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1 Executive Summary

This report describes the work in NEAMS (Nuclear Energy Advanced Modeling and Simu-
lation) to develop a mechanistic fission gas model for uranium nitride fuels in BISON. The
existing Sifgrs (Simple integrated fission gas release and swelling) model tracks the average
properties of two bubble populations in the bulk and at the grain boundaries. It was recognized
that dislocations play a crucial role in the fission gas swelling of UN, and an irradiation-induced
dislocation density model was needed, as well as a model describing how fission gas interacts
with dislocations creating a third population of bubbles along dislocations.

A mechanistic model that tracks dislocation bubbles was implemented in Sifgrs. This model
was used to simulate fission gas swelling and release in UN. Lower-length-scale calculations and
experimental observations from carbide fuel were leveraged to help populate the model with es-
sential parameters. As a placeholder, an empirical function was formulated for the evolution
of the dislocation network. Because of the difference in evolution of this network at different
temperatures, the dislocation bubbles are able to capture behavior that the bulk intragranular
bubbles cannot. It was found that the bulk bubbles dominate microscopic swelling at low tem-
peratures, and the dislocation bubbles dominate at higher temperatures. Based on this model,
the transition between the two bubble types is the main factor behind the breakaway swelling
phenomenon in UN. In order to test the model, a couple of assessments were run. For the lower
temperature JOYO pins, the model produces reasonable fission gas release and swelling val-
ues. For the higher temperature SP1 pin, the model dramatically underestimates the fission gas
release. This issue is attributed to the gas being trapped inside dislocation bubbles, unable to
escape to grain boundaries to cause fission gas release, and could be remedied by a mechanistic
dislocation model that allows the dislocation density to decrease at very high temperatures.

A preliminary mechanistic dislocation model was developed supported by first-principle cal-
culations. These calculations provided valuable insight into how interstitial defects cluster in
UN in the {110} orientation, and may eventually form dislocation loops, leading to the con-
clusion that dislocation loops may nucleate from these clusters. An estimate of the dislocation
line energy in UN was obtained and will be improved in future work. The free-energy cluster
dynamics code Centipede was used to track interstitial and vacancy absorption at dislocation
loops and calculate their growth. In addition, improvements to Centipede were made including
new convergence criteria for transient simulations and sink driving force updates.
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2 Introduction

Many of the required models to capture the fuel performance of uranium nitride – thermal con-
ductivity, elastic moduli, creep, etc. – have been implemented in BISON in previous years.
One of the last remaining pieces is a model that mechanistically describes the response of the
fuel to evoloving temperature and fission rate profiles. In order to provide a placeholder for a
more accurate fission gas swelling and release model, the model utilized in the European code
TRANSURANUS was implemented, along with a temperature correction to make the model
applicable to nitride fuels [1]. In addition, a simplified fission gas release model was imple-
mented [2]. While these models provide placeholders for more representative models, they are
extremely limited in applicability in uranium nitride fuel. In order to enable the qualitative as-
sessment of BISON UN fuel performance simulations, an improved fission gas swelling and
release model is needed to be able to utilized all of the sparse irradiation data available for this
advanced fuel.

Fission gas models for ceramic nuclear fuel fission gas swelling and release typically consider
two populations of bubbles, the bulk intragranular bubbles and the intergranular bubbles [3]. The
intragranular bubbles form and accumulate inside the grain, and act to slow the migration of gas
atoms to the grain boundary. At the same time, fission fragments in the fuel knockout gas atoms
from the bubbles, resulting in a pseudo-steady-state concentration of diffusing fission gas in
the lattice. The intergranular bubbles absorb gas that eventually reaches the grain boundaries,
leading to interconnection once a grain-face saturation threshold is reached. Once this network
of the interconnected bubbles reach a free surface, the contents of the high-pressure bubbles
flows into the plenum, resulting in a build up in pressure on the inside surface of the cladding.
In addition to fission gas release, both grain-interior and grain-face bubbles cause significant
swelling of the fuel, which leads to pellet-cladding interaction (PCI).

While the general behavior of fission gas in uranium nitride (UN) and uranium carbide (UC)
fuel is similar to UO2 – swelling due to fission gas bubbles in inter- and intra-granular bubbles,
and percolation of grain-face bubbles resulting in fission gas release – these advanced ceramic
fuels have a markedly different swelling trend. This so-called “break-away” swelling has yet to
be captured in fuel performance models in a robust manner. Early efforts of implementing the
BISON UO2 standard fission gas model, Sifgrs, failed to capture this more complex swelling be-
havior. Leveraging some early work on dislocation-bubble interaction in UO2 [4, 5], adaptation
of Sifgrs focused on incorporation of a third population of bubble, the intragranular disloca-
tion bubble. Experimental evidence that fission gas interacts with dislocations has existed for
decades [6–8], and has even been suggested as nucleation sites for bubbles [9].

By building on models developed for fission gas behavior in UO2, especially the complex-
ity introduced by new dislocation bubbles [4, 5] we have created a new fission gas swelling
and release model for UN. This model required a number of enhancements to the base Sifgrs
model to be able to incorporate the various material specific properties required to capture fis-
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sion gas behavior. Many of these complexities have been started in previous years [10], with
the modifications relevant to dislocations as a primary focus for this work. Lower-length scale
computations on fundamental material properties (e.g., diffusivities) has been fit to analytical
expressions and incorporated into this new model. Such details are important to capture a true
mechanistic response of some of these parameters. This new model has been implemented in
BISON and exercised against a subset of experimental data and integral pin simulations. While
not fully complete, this model is mature enough to support the claim that dislocations play a
significant role in the break-away swelling and overall fission gas behavior in UN.

Following early successes in the BISON UN fission gas model, it was clear that the growth
of dislocations needed to be captured mechanistically rather than relying only on fits to limited
experimental data. To this end, Centipede has been extended to capture dislocations in transient
simulations of point defects in irradiated UN fuel. This required a number of changes to the
standard Centipede convergence criterion, defect sink evolution, and a number of Centipede
code changes to enable the tracking of this new type of defect. With these new changes in place,
this initial dislocation model captures some the expected behavior of dislocations. A number of
changes are still required – primarily in the nucleation and network growth behavior – but these
initial simulations show promise in mechanistically capturing the behavior of dislocations and
other defects as a function of temperature, irradiation, and chemistry.

What follows is a description of 1) the BISON UN fission gas swelling and release model with
comparison to a limited data set, and 2) introduction of a new dislocation model in Centipede.
Details on assumptions, model strengths and weaknesses, and future work is included for both
thrusts. Rapidly following this report, the models in both Centipede and BISON need to be re-
fined, and likely coupled in a manner so information can flow between the two codes. Following
this, application to a number of integral assessment cases will be the true test of the new model,
culminating in completion of a “baseline” capability of BISON for UN fuel performance.
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3 UN Fission Gas Model

Building on efforts from the previous year, a more refined fission gas release and swelling model
as been developed based on the BISON Sifgrs model [11]. In preparation for this new model,
a major clean-up effort of the fission gas section of the BISON code was performed. Although
the details of such refactoring will not be accounted for here, the refactoring, reorganizing, and
deployment by both Idaho National Laboratory and Los Alamos National Laboratory develop-
ers have made the Sifgrs model in BISON much more accessible. This primarily consisted of
splitting the physical models describing fission gas behavior into a base class, while separat-
ing material parameters into separate fuel specific classes. The refactoring of the Sifgrs model
helped give it a necessary improvement in clarity and made new models much easier to imple-
ment. These changes not only make future model implementation faster, but also help avoid
mistakes when implementing or using the models due to the improved clarity.

Fission gas is known to interact with the dislocation network in ceramic fuel [6–8]. The dis-
location lines act as nucleation sites for bubbles to form, help to trap gas atoms, and provide
pipe diffusion pathways to funnel the gas atoms to the bubbles [5, 9]. Fig. 3.1 illustrates the
three types bubbles, and the color scheme of green for bulk intragranular bubbles, yellow for
intragranular dislocation bubbles, and orange for grain face bubbles, is maintained throughout
the figures in this chapter. In the model, dislocation bubble nucleate along dislocation lines by a
constant factor per unit length. They absorb gas atoms and vacancies both at the bubble periph-
ery and along the dislocation lines. Like the bulk intragranular bubbles, they undergo resolution
of gas atoms from the bubble back into the matrix. And like intergranular bubbles, they can co-
alesce as they become large. By these mechanisms, dislocation bubbles adopt properties similar
to both the bulk bubbles and the grain boundary bubbles.

Preliminary efforts on capturing the behavior of UN indicated dislocation bubbles likely have
a role to play in capturing the breakaway swelling behavior of the fuel. As part of the implemen-
tation of UNSifgrs, the dislocation bubble model described in [4], originally meant for bubble
coarsening in UO2 under transient conditions, was expanded to UN. A thorough description of
the model is given here in the following sections. In this chapter, the fission gas behavior of
nitride and carbide fuels that motivates this work is reviewed. A solid and Cs swelling rela-
tion is given that sums with the fission gas swelling to give total swelling. Fits to the diffusion
of relevant defects calculated using Centipede are presented. The dislocation bubble model is
described. Bubble overpressurization and dislocation punching is investigated. An empirical
dislocation density function is created for UN to help calculate intragranular swelling, which is
then compared with experimental measurements. The UN Sifgrs model including dislocation
bubbles is tested using fuel pin assessment cases.
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Figure 3.1: Illustration showing the three types of bubbles: intragranular bulk (green), intragranular dis-
location (yellow), and intergranular (orange).

3.1 Overview of Fission Gas Behavior in Nitride and Carbide Fuels

The notable swelling behavior of carbide and nitride fuels was reviewed in a previous report [10],
and is summarized here for reference.

In order to understand the three swelling regimes, it is helpful to use definitions based on
empirical observations of fission gas bubbles [9, 12]. Bubbles have been categorized into three
populations [12]. The first, P1, consists of small intragranular bubbles with sizes less than 30 nm.
These are typically observed in the low temperature region near the cladding. Moving inward
towards the fuel center where temperatures are greater, larger intragranular bubbles form pop-
ulation P2. The size of the P2 bubbles ranges from 30 to 400 nm. The population P2 becomes
significant where the temperature exceeds the threshold temperature T2, which corresponds with
an increase in the microscopic, or intragranular, swelling. Bubbles along the grain boundaries
form P3, which are larger than 40 nm. While P3 bubbles exist at temperatures below T2, they
become more significant when temperatures exceed T2. The last threshold temperature T3 cor-
responds to a decrease in microscopic swelling that occurs in the center of the fuel pin, and is
associated with the interconnection of P3 bubbles in conjunction with the mechanical weakening
and fracture of the grain boundaries [13] causing a significant release of fission gas.

The rate of intragranular swelling in nitride fuel has been shown to increase for temperatures
greater than a threshold temperature [9,12,14]. This phenomenon, termed “breakaway swelling,”
needs to be understood and quantified because it presents large uncertainty and may pose a
significant risk to the cladding. Breakaway swelling is associated with the formation of large
intragranular bubbles (between 30 and 400 nm) [12]. Fig. 3.2 shows the change in swelling rate
with temperature after the threshold temperature is reached in carbide fuel (MC) for two values
of burnup. At even greater temperatures, the rate of swelling decreases with temperature after
a second threshold temperature is reached. This second threshold is associated with the growth
and interconnection of intergranular bubbles, typically larger than 40 nm [12], indicating that
a larger fraction of gas is exiting the grain and reaching the grain boundaries at those higher
temperatures.
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Figure 3.2: Microscopic swelling in MC as a function of temperature depicting “breakaway swelling” at
two different burnup values [12].

Figure 3.3: Microscopic swelling in MN as a function of temperature depicting “breakaway swelling” at
two different burnup values [14].

The threshold temperature for breakaway swelling is known to depend on burnup and chem-
istry. Similar to Fig. 3.2, Fig. 3.3 shows the microscopic swelling vs. temperature for MN, with
a smaller range of burnup values. Fig. 3.4 shows the same but for mixed carbide-nitride fuel.
The transition temperature decreases with greater burnup and increases with greater nitride con-
tent, with MN having a much greater threshold for breakaway swelling than MC. Fig. 3.5 shows
the transition temperature as function of burnup for various contents of carbide and nitride. The
transition temperature follows an inverse power law dependence on burnup for the different com-
positions of MC1−xNx fuel. The curve shifts up in temperature linearly with increasing nitride
content, with MN having a transition temperature that is 200 K greater than that of carbide fuels
for all values of burnup.

Dislocations may aid to explain the breakaway swelling phenomenon via two mechanisms.
The first is the decrease in point defect concentration, particularly the concentration of intersti-
tials, due to the formation of dislocation networks which act as sinks for interstitials. With a
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Figure 3.4: Microscopic swelling in MCN as a function of temperature depicting “breakaway swelling”
with three different compositions [12, 14].

Figure 3.5: T2 transition temperature that signifies breakaway swelling in UC and UN fuels.
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lower concentration of interstitial point defects, bubbles are able to absorb more net vacancies
and grow at an increased rate. The second mechanism, supported by this work, is the interaction
of fission gas with dislocations to form dislocation bubbles. Both theories rely on the temper-
ature and burnup dependence of the dislocation network density to be somewhat similar to that
of breakaway swelling, where the dislocation density increases sharply at a similar transition
temperature.

3.2 Solid and Cs Swelling

Part of microscopic swelling is the formation of solid fission products and cesium. In general,
the amount of solid fission product swelling can be estimated to be about 0.5% per at.% burnup
overall based on experimental data [12, 15]. However, in the periphery of the pellets near the
cladding where swelling due to fission gas is low, the swelling rate due to solid fission products
reaches 1.5% swelling per % FIMA. In BISON, the solid swelling and the fission gas swelling
contribute independently to the total swelling. Therefore, the solid swelling value without fission
gas swelling is implemented, given by,(

∆V
V

)
solid

= 1.5 ·F, (3.1)

where F is the burnup in FIMA.

3.3 Diffusion

As with all mechanistic fission gas swelling and release models, diffusion of defects is at the
heart of the Sifgrs model. In order to capture the temperature and fission rate dependent dif-
fusivity of point defects, cluster dynamics codes are typically required. Centipede is one such
cluster dynamics code that utilizes free-energy cluster dynamics (FECD) simulations informed
by lower length scale (LLS) simulations to estimate the irradiation enhanced self- and xenon
diffusivity in a variety of fuels [16–19]. In order to capture an accurate representation of fis-
sion gas diffusivity in BISON, several fits have been developed to distill and utilize the relevant
lower-length scale informed material properties into BISON. What follows is a short discussion
of the different relevant regimes and how the analytial fit was developed and implemented in
BISON.

Diffusion in materials under irradiation is expected to exhibit the three temperature regimes
seen in irradiated nuclear fuel. The three regimes are:

• D1: intrinsic diffusion at high temperatures

• D2: irradiation-enhanced diffusion at intermediate temperatures

• D3: athermal irradiation-induced diffusion at low temperatures

D1 is the diffusion that occurs when defects are at thermal equilibrium concentrations, and is
dependent only on temperature. Likewise, D2 is temperature dependent, but is elevated by en-
hanced concentrations of defects caused by irradiation. D2 is dependent on temperature, and
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exhibits a square-root dependence with fission rate [20]. D3 is strictly due to irradiation-induced
atomic mixing in damage cascades [20, 21], is athermal, and is linearly dependent on fission
rate. D1 can be computed directly from the defect energies obtained from DFT and MD, while
D2 must use cluster dynamic simulations. D3 can be calculated using molecular dynamics (MD)
simulations of irradiation damage cascades for materials like UN that have high electronic heat
transfer to dissipate the energy of a thermal spike [18, 22]. D3 is typically only applied to
non-bulk defects such as xenon and is not utilized for self defects, meaning self-interstitials,
vacancies, antisites, and the corresponding clusters.

The total diffusivity of a defect is given by:

Dde f ect = D1 +D2 +D3 (3.2)

While thermal equilibrium diffusivity is fit using a simple Arrhenius relation,

D1 = D0
1 exp

(
− Q1

kBT

)
, (3.3)

D2 is fit using the exponential of a cubic polynomial of reciprocal temperature due to its more
complex shape (see Fig. 3.7). The fission rate density dependence takes a square root relation.

D2 =
√

Ḟ ∑
i

[
A0

2i
exp

(
−

Q{1}
2i

kBT
−

Q{2}
2i

(kBT )2 −
Q{3}

2i

(kBT )3

)]
. (3.4)

D3 is assumed to increase linearly with the fission rate density.

D3 = A0
3Ḟ (3.5)

Centipede includes a dependence on the partial pressure of N2 gas in order to be able to
compare calculations more directly with experiments where the N2 partial pressure was charac-
terized. The partial pressures must be selected such that UN is stable. Fig. 3.6 shows the stability
region of UN as a function of temperature and partial pressure. Calculations were performed at
partial pressure values along the dotted line along the middle of the UN region, which is given
by an Arrhenius relation [23]:

pmiddle
N2

[atm] = 6.48 ·109 exp
(
−4.46 eV

kBT

)
. (3.6)

3.4 Dislocation Bubble Model

The model for intragranular bubble growth and evolution makes the simplifying assumption
of an average bubble size, R [m], and an average bubble concentration, N [m−3], for the two
bubble types, bulk (subscripted with ’b’) and dislocation (subscripted with ’d’) [4, 24, 25]. This
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Figure 3.6: Phase diagram of UN with the partial pressure of N2 gas vs reciprocal temperature. The
diffusivity calculations in Centipede were performed at partial pressure values shown by the
dotted line.

Figure 3.7: Fit of diffusivity for Xe. The two dominant contributions to total diffusivity from {Xe:2VU}
and Xei are shown, as well as the contribution from athermal (D3) diffusion calculated using
MD. The fission rate density (Ḟ) is 1019 fissions m−3 sec−1.

Figure 3.8: Fit of diffusivity for U vacancies.
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Figure 3.9: Fit of diffusivity for N vacancies.

Figure 3.10: Fit of diffusivity for U interstitials, N interstitials, and {UN :VN}.

Table 3.1: Diffusion Equation Parameters (Eqs. (3.3) to (3.5)).

Defect D0
1 Q1 A0

20
Q{1}

20
Q{2}

20
Q{3}

20
A0

21
Q{1}

21
Q{2}

21
Q{3}

21
A0

3

Xei 6.12·10−5 5.76 3.40·10−12 27.67 -5.28 0.302 1.45·10−33 -1.80 0.156 0 8.2·10−42

{Xe:VU} 7.54·10−4 5.76 2.06·10−33 -0.408 -0.0798 0.00940 0 0 0 0 -
VU 2.11·10−4 6.04 8.12·10−42 -6.01 0.543 -0.0124 0 0 0 0 -
VN 5.15·10−7 5.28 3.64·10−51 -11.34 0.959 -0.0229 0 0 0 0 -
Ui 1.17·10−3 7.57 6.70·10−35 2.83 -1.06 0.0813 6.81·10−51 -6.19 0.269 0 -

{UN :VN} 2.53·10−4 8.22 2.25·10−47 -8.51 0.670 0 6.88·10−99 -39.08 3.25 -0.0837 -
Ni 2.03·10−4 4.37 1.48·10−12 -12.32 0.959 -0.0227 0 0 0 0 -
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assumption allows for the bubble behavior to be expressed by five equations,

dNb

dt
= νb −bbφbNb, (3.7)

dNd

dt
= νd −bdφdNd , (3.8)

∂c
∂t

= D∆
2c−gbNb − (gd +g′)Nd +bbmb +bdmd +G−2νb −2νd , (3.9)

∂mb

∂t
= 2νb +gbNb −bbmb, (3.10)

∂md

∂t
= 2νd +(gd +g′)Nd −bdmd , (3.11)

where c [m−3] is the concentration of gas atoms in the matrix, m [m−3] is the concentration
of gas atoms in the bubbles, ν [m−3s−1] is the nucleation rate given for dislocation bubbles
by Eq. (3.13), b [s−1] is the resolution rate given by Eq. (3.14), gd [s−1] is the trapping rate
for dislocation bubbles given by Eq. (3.17), gb [s−1] is the trapping rate for bulk bubbles, and
G [m−3s−1] is the generation rate of fission gas atoms. When calculating the number of bubbles,
resolution destroys only the smallest bubbles with a size of two atoms. So the correction factor
φ is applied, which is the fraction of dimers out of the total number of bubbles, estimated as,

φ =
1

m−1
. (3.12)

The following sections describe dislocation bubble nucleation, resolution, gas atom trapping,
bubble growth, and bubble coalescence. Aspects of the model for dislocation bubbles are han-
dled in a similar way to the bulk bubbles. Both the bulk intragranular bubbles and intergranular
bubbles were described in the previous milestone report [10].

3.5 Dislocation Bubble Nucleation

Dislocation bubbles nucleate along new dislocation lines by a factor K = 1 · 106 bubbles/m,
which is the number of bubbles nucleated per dislocation line length. Nucleation is given by,

νd = K
dρd

dt
. (3.13)

The value of K comes from previous modeling work for UO2 [4], and from bubble density and
dislocation density measurements in carbide fuel [6], where the bubble density was found to in-
crease linearly with dislocation density by 1.2·106 bubbles/m at 1025 K. In the same experiment,
bubbles were also found to nucleate on needle-shaped precipitates, and the bubble density also
increased linearly with the needle line density by about 1.9 ·106 bubbles/m at both 1240 K and
1550 K, demonstrating no temperature-dependence of this nucleation factor. This can be seen by
the slopes in Fig. 3.11. Only the intercepts at zero dislocation or needle line density changes as
a function of temperature, which is interpreted as the concentration of the intragranular bubbles
if no dislocations or needles were present.

Note that Nd ̸= Kρd , because the number of dislocation bubbles nucleated on a fresh disloca-
tion line may decrease over time due to both resolution and coalescence.
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Figure 3.11: Illustration of the dislocation bubble nucleation factor in carbide fuel. Original figure from
[6].

3.6 Resolution

Resolution was described in a previous milestone [10] for bulk intragranular bubbles, and is
treated the same way for dislocation bubbles.

The resolution process in UN is treated using the homogeneous theory that assumes gas atoms
in bubbles re-enter the lattice due to ballistic collisions with energetic fission fragments knocking
them out of the bubble and into the lattice. This theory is preferred over the heterogeneous
theory [26] for UN due to its quick energy transport properties (e.g., high thermal conductivity).
The heterogeneous theory, appropriate for materials with lower thermal conductivity such as
UO2, assumes the fission product track creates a thermal spike that destroys bubbles within the
track radius, causing the gas atoms to re-enter solution. The total homogeneous resolution rate
is given by,

b [s−1] = Ḟ
∫

b0(Rb)n(Rb)ρ(Rb)dRb, (3.14)

where Ḟ [fp m−3s−1] is the fission rate density, Rb [m] is the bubble radius, b0 [m6 at−1 fp−1] is
the resolution parameter, n [at bl−1] is the number of atoms in a bubble, and ρ [bl m−4] is the
bubble concentration distribution function, defined so that the total concentration of bubbles is
given by,

N [m−3] =
∫

ρ(Rb)dRb. (3.15)

The resolution parameter b0 can be thought of as the number of resolution events that occurs per
atom density and per fission density.

Matthews et al. [27, 28] calculated the resolution parameter for carbide, silicide, and nitride
fuel types using the Binary Collision Approximation code 3DOT. Fission fragments were ran-
domly created in the material. The work calculated both ion-atom interactions and electronic
stopping power. Electronic losses were found to be very significant, accounting for about 90 %
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Figure 3.12: Re-solution parameters for several fuel types calculated using 3DOT simulations. Repro-
duced from [28].

of the original fission fragment energy. The resolution parameter was found to decrease as bub-
ble radius increases up to about 50 nm, after which it remains roughly constant, as shown in
Fig. 3.12. This dependence on bubble size is expected due to the interior of the bubble being
protected from resolution by low-energy cascades that are slowed within larger bubbles [9].

Fig. 3.12 shows the resolution parameter as a function of bubble radius calculated by Matthews
et al. [27, 28] for several fuel types including UN. In the model implemented for UN, the reso-
lution parameter is a function of bubble radius,

bUN
0 (Rb) = 2.38 ·10−25

(
0.5 ·10−9

Rb

)0.23

[m6]. (3.16)

3.7 Trapping

The trapping of gas atoms at bubbles is considered to be driven by diffusion of gas atoms within
the interaction vicinity of the bubbles. The trapping rate is given by,

gd [s−1] = 4π ftrD f gR, (3.17)

where R [m] is the average radius of the bubbles. The nucleation factor ftr is a calibration term
equal to 1 or greater to account for an extended interaction distance between gas atoms and
bubbles.

Gas can also trap and travel along dislocation line to reach dislocation bubbles. The trapping
rate at dislocations is given by,

g′ [s−1] =
2πD f g

d ρd

ln rws,d
Zdrd

− 3
5

, (3.18)

where rws,d = (πρd)
−1/2 [m] is the radius of the Wigner-Seitz cell associated with a dislocation,

and rd [m] is the dislocation core radius, which is roughly the length of the Burger’s vector.
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Zd = 5 is a trapping radius factor to account for the elastic strain field around the dislocation core
causing gas atoms to imminently absorb from greater distances. Trapping at dislocation bubbles
is given as the sum of trapping at the bubbles and the dislocations, gd + g′. This formulation
should be updated to exclude the fraction of the dislocation line covered by the dislocation
bubbles, because the part of the dislocation line that is covered by a bubble that already traps
gas at its surface cannot also contribute to gas trapping. If a large fraction of the dislocation line
is covered, discussed in Section 3.11.2, then that fraction is contributing nonphysically to the
trapping by what may be a non-negligible amount.

3.8 Dislocation Bubble Radii

The PolyPole-2 algorithm [11] briefly described in Section 3.10 supplies the average number of
atoms per bubble m and the diffusion rate of gas atoms to the grain boundaries. The number
densities of the bulk bubbles Nb and dislocation bubbles Nd are then calculated by the Bub-
bleEvolution and CoarsenedBubbleEvolution methods, respectively.

The calculation of bubble size and swelling is performed based on a physics-based approach
previously used for UO2 and U3Si2 that considers both gas atoms and vacancies being absorbed
at bubbles [25]. The intragranular bubbles are assumed to be spherical. The equilibrium pressure
peq [Pa] of the bubbles can be calculated using the Young-Laplace equation,

peq =
2γ

R
−σh, (3.19)

where σh [Pa] is the hydrostatic stress. The surface energy for UN is estimated to be γ = 1.74±
0.76 [Jm−2] based on DFT calculations from the literature [29, 30].

The actual pressure inside the bubbles is calculated following the van der Waals equation of
state and is given by,

p =
kBT η

Ω
, (3.20)

where η = m/(Nniv) is the average number of gas atoms contained vacancy volume, and Ω =
1.17 · 10−28 m3 is the vacancy volume in UN. niv is the number of vacancies per intragranular
bubble, caluculated by

dniv

dt
=

2πDv
dδ

kT ζ
(p− peq), (3.21)

where Dv
d[m2s−1] is the vacancy diffusion coefficient along dislocations, δ[m]= (4/3πNd)

−1/3

is the radius of the Wigner-Seitz cell for a dislocation bubble, and ζ is a dimensionless factor
given by,

ζ =
10ψ(1+ψ3)

−ψ6 +5ψ2 −9ψ+5
, (3.22)

where ψ = Rd/δ is the ratio between the radii of the dislocation bubble and the Wigner-Seitz
cell.
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The bubble volume is calculated via,

dVd

dt
=

Ω f g

Nd

∂md

∂t
+Ω

∂niv

∂t
, (3.23)

where Ω f g = 8.5 ·10−29 m3 is the van der Waals atomic volume for Xe.
The bubble radius is calculated from the bubble volume,

Rd =
3

√
3Vd

4π
. (3.24)

The swelling due to dislocation bubbles is calculated as,(
∆V
V

)
d
=VdNd . (3.25)

The formulation of vacancy arrival at the dislocation bubble should be re-investigated because
it is unclear whether the vacancy would travel along the dislocation to the bubble or would
incorporate into the dislocation line causing dislocation climb.

Additionally, the van der Waals atomic volume arriving with Xe atoms should be replaced
with the appropriate volume of the defect that dominates Xe diffusion. If Xe interstitial diffusion
is dominant, there should be no volume arriving with Xe to the bubble. If the Xe clustered with
two vacancies dominates Xe diffusion, then the volume arriving should be 2Ω.

3.9 Bubble Coalescence

The dislocation bubbles may reach sufficiently large sizes that their radii are comparable to
the inter-bubble distance. In such a senario, dislocation bubbles are allowed to coalescence,
decreasing their number density, but maintaining the bubble gas content. The equation for the
variation of the number density of dislocation bubbles as the size changes is based on the nearest-
neighbor distribution of hard sphere [31] and is given by,

dNd

dVd
=−4λN2

d . (3.26)

where λ = (2− ξ)/[2(1− λ)3] is a correction factor for the hard sphere assumption, and ξ =
4
3 πR3

dNd is the porosity associated with dislocation bubbles.

3.10 PolyPole-1 and PolyPole-2 Algorithms

Sifgrs contains two models – PolyPole-1 [32] and PolyPole-2 [11] – to estimate the distribution
of intra-granular fission gas, intra-granular bubbles, and ultimately the flux to the grain boundary.
While similar in nature, there are key differences between the two algorithms that will be shown
to be important for accurately capturing the behavior in uranium nitride.
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The PolyPole algorithms solve for the amount of gas in the matrix c, the amount of gas in
intragranular bubbles m, and release of fission gas from the grain to the grain boundaries. This
intragranular fission gas release problem is condensed into two partial differential equations,

∂c
∂t = D f g∆2c−gc+bm+ Ġ,

∂m
∂t = gc−bm,

(3.27)

where c [m−3] is the concentration of single gas atoms dissolved in the lattice, m [m−3] is the
concentration of gas atoms in intra-granular bubbles, t [s] is the time, g [s−1] is the trapping
rate of gas atoms at bubbles, b [s−1] is the rate of irradiation-induced gas atom resolution from
bubbles back into the lattice, and G [m−3s−1] is the gas generation term. The first equation tracks
the change in single gas atom concentration in the lattice subject to the effects of diffusion,
trapping, resolution, and generation. The second equation tracks the change in the concentration
of gas atoms in intra-granular bubbles subject to the effects of trapping and resolution.

To solve these PDEs, several assumptions are made. First, the grain is assumed to have a
spherical geometry with grain radius a. The solutions c(r, t) and m(r, t) are assumed to take
a modal form of the analytic solution to the spatial problem at constant conditions, where the
time part of the solution is handled by using polynomials of dt with pole functions of the spatial
solution as the coefficients.

If the rates of trapping and resolution are much higher than the rate of diffusion to the grain
boundaries, known as the quasi-stationary approximation, the second equation in Eq. (3.27) can
be written in the steady-state condition,

∂m
∂t

= gc−bm = 0, (3.28)

which provides the equilibrium ratio of the concentration of gas atoms in the lattice to the con-
centration of gas atoms in the bubbles is equal to the ratio of the resolution rate to the trapping
trapping rate, or c/m = b/g. To help simplify Eq. (3.27), the effective diffusion coefficient can
be defined that accounts for the reduced apparent diffusion due to gas being trapped in bub-
bles [11, 33], given by,

De f f =

(
b

b+g

)
D. (3.29)

A total gas concentration can be defined as ct = c+m. Finally, with the quasi-stationary ap-
proximation resulting in Eq. (3.28) and the defined effective diffusion coefficient in Eq. (3.29),
Eq. (3.27) can be reduced to,

∂ct

∂t
= De f f ∆

2ct + Ġ. (3.30)

The quasi-stationary approximation states that the trapping and resolution rates are substan-
tially greater than the rate by which gas diffuses to grain boundaries, or in other words, that a
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gas atom experiences many interactions with bubbles before reaching the grain boundary. It is
true if

b+g ≫ Dπ
2/a2. (3.31)

However, this relation does not always hold. To help illustrate this point, assume high temper-
atures where resolution is substantially slower than migration, so we can ignore b and simplify
the relation to g = 4πDRN ≫ Dπ2/a2, which rearranges to RNa2 ≫ π/4. For a large number
density of large bubbles in large grains, this relation may hold, but if the bubbles are small and
infrequent, and grain size is relatively small, this relation will not hold. For example, allow for
the realistic values for bubbles in UN of R = 10−9 m, N = 1019 m−3, and a = 10−5 m. RNa2 = 1
which is not substantially greater than π/4. In high burnup UO2, the bubble density is greater,
N = 1024 m−3, allowing the approximation to hold assuming no quick transients.

PolyPole-1 makes the quasi-stationary approximation while PolyPole-2 does not [11,32]. This
makes PolyPole-2 the suitable choice for high temperature transients where the quasi-stationary
approximation does not hold. Both algorithms were originally written assuming only one pop-
ulation of bubbles with mean sizes, densities, and gas concentrations, and each has slightly dif-
ferent adaptations to include the second dislocation bubble population. Both adaptations should
be revisited in the future to ensure correctness, as both attempt to apply the two different res-
olution rates to total gas concentrations in the bubbles m instead of their respective individual
concentrations mb and md .

PolyPole-1 adds the trapping to resolution ratios from dislocation bubbles to the effective
diffusion coefficient,

De f f =

(
1

1+ gb
bb
+ gd+g′

bd

)
D, (3.32)

and calculates the amount of gas atoms that remain in bulk and dislocation bubbles as gbc/bb
and (gd +g′)/bd , respectively.

PolyPole-2 is a complicated algorithm with single trapping and resolution rates as inputs.
Therefore, to include the second population of dislocation bubbles, a crude adaptation was put
in place where total trapping and resolution rates are sent to PolyPole-2 as g = gb +gd +g′ and
b = bb + bd . PolyPole-2 then solves for the gas concentration in the matrix c and the total gas
concentration in all bubbles m. Finally, the change in the concentration of gas atoms in each
bubble type is fractioned out by the ratio given by,

ratio = gbc−bbmb
(gb+gd+g′)c−bbmb−bdmd

∆mb = (ratio)∆m
∆md = (1− ratio)∆m

(3.33)

The correct approach would attempt to solve the three PDEs instead of two:
∂c
∂t = D f g∆2c− (gb +gd +g′)c+bbmb +bdmd + Ġ,

∂mb
∂t = gbc−bbmb,

∂md
∂t = (gd +g′)c−bbmd .

(3.34)
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In future work, the PolyPole-2 algorithm should be re-derived using the second population of
bubbles.

3.11 Dislocation Specific Parameters

With the introduction of dislocations into the Sifgrs models, there are a number of dislocation
specific physics that are useful for understanding the evolution of the model over time. These
will be described briefly here, and will be utilized in Section 3.12.

3.11.1 Dislocation Punching Threshold

If a bubble absorbs too many gas atoms and not enough vacancies, it is possible that the pressure
of the fission gas inside the bubble exerts such a large stress on the surrounding lattice that
dislocation loops form to add volume to the bubble and relieve the pressure. This process is
called loop punching. The pressure threshold for loop punching is given by,

Pdis =
Gb
Rb

+Peq (3.35)

where G = E
2(1+ν) is the sheer modulus, b is the length of the Burger’s vector, Rb is the bubble

radius, and Peq = 2γ/Rb is the bubble equilibrium pressure. This threshold is helpful to visualize
to ensure that the growth regime via the diffusive process is the relevant bubble growth physics.

3.11.2 Dislocation Coverage

As dislocation bubbles grow to sufficient sizes such that they may interconnect, the eventual
release to the plenum needs to be tracked to accurately estimate fission gas release. Conversely,
if the overall dislocation coverage by bubbles is low, the dislocation bubbles will likely remain
isolated and not contribute to fission gas release. To this end, a dislocation coverage fraction
can be estimated, similar to grain boundary coverage. However, grain boundaries are two di-
mensional while dislocation lines are one-dimensional, making it more difficult for dislocation
bubbles to form interconnected pathways than grain-boundary bubbles.

Making the assumption that the spherical dislocation bubbles are positioned with their centers
located directly on dislocation lines, the dislocation coverage is calculated by,

DC[%] = 100%× 2RdNd

ρd
. (3.36)

3.11.3 Empirical Dislocation Density Function

The last piece required for the dislocation bubble evolution model is an estimation of the dislo-
cation line density as a function of burnup and time. In lieu of a mechanistic model (see Sec-
tion 4.2), an analytical empirical description of the dislocation density as a function of burnup
and temperature was created as a temporary placeholder to provide some insights into how a
variable dislocation density should behave in the overall fission gas model.

22



Table 3.2: Empirical Linear Dislocation Density Equation Parameters (Eq. (3.37))

Parameter Value Units

ρ0 1013 m−2

C1 1.589·1016 m−2 (FIMA)−1

F0 1.589·1016 m−2 (FIMA)−1

C2 58.18 m−2 K−1

T0 906.3a K
a 1108.0 K for UN

Ray and Blank [6] performed a transmission electron microscopy (TEM) analysis of the de-
fects in mixed carbide fuel, U0.8Pu0.2C, with burnups up to 11% FIMA. They found that the
density of small intragranular bubbles depends strongly on the dislocation density. Ray and
Blank [6] noted that the dislocation density appears to follow a simple linear relation with bur-
nup at a constant temperature. The dislocation density data also appears to follow a linear
relationship with temperature at a constant burnup:

ρd =

{
ρ0 if C1(F −F0)+C2(T −T0)≤ ρ0

C1(F −F0)+C2(T −T0) if C1(F −F0)+C2(T −T0)> ρ0
(3.37)

where ρ0 is the minimum dislocation density observed, existing from fabrication. The parameter
values for this equation are given in Table 3.2.

During testing, the linear dependence with burnup resulted in poor comparison to experimen-
tal measurements of fission gas swelling [14]. A second formulation developed for high-burnup
UO2 was tested, which shows more of an exponential increase as a function of burnup [34]:

ρd = ρ0 exp
(

cF
max(Td ,T0 −T )

)
. (3.38)

The condition that the temperature difference in the denominator never be less than a minimum
Td prevents the asymptotic behavior as the temperature approaches T0. Another condition ap-
plied is that the overall dislocation density not exceed a value of 1015m−2, which would be
associated physically with the saturation of the dislocation network. The results of fitting this
exponential function to the dislocation density data from carbide fuel are shown in Figs. 3.13
and 3.14, with values given in Table 3.3. The value of ρ0 for UO2 is 6 ·1013 m−2. Although this
formulation does not fit the limited UC data as well as the simple linear function (Eq. (3.37)), it
is adopted for this work because it produces better swelling results.

3.12 Results

A rough calibration of the many input parameters in Sifgrs was performed, with an emphasis
on the intragranular fission gas swelling results, shown in Fig. 3.15. Table 3.4 lists the inputs
for UN, their sources, and the calibration applied to them. This list compliments the diffusivity
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Table 3.3: Empirical Exponential Dislocation Density Equation Parameters (Eq. (3.38))

Parameter Value for UC data [6] Value used for UN Units

ρ0 2 ·1013 1012 m−2

c 38806 49000 K (FIMA)−1

T0 2000.6 1900.0 K
Td - 150.0 K

Figure 3.13: Dislocation density in UC as a function of burnup using the exponential equation in
Eq. (3.38) with parameters in Table 3.3. The data is from [6].

Figure 3.14: Dislocation density in UC as a function of temperature at three different burnup values using
the exponential equation in Eq. (3.38) with parameters in Table 3.3. The data is from [6].
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function parameters in Table 3.1 and the dislocation density function parameters given in Ta-
ble 3.3. The calibrated values are within an order of magnitude of the initial values, and are
certainly within the uncertainty range for those values. The placeholder empirical dislocation
density function has the strongest effect and underwent the largest changes. It was beneficial to
lower the overall dislocation density (ρ0), and increase the dependence on burnup and tempera-
ture (c). In addition to lowering the overall dislocation density, the dislocation bubble nucleation
factor was lowered by half of the starting value based on previous modeling work [4] and the
value found for UC in Section 3.5. The bulk diffusion coefficients were increased by a factor
of 5, while the enhanced diffusion coefficients of fission gas and vacancies near dislocations
(Sections 3.7 and 3.8) are only 10× those in the bulk, affecting gas atom trapping and the size
growth of dislocation bubbles. However, trapping of gas atoms at dislocation lines was increased
by a factor of 3. These values will certainly be revisited as the diffusivity and dislocation den-
sity calculations are further improved by LLS calculations and mechanistic model development
underway, described in Section 4.2.

The Sifgrs calculation results signify that the breakaway swelling behavior is directly related
to the balance of gas in the two intragranular bubble populations. The bulk intragranular bubble
volumes and dislocation bubble volumes sum to give a total calculated intragranular swelling,
shown by the solid blue line in Fig. 3.15. At low temperatures, the bulk bubble swelling, shown
in green, is dominant and is nearly constant as temperature increases. At these lower temper-
atures, below ∼1200 K, athermal (D3) diffusion of Xe is dominant. A slight slope still occurs
due to the increased swelling from dislocation bubbles, due to the increasing dislocation density,
shown in Fig. 3.16. Above ∼1200 K, irradiation-enhanced (D2) diffusion of Xe exceeds ather-
mal (D3) diffusion, which causes the trapping at dislocations and the trapping at and swelling
of dislocation bubbles to increase with temperature. As the temperature increases further into
the breakaway swelling region, the swelling due to dislocation bubbles quickly increases, as
more gas is trapped at dislocations than in the bulk intragranular bubbles due to the increas-
ing dislocation density. The swelling due to dislocation bubbles is additionally boosted around
1700-1800 K due to the transition to thermal-equilibrium (D1) of both vacancies and Xe atoms.

Fig. 3.17 shows the fraction of the dislocation line length covered by bubbles. This fraction
tends to increase with temperature over a large temperature range and decreases slightly with in-
creasing burnup. The temperature dependence relies on multiple factors including Xe diffusion,
vacancy diffusion, and dislocation density, and roughly resembles the shape of the bubble radius
plot (Fig. 3.19). The sharp increase and decrease between 1200 and 1800 K, or in other words
the ‘bump’ in the plot, corresponds to the ‘bump’ in the irradiation-enhanced diffusion of Xe in-
terstitials shown in Fig. 3.7. As burnup increases, the average dislocation bubble size increases
slightly in the simulation, but the average number density of bubbles along a given dislocation
line decreases due to some amount of coalescence and destruction by resolution, giving a slight
overall decrease in fractional coverage.

Inter-granular swelling is dependent on gas atoms reaching the grain boundaries, and is there-
fore affected by many factors including changes in diffusivity and impediments to gas atom
migration caused by trapping at dislocations and intragranular bubbles. The swelling due to
intergranular bubbles is shown by the dashed orange lines in Fig. 3.15 for reference, but is not
comparable to the intragranular swelling measurements shown in the figure.
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Table 3.4: List of Sifgrs model parameters used for UN. The starting values are shown for reference, with
the calibration multipliers determined from comparison to the DN1 and DN2 mixed nitride
experiment [14] also given. Acronyms used are density functional theory (DFT), empirical
potentials (EP), lower length-scale (LLS), molecular dynamics (MD).

Parameter Starting Value Source Calibration

DVU
1 Table 3.1 LLS - DFT and EP ×5

DVU
2 Table 3.1 LLS - Centipede ×5

DXe
1 Table 3.1 LLS - DFT and EP ×5

DXe
2 Table 3.1 LLS - Centipede ×5

DXe
3 Table 3.1 LLS - MD ×5

Ω f g 8.5·10−29 m3 [35] -
fn 1·10−6 inherited from U3Si2 [18, 22, 26] -
b0 Eq. (3.16) LLS - Binary collision approximation [28] -
ftr 1 inherited from U3Si2 -
a 4.889·10−10 m [9] -
Ω a3/4 -
γ 1.74 Jm−2 LLS - DFT [29, 30] -
Dv

gb 106DVU [9] -
δgb 4·10−10 m assumption in [36] for UC -
Ng f ,0 2·1013 m−2 assumption -
θ 73◦ inherited from LLS simulations of U3Si2 [22] -
Rg f 2.42·10−10 m based on θ -
rgr 6·10−6 m approximate constant value [9, 37] -
Fc,sat 0.5 based on UO2 [38] -
Dv

d 102DVU assumed ×0.1
DXe

d 102DXe assumed ×0.1
K 1·10−6 bubble m−1 based on data in UC [6] ×0.5
rd 5b = 5a/

√
2 [4] -

ftr,disl 1 assumed ×3
ρd Table 3.3 based on data in UC [6] Table 3.3
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(a) 1.1% FIMA

(b) 3.2% FIMA

Figure 3.15: Fission gas bubble swelling at (a) 1.1% FIMA and (b) 3.2% FIMA compared to intragranular
bubble swelling measurements [14]. Bulk and dislocation bubbles contribute to intragranular
swelling. The swelling due to intergranular bubbles is shown in orange as well for informa-
tion, but is not comparable to the measurements.
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(a) 1.1% FIMA (b) 3.2% FIMA

Figure 3.16: Calculated dislocation density at (a) 1.1% FIMA and (b) 3.2% FIMA.

(a) 1.1% FIMA (b) 3.2% FIMA

Figure 3.17: Calculated dislocation coverage at (a) 1.1% FIMA and (b) 3.2% FIMA.
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The Sifgrs calculations match the experimental measurements of intragranular bubble swelling
shown in Figs. 3.15 and 3.18, and intragranular bubble size shown in Fig. 3.19 very well. At
higher burnup values, the low-temperature intragranular swelling appears to be overpredicted;
however, this difference is likely due to how the bubbles were measured. The replica-electron-
microscopy method has limited resolution and cannot reliably observe bubbles with radii less
than roughly 10 nm. Based on the bubble radii shown in Fig. 3.19, and size of the average
bulk intragranular bubble is below the resolution threshold. So the swelling at higher burnup
and lower temperatures is likely underestimated. Similarly, only the average dislocation bubble
size, shown by the yellow line in Fig. 3.19 may be directly comparable to the measured average
bubble size shown.

If the bubble pressure exceeds the dislocation loop punching threshold pressure, the bubbles
may increase their size by loop punching, which would also cause some amount of increase in
the dislocation density. Fig. 3.20 shows the calculated bubble pressures, equilibrium pressures,
and loop punching threshold pressures for the three types of bubbles at 3.2% FIMA. None of
the bubbles are calculated to exceed the dislocation punching threshold above 900 K, although
they may exceed the threshold at much lower temperatures near the periphery of the fuel pellet.
The bulk bubbles are always at the equilibrium pressure due to plentiful arrival of vacancies.
The dislocation bubbles exceed their equilibrium pressures as temperature increases due to rel-
atively more efficient trapping leading to absorption at bubbles of gas atoms than vacancies at
dislocations. The grain boundary bubbles exceed their equilibrium pressures until temperatures
are above ∼1600 K, where thermal equilibrium (D1) vacancy diffusion dominates and quickly
increases with temperature, allowing sufficient vacancies to migrate to grain boundary bubbles
and relieve the pressure.

Fig. 3.21 shows where the gas that is generated is located, including fission gas release (FGR),
as a function of temperature. Little gas remains in the matrix, especially at temperatures greater
than 1200 K, when Xe diffusion increases by irradiation-enhanced diffusion of Xe interstitials.
At low temperatures the majority of the gas is trapped in the bulk bubbles, and at higher temper-
atures the majority of the gas is trapped in the dislocation bubbles. The trapping of gas in the
intragranular bubbles slows the gas migration to the grain boundaries, and ultimately impedes
gas from being released. The shape of the FGR at 3.2% FIMA as a function of temperature, like
the dislocation coverage and average dislocation bubble radius, shows a sharp increase, a relative
maximum, and a sharp decrease between 1200 and 1800 K that corresponds to the ’bump’ in the
irradiation-enhanced diffusion of Xe interstitials shown in Fig. 3.7.

3.13 Assessments Using New Model

3.13.1 SP1

The SP-1 irradiation test was described in a previous milestone report [10], and is revisited
using the new model. Four UN pins were irradiated in EBR-II in the SP-100 space reactor test
assembly, and two pins, NBU-2 and NBU-3, were examined post-irradiation. The burnup was
relatively low at 0.81% FIMA. The temperature of the fuel was very high, with NBU-3 centerline
and fuel surface temperatures estimated as 1950 and 1860 K, respectively.
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(a) 1150 K (b) 1230 K

(c) 1320 K (d) 1650 K

Figure 3.18: Fission gas bubble swelling at (a) 1150 K, (b) 1230 K, (c) 1320 K and (d) 1650 K compared
to intragranular bubble swelling measurements [14]. Bulk and dislocation bubbles contribute
to intragranular swelling. The swelling due to intergranular bubbles is shown in orange for
information, but is not comparable to the measurements.
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Figure 3.19: Average bubble radii compared to the average measured intragranular bubble radii [14].

The NBU-3 pin was measured to have significant FGR at 15%. However, the amount of FGR
in the BISON simulation was trivially small, 0.001%. The calculated fuel centerline temperature
reached 1939 K, and the fuel surface temperature reached 1644 K, which are somewhat lower
values than what was estimated for the experiment.

The NBU-3 pin had a radial swelling of 3.7% and an axial swelling of 1.2%, resulting in a
volumetric swelling of 8.8%. The Sifgrs model is unable to capture bulk macroscopic swelling
anisotropy due to axial stress from contact with the cladding. The calculated isotropic swelling
was 5.6%, which is 36% lower than the measured value.

3.13.2 JOYO

Two He-bonded (U,Pu)N fuel pins were irradiated in the experimental fast reactor JOYO [39]
to a burnup of 4.3% FIMA. The linear heating rate was 75 kW/m. The cladding was 15Cr-20Ni
stainless steel. The difference between the two pins are the He-gap widths given in Table 3.5.
The measured swelling and fission gas release (FGR) values are given in Table 3.6. These results
compare fairly well. The calculated swelling results are within 0.6%-swelling of the measured
values, and the calculated FGR results are within 2%-FGR of the measured values.

3.14 Discussion and Future Work

The results presented provide a promising explanation of why there is an abrupt increase in
intragranular swelling at a transition temperature. The answer provided is a transition from bulk
bubble swelling at low temperature to dislocation bubble swelling at higher temperatures. While
this explanation is encouraging, it is one of many possible explanations and has some amount of
uncertainty associated with it. Much of this uncertainty is related to the temperature dependence
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(a) Bulk (b) Dislocation

(c) Grain boundary

Figure 3.20: Calculated bubble pressures, equilibrium pressure, and dislocation punching threshold at
3.2% FIMA for (a) bulk, (b) dislocation, and (c) grain boundary types of bubbles.

Table 3.5: JOYO test specifications [39].

Pin: L413 L414 units

Cladding OD 8.50 8.50 mm
Cladding ID 7.60 7.60 mm
Cladding thickness 0.45 0.45 mm
Pellet OD 7.28 7.43 mm
Diametral gap 0.32 0.17 mm
Stack height 200.1 200.1 mm
Pellet height 8 8 mm
Pellet density (before irradiation) 84.8 86.0 % TD
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(a) 1.1% FIMA (b) 3.2% FIMA

Figure 3.21: Calculated fraction of gas generated in the matrix, bulk bubbles, dislocation bubbles, inter-
granular bubbles, and released at (a) 1.1% FIMA and (b) 3.2% FIMA.

Table 3.6: JOYO pin measurements of swelling and fission gas release compared to the calculated results.

Pin: L413 L414

Experiment Calculated Experiment Calculated
Swelling (%) 7.4 6.8 6.7 6.4

FGR (%) 3.3 5.2 5.2 4.5
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of the dislocation density, which is based on very limited experimental data. This highlights the
importance of a mechanistic dislocation model, discussed in the next chapter.

While the JOYO assessment calculation gives reasonable results, the low burnup and high
temperature SP1 assessment significantly underestimates FGR. This is due to the dislocation
bubbles trapping gas inside the grain and preventing it from reaching the grain boundaries at
high temperatures. This supports the idea that the dislocation density should decrease at these
very high temperatures, which should be captured in a mechanistic model. A decrease in dislo-
cation density at high temperatures would allow more gas to escape the grain and decrease the
microscopic intragranular swelling, which would allow the turn-over seen in Fig. 3.2 that occurs
in carbide fuel at high temperatures associated with increased grain boundary bubble size.

The swelling data and assessment data were produced using mixed nitride fuel with 20% Pu,
(U0.8,Pu0.2)N, while the calculations presented are strictly UN. It is assumed here that neglecting
the fraction of Pu included in the fuel has a smaller impact than many of the larger uncertainties
associated with this modeling work.

An ‘average’ N2 partial pressure was assumed, but the diffusivity values of the various de-
fects can change by several orders of magnitude simply by moving towards the U-rich and
N-rich boundaries in Fig. 3.6 [23]. The fuel was fabricated under high N2 partial pressure of
0.92 atm [40]. This sensitivity is handled in Centipede and should be incorporated in the fis-
sion gas modeling. Additionally, the dominant diffusion mechanism, e.g. interstitial or vacancy
cluster, changes due to chemistry changes. Similarly, carbon and oxygen impurities can cause
significant changes in the diffusivity values and the dominant diffusion mechanism, and should
be investigated.

Some assumptions were made to enable the PolyPole-2 algorithm to handle two bubble
populations. The impact these assumptions have on the accuracy of the calculation should be in-
vestigated, and a potential rewrite of the algorithm to handle multiple bubble populations should
be explored. Additionally, the validity range and impact of the quasi-stationary approximation
for UN should be clearly documented.

The bubble radial growth model has some assumptions that should be revisited inspired by
updates to Sifgrs in a previous milestone [41]. The volume that arrives with Xe should be
updated to consider the defect type dominating its diffusion. The arrival of vacancies at the
dislocations should be re-visited, as it is not clear whether vacancies would diffuse to the bubbles
or incorporate in the dislocation line causing it to climb. The possibility of over-pressurization to
the point of dislocation loop punching was considered, but the opposite situation of void swelling
was not. If vacancy arrival is greater than Xe arrival to grain boundaries at high temperature, the
grain boundary bubbles could be in a void swelling regime that increases both fission gas release
and overall swelling. To investigate this possibility, the revised reaction rate for vacancies with
grain boundary bubbles reported in [41] should be utilized.
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4 Dislocation Density Modeling

Dislocations have been modeled in variety of ways, both in discrete, spatially resolved simula-
tions [42–44], as well as more simple rate-theory cluster dynamics type models [45–48]. Due
to the availability of lower-length scale data and the successes with cluster dynamics in mech-
anistically capturing diffusive processes, a dislocation growth model was built in Centipede to
eventually replace the empirical model utilized now for the BISON UN fission gas swelling and
release model. This model required a number of advancements in both Centipede and the atom-
istic data. In particular, the inclusion of larger interstitial clusters may have a large impact on
dislocation growth. The following sections outline these improvements, ultimately leading to a
comparison of computed and measured dislocation line densities.

4.1 Atomistic calculations

Mechanistic models have repeatedly demonstrated their ability to describe large-scale thermo-
mechanical behaviors observed experimentally. Yet, the uncertainty of these predictions will
only be as low as that of the calibration data. As such, the approach presented in this work can
greatly benefit from the use of ab-initio calculations to accurately determine the energetics of
key interstitial clusters, and provide valuable inputs to parameterize the dislocations nucleation
and growth.

4.1.1 Computational details

First-principles calculations were performed using Density Functional Theory (DFT) with the
projector augmented wave (PAW) method [49, 50] as implemented in the VASP (Vienna Ab-
initio Simulation Package) code [51–53]. The results were obtained using the generalized
gradient approximation (GGA) for the exchange-correlation functional in the Perdew-Burke-
Ernzerhof (PBE) form [54]. Following the conclusions of Kocevski et al. [55], no Hubbard cor-
rection was used, and spin-orbit coupling was neglected. Using this approach, the ground-state
of UN is cubic and ferromagnetic. The plane wave basis cutoff was set to 400 eV. Supercells
of 216 atoms (3× 3× 3 unit cells) were used in order to accommodate the largest clusters (up
to 10 defects). All the calculations were performed at constant pressure, the residual stresses
of all systems were checked to remain lower than 1 kBar. 2× 2× 2 k-point grids were used
in these calculations, achieving a k-sampling equivalent to a unit cell with a 6x6x6 grid. The
Fermi-Dirac broadening scheme was used with a 0.2 eV smearing.

We note that the accuracy expected from such a calculation setup is voluntarily limited. This
work involves the screening of dozens of cluster configurations, among which only a few will be
thermodynamically relevant. Our strategy is to firstly screen the phase space with a frugal setup,
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and then to increase the accuracy for the few interesting configurations. This compromise allows
to spare computational resources while obtaining a satisfactory accuracy on the key values that
rule the thermodynamics and the kinetics of the system.

The binding enthalpies reported in this section are expressed as follows:

HB = Htot
cluster −

N

∑
k=1

Htot
k +(N −1)Htot

per f ect (4.1)

where Htot
cluster is the total enthalpy of the system containing a N-defect cluster, Htot

k are the re-
spective enthalpies of the systems containing single defects constituting the cluster (the variable
k designates each constituent), and Htot

per f ect is the enthalpy of the defect-free system. Using this
convention, negative binding enthalpies correspond to an attractive interaction.

4.1.2 Interstitial clusters in UN

First, we have verified that the ground-states of Ui and Ni single interstitial defects are respec-
tively a {111} dumbbell and a tetrahedral interstitial, in agreement with the available litera-
ture [56,57]. These configurations are used as references for the determination of cluster binding
enthalpies in the following.

For each cluster size and composition, calculations have been performed with various initial
configurations in order to explore as many as possible. Figure 4.1 displays the binding energy of
the few stable configurations found for the 2Ui-2Ni cluster. As can be observed by comparing
configurations D and G, almost similar cluster configurations (varying only by a slight shift
of the Ni position) can lead to drastic differences in terms of enthalpy. Hence the importance
of carefully screening possible configurations. Note that some cluster configurations exhibit a
positive binding energy and are not shown here, as the interest is very limited.

For all cluster sizes up to 5Ui-5Ni, the ground-state configurations are essentially composed
of U dumbbells and N tetrahedral interstitials. The only exception being for Ui-Ni whose lowest
energy state consists of a UN antisite surrounded by two tetrahedral Ni interstitials in the {111}
direction (See Figure 4.2).

When compiling the lowest energy state found for each cluster size, it appears as a clear
trend that the lowest energy growth path of such clusters is the addition of Ui and Ni defects,
alternatively, in the {110} direction (see Figure 4.2).

As shown in Figure 4.2, the binding enthalpy and the binding enthalpy per defect decrease
(i.e. become more attractive) when increasing the cluster size. We note that non-stoichiometric
clusters (e.g. 3Ui-2Ni) follow this trend as well. Therefore, the growth of such clusters by
capture of (radiation induced) fast-diffusing single interstitial defects is expected.

Interestingly, the lowest energy configurations of these clusters, shown in Figure 4.2, appear
quite similar to the cross-section view of a ⟨100⟩ dislocation loop in UN (see Figure 4.3), which
is expected to be the dominant loop according to experiments [58].

Even though the favorable {110} orientation of such interstitial clusters is promising to model
the dislocations nucleation and growth, our current DFT results are limited to longitudinal clus-
ters, and not actual dislocation loops. Further calculations are currently being carried in order to
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Figure 4.1: Binding enthalpy of various stable 2Ui-2Ni interstitial clusters. The configuration of the four
most favorable clusters are shown to illustrate the variety of possible configurations.

Figure 4.2: Binding enthalpy and binding enthalpy per defect of the lowest-energy cluster configurations
for each size. Grayed labels indicate non-soichiometric clusters. The configurations of stoi-
chiometric clusters from Ui-Ni to 5Ui-5Ni are shown.
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Figure 4.3: Illustration of the similarities between the lowest-energy interstitial clusters obtained from
DFT and the structure of a ⟨100⟩ dislocation loop in UN.

determine how favorable is the growth of such clusters in the (orthogonal) {100} direction. In-
deed, the combined growth in both directions would lead the the formation of a double interstitial
⟨100⟩ plane, equivalent to a dislocation loop.

4.1.3 Dislocation line energy

Even though the interstitial clusters studied in this section are not exactly equivalent to a dislo-
cation loop yet, it is interesting to compare the excess enthalpy of these clusters to the actual
line energy of a dislocation in UN. Note that both quantities are not expected to be equal but
the excess enthalpy should converge towards the line energy once the dislocation loop is fully
formed.

For stoichiometric interstitial cluster, the excess enthalpies are expressed as follows:

Hexcess
jUi− jNi

= Htot
cluster −

Nat +2 j
Nat

Htot
per f ect (4.2)

where Htot
cluster is the total enthalpy of the system containing a 2 j-defect cluster, Nat is the num-

ber of atoms in the defect-free system (in the present case, 216), and Htot
per f ect is the enthalpy

of the defect-free system. Note that this expression can be generalized to non-stoichiometric
clusters with the additional complexity of dealing with chemical potentials. The data presented
in Figure 4.4 is limited to the stoichiometric clusters, considering that the binding enthalpy of
stoichiometric and non-stoichiometric clusters seem to follow identical trends (see Figure 4.2).

The excess energy as a function of the cluster size is presented in Figure 4.4. As can be
observed, there is a linear relation between the two, with a 3.73 eV/defect slope. Considering
the length of the cluster as the distance between the two most extreme interstitial defects, the
excess energy can be expressed as a function of the length and equals to 2.57 eV/Å.

From the Materials Science course of Prof. D. Trinkle [59] (available on the website of
University of Illinois at Urbana-Champaign), the line energy of an edge dislocation can be ap-
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Figure 4.4: Interstitial clusters excess enthalpy as a function of the number of defects composing the
cluster.

proximated as:

E line = Ecore +Eelast =
G ·b2

2π
+

G ·b2

4π(1−ν)
· ln R

r
(4.3)

where ν is the Poisson ratio of the material, G is its shear modulus, and b is the Burgers vector
of the dislocation. r is the core radius of the dislocation (usually assimilated as b) and R is
the external radius of the elastic cylinder containing the dislocation. The value of R is not
straight-forward at all, as it should in principle correspond to the crystal size, or the grain size
in a practical example. In the present case, we can use R as a variable (as usually done in the
literature [60]) to have a better idea of the line energy order of magnitude from elastic theory.

Considering G = 1.05× 105 MPa and ν = 0.27 from the experimental literature [61], we
obtain the curve shown in Figure 4.5, presented along with the dislocation line energy obtained
by Parfitt et al. for a ⟨100⟩ dislocation in UO2 [60]. The first observation is that the approximated
line energy obtained in this work has the same order of magnitude as the results from Parfitt et
al. in UO2, which is comforting. The second observation is that the excess energy obtained
from DFT is also of the same order (2.57 eV/Å). These two quantities are not equivalent and
are not expected to match as what is modeled through DFT is not a dislocation loop but only a
longitudinal interstitial cluster. However, we expect the values to be close once the cluster has
grown enough in both {110} and {100} directions to form an interstitial plane that is equivalent
to a ⟨100⟩ dislocation loop.

4.2 Cluster dynamics simulations

Dislocations in Centipede were incorporated very similar to other clusters, and follow the same
guidelines of Free Energy Cluster Dynamics (FECD) that is the underlying foundation of all
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Figure 4.5: Dislocation line energy for a ⟨110⟩ edge dislocation in (orange) UO2 reproduced from the
plots presented in Ref. 60 and (blue) UN.

Centipede simulations [16]. In FECD, the rate for a particular reaction is defined by the change
in the total Gibbs free energy of the system for the given reaction, along with a reaction coef-
ficient that depends on geometric factors (sphere or cylindrical attraction laws), mobilities of
the defects, and concentrations of the defects. By building up from fundamental calculations of
defect energies, Centipede has been successful in qualitatively estimating self- and fission-gas
diffusivities in UO2 [17], doped UO2 [18], TRISO [19], and uranium nitride [23].

The concentrations of defects in the UN fuel under irradiation are calculated by solving a set
of ordinary differential equations (ODEs) that capture a number of phenomena including: pro-
duction of Frenkel pairs through irradiation, mutual recombination of Frenkel pairs, interaction
with sinks, clustering of point defects and dislocations. This latter defect is new, and will be
discussed in detail. In addition, in order to capture the growth of dislocation loops, Centipede
has recently been modified to allow for transient simulations instead of the typical steady-state
solves. For completeness, a brief overview of the FECD math is repeated here.

4.2.1 Dislocations in Centipede

For the concentration, cd , of a given defect, d, the ODE can be expressed as:

dcd

dt
= β̇d +∑

C
Ṙd,C(cd ,cC,T,G)−∑

s
Ṡd,s(cd ,cs,T,G) (4.4)

where β̇d describes the source rate of defects through irradiation. Ṙd,C and Ṡd,s are the cluster
and sink rates, which depend on the defect concentration (cd), the concentration of a given
cluster (cC), the sink concentration (cs), the temperature T , and the free energy of the system
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G. For Eq. (4.4), s represents the set of all sinks, which include bubbles, grain boundaries, and
dislocations or other similar large defects.

The reaction rate, Ṙd , for a given reaction, A+B → Y +Z, can be expressed as:

Ṙd =


k2

i
Ω

DxAxB

[
1− exp

(
f

kBT

)]
, if ∆G0 < 0,

k2
i

Ω
DxY xZ

[
exp
(

− f
kBT

)
−1
]
, otherwise

(4.5)

where kB is the Boltzmann constant, Ω is the atomic volume, ki is a reaction rate constant,
D = DA +DB is the sum of the diffusivities of the reactants, and ∆G0 is the change in energy
due to the reaction. xA and xB are the atom fractions of the reactants and xY and xZ are the
atom fractions of the products. If the driving force, ∆G0, is less than zero, the net rate is for the
reaction to go forwards, otherwise it goes backwards. The driving force is given by the change
in the free energy of the system due to the reaction:

f =
P

∑
p

∂G
∂xp

−
R

∑
r

∂G
∂xr

(4.6)

where P and R are the set of all products, p, and reactants, r, respectively.
In addition to the reactions with other defects and bubbles, a new sink has been added to

track growth of dislocations and their subsequent impact on point defect concentrations. A
fixed concentration of single sized dislocations is introduced into the reacting defects. For a
dislocation with size x, reacting with a interstitial with y uranium interstitials and z nitrogen
interstitials, the dislocation grows by,

disx +{yUi : zNi}⇌ disx+y+z. (4.7)

A similar equation for vacancies is also possible, as well as for antisites:

disx +{yVU : zVN}⇌ disx−y−z, (4.8)

disx +{NU : yVU}⇌ disx−y, (4.9)

disx +{UN : zVN}⇌ disx−z. (4.10)

Dislocations are included similar to other defects via the FECD formulation, and is tracked via
the number of atoms in a single dislocation, Nd :

∂Nd

∂t
=

I

∑
i

2πηdZd

Ω ln(R/rd)
ρ(Di +Dd)XiF( fd)G(rd) (4.11)

where I is the set of all defects interacting with the dislocation (i.e., vacancies, interstitials,
and anti-sites), ηd is the value for which the dislocation grows or shrinks after reaction with a
given defect (positive for interstitials, negative for vacancies, see Table 4.1), Zd = 100 is the
recombination factor to account for long-range attractions, similar to the Z = 100 used in all
other reactions, Di and Dd are the individual defect and dislocation diffusivities respectively, Xi
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is the site fraction of interacting defect, F is the bracketed term in Eq. (4.5) which converts the
driving force fd into a reaction driver, and G(rd) is a suppressing function that terminates the
dislocation growth once it reaches sizes similar to the grain boundary. The log term in Eq. (4.11)
is a geometric factor for the rate of capture of cylindrical (line) sinks, and depends on the radius
of the dislocation, rd , and the equivalent volume of the line sink, R, which is dependent on the
concentration of the lines. This term is an approximation of the toroidal capture volume of a line
dislocation, and does not truly capture the ring structure of the dislocation loop, but it is a good
first approximation. Since the log term is on the order of unity, and does not change much as R
changes, this term is ignored in the current simulations. Finally, the reaction rate of each defect
is the negative of Eq. (4.11), e.g., ∂Xi

∂t =− ∂Nd
∂t .

If the dislocations grow large enough, they will eventually reach the grain boundaries and be
pinned. Any furter absorption by the dislocation will result in rapid diffusion of the defect to
the grain boundary sink, effectively stopping growth of the dislocations. A termination function
G(rd) is utilized in Eq. (4.11) that sets ∂Nd

∂t = 0 once the dislocation size reaches the same size
as the grain:

G(rd) =

{
1 if 2rd < 2rgrain

0 otherwise
. (4.12)

where 2rgrain = 10µm.
The reaction between dislocations and other defects is different in that their overall size grows

rather than being consumed (or produced) via Eq. (4.5). Due to this, the driving force is much
more complicated. The driving force for a reaction between defect i absorbed by a dislocation
is formulated as,

fd =−G0
i − kBT ln(Xi)+

∂Gline

∂nd
+

∂Gstoich

∂nd
+

∂Gsize

∂nd
, (4.13)

where G0
i is the concentration-independent energy of the defect, the log term corresponds to the

change in configurational entropy, and the last three G terms are the line energy, stoichiometric,
and size energies respectively, which are formulated as the change in energy due to absorption (or
emission) of a defect with a dislocation. Here, nd is the number of atoms in a single dislocation,
and is related to the atom fraction of all atoms in dislocations as Nd = ndcd , where cd is the atom
fraction of dislocations.

The energy of a dislocation loop can be reduced to a line energy, which is similar to the surface
tension that acts on bubbles. The change in the energy as a function of length, ∂Gline

∂ld
, has been

estimated via several different methods, as discussed in Section 4.1, resulting in the line energy
contribution to be calculated by,

∂Gline

∂nd
=

∂Gline

∂ld

∂ld
∂Nd

∂Nd

∂nd
= Ω

1/3
√

π

nd

(
∂Gline

∂ld

)
, (4.14)

where ld = 2πrd is the circumference if a dislocation loop with radius rd , and Ω = a3
0/na is the

volume consumed by a single defect, which is computed from the lattice parameter, a0, and the
number of atoms in the unit cell, na.
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The distribution of uranium and nitrogen interstitial defects and their subsequent reaction
rates with defects is not equal. However, unlike the UO2 system where oxygen defects maintain
their thermal equilibrium concentration at the temperatures of interest, and are assumed to move
where needed, nitrogen in UN does not behave similarly. Given the growth of a dislocation,
it is possible to preferentially absorb (or lose) one atom more than the other. To prevent an
unphysical buildup of either uranium or nitrogen atoms at dislocations, a penalty is introduced
by ∂Gstoich

∂nd
that will favor defects that keep the defect around perfect stoichiometry. For simplicity,

a simple cubic forcing function is utilized,

∂Gstoich

∂nd
= 100ηstoich(χd −1)3, (4.15)

where χd is the ratio of nitrogen to uranium atoms in the dislocation. This value is tracked by
applying the same reaction rate computed by Eq. (4.11) to χd along with a constant multiplier
depending on the reacting defect, e.g., 1 for uranium vacancies and nitrogen interstitials, -1 for
nitrogen vacancies and uranium interstitials, with higher constants for larger clusters.

Finally, the last energy term in Eq. (4.13) is utilized to prevent the dislocation shrinking to
nonphysical sizes,

∂Gsize

∂nd
= 106 log(nmin

d /nd)
3, (4.16)

where nmin
d is the minimum number of atoms allowed in a dislocation. This formulation is

somewhat artificial in that if a dislocation line gets too small, it will eventually annihilate due
to the increasing line energy. However, this driving force addition prevents full destruction of
the dislocations, and can be thought of as a nucleation term in that a concentration of small
dislocations will always be present due to creation from bubble punching or shear stresses.

When running rate theory simulations of defects such as bubbles and dislocations, the popu-
lation and size of the defects are both free variables. These values can be estimated by using a
nucleation model, which requires an extensive knowledge of the birth of the particular defect.
If no adequate nucleation model exists – as is the case for dislocations in nuclear fuel – either
the concentration or defect size must be set, leaving one free variable free to capture the relative
growth of the defects, either directly through the size or through an increase in concentration. In
lieu of a nucleation model for dislocations, the fabrication dislocation line density for UC was
utilized here was used as a guide ρ = 5 ·1013 [6]. In order to get dislocations to grow, a critical
sized must be overcome – and thus a small enough line energy – to establish a regime of growth
rather than annihilation. To capture this behavior, the number of atoms in the initial dislocations
were estimated using a rough estimate for dislocation sizes that allowed growth:

log(n0
d) = T/100−7.5, (4.17)

where T is temperature in [K], and n0
d is the number of atoms in each dislocation at the start of

the simulation.

4.2.2 UN Centipede model

A Centipede simulation for uranium nitride fuel was recently published [23] and provided a first-
of-a-kind simulation of irradiation enhanced self- and fission gas diffusion. Utilizing this model
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Table 4.1: Atomistic data used for the Centipede modeling. H and S are either the formuation energy for
the point defects, or the binding energy for the clusteres. Color coding of the values is used
to signify the pedigree of data, for Good value, estimated from DFT, experiments, or crystal
structure, Estimated value from MD that could use refinement, Estimated value from DFT that
could use refinement and Undefined value with best guess. js, jd , δ, and ηd are the jump sites,
jump distance, degeneracy, and dislocation reaction factor respectively

Name H [eV] S [kB] ST [kB] Q [eV] w [THz] js jd [Å] δ ηd

UN -28.67 6
N2 0.16 3.96
Ui01:Ni00 0.00 -1.73 3 1.99 3.46 6 2.45 4 1/2

Ui00:Ni01 -1.69 -15.28 3 1.68 41.20 6 2.45 1 1/2

vU01:vN00 20.18 13.60 -3 3.27 8.71 12 3.46 1 −1/2

vU00:vN01 18.42 17.82 -3 3.14 13.90 12 3.46 1 −1/2

vU02:vN00 -0.64 27.73 -6 2.96 8.71 8 3.46 6 −1
vU00:vN02 -0.39 35.71 -6 2.84 13.80 8 3.46 6 −1
vU01:vN01 -0.70 31.18 -6 2.51 8.71 4 3.46 6 0
Un01:vN00 2.05 15.75 0 0.00 3.46 1 0
Un01:vN01 -0.82 33.57 -3 2.90 11.00 4 3.46 12 −1/2

Nu01:vU00 9.93 -2.18 0 0.00 3.46 1 0
Nu01:vU01 -2.76 11.41 -3 3.00 8.44 4 3.46 12 −1/2

Ui02:Ni00 -46.42 -3.46 6 1.99 3.46 6 2.45 8 1
Ui00:Ni02 -46.70 -30.56 6 1.68 41.20 6 2.45 3 1
Ui01:Ni01 -47.20 -17.01 6 1.99 3.46 6 2.45 16 1
Ui02:Ni01 -73.65 -18.74 9 1.99 3.46 6 2.45 8 3/2

Ui01:Ni02 -73.33 -32.29 9 1.99 3.46 6 2.45 8 3/2

Ui02:Ni02 -100.40 -34.02 9 1.99 3.46 6 2.45 8 2

as a starting point, both a number of improvements were introduced, including more refined
atomistic data, and more complex reaction energies for the sink reactions.

Atomistic data

While exploring the larger interstitial clusters described in Section 4.1, all clusters were re-
evaluated. This new data (Table 4.1) will be used here to maintain consistency with the val-
ues computed for the larger interstitial clusters, and is similar to previously calculated values.
Color-coding is utilized in Table 4.1 to highlight where calculations remain to be completed. Of
particular note is the lack of accurate data for the interstitial clusters, especially the activation
barrier Q, which is estimated by utilizing the rate limiting mobility of each cluster constituent,
i.e., either the uranium and nitrogen interstitial. In addition, the binding entropies for the larger
interstitial clusters are selected to result in a zero total cluster entropy. In addition, a value of 2.5
eV per Å was utilized for the line energy based on the estimations outlined in Section 4.1.3.

Sink driving force updates

The driving force for the sink reactions, fs (see f in Eq. (4.5) for implementation) has been
updated to include two additional energy drivers, a stoichiometric term similar to that used for
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Table 4.2: Constants for computing Eq. (4.19) taken from [62].

c1 c2 c3 c4 c5 c6 c7

-1.033 3.372 -7.091 9.189 -5.858 1.950 -0.328

dislocations, and a term for bubble pressurization,

fs = ∆G0
i − kBT ln(Xi)+

∂Gstoich

∂ni
+

∂Gpressure

∂ni
. (4.18)

The stoichiometric correction is the same as used for dislocations in Eq. (4.15), albeit is in
relation to the reacting atom ni. The bubble overpressurization term ∂Gpressure

∂nd
is adopted from

previous work from Cooper et al. [23],

∂Gpressure

∂nd
=

9

∑
i=2

(1− i)ciχ
−i
b , (4.19)

where ci is a set of constants fit from MD simulations and χb is the Schottky defect-to-xenon
ratio in the bubbles. Table 4.2 displays the coefficients computed in [62]. Although the values
were computed for UO2, they are used as a first approximation and should be similar for uranium
nitride.

Centipede simulations have typically consisted of the steady-state solution of defects rather
than the time-evolution of the system. This resulted in calculations of diffusivities that were
close to measured values. Since transient simulations are required for the dislocation growth
model developed here, the bubble sink term must also grow in order to accurately mimic the
behavior of the fuel. This results in a bubble sink term that looks like:

ks = k0
s

{
B

0.05 , if B < 0.05,
1, otherwise,

(4.20)

where B is burnup in FIMA, and k0
s = 4π < rbcb > Zb is the steady state reaction coefficient for

uranium nitride bubble sinks. Here, Zb = 100 is the long-range capture radius of the bubble, and
< rbcb >= 10−3 [nm/nm3] estimated from post irradiation examination.

In addition, the grain boundary sink strength is estimated using the values from [63]. For
grain sizes on the order of 10 microns, the grain boundary sink strength is less than 10−4, with
some estimates around 10−7 [63]. To capture this slight sink concentration, 10−5 is used as a
time-independent sink. This is especially important early in the simulation while the bubble sink
strength is small, but is quickly overtaken by the bubble and dislocation sinks.

Updated point defect concentrations

Given the new data for uranium nitride clusters, Figs. 4.6 to 4.8 show the comparison between
the old and new data at the so-called “mid” chemistry value, which traverses the middle of the
UN phase space (see Fig. 3.6)
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Figure 4.6: Comparison of the irradiation enhanced concentration of vacancies between the old and new
atomistic data for UN. The dashed lines correspond to the thermal equilibrium values, while
the solid lines correspond to the irradiation enhanced values.
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Figure 4.7: Comparison of the irradiation enhanced concentration of interstitials between the old and new
atomistic data for UN. Note the old data did not include the information for the larger clusters,
so they are absent from the comparison in (a).
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Figure 4.8: Comparison of the irradiation enhanced concentration of antisites between the old and new
atomistic data for UN. The dashed lines correspond to the thermal equilibrium values, while
the solid lines correspond to the irradiation enhanced values.

4.2.3 New convergence criteria for transient simulations

Typically, Centipede simulations find the steady-state solution to this coupled set of ODEs, such
that dcd

dt ≤ R for all defects, where R is the convergence criteria. Here, Centipede has been
modified to track the evolution of clusters during irradiation. This new simulation capability was
enabled by the new convergence criteria developed in MOOSE by the authors, and is an enabling
feature to accurately capture the evolution of defects (and now dislocations) as a function of time.

Before introducing the new convergence criteria, the current methods utilized by MOOSE
need to be discussed. In the unmodified version of MOOSE, two criteria are utilized during each
timestep to ensure convergence in a transient simulation, named absolute and relative tolerance
of the non-linear residuals, or nl abs tol and nl rel tol respectively. After each non-linear
step, the L2-norm of all variable residuals are compared to these tolerances. The timestep is
considered “converged” if this L2-norm is either less than the nl abs tol or is less than the
L2-norm at the start of the timestep by nl rel tol. Several problems arise from these two
convergence criteria. First, all variables are grouped together to a single absolute and relative
tolerance, which allows for no refinement depending on the relevant physics. For example,
an acceptable absolute tolerance for a thermo-mechanical simulation will be very different for
either the temperature variables (which is typically solving for values on the order of thousands
of degrees) and displacement variables (values on the order of 0.0001). Second, the relative
tolerance is biased by the state of the system at the beginning of the timestep. For example, a
poor estimate of the variable initial conditions could result in an extremely large initial residual,
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for which a simple correction could lead to a drastically smaller residual, but still result in a
solution that is far from convergence. Conversely, if the system is close to the physically correct
solution, relative convergence could never be reached.

In an attempt to overcome these problems, a new “Problem” type ReferenceResidualProb-
lem was introduced some years ago to modify the relative convergence criteria. This new method
is used extensively in mechanics problems (e.g., fuel performance simulations in BISON), but
still suffers from complexity and knowledge of the estimated residuals a priori. In Refer-
enceResidualProblem, the relative convergence criteria is modified to compare the L2-norm
of the residual from a select set of kernels to a “reference”. The compared L2-norm residual
is accumulated via the tagging system, and requires manually enabling residual accumulation
from kernels in the input file. The “reference” is a selected residual contribution that is not in-
cluded in the L2-norm summation, and is typically selected as the boundary conditions of the
problem. In addition to using the relative tolerance to compare against a physical value of the
system, ReferenceResidualProblem also separates the contributions from each variable, al-
lowing each variable to be compared against itself. Once the L2-norm of the selected residuals
is less than the “reference” value for each variable by nl rel tol, then the timestep is consid-
ered converged. Note, the absolute tolerance criteria is not modified, and is allowed to operate
simultaneously from this adopted relative convergence criteria.

While ReferenceResidualProblem has been useful for situations where the selection of
the “reference” value is easy, it still suffers from a couple of problems, namely, if boundary
conditions are not utilized (e.g., stress-free strain from thermal expansion of floating parts or,
perhaps more relevant, cluster dynamics simulations) or if the correct “reference” varies as a
function of time.

To illustrate the need for a new convergence criteria, lets take a single particle problem, start-
ing with two springs, one attached to a wall and one being pulled as in Fig. 4.9a. Static equilib-
rium is set by the balancing of the forces of two springs on the particle, with equal but opposite
signs, with the displacement of the particle as the free variable. Absolute tolerance would work
well here as a convergence option, with the tolerance set to something like 10−6 times the force
of one of the springs on the particle.

Next, place two more weak springs as in Fig. 4.9b, introducing a new free variable as dis-
placement in the y-direction. In this case, absolute tolerance will not work well when drastically
different forces are acting for different variables. The standard grouped absolute tolerance crite-
ria would work if the forces were always about the same for all time and both directions. This
method would not be applicable if the springs in the x-direction were much stiffer than in the
y-direction, or if the spring stiffness changed as a function of time. A single fixed absolute tol-
erance will either be too loose, resulting in unconverged solutions, or too tight, resulting in an
ability to complete the simulation.

As discussed before, the “reference” is typically built by applying extra vector tags to
everything but the boundary conditions. For example, the reference residual would be identical
to the actual residual for the case where there are four springs and no boundary conditions,
as in Fig. 4.9c. In such a simple case, you could select one force in each direction to build
an appropriate reference residual, but things are not always so simple. For example, consider
Fig. 4.9d in which the springs now act in different dimsions, and could even vary with time.
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(a) (b)

(c) (d)

Figure 4.9: Examples that highlight the different options for convergence criteria using a single particle
and springs.
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At the suggestion of a colleague at Idaho National Laboratory, Ben Spencer, ReferenceResid-
ualProblem has been modified to remove the need to set the “reference,” and instead uses the
summation of the absolute value of all contributions to each variables residual as the “reference”.
By supplying reference vector = aref to all kernels, boundary conditions, and constraints
via the GlobalParams block, the built-in MOOSE tagging system now automatically compiles
the absolute values of the residual contributions, performs a variable-specific L2-norm, and then
uses the newly computed value to check for convergence of each timestep.

Enabled by this new convergence criteria, transient simulations in Centipede are now possible,
a key requirement to capture the evolution of dislocations.

4.3 Dislocation Simulation Results

Combining the new data, time dependent sink terms, dislocation model, and new convergence
criteria discussed in the previous sections, the total evolution of dislocations as a function of time
and burnup is shown in Fig. 4.10. The first thing to note is that the the dislocation line density
at high burnups is larger for the intermediate temperatures (1400 K). This is clearly visible in
Fig. 4.11, with the solid line showing the dislocation line density as a function of temperature
at 6.8% FIMA. The behavior is due to the total dislocation content saturates at lower and lower
dislocation line densities as a function of time, a consequence of the formulation size limit of
the dislocation set to the grain size. Eventually, the dislocation content does not grow larger than
the original fabrication dislocation density above 1600 K.

Figure 4.12 shows the dislocation growth compared to measured values from UC and UO2.
With both data sets, there seems to be an incubation time before the dislocation starts to grown,
while the simulation shows that growth of the dislocation line density is rapid in the first few
stages of irradiation. This delayed dislocation growth indicates there is more complexity to the
dislocation nucleation than the simple model utilized here, warranting more work in getting
the initial dislocation size and concentrations correct. If the model is shifted to the right by 3%
FIMA, the data closely resembles the measured values for UC. It is important to note that the ex-
perimental values indicate an almost exactly linear relationship for dislocation line density, while
the model resembles more of a square-root dependence in growth. Even more complicating is
the slightly exponential growth measured for UO2. A nucleation model that more accurately
reflects the initial dislocation sizes may be able to capture the more linear behavior observed in
UC. If this same 3% FIMA shift is carried over to the comparison with the Centipede model
with the dislocation content as a function of temperature, the comparison to data is also more
favorable, shown in the dashed line in Fig. 4.11.

4.4 Discussion and future work

The DFT calculations shown here provide valuable insight into how interstitials form and inter-
act in uranium nitride. Pictures such as those in Fig. 4.3 not only allow visual aids for develop-
ment of Centipede and BISON level models, but can simultaneously be used to extract energies
of the dislocations, as was done here to provide an estimate of the line energy. The immediate
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Figure 4.10: Line density of dislocations as a function of time.
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shift to account for the incubation time present in the data. Also included is data from UC [6]
and UO2 [34].

next-step is the modeling of {110} cluster growth in the orthogonal 100 direction. These calcu-
lations should in principle produce actual interstitial loops as the clusters will form partial {110}
planes.

It is uncertain whether DFT calculations alone will be able to provide accurate data on the
dislocation line energies, due to the severe system size limitations. However, the energetics
of the clusters obtained from DFT can also be used to improve the parametrization of empirical
potentials. Therefore, the continuation of this task may involve molecular dynamics simulations,
in order to provide more useful data to the fission gas model (while ensuring the accuracy of such
simulations by comparing key results with ab-initio).

The DFT calculations helped fill out the energies of the larger interstitial clusters. Ultimately,
temperature-dependent entropies are necessary to capture the full energy of the defect, especially
under irradiation where the primary defect driving diffusivity may transition. Unfortunately,
accurately tracking these larger clusters using DFT is tedious, and require careful sampling
of all possible defect configurations. The energetics of the interstitial clusters will continue
to be pursued, especially the binding enthalpies of larger clusters, and activation energies and
entropies of the smaller more numerous interstitial clusters. As the Centipede dislocation and
BISON fission gas release and swelling models are more refined, continuing communication on
the atomistic data needs is essential to ensure the important defect space is available for use,
while simultaneously avoiding refinement of data that is ultimately unnecessary.

The dislocation model discussed here is very simple in nature, while following the FECD
formulation of traditional Centipede calculations. This model benefits from the natural incor-
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poration of ab initio data, but likely suffers from an oversimplification on the nucleation of the
defects. Unfortuntely, such models are extremely difficult to quantitatively capture, although
the simulations here may provide some insight; the change in the defect energies as a function
of temperature require an exponential increase in initial dislocation size in order to ensure the
dislocations do not shrink and ultimately annihilate. The model prevents this in two ways. The
first is the energtic term defined in Eq. (4.16) that prevents dislocations from shrinking below
a critical size. The second is the ad hoc initial concentration of atoms per dislocation defined
in Eq. (4.17), while maintaining the initial dislocation line density constant across all temper-
atures. While these simplifications allow the simulations to capture the expected dislocation
growth, they are likely oversimplistic, and could benefit from a more physical formulation.

Despite the many simplifications in the dislocation model, the overall peaking of the dislo-
cation line density around 1300 K mimics very closely the breakaway swelling that occurs at
similar temperatures in UC and UN. Surprisingly, the peak corresponds more closely to the
swelling peak observed in carbide fuel than that of nitride fuel, which occurs at about 200 K
higher temperatures. This again points to deficiencies in the nucleation model utilized here, but
the indication of the peak shows promise in ability of the mechanistic dislocation model to sup-
ply the necessary behavior to enable breakaway swelling in a BISON fission gas swelling and
release model.
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5 Conclusions

Based on previous modeling work [4,10], a dislocation bubble model was implemented in Sifgrs
and was applied to UN. This model successfully captures the breakaway swelling phenomenon
seen in nitride fuel by allowing the gas to concentrate in dislocation bubbles at higher tem-
peratures as opposed to bulk bubbles at lower temperatures. This success is dependent on an
empirical dislocation density function that will eventually be replaced by a mechanistic model.

Analysis of experimental data and the results of this modeling work produced the following
useful conclusions:

• Bubbles nucleate along dislocation lines at a constant rate of roughly 106 bubbles/m, in-
dependent of temperature.

• The quasi-stationary approximation is not always valid for UN.

• Bubble pressures do not appear to exceed the dislocation loop punching threshold.

• The coverage of dislocation lines by bubbles remains below 20% and is insufficient for
bubble interconnection to the point of gas release.

• Some fraction of the bulk bubbles at low temperature may have been too small to be
measured, but still contribute to the microscopic swelling.

While the JOYO assessment case yielded fairly decent results, the SP1 assessment demon-
strated that the dislocation bubbles are trapping too much of the fission gas at high temperatures
greater than ∼1700 K. This issue could be remedied by a mechanistic dislocation model showing
less dislocation density at higher temperatures.

Early ab-initio results suggest that the most favorable arrangement of interstitial clusters is in
the {110} orientation, and that the binding energy of the cluster increases when U or N inter-
stitials are captured at one of the extremities along the {110} axis. We also observe a striking
resemblance between the lowest-energy configurations of these clusters, and the structure of a
⟨110⟩ dislocation loop, which suggests that a dislocation loop could nucleate from these clusters.
So far, DFT results do not allow the description of an actual interstitial loop. Our immediate per-
spective is to calculate the growth potential of these clusters in the {100} direction orthogonal
to the {110} axis of the clusters, in order to form a partial interstitial plane, equivalent to a dis-
location loop. Also, we have calculated from DFT the excess of energy of the clusters compared
to an ideal lattice containing the same number of atoms. It appears that the energy obtained as a
function of the clusters length is of the same order as the dislocation energy obtained from elastic
theory (which itself is of the same order as literature results on UO2). Although these quantities
are not equivalent, once DFT clusters will be extended enough to model an actual dislocation
loop, the asymptotic value of the excess energy should in principle become equivalent to a line
energy.
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