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• Mapping fracture and fault networks is crucial for the safety, security, and environmental sustainability of CO2 

sequestration projects. It ensures that potential risks are identified and mitigated effectively.

• Accurate mapping of fracture network enables the identification of preferential flow paths for CO2 migration. This 

understanding helps optimize injection strategies and predict CO2 movement within the reservoir, enhancing the 

efficiency and reliability of sequestration efforts.

• In the ongoing SMART Phase II efforts, a suite of machine learning algorithms have been employed to quantify 

the temporal and spatial distributions of fracture networks at the CO2 injection site for the Illinois Basin – Decatur 

Project (IBDP). These advanced techniques provide detailed insights into the evolving fracture systems.

Introduction

Data & Site Details
• The Illinois Basin – Decatur Project (IBDP) is a carbon capture and storage (CCS) initiative undertaken by 

the Midwest geological sequestration consortium. It is located in east-central Illinois within the north-central 

region of the Illinois Basin.

• Approximately 1 million tonnes of super critical CO2 were injected into the lower Mt. Simon Sandstone at 

the IBDP site over a period of three years, from November 2011 until November 2014.

• For this study, the microseismic catalog recorded by subsurface arrays from three separate wells at the IBDP 

site has been utilized, providing critical data for fracture network quantification.

• The preliminary microseismic catalog was comprised of 5397 events, which were subsequently relocated 

utilizing a modified version of HypoDD, resulting in the successful relocation of 4293 events.

• In addition to microseismic, the study also incorporates injection-related data, such as bottomhole pressure 

and CO2 flow rate, to provide a comprehensive analysis of the reservoir engineering parameters.

Figure 1. Map showing the location of IBDP site (red dot) within the Illinois Basin (green shaded 

region).

Figure 2. Configuration of borehole and seismic monitoring network at the IBDP site.

Methods
• The magnitude of completeness and seismogenic b-value are calculated for the microseismic catalog. These 

parameters help infer the dominant stress regime and failure mode of the recorded seismic events.

• Discrete microseismic time windows are determined based on variations in bottomhole pressure recordings. 

• The concept of hydraulic diffusivity is employed to identify discrete microseismic triggering fronts within each 

time window.

• A suite of unsupervised machine learning algorithms is tested to identify spatial clusters of microseismic events 

within each triggering front of individual time windows.

• Two-sigma standard deviational ellipsoids are fitted to individual microseismic clusters, capturing the spatial 

variation of event distribution in each cluster.

• The eigenvectors corresponding to the largest eigen value of each standard deviational ellipsoid are extracted. 

These eigenvectors represent the trace of 3D distribution of fracture planes around the injection well.

Results

Workflow

Figure 3. Plots showing the comparison of cumulative pumping rate with (a) event count, (b) seismic 

energy, (c) seismic moment, and (d) joint variation of seismic moment and daily pumping rate (green bars).

Figure 4. Plots showing the variation in average downhole pressure. Nineteen microseismic time windows (shaded 

boxes) marked by extended period of bottomhole pressure changes.

Figure 5. Discrete triggering fronts (shaded rectangles) identified within each microseismic time window.  

Figure 6. Diagram showing the workflow of the current study for fracture network mapping.

Figure 7. Identified clusters of microseismic events within each triggering front of time window 17 (center plot).
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Figure 8. 3D distribution of fracture ellipsoids (red ellipsoids) and fracture planes around the injection well (red line) for time windows 16 

(a, b) and 17 (c, d).
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Figure 10. (A) Previously identified fault plane solutions (green lines) for the microseismic clusters. (B) 3D distribution of fracture 

network (green lines) around the injection well as determined using machine learning techniques in the current study.
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Figure 9. Fracture attributes showing variation in the amount of dip for (a) K-Means, (b) Hierarchical; and dip direction for (c) K-Means, 

(d) Hierarchical .
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