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Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral
source information from a set of tabulated response functions and data measurements.
Several unfold algorithms have appeared over the past 30 years; among them is the UFO
(UnFold Operator), code written at Sandia National Laboratories. In addition to an unfolded
spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated
random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error
matrix. This built-in estimate has now been compared to error estimates obtained by running
the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In
the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10
keV) and a set of overlapping response functions. The data were assumed to have an )
imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in *
estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical
resolution of this relatively small sample size (95% confidence level). A possible 10% bias
between the two methods was unresolved. The Monte Carlo technique is also useful in
underdetermined problems, for which the error matrix method does not apply. UFO has
been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven

hohlraums.
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1. Introduction

Spectral unfolding is an inverse mathematical operation which attempts to obtain
information about a source spectrum F(E) from a set of measurements (data) {D;}, | =
1,...,M. Often the connection between {D;}-and F can be written in terms of response
functions R, and a set of M Fredholm integral equations (first kind)':

E,
D; = [FE)R(E)E + €. (i=12,..M) (1)
El

The interpretation of Egs. (1) is that the datum D; in the i-th "channel” has two contributions:
one due to the sum of spectral components F(E)dE, each weighted by the response function

of that channel; the other due to a random variable ¢;, representing uncertainty and
perturbation in the measuremént process. Such integral equations arise in plasma physics*® ~ ~
and radiation hardness testing®® for filtered-detector, x-ray diagnostics and for magnetic ion-
beam spectrometers®.

Given only a set of integral equations and data, it is not possible, in general, to
reconstruct F(E) at every point in its domain [E,,E;] because (1) the number of integral
equations M is finite, and (2) such problems are "ill-posed"! That is, spectral averaging
within the integrals admits wildly oscillating and physically unacceptable solutions in addition
to the desired solution; such unacceptable solutions can be found no matter how precisely the
measurements are made!. Yet, some partial reconstruction of the source may be possible if
the integrals in Egs. (1) are reduced to matrix form. For example, suppose the desired
solution can be approximated as a linear combination of known basis functions B/(E)
(j=1,2,...,N) with unknown coefficients F;:

N
F() = Y F;B(E) . @

J=1

Basis functions include polynomials, weighted delta-functions, or contiguous histograms
(first-order B-splines)’. Substituting Eq. (2) into the integrals of Eqgs.(1) then yields the
matrix approximation

N
D, = Y RF, +¢ , (i=1,2,.,M) 3)

J=1




where

E,
R, = fR‘.(E)BJ.(E)dE @)
£

Reformulating Eqs. (1) as matrix equations, however, does not guarantee acceptable
numerical solutions, since the system may still be "ill-posed"” and may even yield an ill-
conditioned' matrix R.

If an acceptable formulation and a useful unfold algorithm for a given problem have
been found, it is appropriate to inquire how random uncertainties ¢ in the data affect the
spectral estimates F; obtained in the unfold process. In this paper we report the results of
two independent methods of estimating unfold uncertainty with the UFO (UnFold Ope:rator)8
computer code. One method is based on transformations of the error matrix, and the other = ~
utilizes the Monte Carlo technique.

II. The UFO solution and its built-in error propagation method
Several unfold computer codes have appeared over the past 30 years (e.g.,

UNSPEC?, STAYSL!, YOGI’, UFO) to estimate F; from Egs. (3). The UFO code, chosen
for this work, is a matrix manipulation code. Instead of inverting Eqgs. (3) directly, UFO

minimizes the least squares residual x*(F, ,..., Fy),
2
(o, fas)
SORDY = = (D - RFY'W™(D - RF) , )
i=1 -

i

between the data D; and data predictions LR,F; by solving the normal equations RTW™'D =
RTW-'RF for the components F; . The solution method, due to Lawson and Hanson'!, is
similar to Smoular-Value-Decomposmon in which the inverse A = (R"TW™R) lR"W is not
needed. Even underdetermined systems (M < N) can be considered. In Eq. (5, right) the
spectral components F; and the data D; have been written, respectively, as 1 XM and IXN
(column) matrices. The MXM matrix W™ is diagonal with elements 1/0, where o7 is the
estimated variance of ¢, These random variables for the data are assumed to be independent
and normally distributed with zero mean. Additional fixed and inequality constraints, plus
weighted curve fits and smoothing equations, can also be added to the UFO formulation.
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For nonsingular problems, UFO propagates data uncertainties o; into its unfold as
o(F) = AWAT, where the matrix W is the covariance matrix'>"for the data (here by
assumption diagonal with elements %), A is the inverse matrix (which can be constructed
unless the normal equations are singular), and o(F) is the covariance matrix for the unfold.
Diagonal elements of ¢(F) are the variances ¢;° in the components F;,, while the j/* off-
diagonal elements are the covariances between the F; and F,.. Unfold components are
usually correlated (i.e., have non-zero covariances), even if the data are uncorrelated.

I1I. Monte Carlo Comparison Method

UFO is most often used as a "black box" operator, and so it is important to verify its
built-in, error propagation estimates independently. Since the Monte Carlo technique has
successfully been applied to similar uncertainty propagation problems**!*'%, we have applied
it to a non-trivial unfold problem and compared the resulting unfold uncetainty to the built-in
(nominal) UFO estimates, predicted with error matrices.

The Monte Carlo method was formulated as follows: (1) nominal data {A;} for the
unfold problem were simulated from a known spectral function; (2) it was assumed that the ™
simulated data were the population means for normal, independent distributions of possible
measurements with variances o that could be obtained in hypothetical experiments; (3) using
the GASDEV* algorithm, we constructed N,,,,, = 100 sets of perturbed data {D;}, each
drawn from the assumed distributions; (4) each perturbed data set was then inverted by the
UFO algorithm to obtain a set of perturbed spectral estimates {F;} (The distributions of data
thus produce distributions of spectral unfolds.); and (5) the averages (F,) and sample
variances s(F)? of the unfolded distributions were computed. These parameters correspond,
respectively, to the simple unfold Fj**" of the simulated data and to diagonal terms g;* of the
propagated error matrix. While 100 data sets is not large by Monte Carlo standards, this
number is sufficient to estimate variances to within 14% at the 95% confidence level”. In
this study each iteration of UFO took a couple of minutes on a 3600 series VAX computer.

IV. A Test Problem for UFO: Results and Discussion

For the UFO comparison, input data were simulated from an arbitrarily chosen, black
body spectrum (T = 10 keV) and a set of similar, but overlapping, response functions. Fig.
1 shows the known spectrum F(E), the set of response functions {R(E)}, and individual
spectrum-response products R(E)F(E). The response functions are non-zero only over a
finite energy range. Simulated data {A;} were obtained as in Egs. (1) by integrating the
spectrum-response products from E; = 0 to E, = 300 keV; these data vary by about 8 orders
of magnitude across the 10 channels. The data were also assumed to be uniformly uncertain
by 5% (i.e., o, = 0.05A). The unfold spectrum was approximated by 10 contiguous,
histogram basis functions (not shown) of unit height, the boundaries of which coincided with
the overlap points of the response functions and the domain of the problem. These
boundaries define a partition of the domain into unfold bins which were numbered like the
response functions.
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This problem was purposely chosen to be difficult for most unfold algorithms. For
example, numerical precision is expected to be a problem. That is, on many computers the
number of significant figures for single precision, floating point arithmetic is ~7. For this
problem, the least significant figure in data channel A, corresponds to the first significant
figure in A,, and linear combinations of the data may show round-off effects. The second
hurdle in this problem is the extreme skewness of the spectrum for bins j = 3 - 10 (tail
region). Here a significant fraction of the integral in each data channel comes from the
spectrum in the preceding bin, making off-diagonal terms significant.

Figures 2 and 3 show the result of solving this problem with the built-in UFO
algorithms. The histogram unfold F;*" of the simulated data and its estimated bounds (F*"
+0;) are illustrated in Fig. 2. The original spectrum is also shown for comparison. One
observes that the nominal unfold closely matches the known black body spectrum out to bin j
= 9. This result is probably due to the numerics issue, noted above, an interpretation
supported by the relatively large error bounds. (We show below that the location of such
disagreements depends on the unfold algorithm.) Fig. 3 shows the relative unfold
uncertainty o;/F/" in per cent (solid line). For the first few bins (where the spectrum is
largest) 5% data uncertainties translate into 5-10% unfold uncertainties; but as the bin energy™
increases, the unfold uncertainty rapidly increases. Such behavior is due to overlap of the
response functions and the declining tail region of the source spectrum. An anomalous break
in this pattern is again visible in bin j = 9.

The results of running UFO with Monte Carlo perturbations are also shown in Figs. 2
and 3. The solid dots in Fig. 2 represent the averages (F; ) over the distribution of unfolds
in the j-th energy bin. One notes good agreement with the nominal UFO unfold, even in the
seemingly anomalous bin j=9. There are no normalizations between the curves. Fig. 3
shows the corresponding ratios s; /(F; ). Again reasonable agreement is shown between the
two error propagation methods, both using the UFO unfold algorithm.

Table I compares directly the results of the two error propagation methods. The
nominal unfold and error matrix uncertainties agree with the corresponding Monte Carlo
estimates to within the expected resolution of a 100 element statistical sample (95%
confidence level), but there appears to be an unresolved bias of ~10% between the two
uncertainty estimates. Similar agreement (not shown) exists between the error matrix and
Monte Carlo estimates of the covariance between the spectral unfold components F; and F;..

To see if the unfold and error estimates are algorithm dependent, the sample problem
was also unfolded by direct inversion. That is, an inverse p was found for the response
matrix R in Egs. (3) and (4), using the SVD algorithm given by Press'*. The basis functions
were the same as in the UFO unfold. The unfold components for the direct inversion
method were then found by back-substitution: i.e.,F = pD, where the matrix notation has
again been used. Since R is tri-diagonal and non-negative, its inverse p is also nearly
diagonal with elements which decrease in (absolute) value away from the diagonal. The
unfold error matrix was computed as pWp for the same data error matrix W as above.
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Applying this direct inversion algorithm to the nominal data in this problem, one obtains the
unfold (Direct Inverse) in Fig. 4 and the unfold uncertainties ("X") in Fig. 5. The results of
the two UFO methods are also shown for comparison.” In the direct inversion algorithm, the
effects of round-off can be studied directly. For example, in Fig. 4 the direct inverse unfold
drifts away from the source spectrum without recovery at bin j = 8, as sums and differences
of large numbers rattle about. Similarly, the unfold uncertainty for the direct inverse (Fig.
5) decreases in bin j = 8 because the elements of p for this and higher energy bins no longer
significantly couple in contributions from the relatively large initial data channels. In this
example, all three unfold methods agree in unfold value and uncertainty up to about the 6-th
bin, in which the spectrum is down from peak by about 4 orders of magnitude.

These comparisons suggest that the nominal, unfold uncertainty predictions in the
UFO code are reasonable. At the 95% confidence level there is no reason to believe that the
results of the error matrix and Monte Carlo methods differ, although a possible 10% bias
was unresolved and may be algorithm dependent. The Monte Carlo method is also useful in
underdetermined problems, for which the error matrix does not exist. Efforts are underway
to speed up such computations.
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FIGURE CAPTIONS:

1. Known spectrum and response functions for the UFO test problem. The original black
body spectrum, from which data were simulated, is shown as a solid line. The
response functions R,(E) are shown as dashed lines at the bottom [i = 1,2,..., 10
from lowest to highest energy]. Spectrum-response products R(E)F(E) are shown as
thin dotted lines. =

2. Comparison of the original and unfolded spectra. The black body spectrum F(E)
is shown as a continuous dotted line, the nominal unfolded spectrum ¥; F/**"D(E) as a
piecewise-constant solid line, and the average of the Monte Carlo unfolds (F}) asa
solid dot at the center of each unfold bin. Also shown as piecewise-continuous
dashed lines are the unfold uncertainty bounds L,(Fj*™ 1;)D{(E), due to data
uncertainties (5%) and estimated with UFQ’s built-in error matrix method. The
logarithmic scale makes these error bounds appear asymmetric about the nominal
unfold; lower bounds are not visible in the last couple bins (highest energy) because
0 > F. -

3. Comparison of the relative unfold uncertainty for the two error propagation methods. The
piecewise-constant solid line indicates the ratio g; /Fj"™" (in %) from the error matrix
estimate, and the solid dots represent the ratio s(F; )/{F;) (in %) from the Monte

Carlo analysis, with 100 samples. The data were assumed to be uncertain by 5%.

4, Effect of a different unfold algorithm on the unfolded spectrum. Shown are
F(E) (continuous dotted line), the nominal unfolded spectrum from the UFO
algorithm (piecewise constant solid line, as in Fig. 2), and the unfold
(piecewise constant dashed line) from a direct inversion of Egs. (3) and (4).

5. Comparison of relative unfold uncertainty for different unfold algorithms. Relative
unfold uncertainties from UFO are shown as in Fig. 3. The relative unfold
uncertainty estimates with the direct inverse algorithm (error matrix) are shown as
"Xll'



Table I. Comparison of unfold estimates and uncertainties* derived by the Monte Carlo and
Error Matrix methods and shown as corresponding ratios.

Bin (F;)/F"" res.” s(F;)/ o; res.” Bin (F; )]F}’“’”‘ res.” s(F;) o; res.
1 1.0014 0.012 1.009 0.140 6 0.979 0.073 1.100 0.140
2 1.0007 0.015 1.130 0.140 7 1.021 0.201 1.100 0.140
3 1.0043 0.027 1.090 0.140 38 0.990 0.164 1.110 0.140
4 0.9993 0.032 1.040 0.140 9 1.413 3.903 1.120 0.140
5 1.0073 0.060 1.060 0.140 10 0.972 0.303 1.120 0.140
Notes:

a. The unfold estimate (F ) with associated uncertainty s(F; ) is obtained by applying the
Monte Carlo method to UFO. F" is the nominal UFO unfold from the K

simulated data;

gj

is then estlmated by the error matrix method, built into UFO.

b. Resolution here means the estimated uncertainty in the ratio (F )/F "om due to statistical
fluctuations in (F;) for 100 element samples and is determined by s(F; ) and
Student’s ¢ dlStflbU[lOﬂ (99 degrees of freedom, 95% confidence level Ref. 17).

c. Resolution here means the estimated uncertainty in the ratio s(F; )/ o; due to statistical
fluctuations in s(F; ) for 100 element samples and is determmed by the X
distribution (99 deorees of freedom, 95% confidence level, Ref. 17).




(A9Y) ABisuz uoloyd

Arb. Units

'y
'o _O - o
g - - - QO o

o gAY S L R R AR A L1 A ALY S R AL I
~
>

000!l
0000L
00000}

+
3 .
A )
: 0
----........ :_‘ Mgy,
~ ‘e,
~’l ‘.
.
L 4 N
o -
v unann® uuuuunuuulununuuuuunnnuaunnunnunul""
o :
-----..... :” (HIlllllllllllllll“lllllllllllllllll'llllllllllllll||lnnll||,,"',
~ ‘s
“~
" ’;‘\
s
'O‘ “\\
L d At
e A\ .lil""
- P P T N R TN R R T AR AR AR A
LY  § - l!llltll!l!llllllllNllllllllllllll!llllllln,,"
e ] ‘.
-1 Yot L
)
O = "‘ l““
wn” FTTIL
o "axnn" lnnnnillnlnuluunnnunnnunnunnnuuuuulnﬂ

- = '] . IO
---..... h " “""'ll,'
~ 2 %y
-,
ot
* A Y st
- "
--nnHﬂrn‘nnnuu:ununnllununnuununnuunll""'

XN N ...l;l;lllllll.lﬁllll!lllIllllllllllllllllllllllllllll...‘.’

l - ¥ [
~ 2 ",_ K
6, I = 3 o
.
o " + ““‘

- art
II-—\Hh"trn-nlnunl“lllnllnunnununnnlll"""

P ooy ] TORRBOONTININE NIt ITngy,
[ e e
~ L) re,

3,
PSS
* 93
-“ b et
-N'ﬂﬂﬂl1llllllllllllillllllllIl||llll“

b oo m R IIEI O ey,
- L ‘e,
-~
"
e’ s o

nnnﬂﬂﬂl’n’u:unu‘,'ul

00¢

(4]
.uul"‘

l...-...lLlLll.llll,’,"'
‘,

06¢
i
L *suj esuodsey

13
FEFTELTAMANS

(*dsey) X (wnujoedg)

000000}

wnJoadg Apog oeid

0000000}

00€

N




Spectrum (Arb.Units)

10000000
1000000
100000
10000
1000

100

10

0.1

0.01

rrinny o rrring - r N v rrig UL AL (L GO AR ML R

ﬂﬂ“"""”"-‘”l, [IN!

Ly

‘
L
‘,
,

T Nominal UFO Unfold
with 10 Bounds

lllll

Ave Monte Carlo Unfold

.
v
s, MmN
)

o

50 100 150 200 250
Photon Energy (keV)

300




(AeY) ABisauz uoloyd

0S¢ 00¢ 0SL 001 0S

00€

Relative Unfold Uncertainty (%)

Oo o—-: ON O‘Jo O_h
LY UL T TTHH R IR
- .- mc
2 >
_ O
D
| Z o
A =
()
1)
-y
- =
0
=
(nd
<
Q
S~
_n
=]
(=)
3
_ @
|

s 1y




Spectrum (Arb.Units)

a&

10000000

1000000

100000

10000

1000

‘e
[
‘
.

-,
0
’
)

100

10 Ave Monte Om:.o Unfold

Direct Inverse Unfold — |

0.1

CTTN T erriny e ey Py e el

0.01 _ _ _ _
50 100 150 200

Photon Energy (keV)

o

250

300




(A®Y) ABiauz ud;oud

0G¢ 00¢ 0SSt 001 0S

00€

Relative Unfold Uncertainty (%)

-y - - —h 8
=R o, =N Q, X
S 1 A B R R N U R B RN R RRY

N
o~
O
- o)
=i
(/)] o)
—
_n C
x 8
S V jas)
3 5| -
~ el
L <
'_'v
1
|
— Q.
;.
[¢))
e
5 -
| < -
(O] = 3
- o
w 3
T |
- X )

\



