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vectordb = Chroma(persist_directory=r"C:\Users\Travis\Downloads\LDRD_Hydrogen_LLM_Analysis-main\LDRD_Hydrogen_LLM_Analysis-main\chroma_db_all", embeddir [8]: answer MV E FP R R A 3
retriever = vectordb.as_retriever() [8]: {'query': 'What are the physico-chemical conditions for geologic hydrogen generation?’,

prompt = PromptTemplate.from_template(template) "result': "The physico-chemical conditions for geologic hydrogen generation involve a series of processes that occur within the Earth's crust, particul

chain = RetrievalQA.from_chain_type( arly in the subsurface environment. Here are some of the key conditions:\n\nl. Temperature: Hydrogen generation occurs primarily within the temperature

CARBON FOOTPRINT COMPARISON (2021) iiz:i:;rwetriever, o (o e s (P i e (5 B range of 108-400°C (212-752°F), with optimal temperatures around 200-300°C. This is because hydrogen formation reactions are exothermic and require heat

to proceed.\n2. Pressure: Hydrogen generation occurs at pressures ranging from 1-1@ kbar (100-1000 atmospheres), with higher pressures favoring the form
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. . . ation of more stable hydrogen compounds.\n3. Water availability: Hydrogen generation requires water as a reactant, so it is essential to have a source o =
return_source_documents=True, # including source documents in output L i . R . ) . . .
. o - e f water within the subsurface environment. This can come from various sources, including seawater, groundwater, or atmospheric moisture.\n4. Mineralogy:
chain_type kwargs={'prompt': prompt} # customizing the prompt K . K . K . L . . .
y The mineral composition of the subsurface environment plays a crucial role in hydrogen generation. Serpentinizing minerals like olivine and pyroxene are
e query = "You are an AI that answers questions based on the included documents. \ particularly effective at generating hydrogen through their reaction with water.\n5. pH: The pH of the subsurface environment can affect the speciation
Coal Because of this you have expert knowlege on Naturally Occuring Hydrogen. You\ of hydrogen compounds. Hydrogen formation reactions are more favorable in a neutral to alkaline environment (pH 6-9).\n6. Oxygen availability: Hydrogen
are an LLM able to answer a variety of questions about naturally occuring\ generation is favored by low oxygen levels within the subsurface environment, as oxygen can react with hydrogen compounds and reduce their stability.\n
1 27 geologic hydrogen. Please come up with 3 or 4 acronyms that that you like that will become\ 7. Catalysts: The presence of catalysts like iron and nickel can enhance hydrogen formation reactions by providing a surface for reaction to occur on.\n
your marketable name.” 8. Reaction rates: Hydrogen generation occurs through a series of complex reactions invelving mineral surfaces, water, and heat. The rate of these react -
SMR [ #matching _docs = vectordb.similarity_search(query) ions is influenced by factors such as temperature, pressure, and the availability of reactants.\n9. Geochemical cycling: Hydrogen generated within the s Y H demand + C foot rl nt 9 natu ral H I I
answer = chain({'query’: query}) ubsurface environment can be cycled through the Earth's crust via hydrothermal fluids, which can transport it to other locations for storage or use.\nl 2 2 B
11 4 oalizil e sl iE ©. Microbial activity: Microorganisms can play a role in hydrogen generation by catalyzing reactions involving hydrogen compounds and influencing the sp
. eciation of these compounds within the subsurface environment.\n\nThese physico-chemical conditions interact complexly to create the optimal environment
SMR & & for geologic hydrogen generation. Understanding these conditions is essential for managing and optimizing hydrogen production in various subsurface sett
\ query = "Rank the top five geologic mechanisms, for example, serpentinization, for natural hydrogen production by volumetric production potential.” ings." u u u
#matching_docs = vectordb.similarit h 2 . -
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. answer = chain({'query': query}) 2 "

B., 2002. VolatileCalc: a silicate melt-H 20-CO2solution \nmodel written in Visual Basic for excel. Comput. Geosci. 28, ©597-604. https://\ndoi .or
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