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2. Executive Summary

The EFIT-AI project is creating a modern advanced equilibrium reconstruction code suitable for
tokamak experiments of burning plasmas. EFIT [1,2] was the first and is the most extensively
used equilibrium reconstruction code in the world. This project builds on the production-level
experience and adds key elements as follows. 1. A Model Order Reduction (MOR) version of the
two-dimensional (2D) Grad-Shafranov equation solver (EFIT-MORNN) using physics-informed
neural networks. 2. Improved optimization and data analysis capabilities using a Bayesian
framework enhanced with machine learning. 3. A MOR version of the three-dimensional (3D)
perturbed equilibrium reconstruction tool.

EFIT-MORNN has three goals: 1. As an
initial condition for the core EFIT solver to
enable fast full-GS solutions, 2. As a stand-
alone tool for real-time control of tokamak
plasmas, and 3. As part of a Bayesian
framework for equilibrium reconstruction.
For all three goals, accuracy and speed are of
primary importance. For accuracy, we are
interested in understanding the implications
of training on magnetics-only, magnetic +  Figure 1. Comparison of EFIT-MORNN left versus real-

Motional Stark Effect (MSE), and kinetic time EFIT right for a Super-H mode shot (DIII-D
EFITs as well as their impacts One discharge 179103) shows that the neural network is able

. . ) . to give more accurate flux values for approximately the
technique is to use high-resolution EFITs for  game computational time (~2 msec).

the training database (high accuracy), but

then train the neural network to learn sub-sampled equilibria for speed. This gives a neural network
that is more accurate than if we had trained with lower-resolution EFITs. EFIT-MORNN learns
to predict the poloidal flux function while satisfying force balance with the toroidal current density.
Both the flux prediction and constraint projection are learned using two neural networks trained
simultaneously. We employ a neural architecture search to discover neural networks that are
optimal in terms of both accuracy and computational efficiency, while leveraging the DeepHyper
package to train these models at-scale on leadership-class HPC systems. The preliminary success
of our neural networks is shown in Figure 1 where our inferred solution is more accurate that the
real-time version of EFIT.

The success of machine learning (ML) relies on large amounts of quality data. To enable this, an
EFIT-AI database has been assembled and curated: a collection of multiple equilibrium
reconstructions for a variety of tokamak discharges. The database features the entirety of the 2019
DIII-D campaign (approx. 2500 discharges) and contains three different types of EFIT
reconstructions: 1. with only magnetics constraints; 2. with magnetics + MSE constraints; and 3.
with bother user-generated and OMFIT-automated kinetic constraints (for a subset of shots). The
database is currently being used for training of EFIT-MORNN. To incorporate Findable,
Accessible, Interoperable, and Reusable (FAIR) data principles, the data was organized according
to the ITER IMAS (Integrated Modeling and Analysis Suite) data schema (ontology), and then
stored as self-descriptive HDF5 binary files that will be made publicly available.

The equilibrium reconstruction is an inverse problem that must deal with uncertainty and accuracy
throughout the process. Bayesian methods offer a compelling approach for this problem. Here,
we start by considering only the inference of Thomson temperature profiles using Gaussian
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Process Regression (GPR). GPR is a Bayesian method for inferring profiles based on input data.
Here, we present results investigating the use of a Student-T distribution of the likelihood
distribution and show how it can accurately handle outliers in the data [4]. We then contrast these
techniques with multiple traditional fitting methods. Bayesian methods are inherently a sampling-
of-probability-distribution-functions method. For multiple diagnostics, the sampling over
distribution functions can become expensive. We have demonstrated how machine learning can
enable efficient sampling to make the Bayesian approach tractable.

Part of the uncertainty in traditional equilibrium reconstruction is in the model itself; the Grad-
Shafranov equation assumes axisymmetry even though error fields, discrete coils, etc. are known
to introduce perturbations to this. To address this, we have developed a reduced model of 3D
perturbed equilibrium based on solutions from the 3D MHD code MARS-F. A database was
created, and singular value decomposition was used to reduce the data in our training session. By
training on this reduced data, we can efficiently and accurately capture three-dimensional effects
[5].

To make all these techniques ready in the production environment of burning plasmas, we have
made many improvements to the core EFIT solver. These improvements include clearly separating
out the device-specific coding, improving code portability, and improving thread-safety in
preparation for GPU-developments. To create the large database using automated tools while
maintaining quality, we have improved quality-of-equilibrium checks and enabled their use. We
have extensively improved the input and output to work with IMAS. Using extremely portable
OpenMP-offload directives, we have been able to improve the performance of EFIT using GPU
hardware. The most expensive computational kernel was made 65 times faster for an overall 50%
speed-up time of the code.

We made significant progress towards preparing equilibrium reconstruction for the burning plasma
era. This requires Bayesian analysis to maximize limited information and the use of neural nets
for fast evaluation. The details however require considerable effort because of the computational
cost and the balance between fast, accurate, and robust approaches. Finding the optimal balance
remains an outstanding issue.



3. Accomplishments

Tech-X has contributed in every phase of the project throughout its inception. In this report, we
detail only work performed in the last two years of the project by Tech-X. Earlier work is
summarized in the prior reports. We break the work down by categories.

Publications and conference presentations. Tech-X contributed to publications 1-4 listed
below within the past two years. Publication #1 is based on an invited talk at APS-DPP in 2023
and required significant effort to develop and publish. Publication #2 is an achievement because
it represents the use of cutting-edge machine learning techniques, and our goal was to present it in
a physics journal. Presenting technical machine learning work to a physics audience was
challenging. Presentations 3 and 4 are exciting avenues that hopefully can be pursued in other
work.  Tech-X contributions to this work was less involved but it’s exciting.

Two other notable presentations are the first two listed under Conference Presentations below.
The first is a summary of the project presented at the 29th IAEA Fusion Energy Conference (FEC
2023) in London.  Considerable competition exists internationally for this work and presenting
to an international audience was valuable. The second is an invited talk by Cihan Akcay that
provides a summary of many of the machine learning issues that we have learned throughout the
course of this work.

Integration of GPR work with OMFIT. Prior years’ work developed GPR for use in Thomson
scattering data from an empirical point of view where different GPR techniques were assessed.
Here, we upgraded our prior tools to make it more robust and integrated it with the OMFIT tool
base so that any user can perform GPR analysis as part of profile fitting. Work was ongoing to
do a more systematic empirical study with Columbia when funding ended.

Work on GPR for magnetic signals. The most fundamental EFIT mode is the magnetic only
EFIT. At the time of the writing of the original proposal, we expected it to be relatively
straightforward based on prior work in this area. However, as we dug into the prior work in more
detail, we realized that all of them were significantly limited. In this period of performance, we
made progress on a more general approach based on the success of the neural network model.
This is extensively detailed in the next section.



4. Optimization for Real Time Inference
A. Profiling and Optimizing the Python inference routine

The EFIT-Prime model was developed and tested using Tensorflow and associated ML libraries.
These libraries are optimized for efficient batched evaluation of a large datasets (high throughput),
however real time applications require fast (low latency) inference on individual time slices. As
first step towards applying EFIT-Prime for real time applications we performed profiling and
optimization of the full EFIT-Prime workflow. This includes the pre-processing of the data and
evaluation of the ML models. The works in collaboration with our partners at ANL and GA, who
did additional profiling and optimization of the ML models as part of the FES 2024 Theory and
Simulation Performance target.

Before focusing on profiling, it’s helpful to briefly review the EFIT-Prime model. The first step in
the model processes the magnetic diagnostics. During the pre-processing step the magnetic
diagnostics are first normalized and then projected onto a RZ grid. A smoothing filer is then
applied that averages over overlapping diagnostics. Then the principal component transom is
applied to the filtered data, and the first 30 principal components are retained.

After the pre-processing step, the principal components are used as inputs to the EFIT-Prime NAS
model. The NAS Model is an ensemble composed of five optimized neural networks. The
networks are independent and compute both ¢ and jiwr. The NAS model then uses the combined
output to compute the mean and quantify the uncertainty for both 1 and jor.

The subsequent timings in this subsection are from a 16-core AMD Ryzen 9 5950X CPU with
32GB RAM performing inference on the full model without any pruning or quantization applied.
First, we consider the cost of of preparing the magnetic signals and projecting them on to the
principal components. The batched computation projected the signals onto the RZ grid and applied
the smoothing filter in real-time. These steps leveraged vectorization to get good performance.
However, these two steps can be combined with the projection onto the principal components into
an single Affine transformation. This transformation is computed using a matrix vector product
followed by vector addition. The advantage is that the transformation matrix and offset vector only
must be computed once. The cost of computing the matrix and offset vector takes on average
107ms. The subsequent cost of of transforming the signals on takes 38us per time slice. This
highlights the importance of pre-computing the transformation for real-time. The cost of
transforming the signals is essentially negligible.

We now consider the cost of the ensemble model inference. Again, this process is broken into two
steps. The first is to read and setup on the five NAS models, and the second is running the inference
on the models. The time it takes to read and setup the models takes on average about 1.05s, but
this initialization is only needed once. The cost of running the inference of a single time step is a
little more nuanced. On average it takes about 107ms to run the inference on all five models. The
first time the five models are analyzed there is an additional initialization cost of 912m:s.

These timings are computed by evaluating each of the five models in the NAS ensemble in serial.
The evaluation of the models is independent and this step is trivially parallelizable. The average
time to evaluate a time slice for each model is 21.4ms and ranges from 20ms to 23.5ms. Assuming
efficient parallelization on similar hardware the cost to run the inference on a single time slice,
which will be limited by the slowest model evaluation, is around 23.5ms.

Ideally, real time inference requires around 10ms inference. These initial performance studies
indicate real time is plausible, but roughly a factor of two performance improvement is needed.
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We expect some benefit from using more modern hardware. Additional paths to improved
performance include exploring the const of inferring on small grids (here 129x129 grids were
used), optimizing the NN inference using standard techniques (pruning, quantization, distillation,
and decomposition), and exploring NN libraries optimized for low latency (real-time) applications.

B. Development of Bootstrapping
In this section we develop the tools needed to address two questions:

e How does EFIT-Prime compare to traditional inference-based reconstructions
e How does EFIT-Prime behave if a diagnostic produces a faulty signal

The EFIT-Prime model is trained using roughly 145000 EFIT “magnetics only” equilibria
generated using roughly 800 discharges from the 2019 DIIID experimental campaign. The EFIT-
Prime neural networks are trained by comparing the inferred 1 and J.or on a 2D mesh with the
EFIT inferred values on the same mesh. A Prime model is considered a “good fit” based on how
well it agrees with the EFIT prediction. However, from a experiment standpoint we really want to
know how well the EFIT-Prime prediction agrees with the measure data. If The Prime prediction
agrees with the EFIT prediction but both show large data mismatch, then that is ultimately a “bad-
fit“. To make this comparison we need to compute synthetic diagnostics that model the real
diagnostics on the experiment. These diagnostics allow for a direct calculation of the data-
mismatch (the difference between a measured diagnostic and a modeled diagnostic) and
subsequent measures of the quality of fit (e.g. x?). The ability of calculated the synthetic
diagnostics enables a direct apples-apples comparison between EFIT-Prime, experimental data,
and reconstructions computed using alternative methods.

The ability to compute synthetic diagnostics also enables the possibility to bootstrap the EFIT-
Prime model. The model is trained using a collection of 145 diagnostic measurements (76 magnetic
probes, 44 flux loops, the measured plasma current, 6 Ohmic coil currents, and 18 poloidal field
coil currents). The model is trained assuming that all diagnostics are available and provide reliable
measurements. However, in experiments diagnostics often drop out or provided erroneous data.
Thus it’s important to characterize how sensitive the model is to faulty data, and explore methods
to correct for that data. One possible method to correct for faulty data is to bootstrap the Prime
model starting with a few bad data points. The idea is to first call the model once with the faulty
data, and then compute synthetic data from the inferred data. Then call the model a second data
replacing faulty diagnostics with the synthetic data.

Synthetic Magnetic Probe Data

Normalized Synthetic Data




C. Characterizing the magnetic PCA

EFIT-Prime uses 145 magnetic diagnostics to infer i and J:r. These diagnostics are pre-processed
before inputted into the ensemble neural network model. The pre-processing first normalizes the
data. Then the data is projected onto a 2D grid and smoothing is used to averaging overlapping
signals. Finally, principal component analysis is applied to the smoothed data, and the first 30
components are retained for subsequent analysis. In this section we explore the result of this
analysis, and how sensitive the principal components are to in the diagnostics. For analysis we use
DIII-D discharge 180087 and consider a time slice half-way through the discharge (3.58s).
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Figure 1a shows the span of the 30 components on the standard EFIT-Prime “pca-mesh.” This is
a 129x129 grid that is enlarged relative to the EFIT grid. The regions within the dots represent the
RZ location of diagnostics (the total plasmas current is assumed to be located at the mesh center).
The Regions that span multiple grid locations indicate places where diagnostics overlap, and their
measured singles are averaged but the smoothing. Diagnostics that are located at the same R-Z



location but different toroidal planes are also averaged. One of the motivations for using a the 2D
mesh was to enable the PCA to average adjacent diagnostics. The averaging should in principle
make the model more robust to faulty data. However, due the high-resolution mesh used here,
there is little overlap and little averaging is performed. Future work should focus on reducing the
resolution of the pca-mesh to test if the averaging impacts the sensitivity to faulty data.

The 2D representation of the measurements allows for a physical analysis of the different pca
components. Figures 1b and 1c show the Ist and 2nd components. The first components shows a
polarity in the radial direction. Measurements on the outboard side are positive, and those on the
inboard side are negative. This suggests that this component is capturing the radial shift of the
plasma. The 2nd components shows a symmetric response. The associated diagnostics all have the
same sign. It’s interpretation is less clear, but it could capture changes in the plasma inductance.
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Figure 4 shows the evolution of the first 10 principal components over the course of discharge
180087. This figure illustrates several features. First the components are order by amplitude. The
amplitude of the first for components is larger than the amplitude of the later components. Second,
large changes are visible in the first few components. These changes represent different phases of
the discharge (start-up, I-mode, h-mode, shut-down). In contrast the higher order components show
less variation and evolve smoothly throughout the discharge.

Figure 5 shows the sensitivities to the principal components amplitudes to changes in an individual
diagnostic. This is computed for by interdependently varying each signal by 50%. Each signal is
both increased and decreased by 50%. In Figure 5 the diagnostics are ordered as follows. Signals
1-76 are magnetic probes, signals 77-120 are flux loops, 121 is the total plasma current, 122-127
are the ohmic coil currents, and 128-145 are the poloidal field coil currents. The figure indicates
that the principal components are most sensitivities to a changes in the poloidal field coils. The
50% changes in the individual flux loop signals result similar changes in the principal component
amplitudes. However, the component amplitudes are much less sensitive to changes in the other
diagnostics. The 50% changes in the magnetic probe signals on results in a change of a few percent
or less in the component amplitudes. Based on this analysis, we suspect that the EFIT-Prime model
should be robust to changes individual faulty magnetic probe and coil current diagnostics.
However, faulty flux loop measurements provide a great concern.

D. Future directions

We ran out of funding before this work was completed, so there are obvious next steps. First is to
compare the synthetic data generated from the EFIT-Prime prediction with experimental data. This
can be used to compare EFIT-Prime with other reconstruction methods (both traditional and ML
based). Second, we want to explore the sensitivity of the full EFIT-Prime model to diagnostic
errors. The preceding analysis only consider the sensitivity of the input principal components.



Finally, we want to test the viability of bootstrapping the EFITPrime model. Note that for
magnetics only reconstruction one could generate reasonable surrogate data using simple models
of the plasma current and coil currents. However, our goal is real time kinetic reconstitution, where
such simple surrogates are not as easily to computed.
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