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Abstract—Microservices architecture is a promising approach
for developing reusable scientific workflow capabilities for inte-
grating diverse resources, such as experimental and observational
instruments and advanced computational and data management
systems, across many distributed organizations and facilities. In
this paper, we describe how the INTERSECT Open Architec-
ture leverages federated systems of microservices to construct
interconnected science ecosystems, review how the INTERSECT
software development kit eases microservice capability develop-
ment, and demonstrate the use of such capabilities for deploying
an example multi-facility INTERSECT ecosystem.

Index Terms—Software architecture, Scientific computing, Ap-
plication programming interfaces

I. INTRODUCTION

The Interconnected Science Ecosystem (INTERSECT) Lab-
oratory Directed Research and Development (LDRD) initia-
tive at Oak Ridge National Laboratory (ORNL) seeks to
research and develop technologies that allow scientific work-
flows to seamlessly incorporate scientific instruments and ad-
vanced computational and data management resources located
across diverse facilities and organizations. The initiative’s
overall goal is to pioneer science ecosystems that enable
autonomous, multi-modal experimentation and advanced data
analysis through interconnected ”Smart Labs of the Future”
[1]. INTERSECT is structured to advance the state-of-the-
art for both domain science-focused and cross-cutting efforts.
The domain science projects seek to enable autonomous ex-
perimentation and incorporation of machine learning for data-
driven experiment steering or design of experiments, while the
cross-cutting projects address challenges common to a wide
variety of science use cases. The initial cross-cut projects focus
on the Architecture, the Software Development Environment,
and Integration. The Architecture project is defining an open
architecture specification based on a federated system-of-
systems approach to interconnected science ecosystems [2].
The Software Development Environment project is creating the
reusable software infrastructure and application programming
interfaces (APIs) as a software development kit (SDK) to
support the secure deployment and operation of interconnected
science ecosystems [3]. The Integration project works closely
with the domain science projects to deploy or update hardware
and software infrastructure at laboratories and facilities to en-
able connections to INTERSECT ecosystems, and to develop

virtual infrastructure twin technologies that enable software
development without impact to production science [4].

System-of-systems (SoS) is a core design methodology for
the INTERSECT Open Architecture [5] as it simplifies the
creation of complex systems with many interacting compo-
nents by decomposition into smaller, well-defined systems
[6]. This methodology has several beneficial characteristics
including managerial and operational independence of sys-
tems, evolutionary development of the independent systems,
and support for emergent behaviors through new forms of
system composition [7]. Similarly, microservices architecture
is a design methodology for structuring a distributed appli-
cation as a networked collection of loosely-coupled services
that are independently developed, maintained, and operated.
Microservices are thus a natural choice for developing reusable
capabilities that can be composed in a SoS manner to support
scientific workflows in interconnected science ecosystems.

In this paper, we describe our ongoing work to demonstrate
the use of the INTERSECT SDK [8] to develop and deploy
microservice capabilities defined in the INTERSECT Archi-
tecture Specification. First, we summarize the INTERSECT
architectural design for constructing interconnected science
ecosystems via microservices (§II). Next, we discuss the
INTERSECT SDK features that promote ease of development
and reuse of microservices (§III). Finally, we demonstrate the
development and deployment of INTERSECT infrastructure
microservice capabilities for distributed system management
and registration using an enhanced version of the SDK (§IV).

II. THE INTERSECT MICROSERVICE ARCHITECTURE

As previously introduced, microservices architecture is a
design methodology for structuring a distributed application
(e.g., a scientific workflow incorporating distributed resources)
as a networked collection of loosely-coupled services. Each
microservice provides a specific application programming in-
terface (API) that is tailored to its domain, which ensures a
clear separation of concerns between differing microservices,
prevents duplicate functionality, and encourages reuse. The
API methods and associated data (i.e., input and output
parameters) are defined by the microservice contract, which
documents the purpose for each service method and its data
types and permitted values. A microservice may have several



different implementations, where each implementation pro-
vides the same contract but uses different underlying tech-
nologies or supports a particular deployment environment.
When multiple implementations are available, a scientific
workflow can choose the implementation most suitable for its
environment or application needs.

Within the INTERSECT Architecture Specification, the Mi-
croservice Architecture [9] provides a catalog of infrastructure
and experiment-specific microservices that may be useful
within an interconnected science ecosystem. Infrastructure
microservices represent common service functionality and
capabilities, such as data management, computing, system
management, and workflow orchestration that are likely to
be generally useful across many science ecosystems without
the need for customization. Experiment-specific microservices,
on the other hand, represent services whose implementation
may require detailed application domain knowledge, such as
experiment planning or steering services that require knowl-
edge of experiment-specific control parameters and their as-
sociated constraints. The INTERSECT Architecture Specifica-
tion includes science use case design patterns [10] that help
identify the relevant infrastructure and experiment-specific
microservices for a given science workflow. Figure 1 depicts
a generalized INTERSECT ecosystem that provides machine-
in-the-loop intelligence based on experiment-specific services
for experiment steering or design of experiments. The infras-
tructure services shown on the right may be used throughout
the experimental cycle for any associated computing, data
management, or workflow management aspects.

A. Federated Systems of Microservices

All INTERSECT microservices are defined to facilitate
composition within federated SoS architectures [11] through
adoption of a common hierarchy of organizations, facilities,
systems, services, and resources. As shown in Figure 2, each
INTERSECT system is owned by a single organization and
optional facility, and represents a logical collection of INTER-
SECT services and associated resources. Each service provides
utility in the form of a set of microservice capabilities, where
each capability corresponds to a specific microservice contract.

Resources include physical infrastructure such as computing
systems and scientific instruments as well as external services
(e.g., cloud computing services) and data or information repos-
itories. All INTERSECT activities involving system resources
are facilitated through service interactions. A given resource
may be exclusive to a system or shared amongst systems
within a facility or organization.

A system may also include subsystems, which are self-
contained systems that are used by the parent system. Sub-
systems typically exist to maintain operational independence
over a group of related services that provide access to specific
system resources.

B. Microservice Capability Definitions

To enable SoS composition of INTERSECT microservices,
it is crucial to understand the types of interactions a given

microservice may reasonably expect from one of its clients.
In Figure 3, we show three common patterns that substantively
cover the expected interactions: Command, Request-Reply,
and Asynchronous Status or Event. The Command interaction
pattern involves the client asking the microservice to do
something. The microservice typically responds immediately
with a simple acknowledgement that the command has been
received successfully or some error status indicating why
the command was not acceptable. A command may initiate
an activity within the microservice, but that activity is not
ordered with respect to the acknowledgment. Commands are
thus asynchronous interactions from the client perspective.
The Request-Reply interaction pattern has the client making
a request of the microservice that includes an expected reply
containing pertinent information or data related to the request.
Because the reply is not sent until the request has been fully
processed, this is a synchronous interaction pattern from the
client perspective. Finally, the Asynchronous Status or Event
interaction pattern represents cases where the microservice
generates status or event information that is broadcast to
any interested parties at irregular intervals as a result of
internal operational state changes or ongoing activities. Events
are informational in nature and there is no expectation that
the message must be delivered. However, status messages
are typically associated with activities initiated by clients,
and therefore must provide some limited form of message
durability to ensure delivery to at least one interested party.

Based on these common interaction patterns, all microser-
vice capabilities within the INTERSECT Architecture Spec-
ification are defined in a uniform fashion. Each capability
definition is intended to serve as the basis for the microservice
contract for all implementations. In each capability definition,
the proposed functionality (i.e., API methods or associated
data) is grouped by the corresponding microservice interaction
pattern. The data types used in definitions are generic names
for common types and structures supported by the data models
of most data schema standards (e.g., JSON Schema and XML
Schema Definition). Where applicable, capability definitions
also specify relationships to other microservice capabilities,
such as whether the capability extends the functionality of
another capability or has dependencies on other capabilities.

III. A SOFTWARE DEVELOPMENT KIT FOR INTERSECT
MICROSERVICES

At the launch of the INTERSECT LDRD initiative in
October of 2021, the three cross-cut and four domain science
projects started simultaneously. To ensure each project could
demonstrate progress, an agile approach was adopted that
allowed each project to rapidly work toward their individual
milestones while also requiring regular meetings between
projects to cross-pollinate ideas, methods, and common re-
quirements for interconnected science ecosystems. Because the
INTERSECT architecture was just starting to be defined, the
Software Development Environment project initially focused
on creating foundational software infrastructure to enable
interconnection between scientific instruments and computing
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systems for machine-in-the-loop experiment steering, using
the autonomous scanning transmission electron microscopy
(STEM) domain science project as the guiding use case.

The initial SDK [12] that resulted from this focus provided
the INTERSECT control plane communication infrastructure
based on a RabbitMQ message broker and a message en-
capsulation library using Google protocol buffers for cross-
language portability. It also included a minimal Python SDK
client library that simplified broker interactions and seamlessly
handled message encapsulation and validation. The client li-
brary was intended for use in adapters [13], which are services
that bridge between INTERSECT and external software used
to interact with instrument or computing resources. In this
early version of the SDK, each use case utilized its own set of
message definitions, and adapters provided callback functions
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Command

Client Microservice

Reply

Request

Client Microservice Client

Fig. 3. INTERSECT Microservice Interaction Patterns: (top) Command,
(middle) Request-Reply, (bottom) Asynchronous Event or Status



that process incoming messages based on their type. Feedback
from domain scientists wishing to develop new INTERSECT
capabilities using this version of the SDK noted a desire for the
client library to support function-based, rather than message-
based, definition of the API and for transparent definition of
the associated messages based on function parameters and
return types. An API-oriented SDK client library would also
ease prototype development for the catalog of microservice
capabilities being defined in the INTERSECT Architecture
Specification. To address these concerns a significant restruc-
turing of the SDK was undertaken.

The SDK was modified so that users interact with in-
stances of classes representing core architecture concepts
such as services, microservice capabilities, and clients. The
IntersectService class provides the INTERSECT ser-
vice abstraction of a persistent entity that is registered within
an ecosystem to process interactions with a microservice capa-
bility implemented by the service. The IntersectClient
class provides a minimal interface for sending messages to
INTERSECT services and declaring callback functions that
should be used to process responses or events from services.
Both IntersectService and IntersectClient con-
tinue to hide all interactions with the underlying INTER-
SECT control and data planes. However, they both require
a configuration to be provided at instantiation that contains
all the necessary information for connecting to the control
and data planes. In the case of services, the configuration
information also defines the SoS coordinates (i.e., the names of
the organization, facility, system, subsystem, and service) that
may be used by clients to make requests of specific services.

Function-oriented definition of microservice capabil-
ity APIs are supported through use of SDK-defined
Python function decorators within a class that derives
from IntersectBaseCapabilityImplementation.
The @intersect_message decorator is added to each
class method associated with a microservice API function. All
decorated class methods are required to use the same function
signature pattern shown in Figure 4, where the method has at
most one argument and returns a single value. Arguments and
return values are required to be annotated with their associated
type, which may be a built-in Python type or structure or a
user-defined class. The revised SDK uses Pydantic for message
data serialization and validation. Thus, user-defined classes
must be a Python dataclass, TypedDict, or derived from
the Pydantic BaseModel class. The SDK also uses Pydantic
and the Python inspect module to automatically generate
AsyncAPI-compatible schemas [14] for capability APIs.

A @intersect_message decorated method supports
microservice capability API functions providing Command
or Request-Reply interactions. The SDK also provides a
@intersect_event decorator that can be used to sig-
nify a method may generate a microservice capability Asyn-
chronous Event but is not otherwise part of the capability
API. The name and value type for each event is specified
within an events dictionary parameter on the decorator.
The @intersect_message decorator also supports this

parameter for capability API functions that also emit events.
The restructured SDK with these new decorators was made

available to users with the release of version 0.6.0. The
SDK code repository has been made public by a move from
code.ornl.gov, a restricted-access ORNL GitLab service, to its
new home on GitHub [8].

IV. DEMONSTRATION OF INTERSECT MICROSERVICES
DEVELOPMENT AND DEPLOYMENT

In this section, we demonstrate the use of an extended
version of the SDK to deploy systems within an INTERSECT
ecosystem. First, we review the architectural design for man-
aging INTERSECT systems and registering them within an
ecosystem. We then discuss two recently developed extensions
to the SDK that are critical to supporting this design. Finally,
we discuss the implementation of the related microservice
capabilities from the INTERSECT Architecture Specification
and describe an example INTERSECT ecosystem deployment.

A. INTERSECT System Management and Registration

Within the INTERSECT Architecture Specification, Sys-
tem Management and Monitoring Services are responsible
for control and inspection of INTERSECT systems, subsys-
tems, and services. The architecture does not prescribe the
granularity of an INTERSECT system, leaving that decision
up to the operators of the system that integrate it for use
within INTERSECT ecosystems. Thus, a single INTERSECT
system may logically represent a wide range of services and
associated resources. For example, a system operated by an
observational facility may only expose capabilities for data
acquisition and control of an individual scientific instrument,
while a computational facility may provide a single system
that incorporates multiple compute and data storage resources.
In the latter case, it is appropriate to utilize subsystems to
enable finer-grained control and inspection of resources that
are operationally independent.

Each INTERSECT system is expected to deploy a des-
ignated System Management service that coordinates all as-
pects related to system information management, control of
services and subsystems, and status monitoring of associated
resources, services, and subsystems for the duration of the
system’s connection to the INTERSECT ecosystem. These
responsibilities are handled by two microservice capabilities
the service must provide. The SystemManager capability
provides interfaces for aggregate control and status of all
subsystems, resources, and services for the system, while the
SystemInformationCatalog capability maintains use-
ful information about each subsystem, service, and resource.

When a system is newly introduced to an ecosystem, its
management service must register the system. Figure 5 shows
a simplified sequence diagram for this initial system regis-
tration procedure; the full details of microservice interactions
involved are available in the ”Registration of INTERSECT
Systems, Services, and Resources” appendix of [9]. The IN-
TERSECT architecture permits a hierarchy of coordinating
services providing the SystemsRegistrar capability. In



class MyCapability(IntersectBaseCapabilityImplementation):
# Decorated method for a microservice capability Command or Request-Reply
@intersect_message()
def api_method_name(self, parameters : <type>) -> <type>:

...

# Decorated method and generation of a microservice capability Asynchronous Event
@intersect_event(events={’event_name’: IntersectEventDefinition(event_type=int)})
def other_method_name(self, ...):

...
event_value : int = 1
self.intersect_sdk_emit_event(’event_name’, event_value)
...

Fig. 4. INTERSECT SDK Decorators for Microservice Capability Interactions

this figure, we assume each distinct INTERSECT operational
domain (e.g., an organization or facility) provides a registry
service. The management service first requests a universally
unique identifier (UUID) for the system from the registrar.
It then registers each of its local resources by requesting a
resource UUID from the registrar, then recording details about
the resource in its information catalog.

The service registration sequence is shown in Figure 6,
and follows a similar pattern to system resource registration.
Although not shown in Figure 5, the management service also
follows this sequence to register itself with the ecosystem
to provide its contact details so that other members of the
ecosystem may query it to obtain information on the system’s
underlying services, resources, and subsystems. Once its regis-
tration is complete, the management service begins accepting
requests from other services wishing to join the system. These
requests include information about the microservice capabil-
ities provided by the new service and any system resources
used. The management service may optionally use a secret
key to allow only those services providing the key to join
the system. Key distribution to permitted services is expected
to occur using external mechanisms such as those found in
container orchestration infrastructures such as Kubernetes.

B. SDK Enhancements

Many of the microservice capabilities in the INTERSECT
Architecture Specification have dependencies on other capa-
bilities. The most common form of dependency is a required
capability, which means that the current microservice must
make requests of the dependent capability in order to fully
support its own functionality. The other form of dependency
is a capability extension, which means that the current mi-
croservice provides functionality that extends that of the de-
pendent (e.g., the ComputeQueueReservation capability
adds reservation functionality to the the ComputeQueue
capability [9]). For extensions, the base capability is assumed
to be provided by the same parent service.

Although the SDK supports all three microservice interac-
tion patterns beginning with the release of version 0.6.0, there
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Fig. 5. INTERSECT System Registration Sequence

are still two limitations for users that wish to develop services
similar to the System Management service. First, due to its
focus on client-server interactions, the current SDK does not
provide the mechanisms for a service to make a request of
another service and process any response. This prevents im-
plementation of services containing capabilities with required
dependencies. Second, an IntersectService assumes it
provides a single microservice capability, which precludes the
implementation of microservice capability extensions or ser-
vices providing multiple capabilities for ease of deployment.

To address these limitations and enable our demonstration of
INTERSECT microservice capabilities for system registration
and management, the SDK has been enhanced to provide
the needed functionality, which we refer to as service-to-
service requests and multi-capability services. The current
implementation of these enhancements is available on the
mjb-arch-sdk branch of the public code repository.

Service-to-service requests are enabled through the addition
of a structure mapping unique request identifiers to a newly
defined external request object. Any capability implementation
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can call the create_external_request() method on
its parent service to create a unique external request from a
client message and an optional response handler function. An
additional thread of execution in the service periodically scans
the external requests and identifies the newly added requests.
For each new request, it sends the message, waits for a
response for a limited time, and calls the handler function with
the response message if it was received in time. Responses are
received via a separate message broker channel than that used
for incoming requests. The unique request identifier is included
in the outgoing request message and the target service includes
the identifier in the associated response message.

Multi-capability services are supported by initializing each
IntersectService with a set of capability implementa-
tions rather than a single one. To map service requests to a
specific capability, each capability implementation must now
specify its advertised name and client messages prefix the ex-
posed capability method name with the advertised name (e.g.,
AdvertisedCapability.method_name) in their target
operation field. The SDK’s automatic capability API inspec-
tion and schema generation was also updated to incorporate
the advertised capability prefix. This use of advertised names
aligns with the INTERSECT Architecture Specification’s de-
sign for permitting multiple concurrent implementations of the
same microservice contract.

C. Example Deployment of an Interconnected Science Ecosys-
tem

We demonstrate the deployment of an ORNL-based INTER-
SECT ecosystem including three U.S. Department of Energy

Office of Science user facilities, the Oak Ridge Leadership
Computing Facility (OLCF), the Center for Nanophase Ma-
terials Science (CNMS), and the Spallation Neutron Source
(SNS). Within each facility, we create an example INTER-
SECT system that represents a group of related resources. The
OLCF ’frontier’ system includes resources for the Frontier
HPC system, the Orion parallel file system, and two file
systems for user and project storage. The CNMS ’stem’
system includes scanning transmission electron microscopy
instruments. The SNS ’first-target-station’ system has a sample
of the various neutron scattering instruments.

All services and supporting infrastructure are deployed
in a local workstation development environment. The demo
deployment script and microservice capability implemen-
tations used in this demonstration are available from the
associated development branch. First, we deploy the sup-
porting infrastructure. The INTERSECT SDK control and
data planes are started using the provided Docker Com-
pose configuration. An instance of the neo4j graph database
is deployed via Docker and configured via its web inter-
face for use as the backend technology to store informa-
tion about the ecosystem. Next, we launch two ORNL do-
main services that provide the SystemsRegistrar and
EntityRelationCatalog capabilities respectively. Fi-
nally, we launch the ’system-manager’ service within the
’infrastructure-management’ subsystem for each of the three
facility systems. After each of the system management services
has completed its initial registration sequence, we query the
neo4j instance to obtain the ecosystem information hierarchy
graph shown in Figure 7. Further details about each node



or relation in the graph can be obtained by clicking on
the target. Figure 8 shows the information available for a
system management service node, which includes its supported
capabilities.

V. RELATED WORK

Frameworks for microservices development and deployment
are increasingly popular for cloud-native applications. Service-
mesh frameworks like Istio [15] automatically provide key
functionality such as secure communication, service discovery,
traffic observability, and horizontal scaling and load balancing
that help developers focus on core microservice functionality.
They are however unproven technology for federated ecosys-
tems involving multiple independent organizational domains
and non-cloud environments. The INTERSECT SDK may be
considered an early-stage federated service mesh technology.

The Globus Compute platform [16] provides Python
function-as-a-service and remote command execution capabil-
ities that allow distributed computation on a wide variety of re-
sources including user workstations, cloud environments, and
HPC systems. To secure network communication and remote
execution in federated ecosystems, it relies on the same Globus
user authentication widely used for large-scale data transfers in
scientific workflows. Globus Compute currently expects func-
tions or commands to have relatively short lifetimes, and thus
is not a good fit for deploying long-lived services for repeated
use by many scientific workflows. However, Globus Compute
may be useful for implementing certain INTERSECT comput-
ing capabilities (e.g., HostCommandExecution).

VI. CONCLUSION AND FUTURE WORK

This paper has described the key design aspects for con-
structing INTERSECT ecosystems using microservices archi-
tecture and how those aspects are reflected in the current IN-
TERSECT SDK. We discussed two current SDK deficiencies
for developing microservice capabilities and our enhancements
that address them. Finally, we demonstrated the use of pro-
totype microservice capabilities for system registration and
management to deploy an example multi-facility INTERSECT
ecosystem.

The enhancements for service-to-service requests and multi-
capability services are currently under review for incorporation
in the next release of the INTERSECT SDK. We also plan to
adapt existing SDK-based services developed for the INTER-
SECT domain science use cases to take advantage of these
enhancements.

Work continues to develop prototype implementations for
the full set of microservice capabilities defined in the IN-
TERSECT Architecture Specification. In particular, near term
efforts are targeting compute capabilities that leverage DOE
computing facility APIs such as the NERSC SuperFacility API
[17]. Longer term, we wish to create a community repository
for INTERSECT microservice capability implementations and
associated tooling the makes it easy to discover and integrate
capabilities within user-developed services.
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