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INTRODUCTION

Azimuthal correlations have been studied in heavy ion reactions over a wide range
of beam energies. At low incident energies up to 100 MeV /nucleon where collective
effects like the directed sidewards flow are generally small, azimuthal correlations pro-
vide a useful tool to determine the reaction plane event by event [1]. In the energy
regime of the BEVALAC (up to 1 GeV/nucleon for heavy ions) particular emission
patterns, i.e. azimuthal correlations of nucleons and light nuclei with respect to the
reaction plane, have been associated with the so called squeeze out [2] and sidesplash [3]
effects. These effects are of particular interest because of their sensitivity to the equa-
tion of state at the high baryon density which is build up during the collision process
[4]. Angular distributions similar to the squeeze out have been observed for pions at
the SIS in Darmstadt [5, 6] as well as from the EOS - collaboration [7]. Recently also
the sideward flow was measured for pions and kaons [7, 8]. However, the origin of the
signal in the case of produced mesons is thought to be of a different nature than that
for the nucleon flow [9, 10].

At the AGS, azimuthally anisotropic event shapes have been reported from the
E877 collaboration [11] for the highest available heavy ion beam energy (11.4 GeV /nu-
cleon). Using a Fourier analysis of the transverse energy distribution measured in
calorimeters, it was concluded that sideward flow is still of significant magnitude.

Here we will report a first analysis of azimuthal correlations found in the transverse
energy distribution from Pb on Pb collisions at the CERN SPS (158 GeV/nucleon).

Experimental Setup

"The experimental setup relevant for our analysis is shown in Fig. 1. (the full
NA49 setup including the time projection chambers can be found in [12]). The beam is
defined by a 0.2 mm quartz Cherenkov counter and a veto scintillator with a 10 mm cen-
tral hole. The scintillator paddle S5 placed slightly below the beam further suppresses
background from interactions in the air/counting gas. Two separate calorimeters are
used to measure the energy flow: a Ring calorimeter covering the midrapidity region
(2.1 < 7 < 3.4, n being the pseudorapidity) and a Veto calorimeter detecting essen-
tially the energy of beam fragments. The cylindrical Ring calorimeter is subdivided
longitudinally into a photon part of 16 radiation lengths followed by a hadron part of 6
interaction lengths. Its azimuthally symmetric acceptance is segmented into 24 sectors
and 10 radial rings. In total the energy is measured in 480 independent cells. The Veto
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Figure 1. Top view of the NA49 calorimeter structure

calorimeter is also divided into a photon part and a hadron part. It covers completely
the region defined by the aperture of the iron collimator, typically 0.3 degrees with
respect to the beam axis. The collimator enhances the relative fraction of the energy
signal in the Veto calorimeter produced by the beam fragments (for more details see
[13]). The calorimeters have been used and studied in the previous CERN experiments
NAS5, NA24 and NA35 [14].

Data Analysis

In fall of 1994 more than 2 * 10° events have been recorded with the NA49 -
calorimeters. The typical target thickness corresponded to 2% total nuclear interaction
probability. Previous analysis of these data [15] focussed on the production cross section
and pseudorapidity dependence of the transverse energy as well as the fractions of
electromagnetic to hadronic transverse energy. Assuming a Bjorken scenario [16] energy
densities in excess of 3 GeV/fm? (for a formation time of 7 = 1 fm/c) were estimated
for head on Pb+ Pb collisions. Large non statistical fluctuations in the ratio of the
electromagnetic to hadronic transverse energy were not observed. In the following we
use the Ring calorimeter to study the azimuthal energy distribution on an event by
event basis.

Eventshape Study via Tensor Analysis

In the search for collective effects at ultrarelativistic energies it is useful to con-
struct a two dimensional sphericity tensor as suggested in [17]. The Ring calorimeter
measures the transverse energy in a given cell k centered at ¢ and covering a pseudo-
rapidity range An. We define a vector:

ET,k = (ET,k * cos¢k, ET,k * sin¢k) (2)

and the tensor

Fzy = Z ET,k(x) * ET,k(y) (3)
k

with Erx(z), Erx(y) being the vector components of ET,k (here we use only the hadronic
part of the transverse energy). Before calculating the tensor we have applied a careful
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Figure 2. Degree of azimuthal isotropy via the mean aspect ratio as function of the energy deposit
in the Veto calorimeter. The lines represent a fit according to f = ¢+ a/sqrt(Nuap) (see text).

cell gain equalization in each ring belonging to a given pseudo rapidity interval. The
tensor is then evaluated and diagonalized for each event. A first overview about the
degree of isotropy is given in Fig. 2, which shows the average value of the aspect ra-
tio (ratio of eigenvalues from major and minor axis) as function of the centrality. As
measure of the centrality we have used the total energy deposit Evgro in the Veto
calorimeter which is roughly proportional to the number of projectile spectators. We
find that the aspect ratio is increasing with decreasing centrality. In very central colli-
sions it drops below 1.2 which is close to azimuthal isotropy. An average aspect ratio
of 1.0 is indeed only reachable in the limit of very high particle multiplicty.

In our case we estimate from simulations with the VENUS model 4.12 [18] particle
multiplicities of roughly 600 (dominantly pions) within the Ring calorimeter acceptance
for very central collisions. Using the predicted particle multiplicity Ngap from VENUS
in a given bin of Fvgro we can fit the centrality dependence of the aspect ratio with

f=c+a/\/Ngap (4)

where ¢ and a are the fit parameters. This suggests that the nature of the increasing
aspect ratio is at least partially due to an increase of fluctuations. The question whether
there are underlying collective effects present which contribute to the general anisotropy
in addition to the trivial fluctuations due to finite particle number can be studied via
performing the tensor analysis in two separated regions of pseudo rapidity.

Forward / -Backward Correlations

The above defined tensor is calculated separately in a forward region of the pseudo
rapidity 3.3 < 7 < 3.8 and backward region 2.1 < 7 < 2.6. Both regions were chosen
almost symmetrically around mid rapidity, leaving a gap of An = 0.6. The gap reduces
the influence of shower leakage to our correlation analysis. In the upper part of Fig.
3 we show the distribution of the azimuthal angle of the major axis. We obtain a
flat distribution in both hemispheres which is a precondition for the correlation study.
The lower part of Fig. 3 demonstrates that the orientation of the transverse energy
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Figure 3. Upper part: angular distribution of the major axis found from the tensor analysis. Lower
part: Correlation signal A¢ between the orientation of the major axis in the forward and backward
hemisphere.

flow from forward and backward hemispheres is correlated. This represents a strong
evidence for collective effects which in turn lead to anisotropic event shapes. Without
any correlation oné would expect a flat distribution of the relative angle A¢ between
the two major axis. In fact we obtain a much smaller correlation signal in the case
of the VENUS simulations. Experimental effects such as the finite energy resolution
of the calorimeter and shower spreading of the deposited energy have been taken into
account. To quantify the correlation signal we fit the A¢ distributions with a function

F(Ddsp) = cx (14 a2 * cos2Q¢y) (5)

where ¢ is a normalization constant. The centrality dependence is displayed in Fig. 4.
We observe the strongest correlation at an Eygro energy which corresponds roughly
to half overlap collisions (according to a VENUS simulation of the relation between
the average impact parameter and the energy expected in the Veto calorimeter). The
decrease towards higher centrality is to be expected since for the limit of head on col-
lisions no azimuthal anisotropies exist in the geometrical configuration of the colliding
nuclei. We note that VENUS fails to reproduce the data whereas RQMD [19] (mean
field mode) agrees within the statistical errors. This is a quite remarkable difference
between the model predictions since both describe the overall transverse energy pro-
duction cross section. To find out what degree of anisotropy is necessary on top of the
present VENUS events to ’fit’ our correlations we have introduced an elliptical event
shape via the following transformations to the particle momenta:

p.{z; = Az * Pr (6)
p; = Ay * Py (7)
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Figure 4. Fit parameter a2 of the A¢ distribution as function of the centrality.

Rp=Xj/X; (8)

The constraint of (average) energy conservation leads to:
N+ =2 (9)

The quantity Rp was used at BEVALAC/SIS energies [20] to study the squeeze-out
effect: :

<pl>-—<p,>?
< P?, >—=<PpPz >2

The comparison with the modified VENUS events showed that a reasonable fit is
achieved with a deformation parameter of Bp =~ 1.2 for the centrality region of maxi-
murm anisotropy. In the case of the RQMD (not modified) we extracted Rp =~ 1.1. Even
with a squeeze out parameter Rp > 1 we don’t know whether our observed anisotropy
indicates a similar phenomenon since the relative orientation of the major axis to the
direction of the impact parameter is not derived from data (the Ring calorimeter ac-
ceptance is restricted to a narrow region around mid rapidity). The analysis of RQMD
events predicts that our major axis is in fact parallel to the direction of the impact
parameter and not orthogonal as it would be the case for a squeeze out.

Rp = (10)

Fourier Expansion

We have discussed so far the tensor analysis which is equivalent to second order
Fourier expansion analysis as was used in [21]:

NP VL il (1)
Yjer

. where ,, are the Fourier coefficients (n = 1, 2, 3,...), €™~ is the resulting direction, ¢;
the azimuthal angle and &7 the transverse energy detected in the jth cell.

According to the definition, the first Fourier coefficient »; reflects the displacement
of the distribution and et gives the direction of the displacement. The correlation of

)
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Figure 5. Correlation of the resulting angles ¢{ (forward region) and 9? (backward region) for the
first order in the Fourier expansion analysis.

W] (forward) and 4% (backward) is slightly peaked at 180° (Fig. 5). The solid line
represents a fit with

f(Apg) = c* (14 al * cosApy) (12)

The strength of the i — 1 correlation is significantly smaller than the correlation seen
with the tensor analysis (compare to Fig. 3). However, this is not in contradiction to
the results reported at AGS energies since particles at rapidities closer to target and
projectile rapidity were included in their analysis [11]. At those rapidities the directed
sidewards flow component was found to be large in contrast to the mid rapidity zone
[21].

Conclusion

The presented analysis of the transverse energy distribution in Pb on Pb colli-
sions at 158 GeV/nucleon gives strong evidence for anisotropic event shapes. This
was obtained from forward backward correlations using tensor analysis. Although pion
absorption in target spectator matter has been reported previously for SPS energies
[22, 23] our observation demonstrates the presence of collective effects at mid rapidity
where the high energy density region is formed. Indications for anisotropies have also
been observed from photon distributions in the system S on Au at 200 GeV /nucleon
[24]. The origin of the collective effects might be explained by a strong rescattering
of pions in anisotropic surrounding matter (rescattering within the source itself) [25].
In this case, anisotropic event shapes should exist in heavy ion collisions even at the
higher RHIC and LHC energies.
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