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Executive Summary

The simulation of plasma dynamics is a critical area of Fusion Energy Sciences (FES)
due to it's usefulness in predicting, controlling, and confining plasmas in the context of
potential fusion reactors. The simulation of plasmas is a computationally difficult prob-
lem in both classical and quantum physics, motivating investigation into the potential
of quantum computers to simulate these systems. This project took several concrete
steps towards this goal by developing tools for improving the control, characterization,
and calibration of quantum gates on a superconducting quantum computer, developing
error suppression and mitigation tools to reduce errors on the quantum computer, and
utilizing these advancements to simulate reduced models of plasma dynamics on the
quantum computer.

In order to efficiently simulate plasma physics, an optimal control method which syn-
thesizes, directly at the pulse level, any quantum gate on qubit and qutrit systems was
developed. Using four superconducting transmon quantum processors at Rigetti and
LLNL, it was demonstrated that any arbitrary quantum gate on qubits and qutrits could
be implemented with high fidelity, leading to a significantly reduced length of a gate
sequence [1].

A problem of interest in FES is the nonlinear optical process of laser pulse compression
within a plasma. Since quantum physics is linear, simulating nonlinear operations is
not naturally feasible on a quantum computer, however it is possible to simulated a
guantized version of the nonlinear process. A quantization approach to convert nonlinear
wave-wave interaction problems to Hamiltonian simulation problems was developed
and demonstrated using two qubits on a Rigetti device. In this experiment, a number
of error suppression and mitigation techniques were investigated to determine how
best to utilize the finite quantum resources. This study provides an example of how
plasma problems may be solved on near-term, noisy quantum computing platforms and
identified a promising set of techniques [2].

Building on the insights of these experiments, the investigation turned to linear electron-
plasma wave physics. A connection was identified between a local one-dimensional
lattice spin model and linear wave phenomena, allowing a plasma physics problem to
be efficiently mapped to the quantum computer. In this framework, reflection and
transmission of plasma waves at a sharp boundary was studied, as well as the propagation
of waves through an inhomogeneous plasma medium. In addition to the suite of error
suppression and mitigation techniques developed, this experiment introduced the use
of a digital-analog gate scheme designed to efficiently simulate the plasma Hamiltonian.
With hardware available at the conclusion of the project, simulation at the scale of 9
qubits and 15 timesteps (60 entangling layers) was achieved.
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Introduction

1.1 Abstract

The overarching goal of this project is to simulate reduced models of plasma dynamics us-
ing advanced control techniques for the exponential Hilbert space of intermediate-scale
qguantum information processing (QIP). Discovering methods for the quantum accelera-
tion of plasma simulation techniques is important for Fusion Energy Sciences (FES) be-
cause predicting, controlling, and confining the fourth state of matter includes a number
of challenging problems in both classical physics and quantum physics. Hence, quantum
simulation of plasma dynamics, as well as nonlinear system dynamics and field theories
in general, has become an important target for the realization of quantum advantage
with QIP.

This project investigated the possibility of achieving quantum advantage through the
co-design of fusion plasma applications and optimal control architectures for advanced
experimental hardware systems based on multi-qubit superconducting devices. By con-
ducting research within three key thrust areas of theory, control, and experiment, we
investigated how to efficiently map plasma models onto quantum memory registers and
how to emulate the cubic and quartic nonlinear interaction terms that govern the physics
of plasmas by using coherent qubit-qubit entangling interactions in superconducting cir-
cuits. These interactions are native to devices but otherwise unexploited for traditional
QIP. This project explored the development and application of control pulse engineering
techniques to the Rigetti platform in order to enable long time simulations with high
effective gate depth. High fidelity was achieved by developing and applying dynamical
error suppression techniques to the quantum simulation of plasma dynamics.

The outcome of this project was the first exploration of carefully engineered multi-qubit
gates and multi-qubit interactions for the simulation of plasma dynamics. The combina-
tion of advanced control and error suppression techniques allowed implementation on
Rigetti platforms composed of 9 qubits, representing Hilbert spaces of 512 dimensions.
Hence, this project accelerated the identification and development of quantum simula-
tion methods for fusion plasmas that have the potential to exceed classical computing
capabilities and laid the groundwork for quantum advantage over a 5-10 year horizon.
It also led to a significant expansion of control libraries for the open-source QUIL frame-
work that will benefit other research domain areas beyond FES. Thus, our collaborative
project acted as a bridge between the QIS and FES communities that will enrich the
scientific ecosystem.
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1. Introduction

1.2 Overview

Quantum information science (QIS) provides a number of potentially transformative new
approaches for understanding, designing, and ultimately achieving, controlled fusion en-
ergy systems [3]. In particular, plasma simulation [4] is especially important for advancing
towards next generation fusion systems by enabling system designers and operators to
understand and predict behavior with high-fidelity computational models [5]. Hence,
as discussed in Priority Research Opportunity (PRO) 1 of the 2018 FES Roundtable Re-
port on QIS [3], discovering methods for quantum acceleration of plasma simulation
techniques is important for fusion energy sciences (FES) since diagnosing, controlling,
and confining the fourth state of matter includes challenging problems in both classical
physics and quantum physics. Thus, quantum simulation of plasma dynamics, [6, 7, 8,
9], and of classical dynamical systems and field theories [8, 9], represents an important
target for the realization of quantum advantage, and thus quantum simulation of re-
duced models of plasma dynamics [6, 10] have emerged as an important research focus
area in quantum computing. Moreover, as explained in PRO 6 [3], advanced theoretical
and computational capabilities within the FES community, especially for the control of
complex nonlinear dynamical systems, are likely to contribute valuable new approaches
to the optimal control of quantum information processing (QIP) systems which are also
complex nonlinear systems that are dissipatively coupled to their environment.

This project investigated how to perform Hamiltonian simulation of reduced models
of plasma dynamics in an efficient manner using advanced quantum computing hard-
ware platforms and advanced methods for co-design of quantum hardware and software
systems. We addressed PRO 2 by exploring how to efficiently map plasma models to
guantum memory registers and how to emulate the cubic and quartic nonlinear interac-
tion terms that govern the physics of plasmas by using coherent qubit-qubit entangling
interactions in superconducting circuits (see Fig. 1.1). Optimal control techniques were
used to develop quantum logic that can efficiently simulate nonlinear Hamiltonian in-
teractions with high effective gate depth and, hence, high effective fidelity relative to
standard approaches to quantum gate sets [11, 10]. Open-loop dynamical error cor-
rection methods, including dynamical decoupling (DD) and dynamically corrected gates
(DCG), were used to suppress and correct errors in a generic and modular fashion that
can be used to further improve fidelity and can be applied both when QPUs are otherwise
idle (DD) or active (DCG). Our objective was to simulate models of plasma dynamics on
QIP lattices composed of many qubits. In achieving this, we significantly accelerated the
identification and development of quantum simulation methods for fusion plasmas that
have the potential to exceed classical computing capabilities and demonstrate quantum
advantage over the next 5-10 years.

Our project was informed by early lessons learned from the LLNL-Rigetti collabora-
tion [10] which demonstrated relative advantage for LLNL's optimal control-based ap-
proaches [11] over traditional gate-model QIP architectures for near-term plasma ap-
plications on systems with only a few qubits. Upon moving to an intermediate scale

O
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1. Introduction

Figure 1.1 - Recreating Plasma Dynamics on an Intermediate Scale Quantum Processor:
[Left] Parametric interactions are key ingredients for fusion. Even with low-orders of mixing
terms, these effects can give rise to complex dynamics, as observed for instance, in cross-
beam laser energy transfer. There, ion acoustic waves (indicated in gold) mediate parametric
three-wave mixing between high-intensity laser fields. [Right] This work considers the
simulation of these effects by controlling targeted quantum-coherent processes within the
exponential Hilbert space of a superconducting multi-qubit processor. Figure adapted from
[Tunbull2020, 12].

on experimental Rigetti devices, we anticipate that these advantages will compound,
making plasma physics an important test case for designing near-term QIS systems.
As described in Table 1.1, our collaboration brought together experts spanning fusion
plasma theory, quantum control and architecture co-design, quantum error correction
and computation, and superconducting device theory and NISQ integration.

Institution | Key Personnel | Key Expertise and Research Areas
B. Evert (Pl) | Quantum computing systems with superconducting qubits
Rigetti E. Sete (co-Pl) | Quantum device theory
X. Wu Hardware architecture co-design for fusion applications
Y. Cho (co-Pl) | Quantum information theory and quantum optimal control
LLNL V. . Geyko Plasma physics
I. Joseph Fusion energy science
D. Lidar (co-Pl) | Digital and analog quantum computation
USsC . e s
Amy Brown Error correction and mitigation

Table 1.1 - Collaboration: Our project leveraged a multi-sector, interdisciplinary team with
expertise in the codesign of superconducting quantum hardware for plasma physics appli-

cations.

1.3 Background

The computational challenge towards predicting plasma dynamics with high accuracy
is immense. One potential path forward is with quantum simulation [13]. Emerging
technologies for quantum simulators range from specialized experimental setups to fully
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1. Introduction

universal, gate-model machines. Universal processors from Rigetti, based on supercon-
ducting qubits, have enabled domain-experts to explore early, digital QIP applications
spanning nuclear, condensed-matter, chemistry, and material sciences, and notably, the
first experimental demonstrations of QIP for plasma simulation [10], which were con-
ducted by members of our team. In this project, we considered hardware-tailored QIP
implementations of nonlinear classical, semiclassical, and quantum plasma dynamics. As
a shared commonality among these, the governing equations have nonlinear interaction
terms that couple the dynamics of multiple waves and/or particles [14]. Many quantum
systems, including superconducting quantum circuits, can also exhibit these types of
interactions in coherent dynamics. By studying whether quantum computers can be
used to solve three-wave mixing problems by emulating the multi-body dynamics di-
rectly in an exponential Hilbert space, we addressed a fundamental class of problems
with applications to many nonlinear systems.

Our project parallels a fundamental challenge for fusion systems: controlling extraor-
dinarily complex physical systems with highly nonlinear interactions, involving an enor-
mous expanse of space and time scales. For FES, this has already led to the development
of simulation tools to support some QIS systems, such as ion traps [3]. We anticipate
that the computational tools already used by FES domain experts or co-developed based
on expertise in the FES community could prove useful for QIS, and we intend to engage
this body of work directly. Specifically, optimal control techniques applied to open quan-
tum systems are expected to be a powerful toolbox, yielding pulse-level improvements
to target controlled specific unitary evolution, tailored to theoretical problems in FES.
Control is therefore the central pillar of this project.

1.3.1 Towards Quantum Advantage for Plasma Physics Applications

Plasma is the phase of matter in which electrons and ions have enough energy to be-
come unbound from neutral atoms. For example, in many regimes of interest the plasma
equation of state is well approximated by the ideal gas law, but with an increase in pres-
sure due to the number of free electrons. Technically, in order to satisfy the definition
of a plasma, the density must be high enough that the so-called plasma parameter, the
number of particles in a Debye sphere, is much larger than one. This ensures that plasma
behaves as a collective system that tends to screen out electric fields on scales larger
than the Debye length, rather than as a system of independent particles. Due to the
high temperatures and number densities required for optimal fusion power output, ~ 10
keV for D+T fusion reactions, the easiest fusion fuel to ignite, classical models of the
electromagnetic fields and particle distribution functions are usually employed. Due
to the even larger computational complexity of treating these systems via their funda-
mental quantum description, quantum plasma models are rarely studied. However, the
guantum dynamics of plasma are of strong interest for a number of emerging applica-
tions in plasmas under extreme conditions, such as high energy density plasmas, strongly
correlated plasmas, and intrinsically quantum plasmas (as described in DPS-D, DPS-E,
and DPS-H of the recent community report [15]).
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1. Introduction

Even classical plasma physics models, where the electromagnetic fields are taken to
satisfy Maxwell’s equations, have a high degree of complexity. In the limit of weak in-
teractions, the single-particle kinetic probability distribution function (PDF), a function
of six dimensions: three real space and three velocity space coordinates, in addition
to time, is usually taken as the fundamental description. In this limit, the PDF satisfies
the Liouville equation, also called the Vlasov equation, and interparticle correlations
are sufficiently weak that the collision operator, which represents nonlinear interactions
between particles, can be determined from an approximation to the two-particle corre-
lation function [16]. In truth, a more fundamental description would include the PDF
for all N particles, which would require solving a 6 N-dimensional partial differential
equations. Since solving for the evolution the six-dimensional single PDF function al-
ready taxes the limits of the world’s most advanced supercomputing facilities, solving
such high-dimensional models is clearly unthinkable with present-day capabilities. Yet,
simulating and solving high-dimensional partial differential equations are one of the ap-
plication areas in which future fault-tolerant quantum computers may offer significant
advantage [8, 9].

Thus, understanding how quantum computers can be used to simulate the complex
nonlinear dynamics of plasmas is of great interest to FES. It has been predicted that
quantum computers can achieve exponential speedup over classical computers for the
simulation of intrinsically quantum systems [17, 18]. Quantum advantage, typically a
quadratic or general polynomial speedup, has also been predicted for the simulation
of intrinsically classical systems, including the simulation of linear ordinary and partial
differential equations (PDEs). [19, 20, 21], optimization problems [22, 23], and Monte
Carlo methods [24]. Thus, research into the possibility of achieving quantum advantage
for intrinsically classical computations has been active since the inception of research
into quantum algorithms [25].

Recent research has focused on the possibility of achieving quantum advantage for
plasma physics applications [6, 8, 7, 9]. Large computational savings are anticipated for
high-dimensional PDEs, relative to an Eulerian discretization of the numerical problem,
because the exponential scaling of the computational complexity with respect to the
dimension of the PDE can be reduced to polynomial scaling. Such techniques may
eventually be applicable to high-fidelity kinetic simulation of the six-dimensional (6D)
single particle PDF of plasma physics [3]. Moreover, such algorithms could eventually
enable the rapid solution of even higher dimensional PDEs, such as that obeyed by
the twelve-dimensional (12D) two-particle correlation function (or higher multi-particle
correlation functions), which are necessary to accurately evaluate two-particle (and
multi-particle) collision operators and turbulent correlation functions in plasmas [8].

There are a number of promising approaches to the Hamiltonian simulation of nonlinear
classical dynamical systems, even though idealized quantum computers can only apply
linear unitary operations. A natural approach is based on simulating the quantized ver-
sion of the classical Hamiltonian system, which allows the study of both the quantum
and the classical dynamics. A good example of this technique is represented by a new
hardware-efficient algorithm for the quantum simulation of nonlinear 3-wave interac-

O
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1. Introduction

tions (see Fig. 1.2), recently developed by the LLNL team as a paradigm for nonlinear
interactions in plasma physics, fluid dynamics, and gauge theory [10]. The nonlinear 3-
wave mixing problem denotes a generic vertex interaction in which a wave (or particle) of
type 1 decays into waves of type 2 and type 3. In order for the three-wave problem to be
Hamiltonian, the inverse process of waves of type 2 and type 3 recombining into waves
of type 1 must occur with equal magnitude. On a fundamental level, three-field vertices
are required to couple fermions with bosons, and mediate boson self interactions (along
with four-boson terms) in nonabelian gauge theories. On an applied level, three-wave
couplings are responsible for parametric interactions in crystals, turbulence cascade in
fluids, and cross-beam laser energy transfer in plasmas (illustrated schematically in Fig.
1.1).

The new quantum algorithm for the three-wave problem uses the integrability of the
quantized 3-wave problem to exactly solve for the unitary evolution operator. For this
problem, there are two conserved adiabatic action invariants that commute with the
Hamiltonian, which implies that the quantized system is integrable. Once the states have
been transformed to the action basis, the Hamiltonian becomes a tridiagonal banded
matrix and sparse Hamiltonian problems can be simulated efficiently using quantum
computing hardware.

However, many fundamental models of plasma physics include the effects of dissipa-
tive processes mediated by particle collisions. How can these systems be treated when
the underlying dynamics are not Hamiltonian? A general framework has been devel-
oped for the quantum simulation of nonlinear classical dynamics on phase space [8].
The Koopman-von Neumann formulation of classical mechanics on Hilbert space has
been generalized to treat arbitrary non-Hamiltonian nonlinear classical dynamics. The
Koopman-von Neumann representation implies that conservation of the PDF on phase
space, as expressed by the Liouville equation, can be recast as an equivalent Schrédinger
equation on Hilbert space with a Hermitian Hamiltonian operator and a unitary evolution
operator. Hence, a quantum computer with finite resources can be used to simulate a
finite-dimensional approximation of the operator corresponding to the Koopman-von
Neumann Hamiltonian. Quantum simulation of classical dynamics can be proven to
be exponentially more efficient than a classical Eulerian discretization of the Liouville
equation if the Koopman-von Neumann Hamiltonian is sparse [8]. Utilizing quantum
walks and associated techniques can potentially lead to a quadratic improvement over
classical time-dependent Monte Carlo methods [24].

1.3.2 Operating Superconducting Qubits at Noisy Intermediate Scales

The computational power of a quantum algorithm is generally informed both from its
width, the number of qubits available for computation, and from its depth, the num-
ber of coherent operations that are executed (before the accumulation of error rates
overwhelm the computation). For near-term quantum computers, before fault-tolerant
machinery, circuit depth is often the limiting factor for a quantum algorithm. Within

O
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1. Introduction

the set of operations needed for universal quantum computation, typically the error
rates of the two-qubit gates are the limiting factor in determining the performance of a
NISQ-era quantum computer [26]. Gates themselves are an abstraction for calibrated,
analog quantum processes.

There are numerous techniques for implementing two-qubit gates in superconducting
qubits [27]. Rigetti pioneered the application of parametric processes for two-qubit
gates to mitigate cross-talk issues at intermediate scales [28, 29]. For this gate scheme,
the resonant frequency of a single transmon qubit is modulated using local flux control.
The modulation frequency can be chosen to satisfy energy conservation for a number
of processes in a multi-qubit circuit with static capacitive coupling [30]. The resulting
process is a frequency-selective exchange interaction, allowing for entangling gates
between otherwise weakly-interacting qubits. This gate scheme was implemented in
Rigetti Aspen series processors, which were the testbed of the initial experiments.

The fixed-capacitance between the qubits used on the Aspen processors resulted in
unwanted residual ZZ interactions during idling periods when single-qubit gates are
applied. To address this challenge, tunable couplers were introduced as an effective
solution for minimizing such errors while enabling fast two-qubit gates with improved
fidelities. Rigetti developed a floating tunable coupler [31] that not only suppresses
residual ZZ interactions but also facilitates high-speed entangling gates without relying
on direct qubit-qubit capacitance. This innovation has enabled coupling between qubits
located on different chips, a key milestone in the realization of modular superconducting
guantum architectures. Within this framework, Rigetti has implemented two types
of gates: parametric resonance gates and base-band fast DC gates. Additionally, the
architecture allows for the activation of alternative interaction mechanisms, such as
cross-resonance gates or coupler-modulated gates, further expanding its versatility. This
technology forms the basis of the Ankaa-series processors which are used in the final
experiments.

Quantum optimal control is one of the leading toolboxes for constructing targeted uni-
tary gate operations [32], which can evolve each time step of a physical simulation of
complex dynamics [33]. The first-ever successful simulation of multiple cycles of com-
plex nonlinear plasma dynamics (see in Fig. 1.2) was only achieved on the LLNL Quantum
Design and Integration Testbed (QuDIT) quantum computing platform through the use
of state-of-the-art techniques for applying optimal control of quantum hardware to the
simulation of Hamiltonian evolution [10], leveraging the Hilbert space of a single trans-
mon. In contrast, as seen in Fig. 1.2, simulation of the same problem on two qubits of
the Rigetti Aspen-4 quantum processing unit (QPU) was only able to achieve enough
depth to simulate the first half period of the dynamics. The intrinsic hardware noise that
determines decoherence on both computing platforms is similar, so the majority of the
difference is due to the fact that the sequence of standard gates required for each time
step uses about 17-18 times as many gates and about 20 times as much time duration.
Hence, it is the substantial reduction in time duration afforded by optimal control tech-
niques that is responsible for improving the performance with respect to decoherence.
As this case study shows, a co-design approach to optimal control of quantum hard-

O
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Figure 1.2 - Three-wave interactions with engineered cubic couplings: [left] (a) An optimized
microwave control pulse, f(t) was used to recreate a single time step for the three-wave
problem using Hamiltonian simulation. (b) Experimental results for the population of each
transmon level, |¢;|? versus time, compared to Lindblad master equation model for the LLNL
QuDIT platform. [right] The probability, |cj|2, of the occupation number j =0, 1, 2 for one
wave in the problem versus time step, N. Experimental results for the LLNL QuDIT platform
(dark blue) and the Rigetti Aspen-4 chip (cyan), compared to analytics (orange) and Lindblad
master equation model (ME, black dashed). Figures from [10].

ware is a highly efficient way to steer a quantum system through Hamiltonian simulation.
However, scaling these techniques to many-body interactions across superconducting
qubits represents a formidable scientific and engineering challenge.

1.4 Results

The prior work provided a clear research agenda to investigate the potential of near-term
guantum computers to simulate plasma dynamics, leading to the development of a set
of theoretical and practical techniques which culminated in experimental demonstra-
tions. These demonstrations form the structure of this report, with three experiments
performed, each composing a chapter. While each chapter can be read individually, the
sequence of the three illustrates the evolving theoretical understanding as well as the
developing set of tools for plasma simulation on quantum computers.

1.4.1 Direct pulse-level compilation of arbitrary quantum logic gates
on superconducting qutrits

Contemporary quantum computers typically provide a universal gateset, where the quan-
tum computer is calibrated with a set of discrete pre-determined gates. The gateset is
determined by a balance of what the platform can easily achieve, and what is generally
useful for algorithms. However, the universal gateset is unlikely to be optimal for any

O
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1. Introduction

particular algorithm, leading to the opportunity of co-design. What the native gateset
could be specially tailored to the problem at hand?

This approach to simulation is often called optimal control. These methods begin with
an accurate physical model of the device, and determine a set of control signals that
will implement a target unitary. Optimal control promise time- and resource-efficient
compact gate sequences and, therefore, higher fidelity.

Moreover, while contemporary devices are focused on qubits with two possible states,
higher-dimension “qudits” can offer exponentially greater power. Thus, a set of qutrits,
systems with three computational states, were investigated.

This line of work resulted the demonstration of custom pulses capable of generating
any target unitary with high fidelity and on a wide variety of devices and qubits. Using
both qubits on large-scale Rigetti QPUs and qutrits in the LLNL lab, optimal control
gates were demonstrated and benchmarked. The calibration overhead for such gates is
manageable, setting the stage for optimal-control based circuits in future work.

The results of this study were published in Physical Review Applied [1].

1.4.2 Simulating nonlinear optical processes on a superconducting
quantum device

Building on the work described in [10], investigation into plasma simulation using a
standard digital set of gates was continued. Previous results showed that while the
problem could be effectively posed as a quantum circuit, the high depth of the circuit
meant that errors quickly suppressed the signal of interest.

A set of error suppression techniques were explored, including improving fundamental
gate fidelities, improving compilation efficiency, and dynamical decoupling. These re-
sulted in significantly improved error rates for the circuit. However, even with lower
error rates, noise quickly comes to dominate the signal. To recover accurate expectation
values in the presence of noise, a set of error mitigation techniques was applied, includ-
ing randomized compiling and expectation values rescaling. Pauli Error Reconstruction
[34] was applied to learn a stochastic Pauli noise model and a suppression coefficient. A
careful study of the error contributions from gates, readout, time-step size and Trotter
order was performed, providing a framework to optimize the use of limited quantum
resources. By combining these strategies, a 10 times improvement in achievable simu-
lation time was achieved, allowing the study of dynamics up to longer timescales. An
example of the simulated dynamics is shown in figure 1.3.

The results of this study were published in the Journal of Plasma Physics [2].
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Figure 1.3 - The results of the digital simulation is shown. The blue lines are exact solutions
from a classical computer, and the colored symbols with error bars are results from the
guantum device with the raw values in orange, and the mitigated values in red. The black
points are the result of simulated the exact unitary in a single step on the device.

1.43 Simulating electron-plasma waves on a superconducting quan-
tum chip

Despite the impressive increases in circuit depth achieved through error suppression
and mitigation, the problem of laser pulse compression proved to be impossible to scale
to larger numbers of qubits. This was because the number of gates required to simulate
a single timestep scaled unfavorably with the system size, meaning such systems will
require fault-tolerant quantum computers to be simulated at scale. Thus, a different class
of problems was considered, that of electron-plasma waves and ion-acoustic waves.

A theoretical connection between the well-studied quantum Heisenberg model and
plasmas was identified. Specifically, the spectrum of the spin Hamiltonian matches
that of electron-plasma waves and ion-acoustic waves, allowing for the study of plasma
waves using a larger number of qubits. The spin-chain can be evolved in time using
Trotter evolution, requiring only local interactions. Importantly, this results in a circuit
which is of a feasible depth for current NISQ devices. Three experiments of interest were
identified: First, a many-body Ramsey-type experiment to measure the electron-plasma
wave spectrum. Second, the injection of waves into a plasma medium, which could have
direct applications in Doppler backscattering, a type of reflectometry technique. Finally,
motivated by waves used as actuators in plasmas, the transmission of waves through
an inhomogeneous plasma medium was simulated. Simulations of wave propagation in
an inhomogeneous plasma are needed to predict where the waves deposit their energy
and how the controller will perform in practice. These three cases provide a small-scale
demonstration of how quantum computers can be applied to plasma simulation problems
of interest, with an efficient mapping to near-term hardware.

Building on the error suppression and optimal control work, a hybrid approach to the
circuit was taken which combined digital 1Q rotations with an analog entangling layer.
Digital 1Q rotations provided high-fidelity, parameterized gates, while the more chal-
lenging entangling operations were implemented by a layer of simultaneous entangling
pulses. Rather than attempting to synthesize a particular unitary, the natural FSIM en-
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tangling gates of the device are characterized. To express the target unitary using these
native gates, which vary from qubit to qubit, a numerical compilation scheme was lever-
aged. With the ability to perform high-fidelity timesteps, a high circuit depth became
achievable. Error mitigation techniques were adapted for this experiment, leveraging
hardware-accelerated randomization and rescaling of expectation values. Combining
these techniques, the Rigetti Ankaa-9Q-3 QPU was used to simulate plasma waves up
to 15 timesteps, using 60 2Q gate layers. Critically, the techniques and problem are
scalable, meaning that further improvement in hardware error rates should allow this
experiment to be performed at larger numbers of qubits.

Correlation=0.83, MAE=0.11 Correlation=0.88, MAE=0.08
Observable=X Observable=Y Observable=X Observable=Y Observable=X Observable=Y
Q8 Obs 8 Obs Q8 Obs
QZ §! QZ; i Qg i
283 0.5 883 0.5 883 0.5
G o Bt o (gt 0
8% -0.5 8% -0.5 8% -0.5
Qo0 By Qo By Qo H_q
0 5 10 150 5 10 15 0 5 10 150 5 10 15 0 5 10 150 5 10 15
Step Step Step Step Step Step
(a) Logical observables (b) Raw observables (c) Mitigated observables

Figure 1.4 - The time evolution of (X) and (Y) is shown in this many-site Ramsey-type
experiment. The time evolution of the complex phase of (X + iY") reveals the energies of
all the electron-plasma wave eigenmodes. The subplots show the evolution without noise
(left), the raw estimated observables (middle), and the error-mitigated results (right).

1.5 Conclusion and outlook

The potential for a quantum advantage in the simulation of plasma physics was inves-
tigated both theoretically and experimentally. An optimal control scheme was imple-
mented to enable to the synthesis of arbitrary unitaries given a pair of interacting qubits
or qutrits. Simultaneously, a set of error suppression and error mitigation techniques
were developed on a two-qubit circuit for the simulation of nonlinear optical processes,
yielding a dramatic improvement in achievable simulation time. To scale to larger sys-
tems sizes, a significant theoretical development mapping electron-plasma waves to
spin chains was made, identifying a class of plasma simulation problems that can be
efficiently mapped to near-term quantum computers within realistic circuit depths. A
scalable experimental protocol was developed which incorporated a digital-analog gate
scheme, numerical compilation, and a suite of error mitigation techniques. This sup-
ported simulations using 9 qubits and 15 time steps, with experimental results matching
well to theory.

While these results represent a great deal of progress in simulation of plasma dynamics
using quantum computers, questions remain. Further investigation is required to under-
stand what state-of-the-art classical methods can achieve on this class of problems, in
order to assess where a quantum advantage might lie. Methods of targeting non-local
interactions would greatly expand the class of problems that could be simulated by quan-
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tum computers. Finally, investigation in richer control schemes, which use multi-qubit
interactions could enable denser circuits and simulations.
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Direct pulse-level compilation of
arbitrary quantum logic gates on
superconducting qutrits

This chapter summarizes the results of demonstrating optimal control on quantum de-
vices, published in [1].

2.1 Overview

Advanced simulations and calculations on quantum computers require high-fidelity im-
plementations of quantum operations. The universal gateset approach builds complex
unitaries from a small set of primitive gates, often resulting in a long gate sequence,
which is typically a leading factor in the total accumulated error. Compiling a complex
unitary for processors with higher-dimensional logical elements, such as qutrits, exacer-
bates the accumulated error per unitary, since an even longer gate sequence is required.
Optimal control methods promise time- and resource-efficient compact gate sequences
and, therefore, higher fidelity. These methods generate pulses that can directly imple-
ment any complex unitary on a quantum device. In this work, we demonstrate that any
arbitrary qubit and qutrit gate can be realized with high fidelity, which can significantly
reduce the length of a gate sequence. Our work promises that the calibration overheads
for optimal control gates can be made small enough to enable efficient quantum circuits
based on this technique.

2.2 Method

We tested optimal control pulses generated for random unitaries on four superconduct-
ing transmon quantum processors, the LLNL Quantum Device and Integration Testbed
(QuDIT)’s standard QPU and Rigetti’s Ankaa-2, Ankaa-9Q-1, and Aspen-M-3. The Qu-
DIT device has a single transmon made of tantalum on a sapphire substrate that has a
long energy decay time [35, 36]. We choose one representative transmon on each of
Rigetti’'s multiqubit chips to focus on in this work. The hardware parameters on the four
systems are listed in Table 2.1.
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2. Direct pulse-level compilation of arbitrary quantum logic gates on
superconducting qutrits

Table 2.1 - Parameters for the LLNL QuDIT'’s standard QPU and the selected qubits on
Rigetti’s Ankaa-2, Ankaa-9Q-1, and Aspen-M-3. w;; indicates the transition frequency from
i) to |7)- Tfj is the energy decay time and T} is the decoherence time in i — j manifold.
The T times were measured with Ramsey oscillation.

Parameters LLNL QuDIT Ankaa-2 Ankaa-9Q-1 Aspen-M-3
wo1 3.446 GHz 4.477 GHz 4.526 GHz 3.883 GHz
W12 3.237 GHz Not measured Not measured Not measured
™ 220 us 27 us 17 us 22 us
Ty 22 us 21 ps 16 us 42 us
T}? 145 us  Not measured Not measured Not measured
P 25 us Not measured Not measured Not measured

In a closed quantum system, the Hamiltonian H of a superconducting transmon in the
rotating frame is approximated by

H = 0.5aa'a’aa + p(t)(a + a') +iq(t)(a — al), (2.1)

up to O(a'a)?, where a = wyy — wy; is the anharmonicity, a is the lowering operator, and
p(t) and ¢(t) are the control pulses given as time-dependent functions that we optimize.
w;; indicates the transition frequency between |i) and |j). For each target unitary, pulses
were obtained either using a Julia open source package, JuQbox (for Rigetti’s devices),
or TensorOptimalControl (for LLNL QuDIT’s device).

The pulse lengths were set to 220 ns for the QuDIT qutrit gates, and 40 ns for the Ankaa-2
qubit gates. In all tested cases, we achieved numerical convergence of the pulses with
fidelity higher than 99.98 %. Subsequently, we downsampled the pulses to achieve a
rate of 1 point per nanosecond for hardware implementation, by selecting 1 point out
of every 64 data points. It is important to note that the control pulses do not contain
frequency components that exceed 1 GHz, ensuring that no information is lost during
the downsampling process.

To achieve the best optimal control gate performance, we calibrate the pulse amplitudes
using two scalar factors, v and o. The calibrated pulses, C, are written as:

Clg(f) =7[X(f <we) + - X(f > w.)], (2.2)

where ¢g(f) is the frequency domain representation of the control pulses, p(t) and ¢(¢),
X (Af) is the spectral component in the frequency range Af, and w. is the average
frequency of wy; and wq,. The amplitude scaling constant, -, converts pulses calculated
in units of the frequency (Hz) to the physically applied voltage by the arbitrary waveform
generators. To fine-tune ~, we measure state populations after performing a gate one
to ten times, compare them to the predicted trajectories from the Lindblad master
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superconducting qutrits

equation implemented in Python QuTiP package [37, 38], and update  to minimize the
difference between the measured and the predicted evolution. This process allows us
to optimize ~ for any gate. By adjusting the spectral weight o between the wy; and w1
components, we compensate for any frequency dependence in the signal chain from the
room temperature electronics to the device at 10 mK. The previous method of finding
the weight factor constructs a densely-sampled spectral filter around the transition
frequencies [39], which could take longer than 10 minutes to measure. In all gates we
sampled, the highest spectral components of the pulses were at wy; and w;,, enabling
us to instead perform a two-point calibration with a constant weight, o, applied to the
two transition frequencies.

We used a square-root of 0 — 2 swap gate, sSW 02, as a reference for qutrit gates.

1/vV2 0 —i/\V2
sSW02 = 0o 1 0 (2.3)
—i/v/2 0 1/V2

Using this gate, we adjust v and o, until we find the optimal gate performance. In ev-
ery measurement, we corrected the state-preparation-and-measurement (SPAM) error
with an independently-measured confusion matrix. The best calibration parameters for
sSW02 were then applied to all random gates tested in this work. For qubit gates, we
used RX (w/2) pulse as a reference and adjusted the amplitude ~ to find the optimal
calibration parameters.

A simplified calibration procedure can guarantee a high fidelity for any random gate.
We fix v and o to the calibrated values obtained from sS1/ 02, and apply them to the
pulses for 300 randomly generated qutrit gates, which were generated from a function,
rand_unitary, in the QuTiP python package [37, 38]. Figure 2.1 shows measurements
of an example randomly generated qutrit gate, GG, whose unitary is given by:

—0.654 + 0.1637 0.638 — 0.335¢  0.155 — 0.054:

0.599 +0.1947  0.673 4 0.026¢ —0.387 + 0.020¢
G =
0.387 +0.0272  0.164 4+ 0.011z  0.887 — 0.1911%

Figure 2.1(a-b) shows the reference and the measured process matrices. The magnitude
error is less than 0.081 and the average amount of phase error is 0.077 as shown in
Fig. 2.1(c-d). By comparing the measured and the reference matrix, we obtained 99.0 %
fidelity of the gate GG. We repeat the same analysis for 299 different random gates on
the QuDIT’s QPU. The mean fidelity is 97.9 & 0.5 % while the highest fidelity is 99.0 %,
as presented in Fig. 2.1(e).

This calibration procedure can easily be transferred to a different hardware architec-
ture. To demonstrate this, we follow the same calibration procedure and measure the
gubit random gate fidelities on Rigetti's Ankaa-2, Ankaa-9Q-1, and Aspen-M-3. For 100
randomly generated qubit gates, the highest and lowest fidelities are 99.9 % and 96.4 %,
respectively. The average fidelities are 99.1 & 0.4 % for Ankaa-92Q-1 and 99.5 + 0.3 % for
Aspen-M-3 as shown in Fig.2.2
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Figure 2.1 - (a) The reference and (b) the measured process matrices of a random gate.The
difference between the two matrices is shown in panel (c-d) for magnitude and phase,
respectively. (e) The average fidelity of 300 random qutrit gates on the LLNLs QuDIT
platform is 97.9 4+ 0.5%. (d) The average fidelity of 100 random qubit gates on Ankaa-2 is
98.4 & 0.8%.
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Figure 2.2 - Histogram of fidelities of (a) 100 randomly generated qubit gates on Ankaa-9Q-
1 and (b) 46 randomly generated gates on Aspen-M-3.

In the measurements on the tested QPUs, the standard deviations of the fidelities are
between 0.3 % and 0.8 %. One possible reason is temporal variations such as fluctuations
of the quantum system over time. To measure the temporal fluctuation of fidelity, we
monitor the fidelity of the sST 02 gate for 3 hours on the QuDIT platform, which is
comparable to the duration of the full data set plotted in Fig. 2.1(e). Inmediately after
the calibration, the measured fidelity was 99.7 %, followed by repeated measurements
every 13 — 14 seconds, resulting in 782 measurements. Figure 2.3 shows that the mean
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Figure 2.3 - Fidelity of sSW02 gate changes over time. The mean fidelity is 98.4 % while
the highest fidelity is 99.6 %.

fidelity is 98.4 4+ 0.2 % with a fidelity drop at one point, as low as 90 %. This low-fidelity is
quickly recovered to 98.6 % on the next measurement. The highest fidelity measured is
99.6 %. This 0.2 % fluctuation in the fidelity of a single gate over time partially accounts
for the 0.5 % spread in gate fidelities in our random sample (Fig. 2.1(c)). We will discuss
the cause of temporal fluctuation and other potential reason for the fidelity span later

in Discussion.

QPT provides a thorough information about a gate process. However, QPT is not immue
to certain sources of error, such as the SPAM error and the infidelities of operators used
for state preparation and projection. Firstly, we correct for the SPAM error by applying a
confusion matrix. Secondly, we mitigate the operator infidelities by measuring QPT with
gate folding (gQPT). By applying the test gate repeatedly, we selectively amplify errors
only in the gate itself, while keeping the errors in the operators unchanged. This allows

0.995

1 2 3 4 5 6 7 8 9 10
Gate Repetition

Figure 2.4 - The fidelity of a single random gate was extracted by performing QPT with 1 to
10 applications of the same gate with the spectral weight o = 1.87. The fidelity converges
to 99.3 %. The green line is a guideline to visualize the convergence of the fidelities.
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us to isolate and quantify the errors specifically associated with the gate under test. By
doing so, we can accurately assess the performance of the gate and identify potential
areas for improvement. Assuming that errors in each gate operation remains unchanged
during the measurement and the operation time is short enough to be insensitive to
decoherence, the fidelity can be evaluated by 1/n-th root of the measured fidelity at
n-th gate folding. In other words, fidelity F is measured at n-th repetition of gate K,
which absorbs the fidelity of the preparation and projection operators, and the adjusted
fidelity is F1/.

Figure 2.4 shows the extracted fidelity of one random gate as a function of the number
of gate repetitions. The final gate fidelity is obtained from the exponential fit (green
curve), given by a - exp(—n/b) + ¢ where a, b, and ¢ are the fitting parameters. The
parameter ¢ corresponds to the converged fidelity that we extract. We repeat gQPT for
8 different random qutrit gates whose initial fidelity (n = 1) is 97.9 + 0.3 % on average,
and overall, the gate fidelity improves and converges to a higher fidelity around 99 %. At
least 1% of the gate fidelities measured on the QuDIT QPU can be accounted for by
the infidelity of the state preparation and projection operators. Similarly, we performed
gQPT on 15 randomly selected qubit gates on Rigetti's Ankaa-2 (initial average fidelity:
97.34:0.6 %) and achieved average fidelity 99.7+0.1 %. To compare gQPT to other existing
characterization protocols, we measured the fidelities of these 15 random gates using
cross-entropy benchmarking (XEB), which gives us an average fidelity of 98.9 4- 0.6 %.

2.3 Discussion

Optimal control can be an efficient tool to implement any high fidelity gates, as we
present in this work. Our work shows that we can achieve 98 — 99% average gate
fidelity for randomly-generated gates with fast one-time calibration that can be applied
to any random gate we want to produce.

To measure the true fidelities of test gates apart from SPAM error and operator infi-
delities, we selectively amplified errors in the test gate by gate folding and extracted
the fidelity from an exponential fit (Fig. 2.4). QPT and gQPT are valid in the presence
of small coherent errors, which are explicitly identified in the measured process matrix
and contribute to the reported infidelities. When the coherent errors in the operators
dominate the error in the tested gate, gQPT minimizes the impact of operator infidelities
and the estimated fidelity rises with the gate application and asymptotes towards a fixed
value, as we saw in our reported experiments. In our measurements, coherent errors in
all tested gates are small enough for gQPT to be valid for up to 10 gate repetitions; the
lowest gate fidelity measured by conventional QPT is 96.7% (qutrit on QuDIT) and 96.3%
(qubit on Ankaa-2). The extracted gate fidelity from gQPT increases by about 1% over
conventional QPT and is about 0.8% higher than XEB measurements. We attribute the
difference to the operator infidelities in conventional QPT and XEB measurements. XEB
is inherently free from measurement errors, but not from operator infidelities. Single
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qubit primitive gates can be calibrated to very high fidelities, but small infidelities can
accumulate at each application, which can contribute to slightly lower fidelities of XEB
measurements. The measured fidelity with gQPT is an approximation to the actual gate
fidelity as it does not capture other types of errors, such as statistical errors (shot noise)
which typically follows a Gaussian distribution.

During the experiments, we have observed fluctuation of a gate fidelity over time as
shown in Fig. 2.3. Quantum systems, in general, exhibit fluctuations and drift on the
time scale of minutes, which can be attributed to various noise sources. For instance,
inherent defects in quantum devices, such as residues from the fabrication process or
adsorbents from the air, can cause resonant coupling with the qubits, leading to shifts in
qubit frequencies and a sharp decrease in T} [40]. Additionally, cosmic rays can generate
quasiparticles that temporarily reduce 73, which affects the quantum system on the
order of milliseconds. Interaction with the environment can cause a long-term drift over
a few hours. Due to the need for control, quantum devices cannot be perfectly isolated
from the environment. Even though the coupling is weak, small environmental changes,
like fluctuations in room temperature can introduce noise into the device. Similarly,
instability in room temperature electronics can introduce control errors. For instance,
the amplitude of a 7 pulse needs occasional recalibration to ensure optimal performance.
Reducing noise sources and mitigating their impact on qubit performance is an active
area of research. The calibration parameters are stable for several hours and require
a fine-tuning of the amplitude at the 1 %-level after two weeks due to drift in the lab
environment and the quantum system.

In addition, the standard deviations of the measured fidelities are 0.3 — 0.8 %, which
is larger than expected from temporal fluctuation. This fidelity range could be related
to the choice of universal parameters. Different qutrit gates have different ratio of
the spectral components between the 0 — 1 and 1 — 2 transitions, which could lead to
slightly adjusted spectral weight o. For example, we optimized the spectral weight for
the specific gate we present in Fig. 2.4. For this gate, the highest fidelity was at o = 1.87,
instead of the o = 1.8 for the reference gate. This suggests that adding a parameter
that depends on the weight of spectral component may help implementing higher gate
fidelities with narrower standard deviation. On the other hand, arbitrary qubit gates
are independent of ¢, because the pulse has only one frequency component. In this
case, the fidelities of arbitrary qubit gates could be improved by frequent tuning of the
amplitude scaling constant v. Quantum hardware requires regular tuning of quantum
gates to ensure its best performance by optimizing pulse amplitude. If the amplitude
from control electronics is unstable, the system would require more frequent tuning of
the pulse amplitude.

We have tested arbitrary qutrit gates using optimal control on Rigetti’s Aspen-M-3 de-
vice. However, we achieved only 85.6 =+ 3.6 %, which is more than 10 % lower than what
we measured on LLNL's QPU. This result indicates that the performance of arbitrary
qutrit gates implemented with optimal control is system-dependent. Multi-qubit chips
typically exhibit higher levels of noise compared to single qubit devices, primarily due to
additional noise sources like flux or interactions between qubits. These noise sources
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are not static and can change over time. In order to determine the frequencies required
for the 0-1 and 1-2 transitions in the Hamiltonian model used for optimal control, we
relied on Rigetti's calibration data, which is updated every 6 hours. However, if the qubit
frequencies experience significant drift within this 6-hour time frame, the accuracy of
the Hamiltonian model decreases, leading to phase errors accumulating during pulse
execution. Towards the end of the 6-hour calibration block, we noticed increasing co-
herent errors when using the Rigetti's pre-defined native gates. This suggests that the
amplitude factor for the optimal control pulses also needs to be recalibrated. Unfortu-
nately, due to limited resources and accessibility to the Rigetti device, we were unable
to thoroughly investigate all potential sources of error.

One future direction is to apply this method to more robust optimal control gates. When
we monitor the fidelity of one gate over a few hours, the fidelity drops by 8 % at one time
and the standard deviation is 0.2 % as presented in Fig. 2.3. To generate robust pulses
for a target unitary over time that is more stable, it would be useful to build a model
that captures the time-dependence of the system, such as T}, T5, and qubit frequency
fluctuation that is typically in the order of a few kHz [41]. Another direction would
be to explore systematic way to achieve fast control of an arbitrary gate. To achieve
the shortest gate time, there are a few challenges to overcome. When a gate becomes
shorter, it tends to have higher amplitudes, which can unintentionally drive higher energy
excitation. In addition, the pulse length is often limited by the clock cycle of the arbitrary
waveform generator, typically 4 ns, limiting our ability to fully explore the dynamic range
of the pulse length. Lastly, we plan to expand this calibration method to multi qubit and
qutrit entangling gates to achieve high performance entangling operations.

2.4 Conclusion

In this work, we experimentally demonstrate that optimal control technique can prepare
any random quantum logic gate with minimal calibration at high fidelities, opening the
door to greater adaptation of this technique. Our calibration procedure is applicable
to different hardware architectures, showing that the optimal control is a practical and
promising direction for optimized quantum circuits.

Implementing custom gates at the pulse-level enables us to operate quantum simulations
and algorithms faster with higher fidelities. For example, in Quantum Fourier Transform
[42, 43] or variational quantum eigensolver (VQE) [44, 45, 46, 47], a sequence of fixed
gates can be replaced with an optimal control pulse to reduce the operation time and the
overall gate count in the circuit. Similar ideas have been suggested to use parametrized
pulses as an ansatz for higher fidelity VQE calculation [48].
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Simulating nonlinear optical processes on
a superconducting quantum device

Simulating plasma physics on quantum computers is difficult because most problems
of interest are nonlinear, but quantum computers are not naturally suitable for non-
linear operations. In weakly nonlinear regimes, plasma problems can be modeled as
wave-wave interactions. In this paper, we develop a quantization approach to convert
nonlinear wave-wave interaction problems to Hamiltonian simulation problems. We
demonstrate our approach using two qubits on a superconducting device. Unlike a pho-
tonic device, a superconducting device does not naturally have the desired interactions
in its native Hamiltonian. Nevertheless, Hamiltonian simulations can still be performed
by decomposing required unitary operations into native gates. To improve experimental
results, we employ a range of error mitigation techniques. Apart from readout error mit-
igation, we use randomized compilation to transform undiagnosed coherent errors into
well-behaved stochastic Pauli channels. Moreover, to compensate for stochastic noise,
we rescale exponentially decaying probability amplitudes using rates measured from
cycle benchmarking. We carefully consider how different choices of product-formula
algorithms affect the overall error and show how a trade-off can be made to best utilize
limited quantum resources. This study provides an example of how plasma problems
may be solved on near-term quantum computing platforms.

3.1 Classical model of laser pulse compression

An important class of wave-wave interactions in plasma physics are laser-plasma inter-
actions. As an example, we consider a scenario where a plasma is used for laser pulse
compression [49], during which the intensity of a seed laser pulse is amplified while its
duration is shortened. Classically, the laser amplification is often treated as a parametric
process, where the signal and idler waves grow by consuming a pump wave. When the
pump energy is being replenished, or when the pump energy dominates, one may ap-
proximate the pump amplitude a; as a constant, in which case the seed amplitude a, and
the idler amplitude a3 grow exponentially. However, when the pump amplitude is not
held constant, the three-wave nature of the underlying interaction becomes apparent.
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The interaction is often described by the three-wave equations [50]

dia; = gasas, (3.1)
diay = —g*alag, (3.2)
dias = —g*alag, (3.3)

where d, is the advective derivative, g is the coupling coefficient, ¢* is its complex con-
jugate, and «' denotes the complex conjugate of a in the classical model. The advective
derivative is specific for each wave and is defined as d; = 0,+v,-V+pu, where v, = 0w/0k
is the group velocity and x is the damping rate of the wave. The complex-valued ampli-
tude a is the slowly varying envelope of the classical wave. The amplitude is normalized
such that n = |a|? is proportional to the wave action density, which is proportional to
the number of photons in the wave.

At later stages of pulse compression, the intensity of the seed far exceeds the pump. The
large a, induces an additional relativistic nonlinearity. The nonlinearity originates from
the fact that, in plasmas, photons are massive particles due to their interactions with free
charges. In unmagnetized plasmas, photons satisfy the dispersion relation w? = w§+02k2,
where the photon mass can be identified with the plasma frequency w, = (e?n./egm.)"/2.
Here, ¢ is the electron charge and n. is the electron density. Because electrons oscillate
in the laser’s electric field, the effective electron mass m, is replaced by ym, when
the electron quiver speed v, becomes comparable to the speed of light ¢, where v =

1/4/1 —vZ/c2. As the seed pulse propagates, at places where the pulse is more intense,

the photon mass w, o 7~/2 becomes smaller. A smaller w, leads to a larger k at a fixed
w, which means a larger group velocity v, = ¢’k /w. Consequently, the more intense part
of a, moves at a higher group velocity. If the envelope of a5, has initial modulations, then
they will pile up and grow. This process is known as relativistic modulational instability.
The equation that describes the modulational instability of the seed pulse is

diay = iRagagag, (3.4)

where d, is again the advective derivative and R = w?/(8w) is the coupling coefficient.
For relativistic modulational instability, R > 0 is a real number, which means iR|a,|?
is purely imaginary. The above equation thus modulates the phase of the complex
ay in such a way that a larger |a;| leads to a faster phase evolution. Since the three-
wave interaction is a phase sensitive process, the modulational instability spoils the
amplification process by introducing a phase mismatch.

3.2 Quantum model of laser pulse compression

In the classical model, the amplitude a is a complex-valued function, and n = |a|? is
proportional to the number of photons. This setup naturally admits canonical quanti-

zation for bosonic quantum fields [a;(x), a}(y)} = 0;;(2m)%0®® (x — y), where the indices
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1,7 = 1,2,3, and the operators have spatial dependencies. Since we will later implement
the model on quantum hardware, which has a limited number of qubits, in this paper
we will focus on the temporal problem with no spatial dependence. In this case, when
damping is negligible, the advective derivative d; — 0, is reduced to a partial derivative
in time, and the operators satisfy the canonical quantization conditions

[ai, CL}L] = 61] (35)

The quantization promotes normalized amplitudes to creation and annihilation operators,
and the Kronecker delta distinguishes the three types of waves in the system. For each
wave type, the number operator is n; = alai. The eigenstates of n; are the Fock states
|m;). Since we have three types of waves, it is convenient to abbreviate the tensor-
product state |m,) ® |msy) ® |ms) as |my, ma, mg). This number basis is natural for the
qguantized problem.

While the Schrédinger picture i0;|¢)) = H|) is more convenient for quantum simula-
tions, the connection between the quantum and classical models is more transparent
in the Heisenberg picture d;a = i[H, a]. For three-wave interactions, Eqgs. (3.1) are the
Heisenberg equations from the cubic Hamiltonian

Hy = igalasas — ig*aabal. (3.6)
The first term of Hr annihilates a seed and an idler photon to create a pump photon,
while the second term of Hr is the reverse process where a pump photon decays into
a seed and an idler photon. Although the Heisenberg equations for a; are formally
identical to the classical three-wave equations, the difference between the quantum
and classical systems become apparent when one calculates higher order cumulants. For
example, because a; and a} do not commute, the Heisenberg equation for n; is different
from its classical counterpart [51]. Similarly, for the four-wave interaction, Eq. (3.4) is
the Heisenberg equation from the quartic Hamiltonian

Hp = —Ea;agawz, (3.7)

2
which is also known as the self-Kerr nonlinearity in the quantum literature. Since R > 0
for the modulational instability, the negative sign in Hr means that photons tend to
condense together, which leads to a lower energy of the system.

To use quantum Hamiltonian simulations to solve the quantized wave-wave interaction
problems, we focus on the Schrédinger picture and use a basis that respects action
conservation. In classical wave-wave interactions, S, = n; + ny, and S; = ny + ns are
known as the conserved wave actions. In the quantized model, [Hr, Ss] = [Hr, S3] = 0,
and Hp also commutes with S, and Ss. Therefore, it is convenient to use eigenstates of
S, and S5 as the computational basis, which we shall call the action basis. For the laser
pulse compression problem, since we are primarily interested in the seed wave a,, we
label the action basis by

‘¢j’2783> = ‘32_j7 ja 83 — S2 +]>7 (38)
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Figure 3.1 - Exact dynamics of mixed three- and four-wave interaction problemsina D = 4
dimensional Hilbert space with constants of motion so, = 4 and s3 = 3. Starting from
the ground state, the probability amplitudes ¢ are evolved in time, and the occupation
probabilities P, = |¢;|? (a)-(c), as well as the expected quanta in the three waves (n;) (d)-(f)
are computed on a classical computer. When p = R/|g| = 0.1, three-wave interaction
dominates; when p = 2, three- and four-wave interactions compete; when p = 10, four-
wave interaction dominates.

where j is the number of photons in the seed wave. Because the Hamiltonian is block
diagonal in the action basis, we can perform Hamiltonian simulations separately in each
(s9, s3) subspace. In other words, the infinite dimensional Hilbert space can be decom-
posed as a direct sum of finite dimensional subspaces, where each subspace is labeled
by a pair of quantum numbers (s, s3).

3.9 Exact quantum dynamics

The exact dynamics involves two fundamental frequency scales ¢ and R, from H; and
Hp, respectively [Egs. (3.6) and (3.7)]. When g = 0, the dynamics is trivial because H is
diagonal: Under the influence of Hy alone, the occupation of |¢,) remains unchanged,
and the dynamics is a pure phase precession. To change occupation numbers, a nonzero
g is needed. Hence, for nontrivial dynamics, we can always normalize time by 7 = |g|t
and normalize the four-wave coupling by p = R/|g|. Since the Hamiltonian is time
independent, the exact dynamics is described by the unitary evolution operator U(7) =
exp(—iHT), which can be obtained by direct diagonalization and exponentiation, at least
for small problem sizes. For size D = 4, the exact behaviors of three examples are shown
in Fig. 3.1. In all three examples, the coupling phase 8 = 0 and the constants of motion
are s, = 4 and s3 = 3, which means j,..,, = land k =1+ 1,s0 |¢x) = [3 =1, 1+ 1,1). All
examples start from the ground state of the computational basis.
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The dynamics is controlled by the dimensionless parameter p. When p <« 1, as shown
in Fig. 3.1(a) and 3.1(d), three-wave interaction dominates, which causes population
transfer between the three waves. In this case, the much weaker four-wave interaction
slowly accumulate phase mismatches that reduces the efficiency of population transfer,
which is manifested by the decreasing oscillation amplitudes of (n) in Fig. 3.1(d). Here,
the expected number of quanta in the three waves are calculated from the probability
amplitudes c by (n;) = 3,(s2 — 7|’ (ne) = X jlal? and (n3) = Y(s3 — so + J)|al?,
where j = jmin + 1, and the summationisover/ = 0..., D — 1. From the above equations,
it is clear that (S;) = so and (S3) = s3 are exact constants of motion, as marked by
horizontal dashed lines in the lower panels of Fig. 3.1. In the opposite limit p > 1, as
shown in Fig. 3.1(c) and 3.1(f), four-wave interaction dominates. In this case, the phases
of different |¢;) precess at drastically different rates, which inhibits population transfer
because three-wave interaction requires phase matching. In this example (p = 10), the
0 <> 1 transfer is strongly suppressed, while the 1 <+ 2 transfer, which accumulate phase
mismatch at a greater rate, becomes nearly impossible. Finally, in the intermediate case
p ~ 1, as shown in Fig. 3.1(b) and 3.1(e), three- and four-wave interactions compete,
and the dynamics is more complicated. While four-wave interactions generate phase
mismatches that suppress population transfer, three-wave interactions change the pop-
ulations and affect how the phases are weighted. The intermediate cases are where
simulations are most needed for predicting the behavior of the system.

3.4 Implementing exact dynamics with error mitigation

We perform two-qubit experiments on Rigetti’s Aspen-M-3 processor [52], which is a su-
perconducting device with multiple transmon qubits at a fixed topology with hardwired
qubit-qubit couplings. The device is routinely calibrated to support single-qubit gates, as
well as two-qubit gates like CZ and parametric XY(0) gates. Each experiment is specified
as a sequence of unitary operations, and each 4-by-4 unitary matrix is decomposed
using Cartan decomposition into at most three two-qubit SQISW gates, sandwiched
between single-qubit gates [53]. The total gate sequence is executed on the hardware
with the device initialized in the ground state. At the end of the gate sequence, the
states of the two qubits are measured. The whole process of an experiment takes a few
microseconds to run on hardware, with the overall time being dominated by a passive
reset delay. We repeat each experiment for A/ = 50,000 times to accumulate statis-
tics for the final states, so that the shot noise, which scales as O(1/vVM) ~ 0.4%, is
small compared to other sources of errors. At the end of M repeated experiments, we
obtain a single data point along the time history of the evolution. Because projective
measurement destroys quantum states, to obtain the next point along the time history,
the simulation has to restart from the beginning in the form of a different experiment,
which has its own sequence of unitary operations and is repeated another M times.

As the first test of the quantum device, we use it to enact the exact unitary operator. In
Fig. 3.2, the solid blue lines are the exact occupation probabilities of the four states in
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Figure 3.2 - Occupation probabilities in a test problem with parameters p = 2,0 = 0, s5 = 4,
and s3 = 3. The blue lines are exact solutions from a classical computer, and the colored
symbols with error bars are results from the quantum device. When asked to enact the final
unitary (black), the device performance is acceptable but not ideal. However, when asked
to perform time evolution (orange), results on the device degrade to noise level after a few
oscillations. The results are significantly improved using error mitigation techniques (red),
but the error bars grow exponentially.

our computational basis, which are computed using exact exponentiation on classical
computers. The test problem uses parameters p = 2,0 = 0, s, = 4, and s3 = 3, which
are identical to the middle panel of Fig. 3.1. The exact solutions serve as references
for results on the quantum device. This first test is the simplest task that a quantum
hardware can perform: For each time 7 = NA, we compute the unitary exactly on
a classical computer. The sequence of unitary operations for this experiment is thus
constituted of just a single unitary, U(NA), and the results are shown in Fig. 3.2 as
the black dashed lines. As can be seen from the figure, even when enacting a single
dense unitary on the device, the fidelity is far from perfect. In this test, because the
gate sequence is so short, decoherence is not a leading cause of infidelity. Instead, most
infidelity comes from coherent gate errors, in the sense that each gate realizes a slightly
different unitary than what is intended. In this simplest test, another source of error
is readout, for which we have already corrected using an iterative Bayesian unfolding
technique [54].

As the second test, we perform time evolution using the exact unitary U(A), and the
results are shown by the orange dashed lines in Fig. 3.2. In this set of experiments, U(A)
is compiled to native gates, and the gate sequence is repeated N times to enact UV (A).
Because of the repetition, as 7 = NA increases, the gate depth increases linearly. The
accumulation of errors leads to a degradation of fidelity, as can be seen from Fig. 3.2.
The oscillation amplitudes decrease and p(7) deviates further from the true solution as
7 increases. At even larger 7 values, the quantum states become fully scrambled, so
p — 1/4 approaches the fully mixed value for the four quantum states. Because UV (A)
has a larger depth than U(N A), the device performs worse in this test (orange lines) than
in the previous test (black lines) as expected. The UV (A) results improve noticeably from
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[51] primarily because of the SQISW gate, which has significantly shorter duration and
higher fidelity than two-qubit gate used in our previous work.

We need to improve the results for the exact unitary before moving on to the next test.
The dominant source of error on the quantum processor are two-qubit (2Q) gate errors,
which are typically an order of magnitude larger than single-qubit (1Q) gate errors. On
the Aspen architecture, this is not only due to a significantly longer 2Q gate time, but
also because activating the 2Q gate requires tuning one of the qubits away from its
optimal operating point so the qubit becomes more sensitive to flux noise [55], which
leads to a higher dephasing rate for the qubit. We take a multi-pronged approach to
minimizing 2Q gate errors. First, the Aspen-M-3 chip used in our experiment has ~200
calibrated 2Q gates available. We require only one of these for this circuit and are thus
able to select high-performing candidates based on the reported fidelities. Secondly,
the Aspen chip offers both native CZ and XY(#) gates, thus providing a choice of how to
express our problem unitary. We observe that the XY family is particularly expressive
[56], allowing the expression of our target unitary using two XY(r/2) gates and single-
qubit gates [53]. We find that by using SQISW as our native gate, we can cut the gate
duration in half and reducing the 2Q gate error by around 40 percent. Our native 2Q
gate is thus a 64-ns SQISW which is combined with single-qubit rotations to produce
highly expressive native cycles.

To mitigate coherent errors, we convert them into stochastic Pauli errors using a random
compilation technique [57, 58]. The technique exploits the fact that the decomposition
of a target unitary into elementary gates is not unique. By inserting random single-qubit
gates that can be commuted across the two-qubit gate, we generate equivalent gate
sequences that are Pauli twirled. If the Pauli twirling gates are chosen independently and
if hardware Pauli errors are also independent, then random compilation transforms any
gate errors into stochastic Pauli errors. In other words, suppose the errors of a quantum
channel, when represented by the Pauli-transfer matrix, have off-diagonal components
before twirling. Then, after twirling, the errors become purely diagonal, which means
coherent interference of errors is removed. Because our native two-qubit gate is a
non-Clifford gate, we cannot apply full Pauli twirling. Rather, we use a pseudo-twirling
technique which tailors a smaller subset of coherent errors using the group of single-
qubit rotations which can be successfully inverted by 1Q gates. This twirling group is
less powerful than Pauli twirling, but still tailors the noise effectively in most situations.
The twirling is performed using the TrueQ software library [59]. In our experiments, we
construct the logical circuit and compute 50 random compilations. Each compilation
has an identical pulse schedule, and thus an identical noise model. The randomization
of 1Q gates is performed by updating angles of our virtual Z gates. Such updates can
be made with high efficiency, allowing a large number of randomizations of the circuit
to be executed in quick succession.

The final step of error mitigation is to compensate for the suppression of observables
using a rescaling technique [60]. After twirling of a unitary operation U, the noise channel
becomes approximately £(p) = X A\pPpPT, where the summation is over all tensor
products of 1Q Pauli operators P. The coefficient P, called the Pauli decay constant,
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is specific to the Pauli operator P but is independent of the unitary U that is being
performed. Because the \p’s are bounded by their mean Aas 2\ —1 < Ap < 1, we use a
single )\ value to correct for all Pauli errors. This approximation becomes exact when the
errors are fully depolarizing, which means that all Pauli channels decay in the same way.
In this case, the measured expectation value E for any E of interest is given by a simple
rescaling E = \E, because the length of the Bloch vector, which measures the purity of
the state, shrinks by \. For example, in our two-qubit problem, the expected occupation
of a state beyond its fully mixed value is (5 — 1) = Mp — 1) » Where p is the occupation
probability for a pure state after one unitary operation. Then, after N unitary operations,
we can purify the probability by a rescaling p = i + S\‘N(ﬁ — i). In other words, after
measuring the probability of a state, we subtract the noise i and amplify the remaining
signal exponentially by a rescaling factor (1/))". Notice that while amplifying the signal,

this purification procedure also amplifies statistical error bars exponentially.

After performing the above error mitigation steps, the hardware results for our test
problem are shown in Fig. 3.2 by the dotted red lines. The mitigated results of the second
test now closely tracks the exact solutions, and performs even better than the first
test (black lines), which does not use any mitigation. While the mitigation significantly
improves the signals, without noticeable increasing the hardware overhead, the price
we pay is exponentially growing error bars. At even larger simulation depth, the error
bars will become comparable to the signals, beyond which the simulations need to stop.

3.9 Testing product formulas and optimal use of quantum
resources

With sufficient simulation depth, we can now test the next level of quantum simulations,
without assuming that the exact unitary is known. For given problem parameters, we
compile unitary matrices Ur(7) = exp(—iHr7) and Up(7) = exp(—iHp7) to native gates
using a Cartan decomposition. Then, we use Ur and Uy to approximate the exact U.
With error mitigation techniques, we are able to run experiments on the quantum device
for up to about two hundred 2Q gates. The gate depth is deep enough that we can begin
to compare results of different product formula algorithms.

With a fixed gate budget, because lower order algorithms require fewer unitary opera-
tions per step, they can afford to use smaller time step sizes. In contrast, higher order
algorithms require significantly more unitary operations per step, and thus can only af-
ford to use a much larger A for a fixed total gate depth. It is worth emphasizing that
product formulas indeed become more accurate at higher orders, provided that the time
step size A is fixed. In our tests, higher order algorithms perform worse because A is
changed, such that the total gate depth does not exceed what is viable on the quantum
device. An analogy here is the run time on classical computers. While higher order
algorithms are more accurate at a fixed resolution, they require more operations and
therefore longer run time. When given a fixed run time, one is forced to use a coarser
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resolution, in which case higher order algorithms may perform worse than lower order
algorithms.

On current quantum devices, which do not yet have operational error correction, the
maximum gate depth is limited. To make the best use of the limited quantum resources,
we can adjust the choice of algorithms and resolutions for a given problem. In our
case, the pulse compression problem seeks to determine the final seed laser intensity
at the end of the interactions. The final time is set, for example, by the duration of
laser pulses or the time to traverse the size of the mediating plasma. As a test problem,
we fix 7; = 1 with parameter values p = 4, § = 0, s, = 3, and s3 = 3. We perform
Hamiltonian simulation on the quantum device using product formulas to evolve quan-
tum states, and the measured occupation probabilities are post-processed to compute
the expectation values of the three waves. We measure the error of the simulation
by e = {& YiL,[n(kA) — (n(kA))]*}/2, where n is the exact result on a classical com-
puter and (n) is the expectation value obtained from the quantum hardware. Notice
that the error of (n) is different from, albeit correlated with, the errors in the unitary U.
The unitary error, which is also known as the process infidelity, gives a more complete
characterization of the hardware performance. But the expectation-value error is of
more interest to the pulse compression problem: it is the same type of error that would
typically be determined using a classical algorithm, and is much easier to measure than
full process tomography in experiments.

The overall error receives contributions from two fundamental sources. First, algorith-
mic errors often arise when simulating a dynamical system with knowledge of only the
exact solutions of its noncommuting subsystems. Algorithmic errors are unavoidable
even on classical computers. In our test problem, we assume that the separate three-
and four-wave unitary can be implemented exactly, and then use product formulas to
approximate the total unitary. In this case, any finite time step size introduces a dis-
cretization error ¢, which can be reduced either by using higher order formulas at fixed
A, or by using the formula at a fixed order but with decreasing A. When using the Suzuki
formula, demanding errors to scale as A per step requires M, operations, which grows
exponentially with ¢. On the other hand, to reach a target final time 7, the number of
steps N = 7¢/A increases only linearly when decreasing A. The total algorithmic error
e1 = O(7/A?) can in principle be made arbitrarily small by increasing ¢ and decreasing
A. However, in practice, given a limited run time, finite algorithm precision must be
chosen. The trade-off between using a larger ¢ versus a smaller A is strongly influenced
by the second fundamental source of error: the hardware error. We measure hardware
error by eg, the error per unitary operation, which is analogous to round-off errors on
classical computers. On future error corrected quantum computers, it will be possible to
suppress ¢g to arbitrarily small values. However, on current noisy devices, with only error
mitigation rather than error correction, ¢ is substantial. Using randomized compilation,
we transform coherent errors into random Pauli errors, which contribute to depolarizing
noise together with intrinsic quantum decoherence. After error mitigation, the error for
one operation becomes independent from the previous operation, so the total hardware
error e; = O(N Myeq) accumulates linearly with the number of operations in the worst-
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Figure 3.3 - For a given problem, minimum error is obtained at the trade-off between
algorithmic errors and hardware errors. All test problems use common parameters p = 4,
8 = 0, s, = 3,and s3 = 3. The targeted final time 7y = NA = 1 is fixed, so a finer resolution
A requires more steps IV, which means algorithmic errors decrease with IV at the expense of
accumulating more hardware errors. An optimal resolution exist, where the overall error is
minimized. At higher order, the optimal IV shifts towards lower resolution, and the minimum

error does not improve with the algorithm order.

case scenario. Because the algorithmic error ¢, is independent of the hardware error ¢,,
the overall error is € = ¢; + €5. Notice that ¢; decreases with N, whereas ¢, increases
with IV, so there is an optimal resolution A at which € is minimized.

The trade-off between hardware and algorithmic errors is demonstrated by a suite of
experiments, whose results are shown in Fig. 3.3. We test the four product formulas
using a common test problem, whose parametersare p = 4,0 =0, s, = 3, s3 = 3, and
7; = 1. For each order of the product formula, the overall error first decreases with V
due to the reduction of algorithmic errors at finer resolution. However, when N exceeds
an optimal value N,, the error starts to increase due to the accumulation of hardware
errors. At small IV, the resolution is too coarse to resolve the dynamics, so the errors are
O(1), which are comparable to the signals. If N, had been larger, one would expect to
see that ¢ for higher order algorithms is smaller and decreases at a steeper slope. In our
tests, because N, is not large enough, such a behavior is not clearly observed. At large
N, where the accumulation of hardware errors dominates, ¢ increases roughly linearly
with NV for all orders. Because higher order algorithms use more operations per step
M,, higher order curves reside above lower order ones in the log-log plots of ¢, except
between orders 1 and 2. Notice that although M; = 2and M, = 3, after merging adjacent
unitary operations of the same type, the first-order sequence has 2N operations, while
the second-order sequence has 2N + 1 operations, which is only slightly larger. In our
test, higher order algorithms do not perform better than a first-order algorithm at their
respective optimal N,.. However, this may change on future quantum devices where ¢
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becomes even smaller. Similar conclusions have recently been reached for simulating
the transverse-field Ising model and the XY model on noisy quantum computers [61].
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Simulating electron-plasma waves on a
superconducting quantum chip

4.1 Introduction

Simulations of three-wave and four-wave interactions [62, 2] have shown that even
simple models of plasma physics can be difficult to simulate with high accuracy and
precision on NISQ hardware. The reason is that the encoding of the Hamiltonian is
relatively dense, requiring on the order of 10-20 gates per time step. Improved gate
performance and the application of error suppression and mitigation techniques have
improved the performance by a factor of ~10 since our initial investigations, but due to
the unfavorable scaling of the encoding it remains unclear how to use more than two or
three qubits with present capabilities. Hence, larger systems remain out of reach and
may ultimately require error-corrected machines to compute.

To perform calculations that make use of larger number of entangled qubits, it is nec-
essary to explore applications that provide a more natural mapping to the hardware
topology that keeps the overall gate depth much lower as the circuit width increases.
Thus, the simulation of quantum plasma lattice algorithms that communicate through
nearest-neighbor interactions and that match the layout of qubits on a grid-based su-
perconducting chip was explored.

Eventually, one might be able to simulate the physics of plasmas through a direct quan-
tum simulation of quantum electrodynamics. However, today’s hardware limitations
force one to focus on reduced models. In fact, even in the world of classical plasma
physics, reduced models are very important for gaining insight into the relevant physical
processes. For example, Maxwell’'s equations require solving for the electric field, E, and
the magnetic field, B, in terms of the charge density, o, and current density, J, in three
dimensions (3D)

OieoE =V x B — ppd 0,B=-VxE (4.1)
V- -gE=p V-B=0 (4.2)

where ¢ is the vacuum electric permittivity and p is the vacuum magnetic permeability.

Yet, a full Vlasov-Maxwell simulation would also require evolving the probability distribu-
tion function (PDF) for the different particle species in 6D which is very computationally
demanding. A reduced model that is much less expensive is to solve the fluid equations
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for the evolution of moments of the PDF in 3D. At constant temperature, T}, the fluid
moment equations for the number density n,, and velocity, v,, of particle species s are

ons + V- (ngvs) =0 (4.3)
Omsngvs + V - (mgngvevy) + Vps = egng B, (4.4)

where the pressure satisfies the ideal gas law, p, = n,T,, m, is the mass, and ¢, is
the charge of the particles. For 1D, these equations simplify even further. Maxwell’s
equations reduce to

0. E, = en. — e;n; (4.5)

where e > 0 is the magnitude of the electron charge and the isothermal fluid equations
reduce to

Ong + Opngvs =0 (4.6)
Oymene + 0p (Mgngvsvs + ps) = esEy. 4.7)

4.2 Theory

421 Electron Plasma Wave Model

The first model we will consider is that of electron plasma waves; also known as Lang-
muir waves. Because the electron mass is much smaller than the ion mass, the ions
can be considered to represent a stationary neutralizing background charge density. If
we linearize the fluid equations around the fixed background density n, and vanishing
velocity, then, they reduce to

Ong + Oyngus = 0 (4.8)
Ormenove + Opyn T, = —ek,. (4.9)

The dispersion relation for the linearized equations then yields

w? = wﬁ + k*v2, wz = e*ng/egme (4.10)
where w is the frequency, k is the wave number, vy, = |/T./m, is the thermal speed,
and w, is the plasma frequency. This represents a system of two partial differential
equations (PDEs), that can be discretized using a finite difference approximation, leading
to nearest neighbor interactions along the lattice of mesh points. The quantum version of
the electron plasma wave model represents a quantum field theory defined on the points
of the lattice. In the following, we show that variations of the quantum Heisenberg model
can be used to simulate both linear and nonlinear models of electron plasma waves.
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Large amplitude plasma waves are a key example of resonant nonlinear interactions.
Linear interactions imply that the electron velocity is tied to the electric field by the
relation

ve = eE/im.w ~ eE/im.w,. (4.11)

The nonlinearity results from the quivering motion of electrons in the large amplitude
oscillations of the electric field. These so-called ponderomotive forces imply that there
is a correction to the electron density that takes the form

Ne/ng = <exp(—mevg/2Te)> ~1— <me ve|? /2Te> =1—¢ |E[* /2p.. (4.12)

Thus, in the reference frame of the wave, the momentum equation becomes

2 2
. v €0 E
10 B, = wyEy — ﬁﬁgEx — wp | Z|

E, (4.13)
2wy 4p.

which is the nonlinear Schrodinger equation (NLSE) for ¢ = E,. The NLSE is one of the
well-known examples of an integrable PDEs that possess soliton solutions and can be
solved by the inverse scattering transform.

It is also known that the NLSE is isomorphic to the Heisenberg model, for both classical
and quantum variants. In order for a PDE to be integrable, it must have a pair of Lax
operators that define translation in time and space for a multi-component wavefunction
O(t,x)

i0,® = HD —i0,® = P®. (4.14)
and commute via the Lax equation
&P+ 0,H = i[P, H]. (4.15)

The equations can then be considered to represent a non-Abelian SU(2) gauge theory,
where the vector potential that mediates the interactions is a pure gauge field. The
equivalence of the NLSE and the Heisenberg model can be demonstrated by showing
that they differ by a pure gauge transformation. This was first proven for the classical
continuous case by Zakharov and Takhtadzhyan [63] and was extended to the discrete
case by Hoffman [64]. In the continuous case, the gauge transformation is

S:=S.-0=Go.G! (4.16)

where G is a unitary gauge transformation that is related to the complex wavefunction
Y = FE,via

150,8 = G0,G = Re ()0, + Im (¥)o,, (8,9)% = [¥|°. (4.17)

Thus, the Heisenberg model can also be used to simulate the nonlinear physics of elec-
tron plasma waves.
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Figure 4.1 - Models for dispersion relations of waves in plasmas (w vs. k). (Left) Electron
plasma waves: exact (1 + k2)'/2 (black), k2/2 — 1 (blue), periodic lattice model cos k — 2 (red)
(Right) lon sound waves: exact k/(1 + k2/3)/? (black), k (blue), k — k3 /6 (purple), periodic
lattice model sin & (red) Negative frequency branches shown as dashed lines.

Knowledge of the spin vector, S, allows one to recover the complex wavefunction, . In
principle, this can be performed using a quantum computer by computing two copies
of S, applying the momentum operator to one copy to form 0,5, and finally forming
the product, S0,.S as a post-processing step. Similarly, if one can compute the solution
to the NLSE, then one can proceed in the opposite direction by computing G and G
through Hamiltonian simulation of Eq. 4.17 and then forming the product S = Go,G™!
via Eq. 4.16.

42.2 lon Sound Wave Model

The second model we consider is that of ion sound waves; also known as ion acoustic
waves. In this case, the electrons respond rapidly to the ions and redistribute their
density in order for the plasma to remain quasi-neutral, i.e. so the total charge density
is much smaller than the density of the charge carriers themselves, o/e;n; < 1. In this
case, electron force balance, Vp, = en.V¢, where E = —V ¢, implies that, at constant
temperature, T, the electrons satisfy the Boltzmann relation n, = ng exp(—e.¢/T.). Due
to quasi-neutrality, summing the electron and ion force balance equations then leads to

&gmmivi + V- (mmivivi) + V(pz + pe) =0. (419)

For 1D, labeled by coordinate z, this reduces to
(9tmmm- —+ &E (mmivivi) -+ 8xpz = —eszqS ~ —Vpe. (421)

The linear dispersion relation for these waves is
w? = k*c? = (T; + T.) /m; (4.22)

where ¢, is the ion sound speed and T, is the temperature of the respective species.

O
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If we remove the quasi-neutral assumption, then the difference between the electron
and ion density determines the electric potential through the Poisson equation.

Viep = en. — e;n; (4.23)

Inserting the expression for the electron pressure then gives the more complete disper-
sion relation

W=k /(1 +K*)3) A= v%e/wf) = ¢oT./e*n, (4.24)

where )\; is the Debye length, and we now assume 7; = 0 to simplify the rest of the
discussion. For wavelengths that are long compared to the Debye length, this has the
expansion

W ke(1— K222+ ...) (4.25)

which represents a third order dispersion of the waves.

The linear physics of the ion sound wave can also be simulated by the Heisenberg model.
For the quasi-neutral model, the parameters of the Heisenberg model should be tuned
to the critical point, where the effective mass of the excitations vanishes. The fact that
the Heisenberg model on a lattice has higher order dispersion, e.g. w = (¢/a) sin(ka) ~
ke(1 — (ka)?/6 + ...) can be used to model the dispersive effects of charge separation
in Eq. 4.25 by setting ¢ = ¢, and a = v/3)\,;. Because the waves in the Heisenberg model
only travel in one direction, technically speaking, one must either use two copies of the
Heisenberg model or couple two copies together in a manner that generates the desired
dispersion relation. For example, one can use the same model as for linear electron
plasma waves in the limit that the effective mass tends towards zero.

Coupling the electron plasma and ion sound waves leads to the nonlinear Zakharov
equations [65], which couples a linear ion sound model to the nonlinear ponderomotive
electron density. This generalizes the ponderomotive potential to include the linear
dynamics of the ion sound waves. This system is also integrable and possesses soliton
solutions. We are exploring the ways that quantum computers can efficiently solve the
Zakharov equations, e.g. by solving two coupled Heisenberg models.

Nonlinear ion sound wave models that include resonant self-interactions are also of
interest. If we now transform to a reference frame moving at the sound speed and retain
the nonlinear response to the electric force, —n;V¢, then one obtains the celebrated
Korteweg-de Vries (KdV) equation for the ion density

20,m; + cs0pn2 /ng + csA202n; = 0. (4.26)

The KdV equation is another important integrable PDE that possesses soliton solutions
and can be solved using the inverse scattering transform. It can also be discretized on
the lattice and quantum versions of the model have been formulated. We are exploring
quantum algorithms that can solve the quantum lattice KdV model as well.

O
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4.2.3 Spin model

The spin model that we use to simulate electron-plasma waves is

J ,
J J
Here, J is the strength of the nearest-neighbor spin-spin interaction, and m; is an onsite
field with alternating sign on odd and even sites. For uniform m; = m, the excitation
spectrum of this spin model has two branches - positive and negative energy (frequency)

branches,

€ = j:\/ﬂ sin?(ka) + m2, (4.28)

where q is the lattice spacing. At long wavelength, i.e. small k£, we have sin(ka) ~ ka, and
the spectrum in the positive branch matches that of electron-plasma waves. The mass
gap for the plasmon is m. Therefore, this spin model is a convenient platform to simulate
electron-plasma waves. Time evolution of a chain of qubits with this Hamiltonian can
be implemented using Trotterization.

If we take the limit that m — 0, then this also becomes a useful model for linear ion sound
waves. As discussed earlier, with the approximation sin(ka) ~ ka[l — (ka)?/3!+...], one
can make the dispersion relation approximately match the ion sound wave dispersion
relation, kc/(1 4 (kAg)?)Y/? ~ ke[l — (kAq)?/2 + .. .], if one choose the lattice spacing to
match the Debye length, a = \;/+/3.

4.3 Electron-plasmawave simulations with the spin model

We perform three kinds of experiments that simulate evolution with the above spin
model. In one experiment, we demonstrate that the spin model’s spectrum matches
the electron-plasma wave’s spectrum. In the next two experiments, we simulate the
propagation of electron-plasma waves that have the potential to be useful in specific
applications. Our experiments were done on Rigetti’s Ankaa-9Q-3 device.

4.3.1 Experimental scheme to measure the spectrum

To verify that the spectrum for H is given by Eq. (4.28), we perform a many-site Ramsey-
type experiment. First, we prepare one qubit in |[+) = (|0) + |1))/+/2, and all the other
qubits in |1). This prepares a superposition of the vacuum state, |i.c), and the state
with one wavepacket localized on one site, |¢)1.ex),

_ ‘wvac> =+ ‘wl—ex>
\/5 .

|tho) (4.29)
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We then implement Trotter evolution with H. The logical circuit which implements this
experiment is shown in Fig. 4.2(a).

The localized excitation is a sum over all the single-excitation eigenmodes |k) of the
Hamiltonian,

[V1-ex(t = 0)) = [---00100---) = > ¢y |k) . (4.30)
k
Each eigenmode accrues a time-dependent phase that is proportional to its eigenvalue,

[1-ex(t)) =D cre " |k) . (4.31)
k

The vacuum state doesn'’t evolve, since it is a zero-energy eigenstate of the Hamiltonian.
We are interested in obtaining the eigenvalues ;.. To that end, we measure (X;) + i (Y;).
Let us denote the real-space wavefunction amplitudes of |k) as Ay;. It can be shown
that (k|(X; +iY})|tvac) = Ax;. Moreover, we have the relations (k|(X; +iY;)|k') =
(Uvac| (X +iY5)|k) = (Yvac| (X +iY})|thvac) = 0. Using these, we find that

<Xj + ’L}/j> (t) == Z CzeiektAkj (432)
k

Using the orthogonality of A;;, we arrive at

giept _ 20 Mgy (X5 +0Y5) ()

*
Cp

(4.33)

from which we can estimate ¢,,.

While it should be noted that the above technique of verifying ¢, from a many-body
Ramsey-type experiment requires to classically calculate the A, the A;; are easy to
calculate here since the spin model is exactly solvable. For general spin models, more
advanced techniques such as quantum phase estimation may be required.

4.3.2] Experimental scheme to simulate injection of plasma waves

Doppler backscattering is a type of reflectometry technique that is quite useful for
obtaining sensitive measurements of plasma density. In this case, a wave-packet is
reflected by the steep rise in electron density that occurs at the edge of a confined
plasma. Thus, we performed an experiment aimed at modeling similar processes using a
qguantum computer. Specifically, we simulated injection of wave packets into a plasma,
by time-evolving the qubits under the spin Hamiltonian with a sharp domain in the
on-site field m;.

To perform this experiment, we initially prepared an entangled state of the qubits,

[¥) = (a|01) + 5[10)) ® [11---) (4.34)
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(a) (b)

Figure 4.2 - (a) Logical circuit used to measure the dispersion of excitations in the spin
model that simulates electron-plasma waves [Eq. (4.27)]. (b) Logical circuit used to simulate
the propagation of waves through an inhomogeneous plasma or a plasma with a sharp
jump in electron density. In these circuits, U7/ = exp (iJT&(XijH - YijH)) and
U, = exp(—im;dt(—1)? Z;), where 4t is the Trotter time step, J is the strength of the XY
interaction in the spin model, and m; is the onsite field. The one-qubit gate U in (b) is such
that U |0) = a0 + (1 (see text for definition of notations).

where « and  are complex coefficients normalized to 1. We then implement time
evolution under H with m; = ©(j — N/2), where © is the Heaviside theta function. We
measure (Z;) at the end. The logical circuit is shown in Fig. 4.2(b).

This experiment simulates a wave packet, initially localized to two sites, and prop-
agating through the lattice. The local wave packet has a broad distribution in mo-
mentum space, due to the Heisenberg uncertainty principle. A more general I state,
) =35 ;|- --11) [0),; |11 - - -) which has a broader real-space envelope, would be more
sharply peaked in momentum. The wave packet’s density is (1 — (Z;))/2. In the ideal
limit of a wave packet with a precise momentum, it gets injected into the plasma only if
its mean energy J sin(ka) is larger than the mass gap m.

4.3.3| Propagation in an inhomogeneous medium

Waves are used as important actuators in plasma experiments because they can be used
to control the injection of energy and momentum. Simulations of wave propagation in
an inhomogeneous plasma are needed to predict where the waves deposit their energy
and how the controller will perform in practice. A key issue is that waves tend to scatter
when they travel through an inhomogeneous medium, and, for example, this is true for
electron plasma waves that travel through a plasma with an inhomogeneous electron
density. Thus, we designed an experiment to explore how electron plasma waves scatter
off of a peaked plasma density profile. Specifically, we simulate propagation of waves
through an inhomogeneous plasma medium, by time-evolving the qubits under the spin
Hamiltonian with a peaked profile for the m,.

This experiment is similar to the prior experiment, except that m; has a peaked profile

O
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in space. We choose m; = mgexp(—(j — N/2)?/§?).

4.4 Running an experiment on Ankaa-9Q-3

Rigetti's Ankaa-9Q-3 QPU offers digital one-qubit RX(7), £RX(7/2), and RZ(0) gates,
and a digital ISWAP gate on a square lattice®. The analog part of the scheme we employ
for electron-plasma wave simulation is the entangling FSIM gate. The FSIM describes,
to an excellent approximation, the native Hamiltonian of the device when the tunable
coupler between two qubits is activated. This interaction is higher fidelity than ISWAP;
we have previously achieved a two-qubit gate fidelity of 99.4% for an ISWAP-like FSIM
[31]. Combined with the digital one-qubit gates, FSIM provides a universal gate set to
which any quantum algorithm can be compiled.

Digital one-qubit gates are generally well-understood and simple to optimize within
the coherence limits of the qubits without optimal control methods [66]. Arbitrary
single-qubit unitary operations can then be realized accurately by using three phased
microwave pulses [67] known as the “PMW3” decomposition. To maximize the per-
formance of the electron-plasma wave simulation, we analyze the expressiveness of
candidate gates in achieving the required two-qubit interaction unitaries [56]. As in
previous work [2] we decided to target a square-root-of-ISWAP (VISWAP) gate. We
modify the digital ISWAP gate using Rigetti’s pulse-level control language, Quil-T?, to
obtain the a VISWAP-like FSIM. We learn each FSIM unitary using process tomography
and a variant of cross-entropy benchmarking [68, Supplemental].

A VISWAP-like FSIM gate and one-qubit gates can be used to construct any two-qubit
operation for quantum computation. We use a numerical compilation technique to
express the target logical circuits in terms of the characterized FSIM gates and arbitrary
one-qubit gates. For example, we express the U, gate in Fig. 4.2 approximately in terms
of two FSIM gates and single-qubit gates, because this confers a higher fidelity than
an exact decomposition to three FSIM gates. Our one-qubit gates are implemented
using the PMW3 decomposition, the details of which are provided in Appendix A.1. This
results in the hardware-native experimental circuit illustrated in Fig. 4.3.

Rigetti's parametric compilation and execution support can be leveraged to express the
parameters of this circuit in terms of only digital phases in the one-qubit gate decom-
positions. This supports us to run various error mitigation strategies over the hardware-
native circuit and to obtain the highest-quality algorithm-level result. We make use of
our FPGA-accelerated randomized readout [69] as part of a broader strategy to tailor
noise on the device and make error mitigation more effective. Tailoring is achieved using
a variant of twirling [70]. We then implement Clifford Data Regression similar to [71]
to rescale expectation values. We leverage knowledge of the electron-plasma wave

IFor current device specifications, refer to https://qcs.rigetti.com/qpus.
2See the Rigetti Computing article “Gain deeper control of Rigetti quantum processors with Quil-T".
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Figure 4.3 - Hardware-native circuit that performs the experiments in Section 4.3. The
Trotter time steps are broken down into layers, and then into digital 1Q and analog 2Q gates.
Each 1Q gate is implemented via a PMW3 decomposition to digital RX and RZ gates. Each
FSIM gate is learned using process tomography and cross-entropy benchmarking.

problem, where evolution with the spin Hamiltonian is number-conserving, to fine-tune
the rescaling coefficients similar to the post-selection approach of [72].

4.5 Experimental results

Experiments were performed on the Ankaa-9Q-3 QPU with an error per layered gate
(EPLG) [73] of 1.7% (see Table A.1 for other performance data). Larger experiments at
the 30-qubit scale were initially envisioned, however resolving the plasma dynamics of
interest requires a relatively high circuit depth. With current error rates, it is not feasible
to resolve observables for electron-plasma wave simulation at a scale of 30 qubits (see
Appendix A.2). The experiment was thus scaled to 9 qubits where high-depth circuits can
be viably executed and measured. It's estimated that a further reduction in EPLG to 0.5%
is necessary to scale the experiment to 30 qubits. Fortunately, the control, compilation
and mitigation techniques utilized in our experiments are scalable, and should enable
simulations of this size with commensurate reductions in error.
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Figure 4.4 - The time evolution of (X) and (Y) is shown in this many-site Ramsey-type
experiment. The time evolution of the complex phase of (X + iY’) reveals the energies of
all the electron-plasma wave eigenmodes. The subplots show the evolution without noise
(left), the raw estimated observables (middle), and the error-mitigated results (right).
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Figure 4.5 - The dispersion relation for the electron-plasma wave, simulated with a 1D spin
model. The teal curve plots the exact eigenvalues of the 1D spin model - equivalently the
energies of the electron-plasma wave eigenmodes, the magenta curve the result obtained
assuming a noiseless experiment, and the yellow curve the result from our error-mitigated

observables.

4.5.1 Dispersion

Fig. 4.4 plots the evolution of (X;) and (Y;) with time, in an experiment with J = 1,
m = 0.25, and Trotter time step 6t = 0.4. We executed circuits up to 16 time steps. The
initial state is a superposition of the vacuum state and a wave packet localized on one
site, simulated by preparing one qubit in the |+) state. Fig. 4.4 shows the wave packet
spreading with time, and the experimental measurement of the same (Fig. 4.4c) agrees
with the predicted behavior (Fig. 4.4a) after error mitigation, with a Pearson correlation
C = 0.88 and mean absolute error of 0.08. This evolution encodes all the eigen energies
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of the wave packet, which can be extracted from the data. Fig. 4.5 plots the extracted
eigenvalues, and shows good agreement between the results from mitigated data and
the predicted result.

452 Scattering of Waves in an Inhomogeneous Plasma Medium
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Figure 4.6 - This experiment models an electron plasma wave packet propagating in a
inhomogeneous plasma. For each row, the plasma density, i.e. the effective mass profile, is
shown on the left. The subplots from top to bottom show the result with an increasing peak
density, i.e. barrier height. The simulated circuits show the exact evolution without noise
(left), the raw observables estimated from experimental results in the presence of noise
(middle), and the mitigated results where the observables are estimated after rescaling
(right).

Fig. 4.6 shows the evolution of a wave packet that is initially two sites wide, |1y) =
(a|01) + 3]10)) @ [1)®V =2 The wave packet then propagates through a plasma with
a Gaussian density profile that leads to the spatially dependent effective mass gap m;
shown to the left of each row. The Trotter time step is 6t = 0.8. The height of the
effective barrier increases from top to bottom. The error-mitigated experimental data
captures the dynamics reasonably well, with a Pearson correlation of = 0.9 with the
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predicted values. The reflection of the wave packet off the barrier increases as the
barrier height increases.

4.5.3 Reflection of Waves from the Plasma Edge
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Figure 4.7 - This experiment models an electron plasma wave packet encountering a sharp
jump in density, which naturally at the edge of a confined plasma. In each row, the plasma
density profile, i.e. the effective mass barrier, is shown on the left. The subplots from top to
bottom show the result with different initial values of wavenumber, k, which are set by the
initial phase of the wave-packet. The simulated circuits show the exact evolution without
noise (left), the raw observables estimated from experimental results in the presence of
noise (middle), and the mitigated results where the observables are estimated after rescaling
(right).

In this case, we simulated the reflection of an electron plasma wave packet that encoun-
ters a sharp jump in plasma density. Fig. 4.7 shows the evolution of a wave packet that
is initially two sites wide, |¢) = (a|01) + 8]10)) ® [1)*"¥~), and launched into a ho-
mogeneous plasma medium with a step-like profile in plasma density, i.e. the effective
mass (m; = %@(i — 5)). The Trotter time step is 6t = 0.8. In momentum (k) space, the
wave packet is distributed over a range of k, with the mean momentum determined by
the relative phase between « and j, albeit the k-dependence being limited on these
9Q experiments. The amount of reflected wave depends on the mean energy of the
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wave packet, which depends on k. The error-mitigated experimental data again captures
the dynamics reasonably well, with a Pearson correlation of > 0.89 with the predicted
values.

46 Conclusion

By incorporating advanced control, a digital-analog gate-scheme with numerical compi-
lation and a suite of error mitigation techniques, the dynamics of electron-plasma waves
were simulated up to 15 time steps on 9 qubits. The dynamics of electron plasma wave-
propagation in an inhomogeneous plasma medium, and reflection and transmission at
the edge of a plasma, represented by a barrier in effective mass, were successfully recre-
ated on a superconducting quantum computer. While the scale of the experiment is
well within the realm of classical simulation, the techniques applied in the experiment
are scalable to the level of hundreds of qubits and investigations of potential quantum
advantage. Moreover, the exploration here illustrates a viable path towards more gen-
eral simulation capabilities. Both parts of the analog-digital case scheme used in this
experiment have clear paths to improvement. The 1Q gate speed and accuracy can
be improved through better control, allowing for reduced errors in the digital portion.
The analog step is currently performed on layers of disjoint pairs of qubits. These lay-
ers could be made more expressive by allowing multi-qubit interactions, allowing the
simulation of more diverse Hamiltonians with richer interactions and connection topol-
ogy. The numerical approach to expression has proven flexible and accurate, but careful
attention must be paid to performance as the parameter space grows - the field of GPU-
accelerated linear algebra frameworks may provide promising tools. Finally, coherence
must be improved to allow longer and bigger simulations to take place, even as the speed
of interaction is accelerated.
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Supplemental Material

A.l The PMW3 decomposition

Rigetti Ankaa-class devices can realize RX(7) and £RX(7/2) gates, defined as

RX(r) = (EZ _OZ> ,

RX(/2) = (f f) |

V2 V2

In addition, Ankaa-class devices can realize a parametric RZ(6) gate, also known as
PHASE(6), using local updates of in-sequence phases that consume zero runtime and
introduce negligible error [74],

€7i9/2 0
RZ(G)z( 0 etif/2 | -

Using these gates, more complex rotations can be performed in the 1Q space. Of interest
here are the PHASEDSX(¢) and PHASEDX(¢) gates,

1 —ie'?
PHASEDSX(¢) = RZ(—¢)RX(7/2)RZ(¢) = (_Z{% V2 ) ;
V2 V2

PHASEDX(¢) = RZ(—¢)RX(m)RZ(¢) = (_Z.S_w _Zoe ¢> :
Using a combination of two PHASEDSX(¢) gates and one PHASEDX(¢) gate, it's possible
to perform any SU(2) rotation. This is called a PMW3 decomposition, since it uses three
phased microwave pulses. Moreover, while virtual-Z gate schemes require commuting
Z-rotations through 2-qubit gates, the PMW3 scheme does not. Although the phases of
the microwave pulses can be controlled digitally, all composite rotations are are physical.
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PMW3(0,¢,w) = PHASEDSX (0)PHASEDX (¢)PHASEDSX (w)

B _ei(0=w)/2 (g 2<z>—29—w ei0+w)/2 i 2¢—29—w
T\ _ei0tw)/2 gip 2(1)—29—0.) _iw=0)/2 ¢ 2¢>—29—w

(A.1)

A.2 Error budget

All NISQ algorithms work within an error budget. That is, given the error rates of the
gates and the sampling rate of the device, there is a floor on the smallest coherent signal
we can measure. For example, a state-of-the-art superconducting quantum computer
may offer 2-qubit gates with 99.5% fidelity. Given a circuit containing 1000 2-qubit
gates, we may therefore expect the circuit fidelity to be 0.995°° = 0.00665 = 0.665%.
In other words, to have a greater than 50-percent chance of observing an error-free
bitstring, we would require a little over 100 samples. The sample requirement increases
exponentially with the size of the circuit, so for a circuit with 2000 gates, we require
about 15,000 samples and a circuit with 4,000 gates would require 350 million samples.
Thus, the combination of the error rate and the sample rate determine the size of the
circuits which can be practically used in experiments.

The above calculation is very simplistic but provides a reasonable intuition. One impor-
tant simplification is the assumption that noise is Markovian and depolarizing. These
assumptions are true only to first-order in contemporary quantum devices, and the
above calculation thus represents a best-case scenario. Moreover, in many cases we do
not require a full bitstring but rather are attempting to estimate low-weight observables.
This greatly reduces the requirements on fidelity. On the other hand, we are usually
interested in estimating the observable to some analog precision and thus require more
than a single correct bitstring. The uncertainty of the estimated observable will scale
with the 1/\/N where N is the number of samples. If the observable value is suppressed
by errors, to say 10% of it's error-free value, we will require 1/0.1> = 100 times the
number of samples to achieve the same precision in our estimate. Thus the number of
required samples in the presence of noise can quickly become very large.

With the basic requirements of measuring noisy states, we can discuss more concretely
the error budget of our problem. In order to perform an interesting simulation, we need a
large number of time steps. Each time step requires some number of gates implemented
and must be executed in sequence. The number of time steps thus sets the depth of
the circuit (M/). We also wish to observe the dynamics over large system sizes which
requires a number of qubits (V). The total number of gates in the circuit thus scales as
M x N.

To construct the circuit, we pick a 1D linear chain topology and apply layers of 1Q and
2Q gates. To perform 1 time step, we require 4 cycles of 1-qubit + 2-qubit gates. For
a relatively modest time evolution of 15 steps we require a circuit depth of 60 cycles,

O
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which is similar to the depth of the circuits used in utility-scale experiments [75]. In
order to resolve observables with sufficient precision and a practical number of samples
(100,000), a circuit fidelity of around 1% is required. Based on our analysis shown in
Fig. A.1, we estimate that an EPLG around 1.75% is required to support an experiment
using N = 9 qubits. To support N = 30 qubits, an EPLG around 0.5% would be required.

100-

Number of qubits

N=18
— N=30
= = 1% threshold

Circuit Fidelity (%)
Circuit Fidelity (%)

| | | | b i | '
15 2 2.5 3 5 10 15 20 25

EPLG (%) Number of qubits

(a) (b)

Figure A.1 - Scaling of circuit fidelity with (a) the error per layer gate (EPLG) for different
numbers of qubits, and with (b) number of qubits for different EPLG. Experiments using
100,000 samples on N = 9 qubits lead to a target circuit fidelity ~ 1% and a EPLG ~ 1.75%.

A.2.1 Device design and architecture

The Rigetti Ankaa-9Q-3 QPU contains 9 transmon qubits connected via floating tunable
couplers [31] arranged in square grid. The tunable couplers enable control of qubit-
qubit coupling between neighboring qubits by threading external magnetic flux through
the SQUID loops. This allows the coupling to be turned off when qubits are idling or
undergoing single-qubit rotations. The coupling can be quickly turned on by applying a
base-band flux pulse to the coupler when actuating a two-qubit gate.

Entangling gates between neighboring qubits are activated using two schemes: para-
metric resonance [76] and fast DC [77]. The parametric resonance gate is activated
by bringing the two qubits into resonance with a modulated flux pulse applied to the
higher-frequency qubit. This pulse brings it into resonance with its neighbor through
an XX+YY type interaction, which is a generator of the iSWAP-family of gates. This
type of gate is called the FSIM gate. A base-band flux pulse is simultaneously applied
to the coupler to enhance the coupling between the qubits. The fast DC gate works in
fundamentally the same way, but the modulated flux pulse is replaced with a base-band
flux pulse to bring the qubits into resonance.
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[ Metric  Value |

T1 28.6us

T2 19.7us

ISWAP Infidelity 1.33%
ISWAP Duration  104ns
RX Infidelity  0.10%

RX Duration  60ns

Table A.1 - Summary metrics of the Ankaa-9Q-3 QPU. All values are median values over
the entire processor.

Device architecture
The device employed in our experiments is the Rigetti Ankaa-9Q-3 QPU. The device

consists of 9 superconducting tunable transmon qubits connected by tunable couplers
in a grid architecture. ISWAP gates are calibrated on the device.

° °

® o

Figure A.2 - The Ankaa-9Q-3 device, annotated with the linear chain lattice used for exper-
iments. The qubits and edges used in this experiment are highlighted in teal.

Device characteristics

The characteristics of the Ankaa-9Q-3 device at the time of testing are shown in Ta-
ble A.1, as reported on Rigetti Quantum Cloud Services and by analysis of production
calibration data. For the experimental configuration of circuits executed in this report,
the Error Per Layered Gate (EPLG) was measured to be around 1.7%; sufficient to support
the experiments as per the error budget specified above.
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