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Abstract
Phase II work for this Laboratory Directed Research and Development project is presented. 
Historically, high velocity, solid, electrically conducting armatures or projectiles have been utilized 
to generate or magnify existing electric fields in magnetohydrodynamic (MHD) devices. Useful 
power can be extracted from high velocity ionized, electrically conductive plasma jets. The MHD 
device current output can be switched to power other devices. The purpose of this project is to 
investigate the use of an Explosively-Driven Ionized Plasma Jet Generator (EDMG) to more 
efficiently obtain velocities much higher than can be achieved with solid armatures or projectiles. 
The armature velocity is one of the more important parameters in the electric field magnification 
process. The ionized plasma jet is generated by explosively collapsing a gas (neon, argon, xenon, 
hydrogen) filled cavity and directing the jet through a shocktube or core of an MHD device.

Data are presented for two different size and configuration explosive drivers, one explosive 
(COMP-C4), one gas (argon), different driver pressures (90 - 200 psia), different shocktube or 
test section pressures (0.01 - 11.7 psia), and for two different shocktube inside dimensions.

Measured time-of-arrival, current, voltage, resistance, power and energy data are presented for 
tests conducted. Measured time-of-arrival and plasma flow velocity data are compared to the 
predicted CTH hydrocode data. CTH code calculations are also presented to compare EDMG 
performance of various test gases and various explosive liner materials.
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Explosively-Driven Magnetohydrodynamic 
Generator: Phase II

I. Introduction
Phase II work for this Laboratory Directed Research and Development project is presented.
Phase I of this work was published in Reference 1. One of the various ways to characterize 
explosively-driven magnetohydrodynamic (MHD) Faraday generators is by the power output and 
ionized flow (plasma flow) duration time as described in Reference 1. Explosively-driven MHD 
generators (EDMG) are usually classified as pulsed plasma devices and can also be characterized 
as described in Reference 1. The EDMG consists of an explosive driver, a shocktube or channel 
test section, and electromagnet coils as shown in Figure 1. Permanent magnets can be substituted 
for the electromagnet for lower power output requirements.

Historically, high velocity, solid, electrically conducting armatures or projectiles have been utilized 
to generate or magnify existing electric fields in MHD devices. Useful power can also be 
extracted from high velocity ionized, electrically conductive plasma flow. The MHD device 
current output can be used to power other devices or be rapidly switched to produce an Electro- 
Magnetic Pulse (EMP). The purpose of this project is to investigate an Explosively-Driven 
Magnetohydrodynamic Generator (EDMG)1'2 which can more efficiently obtain velocities much 
higher than can be achieved with solid armatures or projectiles. The plasma or armature velocity 
is one of the more important parameters in the electric field magnification process. The plasma jet 
is generated by explosively collapsing a gas (neon, argon, xenon, hydrogen) filled cavity (similar 
to shaped explosive charge technology) and directing the flow through a shocktube or core of an 
MHD device as shown in the conceptual configuration of Figure 1.

This technology could have the following significant applications:

(1) MHD generator to drive Electromagnetic Source pulsed power devices;
(2) MHD generator to produce an Electromagnetic Pulse (EMP) for a mine clearing 

device in conventional warfare;
(3) EMP devices can also be incorporated in land-fired or space-launched terminal defense 

weapon systems; and
(4) Stun gun using the EMP to temporarily disable personnel in conventional war, terrorist 

related scenarios, and riot (prison) situations.

The goals of this project are to:

(1) Optimize the explosive driver geometiy and materials;
(2) Validate CTH hydrocode (used to design optimized explosive driver) models to 

predict the flow parameters;
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(3) Develop diagnostic instramentation system to measure the MHD device output 
parameters;

(4) Validate the MHD code models to predict plasma and MHD device output 
parameters;

(5) Design an MHD device for one application; and
(6) Demonstrate subsystem application.

The five tests conducted in this Phase II study are listed in Table I. Data are presented for three 
different size and configuration explosive drivers, one explosive (COMP-C4), one driver gas 
(argon), different driver pressures (90 - 200 psia), different shocktube or test section pressures 
(0.01 - 11.7 psia), and for two different shocktube maximum inside dimensions (2.0 and 12.0 
inches).

Measured time-of-arrival, current, voltage, resistance, power, and energy data are presented for 
some of the tests conducted. Measured time-of-arrival and plasma flow velocity data are 
compared to the predicted CTH hydrocode calculations. CTH code predictions are also 
presented to compare EDMG performance of various test gases and various explosive liner 
materials.

II. Explosive Driver Hardware
Three different designs for the EDMG were completed and tested in Phase II of this project.
Three EDMG designs were completed and tested in Phase I of this project. The three designs for 
Phase II are shown in Figures 2 through 4. The three different size and geometry devices 
contained 1.7, 2.0, and 35.0 pounds of explosives respectively.

EDMG Design 5
The EDMG Design 5 hardware is shown in Figure 2. This design features an eight-point (eight­
line) mild detonating fuse (MDF) line to achieve simultaneous initiation of the COMP-C4 
cylindrical explosive charge as shown. A single EP-2 detonator initiated the eight each, 2 
grain/foot, PETN explosive, aluminum sheathed MDF lines. A 0.05 inch thick, cylindrical, 
aluminum liner is used to initially separate the ionized noble gas or plasma from the detonation 
gas products. An aluminum nozzle was used to reduce the plasma flow from 4.5 inch diameter to 
the 0.5 x 2.0 inch inside dimensions of the rectangular Lexan shocktube. The 0.015 inch Mylar 
diaphragm for this design was located at the entrance of the shocktube. Argon gas was used in 
the driver section cavity. Design 5 hardware was loaded with COMP-C4 explosive at Sandia's 
explosive machining site.

EDMG Design 6
The EDMG Design 6 hardware is shown in Figure 3. This design features a single-point (RP-1 
detonator) initiation of the COMP-C4, cylindrical explosive charge. A 0.05 inch thick, cylindrical, 
aluminum liner is used to initially separate the ionized noble gas or plasma from the detonation 
gas products. An aluminum nozzle was used to reduce the plasma flow from 4.4 inch diameter to 
the 0.5 x 2.0 inch inside dimension of the rectangular Lexan shocktube. The 0.015 inch thick
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Mylar diaphragm for this design was located at the entrance of the shocktube. Argon gas was 
used in the driver section cavity. Design 6 hardware was loaded with COMP-C4 explosive at 
Sandia's explosive machining site.

EDMG Design 7
The EDMG Design 7 hardware is shown in Figure 4. This design features a four-point (RP-1 
detonator) initiation of the COMP-C4, explosive charge as shown in Figure 4. A 0.05 inch thick, 
cylindrical, aluminum liner is used to initially separate the ionized noble gas or plasma from the 
detonation gas products. An aluminum nozzle was used to reduce the plasma flow from 18.0 inch 
diameter to the 0.5 x 12.0 inch inside dimension of the Lexan shocktube. The Mylar diaphragm 
for this design was located at the entrance of the shocktube. Argon gas was used in the driver 
section cavity. Design 7 hardware was loaded with COMP-C4 explosive at Sandia's explosive 
machining site.

m. Magnetic Field Sources
Permanent magnets or electromagnets were used on Tests 2 through 5 as listed in Table I to 
generate the magnetic fields required for MHD operation. Electromagnet coil designs and 
performance information are documented in References 3 and 4 and Appendices D-G.

Permanent Magnets
Permanent magnets (0.60 Tesla) were used on Test 1 for EDMG driver Design 5 and are shown 
in Figure A1 of Appendix A. The dimensions of these magnets are 2 x 2 x 0.5 inches each.

9.4 Tesla Electromagnet
The coils deliver 9.4 Tesla on axis in the shocktube. The electromagnet coils used in the Area II 
tests with the EDMG Design 6 are shown in Figures A2 through A3. The coil drawing is shown 
in Figure A2. One actual coil is shown in Figure A3. The equivalent circuit for the capacitor 
bank and coils for EDMG Design 6 tests is shown in Figure A4.

11.2 Tesla Electromagnet
The 11.2 electromagnet coils used in the HERTF test with the EDMG Design 7 are shown in 
Figures A5 through A7. The coil drawing is shown in Figure A5. Actual coils are shown in 
Figures A6 and A7. When energized with 1.5 ml, the coils deliver 11.2 Tesla on axis in the 
shocktube.

Capacitor Bank Systems
The capacitor bank system used on the EDMG Design 6 tests is shown in Figure A8. The 519 
microfarad capacitor banks were charged to 10 kilovolts. The Maxwell Laboratories’ 1.5 
megajoule capacitor system used on the EDMG Design 7 test is shown in Figure A9. The 41.5 
millifarad capacitor banks were charged to 8.39 kilovolts. The 48 cables from the capacitor bank 
system were reduced to 12 cables connected to the electromagnet coils by the connector-junction 
interface shown in Figure A10.
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Electrical Conducting Probes
The electrical probes were constructed from 1/4 inch threaded brass rods which were screwed 
into the top and bottom sides of the Lexan shocktube flush with the inside of the tube. Epoxy 
was used to seal the threads to ensure minimal leakage. Connections to the probes were made 
using brass nuts and washers. The electrical cables, which were attached to the probes, were 
fitted with ring lugs to further ensure the integrity of the connections.

IV. Load

EDMG Design 5/Test 1
A resistive load of0.040 Ohms was used on EDMG Design 5, Test 1 listed in Table I. A resistive 
load of 0.025 Ohms was used on EDMG Design 6, Test 2 listed in Table I.

EDMG Design 6/Tests 3 and 4
The inductive/capacitive (L/C) load circuit used for EDMG Design 6, Tests 3 and 4 is shown in 
Figure B1 in Appendix B. The actual L/C load configuration is shown in Figure B2. The load 
capacitors are shown in Figure B3 after Test 3.

EDMG Design 7/HERTF Test
The inductive/capacitive (L/C) load circuit used for EDMG Design 7, Test 5 is shown in Figure 
B4 in Appendix B. The actual L/C load configuration is shown in Figure B5.

V. CTH Code Modeling/Simulation
6

The CTH hydrocode was utilized to model the EDMG Designs 5 and 6 geometries and materials. 
The CTH code can predict the plasma parameters (at any radius for a given position and at any 
position in the explosive driver), including flow velocity, pressure, temperature, density, and time- 
of-arrival. Currently the CTH code can not predict the boundary layer in the shocktube section. 
The more-expensive- to-run three dimensional modeling is required for rectangular shocktube 
configurations. Currently, this code can predict only the flow (no MFD parameters) parameters 
for the ionized plasma in the shocktube. These calculations can be presented graphically in 
several.ways. The plasma flow velocity and time-of-arrival data have been compared to the 
measured values from development tests.

The CTH code models have been updated to obtain satisfactory agreement with the experimental 
data. The CTH code was used to help formulate the EDMG Design 7 explosive driver 
configuration.

Typical CTH code calculations are presented in Appendix C for EDMG Design 5, Test 1. Table 
Cl lists ionized plasma density, pressure, temperature, velocity, and arrival time for distances 
from the shocktube entrance(diaphragm location) of 4 to 22 inches. Table C2 in Appendix C lists 
plasma arrival times at distances between 1.75 through 22.75 inches from the shocktube entrance.
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The measured arrival times are compared to the CTH predicted times for Test 1, Design 5 in 
Table C2 in Appendix C. CTH predicted density, pressure, temperature and velocity versus time 
and distance from the shocktube entrance data are presented in Figures Cl through C4 in 
Appendix C. These data are for locations along the surface of the shocktube wall. CTH 
calculations or predictions are also available but not presented for locations along the shocktube 
centerline.

The measured plasma arrival time versus distance from the shocktube entrance data are compared 
to the predicted CTH data in Figure C5 in Appendix C. The measured plasma velocity versus 
distance from the shocktube entrance data are compared to the CTH predicted data in Figure C6 
in Appendix C.

VL MHD Code Modeling/Simulation
The MACH26 MHD two dimensional code is being upgraded by the Phillips Laboratory to a three 
dimensional code called MACHS and will be validated using the measured MHD data from these 
Phase I and II studies. The MACHS code models will be modified to obtain agreement with the 
test data. The code will then be used to optimize the design of the MHD device for future work.

VH. Diagnostics
2

A diagnostic instrumentation system was designed, procured, fabricated, and set up to measure 
the EDMG plasma parameters. The following six types of plasma diagnostics were measured:

1. Open Circuit Voltage Probe (OCVP), (Vo)
a. The plasma flow velocity (Uf) can be calculated from this measured voltage, the 

known shocktube diameter (d), and the magnetic field strength (B) as follows:

Uf = Vo/Bd (1)

b. The time of arrival of the ionized flow is measured and used to calculate plasma flow 
velocity.

c. This open circuit voltage can be compared to a voltage across a known load 
resistance to determine the ionized plasma resistance (Rp). Equation (2) can be 
used to relate the plasma internal resistance (Rp) to conductivity (a).

d. Plasma flow duration time is obtained from this measurement.

2. Plasma Resistance Probe (PRP) Voltage, (Vr)
a. PRP voltage is compared to the open circuit voltage to determine the plasma

resistance and conductivity. The voltage across the load resistance (Rl) will be half 
the open circuit voltage if Rl matches the plasma resistance (Rp). Plasma current (I) 
is calculated as follows:

I = (Vr/Rl), for R»(wL + 1/wC) (2)
where,

w = Frequency 
L = Inductance 
C = Capacitance
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b. Plasma electrical conductivity is calculated as follows:

a = (G/Rp) (3)

where,

G is the gage factor determined from known fluid conductivity calibration tests 
for the PRP probes (details in Reference 1).

c. Arrival times are used to calculate plasma flow velocity.
d. Plasma flow duration time is obtained from this measurement.

3. Eddy Current Probe Voltage Measurement (Ve)
Electrical coils were fabricated using 36-gage magnet wire. The coils consisted of 40 turns 
wound on a one-inch form. The coil was then pushed off the form and mounted near the 
plasma channel. The center off he coil was physically located one inch from the end of a 
magnet. These coils were used to measure the Eddy currents induced into the plasma as the 
plasma moved through the magnetic field.

a. The integral of this voltage measurement is proportional to the magnetic Reynolds 
number for the plasma.

b. The integrated voltage measurement can also used to calculate the plasma electrical 
conductivity.

4. Plasma Current Probe (PCP)
a. A Ragowski loop is used to make this current measurement.

5. Current Differential (di/dt) of Eddy Current and PCP
a. The PCP current differential can be software integrated to obtain the plasma current. 

The Eddy current differential can be software integrated to determine the electrical 
conductivity.

6. Ionization Pins
Velocity measurements were made using ionization pins as the plasma flow time-of-arrival 
detectors. Inconsistent time data from some of these pins led to using small, inexpensive 
magnets in an open circuit voltage measurement mode to detect the arrival of the ionized 
plasma. The arrival times using these gages seem to be much more consistent and additional 
information is obtained using duration and amplitude data. Ionization pins were used on most 
electromagnet type tests.

a. These sensors measure the arrival of the ionized flow.
b. Arrival times are used to calculate plasma flow velocity.

6



Yin. Review Of Data
The five tests conducted are listed in Table I. A Mylar diaphragm was used to separate the high 
pressure argon gas in the explosive driver from the low pressure air in the shocktube or test 
section. The argon gas initial pressures varied between 90 and 200 psi. The shocktube pressures 
varied from 0.01 to 11.7 psia (ambient). The explosive weights were 1.7, 2.0, and 35.0 pounds 
for EDMG Designs 5, 6 and 7, respectively. COMP-C4 explosive was used on all tests. Argon 
gas was used in the driver on all tests.

Typical pre-test EDMG photos, including the MHD(permanent magnet or electromagnet coils) 
hardware, are shown in Figures 5 through 7 for Designs 5, 6, and 7, respectively. Kevlar 
reinforced blankets, layered sheets of plywood, and sandbags were used to catch or slow down 
the high velocity metal fragments from the explosive driver.

Test 1/Design 5
The Test 1, Design 5 configuration is shown in Figure 5. The explosive driver and Mid 
Detonating Fuse (MDF) line, and detonator configuration are shown in Figure D1 in Appendix D. 
The plasma arrival time data, velocity, type measurement, and magnet strength data are listed in 
Table Dl. The open circuit voltage versus time data are shown in Figure D2. The resistive load 
voltage versus time data are shown in Figure D3. The plasma current versus time data are shown 
in Figure D4. The load power versus time data are shown in Figure D5. The energy versus time 
data are shown in Figure D6.

Test 2/Design 6
The Test 2, Design 6 configuration is shown in Figures El and E2 in Appendix E. The resistive 
load voltage, plasma current, load power, energy, Eddy coil current, and arrival time probe 
voltage versus time data are shown in Figures E3 through E8.

Test 3/Design 6
The Test 3, Design 6 configuration is shown in Figures FI in Appendix F. The open circuit 
voltage, resistive load voltage, and load current versus time data are shown in Figures F2 through 
F4. The electromagnet charge current versus time data are shown in Figure F5. The plasma 
arrival time versus distance from the shocktube entrance data are shown in Figure F6 for EDMG 
Design 6, Tests 2 through 4. These are the only tests that were repeated for this project. These 
data show that the plasma flow in the shocktube section is very reproducible for this EDMG 
design configuration. An estimate of the generator source impedance was obtained by matching 
the experimental voltage traces to a circuit model. The impedance obtained in this manner was 
140 milliOhms.

Test 4/Design 6
The plasma arrival time, ionization pin voltage versus time data are presented in Figure G1 in 
Appendix G for the five different locations in the shocktube. The open circuit voltage, (L/C) load 
voltage, and (L/C) load current versus time data are shown in Figures G2 through G4.
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Test 5/Design 7/HERTF Test
The High Energy Research Technology Facility (HERTF) floor plan, screen room recording 
location, cable bundle routing, and test pad are shown in Figure HI in Appendix H. The EDMG 
Design 7, Test 5 explosive driver configuration is shown in Figures H2 through H4. The plasma 
arrival time ionization pins (6 each, upper row), plasma detection fiber-optic sensors (4 each, 
second row), and argon gas sensors (2 each, bottom row) are shown installed in the Lexan 
shocktube in Figure H5. The instrumentation/recording room hardware are shown in Figure H6. 
The Design 7 explosive driver, shocktube, electromagnet coils, wooden stand, and Mylar 
diaphragm are shown in Figures H7 through H10.

The HERTF site pre-test configuration is shown in Figures HI 1 and H12. The two eight-foot 
inside diameter concrete culverts used to protect the (L/C) load, firing sets, and vacuum pump 
hardware are shown in Figures HI 1 and H12. The stacked concrete blocks (2’x2’x4’), layered 
plywood roof armor blankets, and sandbags are also shown in these figures. The photograph 
shown in Figure HI 3 was taken during this test. The aluminum, diaphragm holder ring of the 
shocktube is shown in Figure H13.

The (L/C) load voltages (Voltage #1 and Voltage #2) and current versus time data are shown in 
Figure H14. The electromagnet (EM) magnetic field strength and EM coil charge current versus 
time data are shown in Figures HI 5 and HI 6, respectively.

IX. DATA ANALYSES

Power Output
The power calculated from the measured voltage and current is listed in Table I for the five 
EDMG tests. The actual power delivered to the load, calculated from the PCP measured current 
(P? = Vil] or [P = f2R]) or (depending on whether a good current measurement was obtained) 
calculated from the voltage (Vi) across the load resistor (P = Vi /R), is listed in Table I.
The following analytical algorithm has been used to predict the peak power output (Pm) from 
other measured MHD parameters:

Pm = AB2u/da/4 (4)

where,

A = Electrode area (m^)
B = Magnetic field strength (T) 
Uf = Plasma flow velocity (m/s) 
d = Electrode spacing (m) 
a = Electrical conductivity (S/m) 
Pm = Peak power output (w)

8



(5)

For high magnetic Reynolds numbers, the power output can be calculated as follows:

P = 2B2Ufbd 

where,

b = Shock tube or channel inside width (m)

At high Reynolds number, the power output is highly dependent primarily on plasma flow velocity 
(Uf) (to the first power only) and magnetic field strength (B) for fixed MHD generator 
geometries. The peak power output is independent of electrical conductivity and length of 
ionized slug.

Magnetic Reynolds Number
The permeability of free space (p) is 4?: x 10 (s/S-m). The magnetic Reynolds number (Rm) is 
defined as follows:

Rm = poUd (6)

The Reynolds number for Test 3 was calculated to be 30. The plasma, electrical conductivity was 
estimated to be about 18,400 Siemens/m.

X. Summary
Three explosive drivers were designed and tested for magnetohydrodynamic devices. The CTH 
hydrocode has successfully predicted the plasma arrival times and flow velocities for these 
different size explosively-driven magnetohydrodynamic generators (Figures 1-3). The CTH code 
models have been modified to obtain agreement (validation) with the test data. The CTH code is 
currently being utilized to design a more optimized explosive driver.

A diagnostic instrumentation system has been successfully developed to measure the 
magnetohydrodynamic (MHD) device output parameters. Fourteen channels of data were 
successfully measured and recorded for each of the five tests. Data are presented for three 
different size and configuration explosive drivers, one explosive (COMP-C4), one gas (argon), 
different driver pressures (90 to 200 psi), and different shocktube or test section pressures 
(0.01-11.7 psi).

Measured time-of-arrival, current, voltage, resistance, power, and energy data are presented for 
one of the five tests conducted. Measured time-of-arrival and plasma flow velocity data were 
compared to the values predicted by the CTH hydrocode.

Analytical methods were presented for calculating the power output for an explosively-driven 
magnetohydrodynamic generator. The explosive driver, shocktube, electromagnet, and load 
parameters for the five tests are summarized in Table I.
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The details of the CTH code modeling/simulation, electromagnet coil design analyses, electrical 
circuit/load analyses, and MHD parameter analyses were not presented in this report. Each one of 
these analyses would require a separate report. Some of this work will be presented at a later 
date. A primary goal for the report was to present a final status for this three-year funded 
program.

The accomplishments of this project will allow us to design a more optimized explosive driver 
which will be utilized to produce the high velocity ionized flow for optimizing an MHD device for 
a specific application. The MACH2 magnetohydrodynamic code models will be validated with 
the MHD data from the five tests. The code will then be used to aid in the design of optimized 
permanent magnet and electromagnet MHD devices for future work. The CTH and MACH2 
codes can be used to design explosively-driven plasma generators and MHD devices for future 
customer-specific applications.
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Table I. Explosively Driven MHD Generatoi7Electromagnet/(L/C) Load Data 
MYLAR Diaphragm at Shocktube Entrance (0.015” thick)

Driver Shocktube Electromagnet (L/C) Load
Test Date Pd Gas W P. uf B I0 Ve Vo V, Ii Pi

No. (osia) (M osia (Km/s) m (KA) (KV) (KV) (KV) (KA) (GW)

l.(1) 7-26-94 200 A 1.7 0.01 25.5 0.40 NA NA 0.35 0.139** 0.001
5.7**

2.(2) 8-24-94 200 A 2.0 0.01 23.4 9.40 39.2 9.95 18.0 9.0** 115.0** 1.04**

3.(2) 3-17-95 200 A 2.0 0.01 21.0 9.40 39.4 9.92 30.5 14.0 12.2 0.17

4(2) 3-29-95 200 A 2.0 0.08 23.0 9.95 41.8 10.43 21.8 4.7 13.9 0.07

5(3) 9-31-95 100 A 35.0 11.7* 7.0 11.2 154.0 8.50 ND 15.0 40.0 0.60

A = Argon * = Ambient pressure, air, 6300 foot altitude, HERTF
Pd = Driver gas pressure ** = Resistive load, FY94 test
W = Driver explosive weight, COMP-C4 explosive, 1.6 g/cc V0 = Open circuit voltage near electromagnet center
P. = Shocktube pressure, gas: Air V, = (L/C) load voltage
uf = Flow velocity at electromagnet test station h = (L/C) load current
B = Magnetic field strength Po = Power = V0Ii, open circuit voltage
Id = Electromagnet charge current Pi = Power = Vih, load voltage and current
V, = Electromagnet charge voltage ND = No data/not measured
0) = Driver design #5 NA = Not applicableZ/permanent magnets only
(2) = Driver design #6
(3) = Driver design #7

MGVigil/mhdlc.doc/5/7/96
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FIGURE C4. CTH C0DE/DESIGN#5/VELOCITY VS. TIME
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TABLE Cl. CTH CODE PREDICTED DATA/EDMG DESIGN#5

CTH run d5-2a200h.01

Location (in) 
relative to diaphragm

Density
(kg/m3)

Pressure 
(103 psi)

Temperature 
(103 K)

Velocityt (103 m/s) 
(instantaneous)

Arrival Time* (ja.s)

4" after 71 67 25 21 46
6" after 46 40 23 23 48.4
8" after 31 25 22 25 50.4
10" after 25 19 21 26 52.4
14" after 17 12 20 28 56.2
18" after 11 8 19 30 59.6
20" after 10 6 19 30 61.4
22" after 8 5 18 31 62.8

* Arrival times were determined from the velocity histories.

+ Velocities listed above are termed instantaneous to differentiate them from the
velocities obtained from the experiments, which are determined by a V = Ax/At 
calculation.

TABLE C2. CTH CODE PREDICTED DATA ' ED MG DESIGN#5

Comparison of arrival times forrun d5-2a200h.01 and testD3A200H.01L02
Distance from shock 

tube inlet (in)
Arrival time, 

experiment0 (|is)
Arrival time, 
analysis+Qis)

Difference ([is)

1.75 53.1 43.3 9.9
5.75 56.7 48.1 8.6
9.75 61.0 52.2 8.8
18.75 69.7 60.3 9.4
22.75 73.7 63.3 10.4

^ Experiment arrival times listed were calculated by subracting 48.3 |is from 
experimental results to account for MDF lines.

$ Arrival times for comaprison with test results are interpolated from stations listed in 
the first table above.
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TABLE D1. EDMG DESIGN#5 PLASMA TIME, DISTANCE, VELOCITY & MAGNET DATA

Test Date: 7/26/94 
Pins: None
Diaphragm: Mylar, 0.014” thick, at Shocktube entrance 
Shocktube Air Pressure: 0.012psi (600 mT)

t X

Probe
Time 

/zero fidu') At
Distance fm 

Shocktube Inlet
No. (M (ini

1 101.352 1.75

2 104.976
3.624

5.75

3 109.320
4.344

9.75

4 118.016
8.697

18.75

5 121.992
.3.976

22.75

6 126.128
4.136

26.75

Magnet
AX HI Type Strength
(ml Cm/s') Measurement OQ

VP .07
0.1016 28,042

OCVP .40+
0.1016 23,389

PRP .60+
0.2286 26,285

VP .07
0.1016 25,,553

VP .07
0.1016 24,565

VP .07

VP - Voltage Probe
Plasma Arrival Time Accuracy: ± 8.Oris

MGVigil:cdipI.doc:7/28/94



Intentionally Left Blank

66



Appendix E

Test 2/Design 6/Configurations And Experimental
Data

Figures
El. EDMGDesign 6/Electromagnet Test Configuration.............................................. 69
E2. EDMG Design 6/Electromagnet Coils/Hardware Configuration...........................70
E3. Design 6/Test 2/Resistive Load Voltage vs. Time...................................................71
E4. Design 6/Test 2/Plasma Current vs. Time................................................................ 72
E5. Design 6/Test 2/Load Power vs. Time...................................................................... 73
E6. Design 6/Test 2/Energy vs. Time............................................................................... 74
E7. Design 6/Test 2/Eddy Coil Current Voltage vs. Time.............................................75
E8. Velocity Probe Arrival Time Probe Voltage vs. Time............................................. 76

67



Intentionally Left Blank

68



EKHSFT’VSF^Re

.... i.. . .

ty’m ^'t.^ i ■ ^ ♦ "V 1 * A‘ « 7
„', . .-V’ >* ' /••■•X' * 1

ijrrry—r~r—>.-——»"'•’"—■c^'^*srr-^ry»cv ”~ ,;*^:"'l“—
,■ ' , . .. '' ' t J *’ ' -' ' • * ’/ > .'■'1 -' 

■'.- **•.->«--*> r ' .'vr' . ' . ' «, f' •/■ >»,.•».,I , ii ,• -aAi’i'-X,

"y*:’ji!^'ji''L""ry'^r,itv ■ •'—*-- -^ '•

^ ~ ;.;• .-»r^—
^ . v- * .“' x "

W

«,s»as»>-
■HU Ik ■ t -<Wx^q

i Tnin—MltitMitfii ‘ T • ~ . v? %- ->*»t r-i.'- “• - i* >,-> > iAw, - -,-iiniii>li.v, ^■.■j ■,<:>
......... ..

■Sri.:

EXPLOSIVE DRIVER

ssrx• > .*v.‘ >-•* *4t*!, r- _
■^aV-K>; ^ X'fJ'" *vl X'”

-i - ‘V«* n v ^

!>;xX'.^Wi^PrP“p|
X AA“*\Cx't^/\- ^-*'7^^

i 1 •*♦ .« . - * . M-yt‘C:t ' •-.''/; /l / ■, , V"/ ri•: VJfc.V. AvS. - >'• ': »-?XW
ffX'i , X 

*s.

■ ••''' ^ ' / ,. ^ vtV'' k!}« ^^4
•''...-.%„ ,,,>-...., ■ * - -* - -'<Sv’' ..^--^.A.

FIGURE E1. EDMG DESIGN#6/ELECTROMAGNET TEST CONFIGURATION

* iS. X ';>
■ ~i-1* A > "X V $

WOODEN STAND



FIGURE E2. EDMG DESIGN#6/ELECTR0M AG NET COILS/HARDWARE



V
ol

ts
7500.0

5000.0 —

2500.0

65.0us 70.0us 75.0us SO.Ous

FIGURE E3. DESIGN 6/TEST 2/RESISTIVE LOAD VOLTAGE VS. TIME



K
ilo

-A
m

ps
100.0

65.0US 70.0us 75.0us BO.Ous B5.0us
TIME

FIGURE E4. DESIGN 6/TEST 2/PLASMA CURRENT VS. TIME



M
eg

a-
W

at
ts

1000.0

750.0

500.0

250.0

65.0us 70.0us 75.0us BO.Ous 85.0us
TIME

FIGURE E5. DESIGN 6/TEST 2/LOAD POWER VS. TIME



Jo
ul

es
3000.0

2000.0

1000.0

65.0us 70.0us 75.0US BO.Ous 85.0us
TIME

FIGURE E6. DESIGN 6/TEST 2/ENERGY VS. TIME



V
ol

ts

BO.Ous 90.0US 100.Ous 110.Ous 120.Ous 130.Ous 140.Ous 150.Ous
TIME

FIGURE E7. DESIGN 6/TEST 2/EDDY COIL CURRENT VOLTAGE VS. TIME



V
ol

ts

SO.Ous BO.Ous 70.Ous BO.Ous 90.Ous 100.Ous

TIME

FIGURE E8. VELOCITY PROBE ARRIVAL TIME PROBE VOLTAGE VS. TIME



Appendix F

Test 3/Design 6/Configurations And Experimental
Data

Figures
Fl. Explosively-Driven MHD Generator/Shocktube/Electromagnet

Configuration................................................................................................................. 79
F2. Open Circuit Voltage vs. Time.....................................................................................80
F3. (L/C) Load Voltage vs. Time/Test 1/Area n/Volts 1............................................... 81
F4. (L/C) Load Current vs. Time/Test 1/Area II/Rogowski......................................... 82
F5. Electromagnet charge Current vs. Time...................................................  83
F6. Distance from Shocktube Entrance vs. Plasma Arrival Time/3 Tests.....................84

77



Intentionally Left Blank

78



FI. EXPLOSIVELY-DRIVEN MHD GENERATOR/SHOCKTUBE/ELECTROMAGNETFIGURE CONFIGURATION
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FIGURE H4 DRIVER # 7/ALUMINUM DETONATOR HOLDER COVER INSTALLED
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FIGURE Hi 2 HERTF SITE/EDMG DESIGN# // ELECTROM AG NET TEST CONFIGURATION
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