
LLNL-CONF-867347

The Innate Curiosity in the
Multi-Agent Transformer

A. S. Williams, A. O. Maguire, B. C. Soper, D. M.
Merl

July 26, 2024

IEEE International Conference on Machine Learning and
Applications
Miami, FL, United States
December 18, 2024 through December 20, 2024



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



The Innate Curiosity in the Multi-Agent
Transformer

Arthur S. Williams
Lawrence Livermore National Laboratory

Livermore, USA
williams323@llnl.gov

Alister Maguire
Lawrence Livermore National Laboratory

Livermore, USA
maguire7@llnl.gov

Braden Soper
Lawrence Livermore National Laboratory

Livermore, USA
soper3@llnl.gov

Daniel Merl
Lawrence Livermore National Laboratory

Livermore, USA
merl1@llnl.gov

Abstract—Curiosity is a cognitive mechanism that drives one’s
intrinsic need to understand the unknown. This intrinsic drive
is responsible for guiding the acquisition of knowledge about
novel stimuli. Curiosity, akin to thirst and hunger, is considered
an evolved motivational mechanism promoting self-beneficial
actions. In the context of Multi-Agent Reinforcement Learning
(MARL), curiosity encourages exploration by capturing the nov-
elty of an environmental state as an intrinsic reward signal. For
cooperative MARL tasks, the Multi-Agent-Transformer (MAT)
is one of the state-of-the-art models. However, its performance
on sparse reward tasks requiring collaboration is uncertain.
This paper explores MAT’s performance on the grid-world
environment Multi-Robot Warehouse. We integrated an Intrinsic
Curiosity Module (ICM) for exploration and our results suggests
that MAT does not need ICM to learn on sparse environments.

Index Terms—Reinforcement Learning, Transformer, Intrinsic
Curiosity Module, Multi-Agent Reinforcement Learning, Explo-
ration

I. INTRODUCTION

Curiosity is a cognitive mechanism responsible for driving
the intrinsic need to understand the unknown. The intrinsic
desire to understand the unknown is responsible for guiding
us toward acquiring knowledge about novel stimuli within
our environment. Additionally, curiosity can be described
as a perceived gap in one’s knowledge and understanding,
which results in cognitive deprivation [11], [15]. It is sug-
gested that curiosity is an evolved motivational mechanism
that promotes self-beneficial actions, similar to thirst, which
motivates drinking water, or hunger, which motivates eating
[11], [15]. These concepts can be leveraged in reinforcement
learning environments that require agent exploration of novel
states. Furthermore, crafting an exploration strategy can be
more arduous in the multi-agent setting, especially where
cooperation and coordination are required.

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 and was supported by the LLNL-LDRD Program under
Project No. 22-SI-001. LLNL-CONF-867347.

In cooperative Multi-Agent Reinforcement Learning
(MARL) tasks, agents learn coordinated strategies for the
purpose of reaching a common goal. One of the state-
of-the-art models in MARL on cooperative tasks is the
Multi-Agent-Transformer (MAT) [27]. Transformers in
reinforcement learning (RL) have been gaining traction
in the field because of their ability to better handle long
temporal horizons compared to recurrent neural networks
(RNNs) [18], [24]. Previous RL models adapted the use
transformers in an offline setting, where trajectories are
stored in a data set. Recently, some transformer-based RL
models have transitioned to being online, which includes
MAT. The Multi-Agent Advantage Decomposition theorem is
leveraged by MAT, allowing for monotonic improvement of
action selection. Additionally, MAT can utilize Centralized
Training with Centralized Execution without exponential
growth due to the sequential action selection process for all
agents. However, there is still a question on whether the MAT
is capable of performing well on sparse reward tasks that
require coordination and exploration.

Curiosity based exploration has been demonstrated in the
single agent case and multi-agent case. The Intrinsic Curiosity
Module (ICM) [19] captured intrinsic motivation by measuring
how novel an environmental state is by training a model to
predict the transitioned state (st+1) given the previous state
(st) and action (at) at time t. The error between the actual
next state (st+1) and predicted next state (ŝt+t) results in an
intrinsic reward signal (rit). Agents are encouraged to seek out
novel states because the model’s predictive abilities are low
for non-frequented states, thus producing a large predictive
error/intrinsic reward signal. Additionally, as uncertainty of
environmental states approach zero, agents are able to employ
exploitative strategies.

For online MARL, MAT is one of the state-of-the-art models
because of its ability to transform the processing of agents’
actions as a sequence problem. Also, MAT makes use of



Fig. 1: The Multi-Robot Warehouse environment. The orange
hexagons are the robots. The blue squares represent unre-
quested shelves and green squares represent requested shelves.
The black squares are the designated locations to bring the
requested shelves.

the multi-agent advantage decomposition theorem [12], [13],
which guarantees a monotonic improvement in action selec-
tion. However, is the multi-agent advantage decomposition
theorem enough to overcome the difficulties of environments
that are collaborative and have sparse rewards? While MAT
has performed well on collaborative MARL tasks [27], to
our knowledge, MAT has yet to be tested on sparse reward
environments that require exploration. In this paper, we inves-
tigate the performance of MAT on the grid-world environment
Multi-Robot Warehouse [17]. This environment has many
variations that will allow us to explore different sparsity levels
within an environment. Our findings show that MAT performs
similar to Multi-Agent PPO (MAPPO) [28] with ICM, which
suggests that MAT’s innate exploration mechanisms are on
par with curiosity based methods. Furthermore, MAT does
not require an additional network to train, thereby reducing
training complexity. The main contributions of this paper are
as follows:

1) We investigate whether MAT could benefit from adding
ICM for solving sparse reward environments.

2) We investigate the impact that environment size and
task difficulty has on learning performance. We compare
MAT with and without ICM to MAPPO with and with-
out ICM on the Multi-Robot Warehouse environment.

3) We offer a simple solution for extending ICM to multi-
agent domains, which requires minimal adjustments to
the single-agent case.

II. BACKGROUND

In this section, we present background material on Markov
Decision Processes and Multi-Agent Reinforcement Learn-
ing. Additionally, we discuss the role of transformers in
reinforcement learning and the use of intrinsic curiosity as
a solution for solving sparse reward environments. Markov
Decision Processes (MDPs) are a foundation of reinforcement
learning, and Multi-Agent Reinforcement Learning extends
MDPs to account for multiple agents. Furthermore, the role

of transformers in reinforcement learning gives further context
to the importance of the research problem this paper aims to
address.

A. Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) are mathematical
frameworks used to formalize decision making problems
where an agent interacts with an environment that provides
feedback in the form of a reward signal. MDPs are defined
by the tuple (S,A, P,R, γ), where the state space S =
{s1, s2, · · · , sn}, the action space A represents the actions
across all states, the state transition probabilities P : S ×A×
S → [0, 1] that defines the probability of transitioning from
st ∈ S to st+1 ∈ S given action at ∈ A. A scalar reward
from the environment R : S ×A× S → R is provided to the
agent on each timestep t. The discount factor γ ∈ [0, 1] is a
scalar that weights current rewards higher than those received
in the future. In an MDP, the agent selects actions based on the
current state determined by a policy π(s), and the environment
responds by transitioning to a new state and providing a reward
signal. The agent’s goal is to learn an optimal policy π∗(s),
which is a mapping from states to actions, that maximizes the
expected cumulative reward. Solving MDPs forms the basis for
various reinforcement learning algorithms and applications.

B. Multi-Agent Reinforcement Learning (MARL)

In Multi-Agent Reinforcement Learning (MARL), multiple
agents interact with an environment and learn to coordinate
their actions to achieve individual or collective objectives.
MARL scenarios introduce complexities due to the inter-
dependencies between agents’ actions and the non-stationary
environment. Coordinating multiple agents in dynamic envi-
ronments requires sophisticated algorithms that can handle
the challenges posed by simultaneous learning and deci-
sion making among diverse agents. MARL is an extension
of the MDP framework and can be defined by the tuple
(N,S, {Ai}i∈{1,··· ,N}, P, {Ri}i∈{1,··· ,N}, γ) where N is the
number of agents, S is the shared environment state for all
agents, Ai is agent i’s set of actions with the joint action
space A = A1 × A2 × · · · × AN . The transition probabilities
P : S × A → S with P (s′|s, a) is the probability of
transitioning from state s′ to s given joint action a ∀Ai∈[1,N ].
Each agent i receives a reward Ri : S ×A→ R.

C. Transformers in Reinforcement Learning

Transformers, initially proposed in natural language pro-
cessing tasks [24], have gained prominence in reinforcement
learning [9]. These models utilize self-attention mechanisms
to capture long-range dependencies in sequential data, making
them suitable for RL tasks that involve processing complex,
non-local information. Integrating Transformers in RL ar-
chitectures has shown significant improvements in handling
large state spaces, enhancing the capability to capture intricate
patterns and dependencies in diverse environments [16]. The
Decision Transformer [6] framed RL as a sequence learning
problem and leveraged a causally masked transformer to



learn trajectories that achieve a specified return. It is trained
on offline data that consists of trajectories collected from
different environments. Following the Decision Transformer,
many works explored the effectiveness of transformers for
offline RL [5], [10], [23], [25], [26], [30]. Additionally, agents
with the ability to solve multiple RL tasks utilizing offline
data emerged [8], [14], [20]. What happens when the task
or environment does not have a dataset of trajectories? Online
RL allows the agent to learn from directly interacting with the
environment, as opposed to collected data as in the offline case.
Esslinger et al. [7] showed that you can couple a transformer
with Deep RL for online learning. Furthermore, Zheng et al.
[29] introduced the Online Decision Transformer (ODT) as a
method of blending offline pretraining with online finetuning.
However, unlike ODT, MAT does not require finetuning and
is fully online.

D. Intrinsic Curiosity in Reinforcement Learning

Intrinsic Curiosity is a concept in RL where agents are
driven to explore the environment. Instead of relying solely
on external rewards, agents are motivated by curiosity-driven
learning objectives. This approach encourages agents to ex-
plore unfamiliar or challenging situations, leading to more
efficient learning and adaptation to novel environments [2], [3].
Intrinsic curiosity mechanisms have been pivotal in enhancing
exploration strategies, enabling agents to discover informative
states and actions, thereby accelerating the learning process.
The Intrinsic Curiosity Module (ICM) [19] predicts the next
state transition of the agent to produce a curiosity bonus that
is added to the reward. Additionally, Burda et al. introduced
random network distillation as a way to mitigate the noisy TV
problem [4], where an agent gets attracted to the entropy of
the environment similar to the white noise of a TV.

ICM is comprised of a forward model and an inverse model.
The forward model takes as input action at and encoded
state ϕ(st) and predicts the next encoded state ϕ̂(st+1).
Furthermore, the forward model trains a neural network to
learn a function f as follows:

ϕ̂(st+1) = f(ϕ(st), at)) (1)

Additionally, the intrinsic reward rit is produced by taking
the L2 squared distance between the predicted encoded state
ϕ̂(st+1) and the target encoded state ϕ(st+1),

rit =
η

2
∥ϕ̂(st+1)− ϕ(st+1)∥22 (2)

where η is a scaling factor. The inverse model takes as input
ϕ(st) and ϕ(st+1) and outputs action ât, which is the predicted
action taken during the state transition and is defined as:

ât = g(ϕ(st), ϕ(st+1)) (3)

where the function g is learned by a neural network. The
main purpose of the inverse model is to aid in leaning feature
representations that contain only information relevant to the
action that was performed. In addition to intrinsic rewards, the
agent receives rewards ret from the environment. The agent’s
goal is to maximize the sum of both rewards rt = rit + ret .

III. METHOD

The Intrinsic Curiosity Module for MARL requires mod-
ifying the forward model and inverse dynamics model such
that the observations and actions of each agent are utilized for
feature prediction and action prediction. We will show how the
model networks are defined to accommodate these adaptations.
Furthermore, this section details the environments used for
the experiments, along with the implementation and training
details.

A. Intrinsic Curiosity for Multiple Agents

ICM was originally designed for the single agent case. We
extended ICM to work for the multi-agent case by allowing
each agent to utilize a shared network for both the forward
and inverse model. Each agent computes their own intrinsic
curiosity, based on the agent’s individual observation. The
forward model computes the curiosity as follows:

ϕ̂(sit+1) = f(ϕ(sit), a
i
t)),∀i ∈ [1, N ] (4)

where ϕ̂(sit+1) is the predicted embedded next state st+1 of
agent i, f is the forward model, and N is the number of agents.
The intrinsic reward signal is then computed as:

Iit =
η

2
∥ϕ̂i

t+1 − ϕi
t+1∥22,∀i ∈ [1, N ] (5)

where Iit is the intrinsic reward at time t for agent i, and η is a
scaling factor. More details on ICM is provided in Algorithm
1.

Algorithm 1 Multi-Agent ICM

Require: Environment E, scaling factor η, max steps T ,
number of agents N
Randomly Initialize forward model fθ, policy model pφ and
feature encoder hω

for t = 0 to T do
for agent i = 1 to N do
πi
φ ← pφ(st)

Observe oit = {sit, ait, Ri
t, s

i
t+1} ∼ πi

φ from E
ϕi
t ← hω(s

i
t)

ϕi
t+1 ← hω(s

i
t+1)

ϕ̂i
t+1 ← fθ(ϕ

i
t, a

i
t)

Iit ←
η
2∥ϕ̂

i
t+1 − ϕi

t+1∥22 {Calculate Intrinsic Reward}
rewardit = Ri

t + Iit
end for

end for

B. Environments

The Multi-Robot Warehouse environment simulates robots
moving requested goods to a designated location within a
warehouse [17]. This environment simulates a real-world ap-
plication that involves robots picking up shelves and delivering
them to a workstation where humans unload the contents. The
robot then returns the self back to an empty location. The
action space is discrete and consists of 4 actions: Turn Left,
Turn Right, Forward, Load/Unload Shelf. The observation of



Fig. 2: Multi-Robot Warehouse with 2 Agents. MAT performs on par with MAPPO with ICM on all except the configuration
where the difficult is hard and the grid size is small (10x11).

each agent is a 3x3 partially observable window centered on
the agent. If an entity is within the window the following can
be observed: the location, the rotation and whether the agent
is carrying a shelf; the location and rotation of other robots;
and shelves and whether they are currently in the request
queue. The difficulty level of the environment is determined
by the number of requested shelves R relative to the number
of agents N . By default R = N but there is an easy and hard
variation where R = 2N and R = N/2, respectively. Sparse
variations of Multi-Robot Warehouse consist of small R on
larger grid sizes. In Figure 1, we see an example of the 10x11
environment with 2 agents.

C. Implementation and Training Details

This section presents the network architecture and training
details for the models MAT, MAPPO, and ICM. The architec-
ture for MAT consists of 2 transformer blocks, 1 transformer
head, and an embedding dimension of 128 for both the actor
and critic networks. The MAPPO network architecture is
multi-layer perceptron (MLP) configured with 2 hidden layers
of dimension 256, each with a ReLU activation function, for
both the actor and critic. The MAPPO implementation utilizes
parameter sharing, which shares both the policy and value

function parameters across all agents. For MAT and MAPPO
we use generalized advantage estimation (GAE) [21], [28] to
approximate the advantage function. Additionally, ICM uses
a 2 layer MLP with a ReLU activation function and a hidden
dimension of 64. All models were trained in a distributed
manner across a compute node with 36 ranks/processors.
The common hyper-parameters are given in Table I. The
entropy coefficient, ppo clip, gradient clip, discount factor
gamma, ppo epochs, and optimizer hyper-parameter values
were determined based on recommended values [1], [22].
Furthermore, we obtained the actor lr, critic lr, ICM scaling
factor and ICM lr hyper-parameter values by performing a
grid-search and selecting the values that achieved the highest
cumulative reward.

IV. RESULTS

This section presents the results from the experiments that
are designed to test MAT’s ability to learn in collaborative
sparse reward environments. We evaluated the performance
of MAT with and without ICM on multiple variations of the
Multi-Robot Warehouse environment. Additionally, MAPPO
with and without ICM was evaluated and used as a baseline.
The Multi-Robot Warehouse environment can become more



Fig. 3: Multi-Robot Warehouse with 4 Agents. MAT performs on par with MAPPO with ICM on all of the configurations.
Additionally, an increase in agents allowed MAT to take advantage of its superior cooperative capabilities among agents. This
is evident by the change in reward curve where the difficult is hard and the grid size is small (10x11) from Figure 2 to the
current figure.

TABLE I: The hyper-parameters for MAT and MAPPO for
Multi-Robot Warehouse.

common hyper-parameter value
actor lr 2e-3
critic lr 2e-3
ppo epochs 10
ppo clip 0.2
entropy coef 0.01
batch size 500
gradient clip 0.5

gamma 0.99
optimizer Adam
ICM scaling factor 1e-3
ICM lr 1e-4

sparse as the grid size increases and the number of shelve
requests are small. The metric used for evaluation is the
cumulative rewards obtained by all agents in the environment.

The environment hyper-parameters that we varied for the
Multi-Robot Warehouse include: the difficulty, grid size, and
number of agents. We conducted 5 training runs with different
seeds for each environment configuration per policy model and

computed the 95% confidence intervals. Tiny refers to a grid
size of 10x11 and small refers to a grid size of 10x20. When
the difficulty is easy and the grid size is tiny, the differences
between the policies are negligible for both the 2 agent and 4
agent case(see Figures 2 and 3). On the 2 agent variation, MAT
with ICM under-performed compared to the other policies.
However, on the 4 agent variation, MAT with ICM performed
well on all but when the difficulty is hard and the grid size
is small. MAT without ICM performed as good or better than
other policies on all variations except for when the difficulty
is hard and grid size is small.

V. DISCUSSION

In this section, we present an analysis of our results. We
discuss the impact of reward sparsity and how this impacts
training results. We also argue that ICM is not needed for
MAT due to MAT’s innate exploration.

A. The Impact of Reward Sparsity

As the size of the grid-world increases and the number
of shelve requests are small, the rewards in the environment



become more sparse. We observe that ICM helps MAPPO
in all circumstances for both the 4 agent and 2 agent case.
When the difficulty is easy and the grid size is tiny, we can
only see a negligible improvement for MAPPO. This makes
sense, because ICM helps with exploration in sparse reward
settings. However, ICM doesn’t always increase performance
with MAT. This issue is more pronounce with 2 agents vs 4
agents. This could be attributed to MAT’s ability to scale more
robustly as the number of agents increase.

B. MAT Does Not Need Curiosity

MAT performs as well as MAPPO with ICM and outper-
forms base MAPPO on all the tasks that contain sparsity. This
shows that MAPPO requires ICM to achieve the same level of
performance that is innately attributed to MAT. Additionally,
MAT leverages the Multi-Agent Advantage Decomposition
Theorem to achieve monotonic improvement in action se-
lection among agents. We hypothesize that the utilization of
this theorem, coupled with processing agents as a sequence,
accounts for the performance gap between MAT and MAPPO.
It is our conclusion that MAT does not require the addition of
ICM to improve exploration.

C. ICM with MAT

Sparse environmental rewards caused MAT to not learn as
efficiently compared to MAPPO with ICM. This suggests that,
even though MAT performs well on these tasks that require
some exploration, there is still room for improvement. In
addition, since ICM adds a performance boost for MAPPO,
we may need to make additional augmentations to ICM to
account for how the transformer processes the agents.

VI. CONCLUSION

Curiosity allows us to seek out novel stimuli without the
need for external motivation. In reinforcement learning, we can
capture this concept by utilizing ICM. The ICM mechanism
is needed on environments that give sparse feedback to the
agent. In a multi-agent system, this issue can be compounded
because of the addition of collaboration. MAT is one the
state-of-the-art models for solving multi-agent collaborative
environments. It was our goal to test whether MAT could
benefit from adding ICM for solving sparse environments. Our
results show that MAT without ICM outperformed MAPPO
and performed similar to MAPPO with ICM. This means
MAT does not need the addition of ICM to learn in these
sparse environments. Furthermore, MAT with ICM performed
worst than base MAT on several environment variations. This
suggests ICM is an ineffective additive for MAT in regards to
exploration. However, there is room for improvement for MAT
for learning sparse environments more efficiently. Therefore,
future work will address how to improve learning efficiency
for MAT on sparse environments.
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