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2. Executive Summary 
The EFIT-AI project is creating a modern advanced equilibrium reconstruction code suitable for 
tokamak experiments of burning plasmas.  EFIT [1,2] was the first and is the most extensively 
used equilibrium reconstruction code in the world.  This project builds on the production-level 
experience and adds key elements as follows.  1. A Model Order Reduction (MOR) version of the 
two-dimensional (2D) Grad-Shafranov equation solver (EFIT-MORNN) using physics-informed 
neural networks. 2. Improved optimization and data analysis capabilities using a Bayesian 
framework enhanced with machine learning.  3. A MOR version of the three-dimensional (3D) 
perturbed equilibrium reconstruction tool.   
EFIT-MORNN has three goals: 1. As an 
initial condition for the core EFIT solver to 
enable fast full-GS solutions, 2. As a stand-
alone tool for real-time control of tokamak 
plasmas, and 3. As part of a Bayesian 
framework for equilibrium reconstruction.   
For all three goals, accuracy and speed are of 
primary importance.   For accuracy, we are 
interested in understanding the implications 
of training on magnetics-only, magnetic + 
Motional Stark Effect (MSE), and kinetic 
EFITs as well as their impacts.   One 
technique is to use high-resolution EFITs for 
the training database (high accuracy), but 
then train the neural network to learn sub-sampled equilibria for speed. This gives a neural network 
that is more accurate than if we had trained with lower-resolution EFITs.   EFIT-MORNN learns 
to predict the poloidal flux function while satisfying force balance with the toroidal current density. 
Both the flux prediction and constraint projection are learned using two neural networks trained 
simultaneously. We employ a neural architecture search to discover neural networks that are 
optimal in terms of both accuracy and computational efficiency, while leveraging the DeepHyper 
package to train these models at-scale on leadership-class HPC systems. The preliminary success 
of our neural networks is shown in Figure 1 where our inferred solution is more accurate that the 
real-time version of EFIT. 
The success of machine learning (ML) relies on large amounts of quality data.  To enable this, an 
EFIT-AI database has been assembled and curated: a collection of multiple equilibrium 
reconstructions for a variety of tokamak discharges. The database features the entirety of the 2019 
DIII-D campaign (approx. 2500 discharges) and contains three different types of EFIT 
reconstructions: 1. with only magnetics constraints; 2. with magnetics + MSE constraints; and 3. 
with bother user-generated and OMFIT-automated kinetic constraints (for a subset of shots). The 
database is currently being used for training of EFIT-MORNN. To incorporate Findable, 
Accessible, Interoperable, and Reusable (FAIR) data principles, the data was organized according 
to the ITER IMAS (Integrated Modeling and Analysis Suite) data schema (ontology), and then 
stored as self-descriptive HDF5 binary files that will be made publicly available.  
The equilibrium reconstruction is an inverse problem that must deal with uncertainty and accuracy 
throughout the process.   Bayesian methods offer a compelling approach for this problem. Here, 
we start by considering only the inference of Thomson temperature profiles using Gaussian 

 
Figure 1.  Comparison of EFIT-MORNN left versus real-
time EFIT right for a Super-H mode shot (DIII-D 
discharge 179103) shows that the neural network is able 
to give more accurate flux values for approximately the 
same computational time (~2 msec). 
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Process Regression (GPR).  GPR is a Bayesian method for inferring profiles based on input data.  
Here, we present results investigating the use of a Student-T distribution of the likelihood 
distribution and show how it can accurately handle outliers in the data [4].   We then contrast these 
techniques with multiple traditional fitting methods.  Bayesian methods are inherently a sampling-
of-probability-distribution-functions method.  For multiple diagnostics, the sampling over 
distribution functions can become expensive.   We have demonstrated how machine learning can 
enable efficient sampling to make the Bayesian approach tractable. 
Part of the uncertainty in traditional equilibrium reconstruction is in the model itself; the Grad-
Shafranov equation assumes axisymmetry even though error fields, discrete coils, etc. are known 
to introduce perturbations to this.  To address this, we have developed a reduced model of 3D 
perturbed equilibrium based on solutions from the 3D MHD code MARS-F.   A database was 
created, and singular value decomposition was used to reduce the data in our training session.  By 
training on this reduced data, we can efficiently and accurately capture three-dimensional effects 
[5]. 
To make all these techniques ready in the production environment of burning plasmas, we have 
made many improvements to the core EFIT solver.  These improvements include clearly separating 
out the device-specific coding, improving code portability, and improving thread-safety in 
preparation for GPU-developments.   To create the large database using automated tools while 
maintaining quality, we have improved quality-of-equilibrium checks and enabled their use.  We 
have extensively improved the input and output to work with IMAS.   Using extremely portable 
OpenMP-offload directives, we have been able to improve the performance of EFIT using GPU 
hardware.   The most expensive computational kernel was made 65 times faster for an overall 50% 
speed-up time of the code. 
We made significant progress towards preparing equilibrium reconstruction for the burning plasma 
era.   This requires Bayesian analysis to maximize limited information and the use of neural nets 
for fast evaluation.    The details however require considerable effort because of the computational 
cost and the balance between fast, accurate, and robust approaches.   Finding the optimal balance 
remains an outstanding issue. 
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3. Accomplishments 
Tech-X has contributed in every phase of the project throughout its inception.   In this report, we 
detail only work performed in the last two years of the project by Tech-X.   Earlier work is 
summarized in the prior reports.   We break the work down by categories. 
Publications and conference presentations.     Tech-X contributed to publications 1-4 listed 
below within the past two years.   Publication #1 is based on an invited talk at APS-DPP in 2023 
and required significant effort to develop and publish.   Publication #2 is an achievement because 
it represents the use of cutting-edge machine learning techniques, and our goal was to present it in 
a physics journal.   Presenting technical machine learning work to a physics audience was 
challenging.   Presentations 3 and 4 are exciting avenues that hopefully can be pursued in other 
work.     Tech-X contributions to this work was less involved but it’s exciting.     
Two other notable presentations are the first two listed under Conference Presentations below.  
The first is a summary of the project presented at the 29th IAEA Fusion Energy Conference (FEC 
2023) in London.     Considerable competition exists internationally for this work and presenting 
to an international audience was valuable.  The second is an invited talk by Cihan Akcay that 
provides a summary of many of the machine learning issues that we have learned throughout the 
course of this work. 
Integration of GPR work with OMFIT.    Prior years’ work developed GPR for use in Thomson 
scattering data from an empirical point of view where different GPR techniques were assessed.   
Here, we upgraded our prior tools to make it more robust and integrated it with the OMFIT tool 
base so that any user can perform GPR analysis as part of profile fitting.    Work was ongoing to 
do a more systematic empirical study with Columbia when funding ended. 
Work on GPR for magnetic signals.   The most fundamental EFIT mode is the magnetic only 
EFIT.    At the time of the writing of the original proposal, we expected it to be relatively 
straightforward based on prior work in this area.   However, as we dug into the prior work in more 
detail, we realized that all of them were significantly limited.    In this period of performance, we 
made progress on a more general approach based on the success of the neural network model.   
This is extensively detailed in the next section. 
 
  



 

 -5- 

4. Optimization for Real Time Inference 

A. Profiling	and	Optimizing	the	Python	inference	routine 
The EFIT-Prime model was developed and tested using Tensorflow and associated ML libraries. 
These libraries are optimized for efficient batched evaluation of a large datasets (high throughput), 
however real time applications require fast (low latency) inference on individual time slices. As 
first step towards applying EFIT-Prime for real time applications we performed profiling and 
optimization of the full EFIT-Prime workflow. This includes the pre-processing of the data and 
evaluation of the ML models. The works in collaboration with our partners at ANL and GA, who 
did additional profiling and optimization of the ML models as part of the FES 2024 Theory and 
Simulation Performance target. 
Before focusing on profiling, it’s helpful to briefly review the EFIT-Prime model. The first step in 
the model processes the magnetic diagnostics. During the pre-processing step the magnetic 
diagnostics are first normalized and then projected onto a RZ grid. A smoothing filer is then 
applied that averages over overlapping diagnostics. Then the principal component transom is 
applied to the filtered data, and the first 30 principal components are retained. 
After the pre-processing step, the principal components are used as inputs to the EFIT-Prime NAS 
model. The NAS Model is an ensemble composed of five optimized neural networks. The 
networks are independent and compute both ψ	and jtor. The NAS model then uses the combined 
output to compute the mean and quantify the uncertainty for both ψ	and jtor. 
The subsequent timings in this subsection are from a 16-core AMD Ryzen 9 5950X CPU with 
32GB RAM performing inference on the full model without any pruning or quantization applied. 
First, we consider the cost of of preparing the magnetic signals and projecting them on to the 
principal components. The batched computation projected the signals onto the RZ grid and applied 
the smoothing filter in real-time. These steps leveraged vectorization to get good performance. 
However, these two steps can be combined with the projection onto the principal components into 
an single Affine transformation. This transformation is computed using a matrix vector product 
followed by vector addition. The advantage is that the transformation matrix and offset vector only 
must be computed once. The cost of computing the matrix and offset vector takes on average 
107ms. The subsequent cost of of transforming the signals on takes 38µs per time slice. This 
highlights the importance of pre-computing the transformation for real-time. The cost of 
transforming the signals is essentially negligible. 
We now consider the cost of the ensemble model inference. Again, this process is broken into two 
steps. The first is to read and setup on the five NAS models, and the second is running the inference 
on the models. The time it takes to read and setup the models takes on average about 1.05s, but 
this initialization is only needed once. The cost of running the inference of a single time step is a 
little more nuanced. On average it takes about 107ms to run the inference on all five models. The 
first time the five models are analyzed there is an additional initialization cost of 912ms. 
These timings are computed by evaluating each of the five models in the NAS ensemble in serial. 
The evaluation of the models is independent and this step is trivially parallelizable. The average 
time to evaluate a time slice for each model is 21.4ms and ranges from 20ms to 23.5ms. Assuming 
efficient parallelization on similar hardware the cost to run the inference on a single time slice, 
which will be limited by the slowest model evaluation, is around 23.5ms. 
Ideally, real time inference requires around 10ms inference. These initial performance studies 
indicate real time is plausible, but roughly a factor of two performance improvement is needed. 
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We expect some benefit from using more modern hardware. Additional paths to improved 
performance include exploring the const of inferring on small grids (here 129x129 grids were 
used), optimizing the NN inference using standard techniques (pruning, quantization, distillation, 
and decomposition), and exploring NN libraries optimized for low latency (real-time) applications. 

B. Development of Bootstrapping 
In this section we develop the tools needed to address two questions:  

• How does EFIT-Prime compare to traditional inference-based reconstructions 

• How does EFIT-Prime behave if a diagnostic produces a faulty signal 

The EFIT-Prime model is trained using roughly 145000 EFIT “magnetics only” equilibria 
generated using roughly 800 discharges from the 2019 DIIID experimental campaign. The EFIT-
Prime neural networks are trained by comparing the inferred ψ	and Jtor	on a 2D mesh with the 
EFIT inferred values on the same mesh. A Prime model is considered a “good fit” based on how 
well it agrees with the EFIT prediction. However, from a experiment standpoint we really want to 
know how well the EFIT-Prime prediction agrees with the measure data. If The Prime prediction 
agrees with the EFIT prediction but both show large data mismatch, then that is ultimately a “bad-
fit“. To make this comparison we need to compute synthetic diagnostics that model the real 
diagnostics on the experiment. These diagnostics allow for a direct calculation of the data-
mismatch (the difference between a measured diagnostic and a modeled diagnostic) and 
subsequent measures of the quality of fit (e.g. χ2). The ability of calculated the synthetic 
diagnostics enables a direct apples-apples comparison between EFIT-Prime, experimental data, 
and reconstructions computed using alternative methods. 
The ability to compute synthetic diagnostics also enables the possibility to bootstrap the EFIT-
Prime model. The model is trained using a collection of 145 diagnostic measurements (76 magnetic 
probes, 44 flux loops, the measured plasma current, 6 Ohmic coil currents, and 18 poloidal field 
coil currents). The model is trained assuming that all diagnostics are available and provide reliable 
measurements. However, in experiments diagnostics often drop out or provided erroneous data. 
Thus it’s important to characterize how sensitive the model is to faulty data, and explore methods 
to correct for that data. One possible method to correct for faulty data is to bootstrap the Prime 
model starting with a few bad data points. The idea is to first call the model once with the faulty 
data, and then compute synthetic data from the inferred data. Then call the model a second data 
replacing faulty diagnostics with the synthetic data. 

 



 

 -7- 

C. Characterizing the magnetic PCA 
EFIT-Prime uses 145 magnetic diagnostics to infer ψ	and Jtor. These diagnostics are pre-processed 
before inputted into the ensemble neural network model. The pre-processing first normalizes the 
data. Then the data is projected onto a 2D grid and smoothing is used to averaging overlapping 
signals. Finally, principal component analysis is applied to the smoothed data, and the first 30 
components are retained for subsequent analysis. In this section we explore the result of this 
analysis, and how sensitive the principal components are to in the diagnostics. For analysis we use 
DIII-D discharge 180087 and consider a time slice half-way through the discharge (3.58s). 

 
Figure 1a shows the span of the 30 components on the standard EFIT-Prime “pca-mesh.” This is 
a 129x129 grid that is enlarged relative to the EFIT grid. The regions within the dots represent the 
RZ location of diagnostics (the total plasmas current is assumed to be located at the mesh center). 
The Regions that span multiple grid locations indicate places where diagnostics overlap, and their 
measured singles are averaged but the smoothing. Diagnostics that are located at the same R-Z 
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location but different toroidal planes are also averaged. One of the motivations for using a the 2D 
mesh was to enable the PCA to average adjacent diagnostics. The averaging should in principle 
make the model more robust to faulty data. However, due the high-resolution mesh used here, 
there is little overlap and little averaging is performed. Future work should focus on reducing the 
resolution of the pca-mesh to test if the averaging impacts the sensitivity to faulty data. 
The 2D representation of the measurements allows for a physical analysis of the different pca 
components. Figures 1b and 1c show the 1st and 2nd components. The first components shows a 
polarity in the radial direction. Measurements on the outboard side are positive, and those on the 
inboard side are negative. This suggests that this component is capturing the radial shift of the 
plasma. The 2nd components shows a symmetric response. The associated diagnostics all have the 
same sign. It’s interpretation is less clear, but it could capture changes in the plasma inductance. 

 
Figure 4 shows the evolution of the first 10 principal components over the course of discharge 
180087. This figure illustrates several features. First the components are order by amplitude. The 
amplitude of the first for components is larger than the amplitude of the later components. Second, 
large changes are visible in the first few components. These changes represent different phases of 
the discharge (start-up, l-mode, h-mode, shut-down). In contrast the higher order components show 
less variation and evolve smoothly throughout the discharge. 
Figure 5 shows the sensitivities to the principal components amplitudes to changes in an individual 
diagnostic. This is computed for by interdependently varying each signal by 50%. Each signal is 
both increased and decreased by 50%. In Figure 5 the diagnostics are ordered as follows. Signals 
1-76 are magnetic probes, signals 77-120 are flux loops, 121 is the total plasma current, 122-127 
are the ohmic coil currents, and 128-145 are the poloidal field coil currents. The figure indicates 
that the principal components are most sensitivities to a changes in the poloidal field coils. The 
50% changes in the individual flux loop signals result similar changes in the principal component 
amplitudes. However, the component amplitudes are much less sensitive to changes in the other 
diagnostics. The 50% changes in the magnetic probe signals on results in a change of a few percent 
or less in the component amplitudes. Based on this analysis, we suspect that the EFIT-Prime model 
should be robust to changes individual faulty magnetic probe and coil current diagnostics. 
However, faulty flux loop measurements provide a great concern. 

D. Future directions 
We ran out of funding before this work was completed, so there are obvious next steps. First is to 
compare the synthetic data generated from the EFIT-Prime prediction with experimental data. This 
can be used to compare EFIT-Prime with other reconstruction methods (both traditional and ML 
based). Second, we want to explore the sensitivity of the full EFIT-Prime model to diagnostic 
errors. The preceding analysis only consider the sensitivity of the input principal components. 
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Finally, we want to test the viability of bootstrapping the EFITPrime model. Note that for 
magnetics only reconstruction one could generate reasonable surrogate data using simple models 
of the plasma current and coil currents. However, our goal is real time kinetic reconstitution, where 
such simple surrogates are not as easily to computed. 
 
  



 

 -10- 

5. Publications   
 

A. Journal Articles since Beginning of Project 
 
1. Kruger, S.E., Leddy, J., Howell, E.C., Madireddy, S., Akcay, C., Bechtel Amara, T., 

McClenaghan, J., Lao, L.L., Orozco, D., Smith, S.P. and Sun, X., 2024. Thinking Bayesian for 
plasma physicists. Physics of Plasmas, 31(5). 

2. Madireddy, S., Akçay, C., Kruger, S.E., Amara, T.B., Sun, X., McClenaghan, J., Koo, J., 
Samaddar, A., Liu, Y., Balaprakash, P. and Lao, L.L., 2024. EFIT-Prime: Probabilistic and 
physics-constrained reduced-order neural network model for equilibrium reconstruction in 
DIII-D. Physics of Plasmas, 31(9). 

3. McClenaghan, J., Akçay, C., Amara, T.B., Sun, X., Madireddy, S., Lao, L.L., Kruger, S.E. and 
Meneghini, O.M., 2024. Augmenting machine learning of Grad–Shafranov equilibrium 
reconstruction with Green's functions. Physics of Plasmas, 31(8). 

4. Sun, X., Akcay, C., Amara, T.B., Kruger, S.E., Lao, L.L., Liu, Y., Madireddy, S. and 
McClenaghan, J., 2024. Impact of various DIII-D diagnostics on the accuracy of neural 
network surrogates for kinetic EFIT reconstructions. Nuclear Fusion, 64(8), p.086065. 

5. L.L. Lao, S. Kruger, C. Akcay, P. Balaprakash, T.A. Bechtel, E. Howell, J. Koo, J. Leddy, M. 
Leinhauser, Y.Q. Liu, S. Madireddy, J. Meclenaghan, D. Orozco, A. Pankin, D. Schissel, S. 
Smith, X. Sun, and S. Williams, "Application of machine learning and artificial intelligence to 
extend EFIT equilibrium reconstruction", Plasma Phys. Control. Fusion, Volume 64, 074001, 
2022. 

6. Leddy, J., Madireddy, S., Howell, E. and Kruger, S., 2022. Single Gaussian process method 
for arbitrary tokamak regimes with a statistical analysis. Plasma Physics and Controlled 
Fusion, 64(10), p.104005. 

7. Liu, Y., Akcay, C., Lao, L.L. and Sun, X., 2022. Surrogate models for plasma displacement 
and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks. Nuclear 
Fusion, 62(12), p.126067. 

 
B. Conference Paper/Presentation (in last two years): 

 
S. Kruger, L.L. Lao, C. Akcay, O. Antepara, T.A. Bechtel, E. Howell J. Leddy, Y.Q. Liu, S. 
Madireddy, J. McClenaghan, D. Orozco, A. Pankin, D. Schissel, S.P. Smith, X. Sun, S. 
Williams, Improving the Accuracy and Speed of Equilibrium Reconstructions of Tokamak 
Plasmas Using Machine Learning, presented at 29th IAEA Fusion Energy Conference (FEC 
2023) 16-21 October 2023, London, United Kingdom. 

Akcay, C., Madireddy, S., Sun, X., Bechtel, T., McClenaghan, J., Samaddar, A., Kruger, S., Lao, 
L., Liu, Y. and Team, E.A., 2023. EFIT-AI neural network surrogates for magnetic, MSE, and 
kinetic equilibrium reconstruction. In APS Division of Plasma Physics Meeting Abstracts (Vol. 
2023, pp. TI01-006). 
Leddy, J., Howell, E., Kruger, S., Madireddy, S., Akcay, C., Bechtel, T., Lao, L., McClenaghan, 
J., Orozco, D., Smith, S. and Pankin, A., 2023. Gaussian Process Regression for Equilibrium 



 

 -11- 

Reconstruction in DIII-D and ITER Plasmas. In APS Division of Plasma Physics Meeting 
Abstracts (Vol. 2023, pp. JO09-011). 
Bechtel, T., Orozco, D., Kruger, S., Pankin, A., McClenaghan, J., Lao, L., Akcay, C., Sun, X., 
Smith, S. and Meneghini, O., 2023. Production of a FAIR Tokamak Equilibria Database for 
Analysis and Machine Learning. In APS Division of Plasma Physics Meeting Abstracts (Vol. 
2023, pp. JO09-012). 
Amara, T., Akcay, C., Sun, X., McClenaghan, J., Madireddy, S., Samaddar, A., Kruger, S., 
Pankin, A., Liu, Y., Howell, E. and Antepara, O., 2024. Improved Surrogate Models for DIII-D 
Equilibrium Reconstruction and Tools for Uncertainty Analysis Delivered by EFIT-AI for the 
Theory and Simulation Performance Target. Bulletin of the American Physical Society. 
 
 


