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Origin of Gap Anisotropy in Spin Fluctuation Models of the Fe-pnictides
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We discuss the large gap anisotropy found for the Ai, (s-wave) state in RPA spin-fluctuation
and functional renormalization group calculations and show how the simple arguments leading to
isotropic sign-switched s-wave states in these systems need to be supplemented by a consideration
of pair scattering within Fermi surface sheets and between the individual electron sheets as well. In
addition, accounting for the orbital makeup of the states on the Fermi surface is found to be crucial.

PACS numbers:

With one or two exceptions, the newly discovered Fe-
pnictide superconductors are created by doping parent
materials which manifest a magnetically ordered ground
state. Since critical temperatures are as high as 56K, and
experiments have shown enhanced magnetic response rel-
ative to ab initio electronic structure calculations, it is
natural to consider spin fluctuation type pairing mod-
els for these systems. There have been several calcula-
tions of this general type, which have reported gaps with
significant anisotropy on the multisheeted Fermi surface
of these materials!:2:2:4:2:.6.7.8.9.10 = For the most part, a
ground state with Alg symmetry has been identified,
with a nearby d,2_,» (in the unfolded Brillouin zone)
pairing eigenvalue. These calculations involve fairly real-
istic representations of the electronic structure near the
Fermi surface, and are sufficiently complicated that the
precise physical effects leading, e.g. to a particular pair-
ing channel or to gap anisotropy can be obscured.

At the same time, there is a simple argument origi-
nally given by Mazin et alX! which suggests that the or-
der parameter in the system should have a sign-switched
s-wave structure®10:11:12.13 Tt i5 based on the argument
that the scattering of pairs between the a-hole Fermi
surfaces around the I' point and the B-electron Fermi
surfaces around the X (m,0) and Y (0,7) points of the
unfolded Brillouin zone (see Fig. 1) is dominant in the
system due to the near-nesting of the small sheets. In
this picture, the system can maximize its condensation
energy by forming isotropic order parameters but switch-
ing sign between the a and ( sheets to take advantage
of the interband pair scattering. This change in sign
has the added benefit of reducing the short range on site
Coulomb repulsion.t? It is therefore at first sight sur-
prising to find that RPA spin-fluctuation calculations!12

as well as functional renormalization group studies? find
a highly anisotropic A, s-wave gap. Here we investi-
gate this, as well as explore the question of what the
anisotropy can tell us about the pairing interaction. One
answer that has been given is that the momentum de-
pendence of the fluctuation-exchange pairing interaction
can drive the anisotropyt2. However, we will see that the
orbital make-up of the states on the Fermi surface and
the suppression of the short range Coulomb interactionl3
also play key roles in favoring an anisotropic gap.

In the following we examine the pairing strengths for
processes which involve a pair of electrons scattering on
and between the four Fermi surfaces shown in Fig. [
These were calculated using a 5-orbital (dg., dy., dgy,
dy2_y2, d3,2_,2) tight-binding fit to the DFT bandstruc-
ture calculations of Cao et alt®. The tight-binding pa-
rameters for an orbital basis that is aligned parallel to
the nearest neighbor Fe-Fe direction are given in the ap-
pendix of Ref. [15. Here we will label the two hole Fermi
surfaces a1 and a9 and the two electron Fermi surfaces
B1 and B2 as indicated in Fig. [

The orbital weights af(k) of the states on the various
Fermi surfaces are shown in Fig. [2land illustrated by the
colors in Fig.[Il Here ¢ designates the Fermi sheet a1, as,
B1, and 2 and t the orbital (dy», dyz,...). The dominant
orbitals contributing to the oy and ais sheets are the d,
and d,. orbitals. The upper and lower parts of the oy
sheet are d.-like and the left and right hand sides have
d,, character. The opposite behavior is seen on the as
sheet. On the B sheet, the upper and lower surfaces have
dominantly d,. character while the ends along the k,-axis
have d,, character. Similarly, the 3>-sheet is made up of
d,. along the sides and d;, on the k,-axis endsid 1217,

Now consider the scattering of a pair (k' t,—k’ |) on
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FIG. 1: (color online) The Fermi surface of the 5-orbital tight-
binding model*2. The main orbital contributions are shown
by the following colors/symbols: dg. (red/solid circles), dy.
(green/open circles), dzy (blue/diamonds).

the ay Fermi surface to a pair (k 1, —k |) on the 8; Fermi
surface. The strength of this scattering depends upon

Lij(k, k') = (1)
> api(=k)ag" (k)Re [T5 (k, k', 0)] al (k) (=F')
stpq

and involves orbital weight factors and, within the fluc-
tuation exchange approximation the orbital dependent
vertex

IS5 (kK = (2)
s c tq

§ USX§PAUS + U_ _ 1 UCX?PAUC _ U_
2 2 ) 2 2 )],

Here, the momenta k and k" are restricted to the differ-
ent Fermi surface sheets C; with k € C; and k' € Cj.
The interaction matrices U® and U° contain the onsite
intra- and inter-Coulomb interactions along with the ex-
change couplings and y®PA and x#PA are the RPA spin
and charge orbital susceptibilities. We will use numeri-
cal results obtained from earlier work?? but our results
are not dependent on the precise values of the param-
eters. Rather, what is important to note is that the
dominant pairing interaction is found to arise from the
spin-fluctuation term %U sxRPAUS and the short range
Coulomb contact interactions %US and UTC oppose the
pairing. As noted by Mazin and Schmalian!?, for a sim-
ple two-band model with equal density of states, the short
range Coulomb repulsion vanishes for a sign switched s-
wave gap. However, as they point out, when there is an
asymmetry in the density of states, some fraction of the
Coulomb-repulsion remains. We will see that it is both
the orbital weight factors and the further suppression of
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FIG. 2: (color online) The orbital weights as a function of
the winding angle ¢ on the different Fermi surface sheets'2.
The different colors/lines refer to d,. (red/solid lines), dy.
(green/dashed lines), d.y (blue/dash-dotted line), d,2_,2
(yellow/short-dashed line).

the Coulomb interaction that lead to the anisotropy of
the gap in the realistic case.

First we discuss the effect of the orbital matrix ele-
ments. The scattering strength I';;(ko, k) for two dif-
ferent pairs on the aj-sheet with ko = (kpr,0) and
ko = (0, kF) as a function of momentum k are illustrated
in Fig. For the former, Fig. Bh, the dominant scat-
tering is to d,.(k T, —k })-pairs on the By Fermi surface
and for the latter, Fig. Bb, to dy.-pairs on the 8; Fermi
surface. Note that the scattering strength is not simply
a consequence of nesting; instead, it reflects the orbital
weight structure factors. The d,., (k' 1, —k’ |) pairs on oy
scatter more strongly to d,.(k T, —k |) pair states on (s,
than to pair states on the 8 Fermi surface which involve
other orbitals. This means that while it is in general fa-
vorable to have a sign change between the gaps on the
a1 and B9 Fermi surfaces, the essential thing is to have
a sign change of the gap between the red (d..) regions
of the a7 Fermi surface and the red (d,.) parts of the
B> Fermi surface shown in Fig. [l Likewise, one needs
a sign change between the green (d, ) regions of the oy
Fermi surfaces and the green (d,.) 1 Fermi surface. It is
not important to maintain this sign change in the yellow
(dyy) regions of the 8 Fermi surfaces. We will in fact
see that the magnitude of the gap is larger on the d,.
portion of the 3; Fermi surface and smaller on the d,
parts. This actually leads to a small increase in the a3
pairing compared to the isotropic sign-switched gap.
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FIG. 3: (color online) The strength I';; (ko, k) associated with
scattering a pair from the oy Fermi surface with momenta a)
ko = (kri,—kri) and b) ko = (krj, —krj) as indicated by
the black circles as a function of momentum k. The orbital
weight factors favor scattering from d;. to dz. and dy. to dy.
orbital states.

In addition, as we will discuss, if there are other inter-
actions such as the local Coulomb interaction or scatter-
ing processes such as inter-Fermi surface $;—(2 scatter-
ing, reducing the magnitude or even changing the sign of
the gap on the d;, part of the 8 Fermi surfaces can lead
to an additional reduction of the short range Coulomb
interaction and an enhancement of the pairing. In order
to explore this latter effect, we need to obtain a more
detailed accounting of the various contributions to the
pairing strength. As discussed in Ref. |15, for a given gap
function g(k), the effective pairing strength is determined

from
dku No(k!
EU fC v fC vF(k’ ( )Pij (k7k )g(k )
o)) = T
(27)°%: §, riy [ (k)]
3)
Here vp(k) = |ViE;(k)| for k on a given Fermi surface

C;. In the following, we will normalize the gap function
g(k) such that the denominator is equal to the total one-
electron density of states,

X1, LG

Then we can decompose A into its contributions from the
different inter- and intra-Fermi surface scattering pro-
cesses,

dng
27 ( 27T’UF

9] = Z Aijlg] (5)

with

o dky dk)
/\ZJ [g] - f; o (27T’UF(]€)) ‘%;j 27 (27TUF(k/))
X g(k)Ti;(k, K" )g(E")
Zi N;(0)

First consider A;; for two limiting cases (1) the opti-
mal RPA g(k) found as the variational solution of Eq. 3
and (2) a sign-switched s-wave with go, = ga, = 1 and
98, = 9s, = —1. The results are shown in Figs. @l and
The total pairing strength is significantly larger for the
RPA g(k). From the breakdown of the various contri-
butions one sees that while the total a—f contribution is
larger, 0.23 compared with 0.21, for the sign-switched gap
function, the larger negative contribution of the Fermi
surface A’s as well as the larger negative ;-2 contri-
bution overcome this and A for the sign-switched gap is
considerably smaller than the optimal A. In Fig. dl one
can see that the anisotropy of the RPA solution is such
that there are nodes on the 3-sheets23. As we will discuss,
whether this happens or not depends upon the parame-
ters. The interplay of the orbital weights in the pairing
interaction, Eq. Bl and the reduction of the intra Si-f;
Coulomb interaction, as well as the inter 3;-f2 scattering
lead to the anisotropy.

To illustrate this, consider the simple parameterization
of an anisotropic gap with go, = g, = 1 and

(6)

g5 = —a(l — rcos20) (7)

Here a = (2/(2+ 1“2))1/2 so that the normalization con-
dition, Eq. () is satisfied. When r =0, gg = —1 and we
have the sign-reversed state previously discussed. Then
as 7 increases, the gap function becomes anisotropic on
the 8 Fermi surfaces as shown in Fig.[0l In Fig. [T we plot
the total pairing strength A and some of its components
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FIG. 4: (color online) The RPA gap function a) plotted on
the Fermi surfaces (red/solid circles positive and blue/open
circles negative), (b) g(k) as a function of angle and (c) bar
graph of the various interaction components \;;. Note that
the off-diagonal terms contribute to the total A, Eq. () with
weights of two or four as indicated.
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FIG. 5: (color online) The sign-switched gap function (similar
to Fig. M)).

versus r. Initially, as r increases, the gap on the 8 Fermi
surface sheets becomes anisotropic, and the total pairing
strength A increases. The slight increase in A,_g reflects
the increase in the amplitude of the gap in the regions
where the d,. and dy. orbital weights are largest. The
additional increase in A arises from the suppression of
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FIG. 6: (color online) The phenomenological anisotropic gap
function on the 8 Fermi surface versus angle for several dif-
ferent values of r.

the intra- and inter-Coulomb repulsion associated with
the 81 and (B2 Fermi surfaces due to the gap anisotropy.
Finally, as r increases further, the reduction of the a—f
pairing contribution due to the anisotropy becomes larger
than the suppression of the Coulomb interaction and the
total pairing strength A decreases. For the interaction
parameter set that we are using, this occurs for r ~ 1.5,
so that there are well developed nodes on the [-Fermi
surfaces. However, if the intra- and inter-scattering on
the g-Fermi surfaces were reduced, the nodes could be
lifted.

Conclusion

The anisotropy of the A;4 gap on the electron Fermi
surfaces found in RPA and numerical functional renor-
malization group studies has been shown to arise from
an interplay of three sources: (1) the variation of the
weighting of the different d-orbitals on the Fermi surfaces,
(2) the need to suppress the Coulomb repulsion and (3)
the need to reduce the effects of the repulsive scatter-
ing between the electron-5 sheets. The orbital weight
variation is familiar in other multi-orbital superconduc-
tors such as MgBo!®. In essence, the pairing interac-
tion is strongest between fermions in near neighbor d,.
orbitals along the x-direction and near-neighbor d,, or-
bitals along the y-direction. The pairing associated with
the dzy near neighbor orbitals is weaker. At the same
time, the anisotropy leads to a reduction of the repulsive
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FIG. 7: (color online) The pairing strength and its com-

ponents versus r for the anisotropic gap shown in Fig.
Here X is the total pairing strength. The intra- and inter-
a1 and ag Fermi surface contributions are given by Ao =
Aarar + Aagas +2Aa;a, and the intra-f Fermi surface contri-
bution by Ag = Ag, 3, +Ag,8,. The contribution to the pairing
comes from Ao—g = 4Aa; 8, + 20,8, , While for this A4 gap
the inter-81 — B2 contribution opposes the pairing for small r
and is neutralized for a large anisotropy. The red dashed line
indicates the optimal degree of anisotropy, r = 1.5.

Coulomb interactions and the inter-Fermi surface (1-3
scattering. As discussed, there is a balance between these
effects which determine whether the anisotropy is suffi-
ciently large that there are nodes on the [S-sheets. The
fact that the dominant orbital weights on the «; and
ap Fermi surfaces are associated with the dg, and d,.
orbitals leads to a more isotropic gap on these sheets.

The results that we have discussed are based upon a
weak coupling spin-fluctuation approach. In particular,
the various calculations have used an RPA form for the
pairing vertex. Here the bandstructure and filling, along
with the relative strengths of the onsite Coulomb and ex-
change interactions enter. A key feature of this approach
is that the gap exhibits large anisotropies and that nodes
may appear on the S-Fermi surfaces in the s-wave A,
state. However, one can imagine that variations in the
parameters can alter the degree of anisotropy. An impor-
tant implication of this is that it may provide an explana-
tion for the wide variety of experimental indications that
nodes are present in some cases and not in others. An-
other explanation for these apparent discrepancies could
be the degree of disorder in different samples as discussed
in Refs. 10/19)20/)21l.
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