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Abstract 

Carbon capture and storage (CCS) technology is critical for mitigating climate change but requires effective subsurface 

reservoir management to ensure safe containment of injected CO2. Accurate predictions of reservoir pressure and saturation are 

essential for assessing long-term CCS performance. Traditional numerical simulations, while effective, are computationally 

intensive, time-consuming, and constrained by data discretization. Previous work has shown the effectiveness of MeshGraphNets 

(MGN), a graph-based machine learning framework introduced by Pfaff et al.[1], as an innovative alternative for predicting 

reservoir behavior[2]. MGN leverages graph neural networks (GNNs) and mesh representations to model complex geological 

formations, offering superior adaptability across different discretizations and reservoir configurations. 

Classic MGN implementations utilize an autoregressive technique to predict future behavior based on current predictions, but 

this technique is hampered by error accumulation over time. To enhance the model accuracy in time-series predictions, this study 

implemented a multi-step rollout strategy that integrates autoregressive predictions during training to stabilize prediction of 

saturation over time. Using the Illinois Basin – Decatur Project (IBDP) dataset, comprising 100 simulations of CO2 injection, 

pressure, and saturation changes, the framework demonstrated its ability to learn spatial dependencies and temporal dynamics. 

With inputs including permeabilities, porosities, and injection rates, MGN accurately predicted CO2 plume evolution over time, 

even with limited training data. Moreover, the addition of a multi-step rollout procedure during training improved the ability of 

MGN to predict stably over time by ~15%. 

This research positions MGN, enhanced with multi-step rollout capabilities, as a robust and efficient tool for CCS applications. 

It advances the field by enabling precise, computationally efficient predictions of reservoir behavior, providing a foundation for 

the broader adoption of machine learning frameworks in CCS and other geoscience domains. 
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1. Introduction  

Achieving global net-zero carbon emissions by mid-century is a cornerstone of international efforts to combat 

climate change, as outlined in frameworks such as the Paris Agreement [3]. Carbon capture and storage (CCS) is 

recognized as one of the most promising technologies to meet these goals by enabling the secure, long-term storage of 
CO2 in deep geological reservoirs [4]. To ensure the safe and efficient deployment of CCS, it is critical to accurately 

predict subsurface reservoir behavior, particularly pressure and saturation dynamics, which play key roles in assessing 

injection feasibility and storage integrity. However, traditional numerical simulations, which solve complex partial 
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differential equations to model subsurface flow and transport processes, face challenges in scalability due to their 

computational expense, time-intensive nature, and reliance on domain expertise [5]. These limitations pose significant 

obstacles to the rapid analysis and optimization of CCS projects. 

 

The emergence of machine learning (ML) and deep learning (DL) offers new avenues to complement traditional 

simulation methods. These techniques excel in identifying patterns within large datasets and generating predictive 

models, providing significant reductions in computational costs and analysis time while retaining predictive accuracy. 

In particular, graph neural networks (GNNs) have gained attention as a flexible and effective approach for modeling 

systems with inherent graph structures, such as geological formations. GNNs can capture spatial relationships and 

dependencies within geological data, offering a powerful tool for subsurface modeling [6]. 

 
Building on the capabilities of GNNs, MeshGraphNets (MGN), introduced by Pfaff et al. [1], provide a robust 

framework for analyzing graph-structured data. By incorporating mesh-based representations, commonly used in finite 

element methods, MGN bridges physics-informed modeling with data-driven learning. This framework is particularly 

suited for CCS applications, as it can adapt to varying discretizations and capture complex interactions within 

geological formations. Using data from the Illinois Basin – Decatur Project 

(IBDP), a landmark CCS initiative, the multi-year research plan evaluates 

the scalability, efficiency, and predictive accuracy of MGN in modeling 

CCS reservoir dynamics. This study focuses on the feasibility of improving 

the predictive accuracy of MGN across time using a customized multi-step 

rollout (MGN-MR) procedure during training. As such, this paper focuses 

specifically on the prediction of changes in subsurface saturation during 

injection and compares the two proposed techniques. 

2. Study Site – Illinois Basin Decatur Project (IBDP)  

The Illinois Basin – Decatur Project (IBDP) was selected for this study 

due to its comprehensive data availability  and its alignment with the 

SMART Initiative [7], [8]. This pilot project successfully injected one 

million metric tons of CO2 into the Mt. Simon Sandstone, a saline reservoir 

in Decatur, Illinois, beginning on November 17, 2011, at a rate of 

approximately 1,000 metric tons per day. By November 2014, the project 

reached its injection goal. Notably, the IBDP demonstrated superior 

capacity, injectivity, and containment potential, exceeding initial 

expectations [7], [9], [10], [11], [12]. 

The Mt. Simon Sandstone, the primary CO2 storage formation in both 

the Illinois Basin and the broader Midwest region, is more than 457 meters 
thick at the IBDP site. It is capped by the Eau Claire Formation, an 

impermeable layer providing an effective seal. The upper portion of the Mt. 

Simon Sandstone was deposited in a tidally influenced environment, while 

the lower 183 meters is arkosic sandstone from a braided river and alluvial 

fan system, offering enhanced secondary porosity due to feldspar grain 

dissolution. 

IBDP holds the distinction of being the world’s first bioenergy carbon 

capture and storage (BECCS) project, integrating a full-scale industrial 

CCS system using CO2 captured from Archer Daniels Midland’s (ADM) 

ethanol fermentation process. The project infrastructure consisted of a 

compression and dehydration facility, a CO2 delivery pipeline, an injection 

well, a monitoring well, a geophysical test well, and an environmental 
monitoring system. 

Real-time monitoring of the project was facilitated by custom software 

systems such as the Real-Time Acquisition and Control (RTAC) system 

 
Figure 1: A summary of the IBDP dataset 

including graph extents (A), permeability 

and porosity for one realization (B and C, 

respectively), and the injection volume over 

time into the reservoir (D). 
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and the Well Watcher Connect system. These systems continuously recorded data on wellhead pressure, downhole 

conditions, and CO2 volumes, ensuring rigorous operational monitoring and compliance with reporting requirements.  

The CO2 injector (CCS1) had three perforation zones, while additional monitoring took place through a deep 

observation well (VW1) with multi-depth sensors. Additionally, microseismic data from downhole arrays in the 

injection and monitoring wells provided critical insights into subsurface behavior. 

The SMART team generated 100 simulations of IBDP CO2 pressure and saturation changes. The IBDP dataset used 

for this study was comprised of 100 ensemble simulations, each having a grid size of 126 × 125 × 110 (x, y, z) and 

included 3D permeability, porosity, 50 monthly model outputs for pressure and saturation distributions, and 1,521 

daily time steps for injection data aggregated into monthly injection rates (Figure 1). The MGN (20 and 50 time steps) 

and MGN-MR (20 time steps) models were tested using this data to quantify their effectiveness in predicting saturation 

changes over time.  

3. Method  

3.1. Graph Neural Networks (GNNs) 

Graph Neural Networks (GNNs) are a class of deep learning models designed to operate on graph-structured data 

[13], [6]. They excel at capturing relationships between nodes (vertices) and their connections (edges), making them 

effective for problems where data is inherently represented as graphs, such as social networks, molecular structures, 

and geological formations. 

A graph is defined as 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes, and 𝐸 is the set of edges. Each node 𝑖 ∈ 𝑉 has 

associated features 𝑥𝑖 ∈ 𝑅𝑑, where d is the dimension of a node feature vector. Each edge 𝑒 ∈ 𝐸 may have features 

𝑒𝑖𝑗 ∈ 𝑅𝑘, where k is the dimension of an edge feature vector. The goal of a GNN is to learn node representations, node 

links, or graph-level representations. The features as “messages” can be aggregated and passed through the connected 

network [14]. Each node 𝑣 receives information from its neighbors. The hidden state at each node ℎ𝑖
(𝑡+1)

 is updated 

based on: 

ℎ𝑖
(ℓ)

= ψ (ℎ𝑖
(ℓ−1)

, AGGREGATEj∈N(i)ϕ(ℎ𝑖
(ℓ−1)

, ℎ𝑗
(ℓ−1)

, 𝑒𝑖𝑗 ))  ( 1 ) 

3.2. where 𝜓 and 𝜙 are learnable functions, often implemented as a Multi-Layer Perceptron (MLP), and ℓ is layer 

index. MeshGraphNets (MGN)  

MeshGraphNets is a machine learning framework specifically designed to model physical systems represented as  

graphs, as introduced by Pfaff et al. [1]. It combines the flexibility of GNNs with the structured representation of 

mesh-based data, making it suitable for scientific and engineering simulations. Inherited from GNNs, the 

MeshGraphNets framework processes graph-structured data, where a graph 𝐺 = (𝑉, 𝐸), consists of nodes 𝑉 , edges 

𝐸 , and associated features.  

The architecture of MeshGraphNets consists of three main stages (Figure 2): 

  

 
Figure 2: Schematic of MeshGraphNet implementation for 

prediction of subsurface behavior. 
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Encoding 

Node and edge features are encoded into latent embeddings using neural networks:  

ℎ𝑖
(0)

= ENC𝑣(𝑥𝑖),  ℎ𝑖𝑗
(0)

= ENC𝑒(𝑒𝑖𝑗) ( 2 ) 

where ENC𝑣 and ENC𝑒 are learnable encoders, and 𝑥𝑖 and 𝑒𝑖𝑗 are node and edge features, respectively. 

 

Processing 

Message passing updates node and edge embeddings iteratively. For each time step 𝑡, messages are computed 

and aggregated:  

𝑚𝑖𝑗
(𝑡)

= 𝜙(ℎ𝑖
(𝑡−1)

, ℎ𝑗
(𝑡−1)

, ℎ𝑖𝑗
(𝑡−1)

) ( 3 ) 

ℎ𝑖
(𝑡)

= 𝜓 (ℎ𝑖
(𝑡−1)

, AGGREGATE𝑗∈𝒩(𝑖)(𝑚𝑖𝑗
(𝑡)

)) ( 4 ) 

where 𝜙 and 𝜓 are MLPs, and AGGREGATE combines incoming messages (e.g., by summation). 

 

Decoding 
The processed node embeddings are decoded to predict target properties:  

𝑦𝑖 = DEC𝑣(ℎ𝑖
(𝑇)

) ( 5 ) 

where DEC𝑣 is a learnable decoder, and 𝑦𝑖 is the prediction for node 𝑖. 
In the processing stage, MeshGraphNets performs message passing to iteratively update node and edge 

embeddings. Traditionally, node updates are made at each time step 𝑡 based on the previous state at 𝑡 − 1. However, 

this approach can struggle to capture long-term dependencies, as the error or change at each step might not provide a 

sufficient signal for learning long-term behaviors. As a consequence, when this model is used for inferencing in an 

autoregressive manner, small errors in prediction can accumulate over time, pushing the prediction further and further 

from the target behavior.  

 

3.3. MeshGraphNets with Multi-step Rollout (MGN-MR) 

To address this drawback in 

using the MGN model, a multi-step 

rollout procedure during training is 

implemented. In this approach, 

rather than updating the model 

directly at each timestep based on 

the previous timestep’s state, the 

system simulates a multi-step 

trajectory using a rollout of 𝑘 steps, 

and the error is computed over these 

𝑘 steps to guide learning (Figure 3). 

This allows the model to account for 

the accumulation of changes over a 

longer horizon, providing richer 

signals for learning: 

ℎ𝑖(𝑡 + 𝑘) = ROLL_OUT(ℎ𝑖(𝑡), {ℎ𝑗(𝑡): 𝑣𝑗 ∈ 𝒩(𝑣𝑖)}, 𝑘)  ( 6 ) 

 
Figure 3: Diagram of loss calculation for standard MeshGraphNets model (MGN, top) and 

MeshGraphNets with Multi-step Rollout (MGN-MR, bottom) 
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The error over the multi-step rollout is computed by comparing the predicted final state ℎ𝑖̂(𝑡 + 𝑘) with the true 

observed state ℎ𝑖(𝑡 + 𝑘). This error is typically computed using a loss function like Root Mean Squared Error (RMSE): 

RMSE(𝑡 + 𝑘) = √1

𝑁
∑ ‖ℎ𝑖

(𝑡+𝑘)
 −  hî

(𝑡+𝑘)
‖

2
𝑁
𝑖=1  ( 7 ) 

The total error is accumulated over all timesteps and rollouts as: 

𝐿total = ∑ ∑ wt
𝐾
𝑘=1𝑡 ∗ 𝑅𝑀𝑆𝐸(𝑡, 𝑘) ( 8 ) 

where 𝑘 is the maximum number of rollout steps, and 𝑅𝑀𝑆𝐸(𝑡, 𝑘) represents the error computed from the predicted 

node embeddings at timestep 𝑡 + 𝑘 compared to the true target. This allows the model to learn long-term behaviors 

by utilizing the error signal from the entire rollout trajectory and has been shown previously to improve overall 

prediction accuracy in GNN models both in subsurface prediction [15] and pressure and flow modeling in the 

cardiovascular system [16]. In this study, edges contain the x, y, and z distances between two nodes. The node 

features include time point, porosity, permeability, saturation, as well as cell-specific metrics such as cell volume, 

cell center, and node type. 

3.4. Computational Hardware 

All training was performed on a custom-built PC with 

an AMD Ryzen 9 7950X3D 16-Core processor, 64GB of 

DDR5 5600 RAM, and a NVIDIA GeForce RTX 4070 Ti 

OC GPU with 12GB of GDDR6X RAM. Models were 

run in an emulated Ubuntu workspace on Windows 11 

using WSL2 (Linux-5.15.133.1) and a custom Anaconda 
environment running Python 3.10.13 and NVIDIA 

Modulus v0.8.0. 

3.5. Data 

Of the 100 realizations provided by the IBDP dataset, 

the last 20 realizations (80-100) could not be used due to 

scaling differences. The remaining 80 realizations were 

separated into 64 training, 8 validation, and 8 test 

realizations; this was accomplished by taking the first 8 

of every 10 realizations as training data, with the 

remaining 2 realizations divided into the validation and 

test datasets. As mentioned previously, each realization 

was comprised of 50 monthly timepoints, representing 36 

months of injection and 14 months post-injection. The 
full extents of the data were 126 × 125 × 110 cells, with 

11 cell locations representing the injection locations. To 

conduct proof-of-concept experiments while maintaining 

the temporal dynamics of the system, in this study we 

used a subvolume of 11 × 11 × 18 centered around the 

injection cells.   
 

Figure 4: Results of MGN model trained on 50 time points. Ground 

truth (A) and predicted (B) values were compared in 3D as well as at 

three time points in 2D (YZ plane, A’ and B’) to determine the accuracy 

of the prediction (C, C’). Root mean squared error (RMSE) in 

prediction increased over time during injection (D, pink region) and 

stabilized during post-injection (D, green region). 
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4. Results  

4.1. MGN Saturation Prediction (50 time points) 

To establish a benchmark for performance evaluation on saturation prediction over time, a MGN model was trained 

using all 50 time points in the IBDP training dataset. Ground truth and predicted values were compared both in 3D at 

the 50-month time point (Figure 4, A and B, respectively) and as single slices through the YZ plane at the level of the 

injection well. Three time points were considered: 20 months after injection started, the end of injection at 36 months, 

and at 50 months (14 months post-injection) (Figure 4, A’ and B’, respectively). The average difference between the 

ground truth and predicted values across all realizations at all time points was found to be 0.012 ± 0.072, with an 

average RMSE of 7.35% (Table 1). As the prediction of saturation within the volume starts from zero at all points, we 

differentiated between the average RMSE of zero values—the model’s ability to accurately predict where CO2 should 

not be—and nonzero average RMSE, which measures the 

ability of the model to predict the correct percent 

saturation at locations that are nonzero. The RMSE 

values for zero and nonzero locations for the 50 time 

point model were 1.69% and 9.14%, respectively (Table 

1). As prediction in this method is done in an 

autoregressive manner, with the input for the model at the 

current time point being the predicted output from the 

previous time point, it is imperative to understand the 

performance of the system as prediction proceeds through 

time. To accomplish this, the average RMSE value for 

saturation was calculated after each time point prediction. 

The average RMSE steadily increased over the injection 

period, reaching an asymptote at 36 months when 

injection was stopped. Beyond 36 months, the RMSE of 

the predictions appears relatively constant, suggesting 

that the model performs well for predicting the evolution 

of CO2 saturation under steady-state conditions (Figure 

4D). 

4.2. MGN Saturation Prediction (20 and 36 time points)  

To address the increasing average RMSE values during 

prediction in a timely manner, we trained a second MGN 

model using only the first 20 time points of the IBDP 

dataset. The benefits of reducing the number of time 

points in this scenario are threefold. First, we 

dramatically reduced the amount of time necessary to 

train the model from 3 hours 37 minutes for the full 50 

time points to 1 hour 30 minutes for 20 time points. 

Second, we focused the model on the time period where 

the temporal increase in RMSE is most profound while 

eliminating the potential confound of including post-

injection data with markedly different physical 

characteristics. Finally, reducing the number of time 

points afforded the opportunity to determine the accuracy 

of the MGN model in forward prediction; while the MGN 

model was trained on 20 time points in this case, 

 
Figure 5: Results of MGN model trained on 20 time points and used 

to predict out to month 36. Agreement between ground truth (A) and 

predicted (B) values was high for both 3D as well as three time points 

in 2D (YZ plane, A’ and B’) when the difference between the two 

datasets is taken (C, C’). A high degree of correlation exists in average 

RMSE over time (D) between the MGN model trained with 50 time 

points (blue) and the 20 time point model (red), both in the training 

space (left of dotted red line) and in the forward prediction of 21-36 

months from the 20 time point model (right of dotted red line). 
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predictions were performed out to 36 months. The difference between the predicted values and ground truth for this 

new model was quantified both volumetrically (Figure 5A-C) and in single YZ slices across several time points (Figure 

5A’-C’) and found to be 0.009±0.062. The average RMSE for this model was 6.3%, with the zero RMSE and nonzero 

RMSE being 2.9% and 7.87% respectively (Table 1). Though not explored quantitatively, the reduction in RMSE 

between this model and the full 50 time point model is assumed not to derive from a greater accuracy in the model, 

but rather to a lower number of non-zero cells early in injection. This assumption is strengthened by a comparison of 

the average RMSE over time from the predicted results of the reduced model to those of the model trained on 50 time 

points, which shows good correlation between the two models, both for the first 20 timesteps and for the forward 

prediction to 36 timesteps (R = 0.99 for both comparisons). These results suggest that using 20 time points for training 

rather than the original 50 time points is sufficient to produce a model that accurately reflects the behavior of this 

system, and that the accuracy of the model is maintained when predicting beyond the time on which it was trained. 

4.3. MGN-MR Saturation Prediction (20 and 36 time 

points) 

In order to determine if the multi-step rollout 

procedure is effective, the MGN-MR model was 

trained on the same dataset as the 20 time point MGN 

model using the same hyperparameters and random 

seed to minimize variability. A drawback to this 

technique that was identified prior to any training is the 

length of time necessary to train the model; compared 

to 1 hour 30 minutes to train the MGN model, the 

MGN-MR model required 6 hours 17 minutes to train. 

This increase in training time is owing to the need to 

pass each batch of graphs through the model 5 times 

rather than the single pass for the MGN model. 

Inferencing time, however, remains unchanged (~93 

seconds for 8 realizations with 50 time points, 0.23 

seconds per time point). As in the previous model, the 

MGN-MR results were quantified both volumetrically 

(Figure 6 A, B) and in 2D YZ slices through the 

injection nodes (Figure 6 A’, B’) with the average 

difference between the ground truth and prediction 

found to be 0.012 ± 0.051 (Figure 6 C, C’).  The 

average RMSE of the MGN-MR model was 5.27%, 

with a zero RMSE of 1.14% and a nonzero RMSE of 

6.83% (Table 1). This represents a 16.3% increase in 

accuracy with the MGN-MR model over the MGN 

model alone. The average improvement in temporal 

prediction between the MGN and MGN-MR model 

was 0.92% (Figure 6D, red vs green) but was heavily 

skewed toward a larger difference at later time points. 

Analysis of the difference in RMSE between the MGN 

and MGN-MR model showed a linear divergence in 

RMSE over time (Figure 6E, R2 = 0.918) suggesting 

that the MGN-MR model exerts a stabilizing influence 

on temporal prediction. 

 

 
Figure 6: Comparison of MGN-MR model prediction with both ground 

truth and MGN prediction. Ground truth (A) and predicted (B) values for 

MGN-MR were similar for both 3D and three time points in 2D (YZ 

plane, A’ and B’) as shown by low variability between the two datasets 

(C, C’). The MGN-MR model (D, green) outperformed the standard 

MGN models (D, blue and red) in RMSE and showed similar consistency 

to the MGN model in forward prediction (right of the dashed red/green 

line). The difference in RMSE between the MGN and MGN-MR models 

follows a linear trend (E, R2 = 0.918). 
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5. Conclusion  

The reliable prediction of subsurface conditions is vital to the analysis of feasibility, cost, and risk for carbon capture 

and storage. These predictions have classically been the domain of numeric solvers, but recent advances in artificial 

intelligence have provided avenues for both more rapid and more accurate solutions. Graph neural network models, 

and particularly the MeshGraphNets model, are particularly suited for this regime thanks to their ability to handle 

unstructured data, such as that commonly found in geological systems. However, the application of MGN has been 

hampered by the “temporal drift” during 

autoregressive predictions that causes error to 

build over time. This study supports the 

application of multi-step rollout during MGN 

training as a reliable method to partially 

mitigate this drawback in MGN. An average 

improvement of 16.3% in saturation RMSE 

value was observed in the MGN-MR model 

compared to the standard MGN model. 

Additionally, the MGN-MR model displayed greater stability in forward prediction over time. Future efforts will 

explore improving the performance of the MGN-MR model to stabilize prediction over time and increase training 

speed. In conclusion, this work provides a pathway to greater confidence in using MGN for subsurface prediction and 

positions the MGN model, enhanced with multi-step rollout capabilities, as a robust and efficient tool for CCS 

applications. 
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