total Number of Stops 
Fig. 23 shows comparison of various methods and update intervals for the entire network. The 
results indicate that frequent signal timing changes, such as cycle-by-cycle updates, lead to a 
significant increase in total delay across all of the analyzed traffic demands.  
For low-demand scenarios, total delay remains relatively similar across all implementation 
methods except for PC-Shortway+-5min and DC-10-min methods. When considering medium 
demand, the PM-10-min performs the best. Among the PC methods, Shortway+-10min 
outperforms the others for medium demand. It is important to note that, in all scenarios, the PM-
10 min method consistently performs the best. 
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 As for PC methods, PC-Dwell-10min slightly outperforms Shortway+-10min for both low 
and high-demand scenarios.  

 
Fig. 23: Total delay and number of stops in the network 

4.3.3 Implementation of Adaptive Logic to the SILS Environment 
Before field deployment of Eco-ATCS, it is necessary to ensure that all the constraints are met and 
that the Eco-ATCS performs as expected. Having developed a fully operating SILS environment, 
the PITT team started exploring the possibilities of implementing Eco-ATCS to field controllers. 
First, PITT identified three ways of implementing various optimization logics to the actual field 
controller: 

1. Changing Time-of-day (TOD) plans 
2. Manipulation of vehicle calls 
3. Using holds, omits and force-off. 

The first approach had several unfavorable aspects, including its high memory requirement and 
limited flexibility compared to the other two approaches. As a result, it was determined that the 
first approach is unsuitable for implementation.  
To implement Eco-ATCS, or in other words optimization output, to an actual controller NTCIP 
software must be used. Through NTCIP software NTCIP messages are sent to controller in form 
of hold/omit/force offs or “manipulated’ detection calls. The controller then relays the phase status 
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back to the NTCIP software, which converts it to a .json file and transmits it back to the Vissim 
microsimulation environment. It is worth noting that once Eco-ATCS is deployed in the field, there 
will be no messages sent back to the Vissim digital twin. Furthermore, the digital twin will solely 
rely on detection input from the field sensors.  
In Fig. 24, the framework for offline Eco-ATCS implementation is explained. First, the output 
from the UTC server is obtained in the form of a text file. DGMARL output is then converted to a 
file readable to NTCIP in the data reader module. The converted output contains second by second 
phase statuses. As such, information from the text file is sent to the main NTCIP module and then 
in the form of a NTCIP message it is sent to SEPAC m60. It is important to note that, in this offline 
implementation, the SEPAC m60 receives detection output from Vissim, while Vissim receives 
signal status directly from the SEPAC m60 (which is provided by the DGMARL output). 
Additionally, the NTCIP software acts as a mediator between Vissim and the SEPAC m60 by 
transmitting messages that are readable to both Vissim (.json files) and the SEPAC m60 (NTCIP 
messages). 

 
Fig. 24: Framework for Offline Adaptive Logic Implementation  

4.4 Hardware-in-the-Loop (HIL) Simulation 
4.4.1 Integration of Communication Model in Hardware-in-the-Loop Architecture 

To test and account for the effects of communications in the HIL environment, ORNL tested the 
CAVE lab and the RealSim toolchain to architect the HIL environment. Fig. 25 shows how the 
communication model is integrated in the CAVE lab HIL architecture. 
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Fig. 25:  CAVE lab HIL architecture including communication model 

A similar HIL architecture (using SUMO instead of VISSIM) was applied to another project in 
the CAVE lab to quantify the effect of communication latencies on a lane merging coordination 
algorithms application (Fig. 26). 

 

Fig. 26:  Example of CAVE lab application quantifying the effect of communications on connected vehicles during 
traffic merging optimization 

The plan was to use the same HIL architecture except for the use of VISSIM instead of SUMO 
for this project. However, the VEINS VANET simulator used in the project was found to be very 
complex and it did not run real time which is a prerequisite for HIL applications. 
Communications models used in the CAVE lab HIL environment are typically statistical models 
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as they run faster than real time and yet they can capture some of the complexity of the physical 
systems. Hence, the next step was to convert the VEINS VANET model into a real time 
statistical model that can be imported into the ORNL HIL architecture. 

4.4.2 Vehicle Hardware-in-the-Loop Architecture  
In this project one key goal was to conduct hardware in the loop testing of a real vehicle in 
ORNL’s CAVE lab subjected to virtual road load and traffic conditions. The ORNL CAVE Lab 
HIL architecture is shown in Figure 27. It comprises the real vehicle under test, the VISSIM 
environment for traffic simulation, IPG CarMaker for the virtual vehicle environment, the HIL 
system to interact between the models and the vehicle actuators, and an external traffic controller 
coordinating the various road network components.  

 

Figure 27: CAVE lab HIL architecture diagram 

The digital twin model of MLK Smart Corridor in Chattanooga developed using the VISSIM 
(2022) was integrated into the CAVE lab using the IPG CarMaker-VISSIM interface.  
Software-in-the-loop simulation (SILS) Mode Test: To reach the goal of conducting experiment 
with real vehicle in the loop in the realistic traffic scenario of MLK Smart Corridor simulated in 
VISSIM, first the architecture implementation was tested in Software-in-loop simulation (SILS) 
mode without an actual vehicle. Figure 28 shows a real-time simulation of the HIL environment 
running on the dSPACE system, but without the real vehicle in the loop. The road network and 
traffic simulation are modeled in VISSIM, the road load estimation, driver model and 3D 
visualization are handled by CarMaker, the dSPACE software and hardware interacts with the 
real vehicle under test.  
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 Figure 28: HIL architecture demonstration with VISSIM in the CAVE lab 

In this configuration (CarMaker and VISSIM), the Carmaker driver model must be used to 
control vehicle speed as it calculates target speed and corresponding accelerator, and pedal 
position based on traffic information from VISSIM. VISSIM does not provide a target speed for 
the EGO vehicle, so the CarMaker driver model cannot be bypassed. Initially, issues with the 
CarMaker driver model prevented running a closed loop with the actual vehicle in the CAVE lab 
as the CarMaker driver tends to request maximum acceleration pedal during cruise operation 
though it regulates speed properly in all other conditions. After fixing some of these issues, a 
proof-of-concept experiment using an actual vehicle was conducted as described in the next 
section. 
Proof of concept of HIL integration using Ford Mach E: A proof of concept Hardware-in-the-
loop (HIL) architecture set up with Ford Mach E was accomplished. This included integration 
and synchronization on software end using the Real Sim interface - latest Vissim MLK model, 
IPG Carmaker for vehicle dynamics, dSpace to connect to the physical vehicle and control the 
Rototest dyno in CAVE lab. Figure 29 shows the skeleton of the HIL architecture integration 
with the physical vehicle in the CAVE lab. For this integration, at the hardware level, real-time 
vehicle CAN bus data is retrieved and recorded on the dSPACE box.  
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Figure 29: HIL architecture integrating Vissim MLK model with Ford Mach E 

A preliminary experiment was conducted as a proof of concept to test the appropriateness of the 
HIL set up. The ego vehicle was run for ~1.95 miles of the entire corridor. The current and 
voltage of the battery were collected using vehicle CAN bus data along with the vehicle speed. 
Figure 30 shows the cumulative power consumption (primary axis) and speed of vehicle 
(secondary axis) with progress in simulation time. The total energy consumed is: ~0.651 kWh 
which estimated the MPGe =~102.  

 

 

Figure 30: Power consumption and speed of ego vehicle in the MLK Vissim simulation for a single run across the 
corridor in Eastbound direction. 

Proof of concept of HIL integration where signal control is driven externally using DGMARL: 
For the experiment, CarMaker in-built vehicle model was used while the car tire dynamics and 
car body were updated to represent Ford MachE. The carmaker following parameters were 
updated/tuned for realizing ego vehicle following behavior. For the comparison of vehicle 
energy consumption while driving on the corridor for two cases when the 1) corridor has 
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actuated signal timing plan, versus 2) corridor has DGMARL signal timing implementation. For 
the experiment, in the two scenarios, the same ego vehicle entry location, time, and Vissim 
traffic demand input was used. To implement DGMARL signal implementation in the developed 
HIL architecture, IPG “Start with Automation” feature was used. This was implemented for 
DGMARL driven co-simulation. Figure 31 and Figure 32 show the ego vehicle energy 
consumption and ego vehicle speed (mph) during the simulation run for the two scenarios. This 
provided a baseline test of differences in vehicle energy consumption with different signal plan 
implementation. This was not an exhaustive test to particularly determine that one plan works 
better than the other in all cases. It was learned during this process that it will take effort and 
time to conduct several tests if we use CAVE experiments to evaluate the impact of signal timing 
plan of vehicle fuel consumption.  

 

Figure 31: Actuated signal controls Ego vehicle speed and cumulative energy consumption – Mach E 
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Figure 32: DGMARL signal controls Ego vehicle speed and cumulative energy consumption – Mach E 

Lastly, AVL Plutron Fuel Flow Meter (FFM) was purchased and installed on a Toyota RAV4 in 
the CAVE laboratory with an intention to test the actual fuel consumption on the vehicle. Figure 
33 shows the installed FFM on RAV 4. The CAN configuration to measure FFM readings was 
also completed and tested using short vehicle runs without it being on the MLK corridor 
(Vissim). However, it was realized that due to recent changes in software compatibility between 
IPG, Vissim, and dSpace, the ego vehicle with FFM HIL experiment will take more effort than 
expected. We expect to solve the compatibility issues as part of the Real-Sim effort. 

 
Figure 33: AVL Plutron Fuel Flow Meter installed on RAV4 in CAVE Laboratory 
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Section 5: Findings and Results 

5.1 DGMARL Testing Outcomes 

Training existing DGMARL model with 105 episodes. Performed multiple tests to validate the 
results. Pine, Georgia, Peeples, and Magnolia intersections are having their performance 
impacted as shown in Fig. XX 

● Test Scenarios 
○ 1 Hour Simulation: 

■ Overall Eco-PI improved by 16.63% 
■ Overall stop delay improved by 43.80% 
■ Number of stops reduced by 15.13% 

○ 3 Hour Simulation 
■ Overall Eco-PI improved by 15.29% 
■ Overall stop delay improved by 43.96% 
■ Number of stops reduced by 10.05% 

 
Fig. 34: PM-peak 1 Hour Simulation Test Results 

 
Fig. 35: PM-peak 3 Hour Simulation Test Results 

After DGMARL fine tuning to account for LDVs and HDVs 
 
 
 
 

Tables 7-11 
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5.1.1 Fine Tuning DGMARL 

The DGMARL model was fine-tuned to address red clearance using a simulation resolution of 
0.1 seconds. This adjustment also included resolving protected-permissive left signal issues. The 
Eco-PI function was updated to accommodate the 0.1 second time step, and stop penalty 
calculations were corrected. Following these updates, testing was conducted using both 3-hour 
and 24-hour scenarios, with the results shared with the larger team for integration testing. The 
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DGMARL execution time was improved by implementing multi-threading techniques, which 
also enhanced the Actuated COM solution for Eco-PI observation. The primary sources of 
slowness in DGMARL were the signal state updates in VISSIM  through COM and additional 
validations before switching the signal state. However, in the field, DGMARL is expected to run 
faster since it won’t perform signal state updates. Future work will test whether reducing the 
frequency of Eco-PI observations to 1 second can further enhance execution speed.  
Table 12 

 
A maximum green constraint was added to DGMARL to handle pedestrian and minimum recall 
times. Additionally, vehicle count and speed-related inputs were removed from the model, and it 
was retrained and tested based on these changes. Then DGMARL model was trained by 
integrating Light Duty Vehicle (LDV) and Heavy Duty Vehicle (HDV) formulas into the Eco-PI 
function. The model was then tested with varying percentages of HDVs at 5%, 4%, 3%, and 1%. 
The test configurations included a simulation resolution of 0.1 seconds, Version 5 of the VISSIM 
network, 3 hour simulations, and a random seed of 21. 
Additional Fine-Tuning to DGMARL: 

● Vehicle Count Input Enhancement: the vehicle count input feature was reintroduced due 
to the availability of a computer vision module in the field, allowing vehicle count data to 
be included in the input features for DGMARL 

● Intersection Coordination Validation: validation of intersection coordination was 
conducted, and preliminary testing indicated a slightly higher Eco-PI improvement 
without message passing compared to with message passing, as shown in the figures 
below.  

● Message Passing Enhancement: the input to the DMGARL neural networks was 
enhanced by aggregating traffic states direction-wise, along with neighboring states, 
resulting in a 24.72% improvement in Eco-PI during one hour simulation.  

● Visualization of Intersection Coordination: Vehicle trajectory reports were developed for 
both eastbound and westbound directions. Since DGMARL optimizes Eco-PI by 
considering traffic from both main and side streets, achieving a green wave is not always 
possible, as the model adjusts green lights based on traffic from all approaches. 

● Reports for Unique Vehicles: Reports were developed to track unique vehicles at 
intersections during green and red signals, as well as AOR/AOG. While the reports 
showed differences between Actuate and DGMARL, they didn’t fully capture 
coordination  
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● Change in Vehicle Stop State Consideration: The vehicle stop state was redefined as a 
speed less than or equal to 3 mph, instead of 0. This adjustment resulted in a slight 
decrease in Eco-PI to 21.37% during one-hour simulation testing shown in Table 13. 
Table 13 
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Fig 36: Eastbound: Trajectory report of vehicles traveled >= 8000ft 

 
Fig.37: Arrival on green and arrival on red 

 
Fig. 38: Overall Eco-PI in 1 hour simulation 

● Vehicles Speed ≤ 3 MPH Considered as Stopped: The DGMARL 

model and Eco-PI formula were updated to classify vehicles as 

stopped when their speed is ≤ 3 MPH. This change impacted the previously 
observed Eco-PI, reducing it from approximately 24% to 20% as shown in Fig. 38. 

● Improving Intersection Coordination: Intersection coordination was improved by 
increasing attention to oncoming traffic by two hops, leading to an increase in Eco-PI 
from 20.89% to an average of 26.52%. The number of stops was reduced by 17.91% 
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while the stop delay decreased from 44.04% to 33.49% as shown in Fig. XX and XX. 
The increase in stops occurred as the model adjusted green time for high upcoming 
traffic, reducing acceleration and deceleration, which in turn, impacts fuel consumption 
positively. This model was trained and tested using five runs with a random seed value of 
21, yielding consistent improvements in Eco-PI, stops, and delays. 
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Table 14: DGMARL–Improved Intersections Coordination and Average Eco-PI: 26.52% 

 

Table 15: DGMARL–Improved Intersections Coordination and Average STOPS: 17.91% 

 

Table 16: DGMARL–Imrpoved Intersections Coordination and Average DELAY: 33.49% 
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● Visualization–Heatmap Analysis for Stops and Delays: Developed heatmaps to analyze 
stops and delays observed in the DGMARL. With the previous version of the model, the 
analysis indicated that while DGMARL effectively reduces delays, it also leads to an 
increase in the number of stops. After improving the model with the coordination, one of 
the test results is shown in fig. 39, comparing stop reduction between Actuated and 
DGMARL. Fig. 40 shows the delay reduction comparison, and Fig. 41 illustrates the 
difference in stops and delays between DGMARL and Actuated. The color shading 
indicates the increase or decrease in DGMARL performance.  

 
Fig 39: Actuated vs DGMARL–Stops Reduced by 17.35%

 
Fig. 40: Actuated vs DGMARL–Delay Reduced by 32.78% 
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Fig. 41: Difference in Stops and Delays (DGMARL minus Actuated) 

● Model Development: a new version of the DGMARL model was developed to reduce 

pedestrian and driver waiting times. Comparative analysis was conducted using three 

scenarios: pedestrian recall,  automated pedestrian detection, and push-button requests. 

The automated pedestrian detection with dynamic signal timing showed significant 

performance improvements over the traditional pedestrian recall system 

● Model Overview: the model, titled Optimizing Traffic Signal Control to Enhance 

Transportation Efficiency and Maximize Pedestrian Benefits in the Road Network, uses 

an objective function that considers vehicle Eco-PI, driver delays, and pedestrian waiting 

times. Inputs include vehicle presence, count, average speed, signal state, pedestrian 

volume, and waiting time. The output determines whether to switch or stay in the current 

phase, with the phase sequence being free but prioritized by the highest occupancy 

(vehicles or pedestrians). Key constraints enforced include minimum green time, 

pedestrian recall, and yellow and red clearance times.  

● Comparative Analysis: The model compared real-time signal timing configurations, 

automated pedestrian detection, and phase activation based on traffic demand. 

Additionally, it dynamically adjusted the pedestrian signal timing based on traffic 

demand. The effectiveness of automated detection and dynamic timing was evaluated 

alongside push-button requests, showing significant performance improvements in all 

metrics. 
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● Data: vehicle data and signal timing were based on real-time observations from 

December 15, 2022. Pedestrian data were randomly generated, with the same volumes 

applied to both actuated and DGMARL models for consistency. 

● Experiment: The experiment was conducted during a PM-peak hour simulation involving 

458 pedestrians and 2825 vehicles. Notably, this test was performed before the 

coordination improvements, so the issue of increased vehicle stops still existed. Eco-PI 

was measured per second, and the test revealed that DGMARL with dynamic pedestrian 

signal timing adhered to minimum serving time constraints efficiently. 

● Scenario Comparisons: In the scenario comparisons, DGMARL with automated detection 

and dynamic timing, including push-button activation, improved vehicle Eco-PI 27.14%, 

reduced delay by 58.73%, and decreased pedestrian waiting time by 60.62% on average 

compared to actuated signal timing with pedestrian recall. Vehicle stops increased by 

4.67% with pedestrian recall, while it was only 0.97% with automated detection and 

dynamic timing as shown in Fig. 43. 

● Pedestrian Serving Time and Stop Delay: DGMARL with automated pedestrian detection 

and dynamic timing reduced pedestrian waiting time by 60.55% compared to actuated 

signal timing with pedestrian recall, and by 48.46% 

 
Fig. 42: Overall Traffic and Serving State 

 
Fig. 43: Automated pedestrian traffic detection with 

dynamic pedestrian signal timing performance 

improvements compared to pedestrian recall.  

Fig. 44: Pedestrian 

traffic, waiting 

time, and serving 

time comparison. 
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Fig. 45:(23) Vehicles Eco-PI and drivers waiting time comparison 

5.2 Comparing Fuel Consumption and Emissions in DGMARL and RBCs 
Both the optimization model DGMARL and the ring barrier controller (RBC) were simulated in 
VISSIM and CMEM to investigate their individual impacts on FC and various emissions. For this 
particular analysis, we focused on evaluating FC and emissions of light-duty vehicles. As depicted 
in  fig. 46, we extracted vehicle trajectories from the VISSIM model and then prepared the data 
for the CMEM emissions model using Python scripting. Subsequently, the results were obtained 
in g/mile. 

 
Fig. 46: Processing trajectories in CMEM emissions model 

In Table 17, the values for fuel consumption (FC) and emissions for the entire network are 
presented. It is evident that DGMARL effectively reduces all emissions, except for NOx, which 
shows a slight increase of 2.93%. On average, other emissions and FC are reduced by 
approximately 5%. It is important to note that DGMARL optimizes traffic signals specifically to 
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decrease Eco-PI (footprint at signalized intersections due to traffic signal control). Therefore, to 
fully comprehend the benefits of DGMARL, it becomes necessary to investigate FC and emissions 
at the intersection level, which will be discussed in the latter part of this report. 
Table 17: CMEM results – MLK corridor 
 RBC DGMARL Difference (%) 
Hydrocarbons (g/mile) 11.81 11.21 -5.04% 
Carbon Monoxide (g/mile) 94.57 90.33 -4.48% 
Nitrogen Oxides (g/mile) 1.51 1.55 2.93% 
Carbon Dioxide (g/mile) 249.59 237.41 -4.88% 
Fuel Consumption (g/mile) 603.20 573.25 -4.97% 

Furthermore, the Pitt team investigated how fuel consumption (FC) and various emissions changed 
over the simulation period by calculating their values every minute. However, as depicted in fig. 
47, not many conclusions could be drawn from the data presented. 

 
Fig. 47: CMEM results per minute – MLK corridor 

To gain a comprehensive understanding of the changes occurring throughout the simulation 
period (1 hour), the Pitt team developed fig. 48 illustrating the cumulative fuel consumption (FC) 
and emissions per minute. The graph clearly demonstrates that DGMARL optimization leads to 
significant reductions in CO2 emissions and fuel consumption. These findings highlight the 
positive impact of the DGMARL module on improving environmental impacts and fuel 
consumption. 
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Figure 48: Cumulative emissions and FC 

 
4.2.1 Evaluating FC and Emissions per Intersection 
To delve into the fuel consumption (FC) and emissions per intersection, the network needed to be 
divided based on the links that connect to specific intersections. In essence, only links associated 
with the nodes were utilized for the analysis of emissions and FC at each intersection. The vehicle 
trajectories were meticulously tracked during the time they were present in the node, as illustrated 
in fig. 49. This approach allowed for a detailed examination of the emissions and FC at individual 
intersections. 

 
Fig. 49: FC and emissions analysis per intersection 

The results from the analysis described earlier are presented in fig. 50. As observed, there is a 
slight increase in NOx emissions in the DGMARL model at certain intersections. However, in 
contrast, the other emissions and fuel consumption (FC) exhibit consistent reductions across 
almost all intersections. This outcome indicates that the DGMARL approach effectively mitigates 
environmental impacts and reduces FC in the majority of cases. 



UTC DE-EE0009208        Final Technical Report 

68 

 
Fig. 50: CMEM results per intersection 

Furthermore, the comparison between DGMARL and RBCs is illustrated in fig. 51. It can be 
observed that there are slight increases in HC and NOx emissions at certain intersections when 
using DGMARL, while at other intersections, there is a notable reduction in both FC and 
emissions. Moving forward, the UTC team will conduct a thorough investigation of critical 
intersections, such as Georgia, Lindsay, Houston, and Magnolia, to gain deeper insights into the 
performance of the optimization module at these intersections. This analysis will aid in identifying 
specific areas where further improvements can be made to reduce emissions and FC. 

 
Fig. 51 Difference achieved by DGMARL per intersection  

 Despite certain intersections experiencing an increase in emissions, the overall 
environmental footprint at the intersections has been effectively reduced by nearly 10%. It is 
essential to bear in mind that table 18 encompasses all FC and emissions across the entire network, 
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whereas Table 18 focuses solely on the results per intersection, where the impact of DGMARL is 
most apparent. This distinction is crucial as the Eco-PI metric specifically quantifies the footprint 
generated at intersections due to traffic signal control.  
Table 18: Average difference achieved across all intersections 

Average Difference (%) 
HC CO NOx FC CO2 

2.4% -7.6% -1.0% -8.0% -10.7% 

5.3 Real-World Testing 

Field implementation tests were critical to the development and testing of this project. These tests 
were instrumental in validating the practical functionality and reliability of the Eco-Adaptive 
Traffic Control System (Eco-ATCS) in field conditions. In fig. 52, the framework for online Eco-
ATCS implementation is explained. First, the output from the UTC server is obtained through an 
API connection. DGMARL output is then converted to a readable version by NTCIP in the data 
reader module. The converted output contains second by second phase statuses. As such, 
information is sent to the main NTCIP module and then in the form of NTCIP message it is sent 
to the SEPAC m60 controller.  

 
Fig. 52: Framework for Online Adaptive Logic Implementation 

5.3.1 Field Testing of DGMARL and Development Updates 

Our primary focus has been on field testing and enhancing data integration. Key developments 

include the creation of an interface to connect and read field inputs, particularly Signal Phase and 

Timing (SPaT) data and vehicle arrival information. SPaT data retrieved from GridSmart via a 

custom API developed by the CUIP data collection team, which has been successfully integrated 

with DGMARL. Vehicle arrivals are observed using Computer Vision, with the data collection 

team’s custom API sending observed vehicle counts per lane to DGMARL to determine traffic 
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state and occupancy. Since the field testing only provides vehicle counts, DGMARL was 

updated with custom logic to estimate vehicle occupancy based on arrival patterns. Additionally, 

DGMARL has been untethered from VISSIM and is now connected to the field’s SPaT 

configurations, incorporating specific parameters such as minimum green, yellow duration, red 

clearance, and pedestrian serving times. To ensure accurate time measurement for signal 

durations, DGMARL now uses the field controller’s timestamp from the SPaT input. 

We also enhanced DGMARL to handle pedestrian push button requests. This involved analyzing 

GridSmart input fields to determine the phase associated with a push button press. DGMARL 

was updated to prioritize pedestrian requests over vehicle demand and hold active requests if the 

current phase already has a green signal. This ensures all phases receive either a minimum green 

or pedestrian recall serving time.  

Field testing, issue resolution, and integration were critical milestones. DGMARL was tested to 

align with NTCIP module expectations for signal status input. Integration testing involved three 

modules: Computer Vision for Vehicle Observation, DGMARL, and NTCIP, successfully 

conducted at the Peeples intersection in the MLK corridor. INitial testing on the LAB_M60 

machine, using Georgia intersection signal timing plans, revealed issues like the left phase 

servicing problems and red flashing lights, which were resolved by adjusting lane index 

configurations and improving the NTCIP application code. 

Following multiple trials on the LAB_M60 machine, testing moved to real intersections, starting 

with Peeples, where signal timing synchronization was verified. The scope was then expanded to 

include additional intersections–Peeples, Douglas, Houston, Georgia, Market, and Broad. This 

phase culminated in a successful demonstration on October 23, 2023, covering Lindsay, Georgia, 

Market, and Broad intersections, showcasing effective integration and control of real 

intersections with minimal vehicle queues and efficient pedestrian push button handling.  

5.3.2 Tests Conducted in September 2023 

The first test, the "Communication test," was conducted to ensure uninterrupted communication 

with the field controller located at Peeples @ MLK. Upon executing the NTCIP software 

developed by the Pitt team, we achieved consistent data reception from the controller. This 

successful test outcome confirmed that the Eco-ATCS was effectively and reliably 

communicating with the field controller, a pivotal step in the system's real-world deployment. 
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The second test, known as the "Detection suppression test," aimed to prevent the Gridsmart 

system from initiating detection calls. Initially, we intended to modify the dynamic value of the 

detection calls object through NTCIP software, which would normally register as zero when no 

detection calls were present but would change when a detection call occurred, such as when a car 

was detected in a specific phase. However, we encountered an obstacle in the form of the City of 

Chattanooga's SEPAC software version 5.2, which did not support this object. In our lab tests, 

we had used SEPAC 5.3, which did include this functionality. Consequently, the Gridsmart 

system was able to place calls during this field test, resulting in an unsuccessful outcome. For 

subsequent tests in September 2023, we manually disconnected Gridsmart by adjusting the port 

settings of the controller. 

The third test involved the "use of commands," where our objective was to ensure the successful 

placement of "Hold," "Call," and "Force Off" commands to field controller through NTCIP 

software. During this test, we executed these commands without any issues, marking it as a 

successful test. This successful validation of command execution is crucial as it demonstrates the 

NTCIP software's capability to respond to DGMARL instructions effectively and implement 

those instructions in the field controller. 

Finally, the actual implementation test was conducted with the main objective of ensuring that 

the integration of the DGMARL and NTCIP software could effectively control an intersection. 

Initially, the plan was to facilitate the integration of DGMARL and NTCIP through a common 

file. This file was intended to be created and written by DGMARL, and then read by NTCIP 

software. However, during the field test, a simple issue arose when both DGMARL and NTCIP 

software attempted to access the file. As a result, an API was developed to facilitate information 

exchange between DGMARL and NTCIP software. In this API setup, DGMARL employs the 

'SET' command to specify the desired phase status, while NTCIP software uses the 'GET' 

command to read this desired phase status. The desired phase status defined by DGMARL 

comprises four statuses: red, yellow, green, and the next green. The NTCIP software successfully 

matched the phase status in the controller with the desired phase statuses identified by 

DGMARL.  

Throughout the tests conducted in September, the objective of controlling an intersection was 

achieved. The testing process unfolded in several steps. Firstly, we tested the communication 

between the field controller and the NTCIP software. Once we had confirmed the stability of this 
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communication, we proceeded with the detection suppression test. The third step involved 

verifying the successful implementation of commands like “Hold”, “Call”, and “Force Off”. 

Finally, we conducted the intersection control test, during which it became evident that the 

integration of NTCIP software and DGMARL was capable of effectively controlling an 

intersection. 

However, it is worth noting that these tests revealed several issues. For instance, the detection 

suppression test did not yield the desired results. Therefore, we manually disabled the GridSmart 

system by adjusting the port settings of the controller. Additionally, DGMARL encountered 

challenges in serving pedestrian demand at intersections lacking pedestrian recalls. Considering 

these issues, we have scheduled an additional week of testing in October to address and resolve 

these issues. 

5.3.3 Tests Conducted in October, 2023 

During the field tests conducted in October, the GridSmart detection system was manually 

disabled to suppress detection calls. The primary goal was to automate this process, as well as to 

enable the automatic activation of the GridSmart detection system when needed. To achieve this, 

the NTCIP software underwent modifications. The new version of the NTCIP software was 

initially tested at PITTS Lab using the Siemens m60 controller with SEPAC 5.3. Subsequently, it 

underwent testing at the UTC research center, this time with a Siemens m60 controller equipped 

with SEPAC 5.2. In both instances, the modified NTCIP software successfully managed the 

disabling and enabling of the GridSmart detection system. Following these initial steps, the new 

version of the NTCIP software was employed for all the tests described below. 

The UTC team was tasked with integrating pedestrian push button calls into DGMARL. Once 

this integration was complete, an initial test was planned using a controller located in the UTC 

research center. This controller was mimicking the traffic controller at Georgia @ MLK. 

DGMARL received real-time traffic data throughout the testing process. In addition to real 

traffic data, pedestrian push button calls were generated using additional equipment attached to 

the controller, which allowed for the placement of both vehicle and pedestrian calls. 

The goal of this test was to ensure that DGMARL could receive information regarding pedestrian 

push button calls and allocate sufficient green time for pedestrians. During the tests, all 

pedestrian push button calls were successfully served, indicating the test's success. 
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The integration of pedestrian push button calls was initially tested at Peeples @ MLK in the 

field, given its lower pedestrian demand. To confirm the presence of a pedestrian push button 

call, a UTC lab member initiated a test pedestrian call. The primary objective was to ensure that 

pedestrian push button calls were effectively serviced. It was observed that DGMARL could 

provide adequate green time when pedestrians were waiting for service, thus confirming the 

success of this test. Subsequently, the same test was conducted for the intersections at Houston 

@ MLK, Douglas @ MLK, and Lindsay @ MLK. In each case, the integration of DGMARL and 

NTCIP software successfully allocated sufficient green time for pedestrians. 

During the field tests, it was observed that if a vehicle call had been placed by GridSmart 

previously, it was not possible to remove that call. Consequently, DGMARL's desired phase 

status could differ from the controller's phase status. The phase sequence was not entirely under 

DGMARL's control due to existing vehicle calls. To address this issue, in addition to Hold, 

Force Off, and Call commands, the Omit command was introduced. With the implementation of 

the Omit command, the phase sequence became fully controllable. For example, if a Hold 

command was issued for a phase, other phases were omitted. When it was necessary to change 

the active phase, the Omit command was removed for the next phase, and a Call command was 

placed for that phase. Additionally, a Force Off command was issued for the current running 

phase. This way, whenever it was necessary to change the running phase, only the next phase, as 

determined by DGMARL, became available, and the controller was compelled to serve the phase 

specified by DGMARL. 

The modified version of the NTCIP software was initially tested using the controller located at 

the UTC research center. During this test, it was observed that, even in the presence of calls, the 

controller followed the phase sequence determined by DGMARL. Consequently, the test was 

successful. 

Following this, the modified NTCIP software was tested at Georgia @ MLK, Broad @ MLK, 

and Market @ MLK intersections. These intersections were selected because they experience 

higher vehicle and pedestrian demand compared to others. Therefore, these intersections had 

calls placed by GridSmart before DGMARL started operating. During these tests, it was 

confirmed that the phase sequence was controlled by DGMARL, and the integration of 

DGMARL and NTCIP software successfully managed these intersections individually. 
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The final test was to control multiple busier intersections. The main goal was to ensure that the 

integration of DGMARL and NTCIP software could control multiple intersections 

simultaneously, while also ensuring that pedestrians were being served. In this test, the 

DGMARL and NTCIP software integration successfully controlled Georgia @ MLK, Broad @ 

MLK, and Market @ MLK intersections. 
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Section 6: Conclusion 

This project has successfully addressed key challenges associated with optimizing traffic signal 

control in urban environments. Through the integration of connected vehicle (CV) and connected 

infrastructure (CI) communication technologies, and leveraging recent advances in AI, 

optimization, and edge computing, we have developed a sophisticated adaptive traffic signal 

control system to reduce fuel consumption and improve traffic flow. 

The primary accomplishments of this project can be summarized into several achievements, each 

contributing to the goal of sustainable urban traffic management. 

● Advanced System Development: The DGMARL system was developed to formulate the 

traffic signal control problem as a  Multi-Agent Markov Decision Process. The 

architecture integrated AI technologies such as the Advantage Actor Critic (A2C) 

reinforcement learning model. This system successfully modeled intersections and 

coordinated signal timing to minimize environmental impacts, thereby optimizing traffic 

flow and reducing emissions. 

● Development of Fuel Consumption Performance Index (Eco FC-PI): The FC-PI was 

developed as a critical component for evaluating the system’s impact on fuel 

consumption and emissions. This metric provided a means for understanding the 

relationship between traffic signal control and the reduction of fuel consumption.  

● Extensive Testing and Validation: The system was tested through a series of experiments 

that included both Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) 

simulations, followed by real-world testing on the MLK Smart Corridor, an urban 

corridor managed by the University of Tennessee at Chattanooga (UTC). The system’s 

performance was validated under real-world conditions demonstrating significant 

improvements in both operational efficiency and environmental metrics. 

● Digital Twin Development: A three-tier twin system was developed to enable real-time 

traffic simulation and optimization. This digital twin framework consisted of pre-

populated offline simulations, pseudo-real-time simulations driven with archived data, 

and real-time simulations using live field data streams. Each tier incrementally increased 

the complexity and capability of the system, ultimately enabling for a real-time traffic 

management model 
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● Real-World Field Deployment: One of the most significant aspects of this research was 

the field deployment of the developed Eco-Adaptive Traffic Control System (Eco-

ATCS). Successful integration with actual traffic controllers, pedestrian systems, and 

dynamic data streams demonstrated the system’s readiness for real-world deployment.  

Challenges and Lessons Learned 

● Integration Complexity: one of the significant challenges encountered was the integration 

of the DGMARL model with existing traffic infrastructure. The project required 

considerable efforts to align various components, such as pedestrian recalls, signal 

phasing, and adaptive timing. Addressing these integration challenges has provided 

valuable insights into the requirements for deploying AI-based traffic solutions at scale. 

● Pedestrian System Limitations: Initially, pedestrian push-button systems were not 

effectively integrated,leading to limitation in serving pedestrian demand at intersections 

without pedestrian recalls. Through multiple testing phases, we were able to develop 

mechanisms that ensured pedestrian requests were served adequately, but these initial 

setbacks underscored the importance of comprehensive, cross-system integration. 

● Model Training and Real-World Adaptation: The adaptation of the DGMARL model to 

match the real-world requirements posed challenges in training and retraining, 

particularly due to differences between simulation environments and the actual physical 

environment. This highlighted the need for adaptable training methods that incorporate 

field-specific constraints, such as traffic dynamics, pedestrian movement, and 

infrastructure variability.  

Broader Impacts 

The results of this project have implications beyond traffic management and urban mobility. By 

developing technologies that reduce fuel consumption and emissions, this project aligns with 

broader efforts to combat climate change and promote sustainability in urban spaces. 

Furthermore, the deployment of AI-drive systems provides a blueprint for integrating emerging 

technologies in city infrastructure in many ways beyond traffic management.  
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Section 7: Future Work 

Continued Development of DGMARL and Eco-ATCS 

The DGMARL framework demonstrated success in coordinating multiple intersections through a 

decentralized graph-based, multi-agent reinforcement learning approach. Future work could 

expand on this by refining integration testing with real-time data and improving adaptability to 

fluctuating traffic patterns using reinforcement learning adjustments. Additionally, enhancements 

such as incorporating pedestrian recall, minimum green duration, and improved phase sequence 

controls were partially implemented and could be expanded to optimize performance in diverse 

traffic conditions. 

Expansion of Fuel Consumption Performance Index (FC-PI) 

The development of FC-PI involved significant testing of operational conditions impacting fuel 

consumption, such as road gradient and vehicle types. Future directions might include expanding 

the FC-PI to account for additional pollutants like CO2 and PM, and refining regression models 

to better align with real-world conditions. Additional testing on road gradient and varying fleet 

compositions may further validate and enhance the FC-PI, particularly in mixed traffic 

environments 

Digital Twin Expansion and Real-Time Testing 

Further development of the digital twin model, particularly with integration into ORNL’s HIL 

(Hardware-in-the-Loop) framework, is recommended. The current VISSIM-based model has 

successfully been tested for compatibility with CarMaker for real-time vehicle simulation, but 

real-time application has shown limitations due to software compatibility. Future efforts should 

aim to overcome these limitations and improve the model’s real-time adaptability for broader 

application in connected vehicle environments. 

Advanced Field Testing and Scalability 

The next steps involve enhancing DGMARL’s field testing capabilities by leveraging real-time 

data from traffic monitoring systems like GRIDSMART and improving the latency in vehicle 

occupancy data processing. The integration with systems such as Flask-based RESTful API has 

already shown promise for real-time adaptability, suggesting scalability to larger traffic networks 

if latency concerns can be mitigated. 
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Public Engagement and Policy Integration 

To ensure the system’s success, public engagement and policy considerations will be crucial. 

The model’s data, including fuel consumption and emissions reduction metrics, could be 

valuable for demonstrating benefits to stakeholders and policymakers. Expanding community 

outreach and engagement with the city planning departments for further alignment with local and 

federal energy-conscious traffic management initiatives could also enhance long-term adoption 
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Section 9: Appendices 

Appendix A: Figures 

 
Fig. 1: System Pipeline 

 
Fig. 2: Intersection at MLK Blvd and Central Ave. 
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Fig. 3: DGMARL Architecutre 

 
Fig. 4: Digital Twin Architecture 
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Fig. 5: Dynamics and Kinematics of a Stopped Vehicle 
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Fig. 6: VISSIM-Matlab-CMEM connection 

 
a)vehicle type b) fleet distribution 
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c) road gradient d) driving behavior 

 
e) cruising speed f) wind effect 

Fig.7: Impact of various operational condition on stop penalty (K); DB: driver behavior 

 
a)percentage of HDDVs in fleet  b) slope during acceleration phase 
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c) cruising speed  d) aerodynamic effect of wind speed and direction 

Fig. 8: Regression models to computer stop penalty 

 
Fig. 9: Impact of a single stop-and-go event of excess emissions 

 

  

a) Main street exclusive phases b) Side street exclusive phases 
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c) Main street in protected/permitted 
phases 

d) Side street protected/permitted phases 

Fig. 10: Comparison between analytically derived and ground truth EcoPI 
 

   

a) Cycle 1 b) Cycle 2 c) Cycle 3 

   

d) Cycle 4 e) Cycle 5 f) Cycle 6 
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g) Cycle 7 h) Cycle 8 i) Cycle 9 

   

j) Cycle 10 k) Cycle 11 l) Cycle 12 

Fig. 11: Impact of non-critical and critical intersection CLs on minimum group CLs 

Fig. 12: Framework for Local Constraints Development 
Fig. 13: PM-Peak 3-hour Eco0PI; Data: 12/15/2022 

Simulation resolution: 1 second; Random seeds: 12, 25, 45, 41, 32, 37, 27, 44, 29, 22 
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Fig. 14: Pine and Peeples Eco-PI impact 

 
Fig. 15: Signal Timing Output 

 
Fig. 16: Signal Timing Output Template 
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                            (a)                                                                            (b) 
Fig. 17: Saturation headway distribution comparison - field vs simulation plots at (a) MLK @ Magnolia Eastbound 

approach detector, and (b) MLK @ Houston Westbound approach detector. 

 
Fig. 18: View of Siemens SEPAC SILS 

 
Fig. 19: Field signal timing plans operating in SILS environment at Broad @MLK 
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Fig. 20: Test-bed network 
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Fig. 21: Architecture of SILS 
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Fig. 22: Experimental design 



UTC DE-EE0009208        Final Technical Report 

93 

 
Fig. 23: Total delay and number of stops in the network 

 
Fig. 24: Framework for Offline Adaptive Logic Implementation  
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Fig. 25:  CAVE lab HIL architecture including communication model 

 

Fig. 26:  Example of CAVE lab application quantifying the effect of communications on connected vehicles during 
traffic merging optimization 
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Figure 27: CAVE lab HIL architecture diagram 

  
Figure 28: HIL architecture demonstration with VISSIM in the CAVE lab 
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Figure 29: HIL architecture integrating Vissim MLK model with Ford Mach E 

 

Figure 30: Power consumption and speed of ego vehicle in the MLK Vissim simulation for a single run across the 
corridor in Eastbound direction. 
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Figure 31: Actuated signal controls Ego vehicle speed and cumulative energy consumption – Mach E 

 
Figure 32: DGMARL signal controls Ego vehicle speed and cumulative energy consumption – Mach E 



UTC DE-EE0009208        Final Technical Report 

98 

 
Figure 33: AVL Plutron Fuel Flow Meter installed on RAV4 in CAVE Laboratory 

 
Fig. 34: PM-peak 1 Hour Simulation Test Results 

 
Fig. 35: PM-peak 3 Hour Simulation Test Results 
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Fig 36: Eastbound: Trajectory report of vehicles traveled >= 8000ft 

 
Fig.37: Arrival on green and arrival on red 

 
Fig. 38: Overall Eco-PI in 1 hour simulation 
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Fig 39: Actuated vs DGMARL–Stops Reduced by 17.35%

 
Fig. 40: Actuated vs DGMARL–Delay Reduced by 32.78% 

 
Fig. 41: Difference in Stops and Delays (DGMARL minus Actuated) 
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Fig. 42: Overall Traffic and Serving State 

 
Fig. 43: Automated pedestrian traffic detection with 

dynamic pedestrian signal timing performance 

improvements compared to pedestrian recall.  

 
Fig. 45:(23) Vehicles Eco-PI and drivers waiting time comparison 

Fig. 44: Pedestrian 

traffic, waiting 

time, and serving 

time comparison. 
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Fig. 46: Processing trajectories in CMEM emissions model 

 
Fig. 47: CMEM results per minute – MLK corridor 
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Figure 48: Cumulative emissions and FC 

 
Fig. 49: FC and emissions analysis per intersection 



UTC DE-EE0009208        Final Technical Report 

104 

 
Fig. 50: CMEM results per intersection 

 
Fig. 51 Difference achieved by DGMARL per intersection  
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Fig. 52: Framework for Online Adaptive Logic Implementation 
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Appendix B: Tables 

Table 1: Input and Output of DGMARL 

 
 
Table 2 Variables for various operational conditions impacting FC 

Vehicle type Fleet distribution Driver behavior Road gradient Cruising speed Wind effect 
Variable FC (g) Variable FC (g) Variable FC (g) Variable FC (g) Variable FC (g) Variable FC (g) 
LDV1 56.6 100:0 56.6 Func1 45.7 -7 34.8 20 16.1 50 tailwinds 473.8* 
LDV2 57.2 99:1 62.5 Func2 47.2 -6 37.6 25 21.8 40 tailwinds 505.6 
LDV3 55.5 98:2 68.7 Func3 49.5 -5 40.8 30 27.2 30 tailwinds 510.8 
LDV4 52.5 97:3 74.4 Func4 51.9 -4 43.5 35 36.7 20 tailwinds 513.3 
LDV5 57.8 96:4 80.1 Func5 53.2 -3 46.3 40 46.4 10 tailwinds 525.6 
LDV6 54.6 95:5 86.5 Func6 55.4 -2 49.6 45 56.6 No wind 549.0 
LDV7 55.5 94:6 92.3 Func7 56.3 -1 52.7 50 70.3 10 headwinds 587.2 
LDV8 59 93:7 98.4 Func8 58.4 0 56.6 55 85.5 20 headwinds 628.5 
LDV9 58.7 92:8 104.1 Func9 60.5 1 59.2 60 106.6 30 headwinds 690.8 
LDV10 111.2 91:9 110.9 Func10 62.2 2 63.7 65 135.3 40 headwinds 835.4 
LDV11 56.8 90:10 117.6 Func11 63.7 3 67.1 

 
Not applicable 

50 headwinds 979.5 
LDV12 55.9 

 
Not applicable 

Func12 65.4 4 71.1 
*Values are for 

HDDVs 
HDDV1 816.5  

Not applicable 
5 75.0 

HDDV2 894.4 6 80.2 
HDDV3 549.0 7 85.6 

 
Table 3 Regression equations to compute the stop penalty 

Factor Equation Range R2 
𝑥!"#:	% of HDV 𝐾 = 	129.37 ∙ 𝑒$.$&'(∙*!"# 		 𝑥!"# = [0, 10]	 0.6273 

𝑥+,:	Road gradient (%) 𝐾 = 122.19 ∙ 𝑒$.$&-.∙*$% 			 𝑥+, = [−7, 7]	 0.8335 
𝑥/0:	Cruising speed (mph) 𝐾 = 14.761 ∙ 𝑒$.$-&1∙*&' 	 𝑥/0 = [20, 65]	 0.9645 
𝑥23:	Wind effect (mph) 𝐾 = 	0.1613 ∙ 𝑥234 + 9.6642 ∙ 𝑥23 + 1244.6	 𝑥23 = [−50, 50]	 0.9389 

Table 4 Required data for estimating delay and number of stops 
Optimization 
type \ Data 
attribute 

Type Source Spatial coverage Temporal coverage Importance 

Vehicle arrivals downstream 

Offline - 
Pretimed 

Traffic 
counts 

GridSmart 
TMCs / Counts 

Intersection 
movement 

15-minutes bins / 
Second-by-second High 

Online - 
Adaptive 

Traffic 
counts 

GridSmart 
Counts 

Intersection 
movement Second-by-second High 
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Online CV – 
Adaptive CV 

Traffic 
counts CV data (BSM) Exact location of 

vehicle Same as Online Medium 

Vehicle arrivals upstream 

Offline - 
Pretimed 

Traffic 
counts 

GridSmart 
Counts 

After upstream 
intersection 

Aggregated based on 
second-by-second 

data 
Low 

Online - 
Adaptive 

Traffic flow 
rate 

GridSmart 
Counts / Video 

data 

After upstream 
intersection 

Second-by-second / 
TBD (resolution of 

video analytics) 
High 

Online CV – 
Adaptive CV 

Traffic flow 
rate CV data (BSM) Exact location of 

vehicle Second-by-second Medium 

Signal phasing and timing data 
Offline - 
Pretimed 

Signal timing 
elements 

Signal timing 
sheets 

Intersection 
movement Peak period or hour High 

Online - 
Adaptive 

Signal timing 
elements 

GridSmart 
Events 

Intersection 
movement Second-by-second High 

Online CV – 
Adaptive CV 

Signal timing 
elements Same as Online Same as Online Same as Online Medium 
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Table 5 Required data for each of the factors impacting the stop penalty 
Optimization 
type \ Data 
attribute 

Type Source Spatial coverage Temporal coverage Importance 

Fleet composition and Vehicle type 

Offline - 
Pretimed Vehicle shape GridSmart 

Counts 
Intersection 
movement Second-by-second Medium 

Online - 
Adaptive Vehicle shape 

Video data / 
GridSmart 

Counts 

Intersection 
movement 

TBD (resolution of 
video analytics) 

/ Second-by-second 
High 

Online CV – 
Adaptive CV 

Exact vehicle 
model 

CV data (Embed 
in BSM) 

Exact location of 
vehicle Second-by-second High 

Driving behavior 

Offline - 
Pretimed 

Trajectory 
data 

Probe GPS / 
Video data 

Before & After 
StopLine/ TBD 
(camera view) 

Second-by-second / 
TBD (resolution of 

video analytics) 
High 

Online - 
Adaptive 

Trajectory 
data Video data TBD (camera 

view) 
TBD (resolution of 

video analytics) Medium 

Online CV – 
Adaptive CV 

Trajectory 
data 

CV data (BSM), 
individual CV 

Same as Online 
and for multiple 

intersections 
Second-by-second High 

Road gradient 
Offline - 
Pretimed 

Grade of the 
terrain 

Maps with 
altitude 

Intersection 
approach NA High 

Online - 
Adaptive 

Grade of the 
terrain Same as Offline Same as Offline Same as Offline Low 

Online CV – 
Adaptive CV 

Grade of the 
terrain 

Same as Offline 
+ BSM 

Exact location of 
vehicle Second-by-second Medium 

Cruising speed 

Offline - 
Pretimed Speed limit Google maps Intersection 

approach NA High 

Online - 
Adaptive 

Speed 
distribution 

Video data 
/GridSmart 
Realtime 

TBD (camera 
view) / 

Intersection 
movement 

TBD (temporal 
resolution of video 
analytics) / Second-

by-second 

Medium 

Online CV – 
Adaptive CV 

Speed 
distribution CV data (BSM) Exact location of 

vehicle Second-by-second Medium 

Wind effect 

Offline - 
Pretimed 

Wind speed 
& direction Dark Sky TBD TBD Low 

Online - 
Adaptive 

Wind speed 
& direction Dark Sky (API) TBD TBD Medium 

Online CV – 
Adaptive CV 

Wind speed 
& direction Dark Sky (API) Same as Online Same as Online Medium 
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Table 6 Cruising speeds and road gradients on intersections of the area of study
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Tables 7-11 
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Table 12 

 
Table 13 
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Table 14: DGMARL–Improved Intersections Coordination and Average Eco-PI: 26.52% 

 

Table 15: DGMARL–Improved Intersections Coordination and Average STOPS: 17.91% 
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Table 16: DGMARL–Imrpoved Intersections Coordination and Average DELAY: 33.49% 

 

Table 17: CMEM results – MLK corridor 
 RBC DGMARL Difference (%) 
Hydrocarbons (g/mile) 11.81 11.21 -5.04% 
Carbon Monoxide (g/mile) 94.57 90.33 -4.48% 
Nitrogen Oxides (g/mile) 1.51 1.55 2.93% 
Carbon Dioxide (g/mile) 249.59 237.41 -4.88% 
Fuel Consumption (g/mile) 603.20 573.25 -4.97% 

 
Table 18: Average difference achieved across all intersections 

Average Difference (%) 
HC CO NOx FC CO2 

2.4% -7.6% -1.0% -8.0% -10.7% 
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Appendix C: Equations 

𝐹𝐶!""# = 𝐹𝐶$ + 𝐹𝐶% + 𝐹𝐶&   (1) 

 

𝐹𝐶$& 	= 𝐾' 	 ∙ 	𝐹𝐶% 	        (2) 

 

𝐾' =
𝐹𝐶$ +	𝐹𝐶&

𝐹𝐶%
	 (3) 

 

𝐾 =
(𝐹𝐶$ +	𝐹𝐶&) ∙ 	𝑇%

𝐹𝐶%
	 (4) 

 

𝐾( =
(𝐹𝐶$ +	𝐹𝐶&)( ∙ 	𝑇%(

𝐹𝐶%(
	 (5) 

 

𝐹𝐶 − 𝑃𝐼 = 	.
)

(*+

𝐷( +	
(𝐹𝐶$ +	𝐹𝐶&)( ∙ 	𝑇%(

𝐹𝐶%(
	 ∙ 	𝑆( 	 (6) 

𝐸𝑐𝑜𝑃𝐼-.-/0( = .
1

,	*	+

𝑑,( + 𝐾,( ∗ 𝑁,( 										(7)	 

𝑑,( =
0.38 ∗ 𝐶𝐿(?1 − 𝑔,(/𝐶𝐿

(C3

1 − 𝑦,5

∗ 𝑃𝐹,( 										(8)	 

𝑃𝐹,( =
1 − 𝑃𝑂𝐺,(
1 − 𝑔,(/𝐶𝐿

( ∗
1 − 𝑦,( 		

1 − 𝑦,( ∗ G
𝐶𝐿(
𝑔,(

H ∗ 𝑃𝑂𝐺,(

∗ I1 + 𝑦,( 	 ∗
1 − 𝑃𝑂𝐺,( ∗ 𝐶𝐿

(/𝑔,(
1 − 𝑔,(/𝐶𝐿

( J										(9)	 
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𝑁,( = 0.9 ×
1 − 𝑔,(/𝐶𝐿

(

1 − 𝑦,(
										(10)	 

𝐶𝐿,()( =
𝐿

1	 −	
∑𝐴𝑜𝑅,5785957:;

0.5 × 𝐶𝐿:;'<(.=8( 	

								(11) 

𝐶𝐿,()( = 𝐿( + ?𝐴𝑜𝑅>+ + 𝐴𝑜𝑅>3 + 𝐴𝑜𝑅>? + 𝐴𝑜𝑅>@C ∗ ℎ8/-									(12) 

𝐿( =.
,<

𝐿>6< 						(13)	 

𝐿>6< = ?𝑙+,< + 𝑦,< + 𝑎𝑟,< − 𝑒,<C									(14)	 

𝐴𝑜𝑅>6< = f𝐴𝑜𝑅>+6< , . . . , 𝐴𝑜𝑅>@6<g 										(15)	 

𝑔,()>6<
= 𝐿>6< +	𝐴𝑜𝑅>6< ∗ ℎ8/-						(16)	 

𝐶𝐿,()
9;.=: = ?𝐶𝐿,()( C							(17)	 

𝑔'4-')8(.)+B@ =	T(𝐶𝐿,()=7>?@
9;.=: + ∆) − 𝐶𝐿,()=7>?@

9;.=: V ×	
𝐴𝑜𝑅,( ∗ 𝐾,( ∗ 𝑞,( 	𝑓𝑜𝑟	𝜙+B@

∑𝐴𝑜𝑅,( ∗ 𝐾,( ∗ 𝑞,( 	
						(18) 

𝐸𝑐𝑜𝑃𝐼-.-/0( = .
1

,	*	+

𝑑,( + 𝐾,( ∗ 𝑁,( 									(19)	 

𝑑,( =
0.38 ∗ 𝐶𝐿(?1 − 𝑔,(/𝐶𝐿

(C3

1 − 𝑦,5

∗ 𝑃𝐹,( 								(20)	 



UTC DE-EE0009208        Final Technical Report 

116 

𝑃𝐹,( =
1 − 𝑃𝑂𝐺,(
1 − 𝑔,(/𝐶𝐿

( ∗
1 − 𝑦,( 		

1 − 𝑦,( ∗ G
𝐶𝐿(
𝑔,(

H ∗ 𝑃𝑂𝐺,(

∗ I1 + 𝑦,( 	 ∗
1 − 𝑃𝑂𝐺,( ∗ 𝐶𝐿

(/𝑔,(
1 − 𝑔,(/𝐶𝐿

( J								(21)	 

𝑁,( = 0.9 ×
1 − 𝑔,(/𝐶𝐿

(

1 − 𝑦,(
								(22)	 

𝐶𝐿CD.#%
9;.=: = ?𝐶𝐿CD.#%( C						(23)	 

𝐶𝐿,()B
( =

𝑇𝑜𝑡𝑎𝑙	𝐿𝑜𝑠𝑡	𝑇𝑖𝑚𝑒

1	 −	
∑𝐴𝑂𝑅,5785957:;

0.5 × 𝐶𝐿( 	

											(24)	 

𝑔,()BC 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅+,FC	
∑𝐴𝑂𝑅,5785957:;

											(25)	 

𝑔,()BD 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅3,GC	
∑𝐴𝑂𝑅,5785957:;

											(26)	 

𝑔,()BE 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅?,HC	
∑𝐴𝑂𝑅,5785957:;

											(27)	 

𝑔,()BF 	= 	𝐶𝐿,()B
( ×

?𝐴𝑂𝑅@,1C	
∑𝐴𝑂𝑅,5785957:;

											(28)	 

𝑔'4-')8(.)+B@ =	T𝐶𝐿CD.#%
9;.=: − 𝐶𝐿,()B

( V

×	
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝐴𝑜𝐺,( ∗ 𝐾,( 	𝑓𝑜𝑟	𝑝ℎ𝑎𝑠𝑒	1 − 4

∑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝐾(𝐴𝑜𝐺) 										(29)	 

𝑔-.-/0CGF = 𝑔,()BCGF + 𝑔'4-')8(.)+B@														(30)	 
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