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Abstract 

Storing carbon dioxide (CO2) in geological formations is a technology reducing anthropogenic CO2 emissions 

continues to grow into the atmosphere. This technology plays a crucial role in reducing greenhouse gas emissions and 

mitigating the impacts of anthropogenic climate change. As we delve into the intricacies of CO2 injection operations, 

it becomes evident that a comprehensive understanding of fracture networks within the reservoir and its immediate 

vicinity of injection wells are essential for ensuring the operational efficiency and permanent retention. In this context, 

the integration of machine learning (ML) techniques, especially unsupervised machine learnings emerge as a 

transformative tool for advancing our understanding of CO2 injection into reservoirs that could potentially contribute 

to optimizing injection strategies and reservoir management, ultimately bolstering the efficacy and sustainability of 
CO2 sequestration operations and deployment. This paper demonstrates the fracture network imaging by using 

machine learning techniques based on multiple datasets of microseimic and injection records.  
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1. Introduction 

    Capturing carbon dioxide (CO2) and storing (CCS) into geological reservoirs is one of the piloted practices for 

greenhouse gas reduction. These operations have gained considerable traction in the last decade as a viable option to 
reduce the long-term environmental footprint. However, monitoring the storage reservoir to ensure safe and long-term 

storage of CO2 for de-risk operations and storage management is undergoing dynamic shifts, expanding opportunities 

for implementing innovative techniques and applications, especially for the commercial-scale deployment. Our 

ongoing efforts in the SMART (Science-informed Machine Learning for Accelerating Real-time Decisions in 

Subsurface Applications) Initiative Phase II project involve harnessing the potential of data assimilation and ML 

algorithms to quantify the spatial distribution of fracture networks at the Illinois Basin Decatur Project (IBDP) site.     
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In the paper, we utilized a microseismic catalog recorded between November 2011 and July 2018 at the CO2 injection 
site in Decatur, Illinois that consisted of 5,397 microseismic events. The injection period was identified 19 discrete 

time windows throughout three-year injection period that are marked by an extended period of bottom hole pressure 

changes from monitoring. We used the beginning and ending times of these windows to create corresponding subsets 

of microseismic catalogs based on event origin times. To facilitate the imaging of the fracture network associated with 

individual time windows, we first leveraged the potential of hydraulic diffusivity that is a critical concept for 

microseismic triggering front identification. In such way, there was a total of 53 microseismic triggering fronts was 

identified throughout the event catalog and then used them to create an input dataset for a suite of unsupervised ML 

algorithms. Leveraging ML-based clustering algorithms enabled us to autonomously analyze large volumes of 

microseismic data from individual triggering fronts. We were able to quantify more than 100 discrete clusters of 

microseismic events likely associated with reactivation of pre-existing fractures or induced fractures due to CO2 

injection. This fracture network mapping brings valuable insights to geomechanical response of an engineered system 
to fluid injection operations, monitoring designs, risk assessments, and reservoir management. We also created 

pseudo-logs of microseismic attributes (moment magnitude, b-value, and event count) by means of vertical moving-

average sampling of microseismic data at the sampling interval matching that of the geomechanical well logs. This is 

helpful to create an ML-based predictive model to quantify the probability of occurrence of microseismic events of 

certain magnitude depending upon the geomechanical properties of rock layers. This physics-based ML approach will 

help enhance the understanding of subsurface reservoirs behaviour under CO2 injection that could be utilized for 

optimized well scheme, injection strategies, and operational efficiency for de-risked geological storage. Furthermore, 

this methodology proves to be highly applicable in reservoir characterization analyses for other fluid injection 

activities related to hydrocarbon explorations and/or geothermal resources extensively [1, 2, 3, 4, 10, 11, 12, 13, 14]. 

As stated above, the current SMART Initiative phase II demonstrations include the use of all accessible datasets from 

the first-of-its-kind Illinois Basin – Decatur Project (IBDP). The major goal of the phase is to mature the technologies 

from proof-of-concept prototypes to demonstration of their capabilities and values for the element/segment of CCS 
project regarding to subsurface storage from phase I. The IBDP is an integrated industrial carbon capture and storage 

system from source to reservoir. The project stored CO2 from ADM’s ethanol fermentation plant [5, 6, 7, 8, 9]. In the 

study, an innovative method comprising multi-levelled/tiered analysis has been developed to leverage advanced 

machine learning (ML) techniques to process passive seismic monitoring data acquired over the three-year injection 

period in the Illinois Basin for potential fracture/fault analysis [5, 8, 9]. This use case is aimed at contributing to the 

risk assessment and monitoring design for carbon storage. For IBDP demonstration, a three-year injection period of 

data was analysed for identifying multiple distinct time windows in this paper by associated with microseismic data 

records [5].  

2. Methodology 

    A multi-tiered, data-driven approach was developed by coupling all available measurement data to visualize fracture 

networks. The datasets can be included measurements from drilling, log and core testing, injection, and downhole 

pressure measurements, and five vertical pressure monitoring gauges, providing a wealth of detail on the fracture 
networks. A fracture network encompasses natural fractures, induced/hydraulic fractures, and the dynamic response 

of such fractures, culminating in a comprehensive understanding of this system. Before of the wide spectrum of 

resolutions and scales of the datasets, the fracture network was mapped into 19 distinct time windows over a three-

year injection period by analyzing pumping data, which included CO2 injection and bottom-hole pressure. We 

compartmentalized passive seismic data (microseismic) into these time windows, which is like industry practices of 

compartmentalizing microseismic data into separate stages for high-pressure fluid injection activities (i.e., induced 

fracturing). In each of these time windows, we estimated the b-value of the associated microseismic population. Then 

further used event occurrence time and distance from the treatment well to identify the distinct triggering front of 

microseismicity that are likely associated with pre-existing fractures and faults within the reservoir. Seismogenic b-

value and diffusivity analysis were applied to identify triggered fronts for further clustering, fracture plane, and 3D 

fracture distribution analysis. Moreover, we leveraged the potential of several unsupervised ML algorithms to identify 

the spatial clusters of microseismic events within each triggering front of individual time windows by following the 
workflow in Fig. 1. Furthermore, such ML techniques were implemented determining the best fitting surface for each 

spatial cluster of microseismicity to infer the directional and spatial distributions of fractures as shown in Fig. 1. 

Moreover, well logs including imaging log and core datasets from the drilling and test in the laboratory are applied to 
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verify what the results produced from microseismic data and pumping data. Such multi-datasets provide another angle 
of the cross-checking observations to the outcomes for uncertainty reduction. 

 

 

Fig. 1. Workflow for the study with Microseicmic data and pumping data coupling [4] 

2.1. IBDP Datasets  

    Based on the collaboration and data availability CO2 injection pilot in the field, Illinois Basin – Decatur Project 

(IBDP) has been selected as the demonstration use case along with SMART Initiative investigation. The project was 

cumulatively injected one million metric tons of anthropogenic CO2 into a saline reservoir, the Mt. Simon Sandstone, 

in Decatur, Illinois in Fig. 2. Operational CO2 injection began on November 17, 2011, at a nominal rate of 1,000 

metric tons per day. After three years of operations, the injection goal was met in November 2014. Capacity, 
injectivity, and containment potential have met and/or exceeded pre-injection expectations [4, 8, 9]. The Mt. Simon 

Sandstone of the Illinois Basin contains a locally significant saline aquifer, which is ideal for CO2 storage with 

adequate capacity and injectivity and is overlain by the impermeable Eau Claire Formation as a caprock. The Mt. 

Simon Sandstone represents the primary CO2 storage resource in the Illinois Basin and the Midwest region and is 

more than 457 meters (1,500 feet) thick at the IBDP site. The upper portion was deposited in a tidally influenced 

system, while the lower 183 meters (600 feet) is an arkosic sandstone that was deposited in a braided river/alluvial 

fan system. The lower Mt. Simon Sandstone is the principal target for storage, in part because the dissolution of 

feldspar grains has created good secondary porosity. The Eau Claire Formation is the primary confining layer, or seal, 

and is 212 meters (695 feet) thick. The lower Eau Claire consists of shale and the upper unit consists of low-

permeability limestone and siltstone [4, 7, 8, 9]. 
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Fig. 2. IBDP Project location (left) and vertical formations along the wells CCS1, GM1, and VW1 (right) [4] 

IBDP was the world’s first bioenergy carbon capture and storage (BECCS) project, an integrated industrial CCS 

system from source to reservoir. The project used CO2 from ADM’s ethanol fermentation process. Operations 

consisted of a compression/dehydration facility, a delivery pipeline, one injection well, one deep 
observation/verification well, a geophysical test well, and an integrated environmental monitoring system, all 

developed on the ADM-owned site [4, 7, 8, 9]. The real-time acquisition and control (RTAC) and Well Watcher 

Connect systems were specifically created to provide continuous subsurface project data, such as wellhead pressure 

and temperature, downhole pressure and temperature, and annulus pressure, which is critical to operational 

monitoring. This data was recorded, archived, and continuously accessible. The software recorded and formatted 

pressure, temperature, annulus pressure, and injected volumes as required for permit reporting [4]. Site operations at 

IBDP were administered through the RTAC software. CO2 from ethanol production had been injected through one 

well (CCS1) three perforation zones of CCS1, which are the upper injection zone, the middle injection zone, and the 

lower injection zone as shown in Fig. 2 [4, 8]. In addition, there is one deep monitoring well (VW1) with six multi-

depth sensors in a deep monitor well VW1, which are WB1, WB2, WB3, WB4, WB5, and WB6 for more collection 

(NETL 2023). In this study, we performed data assimilation of microseismic catalog, bottom hole pressure, and CO2 
injection rate for the IBDP site. The microseismic data was recorded by three downhole arrays deployed respectively 

in the injection well (CCS1), geophysical monitoring well (GM1) and verification well (VW2) in Fig. 2.  

2.2. Geophysical Analysis  

     Geophysical analysis engaged in the case study includes Seismogenic b-value analysis and diffusivity analysis to 

quantify fracture network.  

Seismogenic b-value Analysis 

    The seismogenic b-value describes the frequency-magnitude distribution of a microseismic catalog. It represents 

the logarithmic relationship between the number of earthquakes and their magnitudes given by the Gutenberg-Richter 
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relationship. The details reported in the publications [11, 15, 16, 17]. 
 

𝑙𝑜𝑔(𝑁) = 𝑎 − 𝑏 ∗𝑀 

 

where, N is the number of earthquakes with a magnitude greater than or equal to M, a is a constant term related to the 

total number of earthquakes in the catalog, and b is the b-value, representing the slope of the earthquake frequency 

versus magnitude plot above the magnitude of completeness. The range of b-value has a critical geomechanical 

significance in terms of stress conditions and fault behavior. A higher b-value (greater than 1) indicates a larger 

proportion of small-magnitude earthquakes relative to larger ones with tensile stress condition. This can suggest a 

more fractured or weaker crust, where earthquakes occur more frequently but with lower magnitudes. It may imply a 

more active fault system or a higher likelihood of small to moderate seismic activity. Conversely, a lower b-value 

(less than 1) suggests a relatively lower occurrence of small-magnitude earthquakes compared to larger events with 
compressive stress regime. This can indicate a more stable or locked fault system, where larger earthquakes are more 

prevalent. A temporal change in the b-value can provide further geomechanical insights. An increase in the b-value 

over time might indicate stress accumulation or the growth of the fracture network, potentially leading to larger 

earthquakes in the future. Conversely, a decrease in the b-value could suggest stress relaxation or a contraction of the 

fracture network. We estimated b-value for each time window to quantify its temporal changes in Fig. 3. Majority of 

the time windows have b-value close to 1, indicating shear stress regime and strike-slip faulting. Two windows, 10 

and 18 show b-values more than 1.2, indicating tensile stress regime or normal faulting. Similarly, two other windows 

(13 and 15) showing b-value less than 0.8, which is indicative of compressional regime. 

  

 

Fig. 3. Bar plot showing variations in b-value estimates for 19 different time windows [4] 

Diffusivity Analysis 

    Hydraulic diffusivity is a parameter that represents the ability of a fluid to propagate through a porous medium 
under the influence of hydraulic gradients. It combines the properties of fluid conductivity and storage capacity within 

the medium. In the context of microseismic triggering fronts and hydraulic fracture networks, hydraulic diffusivity 

plays a significant role. It provides insights into the ability of the fluid to spread and migrate through the porous 

medium, influencing the propagation of hydraulic fractures and the formation of fracture networks. As microseismic 

events are triggered by the propagation of fluid and associated pore pressure perturbation through the rock mass, which 

is guided by diffusivity, hence in general terms hydraulic diffusivity is a critical factor that affects the microseismic 

triggering and propagation of these fractures. Higher hydraulic diffusivity indicates greater fluid mobility, facilitating 

the expansion of hydraulic fractures and increasing the likelihood of microseismic events. Therefore, a higher 

hydraulic diffusivity allows for more extensive fracture networks with increased connectivity, enhancing the 

effectiveness of CO2 storage and their preferential flow paths. For the homogeneous and isotropic rock mass, hydraulic 

diffusivity could be estimated as the best fitting parabola to the microseismic cloud in the cross plot of relative distance 

(between injection well and individual microseismic event) and relative origin time (difference between event origin 
time and beginning time of corresponding pumping time window) and given by the following expression [4, 5, 16, 
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17]: 
 

𝑟𝑡(𝑡) = √4𝜋𝐷𝑡𝑓𝑡 

 

Where, Dtf is the triggering front diffusivity, r is the distance of microseismic event from the treatment well and t is 

the elapsed time between the start of fluid injection and the microseismic event. For each of r-t plots in each time 

window, and we found discrete bands of microseismicity on the r-t plot in Fig. 4. Interestingly, events in these bands 

are triggered at the same time even though their effective distances from the injection well are different. This suggests 

a very effective fluid or pressure connectivity among fractures or faults associated with microseismic events for these 

individual bands of triggering fronts.  

 

Fig. 4. Event clustering using unsupervised machine learning listed in Fig. 1 within each triggering front of time window 17 (as an example for 

plot illustration). Data points are color coded to differentiate among individual clusters [4]. 

3. Results and Discussions 

    Based upon the distribution of microseismic triggering fronts in each time window, we obtained multiple subsets 

of events. Although there is multiple spatial grouping of events within each microseismic triggering front, we are 

unable to visually specify them to separate clusters. In the absence of class label for specific cluster for individual 

microseismic events, we leveraged the potential of unsupervised machine learning algorithms to find meaningful 

spatial clusters in the microseismic cloud. We tested K-Means, Hierarchical, BIRCH, and GMM clustering techniques 

that are good at uncovering hidden patterns in the unclassified data. We leveraged the potential of these ML algorithms 
to identify spatial clusters of events within each triggering front for individual time windows. It allowed us to find 

natural spatial grouping in microseismic events that were originally unlabelled within each triggering front as shown 

in Fig. 5.  

    To obtain best fitting fracture plane for individual microseismic clusters, we tested two different algorithms. At 

first, we tried to fit plane in the least square sense that minimize that minimizes the perpendicular distances between 

the points and the plane. However, the least square surface seems to be not an actual representation of the fracture 

plane as majority of the microseismic events are either above or below the plane for respective clusters. This is in 

stark contrast of the actual fracture plane for which most of the microseismic events should be coplanar. Therefore, 

we approximated the fracture planes as 2-sigma standard deviation ellipsoids, which closely represents the spread and 

orientation of a 3D distribution of data points in Fig. 5. It captures the spatial spread of the points along different axes 

and allows for an understanding of the variability within the dataset. The size and orientation of the ellipsoid provide 
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insights into the major and minor axes of the data distribution. As can be seen in Fig. 5, most of the microseismic 
events are in-plane to the standard deviation ellipsoid. We decide to use 2-sigma ellipsoid to capture 95% of the events 

in the respective microseismic cloud. As an outcome of our ML implementation, we obtained a complex network of 

interconnected fractures around the injection well in Fig. 6. This dense network of fractures could be used to infer 

possible CO2 flow paths at a finer scale in the reservoir.  

 

 

Fig. 5. Example of the fracture quantification test methods of least square plane and 2-standard deviation ellipsoid [4] 

 

Fig. 6. Fracture network comparison. Left panel shows the fault plane solution (green lines) as reported earlier by Bauer et al. [8]. Right panel 

shows the fracture network orientation (green lines) as determined using the unsupervised ML algorithm in the current study [4]. 

4. Remarks and Future Work 

    The study with IBDP case demonstrated a multi-tier analysis of microseismic and injection datasets, each evaluated 

at its own resolution and scale, to achieve a comprehensive understanding of fracture networks around the wellbore 

at the IBDP site. By assimilating data from multiple sources, the study successfully analyzed and quantified fracture 
behavior induced by CO₂ injection. The workflow integrated several key components: 1) Microseismic Time Window 

Analysis: Quantification of microseismic activity throughout the injection period. 2) Physics-Based Machine 

Learning: Application of machine learning algorithms to classify and quantify microseismic event clusters. 3) Spatial     
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Mapping of Fracture Networks: Reservoir-scale fracture network mapping and volume analysis. 4) These analyses 
provided valuable insights into the fracture network induced by CO₂ injection, highlighting the benefits of such data-

driven workflows for field data processing and interpretation. The results are critical for designing monitoring systems, 

assessing risks, and optimizing injection strategies for effective carbon storage. The understanding of fracture 

networks can also inform decision-making in broader applications beyond carbon storage, such as: 1) Completion and 

fracture design in unconventional resources. 2) Mitigation of frac-hits and wellbore protection. 3) Production 

performance analysis and re-fracturing/stimulation planning. 

 

     Based on what the current study, further integration of multi-level analyses is planned to develop a more 

comprehensive understanding of fracture networks. This will incorporate additional datasets, including more 

surrounding well logs, imaging logs, core tests, and pressure measurements from six monitoring well gauges. The 

workflow, implemented using Python libraries, has been integrated into the SMART Initiative Visualization and 
Decision Support Platform to support future carbon storage deployments. This ongoing effort aims to enhance fracture 

network modeling and decision-making capabilities for carbon storage and other subsurface applications. 
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