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Executive Summary

The Institute for Catalysis in Energy Processes (ICEP) was a multi-Pl program located at the Northwestem
University Center for Catalysis and Surface Science from 2006-2024. Over several renewal cycles and
several organizing themes, ICEP addressed fundamental questions in catalysis science. In turn, the
scientific questions addressed were directly relevant to the efficient use of the nation’s resources to
produce fuels and commodity chemicals, harness alternate energy sources for chemical reactions such as
light or electricity, reduce emissions and waste, and minimize the impact of our use of plastics. Selective
oxidation, (oxidative) dehydrogenation, deNOx, CO, reduction, hydrogen release, polymer decomposition
/ depolymerization, and many other reactions of intense interest to the US Department of Energy were
studied in the center. Major ICEP strengths were in catalyst synthesis, in measurements that elucidated
catalyst properties, in reaction mechanisms and kinetics, and in predictive theory and modeling. ICEP
researchers were often the inventors or developers of materials and methods that were broughtto bear
on the Institute’s catalytic systems. Key characterization tools advanced through this project included
resonance Raman and related techniques, sum frequency generation, and X-ray standing wave
spectroscopy. Center members relied extensively on computational tools such as density functional
theory and microkinetic modeling to fully investigate catalyst structures and catalytic mechanisms. ICEP
researchers were early developers of atomic layer deposition (ALD) for catalyst synthesis and were early
pioneers of metal organicframeworks for catalysis. ICEP innovations are found in areas of intense research
such as single-atom catalysts, catalytic deconstruction of plastics, and catalytic MOFs, to name a few.
Research areas initiated by ICEP indirectly led to DOE EFRCs, startup companies, and otherachievements.

Over its 18 years of existence, ICEP involved two different Pls (Stair and Notestein) and 24 senior
investigators across several academic disciplines at Northwestern University. There were tight
collaborations with Argonne National Laboratory, including specialized equipment and experiments
permanently located there. The center supported ~400 person-years of effort by graduate students and
postdocs, eitherdirectly through DOE support or indirectly by leveragingindependent support provided
tothetrainees, e.g. through the NSF GRFPorinternalfellowships. The project resultedin 328 manuscripts
and numerous conference presentations.

Accomplishments

ICEP was a Basic Energy Sciences project with broad goals in catalysis science that changed over 6 renewals
(2 or 3 years each) and a 1-year no-cost extension. Broad goals were to develop atom-precise materials
and material interfaces, to characterize these materials with similar precision, and then to use these
materials to understand reactions of DOE interest. In this context, all goals and objectives of the project
were met.

By our count, ICEP published a total of 328 manuscripts since its inception through the end of its no-cost
extensionin 2024 under grant number DE-FG02-03ER15457. Manuscripts continue to be published to this
day due to the deep roots that ICEP set down in the research enterprise at Northwestern. These
manuscripts are broken down approximately as 272 primary research manuscripts on topics that are
closely aligned with ICEP themes, 20 articles that are reviews or commentaries, and an additional 16
manuscripts that are less well-aligned with ICEP themes. These latter manuscripts typically use ICEP-
derived materials or analytical techniques. Finally, an additional 20 manuscripts were published
erroneously under grant DE-FG02-03ER154757 (note the additional ‘7’ inserted in the number). All of
those were on core ICEP themes.

Summary of Project Activities

History. The origin of ICEP was the Environmental Molecular Science Institutes (EMSI) program, jointly
funded by NSF and DOE/BES Chemical Sciences, beginningin 1998. The EMSI funded at NU and ANL was



the Institute for Environmental Catalysis (IEC). IEC was a collaborative effort of Northwestern University
faculty from the Departments of Chemistry, Physics, Chemical and Biological Engineering, Materials
Science and Engineering, and Civil and Environmental Engineering, and Argonne National Laboratory
scientists from the Chemistry and Materials Science Divisions.

In 2002 the IEC program was renewed for an additional period of support, and in 2006, DOE/BES programs
at NU and ANL were joined with a research focus shifted toward catalytic chemistry relevant to energy.
The name of the NU institute was changed to current Institute for Catalysis in Energy Processes (ICEP).
From 2006 until 2012, ICEP included efforts in both chemical catalysis and photocatalysis. The NU and ANL
programs were reviewed together until 2012. After 2012, the two programs were separated, both
administratively and intellectually, and the ICEP effort was focused exclusively on chemical catalysis. In
2015 throughits endin 2023 (and no-cost extension through 2024), ICEP subsumed the individual catalysis
research programs of several investigators (Kung, Notestein, and T. Marks), creating a centralized home
for DOE/BES catalysis research at Northwestern. Expanding the ICEP base enabled an expansion of the
science proposed and the scope of collaborative, interdisciplinary activities within ICEP. ICEP was also an
effective partner to other DOE BES activities that researchers were a part of, especially EFRCs based at
Argonne, Northwestern, and other institutions. ICEP was a key partner in the local Catalysis Club of
Chicago and in organizing the North American Catalysis Society Meeting in Chicago (2019). ICEP held
internal seminars and underwrote a course on experimental heterogenous catalysis that trained several
generations of students at the REACT shared user facility. This ultimately led to a series of rigor and
reproducibility workshops and reports led by ICEP member and REACT core facility director Neil
Schweitzer. Finally, an international memorandum of understanding was developed with UniCat and
UniSysCat, a center of excellence in Berlin on catalysis.

Prof. Peter Stair, Professor of Chemistry at Northwestern, was the Pl from the inception through 2018. In
2018, Prof. Justin Notestein, department of Chemical and Biological Engineering, became the co-Pl then
Pl through the end of the center. Additional senior investigators at Northwestern University at project
conclusion in 2023 included M. Bedzyk (MatSci), L. Broadbelt (ChemE), O. Farha (Chem), J. Hupp (Chem),
H. Kim (Res. Prof. Chem.), H. Kung (ChemE), M. Kung (Res. Prof. ChemE), L. Marks (Chem), T. Marks
(Chem), S. Nguyen (Chem), K. Poeppelmeier (Chem), G. Schatz (Chem), N. Schweitzer. (Res. Prof. ChemE),
R.Snurr (ChemeE), and E. Weitz (Chem). Prof. Stair, Weitz, H. Kung, M. Kung, and L. Marks are now emeritus
status. Earlier iterations of ICEP also included as senior personnel M. Delferro (Res. Prof. Chem, before
beginningindependentrole at ANL), D. Ellis (Phys), F. Geiger (Chem), K. Gray (EnvE), M. Hersam (MatSdi),
W. Sachtler (Chem, deceased), and R. van Duyne (Chem, deceased). At project end, L. Seitz (ChemE), and
E. Weiss (Chem), were invited as trial members of the centerto prepare for a renewalthat was ultimately
not allowed.

Themes. ICEP has not been defined by asingle research theme duringits 18 years of operation, but rather
by a collection of research themes. Key reactions have been deNOx catalysis, selective oxidation (e.g.
oxidative dehydrogenation of alkanes), and photocatalysis, especially photocatalytic reduction of CO,. In
later years, materials were developed for electrocatalysis applications. Experimental kinetics studies were
backed by computational investigations using density functional theory and microkinetic modeling.
Paralleling researchinto these reactions was the development of new synthetic methodologies, including
early use of atomiclayer deposition (ALD) for catalysis and the development of novel or unique precursors.
ICEP was also instrumental in the synthesis of hybrid organic/inorganic materials and metal organic
frameworks (MOFs) and their predecessors as catalysts. Finally, ICEP also developed high surface area
oxides as unconventional supports for catalysts, especially SrTiO3 and related species, and in later years,
lanthanide scandates. In developing these materials, the overarching ICEP goal was to address the
inhomogeneity challenge in heterogeneouscatalysis. Almost allcommercial or research-level catalysts are



inhomogeneous, containing unknowably numerous different possible active sites. More precise materials
are required to achieve disruptive advances in our understanding and implementation of catalysis and
new catalytic processes. The ICEP vision was that we could create catalysts with unique types of active
sites in an atomistically controlled fashion so that we can move beyond indirect empiricism to definitive,
predictive science.

Finally, this work on developing new, atomically-precise catalytic materials was complemented by the
development of state-of-the-art characterization tools. This included pioneering work in resonance,
surface-enhanced, and tip-enhanced Raman spectroscopy, orrRaman, SERS, and TERS, respectively. ICEP
researchers in earlier years were active in developing sum frequency generation (SFG) to interrogate
catalytically relevant surfaces. Special tools were built at Argonne National Laboratory and especially at
the Advanced Photon Source. Beyond conventional use of X-ray absorption spectroscopy, ICEP
researchers also developed X-ray standing wave (XSW) spectroscopy to gain atomic-level information
about the structure and electronics of supported metaland metal oxide catalysts. Finally, ICEP established
the userfacility called the Reactor Engineering and Catalyst Testing (REACT) core facility at Northwestem,
the first of its kind in the United States. Inlateryears, this substantially broadened the impact of catalysis
science principles on otherfields and technologies, such as carbon capture, atmospheric water harvesting
and surface characterization of biological or biomedical materials. This center was also the vector for
workshops and best practices in rigor and reproducibility in catalysis, which eventually became a series of
independent DOE-supported meetings and publications.

Overmany years, these effortshave been tightly aligned with the Grand Challenges identified in the 2007
DOE workshop report “Basic Research Needs: Catalysis for Energy” and the Priority Research Directions
identifiedin the 2017 DOE workshop “Basic Research Needs for Catalysis Science”. As mentioned above
ICEP was responsible for at least 328 manuscripts. It is impossible to describe each of these here, but
several of particular note are described below. These are not necessarily the highest cited works or those
appearing in the highest ‘impact’ journals, but they speak to themes that would persist throughout the
life of ICEP. Manuscript numbers refer to the list included following this narrative. The invention and
patent report is handled separately. No databases were developed directly from ICEP support.

In 2009, four of the manuscripts published by ICEP researchers were notable for representing recurring
themesand serve here as introductions to classes of majorresearch accomplishments. Manuscript 10 by
Christensen et. al. (NU Pls Stair, Poeppelmeier, Hersam, and Marks) reported on “Controlled Growth of
Platinum Nanoparticles on Strontium Titanate Nanocubes by Atomic Layer Deposition” This work
leveraged the extensive knowledge of SrTiO; materials to create high surface area supports for Pt. SrTiOs
has lattice parameters close to those of Pt and other noble metals, such that nanoparticles deposited on
these surfaces are smalland stable, with well-defined Wulff shapesof theirown (Figure 1). The deposition
of active catalyst sites by ALD would become a recurringtheme forthe center, as would the use of SrTiO;
as a stable surface, useful both for characterization and to stabilize sites during reaction. See forexample,
a follow up manuscriptin 2010 in Nature Materials (manuscript 28). The latter property would make these
materials useful as catalysts for polyolefin depolymerization, which would underpin the iCOUP EFRC and
at least one spinoff startup company not directly tied to ICEP. ALD as a synthesis tool will be used
repeatedly throughout the lifetime of ICEP. Seefor example manuscript 34, 68, 75, 95, 215, 223, and many
others. New precursors were developed for ALD as manuscripts 132 and 145, and the details of ALD were
analyzedin many manuscripts such as 128 and 140. Surface enhanced Raman spectroscopy was used to
interrogate ALD synthesis mechanisms and ALD was used to create oxide overcoats on SERS-active
surfaces for interrogation of other chemistries, e.g. manuscript 140.



Figure 1. image of Pt nanoparticles epitaxed on SrTiO; nanocuboids. The nanoparticles have self-similar
shapes and the same active sizes exposed.

H. Fenget. al. (NU PI Stair) published work on “Catalytic Nanoliths” (Manuscript 11), which used catalysts
deposited on anodicaluminum oxide disks as catalyticreactors (Figure 2). These structured catalysts allow
for true single-pass, ultra-low contact time catalytic measurements, while still being sufficiently high
surface area to observe product formation with standard tools (ie GC and process MS). This tool was not
extensively utilized but likely has potential as a platform for high fidelity catalytic data collection. Many
manuscripts from ICEP addressed selective oxidation catalysis, especially oxidative dehydrogenation over
supported vanadia and copper oxides, including 29, 32, 75, 97, 133, 165, 218, 275, 284, and 288.
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Figure 2. Catalytic nanolith reactors based on the 1D channels of anodic aluminum oxide disks are ideal
platforms for examining selective oxidation catalysis and similar reactions under true single-pass
conditions. Active sites are readily deposited inside the channels using atomic layer deposition.

ZX Feng et. al. (NU Pl Bedzyk) published in 2009 on “Direct Atomic-Scale Observation of Redox-Induced
Cation Dynamicsin an Oxide-Supported Monolayer Catalyst: WOx/a-Fe,05 (0001).” (Manuscript 12). This
is the first of many manuscriptsin ICEP on the use of XSW to interrogate supported metal oxides relevant
to catalysis. The XSW technique locates surface atoms with respect to an underlying crystalline oxide in
all three directions. This can be used to understand surface reconstructions, or to understand the
structure of supported catalysts deliberately synthesized. Later developments would add the capability to
carry out measurements in reactive environments for in situ XSW, and to add oxidation state sensitivity



for XWS-XPS. Manuscripts 207 and 225 are other key works in this area, addressing these additional
capabilities. See Figure 3. This technique was a unique tool for interrogation of heterogeneous catalysts
developed by ICEP. Manuscript 27 by Buchbinder et. al. (NU Pls Weitz and Geiger) describes the use of
sum frequency generation (SFG) to interrogate the organization of organicmonolayers on oxide surfaces.
This work would eventually be discontinued from the center but would be supported separately by the
NSF and other agencies. As with the above manuscript, this is another one of the unique ICEP tools for
interrogating the inorganic and organic components interacting at the surfaces of catalytic materials.
Under reaction conditions.
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Figure 3. (left) Temperature controlled gas reaction sample cell for in situ XPS-XSW at ICEP-controlled
station at the APS. (bottom) Forsub-monolayerVOx on a-TiO2 (110), XSW-XPS gives 3D atomic maps for
V4 (left) and V°* (right) referenced to the ball and stick model of the substrate after oxidation and
reduction. V unequally occupies bridge (BR) and atop (AT) sites with occupation fractions indicated by the
size of the V “ball”.

A final manuscript of note in 2009 (Manuscript 22) was on “A Catalytically Active, Permanently
Microporous MOF with Metalloporphyrin Struts” by NU Pls Farha, Hupp, and Nguyen. While now
common, this was one of the very first reports of catalysis by a metal organic framework. This work built
off priorworkin ICEP’s predecessor center on catalysis by ‘molecular squares’ which were supramolecules
that researcherstoday would recognize as a finite set of MOF nodes and linkers. Pioneering work on MOF
catalysis, both discovery / synthesis and interrogation, via tools both experimental and computational
(e.g. manuscript 180, Figure 4), would continue to be a significant focus of ICEP overthe following years
(e.g. manuscripts 59, 72, 97, 152, 202, and others). While not developed directly under ICEP support, the
QMOF database followed from the groundwork set up in ICEP. The QMOF database,
https://github.com/Andrew-S-Rosen/QMOF, includes more than 20,000 DFT-optimized MOF structures
ideal for machine learning based discovery of new catalysts.
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Figure 4. Computational discovery of catalytically active metal organic frameworks (MOFs), left, was a
major research area at the conclusion of ICEP, building off pioneeringwork developing some of the first
examples of this class. That workincluded the first synthesis and testing of precursors to MOFs (at right),
consisting of enzyme mimics known as molecular squares developed in 2001 during the predecessor grant
of ICEP.

In addition to the broad themes discussed in the previous paragraph, three combinations of innovations
in both materials and catalysis science are of special note. First is the manuscript by Ding et. al. (NU PIs L.
Marks and Stair) on “Identification of active sites in CO oxidation and water-gas shift over supported Pt
catalysts” published in Science in 2015 (manuscript 106). In this work, atomic layer deposition or low-
temperature grafting was used to introduce Pt precursors into a mesoporous ZSM-5 material or an Al-
doped mesoporoussilica. Through controlled synthesis, Pt could be deposited as single atoms or as small
nanoparticles. The existence of single atoms was confirmed through microscopy and through CO DRIFTS
(Figure 5). At this point in history, ‘single-atom’ catalysts were gaining attention, but were not yet as
popular as now. Then, as now, was much speculation that these catalysts were exceptionally active, but
much evidence was indirect or not appreciated to be extremely support dependent. The primary finding
of this work was to show that cationic Pt single atoms on these supports were catalytically inert for CO
oxidation or water-gas shift, and that all activity in these reactions — on these supports — could be ascribed
to small nanoparticles. Emblematic of the general approach in ICEP was that well-defined syntheses
allowed relatively simple tools, here CO DRIFTS, to give broad insights into structure function relationships
across a broader swath of materials.
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Figure 5. CO DRIFTS used to identify Pt single atoms and nanoparticles synthesized on H-ZSM5 and Al-
doped silica. From manuscript 106.

Anotherareaof research involved the synthesis of isolated Mo dioxo species on carbon surfaces. Lohret.
al. (NU PIsT. Marks and Stair) found that a molecular complex could be grafted onto activated carbon and
related surfaces (reduced graphene oxide, carbon nanohorns, carbon nanotubes, etc). See manuscript
131, 175, 263, 279, and 291. This catalyst was imaged with atomic resolution with collaborators in Japan,
as reported in reference 210. This catalyst was, over time, shown to be capable of carrying out several
different reactions, chief amongthem being the acceptorless dehydrogenation of alcohols to give H, and
aldehyde (manuscript 145, Figure 6) As reported in 2017, this could be considered as an early report of
alcohols as “liquid organic hydrogen carriers”. These materials are also capable of polyethylene
terephthalate deconstruction (manuscript 190). This spurned a wave of research into other catalysts and
catalyst systems capable of polymer deconstruction or depolymerization. These include the formal
hydrogenolysis viareverse hydrooxygenation by a metaltriflate and then hydrogenation of the transient
olefin by a support metal in the same reactor. Another system was discovered by Mason et. al. (NUPIT.
Marks, manuscript 237) for polyolefin hydrogenolysis using supported cationic zirconium catalysts, which,

under other conditions, are also exceptional arene hydrogenation catalysts or olefin polymerization
catalysts.

Qo OH

9 o
@ OCH,CH,l
o

o]
HOCHZCHzl
0°C

CNH/MoO, CNH/Mo(=0)(OH){OCH,CHjl) SMART-EM

",

Figure 6. C/MoO, (supported on carbon nanohorns) and the reaction with ICH,CH,OH. On right is a
representative SMART-EM image and a simulation of an isolated 2-iodoethanol addition complex. From
manuscript 210. These catalysts were demonstrated to be proficient at PET deconstruction, alcohol
dehydrogenation, transfer oxidation, and other reactions.



As a final example, Yan et. al. (NU PIs Notestein and Stair) published work in Science in 2021 on “Tandem
In,05-Pt/Al,O5 catalyst for coupling of propane dehydrogenation to selective H, combustion,” listed as
manuscript 290. In this work atomic layer deposition was used to add In,0; on top of a typical Pt/Al,O,
catalyst (Figure 7). In,0; is a known selective hydrogen combustion catalyst, while Pt-based catalysts are
known to be proficient at propane (nonoxidative) dehydrogenation. Combined, these materials allowed
for a new mode of tandem catalysis equivalent to oxidative dehydrogenation. Key to the performance of
the material was the creation of extensive interface between the metal and the metal oxide during the
ALD process. Control materials with physical mixing or deposition of Pt on In,0; failed to create enough
of these critical interfaces. Structurally related oxide ‘overcoated’ catalysts are also discussed in
manuscripts 159, 170, 187, 215, 223, and 254, among other manuscripts. These catalysts show SMSI-like
effectsthatimprove CO, hydrogenationrates, stabilize a variety of catalysts against sintering under harsh
conditions such as dry reforming, or create new acid sites at oxide-oxide interfaces. These types of
materials became a hallmark of ICEP in its later years.

Figure 7. Structure of a In,05-Pt/Al,O; overcoated catalyst. Because of extensive oxide-metal interface,
hydrogen atoms from propane dehydrogenation of Pt quickly migrated to the In,0; surface for selective
combustion. The extensive oxygen storage capacity and fast kinetics of the oxide also keptthe Pt surface
O-free, resulting in high selectivity to propylene, rather than combustion.
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