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Motivation and Objectives
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The Model Overview

* CO, storage (CO, injection, brine extraction, pressure management) is a| Electric Circuit Borrowed Material Balance Principle

strategic design to meet the regulations based on the limited site Capacitance & Resistance Model
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e Coupled Capacitance & Resistance Model (CRM) and machine learning based
upon machine learning techniques provide a bridge for operations and Capacitance Resistance Model (CRM) B

reservoir management for CO, storage.

CO, storage decision support
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e Potential to transfer the efforts learned from one datasets to another for the

application purpose.

meability, viscosity,...

§ Inputs Feature Extraction Prediction "
L 4
LSTM MLP_1 MLP_n -
§ I# of input features: Nj -~ PP 0 0 £
. Rt 3 Poe ¢
ey L e Pa— B kS
S i *— :
e : *®
N timesteps = \ & E3
AR L e S :
Nt timesteps - 5 ® ¢ Nt i &
v t imesteps :
% o - 2 e é Nj X NwXxNp xNo
- .
e
: Batch Normalization
Data
T Reduction Reshape l
Initial Data Outputs
Ni x Nj x Ny x Nj N x Njx Ny x Np x No
Predict 3D pressure and
Nj number of input o .
features: f Id b d )
INt timesteps porosity, Sat u rat I O n I e a Se u pO n Nt timesteps
%?Q%anb?a"{e(i' J. K). No number of output features:
preducin e LSTM and MLP models T
N; X Nw X Np {*j Ni x Nw xNp

L Jd

Adapted CRM Model

* Injection cumulative-based Coupled Workflow
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form of the model to find out the relationships between injection and
the reservoir pressure build-up and drainage volume.

* Such insights also can be used as constraint/s for machine learning to
guide the training and testing.

 More cross validation and benchmark testing is still on-going.
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