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Abstract

The maximum likelihood estimation is a general estimation procedure. It is often compared to estimation
procedures like the ordinary least squares regression or generalized method of moments, to name a few. We
discuss some basics about the maximum likelihood estimation, its advantages and disadvantages, and provide
an example application to a gamma distribution function.
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1. Introduction

“The principle of maximum likelihood can be stated as follows: Find an estimate for (parameter)
θ such that it maximizes the likelihood of observing those data that were actually observed.”

- S. R. Eliason (Eliason, 1993, p. 7)

A simple description for the maximum likelihood estimation (MLE)1: a method of estimating the parameters
of an assumed probability distribution function (PDF)2 for a given set of observed data. The MLE is a general
estimation procedure that is an alternative approach for estimating distribution parameters. The MLE is good
for general probability distributions, continuous PDFs, non-negative PDFs, and works best when the PDF is
known.

The following sections will be as concise as a reasonable explanation will allow. Our hope is that it will pique
the readers interest and they will follow up with several references provided. In Sec. (2) we will describe
the likelihood function (LF) and how to find MLE of a distribution’s parameters. To, hopefully, solidify
the MLE idea we will present an example of the MLE applied on a two-parameter gamma PDF (GDF2)
in Sec. (3). Lastly, in Sec. (3.2), we will generate sets of random variables by sampling for them from a
GDF2 distribution and, then we will apply the MLE method on these sets of generated data. The maximum
likelihood estimators found should confirm the two originally known parameters used to generate the random
variables.

2. Maximum Likelihood Estimation: Procedure

The outline and description in this following section are based on presentations in Eliason (1993), Shenton
and Bowman (1997), and Martin (1971).

2.1. Likelihood Function (LF)

Given a simple and general probability density function, written as

f (x|θ), (1)

where x is the random variable (unknown) and θ is a parameter of the PDF (known). The PDF provides
the probability of selecting an x from a given distribution defined by the parameter, θ . Mathematically the
likelihood functions looks very similar to the PDF. The LF is a joint distribution function (JDF) which is
constructed by a product of all the individual PDFs, Eq. (1), for independent random variables:

L(θ)≡ L(θ |xi)≡ L(θ |x1, · · · ,xN) =
N

∏
i

f (xi|θ) (2)

where ∏ is the product operator, the θ parameter of a distribution function (unknown), and the xi are the
observed data (known) which are independent and identically distributed (iid) random variables. The LF
provides the likelihood of the distribution parameter occurring given the observed data, xi. In other words:
we want to fit a distribution to find the optimal parameter (θ ) of the distribution from the observed data,
xi = {x1,x2, ...,xN}.

1We will use MLE for maximum likelihood estimation or estimator when appropriate, depending on the context.
2The PDF is for continuous random variables or probability function (PF) for discrete random variables. We will refer to PDFs

since we will being using a Gamma PDF in this report.
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It is important to emphasize a difference between the PDF and LF:

• A PDF expresses the probability of observing the data given the underlying distribution parameters. It
assumes that the data are unknown.

• The LF expresses the likelihood of the distribution parameter values occurring given the observed data.
It assumes that the parameters are unknown.

2.2. Maximum Likelihood Estimation (MLE)

We want to find the maximum value of the LF or the maxiumum likelihood estimator. Several approaches
might immediately come to mind. For instance, one could plot the LF as a function of the parameter, θ , and
“pick-off” the maximum value in the plot. Or in more precise way, one might take the derivative of the LF as
a function of θ and set that equal to zero then solve for the θ . Depending on the LF form, it is often messy to
deal with the taking the derivative of a large product of functions.

Thus it is a common practice to take the natural logrithm of the likelihood function before taking the LF
derivative. There are several reasons this is a desirable operation. Taking the logrithm often makes things
easier to mathematical manipulate the LF, especially due to the property of logrithms where the logrithm
of a product is equal to the summation of the logrithm. Another useful reason is numerically it is easier to
handle values that are nominally close to zero, after taking the logrithm of those small values. It is important
to appreciate that finding the maximum of the log-likelihood function (LLF) will give equalivent results as
finding the maximum of the LF.

Applying the natural logrithm to Eq. (2), the LFF can be expressed like

λ (θ)≡ ln [L(θ)] = ln

[
N

∏
i

f (xi|θ)

]
=

N

∑
i

ln [ f (xi|θ)] . (3)

Now that we have the LLF, we can find its maximum by taking the first derivative of the LLF with respect to
θ and setting it to zero:

∂θ [λ (θ)] = ∂θ

[
N

∑
i

ln [ f (xi|θ)]

]
= 0, (4)

where ∂θ ≡ ∂

∂θ
. Now we can solve for a θ estimation in Eq. (4) which we will call a θ -estimator denoted by,

θ̂ . Unless an analytic solution is found, then a numerically iterative solution has to be employed.

To round out this section we introduce, without explanation3, a commonly used form for the variance of the
esimator, θ̂ ,

V (θ̂) =
[
−∂

2
θ [λ (θ)]

]−1
∣∣∣∣
θ=θ̂

. (5)

This equation involves taking the second-derivative of the LLF and will be used later to find the variance of
the estimator, θ̂ .

3This equation and a derivation is found in Martin (1971, p. 78). Similar equations can be found in Shenton and Bowman (1997)
and Eliason (1993)
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2.3. MLE: Advantages

• If the model (like the chosen PDF) is correctly assumed, the MLE provides the most efficient4 estimator.

• The MLE results in unbiased estimates for larger samples. MLE is sometimes often called an asymptotic
estimator.

• The MLE provides a consistent, but flexible, approach which makes it appropriate for a large range of
applications. This is especially true when assumptions of other models are inappropriate.

2.4. MLE: Disadvantages

• MLE estimates can be biased in small sample sizes.

• The MLE relies on the assumption of a model, and the derivation of the LF which is not easily found.

• MLE can be sensitive to the initial starting values for the numerical, iterative solve for the estimator.

3. Gamma Distribution Function Two-Parameters (GDF2)

In this section we will apply the MLE approach, from Sec. (2), to the two-parameter gamma distribution
function (Eric et al., 2021) (Eliason, 1993, p. 46) (Shenton and Bowman, 1997, p. 149) which can be written
as

f (x|µ,ν) = 1
Γ(ν)

(
ν

µ

)ν

x(ν−1) exp
(
−ν

µ
x
)
, (6)

where x is the random variable and the two parameters of the function is the mean, µ , and ν which is inversely
proportional to the variance and describes the width of the distribution. And, lastly, Γ(ν) is the gamma
function (Eric et al., 2021). Figure 1 illustrates the Eq. (6) curves for various ν values. Notice that as the
value of ν gets larger that the width of the curve’s shape gets narrower, thus the variance gets smaller.

4Efficiency is one measure of an estimator. The most efficient estimator is consistent and whose sampling variance for large
samples is less than that of any other such estimator. (Martin, 1971)
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Figure 1: GDF2 curves for µ = 1 and several demonstrative ν parameters. See f (x|µ,ν) of Eq.
(6).

3.1. Deriving the MLE of the GDF2

We can create a LF for our GDF2 of Eq. (6) using Eq. (2) which gives the form

L(µ,ν)≡ L(µ,ν |x1, · · · ,xN) =
N

∏
i

[
1

Γ(ν)

(
ν

µ

)ν

x(ν−1)
i exp

(
−ν

µ
xi

)]
. (7)

With some algebraic manipulation we find the LF can be expressed as

∴ L(µ,ν) =
(

1
Γ(ν)

)N

·
(

ν

µ

)Nν

·
N

∏
i=1

(
x(ν−1)

i

)
· exp

(
−ν

µ

N

∑
i=1

xi

)
. (8)

At this point, we might try to find the maximum of the Eq. (8). Though as described in Sec. (2.2) and Eq. (3),
we will first find the the log-likelihood function (LLF) which takes the form

λ (µ,ν)≡ ln [L(µ,ν)] =−N ln(Γ(ν))+νN ln
(

ν

µ

)
+(ν −1)

N

∑
i=1

ln(xi)−
ν

µ

N

∑
i=1

xi . (9)

The LLF equation (9) is consistent with a derivation by Eliason (1993, p. 46). For simple LLF functions we
could just plot the function and “pick-off” the maximum from the curve plot. For example, shown in Fig. (2)
is a plot of Eq. (9) as a function of ν̂ .5

In general, it is more precise and useful to find the maximum of the LLF function of Eq. (9) by taking
the derivative of this equation with respect to the targeted estimator parameter. We could start by trying to

5This curve was created by first generating random samples, xi, from a GDF2, f (µ = 1,ν = 2). Then assuming that µ̂ = 1 and
using N generated samples for xi in Eq. (9), we generated Fig. (2).
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Figure 2: Plot of the LLF, λ (µ̂ = 1, ν̂), in Eq.(9) as a function of µ̂ . Notice that at ν̂ = 2 the
maximum is observed in this particular case, confirming this was the original ν used to generate
the random variables, xi.

estimate the mean, µ . Turns out this is a trivial case, it can be found analytically. By using Eqs. (4) and (5)
we will find the form of µ̂ and σ̂µ̂ , respectively, to be,

µ̂ =
1
N

N

∑
i=1

xi and σ̂µ̂ =

√
1

N2

N

∑
i=1

(xi − µ̂)2, (10)

where µ̂ is the mean (arithmetic) estimator and σ̂µ̂ is the standard deviation of the µ̂ estimator of the GDF2.

Since we can easily find an estimate of µ which we will call the µ-estimator and denote it by µ̂ , then we
will look for an estimate of ν by taking the derivative of Eq. (9) with respect to ν to find the MLE for this
parameter

∂ν [λ (µ̂,ν)] =−Nψ(ν)+N ln(ν)+
N

∑
i=1

ln
(

xi

µ̂

)
. (11)

By setting this equation equal to zero

−ψ(ν)+ ln(ν)+
1
N

N

∑
i=1

ln
(

xi

µ̂

)
= 0, (12)

where ψ(ν)≡ ∂ν [ln(Γ(ν))] which is known as the digamma function.6 Then we can minimize this equation
so as to find the estimator, ν̂ , since at this point we know the set of xi and the µ̂ estimator. Often a numerical

6As an aside, the summation term on the left-hand side in Eq. (12) can be rewritten to easily show that it is equal to the natural
log of the geometric mean divided by the arithmetic mean.
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and iterative method needs to be used to find this estimator. Note that Eq (12) is consistent with a derivation
by Shenton and Bowman (1997, p. 150).

With knowledge of the estimator, ν̂ , we now find its variance using ν̂ and substituting Eq. (9) in Eq. (5):

V (ν̂) =
[
−∂

2
ν [λ (µ̂,ν)]

]−1
∣∣∣∣
ν=ν̂

. (13)

We can leverage the knowledge of the first derivative of λ from Eq. (11) and rewrite the previous equation as

V (ν̂) =

[
N∂ν [ψ(ν)]−N∂ν [ln(ν)]−∂ν

[
N

∑
i=1

ln
(

xi

µ̂

)]]−1 ∣∣∣∣
ν=ν̂

. (14)

This will reduce and provide a variance of the estimator, ν̂ :

∴V (ν̂) =

[
N
(

ψ
′
(ν̂)− 1

ν̂

)]−1

, (15)

where ψ
′
(ν)≡ ∂νψ(ν) = ∂ 2

ν [ln(Γ(ν))] which is known as the trigamma function. Note that the deviation of
ν̂ is, σ̂ν̂ =

√
V (ν̂).

3.2. MLE applied to a GDF2 Sampled Data Sets

To get a feel for using the MLE of the GDF2 as seen in the previous section (Sec. (3.1)), we performed
several simple computational experiments to see how well the MLE equations and our Python scripts perform.
We will start by using a sampling routine for the GDF2 which is supplied in a Python module random and its
two-parameter function gammavariate to sample N variants, xi = {x1,x2, ...,xN}, (see Appendix A).

In turn, once we sample for the iid values for xi, we will use them as the experiments to find the two parameters
of the GDF2 using the MLE approach in Sec. (3.1) which specifically means using Eq. (10) and an iterative
process on Eq. (12) for µ̂ and ν̂ , respectively.

The µ̂ estimator can be found analytically and is straight forward. For finding the ν̂ estimator we used the
Python module scipy and in this case the optimize function using a Nelder-Mead method (Nelder and
Mead, 1965; Gao and Han, 2012). For a snippet of the Python code, see Appendix B.

Our results are presented in Table 1 for parameter settings of µ = 403.43 and ν = {1,5,10} used in the
GDF2 routine to generate sample sizes of N =

{
500,103,2(103),104,106,108

}
, for the random variables, xi.

Presented is the resulting µ̂ and ν̂ estimators fitted to a GDF2 using the previously generated variables xi.
The σµ̂ and σν̂ are the standard deviations of the estimators µ̂ and ν̂ , respectively.

There are several observations that can be seen. First look at the convergences of µ̂ and ν̂ for the same µ and
ν as a function of N. The accuracy should be increasing as a function of (1/

√
N), as should the σµ̂ and σν̂ .

They should converge to the original µ and ν that were used to generate the samples.

You also can notice that for a fixed N, say N = 500, that as ν changes from smaller to larger, there is less
deviation from the mean in µ̂ . This is consistent with a larger ν indicating that decreasing variance is seen in µ̂ .
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Also, the σµ̂ and σν̂ results place the corresponding µ̂ and ν̂ within one to two standard deviations of expected
results of µ and ν . This indicates that we seem to be sampling the GDF2 well and that the MLE of the GDF2
equations and Python source code are consistent and appear to be doing their job correctly.
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Table 1: Example of MLE Applied to GDF2: First, the µ = 403.43 and
ν = {1,5,10} are the GDF2 parameters used to generate, N, random
variables, xi. Second, the µ̂ and ν̂ are the MLE estimators fitted to the
GDF2 using the previously generated variables xi. The σµ̂ and σν̂ are
the standard deviations of the estimators µ̂ and ν̂ , respectively.

N µ µ̂ σµ̂ ν ν̂ σν̂

500 403.43 415.31 18.103 1.0 1.0454 0.0584
” 405.35 8.226 5.0 4.8532 0.2970
” 405.70 5.779 10.0 9.7246 0.6048

1x1003 403.43 414.08 12.851 1.0 1.0262 0.0405
” 399.31 5.761 5.0 4.7896 0.2072
” 401.37 4.091 10.0 9.5357 0.4192

2x1003 403.43 415.86 9.346 1.0 0.9881 0.0275
” 399.56 4.061 5.0 4.8289 0.1477
” 399.11 2.861 10.0 9.6245 0.2992

1x1004 403.43 402.78 3.956 1.0 1.0185 0.0127
” 402.45 1.800 5.0 5.0028 0.0685
” 401.79 1.258 10.0 10.1280 0.1409

1x1006 403.43 402.93 0.402 1.0 0.9997 0.0012
” 403.64 0.181 5.0 4.9936 0.0068
” 403.58 0.128 10.0 9.9805 0.0139

1x1008 403.43 403.43 0.040 1.0 0.9999 0.0001
” 403.42 0.018 5.0 5.0009 0.0007
” 403.43 0.013 10.0 10.0000 0.0014

For some “eye-candy” for the reader, we have plotted simulations that can seen the figures in Appendix C for
results similiar to Table 1, but using ν = 2.

4. Summary

We have presented some basics about the maximum likelihood estimation method along with its application
to the two-parameter gamma distribution function. We demonstrated their use through some simple python
simulations. The results indicate that the equations and code give appropriate results.

For more about the likelihood function and maximum likelihood estimation then please see the attached
references. Specifically for more details please see books by Eliason (1993); Martin (1971); Shenton and
Bowman (1997) and for some shorter reading material like introductions and tutorials then please see articles
by Cam (1990); Eric et al. (2021); Myung (2003).

Note: Not discussed in this paper is the MLE and small samples size (which is often defined as at, or less,
than 100 samples). More on small sample sizes for the MLE can be found in Shenton and Bowman (1997)
and Zacks and Even (1966).
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Appendix A. Example of the GDF2 Sampling Code in Python

________________________________________________________________________________________

# A Simple Sampling Routine

# Random: https://docs.python.org/3/library/random.html

# Gamma Distribution: https://en.wikipedia.org/wiki/Gamma_distribution

import random

import numpy

def setup_SamplingFromGDF2(mu, nu, N):

initialize_seed = 12345679

random.seed( initialize_seed )

k = nu

theta = mu/k

x = []

for dummy in range(N):

x.append( random.gammavariate(k, theta) )

return numpy.array(x)

________________________________________________________________________________________

Appendix B. Python Code for Optimizing for ν

________________________________________________________________________________________

import numpy

import scipy.optimize as scipy_optimize

from scipy.special import polygamma

def mu_offset(x):

mu = numpy.average(x)

offset = numpy.average( numpy.log(x/mu) )

return mu, offset

# MLE method:

# In parenthesis of the return function is equation (12) the derivative with

# respect to nu of the log-likelihood of the two-parameter GDF set equal to 0.

# The digamma function is polygamma(0,nu) function.

def objective_function(nu, offset):

return (numpy.log(nu) - polygamma(0, nu) + offset)**2

def GammaDistribution_nu_fit(x):

mu, offset = mu_offset(x)

results = scipy_optimize.minimize(objective_function, x0=[1.0], args=(offset),

method=’Nelder-Mead’)

nu = results.x[0]

return mu, nu

______________________________________________________________________________________
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Appendix C. Plots for the MLE applied to GDF2 Sampled Data Sets

We have performed the simulations for ν = 2 and the cases of N =
{

0.5 ·103, 103, 104, 106, 108, 1010
}

shown in Figures (C.3, C.4, C.5, C.6, C.7, C.8), respectively, for the results of these simulations.
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Figure C.3: Plot experiment for N = 0.5 ·103 samples for xi
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Figure C.4: Plot experiment N = 103 samples for xi
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Figure C.5: Plot experiment N = 104 samples for xi
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Figure C.6: Plot experiment N = 106 samples for xi
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Figure C.7: Plot experiment N = 108 samples for xi
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Figure C.8: Plot experiment N = 1010 samples for xi
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