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Abstract— Security related questions for Cyber Physical Sys-
tems (CPS) have attracted much research attention in searching
for novel methods for attack-resilient control and/or estimation.
Specifically, false data injection attacks (FDIAs) have been
shown to be capable of bypassing bad data detection (BDD),
while arbitrarily compromising the integrity of state estimators
and robust controller even with very sparse measurements cor-
ruption. Moreover, based on the inherent sparsity of pragmatic
attack signals, `1-Minimization scheme has been used exten-
sively to improve design attack-resilient estimators. For this,
the theoretical maximum for the percentage of compromised
nodes that can be accommodated has been shown to be 50%. In
order to guarantee correct state recoveries for larger percentage
of attacked nodes, researchers have begun to incorporate
prior information into the underlying resilient observer design
framework. For the most pragmatic cases, this prior information
is often obtained through a data-driven Machine Learning
process. Existing results have shown strong positive correlation
between the tolerated attacked percentages and the precision
of the prior information. In this paper, we present a pruning
method to improve the precision of the prior information,
given a stochastic uncertainty characteristics of the underlying
Machine Learning model. Then a Weighted `1-Minimization
is proposed based on the pruned prior. The theoretical and
simulation results show that the pruning method significantly
improves the observer performance for much larger attack
percentages, even when moderately accurate Machine Learning
model used.

NOTATION

The following notations and definitions are used through-
out the whole paper: R,Rn,Rn×m denote the space of real
numbers, real vectors of length n and real matrices of n
rows and m columns respectively. R+ denotes positive real
numbers. Normal-face lower-case letters (e.g. x ∈ R) are
used to represent real scalars, bold-face lower-case letter
(e.g. x ∈ Rn) represents vectors, while normal-face upper
case (e.g. X ∈Rn×m) represents matrices. Let T⊆{1, . . . ,n},
then for a matrix X ∈ Rm×n, XT ∈ Rm×|T| is the sub-matrix
obtained by extracting the columns of X corresponding to
the indices in T. Tc denotes the complement of a set T

and the universal set on which it is defined will be clear
from the context. Sm

k denotes the set of all vectors v ∈ Rm

such that |supp(v)| ≤ k (i.e the set of k-sparse vectors). X>.
denotes a combination of transposition of the sub-matrix of

X (e.g. X = [X1 X2], X .> =

[
X>1
X>2

]
). The symbol ∗ denotes
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the convolution operator for vectors. supp(x) denotes the
support of the vector x given by the set T = supp(x) =
{i|xi 6= 0}. argsort ↓ (x) denotes a function that returns the
sorted indices of vector x in descending order.

The best k-sparse approximation error, measured by `p
norm, is given, for e ∈ Sm

k ,

σk(e)`p , min
z∈Sn

k

‖e− z‖`p = ‖eTc‖`p . (1)

where T is the support of ei with first k largest magnitude.
The symbol ◦ denotes element-wise multiplication of two

vectors and is defined as z = x◦y, where zi = xi ·yi.

I. INTRODUCTION

Cyber-physical System has application potential in various
areas [1]. The authors in [2] pointed out that the ideal CPS
must operate dependably, safely, securely, efficiently and in
real-time.

Security questions in CPSs are more challenging than
traditional IT security because of the combination of tem-
poral dynamics brought by the physical environment and
the heterogeneous nature of the operation of CPSs [3].
Failure of CPS is more complicated than random failures
or well-defined uncertainty for which many results exist
on reliability and robustness, since they may be caused by
stealth malicious attacks. One of such powerful deception
attacks, named false data injection attack (FDIA), has shown
ability to bypass bad data detector (BDD), while compro-
mising the integrity of observer and robust controller with
sparse measurements corruption [4, 5]. Consequently, much
research attention have been directed to develop appropriate
protection schemes.

Active detection approaches have been considered [6],
where the defenders adjust the detection rules online in
order to identify the attack scenarios. There are some ma-
chine learning algorithms being considered to localize the
attacks, such as Gaussian process regression [7], support
vector machine[8], markov graphs[9], generative adversarial
networks[10] and more. These machine learning localization
algorithms generate estimated support of attacked (or safe)
nodes. This can then be used as a prior information for a
resilient estimation program.

Due to sparsity assumption of the attack vector
|supp(e)| ≤ k, the resilient estimation problem has been cast
as a classical error correction problem [5, 11]. Consider
a linear observation model y = Hx + e, where H ∈ RN×n

denotes an observation matrix, then the resilient estimation
is formulated as 0-norm minimization problem [12]. But it
imposes a restriction of maximum attack percentage of 50%



for correct recovery of x. Moreover, since 0-norm minimiza-
tion decoder is an NP-hard problem, an alternative 1-norm
minimization decoder has been considered in literature [7,
12], which can be solved by linear programming [13]. The
condition to bridge the two decoders is Restricted Isometry
Property (RIP) [14] that defines the sparse recoverability of
observation matrix H.

In order to guarantee correct state recoveries for larger
percentage of attacks, prior information has been considered
for resilient estimation scheme in literature: Measurement
Prior [7, 15], Support Prior [5] and State Prior [16].
In [16], the author considered the Prior information of
estimated states in three forms: sparsity information of x0,
(α,n0) sparsity information where α replaces 0 in sparsity
definition, and side information that is knowledge of the
initial state from the physical attribution of the system and
cannot be manipulated by malicious third parties. In [7, 15],
the author constructed a data-driven auxiliary model between
system measurement and auxiliary state by trained Gaussian
Process Regression (GPR), the attacked measurements are
visible to defender if they cannot be explained based on
the measurement model prior with high likelihood. In this
paper, we consider support prior which gives an estimated
set of attack location, and is generated by any of the afore
mentioned localization algorithms. However, there are two
drawbacks, namely: uncertainty and training price. Thus, we
propose a Pruning method to improve the precision of the
support prior without training process. Then a weighted
1-norm minimization scheme [17] is given based on the
resulting pruned support prior. The pruning idea originates
from [5]. Moreover, due to the perfect localization precision
of pruned support prior, resilient Unscented Kalman Filter
(UKF) against FDIA was given in [18] by performing UKF
based on the pruned safe set.

The remainder of this paper is organized as follows. In
Section ??, we describe the concurrent models that will be
used for the development in subsequent sections, including
physical model of CPS, threat model and prior model. In
Section ??, we develop the pruning methods, and construct a
weighted `1 observer with pruned support prior. A numerical
simulation and an application simulation on IEEE-14 bus
system show the proposed observer indeed enhance the
system resilience in Section IV. Finally, conclusion remarks
follows in Section V.

II. PROBLEM STATEMENT

A physical attacked dynamic model of CPS can be given:

xi+1 = Axi

yi =Cxi + ei
(2)

where, xk ∈Rn,yk ∈Rm, with m > n, denote state vector and
measurement vector at time i respectively, ek ∈ Sm

k denotes
the sparse attack vector, A,C are system dynamic parameters.
A control input may be included in the model above. How-
ever, since the control input is generally irrelevant to state
estimation problems, we suppress in the model considered

here. By iterating the system model (2) T time steps, the T
horizon observation model is given

yT = Hxi−T+1 + eT (3)

where yT = [y>i y>i−1 · · ·y>i−T+1]
> ∈RT m is a sequence of ob-

servation in the moving window [i−T +1 i], xi−T+1 ∈Rn is
the state vector at time i−T +1, eT = [e>i e>i−1 · · ·e>i−T+1]

> ∈
ST m

k is the sequence of attack vectors in the same moving
window with ei ∈ Sm

k/T ,∀i ∈ [i−T +1 i] and

H =


C

CA
...

CAT−1

=U
[

Σ1
0

]
V>

where, U = [U1 U2], with U1 ∈ RT m×n,U2 ∈ RT m×T m−n, is
a matrix of left singular vectors of H, V ∈ Rn×n is the
corresponding matrix of right singular vectors, Σ1 ∈ Rn×n

is a diagonal matrix of the singular values of H, which are
non-zero since H is full rank.

Definition 1 (Decoder): Given a sequence of observation
yT ∈ RT m, the decoder for the measurement model in (3) is
a mapping of the form D : RT m 7→ Rn given by

x̂ =D(yT ) =V Σ
−1
1 argmin

z
‖yT −U1z‖`1 (4)

Definition 2 (Detector): Given a positive threshold pa-
rameter ε , a detector for the decoder D and the measurement
model in (3) is a binary classifier of the form

Dε(yT ) =

{
1 if ‖yT −HD(yT )‖`1 > ε

0 otherwise (5)

Remark 1: The positive class for Dε(·) is the set of
attacked (unsafe) measurements, while the negative class is
the set of safe measurements.

False data injection attack is modeled as an addictive bias
through e on the sparse measurement nodes. We will assume
the attacker has knowledge of system (A,C).

Definition 3 (Successful FDIA [4]): Consider the CPS
in (2) and the corresponding measurement model (3), the
attack sequence eT ∈ ST m

k is said to be (ε,α)-successful
against the decoder-detector pair {D,Dε} if

‖x?−D(yT )‖ ≥ α, Dε(yT ) = 0, (6)

where yT = y?T + eT with y∗T ∈ RN the true measurement
vector, and x? is the true state vector.

Remark 2: (ε,α)-successful FDIA can result in a state
bias of size at least α while by-passing the detector Dε(·).

The following theorem gives a machanism for constructing
such (ε,α)-successful FDIA if the attack support is pre-
determined.

Theorem 2.1: Given the support sequence
T = {Ti Ti−1 · · ·Ti−T+1} with |Ti| ≤ k. Let ze be an
optimal solution of the optimization program

Maxmize : ‖Σ−1
1 z‖`2 ,

Subject to : ‖U1,Tc z‖`2 ≤ ε.
(7)



If σ̄Tc
√

T m−|T|< 1, then the FDIA

eT =U1,T · ze, eTc = 0 (8)

is (ε,α)-successful against the decoder-detector pair
{D,Dε}, with

α =
ε

σσTc
(1−σTc

√
T m−|T|),

where σTc is the largest singular value of U1,Tc and σ is the
smallest nonzero singular value of H.

Proof: Since{
z
∣∣∣∣ ‖z‖`2 ≤

ε

σTc

}
⊂
{

z
∣∣ ‖U1,Tcz‖`2 ≤ ε

}
,

where σTc is the largest singular value of U1,Tc , then

‖Σ−1
1 ze‖`2 ≥ max

‖z‖`2≤
ε

σTc

‖Σ−1
1 z‖`2 ≥

ε

σσTc

Also

x̂ =D

(
y?T +P

[
U1,T

0

]
ze

)
for an appropriate permutation matrix P satisfying U1 =

P
[

U1,T
U1,Tc

]
. Hence

x̂ =V Σ
−1
1 argmin

z

∥∥∥∥U1(z?+ ze + z)−P
[

0
U1,Tc

]
ze

∥∥∥∥
`1

=V Σ
−1
1 (z?+ ze− z⊥e )

where z? = Σ1V>x? corresponds to the true state and z⊥e is
the projection given by

z⊥e = argmin
z

∥∥∥∥U1z−P
[

0
U1,Tc

]
ze

∥∥∥∥
`1

Thus,

‖x̂‖`2 = ‖Σ
−1
1 (ze− z⊥e )‖`2

≥ ‖Σ−1
1 ze‖`2 −‖Σ

−1
1 z⊥e ‖`2 ≥

ε

σσTc
− 1

σ
‖z⊥e ‖`2

Note1

‖z⊥e ‖`2 ≤ ‖z
⊥
e ‖`1 ≤ ‖U1,Tc ze‖`1

≤
√

T m−|T| · ‖U1,Tcze‖`2

≤ (
√

T m−|T|)ε

Therefore,

‖x̂−x?‖`2 ≥
ε

σσTc
− ε

σ

√
T m−|T|

≥ ε

σ

(
1

σTc
−
√

T m−|T|
)
, α

1Let f (z) =

∥∥∥∥U1z−P
[

0
U1,Tc

]
ze

∥∥∥∥
`1

which is a convex function.The

unique minimizer z⊥e satisfies f (z⊥e )≤ f (0).

Moreover,

‖yT −Hx̂‖`1 =

∥∥∥∥U1(z?+ ze)−P
[

0
U1,Tc

]
ze−Hx̂

∥∥∥∥
`1

=

∥∥∥∥U1(z?+ ze)−P
[

0
U1,Tc

]
ze−U1(z?+ ze− z⊥e )

∥∥∥∥
`1

=

∥∥∥∥U1z⊥e −P
[

0
U1,Tc

]
ze

∥∥∥∥
`1

≤
√

T m−|T| ·σTcε

So, if σ̄Tc
√

T m−|T|< 1, then ‖yT −Hx̂‖`1 ≤ ε

III. MAIN RESULT

As discussed in Section I, we start from modeling the
uncertainty of machine learning localization result (Support
Prior), then a pruning method is given to generate a new
estimated support (Prune Support Prior), with precision
improvement. Finally, a weighted `1 observer is given based
on Prune Support Prior.

Assume the actual support of safe nodes is represented by
Tc, let the vector q∈ {0,1}T m be an indicator of the support
T, such that

qi =

{
1 if i ∈ Tc

0 otherwise (9)

The outputted Support Prior T̂c of any underlying machine
learning localization algorithm is an estimate of Tc, and the
estimated indicator q̂ ∈ {0,1}T m is defined similarly to (9).
Then an uncertainty model is defined as

qi = εiq̂i +(1− εi)(1− q̂i) (10)

where εi ∼ B(1,pi), with known pi ∈ R+, and E[pi] = Tr,
where Tr is true rate obtained from the Receiver Operator
Characteristic (ROC) of the underlying machine learning
algorithm.

Definition 4 (Positive Prediction Value, Precision, PPV):
Given an prior support knowledge q̂∈{0,1}N of an unknown
attack support indicator q ∈ {0,1}N , PPV is the proportion
of q that is correctly identified in q̂. It is given by

PPV =
‖q◦ q̂‖`0

‖q̂‖`0

(11)

Lemma 3.1: ([19]) Given mutually independent
Bernoulli random variables εi ∼ B(1,pi), i = 1, · · · ,T m,
then

Pr

{
T m

∑
i=1

εi = k−1

}
= r(k),k = 1, · · · ,T m+1 (12)

where,

r = β ·
[
−s1

1

]
∗
[
−s2

1

]
∗ · · · ∗

[
−sT m

1

]

with β =
T m

∏
i=1

pi, si =−
1−pi

pi
Next, based on the knowledge of uncertainty of Prior, the

pruning process will perform in two steps. Firstly, given a
reliability level η ∈ (0,1), the maximum integer lη(≤ T m)



of safe nodes being correctly localized with a probability of
at least η is obtained:

lη = max

{
k | Pr

{
∑

i∈T̂c

εi ≥ k

}
≥ η

}

= max

{
k |

k+1

∑
i=1

rT̂c(i)≤ 1−η

} (13)

where rT̂c is given by (12), using the index set T̂c.
Then a Prune Support Prior is obtained through a robust

extraction:
T̂c

η =
{

argsort ↓ (p◦ q̂)
}lη

1 (14)

where, {·}lη
1 is an index extraction from the first elements to

lη elements.
Definition 5 (Weighted `1 Observer with Pruned Prior):

Consider the CPS in (2) and the corresponding measurement
model (3), given Prune Support Prior T̂c

η by (14), a weighted
`1 observer is defined

Minimizez∈Rn ‖yT −Hz‖`1,w, with wi =

{
1, i ∈ T̂c

η

ω, i ∈ T̂η

(15)
where, 0≤ω ≤ 1, ‖z‖1,w ,∑i wi|zi| is the weighted `1 norm.

Theorem 3.2: Consider the system model in (2) together
with the corresponding measurement model (3). Assume
there exists a Support Prior T̂c generated by an underlying
machine learning localization algorithm with uncertainty
model in (10) and

T m

∑
i=1

pi > T m · pA. (16)

Given a positive parameter η satisfying

η ≤ 1− e
(

1−
(e−1)∑i∈T̂c pi

e|Tc|

)|Tc|
, (17)

where e is Euler’s number, a Pruned Support Prior T̂c
η given

by (13) and (14). If there exists an integer a≥max{ρ−1,1},
where ρ =

|T̂η |
k , such that any coding matrix F (FH = 0)

satisfies RIP condition

(1−δS)‖h‖2
`2
≤ ‖FTh‖2

`2
≤ (1+δS)‖h‖2

`2
(18)

for all sparse vector h ∈ ST m
S , and RIP constant satisfies

δak−Cδ(a+1)k ≤C−1 (19)

then, with a probability of at least η , the estimation error of
the Weighted `1 Observer in (15) can be upper bounded as

‖x̂−x‖`2
≤ C1

σH
√

k

(
ωσk(e)`1 +(1−ω)‖eT̂c

η
‖`1

)
, (20)

where σH is the smallest singular value of H, and

C1 =
2a−

1
2 (
√

1−δ(a+1)k +
√

1+δak)√
1−δ(a+1)k− 1

C

√
1+δak

,

C =
a

(ω +(1−ω)
√

ρ−1)2 .

Proof: Expanding (10) yields

qi = 2εiq̂i +1− q̂i− εi = 2qiq̂i +1− q̂i− εi

This implies that

εi−1+qi = 2(qiq̂i−
1
2

q̂i)

Summing over i = 1, · · · ,T m and taking expectation of both
sides yield

T m

∑
i=1

pi−T m+E[‖q‖`0 ] = 2E
[
‖q◦ q̂‖`0 −

1
2
‖q̂‖`0

]
.

Using the condition in (16) yields

E
[
‖q◦ q̂‖`0 −

1
2
‖q̂‖`0

]
> 0

which means PPV > 1/2, then

Pr{q◦ q̂ = 1 | q̂ = 1}> Pr{q◦ q̂ = 0 | q̂ = 1}

and with the operation in (14), it follows

T̂c
η ⊆ T̂c∩Tc, if 0 < lη ≤ ‖q◦ q̂‖

From (13), it is true that

Pr{0≤ lη ≤ ‖q◦ q̂‖} ≥ η , (21)

As well known, Poisson-binomial distribution can be approx-
imated by Binomial distribution, such that

∑
i∈T̂c

εi ∼B

(
|Tc|,

∑i∈T̂c pi

|Tc|

)
then, from condition (17), η ≤ 1− eM∑i∈T̂c εi(−1), where
M∑i∈T̂c εi(t) is the moment generating function of ∑i∈T̂c εi,
thus

E

[
exp

(
1− ∑

i∈T̂c

εi

)]
≤ 1−η

Since exp(z)≥ 1 for any z≥ 0, we obtain E[exp(z)]≥Pr(z≥
0), then it yields

Pr

{
1− ∑

i∈T̂c

εi ≥ 0

}
≤ 1−η ⇔ Pr

{
∑

i∈T̂c

εi ≥ 1

}
≥ η

which means lη 6= 0, combining with (21), we obtain Pr{0 <
lη ≤ ‖q◦ q̂‖} ≥ η , thus, Pr{T̂c

η ⊆ T̂c∩Tc ⊆ Tc} ≥ η , then

Pr
{

PPVη = 1
}
≥ η (22)

To avoid repetition, we state upfront that all claims made
in this rest of proof holds with a probability of at least η .
Under this probability, we have T̂c

η ⊂ Tc, T ⊂ T̂η .
Let x̂ be a minimizer to (15) with Hx̂ = Hx + h, then

the corresponding attack vector e? = e+h, thus ‖e?‖`1,ω ≤
‖e‖`1,ω . Following the definition of weight w in (15),

ω‖eT̂η
+hT̂η

‖`1 +‖eT̂c
η
+hT̂c

η
‖`1 ≤ ω‖eT̂η

‖`1 +‖eT̂c
η
‖`1



Since `1 norm is decomposable for disjoint sets, such for T
and Tc, and T̂c

η ∩T = /0, T̂c
η ∩Tc = T̂c

η , T∩ T̂η = T, it follows

ω‖eT +hT‖`1 +ω‖eT̂η∩Tc +hT̂η∩Tc‖`1 +‖eT̂c
η
+hT̂c

η
‖`1

≤ ω‖eT‖`1 +ω‖eT̂η∩Tc‖`1 +‖eT̂c
η
‖`1

By triangle inequality, it follows

ω‖hT̂η∩Tc‖`1 +‖hT̂c
η
‖`1 ≤ω‖hT‖`1 +2

(
‖eT̂c

η
‖`1 +ω‖eT̂η∩Tc‖`1

)
Adding and subtracting ω‖hT̂c

η∩Tc‖`1(=ω‖hT̂c
η
‖`1) on LHS,

2ω‖eT̂c
η∩Tc‖`1(= 2ω‖eT̂c

η
‖`1) on RHS, it yields

ω‖hTc‖`1 +(1−ω)‖hT̂c
η
‖`1 ≤ ω‖hT‖`1+

2
(

ω‖eTc‖`1 +(1−ω)‖eT̂c
η
‖`1

)
And since ‖hTc‖`1 = ω‖hTc‖`1 + (1− ω)‖hT̂c

η
‖`1 + (1−

ω)‖hT̂η∩Tc‖`1 , it yields

‖hTc‖`1 ≤ ω‖hT‖`1 +(1−ω)‖hT̂η∩Tc‖`1+

2
(

ω‖eTc‖`1 +(1−ω)‖eT̂c
η
‖`1

) (23)

Next, sort the coefficients of hTc in descending order, and
let T j, j ∈ {1,2, · · ·} denote jth support in hTc with size ak ∈
Z, where a > 1. Since ‖hT j−1‖`1 ≥ ak ·mini∈T j−1(hT j−1)i ≥
ak‖hT j‖`∞

, let T0 = T∪T1, we have

‖hTc
0
‖`2 ≤∑

j≥2
‖hT j‖`∞

≤ ak−1/2
∑
j≥1
‖hT j‖`1 = ak−1/2‖hTc‖`1

(24)
Note that |T̂η ∩ Tc| = (ρ − 1)k since PPV = 1, and |T| =
k, then ‖hT̂η∩Tc‖`1 ≤

√
(ρ−1)k‖hT̂η∩Tc‖`2 , ‖hT‖`1 ≤√

k‖hT‖`2 ≤
√

k‖hT0‖`2 . Since a ≥ ρ − 1, we obtain
|T̂η ∩ Tc| = (ρ − 1)k ≤ ak = |T1|, then ‖hT̂η∩Tc‖`2 =

‖hT∪(T̂η∩Tc)‖`2 ≤‖hT0‖`2 . Then combine with (23) and (24),

‖hTc
0
‖`2 ≤

ω +(1−ω)
√

ρ−1√
a

‖hT0‖`2

+
2√
ak

(
ω‖eTc‖`1 +(1−ω)‖eT̂c

η
‖`1

) (25)

Since ‖Fh‖`2 = ‖(Fe? − FyT )− (Fe− FyT )‖`2 = 0, it
follows, based on triangle inequality and RIP condition,√

1−δ(a+1)k‖hT0‖`2 ≤ ‖FhT0‖`2 ≤ ‖FhTc
0
‖`2 ≤

∑
j≥2
‖FhT j‖`2 ≤

√
1+δak ∑

j≥2
‖hT j‖`2 ≤

√
1+δak√

ak
‖hTc‖`1

Combining with (23), it yields√
1−δ(a+1)k‖hT0‖`2 ≤ ω

√
1+δak√

ak
‖hT‖`1+

(1−ω)

√
1+δak√

ak
‖hT̂η∩Tc‖`1

+2

√
1+δak√

ak

(
ω‖eTc‖`1 +(1−ω)‖eT̂c

η
‖`1

)

Notice, we have ‖hT‖`1 ≤
√

k‖hT0‖`2 and ‖hT̂η∩Tc‖`1 ≤√
(ρ−1)k‖hT0‖`2 . Combining with the upper inequality,

‖hT0‖`2 ≤
2
√

1+δak√
ak

(
ω‖eTc‖`1 +(1−ω)‖eT̂c

η
‖`1

)
√

1−δ(a+1)k−
ω+(1−ω)

√
ρ−1√

a

√
1+δak

Since ‖h‖`2 ≤ ‖hT0‖`2 + ‖hTc
0
‖`2 , combine the above in-

equality with (25), it yields

‖h‖`2 ≤
2
√

1−δ(a+1)k+
√

1+δ+ak
√

ak

(
ω‖eTc‖`1 +(1−ω)‖eT̂c

η
‖`1

)
√

1−δ(a+1)k−
ω+(1−ω)

√
ρ−1√

a

√
1+δak

where ‖eTc‖`1 = σk(e)`1 is best k sparse approximation error
of e defined in (1), and the estimation error ‖x̂− x‖`2 ≤
σ
−1
H ‖h‖`2 , and σH is the smallest singular value of H.

Moreover, to maintain the denominator to be positive, a
condition is given

δak +Cδ(a+1)k <C−1

where C = a
(ω+(1−ω)

√
ρ−1)2 .

Remark 3: The condition in (16) guarantees the under-
lying machine learning algorithm works better than random
flip of a fair coin, which is a reasonable assumption.

Remark 4: A precision improvement conclusion (22) is
given in proof, and notice that the upper bound restriction
of η is an overwhelming probability.

Remark 5: To avoid the sacrifice of redundancy of mea-
surements, we set weight ω close to zero, but not zero, even
if we are confident in the precision of T̂c

η .

IV. SIMULATION

In this section, a numerical simulation2 and an application
simulation on IEEE-14 bus system are presented.

A. Numerical Simulation

In this simulation, we compare the resiliency of three
estimation scheme: `1 observer without prior, weighted `1
observer with prior generated an underlying attack localiza-
tion algorithm with a true rate of Tr = 0.6, and weighted
`1 observer with the pruned prior. The system dimension is
set as m = 20,n = 10, and then a full observable system is
generated with random pair (A,C) of independent Gaussian
entries [13]. For different attack percentage PA, the FDIA is
designed by (8) on random support T. By defining ”success”
as that the estimation error is less than 0.1% of the real
state, the success percentage is calculated from 1000 trials. In
Figure 1, a performance comparison is presented for varying
attack percentages. As proved in literature [12], `1 observer
without prior cannot work when attack percentage is larger
than 1/2. The prior information can improve the resiliency
of the estimator, but the improvement is limited because the
precision of the prior information is not enough. By including
pruning method, the resiliency is improved a lot.

2we make the numerical simulation be open source at https://
github.com/ZYblend/Resilient-Pruning-Observer



Fig. 1. A comparison of estimation performance under different attack
percentage PA ∈ [0,1] between `1 Observer without Prior, Weighted `1
Observer with Prior, and Weighted `1 Observer with Prior Pruning.

B. Application Example

In this subsection, an additional simulation is carried out
for a more realistic IEEE Bus 14 system with a similar setup
in [15]. Here, 30% of the measurement nodes are attacked.
A comparison of the resulting phase angles estimation for
an `1 observer without prior and the proposed weighted `1
observer with prior pruning is shown in Figure 2. Moreover,
two comparison metrics for the estimation errors are given in
Table I. The first one is the root-mean-square (RMS) value
of error, the second one is the maximum absolute value of
the errors. Since the attack percentage is small, `1 observer
without prior works well. However, there are still notable
spikes that may induce closed loop instability. As shown in
the Figure, the proposed weighted `1 observer with prior
pruning completely eliminates the spikes!

TABLE I
ERROR METRIC VALUES

RMS Metric Max. Ans. Metric
LO L1O WL1P LO L1O WL1P

δ1 2.5359 0.0002 0.00004 5.7480 0.0034 0.0005
δ2 2.3917 0.0002 0.0001 5.7000 0.0016 0.0016
δ3 2.6353 0.0012 0.0001 7.5232 0.0215 0.0013
δ4 2.3685 0.0006 0.0005 5.7236 0.0063 0.0052
δ5 2.6638 0.0007 0.0001 7.8757 0.0085 0.0016

LO: Luenberger observer, L1O: `1 observer without prior
WL1P: Weighted `1 observer with prior pruning

V. CONCLUSIONS

This paper proposed a weighted `1 observer with prior
pruning scheme against FDIAs. The pruning method gives a
method to improve localization precision of any underlying
localization algorithm without training effort. Moreover, the
weighted `1 observer with prior pruning is capable of coping
with high-percentage of attacks among measurement nodes,
which relaxes the transitional restriction on the maximum
attack percentage for resilient `1 observer, thereby improve
the resiliency of systems.

Fig. 2. Angle estimation for IEEE-14 bus system under FDIA, ”without
Prior” means `1 Observer without Prior, ”Prior with Pruning” means
Weighted `1 Observer with Prior Pruning.
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