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Abstract

Carbon capture and storage (CCS) technology is critical for mitigating climate change but requires effective subsurface
reservoir management to ensure safe containment of injected CO.. Accurate predictions of reservoir pressure and saturation are
essential for assessing long-term CCS performance. Traditional numerical simulations, while effective, are computationally
intensive, time-consuming, and constrained by data discretization. Previous work has shown the effectiveness of MeshGraphNets
(MGN), a graph-based machine learning framework introduced by Pfaff et al.[1], as an innovative alternative for predicting
reservoir behavior[2]. MGN leverages graph neural networks (GNNs) and mesh representations to model complex geological
formations, offering superior adaptability across different discretizations and reservoir configurations.

Classic MGN implementations utilize an autoregressive technique to predict future behavior based on current predictions, but
this technique is hampered by error accumulation over time. To enhance the model accuracy in time-series predictions, this study
implemented a multi-step rollout strategy that integrates autoregressive predictions during training to stabilize prediction of
saturation over time. Using the Illinois Basin — Decatur Project (IBDP) dataset, comprising 100 simulations of CO: injection,
pressure, and saturation changes, the framework demonstrated its ability to learn spatial dependencies and temporal dynamics.
With inputs including permeabilities, porosities, and injection rates, MGN accurately predicted COz plume evolution over time,
even with limited training data. Moreover, the addition of a multi-step rollout procedure during training improved the ability of
MGN to predict stably over time by ~15%.

This research positions MGN, enhanced with multi-step rollout capabilities, as a robust and efficient tool for CCS applications.
It advances the field by enabling precise, computationally efficient predictions of reservoir behavior, providing a foundation for
the broader adoption of machine learning frameworks in CCS and other geoscience domains.

Keywords: Deep Learning; Graph Neural Network; MeshGraphNets

1. Introduction

Achieving global net-zero carbon emissions by mid-century is a cornerstone of international efforts to combat
climate change, as outlined in frameworks such as the Paris Agreement [3]. Carbon capture and storage (CCS) is
recognized as one of the most promising technologies to meet these goals by enabling the secure, long-term storage of
CO: in deep geological reservoirs [4]. To ensure the safe and efficient deployment of CCS, it is critical to accurately
predict subsurface reservoir behavior, particularly pressure and saturation dynamics, which play key roles in assessing
injection feasibility and storage integrity. However, traditional numerical simulations, which solve complex partial
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differential equations to model subsurface flow and transport processes, face challenges in scalability due to their
computational expense, time-intensive nature, and reliance on domain expertise [5]. These limitations pose significant
obstacles to the rapid analysis and optimization of CCS projects.

The emergence of machine learning (ML) and deep learning (DL) offers new avenues to complement traditional
simulation methods. These techniques excel in identifying patterns within large datasets and generating predictive
models, providing significant reductions in computational costs and analysis time while retaining predictive accuracy.
In particular, graph neural networks (GNNSs) have gained attention as a flexible and effective approach for modeling
systems with inherent graph structures, such as geological formations. GNNs can capture spatial relationships and
dependencies within geological data, offering a powerful tool for subsurface modeling [6].

Building on the capabilities of GNNs, MeshGraphNets (MGN), introduced by Pfaff et al. [1], provide a robust
framework for analyzing graph-structured data. By incorporating mesh-based representations, commonly used in finite
element methods, MGN bridges physics-informed modeling with data-driven learning. This framework is particularly
suited for CCS applications, as it can adapt to varying discretizations and capture complex interactions within
geological formations. Using data from the Illinois Basin — Decatur Project
(IBDP), a landmark CCS initiative, the multi-year research plan evaluates A
the scalability, efficiency, and predictive accuracy of MGN in modeling
CCS reservoir dynamics. This study focuses on the feasibility of improving
the predictive accuracy of MGN across time using a customized multi-step
rollout (MGN-MR) procedure during training. As such, this paper focuses
specifically on the prediction of changes in subsurface saturation during
injection and compares the two proposed techniques.

L EE B O E i P nd
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2. Study Site — Illinois Basin Decatur Project (IBDP) = e T LD

The Illinois Basin — Decatur Project (IBDP) was selected for this study
due to its comprehensive data availability and its alignment with the
SMART Initiative [7], [8]. This pilot project successfully injected one
million metric tons of CO; into the Mt. Simon Sandstone, a saline reservoir
in Decatur, Illinois, beginning on November 17, 2011, at a rate of
approximately 1,000 metric tons per day. By November 2014, the project
reached its injection goal. Notably, the IBDP demonstrated superior
capacity, injectivity, and containment potential, exceeding initial C
expectations [7], [9], [10], [11], [12].

The Mt. Simon Sandstone, the primary CO, storage formation in both
the Illinois Basin and the broader Midwest region, is more than 457 meters
thick at the IBDP site. It is capped by the Eau Claire Formation, an
impermeable layer providing an effective seal. The upper portion of the Mt.
Simon Sandstone was deposited in a tidally influenced environment, while
the lower 183 meters is arkosic sandstone from a braided river and alluvial
fan system, offering enhanced secondary porosity due to feldspar grain
dissolution.

IBDP holds the distinction of being the world’s first bioenergy carbon
capture and storage (BECCS) project, integrating a full-scale industrial
CCS system using CO; captured from Archer Daniels Midland’s (ADM) wo!. | \
ethanol fermentation process. The project infrastructure consisted of a 1 S
compression and dehydration facility, a CO, delivery pipeline, an injection ) Jmei(monthe)

S . . Figure 1: A summary of the IBDP dataset
weII,_ a monitoring well, a geophysical test well, and an environmental including graph extents (A), permeability
monitoring system. and porosity for one realization (B and C,

Real-time monitoring of the project was facilitated by custom software | respectively), and the injection volume over
systems such as the Real-Time Acquisition and Control (RTAC) system | time into the reservoir (D).
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and the Well Watcher Connect system. These systems continuously recorded data on wellhead pressure, downhole
conditions, and CO, volumes, ensuring rigorous operational monitoring and compliance with reporting requirements.

The CO; injector (CCS1) had three perforation zones, while additional monitoring took place through a deep
observation well (VW1) with multi-depth sensors. Additionally, microseismic data from downhole arrays in the
injection and monitoring wells provided critical insights into subsurface behavior.

The SMART team generated 100 simulations of IBDP CO; pressure and saturation changes. The IBDP dataset used
for this study was comprised of 100 ensemble simulations, each having a grid size of 126 x 125 x 110 (x, Y, z) and
included 3D permeability, porosity, 50 monthly model outputs for pressure and saturation distributions, and 1,521
daily time steps for injection data aggregated into monthly injection rates (Figure 1). The MGN (20 and 50 time steps)
and MGN-MR (20 time steps) models were tested using this data to quantify their effectiveness in predicting saturation
changes over time.

3. Method
3.1. Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph-structured data
[13], [6]. They excel at capturing relationships between nodes (vertices) and their connections (edges), making them
effective for problems where data is inherently represented as graphs, such as social networks, molecular structures,
and geological formations.

A graph is defined as G = (V,E), where V is the set of nodes, and E is the set of edges. Each node i € V has
associated features x; € R%, where d is the dimension of a node feature vector. Each edge e € E may have features
e;j € R¥, where k is the dimension of an edge feature vector. The goal of a GNN is to learn node representations, node
links, or graph-level representations. The features as “messages” can be aggregated and passed through the connected

network [14]. Each node v receives information from its neighbors. The hidden state at each node hgt“) is updated
based on:

h® = (h{"™, AGGREGATE;enyd(h" ™, n{ ", ;) (1)

3.2. where i and ¢ are learnable functions, often implemented as a Multi-Layer Perceptron (MLP), and ¢ is layer
index. MeshGraphNets (MGN)

MeshGraphNets is a machine learning framework specifically designed to model physical systems represented as
graphs, as introduced by Pfaff et al. [1]. It combines the flexibility of GNNs with the structured representation of
mesh-based data, making it suitable for scientific and engineering simulations. Inherited from GNNs, the
MeshGraphNets framework processes graph-structured data, where a graph G = (V, E), consists of nodes V , edges
E , and associated features.

The architecture of MeshGraphNets consists of three main stages (Figure 2):

Edge Features (4)

X distance
MY Y distance
Z distance

Linear Dist.

N
Graphat Ny

Permeability

Injection Rate

Pressure\Saturation

Message
Node Decoder Passing
— Loop

Graph at
time=t+1

Figure 2: Schematic of MeshGraphNet implementation for
prediction of subsurface behavior.
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Encoding

Node and edge features are encoded into latent embeddings using neural networks:

h® = ENC, (x,), hg.’) = ENC,(e;;)

(2)

where ENC, and ENC, are learnable encoders, and x; and e;; are node and edge features, respectively.

Processing

Message passing updates node and edge embeddings iteratively. For each time step t, messages are computed

and aggregated:

t t-1 t-1
m{? = p(h, h, h

(t-1)
ij

h® =y (hi(t—l), AGGREGATE ey ;) (mf,t)))

where ¢ and y are MLPs, and AGGREGATE combines incoming messages (e.g., by summation).

Decoding

The processed node embeddings are decoded to predict target properties:

YVi= DECv(hi(T))

where DEC, is a learnable decoder, and y; is the prediction for node i.

In the processing stage, MeshGraphNets performs message passing to iteratively update node and edge
embeddings. Traditionally, node updates are made at each time step t based on the previous state at t — 1. However,
this approach can struggle to capture long-term dependencies, as the error or change at each step might not provide a
sufficient signal for learning long-term behaviors. As a consequence, when this model is used for inferencing in an
autoregressive manner, small errors in prediction can accumulate over time, pushing the prediction further and further

from the target behavior.

3.3. MeshGraphNets with Multi-step Rollout (MGN-MR)

To address this drawback in
using the MGN model, a multi-step
rollout procedure during training is
implemented. In this approach,
rather than updating the model
directly at each timestep based on
the previous timestep’s state, the
system simulates a multi-step
trajectory using a rollout of k steps,
and the error is computed over these
k steps to guide learning (Figure 3).
This allows the model to account for
the accumulation of changes over a
longer horizon, providing richer
signals for learning:

(3)
(4)

(5)

MGN (no multi-step rollout) prediction

59

MGN (multi-step rollout)

prediction

!

z 055 * W,
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prediction

!

prediction

i t+k

t

b

t+l
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Figure 3: Diagram of loss calculation for standard MeshGraphNets model (MGN, top) and

Loss * w,

i t+2
ground truth

MeshGraphNets with Multi-step Rollout (MGN-MR, bottom)

Loss * w,

!

ground truth

hi(t + k) = ROLL_OUT(h;(t),{h;():v; € N (v}, k)

(6)
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The error over the multi-step rollout is computed by comparing the predicted final state &, (t + k) with the true
observed state h;(t + k). This error is typically computed using a loss function like Root Mean Squared Error (RMSE):

2
RMSE(t + k) = J N |h(t+k) 1(t+k)|| (7)
The total error is accumulated over all timesteps and rollouts as:
Liotal = Xt 211;1 w * RMSE(t, k) (8)

where k is the maximum number of rollout steps, and RMSE (¢, k) represents the error computed from the predicted
node embeddings at timestep t + k compared to the true target. This allows the model to learn long-term behaviors
by utilizing the error signal from the entire rollout trajectory and has been shown previously to improve overall
prediction accuracy in GNN models both in subsurface prediction [15] and pressure and flow modeling in the
cardiovascular system [16]. In this study, edges contain the X, y, and z distances between two nodes. The node
features include time point, porosity, permeability, saturation, as well as cell-specific metrics such as cell volume,
cell center, and node type.

A Ground Truth t=20mo. t=36mo. =50 mo.

t!

3.4. Computational Hardware

All training was performed on a custom-built PC with
an AMD Ryzen 9 7950X3D 16-Core processor, 64GB of
DDR5 5600 RAM, and a NVIDIA GeForce RTX 4070 Ti
OC GPU with 12GB of GDDR6X RAM. Models were
run in an emulated Ubuntu workspace on Windows 11
using WSL2 (Linux-5.15.133.1) and a custom Anaconda
environment running Python 3.10.13 and NVIDIA
Modulus v0.8.0.

.
B ——

3.5. Data

b
i

— e — Of the 100 realizations provided by the IBDP dataset,
C iference C' the last 20 realizations (80-100) could not be used due to
scaling differences. The remaining 80 realizations were
separated into 64 training, 8 validation, and 8 test
realizations; this was accomplished by taking the first 8
of every 10 realizations as training data, with the
ﬁfl remaining 2 realizations divided into the validation and
o test datasets. As mentioned previously, each realization
o “ 0 was comprised of 50 monthly timepoints, representing 36
% Saturation Difference months of injection and 14 months post-injection. The
D - full extents of the data were 126 x 125 x 110 cells, with
11 cell locations representing the injection locations. To
conduct proof-of-concept experiments while maintaining
the temporal dynamics of the system, in this study we
used a subvolume of 11 x 11 x 18 centered around the
ot , . e e, injection cells.

H 10 2 3 s 50
Time (Months)

Figure 4: Results of MGN model trained on 50 time points. Ground
truth (A) and predicted (B) values were compared in 3D as well as at
three time points in 2D (YZ plane, A’ and B’) to determine the accuracy
of the prediction (C, C’). Root mean squared error (RMSE) in
prediction increased over time during injection (D, pink region) and
stabilized during post-injection (D, green region).

s

RMSE (% Saturation)
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4. Results
4.1. MGN Saturation Prediction (50 time points)

To establish a benchmark for performance evaluation on saturation prediction over time, a MGN model was trained
using all 50 time points in the IBDP training dataset. Ground truth and predicted values were compared both in 3D at
the 50-month time point (Figure 4, A and B, respectively) and as single slices through the YZ plane at the level of the
injection well. Three time points were considered: 20 months after injection started, the end of injection at 36 months,
and at 50 months (14 months post-injection) (Figure 4, A’ and B’, respectively). The average difference between the
ground truth and predicted values across all realizations at all time points was found to be 0.012 + 0.072, with an
average RMSE of 7.35% (Table 1). As the prediction of saturation within the volume starts from zero at all points, we
differentiated between the average RMSE of zero values—the model’s ability to accurately predict where CO, should
not be—and nonzero average RMSE, which measures the .
ability of the model to predict the correct percent A ens AL
saturation at locations that are nonzero. The RMSE
values for zero and nonzero locations for the 50 time
point model were 1.69% and 9.14%, respectively (Table
1). As prediction in this method is done in an
autoregressive manner, with the input for the model at the
current time point being the predicted output from the
previous time point, it is imperative to understand the
performance of the system as prediction proceeds through
time. To accomplish this, the average RMSE value for
saturation was calculated after each time point prediction.
The average RMSE steadily increased over the injection
period, reaching an asymptote at 36 months when
injection was stopped. Beyond 36 months, the RMSE of
the predictions appears relatively constant, suggesting

that the model performs well for predicting the evolution | C iy c' . ——
of CO; saturation under steady-state conditions (Figure ' 'l
4D). § I ‘I

t=10 mo. t=20mo. t=36 mo.

4.2. MGN Saturation Prediction (20 and 36 time points)
To address the increasing average RMSE values during
prediction in a timely manner, we trained a second MGN
model using only the first 20 time points of the IBDP | D -
dataset. The benefits of reducing the number of time
points in this scenario are threefold. First, we
dramatically reduced the amount of time necessary to
train the model from 3 hours 37 minutes for the full 50
time points to 1 hour 30 minutes for 20 time points.

RMSE (% Saturation)

| 50t MGN Model |
20t MGN Model |

+— Training | Forward Prediction —
T

T T T T
H H 10 15 2 2
Time (Months)

Second, we focused the model on the time period where
the temporal increase in RMSE is most profound while
eliminating the potential confound of including post-
injection data with markedly different physical
characteristics. Finally, reducing the number of time
points afforded the opportunity to determine the accuracy
of the MGN model in forward prediction; while the MGN
model was trained on 20 time points in this case,

Figure 5: Results of MGN model trained on 20 time points and used
to predict out to month 36. Agreement between ground truth (A) and
predicted (B) values was high for both 3D as well as three time points
in 2D (YZ plane, A’ and B’) when the difference between the two
datasets is taken (C, C”). A high degree of correlation exists in average
RMSE over time (D) between the MGN model trained with 50 time
points (blue) and the 20 time point model (red), both in the training
space (left of dotted red line) and in the forward prediction of 21-36
months from the 20 time point model (right of dotted red line).
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predictions were performed out to 36 months. The difference between the predicted values and ground truth for this
new model was quantified both volumetrically (Figure 5A-C) and in single YZ slices across several time points (Figure
5A’-C”) and found to be 0.009+0.062. The average RMSE for this model was 6.3%, with the zero RMSE and nonzero
RMSE being 2.9% and 7.87% respectively (Table 1). Though not explored quantitatively, the reduction in RMSE
between this model and the full 50 time point model is assumed not to derive from a greater accuracy in the model,
but rather to a lower number of non-zero cells early in injection. This assumption is strengthened by a comparison of
the average RMSE over time from the predicted results of the reduced model to those of the model trained on 50 time
points, which shows good correlation between the two models, both for the first 20 timesteps and for the forward
prediction to 36 timesteps (R = 0.99 for both comparisons). These results suggest that using 20 time points for training
rather than the original 50 time points is sufficient to produce a model that accurately reflects the behavior of this
system, and that the accuracy of the model is maintained when predicting beyond the time on which it was trained.

4.3. MGN-MR Saturation Prediction (20 and 36 time
points)

t=10 mo. t=20mo. t=36mo.

In order to determine if the multi-step rollout
procedure is effective, the MGN-MR model was
trained on the same dataset as the 20 time point MGN
model using the same hyperparameters and random
seed to minimize variability. A drawback to this
technique that was identified prior to any training is the B
length of time necessary to train the model; compared
to 1 hour 30 minutes to train the MGN model, the
MGN-MR model required 6 hours 17 minutes to train.
This increase in training time is owing to the need to
pass each batch of graphs through the model 5 times
rather than the single pass for the MGN model.
Inferencing time, however, remains unchanged (~93 .
seconds for 8 realizations with 50 time points, 023 | © — c' 2
seconds per time point). As in the previous model, the |
MGN-MR results were quantified both volumetrically
(Figure 6 A, B) and in 2D YZ slices through the
injection nodes (Figure 6 A’, B’) with the average
difference between the ground truth and prediction
found to be 0.012 £ 0.051 (Figure 6 C, C’). The 2
average RMSE of the MGN-MR model was 5.27%,
with a zero RMSE of 1.14% and a nonzero RMSE of
6.83% (Table 1). This represents a 16.3% increase in
accuracy with the MGN-MR model over the MGN
model alone. The average improvement in temporal
prediction between the MGN and MGN-MR model
was 0.92% (Figure 6D, red vs green) but was heavily
skewed toward a larger difference at later time points.
Analysis of the difference in RMSE between the MGN

i

A Ground Truth A'

O ee—

% Saturation

=

[_20t MGN Model_}
20t MGN-MR Model

RMSE (% Saturation)

002

| Forward
«— Training | Prediction —»
—T—

T
30

5 10 15w 25
Time (Months)

® i oty
Figure 6: Comparison of MGN-MR model prediction with both ground
truth and MGN prediction. Ground truth (A) and predicted (B) values for

and MGN-MR model showed a linear divergence in
RMSE over time (Figure 6E, R? = 0.918) suggesting
that the MGN-MR model exerts a stabilizing influence
on temporal prediction.

MGN-MR were similar for both 3D and three time points in 2D (YZ
plane, A’ and B’) as shown by low variability between the two datasets
(C, C’). The MGN-MR model (D, green) outperformed the standard
MGN models (D, blue and red) in RMSE and showed similar consistency
to the MGN model in forward prediction (right of the dashed red/green
line). The difference in RMSE between the MGN and MGN-MR models
follows a linear trend (E, R? = 0.918).
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5. Conclusion

The reliable prediction of subsurface conditions is vital to the analysis of feasibility, cost, and risk for carbon capture
and storage. These predictions have classically been the domain of numeric solvers, but recent advances in artificial
intelligence have provided avenues for both more rapid and more accurate solutions. Graph neural network models,
and particularly the MeshGraphNets model, are particularly suited for this regime thanks to their ability to handle
unstructured data, such as that commonly found in geological systems. However, the application of MGN has been

hampered by the “temporal drift” during

autoregressive predictions that causes error to Table 1

build over time. This study supports the

application of multi-step rollout during MGN A;T\EE ‘;;ZZ N"R“;l;r:s
training as a reliable method to partially GN 50 e somes) T FEL T 50513
mitigate this drawback in MGN. An average TGN (20 Bime points) ] NFE] YY)
improvement of 16.3% in saturation RMSE MGN-MR (20 time points) 0.0527 0.0114 0.0683
value was observed in the MGN-MR model

compared to the standard MGN model.
Additionally, the MGN-MR model displayed greater stability in forward prediction over time. Future efforts will
explore improving the performance of the MGN-MR model to stabilize prediction over time and increase training
speed. In conclusion, this work provides a pathway to greater confidence in using MGN for subsurface prediction and
positions the MGN model, enhanced with multi-step rollout capabilities, as a robust and efficient tool for CCS
applications.
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