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Abstract

This report contains a compilation of key results and findings from the ACT project “Determining

Exact RANS Operators with the Macroscopic Forcing Method.” The Macroscopic Forcing Method

(MFM), a numerical tool for determining closure operators, is used to measure eddy diffusivity

moments in Rayleigh-Taylor (RT) instability. It is first applied to low-Atwood 2D RT instability;

that work is then extended to 3D RT at different finite Atwood numbers. It is found that nonlocality

is important for modeling the mean scalar transport closure operator in RT mixing. Additionally,

work is done to improve the statistical convergence of MFM for chaotic problems like RT mixing.
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The importance of nonlocality of mean scalar transport in 2D Rayleigh-Taylor Instability (RTI)
is investigated. The Macroscopic Forcing Method (MFM) is utilized to measure spatio-temporal
moments of the eddy diffusivity kernel representing passive scalar transport in the ensemble
averaged fields. Presented in this work are several studies assessing the importance of the higher-
order moments of the eddy diffusivity, which contain information about nonlocality, in models
for RTI. First, it is demonstrated through a comparison of leading-order models that a purely
local eddy diffusivity is insufficient in capturing the mean field evolution of the mass fraction in
RTI. Therefore, higher-order moments of the eddy diffusivity operator are not negligible. Models
are then constructed by utilizing the measured higher-order moments. It is demonstrated that
an explicit operator based on the Kramers-Moyal expansion of the eddy diffusivity kernel is
insufficient. An implicit operator construction that matches the measured moments is shown to
offer improvements relative to the local model in a converging fashion.

Key words: Authors should not enter keywords on the manuscript, as these must be chosen by
the author during the online submission process and will then be added during the typesetting
process (see http://journals.cambridge.org/data/relatedlink/jfm-keywords.pdf for the full list)

1. Introduction
Rayleigh-Taylor Instability (RTI) is a phenomenon that occurs when a heavy fluid is accelerated

into a light fluid. Specifically, RTI occurs when the following are present: 1) a density gradient,
2) an acceleration (associated with the body force) in the direction opposite that of the density
gradient, and 3) a perturbation at the interface of the two fluids. RTI is present in many scientific
and engineering applications such as supernovae (Gull 1975) and inertial confinement fusion
(ICF) (Zhou 2017; Lindl 1995). In the case of ICF, RTI occurs when a perturbation forms
between the outer heavy ablator and the inner light deuterium gas, which causes premature
mixing in the target, thereby greatly reducing the efficiency of the process. Thus, RTI is of great
interest to scientists and engineers, especially in the context of ICF.

During a typical ICF experiment design process, a Reynolds-Averaged Navier-Stokes (RANS)
approach is often utilized to model the role of hydrodynamic instabilities such as RTI. This
is despite the fact that RTI can be more accurately predicted using high-fidelity methods like
direct numerical simulations (DNS) (Youngs 1994; Cook & Dimotakis 2001; Cook & Zhou
2002; Cabot & Cook 2006; Mueschke & Schilling 2009) and large eddy simulations (LES)
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(Darlington et al. 2002; Cook et al. 2004; Cabot 2006). Motivation for development of RANS
models for various engineering applications like ICF can be understood by considering the
computational cost of each method. DNS requires resolution of the smallest turbulent scales, and
LES the energy-containing scales, which are still much smaller than the macroscopic physics (i.e.,
averaged fields) of engineering interest. On the other hand, by design, RANS must only resolve
macroscopic scales, thereby requiring much lower computational cost. Thus, RANS models are
commonly used in engineering practice, especially in design optimization, where hundreds of
thousands of simulations are often performed. Such is especially the case in designing targets
for ICF experiments (Casey et al. 2014; Khan et al. 2016). Due to the utility of RANS in such
applications, the need for predictive RANS models remains salient.

Models of varying complexities have been applied to the RTI problem. Among the most
commonly-used types are two-equation models. One such model is the ubiquitously-used 𝑘-𝜀
model (Launder & Spalding 1974). Particularly, Gauthier & Bonnet (1990) introduced algebraic
relations for some closures to satisfy realizability constraints for the model to be valid under the
strong gradients of RTI. Another popular two-equation model is the 𝑘-𝐿 model; a version was
introduced by Dimonte & Tipton (2006) for RTI. One appeal of the 𝑘-𝐿 model is its inclusion
of a transport equation for turbulence lengthscale 𝐿 (in place of the transport equation for 𝜀 in
𝑘-𝜀) that can be related to the initial interface perturbation. The self-similarity of turbulent RTI
is leveraged to set the model coefficients.

These two-equation models rely on the gradient diffusion approximation for the turbulent
mass flux closure. The gradient diffusion approximation rests on the assumption that turbulence
transports quantities in a manner similar to Fickian diffusion. Importantly, this approximation
implies purely local dependence of the mean turbulent flux on the mean gradient, ignoring
history effects and gradients at nearby points in space. However, this approximation may not be
valid for mean scalar transport. Specifically, the turbulent mass flux contains features that the
gradient diffusion approximation cannot capture (Morgan & Greenough 2015; Denissen et al.
2014), so a local coefficient may not be enough to scale the mean gradient to model turbulent
mass flux.

Nonlocality in RTI has been studied in experiments and simulations. Clark et al. (1997)
analyzed data from turbulent RTI experiments and compared the pressure-strain correlation and
pressure production due to turbulent mass flux, suggesting spatial nonlocality of pressure effects.
DNS studies by Ristorcelli & Clark (2004) and experiments by Mueschke et al. (2006) have also
examined nonlocality of RTI in the context of two-point correlations. Thus, the nonlocal nature of
RTI is well-known, and work has been done to capture this nonlocality in models. For example,
two-point closures to account for nonlocality in RTI have been developed by several authors for
RANS (Clark & Spitz 1995; Steinkamp et al. 1999b,a; Pal et al. 2018; Kurien & Pal 2022) and
LES (Parish & Duraisamy 2017). While these works attempt to address the effects of nonlocality
in RTI, they do so without directly studying the form of the nonlocal operator.

Several authors have studied ways to directly measure the nonlocal eddy diffusivity in other
canonical flows. One such approach involves application of the Green’s function. The Green’s
function approach starts from analytical derivations of relations between turbulent fluxes and mean
gradients, which was done by Kraichnan (1987). Hamba (1995) then introduced a reformulation
of these relations appropriate for numerical computation of nonlocal eddy diffusivities, which
has been applied to study channel flow (Hamba 2004) and, most recently, homogeneous isotropic
turbulence (HIT) (Hamba 2022).

A different approach to determining nonlocal eddy diffusivities is the Macroscopic Forcing
Method (MFM) by Mani & Park (2021). In contrast to the Green’s function approach, MFM
is derived by considering arbitrary forcing added directly to the transport equations with
its formulation rooted in linear algebra. Additionally, MFM offers extensions to the Green’s
function approach by utilization of forcing functions that are not of the form of a Dirac delta.
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Harmonic forcing has been utilized to derive analytical fits to nonlocal operators in Fourier space
(Shirian & Mani 2022). Additionally, forcing polynomial mean fields using inverse MFM offers
a computationally economical path for determination of spatio-temporal moments of the eddy
diffusivity operator in conjunction with the Kramers-Moyal expansion as opposed to computation
of the moments from a full MFM analysis through post-processing (Mani & Park 2021). Previous
works using MFM have revealed turbulence operators for a variety of flows. Shirian & Mani (2022)
and Shirian (2022) measured nonlocal operators in space and time in HIT. Though the spatial
nonlocal operator was measured in HIT, it was applied to a turbulent round jet and was shown
to match experiments more closely than the purely local Prandtl mixing-length model. MFM has
also been applied to turbulent wall-bounded flows, including channel flow (Park & Mani 2023b)
and separated boundary layers (Park et al. 2022; Park & Mani 2023a), to measure the anisotropic
but local eddy diffusivity. In those flows, incorporation of the MFM-measured anisotropic eddy
diffusivity improved RANS model predictions significantly, and remaining model errors were
attributed to missing nonlocal effects.

It is with a motivation towards RANS model improvement that the present work seeks to
understand nonlocality of closure operators governing turbulent scalar flux transport in RTI using
MFM. Note that it is not intended for MFM to supplant current RANS models. Instead, MFM is
an analysis tool that can be used to assess models and discover the necessary characteristics for
accurate models. Here, MFM allows for direct measurement of nonlocal closure operators, which
has not yet been done in RTI. This new knowledge of nonlocality of the mean scalar transport
closure operator in RTI will aid in the development of improved RANS models used for studying
ICF.

It is important to note that this work presents MFM measurements for a simplified RTI problem:
the flow is two-dimensional, incompressible, and low-Atwood number, and only passive scalar
mixing is considered. Since the eddy diffusivity is not universal, the MFM measurements of its
moments presented here cannot be directly extended to more complex RTI. However, valuable
insight into trends in the eddy diffusivity for mean scalar transport in RTI can be gained in this
work. This follows the common process for developing turbulence models, where models are first
designed for simpler flows then tested on and adjusted for more complex flows. In this work, MFM
is performed on a simplified RTI problem to give a preliminary look into the eddy diffusivity
of Rayleigh-Taylor-type flows, but future work will involve extensions to more complex flow
characteristics that are closer to the practical flow observed in ICF capsules. The intent of this
work is to present MFM as a tool for determining characteristics of the eddy diffusivity of a flow
(i.e., its nonlocality and the importance of its higher order moments) that a model should satisfy in
order to accurately predict mean scalar transport. The current work will inform future studies with
additional complexities, including three-dimensionality, finite Atwood number, compressibility,
and coupling with momentum.

This work is organized as follows. First, an overview of RTI is covered briefly in §2.
Next, §3 gives an overview of the mathematical methods used in this work, including: 1) the
generalized eddy diffusivity and its approximation via a Karmers-Moyal expansion; 2) MFM and
its application for finding the eddy diffusivity moments; 3) self-similarity analysis. Simulation
details, including the governing equations and the computational approach, are given in §4.
Finally, results of several studies on the importance of higher-order eddy diffusivity moments as
well as assessments of suggested operator forms incorporating nonlocality of the eddy diffusivity
for mean scalar transport in RTI are presented in §5. The results show that nonlocality of the
eddy diffusivity is important in mean scalar transport of the RTI problem studied here, and RANS
models incorporating this nonlocality result in more accurate predictions than leading-order
models.
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2. Brief overview of RTI
RTI is characterized by spikes (heavy fluid moving into light fluid) and bubbles (light fluid

into heavy fluid). The mixing widths of these spikes and bubbles are denoted as ℎ𝑠 and ℎ𝑏,
respectively, and the mixing half-width is defined as ℎ = 1

2 (ℎ𝑠 + ℎ𝑏). The behaviors of these
quantities in RTI are dependent on the Atwood number, defined as

𝐴 =
𝜌𝐻 − 𝜌𝐿
𝜌𝐻 + 𝜌𝐿

. (2.1)

Here, 𝜌𝐻 and 𝜌𝐿 are the densities of the heavy and light fluids, respectively. In the limit of
low-Atwood number and late time, the mixing layer width is expected to reach a self-similar state
of growth that scales quadratically with time:

ℎ ≈ 𝛼𝐴𝑔𝑡2, (2.2)

where 𝛼 is the mixing width growth rate. The mixing width growth rate can also be viewed as the
net mass flux through the midplane (Cook et al. 2004). In this case, 𝛼 can also be written as

𝛼 =
¤ℎ2

4𝐴𝑔ℎ
, (2.3)

where ¤ℎ is the time derivative of ℎ. In the limit of self-similarity, these two definitions of 𝛼 are
expected to converge to the same value.

In a simulation, ℎ can be measured as

ℎ ≡ 4
∫

⟨𝑌𝐻 (1 − 𝑌𝐻 )⟩𝑑𝑦, (2.4)

where 𝑌𝐻 is the mass fraction of the heavy fluid (therefore, 𝑌𝐿 = 1 − 𝑌𝐻 is the mass fraction
of the light fluid), and ⟨∗⟩ denotes averaging over realizations and homogeneous direction 𝑥. An
alternative definition used in works such as Cabot & Cook (2006) and Morgan et al. (2017) is

ℎhom ≡ 4
∫

⟨𝑌𝐻⟩ (1 − ⟨𝑌𝐻⟩) 𝑑𝑦. (2.5)

This definition is particularly useful, since it allows ℎ to be determined solely based on the RANS
field. That is, there is no closure problem in determining ℎ with this definition. Thus, this is the
ℎ reported in this work.

From these two definitions, a mixedness parameter 𝜙 can be defined, which can be interpreted
as the ratio of mixed to entrained fluid (Youngs 1994; Morgan et al. 2017):

𝜙 ≡ ℎ

ℎhom
= 1 − 4

∫
⟨𝑌 ′

𝐻𝑌
′
𝐻⟩𝑑𝑦

ℎhom
. (2.6)

In the limit of self-similarity, 𝜙 is expected to approach a steady-state value.
A metric for turbulent transition is the Taylor Reynolds number:

𝑅𝑒𝑇 =
𝑘1/2𝜆

𝜈
, (2.7)

where 𝑘 = 1
2 ⟨𝑢′𝑖𝑢′𝑖⟩ is the turbulence kinetic energy, and 𝜆 is the effective Taylor microscale,

approximated by

𝜆 =

√︂
10𝜈𝐿
𝑘1/2 . (2.8)

Here, the turbulent lengthscale 𝐿 can be approximated as 1
5 the mixing layer width (Morgan et al.
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2017). The large-scale Reynolds number can also be examined (Cabot & Cook 2006):

𝑅𝑒𝐿 =
ℎ99 ¤ℎ99

𝜈
, (2.9)

where ℎ99 is the mixing width based on 1%-99% mass fraction. Dimotakis (2000) determined
that the criterion for turbulent transition is when 𝑅𝑒𝑇 > 100 or 𝑅𝑒𝐿 > 10, 000.

3. Mathematical methods
3.1. Model problem

In this work, a two-dimensional (2D), nonreacting flow with two species—a heavy fluid over a
light fluid—is considered, with gravity pointing in the negative 𝑦-direction. It must be noted that
the behavior of 2D RTI is significantly different from three-dimensional (3D) RTI, the latter of
which is more relevant to problems of engineering interest. It is well known that while 2D RTI is
unsteady and chaotic, it is not strictly turbulent, since turbulence is a characteristic of 3D flows.
In addition, 2D RTI has a faster late-time growth rate, develops larger structures, and is ultimately
less well-mixed. These differences have been studied in RTI by Cabot (2006) and Young et al.
(2001) and in Richtmeyer-Meshkov instability by Olson & Greenough (2014).

For this study, 2D RTI is chosen as the model problem instead of 3D RTI, since it is a good
simplified setting for understanding nonlocality in RTI through the lens of MFM. Specifically,
2D RTI simulations are much less computationally expensive than those of 3D RTI, and MFM
requires many simulations to attain statistical convergence. Thus, 2D RTI remains the focus of
this work, with the hope that the understanding of nonlocality in this flow could be extended to
nonlocality in 3D RTI.

In this 2D problem, 𝑥 is the homogenous direction. In addition, there is no surface tension, the
Atwood and Mach (𝑀𝑎) numbers are finite but small, and the Peclet (𝑃𝑒) number is finite but
large.

3.2. Generalized eddy diffusivity and higher-order moments
In this work, the effect of nonlocality on mean scalar transport is of interest, so analysis begins

with the scalar transport equation under the assumption of incompressibility:

𝜕𝑌𝐻
𝜕𝑡

+ ∇ · (u𝑌𝐻 ) = 𝐷𝐻∇2𝑌𝐻 , (3.1)

where u is the velocity vector and 𝐷𝐻 is the molecular diffusivity of the heavy fluid.
After Reynolds decomposition and averaging, this becomes

𝜕⟨𝑌𝐻⟩
𝜕𝑡

+ ∇ · (⟨u⟩⟨𝑌𝐻⟩) = −𝜕⟨𝑣′𝑌 ′
𝐻⟩

𝜕𝑦
+ 𝐷𝐻∇2⟨𝑌𝐻⟩. (3.2)

In this work, large 𝑃𝑒 (the ratio of advective transport rate to diffusive transport rate) and small
𝐴 are assumed. The former assumption means molecular diffusion is negligible, and the latter
yields ⟨𝑢𝑖⟩ = 0, allowing the advective term to drop. Equation 3.2 becomes

𝜕⟨𝑌𝐻⟩
𝜕𝑡

= −𝜕⟨𝑣′𝑌 ′
𝐻⟩

𝜕𝑦
. (3.3)

The term ⟨𝑣′𝑌 ′
𝐻⟩ is the turbulent scalar flux, and this is the unclosed term that needs to be modeled.

As mentioned previously, one reason the gradient diffusion approximation used to model this
term is inaccurate is that it assumes locality of the eddy diffusivity. This assumption can be
removed by instead considering a generalized eddy diffusivity that is nonlocal in space and time,
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as demonstrated by Romanof (1985) and Kraichnan (1987). For 2D RTI, such a model reduces to

−⟨𝑣′𝑌 ′
𝐻⟩(𝑦, 𝑡) =

∫ ∫
𝐷 (𝑦, 𝑦′, 𝑡, 𝑡′) 𝜕⟨𝑌𝐻⟩

𝜕𝑦

����
𝑦′ ,𝑡 ′

𝑑𝑦′𝑑𝑡′. (3.4)

Here, 𝑦 is the spatial coordinate in averaged space and 𝑡 is the time at which the turbulent scalar
flux is measured, 𝑦′ is all points in averaged space, and 𝑡′ is all points in time. This definition is
exact for passive scalar transport, including in the case studied in this work.

This nonlocal eddy diffusivity can also be viewed as a two-point correlation. This was first
described by Taylor (1922) in homogeneous turbulence. Through Lagrangian statistical analysis,
Taylor derived the following relation between diffusivity and velocity correlations:

𝐷𝑖 𝑗 =
∫ ∞

0

〈
𝑣𝑖 (𝑡)𝑣 𝑗 (𝑡 + 𝑡′)〉 𝑑𝑡′. (3.5)

Work by Shende et al. (2023) has shown that MFM recovers this Lagrangian formulation for
eddy diffusivity in homogeneous flows. It should be noted that the above definition is not valid
for inhomogeneous RTI (again, the exact definition of eddy diffusivity for the studied flow is the
one in equation 3.4), but the intent here is to provide another interpretation of MFM more aligned
with the well-understood two-point correlations.

The eddy diffusivity kernel can be approximated by Taylor-series-expanding the scalar gradient
locally about 𝑦 and 𝑡, which results in the following Kramers-Moyal-like expansion for the
turbulent scalar flux as done by Kraichnan (1987), Hamba (1995), and Hamba (2004):

−⟨𝑣′𝑌 ′
𝐻⟩(𝑦, 𝑡) = 𝐷00 (𝑦, 𝑡) 𝜕⟨𝑌𝐻⟩

𝜕𝑦
+ 𝐷10 (𝑦, 𝑡) 𝜕

2⟨𝑌𝐻⟩
𝜕𝑦2 + 𝐷01 (𝑦, 𝑡) 𝜕

2⟨𝑌𝐻⟩
𝜕𝑡𝜕𝑦

+ 𝐷20 (𝑦, 𝑡) 𝜕
3⟨𝑌𝐻⟩
𝜕𝑦3 . . .

(3.6)

𝐷00 (𝑦, 𝑡) =
∫ ∫

𝐷 (𝑦, 𝑦′, 𝑡, 𝑡′)𝑑𝑦′𝑑𝑡′, (3.7)

𝐷10 (𝑦, 𝑡) =
∫ ∫

(𝑦′ − 𝑦)𝐷 (𝑦, 𝑦′, 𝑡, 𝑡′)𝑑𝑦′𝑑𝑡′, (3.8)

𝐷01 (𝑦, 𝑡) =
∫ ∫

(𝑡′ − 𝑡)𝐷 (𝑦, 𝑦′, 𝑡, 𝑡′)𝑑𝑦′𝑑𝑡′, (3.9)

𝐷20 (𝑦, 𝑡) =
∫ ∫ (𝑦′ − 𝑦)2

2
𝐷 (𝑦, 𝑦′, 𝑡, 𝑡′)𝑑𝑦′𝑑𝑡′. (3.10)

Here, 𝐷𝑚𝑛 are the eddy diffusivity moments; the first index, 𝑚, denotes order in space, while the
second, 𝑛, denotes order in time. This is the form presented in Mani & Park (2021) and Liu et al.
(2023).

When the eddy diffusivity kernel is purely local,

𝐷 (𝑦, 𝑦′, 𝑡, 𝑡′) = 𝐷00𝛿(𝑦 − 𝑦′)𝛿(𝑡 − 𝑡′). (3.11)

In this case, 𝐷00 is the only surviving moment, while all higher-order moments in space and time
are zero. Any non-zero higher-order moment therefore characterizes the nonlocality of the eddy
diffusivity kernel. Thus, this expansion implies explicitly a model form for the turbulent scalar
flux that incorporates nonlocality of the eddy diffusivity. Truncating the expansion provides an
approximation of ⟨𝑣′𝑌 ′

𝐻⟩ but with the caveat that the expansion may not converge. This will be
discussed in more detail later in §5.3.1.

Each 𝐷𝑚𝑛 provides more information about the eddy diffusivity kernel with increasing order.
For example, 𝐷00 represents the volume of the kernel in space-time. The coefficient corresponding
to one higher-order in space, 𝐷10, provides information about the centroid of the kernel in space.
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Figure 1: Diagram of MFM pipeline.

𝐷20 contains information about the moment of inertia of the kernel in space, 𝐷01 contains
information about the centroid of the kernel in time, and so on.

3.3. The Macroscopic Forcing Method
MFM is a method for numerically determining closure operators in turbulent flows (Mani &

Park 2021). Much like a rheometer measures the molecular viscosity of a fluid by imposing a
shear force on the flow, MFM forces the transport equation in a turbulent flow and extracts the
closure operator from its response. Unlike the molecular viscosity, which is a material property,
the turbulent closure operator is a property of the flow, so MFM measurements of one flow cannot
be generalized for all flows; the MFM-measured closure for one flow cannot be applied exactly
as it is to a different flow. However, MFM measurements of one flow can reveal characteristics of
the turbulent closure that are expected be true for a family of similar flows.

Specifically, MFM can be used to determine the RANS closure operator, as shown in the
pipeline diagram in figure 1. In MFM, two simulations are run at once: the donor and the receiver
simulation. In this work, the donor simulation numerically solves the multicomponent Navier-
Stokes equations in equations 4.1 - 4.4. The receiver simulation “receives” 𝑢𝑖 from the donor
simulation and uses it to solve the scalar transport equation with a forcing 𝑠:

𝜌
𝜕𝑌𝐻
𝜕𝑡

+ 𝜌
𝜕

𝜕𝑥𝑖
(𝑢𝑖𝑌𝐻 ) = 𝜕

𝜕𝑥𝑖

(
𝜌𝐷𝐻

𝜕

𝜕𝑥𝑖
𝑌𝐻

)
+ 𝑠. (3.12)

Ultimately, forcings on the receiver simulation effect a response from the flow, and measuring
this response allows for determination of the eddy diffusivity. In particular, these forcings are
macroscopic. Here, macroscopic quantities are defined as fields that are unchanged by Reynolds-
averaging. Mathematically, the macroscopic forcing is such that 𝑠 = 𝑠. This macroscopic nature
is crucial to the method, since it does not disturb the underlying mixing process, which allows for
measurement of the closure operator without changing it. For details, see Mani & Park (2021).

In actuality, the Inverse Macroscopic Forcing Method (IMFM) is used to determine eddy
diffusivity moments. That is, instead of the forcings being chosen, certain mean mass fraction
fields are chosen. Numerically, mean mass fractions are enforced in each realization, so the
averages (denoted by ∗) described here are in 𝑥, the homogeneous direction in space. The forcing
needed to maintain the chosen 𝑌𝐻 is determined implicitly along the process and is not directly
used in the analysis.

As an illustration, the measurement of 𝐷00 can be considered. According to equation 3.6,
choosing 𝑌𝐻 = 𝑦 (for 𝑦 between −1/2 and 1/2) results in 𝜕𝑌𝐻

𝜕𝑦 = 1, and all other higher-order
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derivatives are zero. Thus, choosing this 𝑌𝐻 in each realization results in the realization- and
spatially-averaged measurement −⟨𝑣′𝑌 ′

𝐻⟩ = 𝐷00.
Measurement of higher-order moments involves similar choices of𝑌𝐻 but requires information

from lower order moments. For example, measuring 𝐷10 involves choosing 𝑌𝐻 = 𝑦2, which
results in −⟨𝑣′𝑌 ′

𝐻⟩ = 𝑦𝐷00 + 𝐷10. Here, 𝐷00 comes from the simulation using 𝑌𝐻 = 𝑦. Thus,
𝐷10 is computed by subtracting 𝑦𝐷00 from the ⟨𝑣′𝑌 ′

𝐻⟩ measurement from the simulation using
𝑌𝐻 = 𝑦2.

Specifically, the following desired mean mass fractions are used for each moment for 𝑦 between
−1/2 and 1/2:

𝑌𝐻 = 𝑦 ⇒ 𝐷00, (3.13)

𝑌𝐻 =
1
2
𝑦2 ⇒ 𝐷10, (3.14)

𝑌𝐻 = 𝑦𝑡 ⇒ 𝐷01, (3.15)

𝑌𝐻 =
1
6
𝑦3 + 1

48
⇒ 𝐷20. (3.16)

From these 𝑌𝐻 , the needed forcing in each timestep is numerically determined:

𝑠𝑘 =
𝑌𝐻

𝑘
desired − 𝑌𝐻

𝑘−1

Δ𝑡
(3.17)

where the superscript 𝑘 denotes the timestep number, 𝑌𝐻desired is the mean mass fraction desired
as outlined in equations 3.13 - 3.16, and Δ𝑡 is the timestep size.

This MFM forcing bears some resemblance to other forcings used in the literature, such as
interaction by exchange with the mean (IEM) (Sawford 2004; Pope 2001). One main difference
between forcings in such methods and MFM is that the purpose of the latter is to drive the flow to a
specified mean gradient, which allows for measurement–not enforcement –of the eddy diffusivity
moments. In other words, in MFM for scalar transport, the input is a mean scalar gradient, and
the output is the eddy diffusivity moment; in IEM and similar methods, the input is a desired
moment (e.g., in IEM, the input moment is ⟨𝑐2⟩) and the output is a mixing model. In addition,
methods such as IEM use microscopic forcings, while MFM uses macroscopic forcings, which
is a distinguishing characteristic of the latter method.

To determine 𝐷00, 𝐷10, 𝐷01, and 𝐷20, four separate simulations are needed. For each of these
simulations, the moments can be calculated using measurements of the turbulent scalar flux as
follows:

𝐷00 = 𝐹00, (3.18)
𝐷10 = 𝐹10 − 𝑦𝐷00, (3.19)
𝐷01 = 𝐹01 − 𝑡𝐷00, (3.20)

𝐷20 = 𝐹20 − 𝑦𝐷10 − 1
2
𝑦2𝐷00. (3.21)

where 𝐹𝑚𝑛 denotes the −⟨𝑣′𝑌 ′
𝐻⟩ measured from the receiver simulation using the forcing

corresponding the moment 𝐷𝑚𝑛.

3.4. Self-similarity analysis
We perform our analysis in the self-similar regime. First, we define a self-similar coordinate:

𝜂 =
𝑦

ℎ(𝑡) , (3.22)
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so that ⟨𝑌𝐻⟩ is only a function of 𝜂. Note that 𝜂 requires a definition of ℎ(𝑡). From the previous
discussion on the self-similarity of RTI, an appropriate definition is ℎ(𝑡) = 𝛼𝐴𝑔𝑡2.

Through self-similar analysis of equation 3.6, the eddy diffusivity moments and turbulent scalar
flux can be normalized. Details of this process can be found in the Appendix.

3.5. Algebraic fit to mixing width
Recall that ℎ(𝑡) = 𝛼𝐴𝑔𝑡2 is used in the self-similarity analysis. This is valid only for late time,

so the subsequent analyses in this work are all done in this self-similar timeframe. Usually, 𝛼 can
be determined from ℎ (𝑡 )

𝐴𝑔𝑡2 , where ℎ(𝑡) is computed from the simulation via equation 2.5. However,
due to the convergence and statistical errors as well as the existence of a virtual time origin, 𝛼𝐴𝑔𝑡2
is not a good representation of ℎ(𝑡) measured in the DNS. Instead, a fitting coefficient 𝛼∗ and
virtual time origin 𝑡∗ are determined to make a shifted quadratic fit to ℎ(𝑡) from the simulation:

ℎfit (𝑡) = 𝛼∗𝐴𝑔(𝑡 − 𝑡∗)2. (3.23)

With this fit, the normalizations of the turbulent scalar flux and moments become

�⟨𝑣′𝑌 ′
𝐻⟩ =

⟨𝑣′𝑌 ′
𝐻⟩

𝛼∗𝐴𝑔(𝑡 − 𝑡∗) , (3.24)

𝐷00 =
𝐷00

𝛼∗2𝐴2𝑔2 (𝑡 − 𝑡∗)3 , (3.25)

𝐷10 =
𝐷10

𝛼∗3𝐴3𝑔3 (𝑡 − 𝑡∗)5 , (3.26)

𝐷01 =
𝐷01

𝛼∗2𝐴2𝑔2 (𝑡 − 𝑡∗)4 , (3.27)

𝐷20 =
𝐷20

𝛼∗4𝐴4𝑔4 (𝑡 − 𝑡∗)7 . (3.28)

For exact self-similarity, plots of the measured �𝐷𝑚𝑛 against 𝜂 must be independent of time.
This expectation sets a criterion to assess the extent to which ideal self-similarity is achieved.
Plots and assessment of the self-similar collapse of the measurements presented in this work are
in the Appendix.

4. Simulation details
4.1. Governing equations

The governing equations solved in this work are the compressible multicomponent Navier-
Stokes equations, which involve equations for continuity, diffusion of mass fraction 𝑌𝛼 of species
𝛼 (characterized by its binary molecular diffusivity 𝐷𝛼), momentum transport, and transport of
specific internal energy 𝑒:

𝐷𝜌

𝐷𝑡
= −𝜌 𝜕𝑢𝑖

𝜕𝑥𝑖
, (4.1)

𝜌
𝐷𝑌𝛼

𝐷𝑡
=

𝜕

𝜕𝑥𝑖

(
𝜌𝐷𝛼

𝜕𝑌𝛼

𝜕𝑥𝑖

)
, (4.2)

𝜌
𝐷𝑢 𝑗

𝐷𝑡
= − 𝜕

𝜕𝑥𝑖

(
𝑝𝛿𝑖 𝑗 + 𝜎𝑖 𝑗

) + 𝜌𝑔 𝑗 , (4.3)

𝜌
𝐷𝑒

𝐷𝑡
= −𝑝 𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥𝑖

(
𝑢𝑖𝜎𝑖 𝑗 − 𝑞 𝑗

)
. (4.4)
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Here, 𝐷
𝐷𝑡 is the material derivative 𝜕

𝜕𝑡 + 𝑢𝑖
𝜕
𝜕𝑥𝑖

, 𝜌 is density, 𝑢 is velocity, 𝑝 is pressure, and 𝑔 is
gravitational acceleration, active in the −𝑦 direction. The viscous stress tensor 𝜎𝑖 𝑗 and heat flux
vector 𝑞 𝑗 are respectively defined as

𝜎𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝜕𝑢 𝑗

𝜕𝑥𝑖

)
− 𝜇

2
3
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖 𝑗 , (4.5)

𝑞 𝑗 = −𝜅 𝜕𝑇

𝜕𝑥 𝑗
−

𝑁∑︁
𝛼=1

ℎ𝛼𝜌𝐷𝛼
𝜕𝑌𝛼

𝜕𝑥 𝑗
. (4.6)

Here, 𝜇 is the dynamic viscosity, 𝜅 is the thermal conductivity, 𝑇 is temperature, and ℎ𝛼 is the
specific enthalpy of species 𝛼.

Component pressures and temperatures of each species are determined using ideal gas equations
of state. Under the assumption of pressure and temperature equilibrium, an iterative process is
performed to determine volume fractions 𝑣𝛼 that allow for computation of partial densities and
energies. More details on the hydrodynamics equations and computation of component quantities
can be found in Morgan et al. (2018).

Finally, total pressure is determined as the weighted sum of component pressures:

𝑝 =
𝑁∑︁
𝛼=1

𝑣𝛼𝑝𝛼 . (4.7)

In general, in these compressible equations,𝑌𝛼 are not passive scalars. However, the component
equations of state are scaled so that a consistent hydrostatic pressure gradient is maintained across
the mixing layer. Thus, in this work, 𝑌𝛼 are effectively passive.

4.2. Computational approach
Simulations for 2D RTI are run using the Ares code, a hydrodynamics solver developed at

Lawrence Livermore National Laboratory (LLNL) (Morgan & Greenough 2015; Bender et al.
2021). Ares employs an arbitrary Lagrangian-Eulerian (ALE) method based on the one by Sharp &
Barton (1981), in which the governing equations (equations 4.1 to 4.4) are solved in a Lagrangian
frame and then remapped to an Eulerian mesh through a second-order scheme. The spatial
discretization is a second-order non-dissipative finite element method, and time advancement is
a second-order explicit predictor-corrector scheme.

The Reynolds number (more specifically, the kinematic viscosity 𝜈) is set through a numerical
Grashof number, such that

𝜈 =

√︂
−2𝑔𝐴Δ3

𝐺𝑟
. (4.8)

Here, Δ is the grid spacing; in the simulations, a uniform mesh is used, and Δ = Δ𝑥 = Δ𝑦. To
ensure that the unsteady structures are properly resolved and for the simulation to appropriately
be considered a DNS, 𝐺𝑟 should be kept small. A 𝐺𝑟 that is too large results in a simulation with
dissipation dominated by numerics rather than the physics. Morgan & Black (2020) found that
past 𝐺𝑟 ≈ 12 in the Ares code, numerical diffusivity dominates molecular diffusivity. For our
simulations, we use 𝐴 = 0.05 and 𝐺𝑟 = 1, the latter of which is in line with the DNS by Cabot &
Cook (2006). These choices give a 𝜈 of 10−9𝑚2/𝑠. The Schmidt number 𝑆𝑐, defined as 𝜈/𝐷𝑀 , is
set to unity, so 𝐷𝑀 = 10−9𝑚2/𝑠.

The Mach number, 𝑀𝑎 = 𝑢
𝑐 , where 𝑐 is the speed of sound, characterizes compressibility

effects of the flow. 𝑀𝑎 is set by the specific heat ratio 𝛾, which is 5/3 in the simulations im this
work. The maximum 𝑀𝑎 is measured at the last timestep to be approximately 0.03, which is
ascertained to be small enough to assume incompressibility.
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(a) (b)

Figure 2: Self-similarity parameters computed from a donor simulation.

The Peclet number 𝑃𝑒 characterizes the advection versus diffusion rate and is defined as 𝑅𝑒𝑆𝑐.
Here, a 𝑃𝑒𝐿 and a 𝑃𝑒𝑇 are reported, which use a large-scale 𝑅𝑒𝐿 and the Taylor Reynolds
number 𝑅𝑒𝑇 , respectively. In the presented simulations, 𝑆𝑐 = 1. The two 𝑃𝑒 are computed in
post-processing: 𝑃𝑒𝐿 is approximately 8, 000, and 𝑃𝑒𝑇 is approximately 54. Both are below the
criterion established by Dimotakis (2000), suggesting that the simulated flow is transitional or
pre-transitional.

The number of cells in each simulation is 2049 × 2049. The width 𝐿𝑥 of the domain is 1, and
the height 𝐿𝑦 is 1. The boundary conditions are periodic in 𝑥 and no slip and no penetration in 𝑦.

Initially, the velocity field is zero, temperature is 293.15 K, and pressure is 1 atm. A tophat
perturbation based on the ones used by Morgan & Greenough (2015) and Morgan (2022) is
imposed on the density field at the interface of the heavy and light fluids:

𝜉 (𝑥) =
𝜅max∑︁

𝑘=𝜅min

Δ
𝜅max − 𝜅min + 1

(
cos

(
2𝜋𝑘𝑥 + 𝜙1,𝑘

) + sin
(
2𝜋𝑘𝑥 + 𝜙2,𝑘

) )
, (4.9)

𝜌(𝑥, 𝑦) = 𝜌𝐿 + 𝜌𝐻 − 𝜌𝐿
2

(
1 + tanh

(
𝑦 − 𝐿𝑦/2 + 𝜉

2Δ

))
, (4.10)

where 𝜙1,𝑘 and 𝜙2,𝑘 are phase shift vectors randomly taken from a uniform distribution, and 𝐿𝑦 is
the length in 𝑦 of the domain. Here, the minimum and maximum wavenumbers are set to 𝜅min = 8
and 𝜅max = 256, respectively.

The stop condition of the simulations is when ℎ is approximately half the domain size in 𝑦.
This corresponds to the nondimensional simulation time 𝜏 of 30.84. 𝜏 is defined as 𝑡

𝑡0
, where

𝑡0 =
√︃

ℎ0
𝐴𝑔 and ℎ0 is the dominant lengthscale determined by the peak of the initial perturbation

spectrum.
Before the MFM analysis was conducted, the results of the donor simulations were examined. In

figure 2a, mixedness is observed to reach a value of around 0.6 but appears to not have converged
yet. Figure 2b shows the two definitions of 𝛼 over time. The first definition, 𝛼 = ℎ/𝐴𝑔𝑡2, reaches
a value of about 0.05 by the end of the simulation, but it does not appear to be converged. The
second definition, 𝛼 = ¤ℎ2/4𝐴𝑔ℎ, is oscillatory, due to the sensitivity of the time derivative to
noise, and it appears to fluctuate about a value of approximately 0.04. It is acknowledged that this
behavior indicates that the RTI simulated here is only weakly turbulent. However, it is observed
that the flow is still self-similar at late times. The contour plot of ⟨𝑌𝐻⟩ in figure 3 exhibits
parallel contour lines after 𝜏 ≈ 17, indicating self-similarity at those times. It is also shown in
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Figure 3: Contours of ⟨𝑌𝐻⟩ showing self-similarity at late times.

Figure 4: Black solid line: ℎ measured from DNS; red dashed line: ℎfit.

the Appendix that the mean concentration and normalized turbulent scalar flux profiles exhibit
self-similar collapse after 𝜏 ≈ 17, so the presented self-similar analysis is valid.

Figure 4 shows a plot of the algebraic fit for ℎ, described in equation 3.23. For the simulations
presented here, 𝛼∗ is 0.0046 and 𝑡∗ is −1.6 × 103. The plot shows a strong quadratic dependence
of ℎ on 𝑡 at late time, as ℎfit matches DNS at 𝜏 ⪆ 17, validating the self-similar ansatz of ℎ ∼ 𝑡2.

To further ensure the simulations are working as desired, the flow fields of the donor and
receiver simulations can be examined qualitatively. The 𝑌𝐻 contours at the last timesteps of each
simulation are shown in figure 5. The receiver simulation shown is the one used to compute
𝐷00 (where ⟨𝑌𝐻⟩ = 𝑦). Self-similar RTI turbulent mixing is observed at this timestep, where
the characteristic heavy spikes are sinking into the lighter fluid and the light bubbles rise into
the heavier fluid. Both simulations have the same velocity fields, since the receiver simulation
“receives” the velocity field from the donor simulation. In contrast with the donor simulation,
which has a stark black-and-white difference between the heavy and light fluids, there is a grey
gradient of density in the receiver simulation due to the imposed mean scalar gradient. The
fluctuations of 𝑌𝐻 in each simualtion are also compared in figure 6. The 𝑌 ′

𝐻 contours are not
identical but are qualitatively very similar. In both simulations, 𝑌 ′

𝐻 is constrained to the mixing
layer. Based on these observations, it is concluded that the simulations are visually working as
intended.
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(a) (b)

Figure 5: 𝑌𝐻 contours (black: light, white: heavy) and velocity vector fields (red arrows) of the
(a) donor simulation and (b) receiver simulation with 𝑠 enforcing ⟨𝑌𝐻⟩ = 𝑦. These snapshots are
taken at the last timestep.

(a) (b)

Figure 6:𝑌 ′
𝐻 contours of the (a) donor simulation and (b) receiver simulation. These snapshots are

taken at the last timestep. Note that different colorbars have been used to improve interpretability.

5. Results
5.1. Eddy diffusivity moments

Figure 7 shows normalized MFM measurements of the eddy diffusivity moments 𝐷00, 𝐷10,
𝐷01, and 𝐷20 averaged over 1, 000 realizations and the homogeneous direction 𝑥. Some expected
characteristics of the measured moments are observed:

(i) The leading order moment is over two magnitudes larger than the molecular diffusivity
(10−9𝑚2/𝑠). The scaled higher order moments shown are all at least one magnitude larger than
the molecular diffusivity.

(ii) 𝐷00 is symmetric and always positive.
(iii) 𝐷10 is antisymmetric. This antisymmetry can be understood by interpreting 𝐷10/𝐷00 as

the centroid of the eddy diffusivity kernel. Physically, for 𝜂 > 0, it is expected that the mean scalar
gradient at the center of the mixing layer (at a negative distance away) has more influence on the
turbulent scalar flux than the mean scalar gradient at the outer edges, since the mixing layer is
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(a) 𝐷00 (b) 𝐷10/ℎ(𝑡)

(c) 𝐷01/𝑡 (d) 𝐷20/ℎ(𝑡)2

Figure 7: Moments of eddy diffusivity kernel normalized by appropriate length and timescales.
Data averaged over 1,000 realizations and homogeneous direction 𝑥.

growing outwards. This makes the eddy diffusivity kernel skewed more towards the center of the
domain, so 𝐷10 < 0 for 𝜂 > 0. A similar effect occurs for 𝜂 < 0, which results in 𝐷10 > 0.

(iv) 𝐷01 is symmetric and always negative. The latter must be true for the flow to depend on
its history (it does not violate causality).

(v) 𝐷20 is symmetric and always positive, as is characteristic of moment of inertia of a positive
kernel.

Based on the magnitudes of the normalized moments, some initial observations on importance
of each moment can be made. 𝐷00 has the highest magnitude of all the moments, which is expected
since it is the leading-order moment. The magnitudes of 𝐷10/ℎ and 𝐷01/𝑡 are on the order of
10% of the magnitude of 𝐷00, which suggests that they are non-negligible. On the other hand, the
magnitude 𝐷20/ℎ2 is on the order of 1% that of 𝐷00, so 𝐷20 is likely not an important moment
to include in modeling RTI. More robust studies will be presented in the following sections to
determine importance of each of the eddy diffusivity moments.

It is also observed that there is statistical error in the measurements. Due the chaotic nature
of RTI, the moment measurements contain statistical error, but this error can be reduced by
averaging many realizations. To demonstrate statistical convergence of the measurements, plots
of 𝐷00 averaged over different numbers of realizations are included in figure 8. As the number
of realizations increases, the plots become smoother, and it is found that after 1, 000 realizations,
the rate of reduction in statistical error slows down significantly. Averaging over this number of
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(a) 8 realizations (b) 32 realizations

(c) 100 realizations (d) 1000 realizations

Figure 8: 𝐷00 averaged over different numbers of realizations.

realizations results in a smooth 𝐷00 measurement and higher-order moment measurements with
acceptably less statistical error.

Additionally, the higher the order of the moment, the slower its rate of statistical convergence.
Recall that determination of higher-order moments requires information from lower-order mo-
ments. For example, in determining 𝐷01, 𝑡𝐷00 is subtracted from 𝐹01, the turbulent scalar flux
measurement in the simulation associated with 𝐷01. Naturally, there is statistical error associated
with both 𝐷01 and 𝐷00. However, the error in 𝐷00 is amplified by 𝑡, so the overall statistical error
of 𝐷01 increases with time. This statistical error “leakage” occurs for all higher-order moments.
The higher the order of the moment, the worse the statistical error, since information from more
lower-order moments is needed, and so more statistical error is accumulated and amplified.
The relatively high statistical error of the higher-order moments makes it challenging to study
their importance. Particularly, taking derivatives of quantities with high statistical error amplifies
the error, so smoother measurements are desired. In this work, the moment measurements are
smoothed using a Savitzky-Golay filter function in Matlab with a polynomial order of unity
and window size of 191. These smoothed moments are shown in figure 9. While it is possible to
design an alternative formulation of MFM that removes leakage of statistical error from low-order
moments to higher-order moments (see Lavacot et al. 2022), for this 2D study and for the order
of moments considered here, the statistical convergence is sufficient.

Using these measurements, nonlocal timescales and lengthscales (𝑡𝑁𝐿 and 𝐿𝑁𝐿 , respectively)
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(a) (b)

(c) (d)

Figure 9: Smoothed moments (dashed red) over raw MFM measurements of moments (solid
black). The moments are taken from the mean data at the last timestep of the simulations and are
transformed to self-similar space.

can be defined:

𝑡𝑁𝐿 = −𝐷01

𝐷00 , 𝐿𝑁𝐿 =

√︂
𝐷20

𝐷00 . (5.1)

Note that this analysis can only be done for −1 ⩽ 𝜂 ⩽ 1, since the moments are analytically zero
outside the mixing layer.

Nondimensionally, the nonlocal timescale is 𝜏𝑁𝐿 = 𝑡𝑁𝐿/𝑡0, and the nonlocal lengthscale is
𝜂𝑁𝐿 = 𝐿𝑁𝐿/ℎ. Contour plots of the nondimensionalized nonlocal timescale and lengthscale are
in figure 10. Note that 𝜏𝑁𝐿 scales as 𝜏, so profiles of 𝜏𝑁𝐿/𝜏 against 𝜂 are also plotted in figure 11
in the self-similar time regime (𝜏 > 17). The scaled profiles collapse and have a centerline value
of approcimately 0.1. This means that the mean fluxes at some time 𝜏 are affected by mean scalar
gradients 0.1𝜏 earlier. Figure 12 shows the minimum nonlocal lengthscale is at the centerline,
where 𝜂𝑁𝐿 ≈ 0.09. The maximum lengthscales occur near the outer edges of the mixing layer: at
around 𝜂 = ±0.87, 𝜂𝑁𝐿 ≈ 0.27. This indicates that mean fluxes at the mixing layer edges depend
mostly on mean scalar gradients about a quarter of a mixing width away, while mean fluxes at the
centerline depend on mean scalar gradients about one tenth of a mixing width away; nonlocality
appears to be stronger at the mixing layer edges than at the centerline. These nonlocal properties
of the eddy diffusivity for RTI could not be predicted without direct measurement of the eddy
diffusivity moments, which has been made possible through MFM.
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(a) 𝜏𝑁𝐿 (b) 𝜂𝑁𝐿

Figure 10: Nondimensional nonlocal timescale and lengthscale contours. Only −1 ⩽ 𝜂 ⩽ 1 is
plotted, since moments are zero outside the mixing layer. Early times (𝜏 < 2) not plotted due to
transient behavior.

(a) (b)

Figure 11: Nondimensional nonlocal timescale profiles at different times for 𝜏 > 17. Lighter lines
correspond to later times; darker lines correspond to earlier times. (a) is unscaled and shows the
linear time dependence of 𝜏𝑁𝐿 on 𝜏. (b) shows the collapse of the profiles when scaled by 𝜏.

5.2. Assessment of importance of nonlocal effects

5.2.1. Comparison of terms in turbulent scalar flux expansion

To aid in the determination of which moments are important for a RANS model, a comparison
of the terms in the expansion of the turbulent scalar flux (equation 3.6) is presented. These terms
involve gradients of ⟨𝑌𝐻⟩. Instead of using ⟨𝑌𝐻⟩ directly from the DNS, a fit to ⟨𝑌𝐻⟩ is used,
since the statistical error in the raw measurement gets amplified by derivatives in 𝜂. That is,
the quantities of interest are sufficiently converged for plotting but not for operations involving



18

Figure 12: Nondimensional nonlocal lengthscale profiles at different times for 𝜏 > 17. Lighter
lines correspond to later times; darker lines correspond to earlier times.

Figure 13: Semi-analytical fit to ⟨𝑌𝐻⟩ (dashed red) against DNS measurement of ⟨𝑌𝐻⟩ (solid
black).

derivatives. Thus, an analytical fit to ⟨𝑌𝐻⟩ is obtained as follows:

⟨𝑌𝐻⟩∗ =



0 if 𝜂 < −𝑎∫ 𝜂

−𝑎
1

(𝑎2−𝜂′2)2 exp
(

1
𝐵(𝑎2−𝜂′2)

)
𝑑𝜂′ if − 𝑎 ⩽ 𝜂 ⩽ 𝑎

1 if 𝜂 > 𝑎

, (5.2)

⟨𝑌𝐻⟩ = ⟨𝑌𝐻⟩∗
⟨𝑌𝐻⟩∗max

, (5.3)

where the integral is determined numerically, and 𝑎 and 𝐵 are fitting coefficients. The coefficients
𝑎2 = 1.2 and 𝐵 = 0.36 are found to give good agreement to the mean concentration profile from
DNS, as shown in figure 13.

The terms on the right hand side of equation 3.6 are plotted against the DNS measurement of
the turbulent scalar flux in figure 14. Clearly, the 𝐷00 term is not enough to capture the turbulent
scalar flux. It is observed that the 𝐷01 term is significant in magnitude in the middle of the domain,
and the 𝐷10 term carries importance at the outer edges of the mixing layer. The term associated
with the highest-order moment that was measured, 𝐷20 also appears to be of similar magnitude
as the other moments, indicating it may also carry important information about nonlocality of
the eddy diffusivity. These preliminary findings indicate nonlocality is certainly important for
accurate modeling of mean scalar transport in this RTI problem, since the higher-order terms
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Figure 14: Comparison of terms in the expansion of the turbulent scalar flux. Black: DNS
measurement of turbulent scalar flux, solid blue: 𝐷00 term, dashed pink: 𝐷10 term, dash-dotted
green: 𝐷01 term, dotted orange: 𝐷20 term.

(a) (b)

Figure 15: Comparisons of (a) model coefficient from 𝑘-𝐿 model with leading-order moment
measured using MFM and (b) resulting similarity solutions for ⟨𝑌𝐻⟩. Inset plot in (a) shows
zoomed-in view around 𝜂 = −1 to highlight divergence of 𝑘-𝐿 model from DNS. Solid black:
DNS measurement, dash-dotted blue: leading-order MFM-based model, dashed red: 𝑘-𝐿 model.

in equation 3.6 appear non-negligible compared to the leading-order term. It may be tempting
to ascribe physical reasons for the behavior of the terms plotted in figure 14, but this is not so
straightforward, especially since the full eddy diffusivity kernel for this problem as not yet been
measured. Further, it would be inappropriate to draw conclusions about importance of each eddy
diffusivity moment in a RANS model, since the operator form must be scrutinized first. A faulty
operator form could give misleading implications about certain eddy diffusivity moments. It turns
out that a simple superposition of these terms, which would represent a truncation of equation
3.6, does not accurately represent the true eddy diffusivity kernel and actually leads to divergence
of predictions, so such an operator form would not be appropriate; this will be covered more in
depth later in §5.3. Nevertheless, the results shown here are strong evidence of nonlocality of the
eddy diffusivity kernel for the RTI simulated here.
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5.2.2. Comparison of leading-order model against a local model
To demonstrate the shortcomings of models using purely local coefficients, an MFM-based

leading-order model and the 𝑘-𝐿 RANS model are compared. The intent of this study is not
to immediately propose a “better” RANS model to replace 𝑘-𝐿, nor is it to suggest the MFM-
based leading-order model is more accurate than the 𝑘-𝐿 model. In fact, it is expected that the
MFM-based leading-order model will perform poorly, since it does not include important higher-
order moments of eddy diffusivity. Instead, this study emphasizes the necessity of higher-order
moments and shows how MFM can reveal incorrect model forms.

In particular, a 1D 𝑘-𝐿 simulation is run, and the eddy diffusivity and mean concentration
profiles are extracted from the results to be compared to those of the MFM-based model using the
measured 𝐷00 that was presented in §5.1. The 𝑘-𝐿 simulation used in this section is implemented
in Ares, and details of the implementation are in Morgan & Greenough (2015) and Morgan
(2018). Note that the 𝑘-𝐿 simulation is used here for illustration purposes and should not be
confused with the 2D DNS simulations used to obtain our MFM moments.

The MFM-measured 𝐷00 is used for the leading-order MFM-based model:

−⟨𝑣′𝑌 ′
𝐻⟩ = 𝐷00

MFM
𝜕⟨𝑌𝐻⟩
𝜕𝑦

. (5.4)

To solve this, 𝐷00
MFM is obtained from the smoothed MFM measurements and transformed

to self-similar coordinates. The resulting �𝐷00
MFM is a function of 𝜂 = 𝑦

ℎDNS
, where ℎDNS =

𝛼∗
DNS𝐴𝑔(𝑡 − 𝑡∗DNS)2 is an algebraic fit to the mixing width from the DNS. The equation is then

solved semi-analytically in conjunction with the mean mass fraction evolution equation in self-
similar coordinates:

−2𝜂
𝑑⟨𝑌𝐻⟩
𝑑𝜂

=
𝑑

𝑑𝜂

(
−�⟨𝑣′𝑌 ′

𝐻⟩
)
, (5.5)

−�⟨𝑣′𝑌 ′
𝐻⟩ = �𝐷00

MFM
𝑑⟨𝑌𝐻⟩
𝑑𝜂

. (5.6)

The 𝑘-𝐿 model uses the gradient diffusion approximation for the turbulent flux:

−⟨𝑣′𝑌 ′
𝐻⟩ =

𝜇𝑡
⟨𝜌⟩𝑁𝑌

𝜕⟨𝑌𝐻⟩
𝜕𝑦

= 𝐷00
𝑘-𝐿

𝜕⟨𝑌𝐻⟩
𝜕𝑦

, (5.7)

where 𝜇𝑡 = 𝐶𝜇 ⟨𝜌⟩𝐿
√

2𝑘 . 𝑁𝑌 is one of the model coefficients set by similarity constraints derived
by Dimonte & Tipton (2006). Particularly, this work uses the coefficient calibration detailed
in (Morgan & Greenough 2015), and the coefficients are chosen to achieve the same 𝛼 as the
DNS. Here, 𝐶𝜇 is unity and 𝑁𝑌 is 2.47. The 𝑘-𝐿 RANS model is solved in spatio-temporal
coordinates, and the ⟨𝜌⟩, 𝑘 , and 𝐿 obtained from the solution are used to compute 𝜇𝑡 and,
consequently, 𝐷00

𝑘-𝐿 , which is purely local. For a meaningful comparison with the MFM-based
model, 𝐷00

𝑘-𝐿 is transformed to �𝐷00
𝑘-𝐿 according to the self-similar coordinate 𝜉 = 𝑦

ℎ𝑘-𝐿
, where

ℎ𝑘-𝐿 = 𝛼∗
𝑘-𝐿𝐴𝑔(𝑡− 𝑡∗𝑘-𝐿)2. It must be noted that the ℎ fitting coefficients 𝛼∗ and 𝑡∗ are not the same

between the DNS and 𝑘-𝐿 solutions. In this work, 𝛼∗
DNS = 0.046, 𝑡∗DNS = −1600 𝑠, 𝛼∗

𝑘-𝐿 = 0.04,
and 𝑡∗𝑘-𝐿 = 1250 𝑠 (𝑡∗𝑘-𝐿 is positive due to the relaxation time to the self-similar profiles in the
beginning of the 𝑘-𝐿 simulation).

Figure 15a shows the mean concentration profiles computed using each of the two models.
As expected, the MFM-based leading-order model performs poorly, not capturing the slope of
the DNS profile, since that model only uses the leading-order eddy diffusivity moment and
incorporates no information about nonlocality of the eddy diffusivity. The 𝑘-𝐿 model exhibits
divergence from DNS at the outer edges of the mixing layer, since it is designed to predict a
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linear ⟨𝑌𝐻⟩ profile. However, it does capture the slope of the DNS profile, despite it also using a
leading-order closure. In addition, it is observed in figure 15b that the MFM-measured �𝐷00

MFM is
significantly lower in magnitude than �𝐷00

𝑘-𝐿 . Here, MFM reveals that the 𝑘-𝐿 model is using an
incorrect model form, since the 𝐷00 it is using does not match the MFM measurement. In fact,
the 𝑘-𝐿 model is using this higher-magnitude coefficient in order to compensate for the error
in model form and achieve a linear mean concentration profile with a slope that matches DNS.
Despite this compensation, the 𝑘-𝐿 model still disagrees with DNS results at the outer edges of
the mixing layer, which are important to capturing the average reaction rate in reacting flows like
in ICF. A more accurate RANS model would more closely match the eddy diffusivity moments
measured by MFM. As results will show shortly, the gap between the leading-order MFM-based
model ⟨𝑌𝐻⟩ and the DNS measurement would be bridged by inclusion of higher-order moments,
which would introduce information about the nonlocality of the eddy diffusivity.

5.3. Assessment of nonlocal operator forms
In this section, two RANS operator forms using information about the nonlocality of the eddy

diffusivity are presented. These are the explicit and implicit operator forms; the former is a
truncation of the turbulent scalar flux expansion 3.6, and the latter will be presented shortly. It
must be stressed that the intention of the following studies is not to propose a new RANS model.
Ultimately, a RANS model should not depend on direct MFM measurements that can only be
retrieved from impractically many DNS. Instead, these studies are performed to further assess the
importance of each of the eddy diffusivity moments, determine which combinations of moments
best enhance the performance of a RANS model, and examine the differences between the explicit
and implicit operator forms. The aim of these studies is to inform development of more predictive
RANS models for RTI, not to suggest that these are the exact models that should be used.

In addition, 𝐷20 will not be included in the following studies. This is mainly due to the high
statistical error in the measurement that makes it difficult to ascertain whether errors in the
results are due to this statistical error or solely the addition of the moment to the model. From
the comparison of terms in §5.2.1, it is expected that 𝐷20 is not as important as 𝐷10 and 𝐷01 to
include in a RANS model. This should be tested in future work when a more statistically-converged
measurement is achieved for 𝐷20, ideally in a 3D analysis.

5.3.1. Explicit operator form
The explicit operator form is a truncation of the expansion of the turbulent scalar flux, as

defined in equation 3.6. Hamba (1995) and Hamba (2004) have examined this form in the context
of shear flows. Transformation of this expansion to self-similar coordinates and substitution into
3.3 results in

−2𝜂
𝑑⟨𝑌𝐻⟩
𝑑𝜂

=
𝑑

𝑑𝜂

[(
𝐷00−𝐷01

) 𝑑⟨𝑌𝐻⟩
𝑑𝜂

+
(
−𝜂𝐷01 + 𝐷10

) 𝑑2⟨𝑌𝐻⟩
𝑑𝜂2 +𝐷20 𝑑

3⟨𝑌𝐻⟩
𝑑𝜂3 + . . .

]
, (5.8)

which can be solved numerically for ⟨𝑌𝐻⟩. The �𝐷𝑚𝑛 used in the numerical solve are the smoothed,
normalized moments. To determine which eddy diffusivity moments are important in constructing
RANS models for RTI, different combinations of �𝐷𝑚𝑛 terms are kept in equation 5.8, and the
results are compared to DNS. In the numerical solve, equation 5.8 is discretized on a staggered
mesh, and derivatives are computed using central finite differences. A matrix-vector equation is
assembled and solved for ⟨𝑌𝐻⟩ with Dirichlet boundary conditions.

Figure 16 shows the turbulent scalar fluxes computed using the explicit operator form, and
figure 17 shows the corresponding mean concentration profiles. Again, it is apparent that the
leading-order moment is not enough to capture the turbulent scalar flux. The combination using
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(a) 𝐷00 (b) 𝐷00, 𝐷10

(c) 𝐷00, 𝐷01 (d) 𝐷00, 𝐷10, 𝐷01

Figure 16: Turbulent scalar flux predictions using the explicit operator form. Captions of each
plot list moments used in the model.

𝐷00, 𝐷10, and 𝐷01—the moments deemed most important in §5.2.1—gives the best match to the
DNS measurement.

It is particularly remarkable that a converged turbulent scalar flux can be obtained using
𝐷00, 𝐷10, and 𝐷01. As mentioned previously, it is known that equation 3.6 may not converge.
That is, the expansion must be taken to infinite terms to remove error; truncating the expansion
can result in significant error. This is analogous to a Kramers-Moyal expansion, which cannot
be approximated adequately by more than two terms, after which it requires infinite terms for
convergence (Pawula 1967; Mauri 1991). To understand how adding terms to equation 3.6 can
result in greater error, one can consider the eddy diffusivity kernel associated with each term. The
leading-order moment is associated with a delta function kernel, as it is purely local. However,
when equation 3.4 is replaced by equation 3.6, an integral operator is replaced with a high-order
differential operator. This means that the nonlocal effects are approximated by derivatives of delta
functions; see Liu et al. (2023) for more details. It has been shown that, in general, the eddy
diffusivity kernel is not a superposition of finite delta functions, as it is smooth (Mani & Park
2021; Liu et al. 2023). Therefore, truncation of the expansion does not match the shape of the
eddy diffusivity kernel, leading to errors in prediction of the turbulent scalar flux. While the 𝐷00,
𝐷10, and 𝐷01 combination did not diverge, adding 𝐷20 does lead to divergent results for these
reasons, so this combination is not presented here.

Another issue with the explicit operator form is its numerical implementation. In spatio-
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(a) 𝐷00 (b) 𝐷00, 𝐷10

(c) 𝐷00, 𝐷01 (d) 𝐷00, 𝐷10, 𝐷01

Figure 17: Mean concentration profile predictions using the explicit operator form. Captions of
each plot list moments used in the model.

temporal space, some terms associated with higher-order moments involve mixed derivatives (e.g.,
the term 𝐷01 𝜕2

𝜕𝑡𝜕𝑦 ), which would undergo another spatial gradient when substituted into equation
3.3. Such terms are difficult to handle numerically. In this work, the model is implemented in the
more convenient self-similar space, but, ultimately, a spatio-temporal model would be developed,
as it is more practical. It is thus pertinent to work towards a better method to incorporate nonlocal
information in a RANS model that does not encounter the Kramers-Moyal-like convergence issue
and is easier to implement.

5.3.2. Implicit operator form and the Matched Moment Inverse (MMI)
In this section, an implicit operator form is introduced as a solution to both the increasing

error when adding terms from the turbulent scalar flux expansion and implementation challenges
associated with the explicit operator form. Recall that the explicit operator form fails to match the
shape of the eddy diffusivity kernel without infinite terms of the turbulent scalar flux expansion.
In this implicit operator form, the aim is to match the shape of the eddy diffusivity kernel, instead
of using the truncated expansion for the turbulent scalar flux. Using the four moments that have
been measured, this model form is[

1 + 𝑎01 𝜕

𝜕𝑡
+ 𝑎10 𝜕

𝜕𝑦
+ 𝑎20 𝜕2

𝜕𝑦2 + . . .
]
(−⟨𝑣′𝑌 ′

𝐻⟩) = 𝑎00 𝜕⟨𝑌𝐻⟩
𝜕𝑦

, (5.9)
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where 𝑎𝑚𝑛 (𝑦, 𝑡) are model coefficients fitted corresponding to each of the eddy diffusivity
moments 𝐷𝑚𝑛 measured using MFM. The bracketed operator on the left hand side is the Matched
Moment Inverse (MMI) operator. The way this model form is designed to match the eddy
diffusivity kernel shape is detailed in Liu et al. (2023). In addition, this form is significantly easier
to implement numerically in spatio-temporal space, since it can be directly time-integrated using
explicit methods. In this way, it is also easy to add more terms with higher-order moments, as it
simply requires extension of the operator.

In self-similar coordinates, this becomes[
1 + 𝑎01

(
1 − 2𝜂

𝑑

𝑑𝜂

)
+ 𝑎10 𝑑

𝑑𝜂
+ 𝑎20 𝑑2

𝑑𝜂2 + . . .

]
(−�⟨𝑣′𝑌 ′

𝐻⟩) = 𝑎00 𝑑⟨𝑌𝐻⟩
𝑑𝜂

, (5.10)

where it is found through self-similar analysis that

𝑎00 =
1

𝛼∗2𝐴2𝑔2 (𝑡 − 𝑡∗)3 𝑎
00, (5.11)

𝑎01 =
1

𝑡 − 𝑡∗
𝑎01, (5.12)

𝑎10 =
1

𝛼∗𝐴𝑔(𝑡 − 𝑡∗)2 𝑎
10, (5.13)

𝑎20 =
1

𝛼∗2𝐴2𝑔2 (𝑡 − 𝑡∗)4 𝑎
20. (5.14)

The coefficients are determined through a process illustrated as follows in spatio-temporal
coordinates for simplicity. If one wants to construct a model in the form of equation 5.9,
four equations must be formulated to determine the four coefficients. This is done by using
measurements from the four simulations used to determine the four moments 𝐷00, 𝐷10, 𝐷01,
and 𝐷20. For example, the first equation results from substitution of 𝐹00 for −⟨𝑣′𝑌 ′

𝐻⟩ and the
associated desired 𝜕⟨𝑌𝐻 ⟩

𝜕𝑦 ; the remaining three equations follow, using the other three moments:

[
1 + 𝑎10 𝜕

𝜕𝑦
+ 𝑎01 𝜕

𝜕𝑡
+ 𝑎20 𝜕2

𝜕𝑦2

]
𝐹00 = 𝑎00, (5.15)

[
1 + 𝑎10 𝜕

𝜕𝑦
+ 𝑎01 𝜕

𝜕𝑡
+ 𝑎20 𝜕2

𝜕𝑦2

]
𝐹10 = 𝑎00

(
𝑦 − 1

2

)
, (5.16)

[
1 + 𝑎10 𝜕

𝜕𝑦
+ 𝑎01 𝜕

𝜕𝑡
+ 𝑎20 𝜕2

𝜕𝑦2

]
𝐹01 = 𝑎00𝑡, (5.17)

[
1 + 𝑎10 𝜕

𝜕𝑦
+ 𝑎01 𝜕

𝜕𝑡
+ 𝑎20 𝜕2

𝜕𝑦2

]
𝐹20 = 𝑎00 1

2

(
𝑦 − 1

2

)2
. (5.18)

This system of equations is then rearranged into a matrix equation 𝑀MMIa = b, which is solved for
the coefficients in vector a = (𝑎00, 𝑎10, 𝑎01, 𝑎20)𝑇 . Note that this matrix equation is constructed
over every point in space and time, so a = a(𝑦, 𝑡). In this work, analysis is done in self-similar
coordinates, in which a = a(𝜂). If one wishes to construct a model with different moments, the
MMI operator and equations must be modified accordingly. For example, a model using only 𝐷00

and 𝐷10 would have an MMI operator of the form 1 + 𝑎10
𝜕
𝜕𝑦 and use only the first two equations

(with the 𝑎01 and 𝑎20 terms removed). Thus, models using different combinations of moments
would use different MMI coefficients 𝑎𝑚𝑛.

To summarize, for this implicit operator form, the following system of equations is solved in
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self-similar coordinates:

LMMI

{
−�⟨𝑣′𝑌 ′

𝐻⟩
}
= 𝑎00 𝑑⟨𝑌𝐻⟩

𝑑𝜂
, (5.19)

𝑑

𝑑𝜂

(
−�⟨𝑣′𝑌 ′

𝐻⟩
)
= −2𝜂

𝑑⟨𝑌𝐻⟩
𝑑𝜂

, (5.20)

where LMMI is the MMI operator constructed using some combination of moments, such as in
equation 5.10. Numerically, the following system is solved:

𝑃(−�⟨𝑣′𝑌 ′
𝐻⟩) = 𝑎00D𝜂 ⟨𝑌𝐻⟩, (5.21)

D𝜂

(
−�⟨𝑣′𝑌 ′

𝐻⟩
)
= −2𝜂D𝜂 ⟨𝑌𝐻⟩, (5.22)

where 𝑃 is the matrix representing the numerical MMI operator, and D𝜂 is the matrix representing
the numerical derivative with respect to 𝜂. This can be rewritten as a block matrix-vector
multiplication:

𝑀x =

[
𝑃 −𝑎00D𝜂

D𝜂 2𝜂D𝜂

] [
−�⟨𝑣′𝑌 ′

𝐻⟩
⟨𝑌𝐻⟩

]
= b, (5.23)

where b is a vector representing the right-hand side of equations 5.22, with the proper boundary
conditions enforced. In this study, zero gradient boundary conditions are used for the turbulent
scalar flux, and Dirichlet boundary conditions are used for the mean concentration. The system
is solved using finite differences on a staggered mesh.

Presented in this work are the determinants of the MMI matrix and resulting 𝑎𝑚𝑛 for two
different combinations of moments. Figure 18 shows that with the combination of 𝐷00, 𝐷10, and
𝐷01, the determinant of the MMI matrix is positive for all 𝜂, so 𝑎𝑚𝑛 are all well-behaved. This
is indicative of good model form. On the other hand, figure 19 shows that with the combination
of 𝐷00 and 𝐷01, the determinant of the MMI matrix crosses zero, so 𝑎𝑚𝑛 contain singularities
which effect poor RANS predictions (observable in plots presented later). Singular matrices
arising in the MMI solve for a certain form of the implicit operator form may indicate that form
is poor, in the sense that the combination of moments does not make a good RANS model. Since
MMI appears to be sensitive to the information it takes in to determine the implicit operator
coefficients, one must take special care and choose a model form that avoids this issue. It is found
that MMI determinant zero-crossings do not occur for any of the moment combinations tested in
this work other than the 𝐷00 and 𝐷01 combination, but it may happen with combinations of other
higher-order moments not measured here.

Turbulent scalar fluxes computed using the implicit operator form are shown in figure 20. The
implicit operator form’s turbulent scalar flux prediction using just 𝐷00 is identical to that of the
explicit operator form, by construction. It is apparent that adding either 𝐷10 or 𝐷01 alone is
insufficient. As noted earlier, adding 𝐷01 leads to a particularly poor prediction due to singular
MMI matrices at some 𝜂. The best match to DNS is attained using the combination of 𝐷00, 𝐷10,
and 𝐷01. In fact, it is evident that the implicit operator form using 𝐷00, 𝐷10, and 𝐷01 predicts
the turbulent scalar flux more accurately than the explicit operator form using the same moments.
This is because the implicit operator form is designed to match the shape of the eddy diffusivity
kernel, and the explicit operator form may not be accomplishing this.

These trends in the explicit and implicit operator forms can be observed again in the predictions
of the mean concentration profile, shown in figure 21. Particularly, the implicit operator form
using 𝐷00, 𝐷10, and 𝐷01 gives a very good prediction of the mean concentration that nearly
overlaps the DNS measurement. For a clearer comparison of the explicit and implicit operator
forms using these moments, figure 22 shows the derivatives of the DNS- and model-computed
⟨𝑌𝐻⟩. The implicit operator form predicts a magnitude and shape closer to the DNS measurement
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(a)

(b) (c)

(d)

Figure 18: (a) Determinant of 𝑀MMI over 𝜂 and (b, c, d) MMI coefficients 𝑎𝑚𝑛 over 𝜂 for the
implicit operator form using 𝐷00, 𝐷10, and 𝐷01.

than the explicit operator form does. In particular, the implicit operator form captures the shape
of the tails much better than the explicit operator form.
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(a)

(b) (c)

Figure 19: (a) Determinant of 𝑀MMI over 𝜂 and (b, c) MMI coefficients 𝑎𝑚𝑛 over 𝜂 for the implicit
operator form using 𝐷00 and 𝐷01. 𝑀MMI is singular at the 𝜂 at which its determinant crosses zero.

6. Conclusion
In this assessment, it is determined that nonlocality must be considered in developing more

predictive models for RTI. The studies presented in this work are facilitated using MFM, a
numerical tool for precisely measuring closure operators. Four of the eddy diffusivity moments
of RTI (𝐷00, 𝐷10, 𝐷01, and 𝐷20) are measured, and it is demonstrated that the higher-order
moments, which contain information about the nonlocality of the eddy diffusivity kernel, should
not be neglected when constructing models for RTI.

Specifically, it is determined that 𝐷00, 𝐷10, and 𝐷01 are the most important moments for
constructing a model for RTI. Two methods for constructing RANS models using these moments
are presented. First, an explicit operator form, based on a Kramers-Moyal-like expansion derived
by taking the Taylor series expansion of the scalar gradient in the generalized eddy diffusivity, is
described and tested. While incorporation of higher-order moments in the explicit operator form
results in more accurate predictions than a leading-order model, there exist several issues. One
problem is that the expansion used for the explicit operator form may not converge, so addition
of higher-order moments leads to less accurate predictions. Another problem is that the explicit
operator form is difficult to implement numerically.

Thus, an implicit operator form is presented to address these issues with the explicit operator
form. Since an implicit operator form involves an invertible matrix operator, it is easier to
implement than an explicit operator form. In addition, the proposed implicit operator form is
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(a) 𝐷00 (b) 𝐷00, 𝐷10

(c) 𝐷00, 𝐷01 (d) 𝐷00, 𝐷10, 𝐷01

Figure 20: Turbulent scalar flux predictions using the implicit operator form. Captions of each
plot list moments of eddy diffusivity used in the model.

designed to match the shape of the eddy diffusivity kernel via the MMI operator, in contrast to the
explicit operator form, which truncates a non-converging Kramer-Moyal expansion. It is shown
that the implicit operator form exhibits a marked improvement in predictions over the explicit
operator form.

Incorporation of nonlocality into RANS models via these operator forms comes with several
challenges. For one, development of any new model must consider scalar realizability. While
this is not thoroughly explored in this work, since an actual model is not yet proposed, one
approach to preserve realizability is suggested by Braun & Gore (2021), where the turbulent
scalar flux is rewritten as an advection-like term and added to the original advection term in
order to enforce physical mean component mass fractions; a conservative numerical scheme
maintains realizability. Further, the new model must be tested on more complex RTI for it to
be useful in practical settings such as ICF. This includes assessment of the model for 3D, finite
Atwood, and compressible (Richtmeyer-Meshkov) flows. The model should be tested in the same
validation cases as other models for RTI, such as the tilted rig (Denissen et al. 2014) and gravity
reversal (Banerjee et al. 2010). Based on these evaluations, which may also involve new MFM
measurements where the method is extended to more complex flow regimes, the new model can
be amended, as is the usual process of turbulence model development. This is left for future work,
when a new model is developed based on the findings presented here.

One obstacle encountered in these studies is the inherent statistical error in the DNS com-
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(a) 𝐷00 (b) 𝐷00, 𝐷10

(c) 𝐷00, 𝐷01 (d) 𝐷00, 𝐷10, 𝐷01

Figure 21: Mean concentration profile predictions using the implicit operator form. Captions of
each plot list moments of eddy diffusivity used in the model.

Figure 22: Derivatives of ⟨𝑌𝐻⟩ computed using DNS (solid black), an explicit operator form
(dashed blue), and an implicit operator form (dash-dotted red).
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putations. The higher-order moments particularly contain high statistical error due to buildup
of error from the lower-order moments on which they depend. Because of this, it is admittedly
difficult to draw definite conclusions about the effect of higher-order moments beyond the first-
order moments. That is, due to the statistical error, it is currently unclear if inclusion of moments
beyond first-order in a RANS model would significantly improve its predictions, or if just the
first-order temporal and spatial moments along with the leading-order moment are sufficient.
This motivates development of a technique to accelerate the statistical convergence of these
higher-order moments. Such a method could also be used to study the effect of other higher-order
moments that were not measured in this present work, since they would have suffered from high
statistical error with the current method.

It must be stressed that the results in this work are for 2D RTI and should not be directly applied
to 3D RTI. As noted previously, the third spatial dimension significantly impacts the turbulent
physics of RTI. In particular, 3D RTI has a lower growth rate than 2D, so lower magnitudes of
the eddy diffusivity moments are expected in 3D. Despite the quantitative difference in physics
between 2D and 3D, they are qualitatively similar in the RANS space, so trends in the shapes
of the eddy diffusivity moments are expected to persist in 3D. In other words, the form of the
turbulent scalar flux closure in 3D is expected to be the same as in 2D, but the coefficients
would be different. These expected trends are yet to be confirmed, and future work should involve
applying MFM to 3D RTI.

Through this work, an understanding of nonlocality in 2D RTI has been developed. It has been
shown that incorporation of information about the nonlocality of the eddy diffusivity may greatly
improve the accuracy of a RANS model. This work demonstrates this by testing operators using
MFM measurements of the nonlocal eddy diffusivity. In practice, a RANS model for RTI would
not have to rely on these MFM measurements directly; one would not have to perform many
MFM simulations to construct a model. In other words, MFM should be seen as a diagnostic tool
rather than the means for building the actual model. The ultimate goal is to develop an improved,
more predictive model for RTI by incorporating nonlocal information, which the present work
has demonstrated to be significant for accurate prediction of mean scalar transport in 2D RTI.
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Appendix A. Nondimensionalizations
To determine the nondimensionalizations in equations 3.24 - 3.28, a self-similarity analysis is

performed. The following self-similarity coordinate is used:

𝜂 =
𝑦

ℎfit (𝑡) =
𝑦

𝛼∗𝐴𝑔 (𝑡 − 𝑡∗)2 . (A 1)

To perform transformations to this self-similar space, all derivatives are written in terms of 𝜂:

𝜕

𝜕𝑡
= − 2𝜂

𝑡 − 𝑡∗
𝑑

𝑑𝜂
, (A 2)

𝜕

𝜕𝑦
=

1
𝛼∗𝐴𝑔 (𝑡 − 𝑡∗)2

𝑑

𝑑𝜂
, (A 3)

𝜕2

𝜕𝑡𝜕𝑦
= − 2

𝛼∗𝐴𝑔 (𝑡 − 𝑡∗)3

(
𝜕

𝑑𝜂
+ 𝜂

𝑑2

𝑑𝜂2

)
. (A 4)
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To nondimensionalize the eddy diffusivity moments, equation 3.6 is substituted into equation 3.3:

𝜕⟨𝑌𝐻⟩
𝜕𝑡

=
𝜕

𝜕𝑦

(
𝐷00 𝜕⟨𝑌𝐻⟩

𝜕𝑦
+ 𝐷10 𝜕

2⟨𝑌𝐻⟩
𝜕𝑦2 + 𝐷01 𝜕

2⟨𝑌𝐻⟩
𝜕𝑡𝜕𝑦

+ 𝐷20 𝜕
3⟨𝑌𝐻⟩
𝜕𝑦3 + . . .

)
. (A 5)

The equation is then transformed to self-similar space:

− 2𝜂
𝑡 − 𝑡∗

𝑑⟨𝑌𝐻⟩
𝑑𝜂

=
1
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[
1

𝛼∗𝐴𝑔 (𝑡 − 𝑡∗)2 𝐷
00 𝑑⟨𝑌𝐻⟩
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]
. (A 6)

Rearranging,

−2𝜂
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This reveals nondimensionalizations for the eddy diffusivity moments. The prefactors to the
derivatives of ⟨𝑌𝐻⟩ on the right hand side are denoted as the normalized eddy diffusivity moments�𝐷𝑚𝑛.

The turbulent scalar flux scales with the leading-order term in equation 3.6. Substitution of the
nondimensionalization for 𝐷00 (equation 3.25) into the leading-order term in equation 3.6 and
transformation to self-similar coordinates gives the scaling for the turbulent scalar flux:

−⟨𝑣′𝑌 ′
𝐻⟩ ∼ 𝛼∗𝐴𝑔 (𝑡 − 𝑡∗) 𝐷00 𝑑⟨𝑌𝐻⟩

𝑑𝜂
. (A 8)

Figure 23 shows the unscaled moments measured directly from the MFM simulations. The
profiles are taken from the portion of the simulation where the flow is self-similar (𝜏 ⪆ 17).
It is obvious that without normalizing the moments as described above there is no self-similar
collapse. The moments are scaled and plotted against 𝜂 in figure 24 to demonstrate the self-
similar collapse. The normalized turbulent scalar flux and mean concentration profiles are shown
in figures 25 and 26, also showing self-similar collapse.
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Abstract

While recent approaches, such as the macroscopic forcing method (MFM) of Mani and Park [1] or

Green’s function approach of Hamba [2, 3], can be used to compute Reynolds-averaged Navier–Stokes

closure operators using forced direct numerical simulations, MFM can also be used to directly

compute moments of the effective nonlocal and anisotropic eddy diffusivities. The low-order spatial

and temporal moments contain limited information about the eddy diffusivity but are often sufficient

for quantification and modeling of nonlocal and anisotropic effects. However, when using MFM to

compute eddy diffusivity moments, the statistical convergence can be slow for higher-order moments.

In this work, we demonstrate that using the same direct numerical simulation (DNS) for all forced

MFM simulations improves statistical convergence of the eddy diffusivity moments. We present

its implementation in conjunction with a decomposition method that handles the MFM forcing

semi-analytically and allows for consistent boundary condition treatment, which we develop for

both scalar and momentum transport. We demonstrate a reduction from O(1000) simulations to

O(100) simulations for ensemble averaging in a two-dimensional Rayleigh–Taylor instability case

study. We then demonstrate the impacts of improved convergence on modeling and quantification

of the eddy diffusivity.

Keywords: RANS closure; Eddy diffusivity; Moments

1. Introduction

For many flows, direct numerical simulation (DNS) of the governing equations is computationally

cost-prohibitive and only the averaged quantities, e.g., spatially- or temporally-averaged mean scalar

or velocity fields, are needed. Reynolds-averaged Navier–Stokes (RANS) models are widely used in

such applications. In RANS modeling, the flow variables are Reynolds decomposed into mean and

fluctuating components, and closure models are needed for unclosed terms involving the product of

fluctuating quantities, e.g., scalar fluxes or Reynolds stresses.

Many closure models use the Boussinesq approximation [4] which, under an assumption of scale

separation and isotropy of the underlying mixing process, results in a local and isotropic eddy

diffusivity for scalar transport or, analogously, eddy viscosity for momentum transport. For many

∗These authors contributed equally to this work (alphabetical by last name).
Email address: dlol@stanford.edu (Dana L. O.-L. Lavacot)



complex flows, the Boussinesq approximation is invalid [5], and generally the eddy diffusivity is

nonlocal and anisotropic [2, 6, 7].

Recent approaches, such as the macroscopic forcing method (MFM) of Mani and Park [1] or

Green’s function approach of Hamba [2, 3], can be used to compute the nonlocal and anisotropic

eddy diffusivity. These eddy diffusivities (or viscosities) are exact in that substitution of these

operators back into the mean scalar (or mean momentum) equations results in DNS mean quantities.

Kraichnan [7] derived an exact nonlocal and anisotropic expression for the scalar flux and Reynolds

stress tensor using a Green’s function. Hamba [2, 3] modified the expression to be feasible for

numerical implementation for scalar and momentum transport, respectively. Because this approach

needs the Green’s function solution at each location in the averaged space, using a separate DNS

for each location, computing the nonlocal and anisotropic eddy diffusivity requires as many DNSs

as degrees of freedom in the averaged space.

Mani and Park [1] developed MFM, a linear-algebra-based method for numerically obtaining closure

operators. In MFM, one examines the closure operator by applying an appropriate forcing (not

necessarily a Dirac delta function) to the governing equations and measures the averaged response.

While MFM can obtain the exact nonlocal and anisotropic eddy diffusivity similar to the approach

of Hamba [2, 3], MFM can also directly obtain spatial or temporal moments of the eddy diffusivity,

using one simulation per desired moment. Liu et al. [8] showed how to use the limited information

from a few low-order moments to model the eddy diffusivity. The modeled eddy diffusivity is nonlocal

and matches the measured low-order moments, while the shape of its kernel approximately resembles

the true kernel. Lavacot et al. [9] quantified nonlocal effects in two-dimensional Rayleigh–Taylor

instability by using MFM-measured eddy diffusivity moments and showed improvement over a local

model when including these low-order moments in the nonlocal model form suggested by Liu et al.

[8].

In MFM, two sets of equations are solved: the donor and receiver equations. The donor equations

provide flow fields needed for the solution of the receiver equations, which are macroscopically forced

when probing the eddy diffusivity moments. Each moment requires its own receiver equation, and

each receiver equation requires flow fields from the donor solution. For ease of implementation, it is

natural to run simulations for each eddy diffusivity moment separately where each simulation solves

its own donor and receiver equations. For example, to determine one moment, one could structure a

simulation so that the Navier-Stokes equations with certain initial and boundary conditions would

be the set of donor equations to a set of receiver equations. Then, another simulation can be run to

determine another moment, which requires a different receiver but analytically identical donor as

the previous simulation. These two simulations can be run independently from each other, each

solving the donor separately. However, while the analytical solutions of the donors are identical,

some statistical differences may arise in the donors between the two solutions. This may occur, for

example, due to numerical differences between processes in the simulations. The statistical error

can accumulate and ultimately lead to slow statistical convergence of the eddy diffusivity moments,
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particularly in chaotic problems, where averaging is done over many realizations.

To avoid this slow convergence, an MFM simulation can instead use one donor to service multiple

receiver equations. That is, the individual MFM simulations described in the previous paragraph can

be combined into one simulation using one donor but solving for multiple sets of receiver equations.

Using one donor then prevents statistical error from random processes and reduces the overall

computational cost of MFM, since only one donor needs to be solved.

With this method, we can also utilize the decomposition introduced by Liu et al. [8] to semi-

analytically treat the MFM forcing; we call this combined single donor and semi-analytical forcing

approach the decomposition MFM. The decomposition method alleviates boundary condition issues

when the MFM forcing is incompatible with the boundary conditions of the problem. Liu et al. [8]

demonstrated the decomposition method for scalar transport in a steady laminar inhomogeneous

flow. In this work, we extend the decomposition method to obtain spatiotemporal moments of the

eddy diffusivity for general unsteady and chaotic flows as well as momentum transport. We then

apply the decomposition MFM to scalar transport in Rayleigh-Taylor (RT) instability to illustrate

the acceleration of statistical convergence due to use of a single donor and its compatibility with

the proposed decomposition method.

In this work, we begin with scalar transport before generalizing to momentum transport. In Section

2, we define the nonlocal and anisotropic eddy diffusivity and its moments. In Section 3, we

introduce MFM for directly computing the eddy diffusivity moments. In Section 4, we develop

the decomposition method for general unsteady and chaotic flows. In Section 5, we generalize to

momentum transport and the nonlocal and anisotropic eddy viscosity. In Section 6, as an illustrative

example, we demonstrate the improved statistical convergence of the eddy diffusivity moments for

2D RT instability and discuss the modeling impacts and physical findings.

2. Problem formulation for scalar transport

The governing equation for a passive scalar is

∂c

∂t
+

∂

∂xi
(uic) = DM

∂2c

∂xi∂xi
, (1)

where c(x, t) is a passive scalar field, ui(x, t) is an incompressible velocity field, and DM is the

molecular diffusivity. The average, which we denote using ⟨·⟩, may be defined as an ensemble average

if the flow is ergodic, a temporal average if the flow is statistically stationary, and/or a spatial

average if the flow is homogeneous. Substitution of the Reynolds decomposition, c = ⟨c⟩+ c′, into

the scalar transport equation in (1) and averaging gives

∂⟨c⟩
∂t

+
∂

∂xi
(⟨ui⟩⟨c⟩) = DM

∂2⟨c⟩
∂xi∂xi

− ∂

∂xi
⟨u′ic′⟩, (2)

where ⟨u′ic′⟩ is the unclosed turbulent scalar flux that needs to be modeled.
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If 1) the length and time scales of the underlying fluctuations are much smaller than those of

the mean scalar gradient, and 2) the mixing by the underlying fluctuations is isotropic, then the

Boussinesq approximation [4] is valid, and the turbulent scalar flux can be modeled as

−⟨u′ic′⟩ = D
∂⟨c⟩
∂xi

, (3)

whereD is a local and isotropic eddy diffusivity. Although widely-used, the Boussinesq approximation

is often invalid for complex flows [5].

More generally, the turbulent scalar flux can be formulated exactly using the nonlocal and anisotropic

eddy diffusivity [2, 6, 7]:

−⟨u′ic′⟩(x, t) =
∫ ∫

Dij(x,x
′, t, t′)

∂⟨c⟩
∂xj

∣∣∣∣
x′,t′

dx′dt′, (4)

where Dij(x,x
′, t, t′) is the eddy diffusivity kernel. The eddy diffusivity is nonlocal in that the kernel

allows the turbulent scalar flux to depend on the mean scalar gradient at all points in space and in

its time history, x′ and t′, respectively. The eddy diffusivity is anisotropic in that the second-order

tensor allows the turbulent scalar flux to depend on all directions of the mean scalar gradient.

The eddy diffusivity may also be characterized by its moments, which are related to the eddy

diffusivity kernel by considering the Taylor series expansion locally about x′ = x and t′ = t (also

known as a Kramers–Moyal expansion [10]):

−⟨u′ic′⟩(x, t) =
∫ ∫

Dij(x,x
′, t, t′)

(
∂⟨c⟩
∂xj

∣∣∣∣
x,t

+
(
x′k − xk

) ∂2⟨c⟩
∂xk∂xj

∣∣∣∣
x,t

+ · · ·+
(
t′ − t

) ∂2⟨c⟩
∂t∂xj

∣∣∣∣
x,t

+ . . .

)
dx′dt′

(5)

Since the derivatives of ⟨c⟩ are no longer functions of x′ and t′, they can be moved out of the integral,

and the above equation can be rearranged as

−⟨u′ic′⟩(x, t) =
[
D00

ij (x, t) +D10
ijk(x, t)

∂

∂xk
+ · · ·+D01

ij (x, t)
∂

∂t
+ . . .

]
∂⟨c⟩
∂xj

, (6)

where the eddy diffusivity moments, Dmn
ij (x, t) are defined as

D00
ij (x, t) =

∫ ∫
Dij(x,x

′, t, t′)dx′dt′, (7)

D10
ijk(x, t) =

∫ ∫
(x′k − xk)Dij(x,x

′, t, t′)dx′kdt
′, (8)

...

D01
ij (x, t) =

∫ ∫
(t′ − t)Dij(x,x

′, t, t′)dx′dt′, (9)

...
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The superscripts denote the m-th order spatial moment and n-th order temporal moment. The

leading-order term in the expansion is the zeroth-order spatiotemporal moment, D00
ij , and is local

and anisotropic. The higher-order spatiotemporal moments can be used to characterize nonlocal

effects. For example, by using MFM [1] to measure the moments, Park and Mani [11] investigated

nonlocality and anisotropy in turbulent channel flow and Lavacot et al. [9] investigated spatiotemporal

nonlocality in Rayleigh–Taylor instability. Liu et al. [8] showed how to use the low-order eddy

diffusivity moments to model the nonlocal eddy diffusivity kernel.

3. Eddy diffusivity moments using the macroscopic forcing method (MFM)

In this section, we briefly introduce MFM for computing closure operators, e.g., the nonlocal and

anisotropic eddy diffusivity in Equation (4), before showing MFM for directly computing the eddy

diffusivity moments in Equations (7)-(9). We discuss slow convergence in the higher-order moments

due to error propagation from the lower-order moments.

In MFM, forcing is added to the scalar transport equation:

∂c

∂t
+

∂

∂xi
(uic) = DM

∂2c

∂xi∂xi
+ s, (10)

where s is the MFM forcing with the important macroscopic property, s = ⟨s⟩. As detailed in

Mani and Park [1], by explicitly specifying the MFM forcing, one can arrive at the closure operator

by post-processing ⟨c⟩. Alternatively, by using the MFM forcing to maintain a specified mean

scalar, ⟨c⟩, one can also arrive at the closure operator using what is known as inverse MFM. For

example, one can compute the nonlocal and anisotropic eddy diffusivity in (4) by specifying the

mean scalar such that the gradient is a Dirac delta function at each point in the averaged space

and post-processing the turbulent scalar flux. Each point requires a separate forced DNS, and thus

obtaining the eddy diffusivity kernel for the entire domain requires as many DNSs as degrees of

freedom in the averaged space. Due to the large number of DNSs needed, this brute force approach

is computationally expensive and practically infeasible for problems with many degrees of freedom

in the averaged space. The brute force application of inverse MFM with Dirac delta functions is

identical to the Green’s function approach of Hamba [2] as discussed in Liu et al. [8].

As an alternative to a computationally expensive brute force approach, inverse MFM can also be

used to directly compute the moments of the eddy diffusivity in Equations (7)-(9) by specifying the

mean scalar as polynomials [1]. The eddy diffusivity moments need just one forced DNS per moment,

and a few low-order moments are often sufficient for quantification and modeling of nonlocal and

anisotropic effects. Consider a simple one-dimensional (1D) example, in which averaging is taken

over all directions except x1 and there is only one component of the scalar flux, ⟨u′1c′⟩. Equation (6)

becomes

−⟨u′1c′⟩(x1, t) =
[
D00(x1, t) +D10(x1, t)

∂

∂x1
+D20(x1, t)

∂2

∂x21
+ · · ·+D01(x1, t)

∂

∂t
+ . . .

]
∂⟨c⟩
∂x1

,

(11)
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where we have omitted the tensorial notation, Dij , since here we only consider the D = D11

component. To obtain the zeroth-order spatiotemporal moment of the eddy diffusivity, one specifies

⟨c⟩ = x1 using inverse MFM and solves the forced scalar transport equation in (10). At each time

step, the forcing is used to maintain the specified ⟨c⟩ while c is free to evolve. Practically, one can

first time advance the governing equation without the forcing and solve for an intermediate scalar

field, and then add the forcing in a correction step to ensure the scalar field at the next time step

has the requisite ⟨c⟩ as discussed in [1, 12]. Postprocessing of −⟨u′1c′⟩ leads to the zeroth moment:

−⟨u′1c′⟩|⟨c⟩=x1
(x1, t) = D00(x1, t) (12)

as shown by substitution of ⟨c⟩ = x1 into (11). Specifying ⟨c⟩ as higher-order polynomials leads

to higher-order moments of the eddy diffusivity. For the first-order spatial moment, specifying

⟨c⟩ = x21/2 gives

−⟨u′1c′⟩|⟨c⟩=x2
1/2

(x1, t) = x1D
00(x1, t) +D10(x1, t) (13)

as shown by substitution of ⟨c⟩ = x21/2 into (11). Post-processing the scalar flux and then subtracting

out the contribution from the zeroth-order moment leads to D10. Similarly, for the second-order

spatial moment, specifying ⟨c⟩ = x31/6 gives

−⟨u′1c′⟩|⟨c⟩=x3
1/6

(x1, t) =
x21
2
D00(x1, t) + x1D

10(x1, t) +D20(x1, t), (14)

and post-processing the scalar flux and then subtracting out the contribution from the zeroth- and

first-order spatial moments leads to D20. For the first-order temporal moment, specifying ⟨c⟩ = x1t

leads to

−⟨u′1c′⟩|⟨c⟩=x1t(x1, t) = tD00(x1, t) +D01(x1, t) (15)

as shown by substitution of ⟨c⟩ = x1t into (11). Post-processing the scalar flux and then subtracting

out the contribution from the zeroth-moment leads to D01.

For a general multi-dimensional problem, other components of Dmn
ij can be obtained by specifying

the mean scalar in various coordinate directions and post-processing the components of the scalar

flux. For example, specifying ⟨c⟩ = xα where α = 1, 2, or 3 and substituting into the expansion in

Equation (6) gives

−⟨u′ic′⟩(x, t)|⟨c⟩=xα
= D00

iα(x, t). (16)

Postprocessing the scalar flux gives the j = α component of the zeroth-order spatiotemporal moment

of the eddy diffusivity, D00
iα . Similarly, for the first-order spatial moment, specifying ⟨c⟩ = x2α/2

leads to

−⟨u′ic′⟩(x, t)|⟨c⟩=x2
α/2

= xαD
00
iα(x, t) +D10

iαα(x, t), (17)

with no summation over α implied. Postprocessing the scalar flux and then subtracting out the

contribution from the zeroth-order moment leads to D10
jαα. Cross components of the first-order

spatial moment may be obtained by by specifying ⟨c⟩ = xαxβ where α, β = 1, 2, or 3 and α ̸= β.
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∂c0

∂t = L(c0) + s0

Donor

∂c1

∂t = L(c1) + s1

Donor

∂c2

∂t = L(c2) + s2

Donor

Receiver

Receiver

Receiver

∂⟨c⟩
∂x = 1

∂⟨c⟩
∂x = x

∂⟨c⟩
∂x = x2

2

PostprocessingMultiple Simulations

D0

D1

D2

(a) Standard MFM.

Donor

∂c0

∂t = L0(c0) + s0

∂c1

∂t = L1(c1) + s1

∂c2

∂t = L2(c2) + s2

Receiver

Receiver

Receiver

∂⟨c⟩
∂x = 1

∂⟨c⟩
∂x = x

∂⟨c⟩
∂x = x2/2

PostprocessingSingle Simulation

D0

D1

D2

(b) Decomposition method.

Figure 1: Diagrams outlining MFM and the decomposition method in this work, presented in one dimension

for simplicity. Superscripts denote variables (ci, ci, etc.) and operators (Li) belonging for the receiver

equations solved to obtain Di.
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(a) Leading order and first temporal

moments.

(b) Leading order and spatial mo-

ments.

Figure 2: Root mean square errors (RMSE) of standard (solid lines) and single donor (dotted lines) MFM

as percent of maximum magnitude of each eddy diffusivity moment at each time. Errors are computed at 20

realizations with respect to 200 realizations for each method.

3.1. Discussion of statistical error

A natural implementation of MFM for some codes is to use separate sets of donor and receiver

equations for each moment to be computed. This configuration is illustrated in Figure 1a. This

approach is more computationally expensive, since the donor equations are solved multiple times,

but is easier to implement, since just one set of receiver equations is one-way coupled to each donor

equation. Another approach would be to run an MFM simulation using a single donor for multiple

receivers, as illustrated in Figure 1b (the additional decomposition features of this proposed method

will be detailed in a later section). While mathematically equivalent to using a single donor, using

separate donor simulations can result in larger statistical error. Separate donor simulations, though

solving for mathematically equivalent fields, may produce slightly different numerical results due

to statistical differences in parallel computing. The resulting errors get amplified in space or time

in higher-order moment computations, ultimately leading to slow statistical convergence. When

statistical errors between donors match (i.e., a single donor is used for multiple receivers), the

amplified error is removed, and statistical convergence is accelerated.

To illustrate, Figure 2 shows the statistical errors associated with the standard and single donor

methods applied to the 2D RT problem. In 2D RT instability, the flow is averaged over the

homogeneous x1 direction and over multiple realizations. Details on the RT case study will be

covered later in Section 6, but we present these plots here to demonstrate the differences in error

between the two methods. Since computation of D01 involves multiplication of D00 (and therefore

its associated statistical error) by t, we expect that at large τ , the largest difference in errors
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between the two methods should be in D01. This is indeed what we observe in the statistical error

plots. Overall, across all higher-order moments, the standard MFM exhibits higher error than the

single donor method. When a single donor is used, errors are not amplified in computation of the

higher-order moments, so all errors scale similarly with time.

As further illustration, a qualitative analysis is provided in Appendix A.

4. Decomposition method

In the previous section, we demonstrated the need for using the same DNS simulation (donor) for

all forced MFM simulations (receivers) to reduce statistical error. In conjunction, we now introduce

a decomposition method that can be used simultaneously at no additional cost. The decomposition

method treats the MFM forcing semi-analytically and was originally developed to address the issue

of periodic boundary conditions in a steady laminar problem [8]. Here we extend the decomposition

to general unsteady and chaotic problems and to momentum transport in Section 5.

Similar to the Green’s function approach of Hamba [2], we begin by substituting the Reynolds

decomposition, c(x, t) = ⟨c⟩(x, t) + c′(x, t), into the scalar transport equation in (1) and subtracting

the mean scalar transport equation to derive an equation for the scalar fluctuation, c′:

∂c′

∂t
+

∂

∂xi

(
uic

′ − ⟨u′ic′⟩
)
−DM

∂2c′

∂xi∂xi
= −u′i

∂⟨c⟩
∂xi

. (18)

The general solution [2] for c′(x, t) is

c′(x, t) =
∫ ∫

gj(x,x
′, t, t′)

∂⟨c⟩
∂xj

∣∣∣∣
x′,t′

dx′dt′, (19)

where gj(x,x
′, t, t′) is the Green’s function solution to

∂gj
∂t

+
∂

∂xi

(
uigj − ⟨u′igj⟩

)
−DM

∂2gj
∂xi∂xi

= −u′jδ(x− x′)δ(t− t′). (20)

As discussed in Liu et al. [8], the term −∂/∂xi⟨u′ic′⟩ is related to the MFM forcing via

− ∂

∂xi
⟨u′ic′⟩ =

∂⟨c⟩
∂t

+ ⟨ui⟩
∂⟨c⟩
∂xi

−DM
∂2⟨c⟩
∂xi∂xi

− s, (21)

and substitution of (21) into (18) leads to the forced transport equation for the scalar fluctuation:

∂c′

∂t
+

∂

∂xi

(
uic

′)−DM
∂2c′

∂xi∂xi
= s− ∂⟨c⟩

∂t
− ui

∂⟨c⟩
∂xi

+DM
∂2⟨c⟩
∂xi∂xi

. (22)

In this alternative formulation for inverse MFM, the forcing s = ⟨s⟩ is used to maintain ⟨c′⟩ = 0.

One advantage of using Equation (22) rather than Equation (10) for inverse MFM is that only

the derivatives of the mean scalar appear rather than the mean scalar itself. The derivatives of

the mean scalar are specified analytically and do not necessarily need a mathematically consistent

mean scalar field. This point is further discussed in Liu et al. [13], where we take advantage of the
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forced fluctuation equation to measure various components of the eddy viscosity tensor in turbulent

channel flow independently. The other advantage is that now we can further decompose c′(x, t).

Similar to the expansion in (6), consider the Taylor series expansion of the general solution for

c′(x, t) in (19) locally about x′ = x and t = t′:

c′(x, t) =
[
c00
j (x, t) + c10

jk(x, t)
∂

∂xk
+ · · ·+ c01

j (x, t)
∂

∂t
+ . . .

]
∂⟨c⟩
∂xj

, (23)

where

c00
j (x, t) =

∫ ∫
gj(x,x

′, t, t′)dx′dt′, (24)

c10
jk(x, t) =

∫ ∫
(x′k − xk)gj(x,x

′, t, t′)dx′kdt
′, (25)

...

c01
j (x, t) =

∫ ∫
(t′ − t)gj(x,x

′, t, t′)dx′dt′, (26)

...

By substituting this decomposition for c′(x, t) into the forced scalar fluctuation equation in (22), we

can derive governing equations for cmn(x, t). As with inverse MFM, we can activate various cmn(x, t)

fields by specifying the mean scalar gradient. The main difference from inverse MFM as detailed

in Section 3 is that the mean scalar gradient and MFM forcing are now treated semi-analytically.

For example, specifying the mean scalar gradient as ∂⟨c⟩/∂xj = 1 leads to an equation for c00(x, t).

Specifying the mean scalar gradient as higher-order polynomials leads to higher-order cmn(x, t),

and equations for the lower-order cmn(x, t) can be analytically subtracted to derive an equation for

the desired order of cmn(x, t). The cmn(x, t) fields can then be used to compute the moments by

multiplying (23) by −u′i and averaging:

−⟨u′ic′⟩(x, t) = −
[
⟨u′ic00

j ⟩(x, t) + ⟨u′ic10
jk⟩(x, t)

∂

∂xk
+ · · ·+ ⟨u′ic01

j ⟩(x, t) ∂
∂t

+ . . .

]
∂⟨c⟩
∂xj

. (27)

Comparison with the expansion in (6) leads to

−⟨u′icmn
j ⟩(x, t) = Dmn

ij (x, t). (28)

Consider the simple 1D example from Section 3, where averaging is taken over all spatial direction

except x1 and there is only one component of the scalar flux, ⟨u′1c′⟩(x1, t). To compute the zeroth-

order moment, we specify ∂⟨c⟩/∂x1 = 1 and substitution of the mean scalar gradient into (23) leads

to:

c′(x, t) = c00(x, t), (29)

where we have omitted the subscript to only consider the c = c1 component. Substitution of (29)

into the forced scalar fluctuation transport equation in (22) leads to the equation for c00(x, t):

∂c00

∂t
+

∂

∂xi
(uic

00) = DM
∂2c00

∂xi∂xi
− uiδi1 + s00, (30)
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where the inverse MFM forcing maintains the specified mean scalar gradient by equivalently

maintaining ⟨c′⟩(x1, t) = ⟨c00⟩(x1, t) = 0. Postprocessing −⟨u′1c00⟩(x1, t) leads to the zeroth-order

moment of the eddy diffusivity, D00(x1, t).

To compute the first-order temporal moment, we specify ∂⟨c⟩/∂x1 = t and substitution of the mean

scalar gradient into (23) leads to:

c′(x, t) = tc00(x, t) + c01(x, t), (31)

and substitution of the the decomposed scalar fluctuation in (31) into (22) gives:

t
∂c00

∂t
+ c00 +

∂c01

∂t
+ t

∂

∂xi
(uic

00) +
∂

∂xi
(uic

01) = DM

(
t
∂2c00

∂xi∂xi
+

∂2c01

∂xi∂xi

)
− tuiδi1 + s. (32)

We analytically subtract the equation for c00(x, t) in (30) multiplied by t from Equation (32) to

arrive at an equation for c01(x, t):

∂c01

∂t
+ ui

∂c01

∂xi
= DM

∂2c01

∂xi∂xi
− c00 + s01, (33)

where we have relabeled the inverse MFM forcing as s01 = s − s00t. The forcing maintains

⟨c01⟩(x1, t) = 0. Postprocessing −⟨u′1c01⟩(x1, t) leads to the first-order temporal moment of the

eddy diffusivity, D01(x1, t). Note the equation for c01(x, t) is coupled with the equation for c00(x, t).

Generally, higher-order cmn(x, t) are one-way coupled with lower-order cmn(x, t).

The cost of using the decomposition method is identical to the cost of MFM. By treating the forcing

semi-analytically, the decomposition method can be used for periodic problems where the mean

scalar gradient needed for MFM, e.g., ∂⟨c⟩/∂x1 = x1, may be incompatible with periodic boundary

conditions. The equations for the decomposed variables satisfy the periodic boundary conditions

and all explicit dependence on the coordinate is analytically removed. Moreover, the decomposition

method also allows one to probe different directions of the eddy diffusivity independently. For

example, consider a 2D problem, where −⟨u′ic′⟩(x1, x2) and ⟨c⟩(x1, x2). The decomposition method

allows one to specify various directions of the mean scalar gradient, e.g., ∂⟨c⟩/∂x1 = x2 and

∂⟨c⟩/∂x2 = 0, even when a ⟨c⟩(x1, x2) that satisfies both desired gradients may not exist. This

allows one to probe different directions of the eddy diffusivity, e.g., quantify D11 independently

from D12. However, the resulting closure for −⟨u′ic⟩ is still mathematically consistent as a linear

superposition of the various components of the eddy diffusivity.

5. Generalization to momentum transport

The generalized closure can be extended to momentum transport, which is governed by the

incompressible Navier–Stokes equations:

∂ui
∂t

+
∂

∂xj
(ujui) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ ri, (34a)

∂ui
∂xi

= 0, (34b)
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where p(x, t) is pressure, ρ is the fluid density, ν is the kinetic viscosity, and ri(x, t) is a general

body force. Reynolds averaging results in the Reynolds-averaged Navier-Stokes (RANS) equations:

∂⟨ui⟩
∂t

+
∂

∂xj
(⟨uj⟩⟨ui⟩) = −1

ρ

∂⟨p⟩
∂xi

+ ν
∂2⟨ui⟩
∂xj∂xj

− ∂

∂xj
⟨u′ju′i⟩+ ⟨ri⟩. (35)

The generalized nonlocal and anisotropic eddy viscosity [3] is

−⟨u′iu′j⟩(x, t) =
∫ ∫

Dijkl(x,x
′, t, t′)

∂⟨ul⟩
∂xk

∣∣∣∣
x′,t′

dx′dt′. (36)

To compute the generalized eddy viscosity, Mani and Park [1] simultaneously solve the Navier–Stokes

equations in (34a) and (34b) and the generalized momentum (GMT) equations:

∂vi
∂t

+
∂

∂xj
(ujvi) = −1

ρ

∂q

∂xi
+ ν

∂2vi
∂xj∂xj

+ si, (37a)

∂vi
∂xi

= 0, (37b)

where vi(x, t) is a vector field that is kept solenoidal by the scalar field q(x, t), which acts similar

to pressure, and si is an added forcing that is not necessarily the same as ri. The velocity field

uj is computed from the Navier–Stokes equations, i.e., the GMT equations in (37a) and (37b) are

one-way coupled with the Navier–Stokes equations in (34a) and (34b). The generalized closure [3]

for the GMT equations is

−⟨u′iv′j⟩(x, t) =
∫ ∫

Dijkl(x,x
′, t, t′)

∂⟨vl⟩
∂xk

∣∣∣∣
x′,t′

dx′dt′. (38)

This closure is exact for the GMT equations, and the relationship between the closure operator

in (38) and in (36) is further discussed in Mani and Park [1] and Hamba [3]. Park and Mani [11]

numerically showed that substitution of the MFM-measured eddy viscosity kernel, Dijkl(x,x
′, t, t′),

from (38) into (36) with the DNS mean velocity gradient results in Reynolds stresses identical to

DNS for turbulent channel flow.

Taking the Taylor series expansion of the nonlocal and anisotropic eddy viscosity in (38) locally

about x′ = x and t′ = t:

−⟨u′iv′j⟩(x, t) =
[
D00

ijkl(x, t) +D10
ijklm(x, t)

∂

∂xm
+ · · ·+D01

ijkl(x, t)
∂

∂t
+ · · ·

]
∂⟨vl⟩
∂xk

(39)

where

D00
ijkl(x, t) =

∫ ∫
Dijkl(x,x

′, t, t′)dx′dt′, (40)

D10
ijklm(x, t) =

∫ ∫
(x′m − xm)Dijkl(x,x

′, t, t′)dx′mdt′, (41)

...

D01
ijkl(x, t) =

∫ ∫
(t′ − t)Dijkl(x,x

′, t, t′)dx′dt′. (42)
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Similar to scalar transport in Section 4, the MFM fluctuating velocity and pressure fields can be

expanded as

v′j(x, t) =
[
v′00jkl(x, t) + v′10jklm(x, t)

∂

∂xm
+ · · ·+ v′01jkl(x, t)

∂

∂t
+ · · ·

]
∂⟨vl⟩
∂xk

, (43)

q(x, t) =

[
q00kl (x, t) + q10klm(x, t)

∂

∂xm
+ · · ·+ q01kl (x, t)

∂

∂t
+ · · ·

]
∂⟨vl⟩
∂xk

. (44)

For example, for a turbulent channel flow in which averaging is taken over the homogeneous

streamwise (x1) and spanwise (x3) directions, the Reynolds stresses are only a function of the

wall-normal (x2) direction. The only nonzero component of the mean velocity gradient is ∂⟨u1⟩/∂x2.
To compute the zeroth moment of the generalized eddy viscosity using inverse MFM, one would

specify ∂⟨v1⟩/∂x2 = 1, and similar to scalar transport in Section 4, substitution of the specified

mean velocity gradient into Equations (37a)-(37b) and Equations (43)-(44) leads to:

∂v′00j21

∂t
+ u2δj1 +

∂

∂xi
(uiv

′00
j21) = −1

ρ

∂q0021
∂xj

+ ν
∂2v′00j21

∂xi∂xi
+ s00j , (45a)

∂v′00j21

∂xj
= 0, (45b)

where inverse MFM is used to enforce ⟨s00j ⟩ = 0. Postprocessing −⟨u′iv′00j21⟩ leads to the zeroth-order

moment of the eddy viscosity, D00
ij21.

For the first-order spatial moment in the wall-normal direction, substitution of ∂⟨v1⟩/∂x2 = x2 into

Equations (37a)-(37b) and (43)-(44) and subtraction of the equations for the zeroth-order moment

in (45a)-(45b) leads to

∂v′10j212

∂t
+ u2v

′00
j21 +

∂

∂xi
(uiv

′10
j212) = −1

ρ

[
q0021δj2 +

∂q10212
∂xj

]
+ ν

[
2
∂v′00j21

∂x2
+

∂2v′10j212

∂xi∂xi

]
+ s10j , (46a)

∂v′10j212

∂xj
= −v′00221. (46b)

Inverse MFM is used to enforce ⟨s10j ⟩ = 0, and postprocessing −⟨u′iv′10j212⟩ leads to the first-order

spatial moment of the eddy viscosity, D10
ij212.

The continuity equation in (46b) is a direct result of substitution of the decomposition for v′j in

Equation (43) into ∂v′j/∂xj = 0. Generally, in cases where the specified mean velocity gradient is

not solenoidal, we enforce the solenoidal condition on v′j rather than on vj . As discussed in Liu et al.

[13], the specified mean velocity gradient can be considered as a MFM forcing to the continuity

equation for vj that satisfies the requisite property s = ⟨s⟩.

Similarly, for the first-order temporal moment, substitution of ∂⟨v1⟩/∂x2 = t into Equations (37a)-

(37b) and (43)-(44) and subtraction of the equations for the zeroth-order moment in (45a)-(45b)
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leads to

∂v′01j21

∂t
+ v′00j21 +

∂

∂xi
(uiv

′01
j21) = −1

ρ

∂q0121
∂xj

+ ν
∂2v′01j21

∂xi∂xi
+ s01j , (47a)

∂v′01j21

∂xj
= 0. (47b)

Inverse MFM is used to enforce ⟨s01j ⟩ = 0, and postprocessing −⟨u′iv′01j21⟩ leads to the first-order

temporal moment of the eddy viscosity, D01
ij21. In Park et al. [14], we computed the first-order

temporal moment for turbulent channel flow at Reτ = 180. We then used the temporal moment as

a qualitative estimate for a nonlocality timescale in a simple nonlocal model for a 2D separated

boundary layer.

As was the case for scalar transport, the equations for momentum transport for higher-order

spatiotemporal moments generally depends on lower-order moments, which are solved simultaneously.

Equations for higher-order moments are one-way coupled with lower-order moments and does not

raise the cost of the MFM procedure.

6. Case study: Rayleigh–Taylor instability

As an illustrative case study, we demonstrate the decomposition method for mean scalar transport

in two-dimensional (2D) RT instability. RT instability occurs when a heavier fluid is accelerated

into a lighter fluid with a perturbation at the interface of the two fluids. Over time, the instability

becomes self-similar and enters a turbulent state. RT instability is a chaotic, unsteady flow, so

statistical convergence must be achieved through ensemble averaging. In the 2D RT problem, the

only homogeneous direction is x1, and there is no homogeneity in time that can be leveraged for

ensemble averaging. Thus, many realizations of RT instability, each with different initial conditions,

are required to get statistical convergence of the eddy diffusivity moments. This corresponds to

many DNS, which lends to the high computational expense of MFM for this problem. Past work

Lavacot et al. [9] showed that O(103) DNS are required for statistical convergence of eddy diffusivity

moments in 2D RT instability. In this case study, the decomposition method of MFM is applied to

2D RT instabiity to achieve faster statistical convergence of the eddy diffusivity moments.

6.1. Self-similarity

The MFM analysis is done in the self-similar limit of RT instability. In this limit, the mixing half

width h, defined as half of the sum of the RT instability bubble and spike heights, is expected to

grow quadratically in time:

h = αAgt2, (48)

where A is the Atwood number, defined as

A =
ρH − ρL
ρH + ρL

, (49)
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where ρH is the density of the heavy fluid, and ρL is the density of the light fluid. Thus, a self-similar

variable can be defined:

η =
y

h(t)
. (50)

The mixing width can be computed from the mass fraction:

h ≡ 4

∫
⟨YH (1− YH)⟩dy, (51)

where ⟨∗⟩ denotes an ensemble average; for this 2D RT problem, the averaging is done in x and over

realizations. In a RANS simulation, h can instead be computed using closed quantities, as defined

by Cabot and Cook [15] and Morgan et al. [16]:

hhom ≡ 4

∫
⟨YH⟩ (1− ⟨YH⟩) dy. (52)

A mixedness parameter ϕ can also be defined (Morgan et al. [16], Youngs [17]):

ϕ ≡ h

hhom
= 1− 4

∫
⟨Y ′

HY ′
H⟩dy

hhom
. (53)

ϕ is expected to converge to a steady-state value in the self-similar limit.

6.2. Governing equations

The compressible Navier-Stokes equations are solved in the donor simulation:

Dρ

Dt
= −ρ

∂ui
∂xi

, (54)

ρ
DYα
Dt

=
∂

∂xi

(
ρDα

∂Yα
∂xi

)
, (55)

ρ
Duj
Dt

= − ∂

∂xi
(pδij + σij) + ρgj , (56)

ρ
De

Dt
= −p

∂ui
∂xi

+
∂

∂xi
(uiσij − qj) . (57)

ρ is density, ui is velocity, Yα is mass fraction of component α, Dα is the molecular diffusivity of

component α (in the problem considered here, Dα = DM ), p is pressure, gj is gravity (only the x2

component is active in this problem), e is specific internal energy. The viscous stress σij and the

heat flux qij are

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− µ

2

3

∂uk
∂xk

δij , (58)

qj = −κ
∂T

∂xj
−

N∑

α=1

hαρDα
∂Yα
∂xj

. (59)
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Moment ∂YH
∂x2

D00 1

D01 t

D10 x2 − 1
2

D20 1
2(x2 − 1

2)
2

Table 1: Mean mass fraction gradients forced for each eddy diffusivity moment Dmn in the 2D RT case

study.

µ is the dynamic viscosity, κ is the thermal conductivity, T is temperature, and hα is the specific

enthalpy of species α. Component pressures are determined using ideal gas equations of state. The

total pressure is a weighted sum of component pressures:

p =
N∑

α=1

vαpα. (60)

More details on these equations can be found in Lavacot et al. [9] and Morgan et al. [18].

6.3. Computation of eddy diffusivity moments

For RT instability, after averaging over the homogeneous x1 direction, the only surviving turbulent

flux is −⟨u′2c′⟩, where c is the mass fraction of the heavy fluid, YH . The Kramers-Moyal expansion

in Equation 6 becomes

−⟨u′2c′⟩(x, t) = D00∂⟨c⟩
∂x2

+D10∂
2⟨c⟩
∂x22

+D01 ∂
2⟨c⟩

∂t∂x2
+D20∂

3⟨c⟩
∂x32

+ . . . (61)

In this work, D00, D01, D10, and D20 are computed.

In standard MFM, forcings would be applied directly to Equation 55, and the eddy diffusivity

moments would be obtained in postprocessing. For example, to compute D10, a macroscopic forcing

to Equation 55 would be determined to enforce ∂⟨YH⟩
∂x2

= x2. From the solution to that receiver

equation, the moment is computed as D10 = −⟨u′2c′⟩| ∂⟨YH ⟩
∂x2

=x2
− x2D

00. The forcings for the other

moments are shown in Table 1.

Here, we instead use the decomposition MFM to determine the eddy diffusivity moments. According

to the decomposition described in §4, we derive four receiver equations for this problem:
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∂c00

∂t
+ ui

∂c00

∂xi
= DM

∂2c00

∂xi∂xi
− uiδi2 + s00, (62)

∂c10

∂t
+ ui

∂c10

∂xi
= DM

∂2c10

∂xi∂xi
+DM

(
1 + 2

∂c00

∂xi
δi2

)
− uiδi2c

00 + s10, (63)

∂c01

∂t
+ ui

∂c01

∂xi
= DM

∂2c01

∂xi∂xi
− c00 + s01, (64)

∂c20

∂t
+ ui

∂c20

∂xi
= DM

∂2c20

∂xi∂xi
+DM

(
c00 + 2

∂c10

∂xi
δi2

)
− uiδi2c

10 + s20. (65)

The forcings sij are determined to enforce zero means in x for each cij in each realization. These

forcings are computed per timestep in each realization, as detailed in Lavacot et al. [9]. With this

formulation, the forcings in Table 1 are now semi-analytically applied. Each moment is computed

in postprocessing:

Dmn = −⟨u′2cmn⟩. (66)

6.4. Simulations

The hydrodynamics solver Ares [19, 20] is used to run 2D RT simulations. Ares uses an arbitrary

Lagrangian-Eulerian (ALE) method based on Sharp and Barton [21]. In this method, equations are

solved in a Lagrangian frame and then remapped to an Eulerian mesh using a second-order scheme.

Ares uses a second-order non-dissipative finite element method in space and a second-order explicit

predictor-corrector scheme in time.

MFM is performed two different ways to measure eddy diffusivity moments for the 2D RT instability.

The first is the standard MFM. In this case, for each realization, four receiver equations are solved

alongside four separate donor equations, but all use the same initial conditions. The second case is

the decomposition method, in which a single donor is used and the MFM forcing is applied semi-

analytically, as described in §4. In the decomposition MFM, for each realization of RT instability,

the four receiver equations (Equations (62)-(65)) are solved alongside one set of donor equations

(Equations (54)-(57)).

The 2D simulations are run on a square domain of 2049×2049 cells with periodic boundary conditions

in x1 and no slip and no penetration in x2. To trigger the instability, a tophat perturbation in

wavespace between the heavy and light fluids is applied to the density field. The perturbation

has a minimum wavenumber κmin = 8, a maximum wavenumber κmax = 256, and an amplitude

of ∆
κmax−κmin+1 , where ∆ is the grid size. The simulations are stopped when the mixing width is

approximately 30% the size of the domain.

The relevant nondimensional numbers of this problem are the Atwood number (A), the Reynolds

number (Re) (which is set in the simulation by a numerical Grashof number (Gr)), Mach number

(Ma), Peclet number (Pe), and Schmidt number (Sc). The Atwood number has already been

defined; the rest are defined in Table 2. The RT flow can be considered turbulent when ReT > 100 or
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Number Definition Value

Mamax
u
c 0.05

Gr −2gA∆3

ν2
1

Sc ν
DM

1

ReT
k1/2λ

ν 54

PeT ReTSc 54

ReL
h99ḣ99

ν 8, 000

PeL ReLSc 8, 000

Table 2: Nondimensional numbers of simulated RT instability. Here, c is the speed of sound (set by the heat

capacity ratio γ, which is 5/3 in the simulation), ∆ is the grid spacing (the mesh is uniform, so ∆ = ∆x = ∆y),

and DM is the molecular diffusivity. The subscripts T and L refer to nondimensional numbers using the

Taylor microscale (λ) and large-scale, respectively.

ReL > 10, 000 Dimotakis [22]. Details on how these numbers are computed for the donor simulation

can be found in Lavacot et al. [9].

The values of each nondimensional number in this work are summarized in Table 2. Since the

Atwood number is small, the bouyant-flow Boussinesq approximation can be made. Thus, it is

assumed that mean velocities are negligible. In addition, a small Grashof number is used to minimize

numerical diffusion and keep the simulation close to a DNS. It was found by Morgan and Black

[23] that numerical diffusivity dominates molecular diffusivity when Gr > 12. Finally, it must be

noted that ReT and ReL of the RT instability simulated here are lower than the turbulent transition

criteria set by Dimotakis [22]. This indicates that the flow may not be fully turbulent; in fact,

the simulation is 2D, so it cannot be truly turbulent. However, the late-time profiles from the

simulations show self-similar behavior (see Lavacot et al. [9]), so self-similar analysis is valid.

6.5. Donor solution

Figure 3 shows the mixing half-widths measured from the standard MFM donor simulations. These

donors use the same initial conditions, but due to numerical differences in parallel processes, Ares

gives slightly different h at late time. For h, the percent error is only O(1%), but the statistical error

is amplified in the computation of higher-order eddy diffusivity moments, as discussed previously in

§3.1. A more detailed description of the donor simulations can be found in Lavacot et al. [9].

6.6. Eddy diffusivity moments

The solutions to the receiver equations are postprocessed to obtain the eddy diffusivity moments.
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Figure 3: Mixing half-width h measured from different donor simulations in Ares for the same initial

conditions. Inset plot is the percent differences of the last three donors with respect to the first donor.

Figure 4 shows eddy diffusivity moments measured using standard MFM. The data are averaged over

1, 000 realizations. Even with this large number of realizations, the standard MFM measurements

exhibit substantial statistical error, especially in the higher-order moments; D01, the first order

moment in time is particularly affected by this issue. Figure 5 shows eddy diffusivity moments

measured using the decomposition MFM. The D00 measurements using the two methods are

qualitatively similar and have about the same level of statistical error. This is expected, since the

calculations for the leading order moment in either method are mathematically equivalent. Among

the higher-order moments, the decomposition MFM measurements show significantly improved

statistical convergence at only 200 averaged realizations. This improvement is most noticeable in

the measurement of D01, which qualitatively shows less statistical error than the measurments made

using standard MFM.

Since the statistical error is most obvious in the measurements of D01, those measurements averaged

over different numbers of realizations are presented in Figure 6. Even at just one realization, the

decomposition MFM measurement exhibits much less statistical error than the standard MFM. As

the number of realizations increases, the statistical error reduces much faster in the decomposition

MFM than in the standard MFM. Visually, the decomposition MFM measurement has an acceptable

level of statistical error at only 100 averaged realizations, but the standard MFM still has a high

level of statistical error. Plots of the statistical convergence of the other moments can be found in

Figures B.9 and B.10 in the Appendix.

Figure 7 shows plots of D10 measurements with qualitatively similar levels of statistical error.

Statistical convergence is achieved with a higher number of realizations for the standard method
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(a) D00 (b) D10/h(t)

(c) D01/t (d) D20/h(t)2

Figure 4: Normalized moments of the eddy diffusivity kernel of RT instability measured using the standard

MFM. Data is averaged over 1,000 realizations and homogeneous direction x.
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(a) D00 (b) D10/h(t)

(c) D01/t (d) D20/h(t)2

Figure 5: Normalized moments of the eddy diffusivity kernel of RT instability measured using the decompo-

sition MFM. Data is averaged over 200 realizations and homogeneous direction x.
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Original Decomposition

1 realization

5 realizations

20 realizations

100 realizations

Figure 6: Convergence of D01 (normalized by t) MFM measurement using standard and decomposition

methods for RT instability case.
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(a) Standard method, 1, 000 realizations. (b) Decomposition method, 100 realizations.

Figure 7: Qualitatively-similar states of statistically convergence of D01 (normalized by t) for each method.

(1, 000) compared to the decomposition method (100). This suggests that the decomposition MFM

may offer a speedup factor of about ten for the statistical convergence of MFM simulations.

6.7. Impact on modeling

Statistical convergence is crucial for development of accurate models. High statistical error can

obstruct analysis by causing incorrect conclusions about the convergence of model predictions. Here,

we demonstrate the impact of statistical error on the matched moment inverse (MMI) procedure for

constructing a model for 2D RT instability. MMI is a systematic method for modeling nonlocal

eddy diffusivity based on MFM-measured eddy diffusivity moments Liu et al. [8]. When applied to

this spatiotemporal 2D RT problem, The result of the method is an implicit model form:
[
1 + a01

∂

∂t
+ a10

∂

∂x2
+ a20

∂2

∂x22
+ . . .

]
(−⟨u′2c′⟩) = a00

∂⟨c⟩
∂x2

, (67)

where amn(x2, t) are model coefficients determined using a process detailed in Liu et al. [8] and

Lavacot et al. [9]. We use this implicit form rather than an explicit form that results from truncation

of Equation 61 for several reasons. First, the Kramers-Moyal expansion does not converge. That is,

finite truncation of the expansion leads to divergent results. This property of the Kramers-Moyal

expansion was proven by Pawula [24] and was shown to be true in modeling eddy diffusivity by

Liu et al. [8] and specifically in 2D RT instability by Lavacot et al. [9]. Secondly, an explicit form

would be challenging to implement numerically in this spatiotemporal problem, since this would

require time advancing spatial gradients of mixed derivatives. The implicit model addresses both of

these issues. Equation 67 can be directly time-integrated using explicit methods. Additionally, the

implicit method resulting from MMI converges as more terms are added. Details on this and the

MMI process can be found in Liu et al. [8].

In Lavacot et al. [9], the importance of eddy diffusivity moments for modeling mean scalar transport

was investigated using the standard MFM. Different combinations of moments (i.e., different
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(a) (b)

Figure 8: (a) Mean concentration profiles and (b) turbulent scalar flux from DNS (solid black) and models

using eddy diffusivity moments measured with the standard MFM (dashed green) and decomposition MFM

(dash-dotted red). Results from both methods are averaged over 200 realizations.

truncations of terms in the MMI operator in Equation 67) were tested to assess the importance

of each moment. Here, we examine the truncation of the MMI operator to the four terms shown

in Equation 67. Construction of this model form requires the eddy diffusivity moments D00, D10,

D01, and D20. We compare results of models constructed directly using measurements of Dmn from

the standard MFM and the decomposition MFM. For both methods, we use Dmn measurements

averaged over 200 realizations. At this number of realizations, the moments are visually statistically

converged for the decomposition MFM, but not the standard MFM.

Figure 8 shows mean concentration and turbulent scalar flux profiles resulting from each of the

models. The results from the model using the standard MFM eddy diffusivity moments diverge

significantly from the DNS results. This may lead to the incorrect conclusion that addition of

terms in the MMI operator does not lead to convergence. However, the source of this error is

actually the large amount of statistical error in the higher-order moments. On the other hand,

the results from the model using the decomposition MFM moments agree much better with the

DNS. There appears to be some statistical error still at this number of realizations, but there is not

nearly as much as there is with the standard MFM-based model. This highlights the importance of

statistically-converged higher order moments in modeling. Compared to the standard MFM, the

decomposition MFM is a more efficient method for obtaining statistically-converged moments that

are usable for constructing models.

7. Conclusion

In this work, modifications to the standard MFM are presented for faster statistical convergence of

the eddy diffusivity moments. We first demonstrate the utility of using a single donor simulation

for the receiver equations. Using a single donor prevents pileup of statistical error that may arise

in separate donors, even when the same initial conditions are used. Due to the potentially slow
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statistical convergence of MFM using separate donors, we recommend MFM using only one donor,

though that may not be the natural implementation in some codes.

We also present formulations of the receiver equations based on the Kramers-Moyal expansion of

the fluctuation field for both scalar and momentum transport—this is the decomposition MFM.

Instead of solving for the scalar c, as in the standard MFM, the decomposition MFM solves for a

variable based on the scalar fluctuation c, allowing the mean forcing in the receiver equations to be

handled semi-analytically. There is no additional cost to use decomposition MFM in place of the

standard MFM, and the former has the added benefit that it also allows for consistent boundary

condition treatment, such as in problems with periodic domains, like turbulent channel flow.

Decomposition MFM differs from other methods for accelerating MFM in its purpose for measuring

eddy diffusivity (or eddy viscosity) moments. Fast MFM [12] was developed for approximating the

nonlocal and anisotropic eddy diffusivity for the entire domain by leveraging hidden sparsity in the

discretized eddy diffusivity. Likewise, adjoint MFM [13] was developed for targeted computation

of the exact nonlocal and anisotropic eddy diffusivity at specific locations in the domain using an

adjoint-based approach rather than eddy diffusivity moments.

To demonstrate its utility, we apply the decomposition and single donor MFM to 2D RT instability.

In this case study, we demonstrate an approximate speedup factor of ten in reaching statistical

convergence of eddy diffusivity moments compared to MFM using separate donors. We show that

this improved statistical convergence is substantial and significantly impacts analysis of models, as

poorly-converged eddy diffusivity moments can lead to incorrect conclusions.
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Appendix A. Error analysis

We present the following error analysis to illustrate the propogation of error due to different or

matching donor simulations. This analysis is done in one dimension (x) for simplicity. First, we

define F i to be the measurements of the turbulent scalar flux used to determine Di:

F 0 = ⟨−u′1c
′⟩| ∂⟨c⟩

∂x1
=1

, (A.1)

F 1 = ⟨−u′1c
′⟩| ∂⟨c⟩

∂x1
=x1

(A.2)

Since the numerical mean uses a finite number of ensembles, there exists statistical error when

making the measurements F i. Examination of Equation 23 reveals that the statistical error arises

due to cmn; ∂⟨c⟩
∂xj

are deterministic as they are set by the macroscopic forcing. In this manner, we

can rewrite Equation 30 with statistical error:

c′ + ε =

[
(c0 + ε0) + (c1 + ε1)

∂

∂x1
+ (c2 + ε2)

∂2

∂x21
+ . . .

]
∂⟨c⟩
∂x1

. (A.3)
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Thus, statistical error can also be written as a Kramers-Moyal expansion:

ε =

[
ε0 + ε1

∂

∂x1
+ ε2

∂2

∂x21
+ . . .

]
∂⟨c⟩
∂x1

. (A.4)

In the following analysis, we use the notation εij , where i denotes the error associated with ci, as

in Equation A.4, and j denotes the simulation used to determine Dj . The addition of index j is

introduced, because when different donor simulations are used in MFM, each simulation has its own

statistical error. For example, ε00 is not necessarily the same as ε01, despite them both being errors

associated with c0. The measurement of D0 can then be written as

D0 = F 0 + ε00, (A.5)

where ε00 arises from substituting ∂⟨c⟩
∂x1

= 1 into Equation A.4. Similarly, D1 can be written as

D1 = F 1 − x1D
0 + ε01x+ ε11 = F 1 − x1F

0 + x1(ε
01 − ε00) + ε11 (A.6)

If one donor simulation is used for all receiver equations in MFM, the third term above disappears,

since ε00 = ε01 = ε0. When different donors are used, ε00 and ε01 are not the same, so the overall

statistical error scales with x1, making statistical convergence for D1 slower than for D0. While

this analysis is presented in one dimension, the variable x1, can be considered as either a spatial or

temporal variable. Since time can become large in numerical simulations, and measurements are

often taken in late time, the statistical convergence of the first temporal moment is especially slow.

This analysis can be extended to higher-order moments. For example, we analyze the error

propagation in computing D2:

D2 = F 2 − x1D
1 − x2

2
D0 + ε22 (A.7)

= F 2 − x1F
1 − x21

2
F 0 + x21(ε

10 − ε00) +
x21
2
(ε00 − ε02) + x1(ε

12 − ε11) + ε22. (A.8)

If one donor is used, the fourth, fifth, and sixth terms vanish. If different donors are used, those terms

remain and the overall statistical error scales by x21, resulting in even slower statistical convergence

for D2.

It must be noted that this analysis assumes D0 is constant in time, which is not true for unsteady

flows such as RT. Additionally, we do not predict the scalings of the εij with space or time. This is

why the statistical error plots in Figure 2 do not exhibit the exact scalings derived here. The goal

of this analysis is not to provide the scalings but to illustrate the error amplification in higher-order

moments and the presence of this extra error in MFM simulations using separate donors.

Appendix B. Rayleigh-Taylor spatial eddy diffusivity moments
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Original Decomposition

1 realization

5 realizations

20 realizations

100 realizations

Figure B.9: Convergence of D10 (normalized by t) MFM measurement using standard and decomposition

methods for RT instability case.
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Original Decomposition

1 realization

5 realizations

20 realizations

100 realizations

Figure B.10: Convergence of D20 (normalized by t) MFM measurement using standard and decomposition

methods for RT instability case.
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Abstract

We assess the importance of nonlocality in modeling mean scalar transport for three-dimensional

variable density Rayleigh-Taylor (RT) mixing. Building on the two-dimensional incompressible work

of Lavacot et al. [1], we extend the Macroscopic Forcing Method (MFM) to the variable density

problem to measure moments of the generalized eddy diffusivity kernel in RT mixing for different

Atwood numbers (A = 0.05, 0.5, 0.8). We find that as A increases: 1) the eddy diffusivity moments

become asymmetric, and 2) the higher-order eddy diffusivity moments become closer in magnitude

to the leading-order diffusivity, indicating that nonlocality becomes more important at higher A.

There is a particularly strong temporal nonlocality at higher A, suggesting stronger history effects

at these A. The implications of these findings for turbulence modeling for finite-Atwood RT are

discussed.

Keywords: Turbulence modeling; Rayleigh-Taylor Instability, variable density

1. Introduction

Rayleigh-Taylor (RT) instability occurs when a heavy fluid is accelerated into a lighter fluid through

a perturbed interface. Over time, the instability becomes self-similar and results in turbulent mixing.

Understanding the effects of this turbulence is critical in engineering design applications, especially

for inertial confinement fusion (ICF). In ICF, a plastic ablator is accelerated into deuterium gas

to achieve high pressures and, consequently, ignition. If there are perturbations the ICF capsule

surface, which can happen due to imperfections in manufacturing, RT instability can be triggered

and cause premature mixing that ultimately reduces energy output [2].

In designing experiments for ICF, it is crucial to accurately predict the turbulent mixing in

simulations. High-fidelity approaches such as direct numerical simulations (DNS) and large eddy

simulations (LES) have been used to accurately predict turbulent mixing in RT instability [3–5].

However, the fine grids required to resolve turbulent scales make them prohibitively expensive for

the iterative design process, in which thousands of simulations must be run. A more appealing and

computationally feasible approach is simulation of the Reynolds-Averaged Navier-Stokes (RANS)

equations, which requires resolution of only the macroscopic scales. In RANS simulations, only the

mean quantities are evolved, so models are required to approximate the physics of the unresolved
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scales. It is then crucial in the RANS approach to use accurate models for the unclosed terms.

In this work, we focus on the unclosed turbulent species flux (TSF) in the mean scalar transport

equation. A common closure for this term is a gradient-diffusion approximation, which assumes the

TSF depends only on local gradients of the mean scalar field. This is the closure used in popular

models for RT mixing such as the k–ϵ model [6] (modified by Gauthier and Bonnet [7] for RT) and

the k–L model [8]. However, the gradient-diffusion closure has been shown to not be sufficient for

modeling scalar transport in RT mixing [9, 10]. Alternative models include those that use transport

equations for the TSF [11] and those based on two-point correlations [12–14]. While these models

address nonlocal effects in RT mixing, they do so without directly examining the nonlocality of the

closure operator.

Traditional approaches towards studying nonlocality usually involve examination of two-point

correlations. Indeed, there are extensive studies on two-point correlations for RT mixing [15–17], so

nonlocality of the instability is well-known. However, for modeling, it is also valuable to directly

examine the nonlocality of the closure operator. Through this lens, we can directly discern what

form a model that correctly captures this nonlocality should take.

Nonlocality of the eddy diffusivity has been studied in a previous work [1] for two-dimensional (2D)

RT mixing in the Boussinesq limit (A = 0.05). In that work, the Macroscopic Forcing Method

(MFM) [18] was used to measure moments of the generalized eddy diffusivity kernel, which describes

the nonlocal dependence of the turbulent flux on mean gradients. MFM is similar to the Green’s

function approach described by Hamba [19] for determining the exact nonlocal eddy diffusivity

but also allows for polynomial forcings that enable measurement of eddy diffusivity moments.

Measuring the moments is more efficient than computing the full kernel, which becomes expensive

for unsteady problems with large macroscopic spaces, like RT mixing. Lavacot et al. [1] found

through MFM measurements of eddy diffusivity moments that nonlocality is important for modeling

in the low-Atwood, 2D problem.

The goal of the present work is to extend MFM analysis to turbulent three-dimensional (3D)

RT mixing at multiple higher Atwood numbers. The extension to 3D is certainly necessary for

investigation of truly turbulent RT. Additionally, simulations of higher Atwood numbers allow

for the investigation of variable density effects on nonlocality. It is known that the behavior of

the instability differs between the variable density regime and the Boussinesq limit. Particularly,

asymmetry in the mixing layer arises at higher Atwood numbers, which also leads to asymmetries in

turbulent statistics, as shown by Livescu et al. [20]. Thus, one purpose of this study is to investigate

the strength of the dependence of nonlocality in RT mixing on Atwood number. Ultimately, findings

from this study will inform development of more accurate turbulence models for variable density

RT mixing that incorporate nonlocality and its dependence on Atwood number.

This work is organized as follows. Methods of this work are presented in §2, in which we describe

the governing equations, a brief overview of RT physics, our method of numerical solution, and the

generalized eddy diffusivity, MFM, and matched moment inverse for analysis of nonlocality. Results
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are presented in §3, in which we show and analyze the eddy diffusivity moments measured using

MFM. Finally, we discuss the results and implications for modeling in the Conclusion in §4.

2. Methods

2.1. Governing equations

RT mixing is governed by the compressible Navier-Stokes equations:

∂ρ

∂t
= −uj

∂ρ

∂xj
, (1)

∂ρYα
∂t

= − ∂

∂xj

(
ρujYα − ρDα

∂Yα
∂xj

)
, (2)

∂ρuj
∂t

= − ∂

∂xi
(ρuiuj + pδij − τij) + ρgi, (3)

∂E

∂t
= − (ρui (E + p)− ujτij − qi) + ρgjuj . (4)

Here, ρ is density, ui is velocity, Yα is the mass fraction of species α, Dα is the diffusivity of species

α, p is pressure, δij is the Kronecker delta, τij = is the viscous stress, gi is gravitational acceleration

(in this work, g = (0,−g, 0)T ), E = ρ
(
e+ 1

2ujuj
)
is the total energy, and qi is the energy flux. The

viscous stress is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+

(
β − 2

3
µ

)
ujuj , (5)

where µ is the molecular viscosity and β is the bulk viscosity. The energy flux is

qi = −κ
∂T

∂xi
, (6)

where T is temperature. Pressure and temperature are determined using the ideal gas law:

p = ρ (γ − 1) e, T = (γ − 1)
e

R
, (7)

where γ is the ratio of specific heats
cp
cv

and R is the specific constant.

In the problem studied here, two miscible species are considered. The heavy species is subscripted

H, and the light species is subscripted L.

2.2. RT mixing and self-similarity

A density difference is required between two fluids for RT mixing to occur. This density difference

can be expressed nondimensionally as the Atwood number:

A =
ρH − ρL
ρH + ρL

, (8)

where ρH is the density of the heavy fluid, and ρL is the density of the light fluid.

As the instability develops, bubbles rise into the heavy fluid, and spikes sink into the light fluid.

Over time, secondary Kelvin-Helmholtz instabilities are triggered, and the flow transitions into

3



turbulence. In this turbulent state, RT instability becomes self-similar, and the growth of the

bubbles and spikes are quadratic in time:

hb ≈ αbAgt
2, hs ≈ −αsAgt

2, (9)

where hb and hs are the bubble and spike heights, respectively, and αb and αs are the bubble and

spike growth rates, respectively. Based on the bubble height, we define a self-similar variable in

space η ≡ (y − 1
2)/hb, for y defined between 0 and 1. The sum of hb and hs give the total mixing

layer width, which can be expressed as

h ≈ αAgt2, (10)

where α = αb + αs. At low A, hb ≈ hs. Increasing A increases the asymmetry of the mixing layer

[20, 21] as the spikes sink faster than the bubbles rise. Thus, for finite A, h > hb. In this work, the

growth of the bubbles is used for self-similar analysis rather than the total mixing layer growth rate

α, since the latter varies significantly across Atwood numbers [22].

Using the analytical derivation of the mixing width from Ristorcelli and Clark [16], Cabot and Cook

[4] defines the bubble growth rate as

αb =
ḣb

2

4Aghb
, (11)

where ḣb is the rate of change of hb in time. We use this definition to observe the growth rate over

time and assess convergence to self-similarity. In the self-similar regime, αb should converge to a

constant value over time.

For self-similar analysis, we use the definition of αb by Livescu et al. [20]:

αb =

(
hb(t)

1/2 − hb(t0)
1/2

(Ag)1/2(t− t0)

)2

(12)

where t0 is an arbitrary time during the self-similar growth of the mixing layer. This definition is

preferable for self-similar fits and normalizations, since it avoids temporal derivatives of the mixing

width, which is not smooth in time due to statistical error.

The bubble height can be computed from mass fraction profiles by taking it as the distance from

the centerline of the domain to where the mean mass fraction of the light fluid is 0.999. The RT

instability can be considered self-similar when this hb,99 becomes quadratic in time.

Another metric for self-similarity is the mixedness parameter, defined as

ϕ ≡ 1− 4

∫
Ỹ ′′
HY ′′

Hdy
∫
ỸH ỸLdy

, (13)

where YH is the mass fraction of the heavy fluid, and YL = 1− YH is the mass fraction of the light

fluid. For self-similar RT mixing, ϕ is expected to converge to a steady-state value.
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Additionally, transition to self-similar turbulence can be assessed by examining the Reynolds number.

The Taylor microscale Reynolds number is defined as

ReT =
k1/2λ

ν
, (14)

where k = 1
2 ũ

′′
i u

′′
i , and

λ =

√
10νL

k1/2
. (15)

L is a turbulent length scale, which can be approximated as 1
5 of the mixing width [9]. The large

scale Reynolds number [4] is defined as

ReL =
h99ḣ99

ν
, (16)

where h99 is the total mixing width defined as the distance between the locations of mass fractions

0.001 and 0.999. The RT mixing is considered turbulent and self-similar when ReT > 100 and

ReL > 10, 000 [23].

2.3. Modeling the mean scalar transport operator

To obtain the mean scalar transport equation, the Reynolds (⟨q⟩) and Favre (q̃) averages of quantity

q are defined:

⟨q⟩ = 1

N

N∑

i

qi, (17)

q̃ =
⟨ρq⟩
⟨ρ⟩ , (18)

where N is the number of ensembles. In the case where the flow is homogeneous (in space and/or

time), the homogeneous directions may be included in these ensembles. For the RT mixing problem

studied here, the homogeneous directions are x and z, so averages are performed over x, z, and

realizations. Fluctuations from the Reynolds and Favre means are denoted as q′ and q
′′
, respectively,

so

q = ⟨q⟩+ q′ = q̃ + q
′′
. (19)

Substituting the Favre decomposition for velocity and mass fraction into Equation 2 and taking its

Reynolds average results in the mean scalar transort equation for compressible flow:

∂⟨ρ⟩ỸH
∂t

= − ∂

∂y

(
⟨ρ⟩ṽỸH + ρ̃v′′Y

′′
H − ⟨ρ⟩DH

∂ỸH
∂y

)
. (20)

The turbulent species flux ⟨−ρv′′Y ′′
H⟩ is unclosed and needs to be modeled.
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The turbulent species flux can be exactly modeled as

⟨−ρv′′Y ′′
H⟩ (y, t) = ⟨ρ⟩

∫
D
(
y, y′, t, t′

) ∂ỸH
∂y

∣∣∣∣∣
y′,t′

dy′dt′, (21)

where D is the eddy diffusivity kernel. This is an extension of the formulation for incompressible flow

described in Kraichnan [24], Hamba [19], and Mani and Park [18] . This is a nonlocal formulation,

in that it expresses the TSF based not only on mean scalar gradients at the points in space and

time (y and t) it is measured at, but also all other points in space and time (y′ and t′).

An exact model for the turbulent species flux requires full characterization of the eddy diffusivity

kernel. This has been done for simpler flows in the works of Hamba [25], Hamba [19], and Park

and Mani [26]. However, computation of the kernel is computationally expensive, since it requires

simulations on the order of the number of points in macroscopic space. On top of this, chaotic flows,

like RT mixing, require many realizations for statistical convergence.

The eddy diffusivity kernel can instead be approximated by its moments. This can be done by

employing a Taylor series expansion of the mean scalar gradient about y and t, which results in the

Kramers-Moyal-like expansion:

⟨−ρv′′Y ′′
H⟩ (y, t) = ⟨ρ⟩D00(y, t)

∂ỸH
∂y

+ ⟨ρ⟩D10(y, t)
∂2ỸH
∂y2

+ ⟨ρ⟩D01(y, t)
∂2ỸH
∂t ∂y

(22)

+ ⟨ρ⟩D20(y, t)
∂3ỸH
∂y3

+ ⟨ρ⟩D11(y, t)
∂2ỸH
∂ty2

+ ⟨ρ⟩D02(y, t)
∂2ỸH
∂t2y

+ . . . (23)

where Dmn are the eddy diffusivity moments. The first index m indicates space and the second

index n is time. The moments are defined as

D00(y, t) =

∫ ∫
D(y, y′, t, t′)dy′dt′, (24)

D10(y, t) =

∫ ∫
(y′ − y)D(y, y′, t, t′)dy′dt′, (25)

D01(y, t) =

∫ ∫
(t′ − t)D(y, y′, t, t′)dy′dt′, (26)

D20(y, t) =

∫ ∫
(y′ − y)2

2
D(y, y′, t, t′)dy′dt′, (27)

... (28)

These moments are more computationally feasible to compute than the full kernel. To compute

the moments, the process for which will be described shortly, one equation per moment needs to

be added to the suite of equations being solved in a simulation. Though the number of operations

increases as more moments are computed, only one simulation needs to be run to compute all

moments. Statistically converged moments require multiple simulations; in this work, it is found
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Donor Receiver
ρ, ui, etc.

∂ρY ∗
H

∂t = − ∂
∂xj

(
ρujY

∗
H − ρDα

∂Y ∗
H

∂xj

)
+ s

∂ỸH
∂y

= 1

⟨−ρv′′Y ′′
H⟩ (y, t) = ⟨ρ⟩D00∂ỸH

∂y
+ ⟨ρ⟩D10∂

2ỸH
∂y2

+ . . .

Postprocessing
Simulation

1 0

Figure 1: MFM pipeline illustrating measurement of D00 for the mean scalar transport problem. Asterisks

indicate receiver variables that are macroscopically forced in the receiver simulation and are not necessarily

equivalent to the donor variables.

Moment
∂ỸH
∂y

D00 1

D01 t

D10 y − 1
2

D02 1
2 t

2

D11 (y − 1
2)t

D20 1
2(y − 1

2)
2

Table 1: Mean mass fraction gradients forced for each eddy diffusivity moment Dmn.

that O(10) simulations are needed for statistical convergence sufficient for analysis, which is much

lower than what is needed to compute the full kernel.

While the eddy diffusivity moments are locally defined (they are functions of y and t only), higher-

order moments contain information about the nonlocality of the full kernel. The leading-order

moment D00 is purely local, and truncation to the leading-order term is the gradient-diffusion or

Boussinesq approximation. The goal of this work is to determine the importance of the higher-order

terms and, therefore, the nonlocality of the mean scalar transport operator for the RT mixing

cases studied here. In this way, measuring the eddy diffusivity moments is a more computationally

efficient but still insightful way to assess the nonlocality of the closure operator.

2.4. Measuring the eddy diffusivity moments using the Macroscopic Forcing Method

In this work, MFM is used to measure the eddy diffusivity moments. The MFM pipeline is

conceptually illustrated in Figure 1. The method involves two sets of equations, called the donor

and the receiver, which are solved simultaneously in a simulation. The donor contains the full set

of model equations (in this case, the Navier-Stokes equations) and gives quantities necessary for

solution of the receiver, which has the forced equations. The forcings for each receiver equation are

chosen to achieve certain mean scalar gradients that allow for the probing of each eddy diffusivity
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moment. For example, to compute D00,
∂ỸH
∂y

= 1 can be chosen in a numerical simulation. In

Equation 23, this choice causes the higher-order terms to drop, and measurement of ⟨−ρv′′Y ′′
H⟩

gives D00. The MFM pipeline illustrating this example is in Figure 1. Similarly, higher-order

moments can be determined by choosing different polynomials for
∂ỸH
∂y

. Table 1 lists the mean

scalar gradients chosen to obtain each moment.

In Figure 1, the standard MFM is shown, in which forcings are directly applied to the full scalar

field. In this work, the Decomposition MFM [] is used instead, in which fluctuations of the mass

fraction field are simulated and the forcings are semi-analytically applied. To formulate the forced

equations, Y ′′
H is first written as a Kramers-Moyal expansion analagous to Equation 23:

Y ′′
H = c00∂ỸH

∂y
+ c10∂

2ỸH
∂y2

+ c01 ∂
2ỸH

∂t ∂y
+ c20∂

3ỸH
∂y3

+ c11∂
2ỸH
∂ty2

+ c02∂
2ỸH
∂t2y

+ . . . (29)

Substituting this expansion and the forced mean mass fractions derived from Table 1 into Equation

2 gives the following equations for each cmn:

Dρc00

Dt
=

∂

∂xj
ρDH

∂

∂xj
c00 − ρu2 +

∂

∂y
ρDH + s00, (30)

Dρc10

Dt
=

∂

∂xj
ρDH

∂

∂xj
c10 − ρu2c

00 + ρDH + ρDH
∂

∂y
c00 +

∂

∂y
ρDHc00 + s10, (31)

Dρc01

Dt
=

∂

∂xj
ρDH

∂

∂xj
c01 − ρc00 − ρy + s01, (32)

Dρc20

Dt
=

∂

∂xj
ρDH

∂

∂xj
c20 + ρDHc00 + ρDH

∂

∂y
c10 +

∂

∂y
ρDHc10 + s20, (33)

Dρc11

Dt
=

∂

∂xj
ρDH

∂

∂xj
c11 − ρc10 − ρvc01 + ρDH

∂

∂y
c01 +

∂

∂y
ρDHc01 + ρ

(
1

2
y2 − 1

8

)
+ s11,

(34)

Dρc02

Dt
=

∂

∂xj
ρDH

∂

∂xj
c02 − ρc01 + s02, (35)

where each forcing smn enforces the x-z mean of cmn to be zero. To obtain the eddy diffusiv-

ity moments, the turbulent species flux based on the Y ′′
H from each equation is computed in

postprocessing:

⟨−ρv′′cmn⟩ = ⟨ρ⟩Dmn. (36)

In the numerical simulation, solutions to the donors (Equations 1-4) are given to these receiver

equations, which are solved alongside the donors. Thus, if the cost to solve the suite of donor

equations is N , the cost of MFM for one realization of the eddy diffusivity moments examined in

this work is approximately 2N . Of course, this cost increases as more moments are measured, but it

has been found that not many moments are required to characterize the nonlocality of the eddy

diffusivity kernel [1, 27], making the MFM measurement of moments relatively efficient and useful.
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(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 2: hb from simulations (solid blue) and fitted hb (dashed orange).

2.5. Self-similar normalization

Lavacot et al. [1] presents a self-similar analysis that results in normalizations for the turbulent

species flux and eddy diffusivity moments. This analysis can be applied directly to the variable

density RT mixing studied here and is extended to D11 and D02, which have not been studied

previously:

F̂ =
F

α∗Ag(t− t∗0)
, (37)

D̂00 =
D00

(α∗Ag)2(t− t∗0)
3
, (38)

D̂01 =
D01

(α∗Ag)2(t− t∗0)
4
, (39)

D̂10 =
D10

(α∗Ag)3(t− t∗0)
5
, (40)

D̂02 =
D02

(α∗Ag)2(t− t∗0)
5
, (41)

D̂11 =
D11

(α∗Ag)3(t− t∗0)
6
, (42)

D̂20 =
D20

(α∗Ag)4(t− t∗0)
7
, (43)

where α∗ is the growth rate defined in Equation 12, and t∗0 is a fitted time origin based on the

measured bubble height. Figure 2 shows the bubble height measured from the simulations and the

determined fits.

2.6. Matched Moment Inverse

Truncation of Equation 23 represents an approximate model for the turbulent species flux. However,

a property of the Kramers-Moyal expansion is that it does not converge with finite terms.

Instead, a systematic method for constructing a model using eddy diffusivity moments is presented

here. With the Matched Moment Inverse (MMI), the goal is to match the shape of the eddy
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diffusivity kernel using its moments. This is achieved by determining coefficients amn(y, t) for the

implicit model form:

[
1 + a10

∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2
+ ...

]
⟨−ρv′′Y ′′

H⟩ = a00⟨ρ⟩∂ỸH
∂y

. (44)

The operator on the left hand side can be expanded based on which moments are used; amn

corresponds to using Dmn. The model coefficients are determined numerically using MFM simulation

data. For example, if D00, D01, D10, and D20 are used, the following system is solved for a00, a01,

a10, and a20:
[
1 + a10

∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 00 = a00, (45)

[
1 + a10

∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 10 = a00

(
y − 1

2

)
, (46)

[
1 + a10

∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 01 = a00t, (47)

[
1 + a10

∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 20 = a00

1

2

(
y − 1

2

)2

. (48)

The above is demonstrated for spatio-temporal variables for simplicity, but the analysis presented

here is done in self-similar space. The self-similar implicit model form is

[
1 + â10

∂

∂η
+ â01

(
1− 2η

∂

∂η

)
+ â20

∂2

∂η2
+ ...

]
F̂ = â00⟨ρ⟩∂ỸH

∂η
, (49)

where the self-similar coefficients are

â00 =
1

α∗2A2g2(t− t∗)3
a00, (50)

â01 =
1

t− t∗
a01, (51)

â10 =
1

α∗Ag(t− t∗)2
a10, (52)

â20 =
1

α∗2A2g2(t− t∗)4
a20. (53)

2.7. Numerical solution to the donor equations

Pyranda, a Python wrapper for Miranda, is used to solve Equations 1-4. Miranda is a hydrodynamics

code developed at Lawrence Livermore National Laboratory [28, 29]. It uses fourth-order Runge-

Kutta in time and a tenth-order compact differencing scheme in space. Due to this high-order

spatial scheme, Pyranda uses artificial fluid properties for stability. Particularly, artificial molecular

viscosity, bulk viscosity, thermal conductivity, and species diffusivity are computed and added to

the physical fluid properties to dampen numerical instabilities that may arise due to the high-order

numerics. Details on the artificial fluid method can be found in Cook [30].
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Nondimensional number A = 0.05 A = 0.5 A = 0.8

Mamax 0.05 0.2 0.4

ReT , P eT 126 124 138

ReL, P eL 1.46× 104 1.40× 104 1.57× 104

Table 2: Values of nondimensional numbers at the end of the simulation for each A case. Mamax is reported

from one realization. The Reynolds and Peclet numbers are computed from averaged realizations.

To prevent the numerical diffusion from dominating the physical turbulent diffusion, the numerical

Grashof number is kept small. This Grashof number is defined as

Gr =
−2gA∆3

ν2
. (54)

where ∆ = ∆x = ∆y = ∆z is the grid spacing. In line with the findings of Morgan and Black [31],

Gr = 12 is used to keep numerical diffusion small but still allow turbulence to develop before the

edges of the mixing layer reach the domain boundaries.

The other relevant nondimensional numbers of the RT mixing problem are the Mach number (Ma),

Peclet number (Pe), and Schmidt number (Sc):

Ma =
u

c
, (55)

PeT = ReTSc, (56)

PeL = ReLSc, (57)

Sc =
ν

DM
. (58)

Here, c is the speed of sound and is set by the heat capacity ratio γ, which is 5/3 in the simulations

presented here. The Schmidt is chosen to be unity. The Peclet numbers are determined by the

Reynolds and Schmidt numbers, and the Reynolds numbers are set through the numerical Grashof

number, which fixes ν through choice of g, A, and ∆. Values of these nondimensional numbers at

the final timesteps of the simulations are listed in Table 2.

The plots of Re in Figure 3 show that the flows in all the A cases studied here develop past the

critical Reynolds numbers from Dimotakis [23]. These plots are given in nondimensional time

τ = t/τ0, where τ0 =
√

h0/Ag, and h0 is the dominant length scale determined by the peak of the

initial perturbation spectrum. The critical Re are reached at approximately τ = 19, τ = 19, and

τ = 16 for A = 0.05, A = 0.5, and A = 0.8, respectively.

The simulation domain is 0.5 × 1.0 × 0.5 cm, so the length in y is twice the lengths in x and z,

and the grid is 512 × 1024 × 512 cells. The domain is periodic in x and z, and no slip and no

penetration conditions are applied in y. Sponge layers are applied to the velocity and density fields

at the boundaries in y to prevent growth of acoustic waves that arise from the high-order numerics.

Specifically, a smoothing filter described in Cook [30] is applied across the profile shown in Figure 5.
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(a) (b)

Figure 3: Reynolds numbers over time for each of the A cases.

(a) (b)

Figure 4: Reynolds numbers over time for each of the A cases, scaled by h1.5.

Figure 5: Sponge layer profile for boundaries in y in 3D RT simulation.
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The mass fraction profile is initialized as a tanh profile with approximately ten cells across the

interface. A multi-mode perturbation is added at the interface:

E0 =
∆/2

κmax − κmin + 1
, (59)

ξ(x, z) = E0

κmax∑

k=κmin

(cos (2πkxx+ ϕ1,k) + sin (4πkxx+ ϕ2,k)) (cos (2πkzz + ϕ3,k) + sin (4πkzz + ϕ4,k)) ,

(60)

YH(x, y, z) =
1

2

(
1 + tanh

(
y − Ly/2− ξ

2∆

))
, (61)

where ϕ1,k, ϕ2,k , ϕ3,k , and ϕ4,k are phase shift vectors randomly taken from a uniform distribution.

The minimum and maximum wavenumbers are set to κmin = 8 and κmax = 64, respectively. Density

is computed from this initial mass fraction profile as ρHYH + ρLYL. The light fluid density is set to

unity for all simulations, and the heavy fluid density is determined from this and the Atwood number.

Pressure is initialized as a hydrostatic pressure based on the initial density field, p = ρg
(
y − 1

2

)
+ 1.

The velocity field and receiver fields are initially zero.

The simulation is stopped when h99 reaches 0.5. This allows the mixing layer to evolve sufficiently

and become self-similar and turbulent while avoiding interference from the top and bottom walls.

For statistical convergence, nine realizations are run for each A case. Different realizations are

achieved by setting different random seeds, resulting in different random perturbations at the

interface of the two fluids. Example contours of density and mach number from one realization of

each Atwood number case are shown in Figures 6 and 7, respectively.

Figure 8 shows self-similar metrics for the donor simulations, averaged over all realizations for each

A case. The A = 0.05 case appears to be safely in the self-similar regime, as its ϕ seems converged

to approximately 0.8. Its αb is also somewhat converged to approximately 0.03, which is within the

range reported in the literature [4, 20]—it is not perfectly flat, but this is likely due to statistical

error in h and its time derivative. The A = 0.5 case also appears to be in the self-similar regime,

having converged to similar values of αb and ϕ as the A = 0.05 case, but the former does not appear

to be as far into the self-similar state as the latter. The A = 0.8 case gives αb and ϕ that are only

beginning to converge, indicating that this case is just barely in the self-similar regime. Nevertheless,

this case gives an αb close to the other cases and can be used to make quadratic fits for hb needed

for self-similar analysis.

3. Results

3.1. Eddy diffusivity moments

Figure 9 shows the eddy diffusivity moments for each Atwood number. First, we observe some

expected behavior at the lowest Atwood number:

1. D00 is the largest in magnitude. It is also symmetric and positive.
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(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 6: Contours of density for each A case.

(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 7: Contours of mach number for each A case.
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(a) Mixing width (b) Mixing width growth rate (c) Mixedness

Figure 8: Self-similarity metrics for each A case. Dashed blue: A = 0.05, dotted orange: A = 0.5, dash-

dotted green: A = 0.8.

2. D10 is antisymmetric. Above the centerline, it is negative, indicating that mixing in those

locations depends more on gradients towards the centerline (rather than towards the edge

of the mixing layer), which is a negative distance away. Similar logic explains the positive

behavior below the centerline.

3. D01 is symmetric always negative to satisfy causality.

4. D11 is antisymmetric.

5. D02 and D20 are symmetric and always positive, which is characteristic of the moment of

inertia of a positive kernel.

We also observe that the moments become asymmetric at higher Atwood numbers. This is expected

for A O(0.1) and above, since at these higher density differences, the heavy fluid falls faster than the

light fluid rises, moving the mixing layer center line downward. The asymmetry of RT instability

with finite Atwood numbers is well known, and it has also been found that quantities in turbulence

budgets (e.g., mass flux and turbulent kinetic energy) are skewed in these regimes [20]. Thus, peak

magnitudes for symmetric moments move further below the domain center line as Atwood increases.

Similarly, the magnitudes of antisymmetric moments below the centerline become larger than the

magnitudes above the centerline.

We can perform a preliminary assessment of nonlocality by examining the relative magnitudes of

the measured moments, which is shown in Figure 10. Maximum relative magnitude values are

also provided in Table 3. We first observe that for all Atwood numbers, the magnitudes of the

higher order moments are not far off from the leading order moment. This was also on observation

noted by Lavacot et al. [1] for 2D RT instability at A = 0.05. More notable is the increase in

relative magnitude of the higher-order moments as Atwood increases. That is, the higher-order

moments become closer in magnitude to the leading-order moment with higher Atwood numbers.

This suggests that nonlocality becomes more important with increasing Atwood number—this will

be examined more closely later sections.
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A = 0.05 A = 0.5 A = 0.8

D00

D01/t

D10/hb

D02/t2

D11/hbt

D20/h2
b

Figure 9: Eddy diffusivity moments of RT instability at different Atwood numbers. Moments are normalized

by appropriate length and timescales so that all dimensions match.
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A = 0.05 A = 0.5 A = 0.8

D00

D01/t

D10/hb

D02/t2

D11/hbt

D20/h2
b

Figure 10: Eddy diffusivity moments normalized with respect to leading order moment at each Atwood

number.
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Ratio A = 0.05 A = 0.5 A = 0.8

D10/D00 0.15 0.34 0.44

D01/D00 0.12 0.14 0.22

D20/D00 0.02 0.05 0.08

D11/D00 0.03 0.12 0.27

D02/D00 0.02 0.03 0.06

Table 3: Ratios of maximum magnitudes of higher-order moments to leading-order moments for each A case.

(a) A = 0.05

(b) A = 0.5

(c) A = 0.8

Figure 11: Self-similar collapse of leading-order and higher-order spatial eddy diffusivity moments of RT

instability at different Atwood numbers.
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(a) (b) (c)

Figure 12: Maximum magnitudes of normalized eddy diffusivity moments over time. Plotting starts after

the time the critical ReT and ReL for turbulence are reached. In (a) and (b), data are also normalized by the

values at the beginning of plotting for each Atwood case so that the initial values on the plots are all unity.

Here, we also examine the self-similarity of the eddy diffusivity moments. Figure 11 shows the spatial

eddy diffusivity moments at each Atwood number normalized according to self-similarity as in the

Equations 38-43; the self-similar collapse of all moments are in the Appendix in Figures A.18-A.20.

Qualitatively, we observe that the higher-order moments do not collapse as well as lower-order

moments. Additionally, the self-similar collapse worsens with increasing Atwood number.

We can further evaluate the self-similarity of the moments by examining the maximum magnitudes

of the normalized eddy diffusivity moments. Figure 12 shows D̂00 and D̂01 over the time period

after the critical Reynolds numbers for turbulence are reached in each Atwood case. If these criteria

are sufficient for self-similarity of the eddy diffusivity moments, we would expect that the plots of

the normalized moments be constant with time. This appears to be the case for the lowest Atwood

number simulation (A = 0.05). The higher Atwood number simulations (A = 0.5 and A = 0.8),

however, give D̂00 and D̂01 that still vary in time.

Altogether, these observations suggest that the higher order the eddy diffusivity moment, the longer

it takes to converge to a self-similar state. Particularly, higher-order moments take longer to reach

self-similarity than lower-order quantities like the mixing width and the turbulent species flux. Thus,

even if the flow in the MFM donor simulation fulfills criteria for self-similarity, such as reaching the

critical Reynolds numbers or achieving a convergent α, the eddy diffusivity moments, especially

the higher-order moments, may not necessarily be self-similar. When performing analysis on eddy

diffusivity moments, one must be careful then to not only check the traditional self-similarity metrics

of RT but also the self-similarity of the moments themselves.

3.2. Nonlocal length and time scales

Measurement of the eddy diffusivity moments using MFM allows for the quantification of nonlocal

length and time scales. These are defined nondimensionally as

ηNL =
1

hb

√
D20

D00
, τNL = − 1

τ0

D01

D00
. (62)
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(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 13: Contours of nonlocal length scales for each A case.

(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 14: Profiles of nonlocal length scales for each A case. Darker lines are earlier times; lighter lines are

later times.

Figure 13 shows the nonlocal length scale contours for each of the A cases. Qualitatively, they look

similar across A, with minimum values at the centerline and maximum values at the edges of the

mixing layer. Unsurprisingly, there is increased asymmetry at higher A, with mixing layer edge

values below the centerline greater than those above the centerline. In the self-similar regime, profiles

of the nonlocal length scales in Figure 14 show maximum values of approximately ηNL = 0.35,

ηNL = 0.35, and ηNL = 0.57 for A = 0.05, A = 0.5, and A = 0.8, respectively. The minimum ηNL

for all A is around 0.1. Based on these observations, we can make some general statements about

spatial nonlocality for late-time RT for these A:

• The turbulent species flux at a location near the mixing layer edge depends on gradients

further away from that location than does the flux at the centerline.

• For η at the mixing layer edges, the turbulent species flux depends on gradients approximately

0.3− 0.6 mixing half-widths away, and this value increases with A.

• For η at the centerline, the turbulent species flux depends on gradients approximately 0.1

mixing half-widths away, and this appears to be A-independent.

20



(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 15: Contours of nonlocal time scales for each A case.

(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 16: Profiles of nonlocal time scales scaled by τ for each A case. Darker lines are earlier times; lighter

lines are later times.

We also examine the nonlocal time scale in Figure 15. In contrast to the nonlocal length scale, the

nonlocal time scale differs greatly over the A studied here. Particularly, the max values of τNL

increase with A, indicating that turbulent species fluxes depend more on earlier times for higher A.

Additionally, the contours for τNL become more asymmetric with increasing A—max τNL shifts

towards the edge of the mixing layer above the centerline as A increases. In the self-similar regime,

it is expected that τNL scales as τ , so τNL/τ is plotted for each A case in Figure 16. We note

that the quality of the collapse worsens as A increases, indicating that our highest A cases may

not be far into the self-similar regime. Nevertheless, the profiles there show maximum values of

approximately τNL = 0.25τ , τNL = 0.5τ , and τNL = 1.0τ for A = 0.05, A = 0.5, and A = 0.8,

respectively. Based on these observations, we can make some general statements about temporal

nonlocality for late-time RT for these A:

• As A increases, across the mixing layer, the turbulent species flux depends more on the flux

at earlier times.

• At low A, the dependence of the turbulent species flux on earlier times is relatively uniform

across the mixing layer.
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(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

Figure 17: Terms of the Kramers-Moyal expansion for turbulent species flux at different Atwood numbers.

Each line corresponds to terms with contributions from: D00 (solid blue), D10 (dashed orange), D01 (dash-

dotted red), D20 (dotted green), D11 (solid teal), and D02 (dashed lilac).

• As A increases, the turbulent species flux near the upper edge of the mixing layer depends on

earlier times than does the flux at the lower edge.

The MFM measurements also reveal large τNL at early times across A. These high τNL zones appear

to be higher in magnitude and last longer as A increases. This suggests that as A increases, the RT

instability retains memory of the initial conditions for a longer period of time.

3.3. Kramers-Moyal terms

To further assess the importance of nonlocality, we can examine the terms in the Kramers-Moyal

expansion for the turbulent species flux, as shown in Figure 17. These terms are calculated a priori:

the donor simulation ỸH is used for the mean mass fraction gradients, and the measured eddy

diffusivity moments are substituted directly. Already at the lowest Atwood case of A = 0.05, we

observe that the higher-order terms appear non-negligible compared to the leading-order term; at

least some of the higher-order terms will need to be retained for complete characterization of the

eddy diffusivity. This was also shown in the 2D case at the same Atwood number studied in Lavacot

et al. [1].. We further observe that as Atwood number increases, the higher-order terms become closer

in magnitude to the leading-order term, indicating that nonlocality becomes more important with

increasing Atwood. This also suggests that at higher Atwood numbers, more higher-order moments

may be required for modeling that at lower Atwood numbers. It is notable that the temporal

moments are particularly large at high Atwood numbers, indicating that temporal nonlocality may

be especially important in those regimes.

4. Conclusion

In this work, MFM is used to measure the eddy diffusivity moments associated with mean scalar

transport in turbulent RT mixing for different Atwood numbers. Similarly to a past work studying

2D, low-Atwood RT [1], we find here that nonlocality is important for modeling 3D RT mixing.
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Through MFM measurements at multiple Atwood numbers (A = 0.05, A = 0.5, and A = 0.8), we

observe that the importance of nonlocality increases as A increases. Temporal nonlocality appears

to be the most important, which we observe through examination of the Kramers-Moyal terms and

nonlocal timescale. That is, as A increases, the importance of history effects increases, suggesting

that RT mixing at higher A has a longer “memory” than lower A cases.

We also find that the higher-order eddy diffusivity moments take longer to reach self-similarity

than lower-order moments, and this effect is greater with increasing A. This means that even if

certain metrics for self-similarity (e.g., convergence of α or ϕ) are met, higher-order eddy diffusivity

moments may not yet be self-similar. Thus, it is important to carefully examine the self-similarity

of the higher-order moments themselves when making conclusions about the self-similarity of the

turbulent mixing.

Overall, this work gives a first look into the Atwood dependence of nonlocality by examining

three Atwood numbers. To get a better understanding of the Atwood dependence, future work

should perform these analyses at more Atwood numbers. Particularly, it would be helpful to study

intermediate A between 0.05 and 0.5 to identify trends or transitions in behavior from low to high

Atwood numbers. This would give better insight into the Atwood dependence of nonlocality and

potentially allow for quantification of this dependence.

While the goal of this work is to assess nonlocality at different A, future work should explore

incorporation of the Atwood-dependence of nonlocality into turbulence models. This would involve

identifying precisely which higher-order moments are needed for convergence of a model for higher

Atwood numbers. It has been found that at low A, only D00, D01, and D10 are needed for accurate

predictions, but the observation here that nonlocality increases with A suggests that more moments

may be needed for higher A, particularly temporal moments. To make this assessment, high Atwood

simulations that go further into the self-similar regime than those presented here are needed for

analysis.

Acknowledgements. This work was performed under the auspices of the US Department of

Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

Appendix A. Self-similar collapse of eddy diffusivity moments

Figures A.18 - A.20 show the self-similar collapse of the eddy diffusivity moments. Normalization is

applied according to Equations 38 - 43.

References

[1] D.-L. Lavacot, J. Liu, H. Williams, B. E. Morgan, A. Mani, Non-locality of mean scalar

transport in two-dimensional rayleigh–taylor instability using the macroscopic forcing method,

Journal of Fluid Mechanics 985 (2024) A47.

23



Figure A.18: Self-similar collapse of eddy diffusivity moments at A = 0.05. Dark lines are earlier times,

and light lines are later times.

24



Figure A.19: Self-similar collapse of eddy diffusivity moments at A = 0.5. Dark lines are earlier times, and

light lines are later times.

25



Figure A.20: Self-similar collapse of eddy diffusivity moments at A = 0.8. Dark lines are earlier times, and

light lines are later times.

26



[2] A. Pak, L. Divol, C. Weber, L. B. Hopkins, D. Clark, E. Dewald, D. Fittinghoff, V. Geppert-

Kleinrath, M. Hohenberger, S. Le Pape, et al., Impact of localized radiative loss on inertial

confinement fusion implosions, Physical review letters 124 (2020) 145001.

[3] D. L. Youngs, Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer–Meshkov

instabilities, Laser and Particle Beams 12 (1994) 725–750.

[4] W. H. Cabot, A. W. Cook, Reynolds number effects on Rayleigh-Taylor instability with possible

implications for type Ia supernovae, Nature Physics 2 (2006) 562–568.

[5] N. J. Mueschke, O. Schilling, Investigation of Rayleigh-Taylor turbulence and mixing using

direct numerical simulation with experimentally measured initial conditions. I. Comparison to

experimental data, Physics of Fluids 21 (2009) 014106.

[6] B. E. Launder, D. B. Spalding, The numerical computation of turbulent flows, Computer

Methods in Applied Mechanics and Engineering 3 (1974) 269–289.

[7] S. Gauthier, M. Bonnet, A k-ε model for turbulent mixing in shock-tube flows induced by

Rayleigh-Taylor instability, Physics of Fluids A: Fluid Dynamics 2 (1990) 1685–1694.

[8] G. Dimonte, R. Tipton, K-L turbulence model for the self-similar growth of the Rayleigh-Taylor

and Richtmyer-Meshkov instabilities, Physics of Fluids 18 (2006) 085101.

[9] B. E. Morgan, B. J. Olson, J. E. White, J. A. McFarland, Self-similarity of a Rayleigh-

Taylor mixing layer at low Atwood number with a multimode initial perturbation, Journal of

Turbulence 18 (2017) 973–999.

[10] N. A. Denissen, B. Rollin, J. M. Reisner, M. J. Andrews, The Tilted Rocket Rig: A Rayleigh-

Taylor Test Case for RANS Models, Journal of Fluids Engineering 136 (2014). 091301.

[11] N. O. Braun, R. A. Gore, A multispecies turbulence model for the mixing and de-mixing of

miscible fluids, Journal of Turbulence 22 (2021) 784–813.

[12] T. T. Clark, P. B. Spitz, Two-point correlation equations for variable density turbulence,

Technical Report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1995.

[13] M. J. Steinkamp, T. T. Clark, F. H. Harlow, Two-point description of two-fluid turbulent

mixing—I. Model formulation, International Journal of Multiphase Flow 25 (1999) 599–637.

[14] N. Pal, S. Kurien, T. T. Clark, D. Aslangil, D. Livescu, Two-point spectral model for variable-

density homogeneous turbulence, Phys. Rev. Fluids 3 (2018) 124608.

[15] T. T. Clark, F. H. Harlow, R. W. Moses, Comparison of a spectral turbulence model with exper-

imental data of Rayleigh-Taylor mixing, Technical Report, Los Alamos National Lab.(LANL),

Los Alamos, NM (United States), 1997.

27



[16] J. R. Ristorcelli, T. T. Clark, Rayleigh-Taylor turbulence: self-similar analysis and direct

numerical simulations, Journal of Fluid Mechanics 507 (2004) 213–253.

[17] N. J. Mueschke, M. J. Andrews, O. Schilling, Experimental characterization of initial conditions

and spatio-temporal evolution of a small-Atwood-number Rayleigh-Taylor mixing layer, Journal

of Fluid Mechanics 567 (2006) 27–63.

[18] A. Mani, D. Park, Macroscopic forcing method: A tool for turbulence modeling and analysis of

closures, Phys. Rev. Fluids 6 (2021) 054607.

[19] F. Hamba, Nonlocal analysis of the Reynolds stress in turbulent shear flow, Physics of Fluids

17 (2005).

[20] D. Livescu, J. Ristorcelli, M. R. Petersen, R. A. Gore, New phenomena in variable-density

rayleigh–taylor turbulence, Physica Scripta 2010 (2010) 014015.

[21] D. L. Youngs, The density ratio dependence of self-similar rayleigh–taylor mixing, Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371

(2013) 20120173.

[22] Y. Zhou, Rayleigh–taylor and richtmyer–meshkov instability induced flow, turbulence, and

mixing. ii, Physics Reports 723 (2017) 1–160.

[23] P. E. Dimotakis, The mixing transition in turbulent flows, Journal of Fluid Mechanics 409

(2000) 69–98.

[24] R. H. Kraichnan, Eddy viscosity and diffusivity: exact formulas and approximations, Complex

Systems 1 (1987) 805–820.

[25] F. Hamba, An analysis of nonlocal scalar transport in the convective boundary layer using the

Green’s function, Journal of Atmospheric Sciences 52 (1995) 1084–1095.

[26] D. Park, A. Mani, Direct calculation of the eddy viscosity operator in turbulent channel flow

at reτ= 180, Journal of Fluid Mechanics 998 (2024) A33.

[27] J. Liu, H. Williams, A. Mani, Systematic approach for modeling a nonlocal eddy diffusivity,

Physical Review Fluids 8 (2023) 124501.

[28] M. Schulz, A. W. Cook, W. H. Cabot, B. R. de Supinski, W. D. Krauss, On the performance

of the Miranda CFD code on multicore architectures, Parallel Computational Fluid Dynamics:

Recent Advances and Future Directions (2010) 132.

[29] T. J. Rehagen, J. A. Greenough, B. J. Olson, A validation study of the compressible rayleigh–

taylor instability comparing the ares and miranda codes, Journal of Fluids Engineering 139

(2017) 061204.

28



[30] A. W. Cook, Artificial fluid properties for large-eddy simulation of compressible turbulent

mixing, Physics of fluids 19 (2007).

[31] B. E. Morgan, W. J. Black, Parametric investigation of the transition to turbulence in

Rayleigh-Taylor mixing, Physica D: Nonlinear Phenomena 402 (2020) 132223.

29


	CoverPage-Main-2491431.pdf
	2491431.pdf

