MR13A-3183: Microbial and Geochemical Characterization of Groundwater: Implications for Underground Hydrogen Storage Leakage

Allison Clark?, Arkajyoti Pathak!, Kara Tinker?, Djuna Gulliver?, & Shikha Sharmat
1 West Virginia University Department of Geology and Geography, Morgantown WV, 26506

W‘ 165,BIOGEM

3 U.S. DEPARTMENT OF

N = |NATIONAL
TL [Ecivooey @) ENERGY
LABORATORY 4-,«”” ‘\‘\\

2 National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh PA, 15236

LAB
AGU 2024, Washington D.C.; 12/9/24; 13:40-17:30 EST
ABSTRACT

Underground hydrogen storage (UHS) in geological formations is a key element of the clean energy
transition as it enables the decarbonization of the transportation and industrial sectors by decoupling
hydrogen production and storage. UHS has many benefits, including low cost, much wider availability,
large storage capacity, well-established infrastructure, and increased safety because of geological
sealing capabilities. However, the impact of hydrogen (H,) biogeochemical interactions in the presence
of subsurface microorganisms is largely neglected from UHS perspectives. These interactions might
affect the effectiveness of storage and can even cause H, to leak into the shallow aquifers through
storage reservoirs. Leakage of H, into groundwater can change the geochemistry and induce several
microbial-driven processes. Microorganisms, such as sulfate-reducers, are naturally abundant iIn
groundwater and consume H, to produce hydrogen sulfide (H,S), which can contaminate the freshwater
drinking groundwater and cause damage to infrastructure. Hydrogen leakage can also trigger microbial
reactions responsible for metal mobility, which can impact the water quality. However, the kinetics of
these reactions and the temporal impact of hydrogen leakage in groundwater are still unknown.
Therefore, a time series hydrogen-groundwater interaction experiment was conducted, and the
changes In fluid chemistry and headspace gas composition will be analyzed along with DNA
sequencing results to understand the extent and kinetics of biogeochemical reactions that occur Iif
hydrogen leaks into groundwater. In the experiments, Ultra High Purity (UHP) hydrogen gas will be
Injected Into glass vials with groundwater samples, for a designated time period. For each glass-sealed
vial, 16S rRNA gene sequencing, IC, ICP-MS, and GC-TCD will be performed. The experiments
provide insights into plausible impacts of hydrogen leakage into shallow drinking water aquifers.
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Fig 1: Overview of interactions between microorganisms and stored H, in the subsurface. Microbial processes
In reservoirs consume H,. Diffusion can lead to increased concentration of H, in groundwater. Microbial
processes in groundwater consume H, leading to possible contamination of groundwater.
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Fig 2: Key microbial processes to
consider including, microbial sulfate
reduction, methanogenesis, and
acetogenesis, for subsurface H,
storage. Processes can occur in both
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Fig 3a: Overview of the
experimental approach for
determining the hydrogen
consumption rates due to
microbes in groundwater under
near ambient conditions.
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Fig 3b: Overview of the sampling approach for
determining cation and anion, DNA, and H, gas |
composition/concentration through time.

GAS RESULTS
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Fig 5a: Comparison of cation concentration (mg/L) of biotic
groundwater subjected to UHP grade H, (ppm) through time (Day).
Day O groundwater had no exposure to H,.
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Fig 5b: Comparison of cation concentration (mg/L) of abiotic
groundwater subjected to UHP grade H, (ppm) through time (Day).
Day O groundwater had no exposure to H..
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Fig 5¢: Comparison of anion concentration (mg/L) of biotic
groundwater subjected to UHP grade H, (ppm) through time (Day).
Day O groundwater had no exposure to H,.

FUTURE WORK

Collect the rest of the geochemical data for the
biotic, abiotic, and DI water blank experiments

Complete DNA analysis for biotic and DI water
samples

Repeat groundwater experiments with added
clay minerals to explore clay mineral-
H,microbe interactions
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