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Abstract

The stress distribution around a wellbore that is drilled in consolidated granular rock is
solved numerically. The material is modeled as an isotropic third-order elastic material, and
the material constants are taken from experimental data. The nonlinear problem is solved
for transverse isotropic, and orthotropic stress boundary conditions. The tangential stress
around the well face is different than the stress obtained from the from the linear elastic
solution. This modifies the far-field stress that is interpreted of from hydraulic fracturing
data. The stiffness components are considerably different from those of a related linear
elastic material. Specifically, the resulting inhomogeneous stiffness suggests that surface,
tube, and flexural waves, have two different wave velocities in two different polarizations
that are determined by the far-field stress.




1. Introduction

Within a certain range of strain, consolidated granular materials rhay be characterized as
nonlinear elastic solids. The nonlinearity can be easily observed by examining the effect of
stress on the acoustical properties of the material (Walsh, 1965; Nur and Simmons, 1969).
Ignoring damage evolution and failure that occur in higher strains and the hysteretic
behavior due to intergranular friction, the material can be modeled as a nonlinear
hyperelastic solid. A simple example of such a model is formulating the strain energy as a
third-order polynomial of the strain invariants (Landau and Lifshitz, 1959, end of §26).
This model is limited in the sense that the material is assumed to be isotropic with respect to
the stress free state, and that the mechanical response of the material is described by only
five material constants. Nevertheless, this model is appealing because it naturally exhibits
stress dependent stiffness and stress induced anisotropy, and it allows a different
mechanical response to positive and negative volume changes. In this work, this model is
used to calculate the stress field around a wellbore.

Many well logging tools use acoustics (e.g., tube, surface, torsion, and flexural waves)
to detect pore fluids and ore in the surrounding granular rock (White, 1965). By modeling
the rock as an isotropic third-order elastic material the effects of the inhomogeneous
stiffness and the stress induced anisotropy may be examined.

Analysis of the tangential stress around a wellbore in an isotropic third-order elastic
(TOE) material yields different results than the same analysis in the related isotropic linear
elastic (LE) material (i.e., both materials have the same stiffness tensor at the stress free
state). This difference modifies the far-field stress that is interpreted of from hydraulic
fracturing data (Hickman and Zoback; 1983).

The analysis in the present work is static and pore fluid effects are ignored.

2. Problem Formulation

The focus of this work is the stress field around a vertical wellbore of radius r=a that is
drilled in a nonlinear elastic material. A cylindrical coordinate system {r, ¢, z} is chosen

with origin at ground level such that z points down along the wellbore axis. The axial
stress §__ is determined by the over-burden and it is assumed that the axial displacement u,

is only a function of z (this assumption should be valid away of the well head).
Furthermore, it is assumed that the radial displacement «, and tangential displacement ug are

independent of z. The radial tangential and axial displacements are therefore given by

u, = u(r,0), ‘ (1a)
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u,=€,7 . (1¢)
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‘According to the small strain approximation, the components of the strain tensor are then
given by
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where Eij = Eji . The equilibrium equations for the problem are
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where S, ,5,gand S g are the polar coordinate components of stress tensor.

The pressure in the wellbore can be measured directly and is assumed to be known

Srr (r=a) = Sa : (4)

The radial stress at the far field ~=b>>a and the principal directions (8=0, 6=7/2) may be
measured indirectly (Hickman and Zoback, 1983) a.... are also assumed to be known

Srr(r=b>>a.9=0) = Sx ’ (Sa)
Srr(r-_-h>>a.9=ir/2) = Sy : A (3b)

The rock in which the wellbore is drilled is modeled as an isotropic, hyperelastic
material. Specifically, the strain energy y (per unit volume) of the material is assumed to

be a third-order polynomial of strain and is given by
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where Ej; are the components of the Lagrangian strain tensor, the summation convention
applies to repeated indices, and 4, y, A, B, and C are material constants. The Symmetric

Piola-Kirchhoff stress tensor for this material is given by
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where Sij is the Kronecker delta and SU=S ;- The five material constants A, 4, A, B,and C
of several rocks have been measured by Winkler and Liu (1996). Although the strain
energy (6) is formulated in terms of finite strain, it is valid over a stress range that
corresponds only to small strains for which the Symmetric Piola-Kirchhoff stress
approaches the Cauchy stress. For the small strain considered, the equilibrium equations
(3) may be formulated in terms of the Symmetric Piola-Kirchhoff stress, and the tangential

stiffness tensor for this material is given by
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where Kijkl=Kjikl=Kijlk=Kklij' In the special case of A=B=C=0, the above equations

describe a linear elastic material and A and 4 are the Lamé constants.

Substituting equation (2) into equation (7) yields

S, =Ae+2UE, +Ce+BQeE, +0) +A(E,*+E,8) . (9a)

Se=  20E.q +2BeE 4 + A(E, +Egg)E g » (9b)

Sgg = A&+ 2UEgg+ CE + B(2eEgg + ) + A(E, g +Egg’) ¢)

S,, =Ae+2ue, + Ce + BQ2eg, +{) + A.s‘z2 , (9d)
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where

€= E, +Eg+e, (10a)
2
{= E,+Egl +£2+2E 2 . (10b)

In the far-field (r>>a) the strain and stress are ‘constant, and equations (9) may be solved
for u, v, and €,. Then, for an arbitrary r=b>>a the displacements uy, and v, can be

determined and boundary conditions (5) can be replaced by the conditions
Uimbs>>ay = Hp » (11a)
Virsbs>>a) = Vb > | (11b)

which are simple to implement and improve the performance of the numerical scheme.
Substituting the stress components (9) into the equilibrium equations (3) yields the field
equation for the problem.

3. Numerical Procedure

In the simple case of a linear material (A=B=C=0), equations (3) and (9d) with
boundary conditions (4) and (5) may be solved analytically (Muskhelishvili, 1954, §56)
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In the more general case, the field equations of the problem are nonlinear and have no
simple analytic solution and are therefore solved numerically using the Galerkin finite
element method. The weighted residuals of the field equations are integrated over the

domain
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The weighing functions w are chosen to be the same as the interpolation functions that
approximate the displacements « and v. Terms including derivatives of stress in the
integrands of (13) may be integrated by parts to give
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In deriving these equations some boundary integrals were omitted due to the symmetry of
the problem. Moreover, since the value of the variables « and v are known at the far-field
fequations (11)], the weighing functions w are taken to be zero over the boundary r=b>>a.
In the numerical scheme the integrands of equations (14) are linearized and solved
iteratively by factoring first order terms of strain and evaluating the remaining terms using
the solution obtained in the pervious iteration.

In order to evaluate the quality of the solution, the change in strain energy due to the
drilling of wellbore is integrated over the problem domain |

b 2n

Ay = I j(I;/(r,G,u,v,ez)—w(b,e,ub,vbb,ez))rder . (15)
r=a 60

It is postulated that this error has the following functional form

llell, = kh¢ (16)

where & and ¢ are constants and 4 is the element size. Using uniform meshes to solve the
nonlinear axisymmetric prdblem presented in the next section, it was found that the
numerical scheme converges quadraticly, i.e., ¢=2 (¢=2.38, 2.56, 2.40 for quadratic, cubic
and quadruple elements, respectively). It was also verified that the solution is unchanged




when the wellbore stress gradually varies (rather than in a single step) from ambient

conditions § S toS =S

rr(r=a)"rr (r=b) rr(r=a)" a’

4. Results

The results of two simulations are presented here. In both cases the material constants
of fassillon sandstone are used (Winkler and Liu, 1996)

A =19 GPa, (17a)
#=63GPa, (17b)
A =-17530 GPa, (17¢)
B =-5670GPa, (17d)
C=-2230 GPa. " (17¢)

The first problem is axisymmetric and is defined by the stress boundary conditions

S,=0MPa, (18a)
S.=-4MPa, (18b)
S),=—4MPa, ' (18c)
S,, =—6MPa. (18d)

~l

In this case, equation (3b) is trivial and only equation (3a) is solved. The stress
distribution around the well bore is described in Fig. 1, where the solutions for the linear
elastic (LE) material (A=B=C=0) and the third-order elastic (TOE) material are compared.
The maximal difference in tangential stress between the two solutions is about 10%. A
posteriori examination of the sofution of the nonlinear problem verifies that the maximal
absolute value of all strain components is 2.1x107, and that the maximal absolute value of
the volumetric strain is 7.7x10~*. It is therefore concluded that the small strain assumption
is justified. ‘ |

Due to the symmetry of the problem, the tangential stiffness tensor has the same
symmetries as an orthotropic material with symmetry axes parallel to r, 6, and z. The nine
independent components of the tangential stiffness tensor are described in Fig. 2, as
functions of normalized radius. As can be seen, the stiffness of the stressed TOE material
is inhomogeneous and the stiffness components are considerably higher than the
corresponding values of the LE material (i.e. K, . ,=Kggg9=K,,,,= 4 + 20,

K rrég K rrzzzK 0627~ A, Kr9r6= K rzrz=K 66z = H).




The second problem is not axisymmetric, and is defined by the stress boundary

conditions
S,=0MPa, (19a)
S.=-6MPa, (19b)
S, =-2MPa, (19¢)
S,,=~6MPa. (19d)

The stress distribution around the wellbore is described in Fig. 3, and the stress
distributions in three radial directions (6=0, 8=n/4, and 8=n/2), are described in Fig. 4.
As can be seen, the stress distribution of the TOE material resembles that of the LE material
with maximal differences close to the well face. It can be seen from Figs. 1 and 3, that the
difference in tangential stress between the TOE and the LE materials is greater in the non
axisymmetric problem. The stressed TOE material is orthotropic with one symmetry axis
in the vertical direction, but the other two symmetry axes are not necessarily parallel to the
radial and tangential directions - except on the well face. Some components of the stiffness
tensor are plotted in Fig. 5. The variation of these components around the well face
suggests that surface, tube, and flexural waves, have two different wave velocities in two
different polarizations that are determined by the far-field stress. This is in agreement with
the findings of Barton and Zoback (1988) that related the polarization of borehole guided
waves to the in situ stress orientation. As in the previous problem, a posteriori
examination of the solution of the nonlinear problem verifies that the maximal absolute
value of all strain cbmponents is 3.3x10™* and that the maximal absolute value of the

volumetric strain is 5.5x107, and therefore the small strain assumption is justified.

5. Discussion

The stress distribution of the third-order elastic material resembles that of the linear
elastic material but the radial displacement of the TOE material at the well face is about half
the radial displacement of the LE material. A greater difference in the stress distribution of
the two materials would have been observed if the problems had included displacement
rather than stress boundary conditions. In situ, the material is best modeled as a semi-
infinite medium with a stress-free boundary at ground level. The reference state of the in
situ material is never known, and therefore the strains can never be measured directly. In
contrast, the stress boundary conditions can be measured indirectly and therefore, in this
work only stress boundary conditions are considered. Still, the difference in stiffness



components between the TOE and LE materials is considerable. The inhomogeneous
stiffness of the axisymmetric nonlinear problem, suggests that waves traveling between
two different points along the wellbore may travel in curved trajectories. Consequently, the
measured wave velocities may depend on the distance between the seismic source and
receiver. The stress and stiffness variations in the nonaxisymmetric problem are more
complex. Here, the results suggest that surface, tube, and flexural waves, have two
different wave velocities in two different polarizations that are determined by the far-field
stress.

The tangential stress at the well face for the two materials is shown to be different.
This will affect the interpretation of far-field stresses from hydraulic fracturing data that is
based on the Kirsch solution for a linear elastic material (Hickman and Zoback; 1983). -

The specific wave forms and velocities related to wellbore waves in TOE materials are

currently under investigation.
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Fig. 1. The axisymmetric stress distribution in the linear elastic (LE) and third-
order elastic (TOE) materials. Srr, 596 and Sr9 are normalized by -4 MPa and

S,. is normalized by —6 MPa.
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Fig. 2. The nine independent components of the tangential stiffness normalized

by A+2¢ in (a), A in (b) and by u in (c).
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Fig. 3. Stress distribution at the wellbore. The nonzero components are

normalized by their value at 6=n/4 for LE material (Sgg=~8 MPa, §;,=-6
MPa).
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Fig. 4. Stress distribution in three different radial directions. The nonzero

components are normalized by their far-ficld values.
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Fig. 5. Variation of stiffness components around the well face normalized by
their respective values in a LE material (K and K are normalized by

rrrr 2222
A+2U, Krr:: by A, and Krzrz is normalized by u).
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