
Notice: This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, 

acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The 

Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-publicaccess-plan) 

Sum Reduction with OpenMP Offload on NVIDIA Grace-Hopper System 

Zheming Jin 

Oak Ridge National Laboratory 

     jinz@ornl.gov      

li
Abstract— Sum reduction is a primitive operation in parallel 

computing. With OpenMP directives that enable data and 

computation offload to a graphics processing unit (GPU), the 

work annotates the serial sum reduction with the directives and 

evaluates the baseline and optimized reductions on an NVIDIA 

Grace-Hopper system. The study explores the impacts of the 

number of teams, the number of elements to sum per loop 

iteration, and simultaneous reduction on the central-processing 

unit (CPU) and GPU in the unified memory (UM) mode upon 

the reduction performance. The results show that the optimized 

reductions are 6.120X to 20.906X faster than the baselines on 

the GPU, and their efficiency ranges from 89% to 95% of the 

peak GPU memory bandwidth. Depending on where an input 

array is allocated in the program when co-running the reduction 

on the CPU and GPU in the UM mode, the average speedup over 

the GPU-only execution is approximately 2.484 or 1.067, and the 

speedup of the optimized reductions over the baseline 

reductions ranges from 0.996 to 10.654 or from 0.998 to 6.729. 
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I. INTRODUCTION 

Sum reduction is a primitive operation commonly used in 
scientific computing [1, 2, 3, 4]. There are different methods 
of parallel reduction over a large vector. For example, 
reductions were implemented and optimized using the CUDA 
programming model on NVIDIA graphics processing units 
(GPUs) [5, 6, 7]. OpenMP device offload may simplify the 
development of an application targeting a GPU by annotating 
a serial implementation with OpenMP directives. However, it 
might sacrifice performance for the ease of programming [8, 
9, 10, 11].  

The focus of this study is a parallel sum reduction with 
OpenMP device offload on a heterogeneous computing 
system with a central-processing unit (CPU) and a GPU 
connected with a hardware-based memory-coherent and high-
bandwidth interconnect. The connection facilitates a unified 
memory (UM) space for a GPU programming language and 
faster data movement between a CPU and a GPU [12]. More 
specifically, this work annotates a serial loop of sum reduction 
with OpenMP directives and specifies a parameter space 
composed of the number of elements to accumulate in each 
loop iteration and the number of teams. Then, it sweeps over 
the space on the GPU in the system for performance 
exploration. With the performance optimization, it further 
explores simultaneous reduction on both devices in the UM 
mode. The experimental results show that the reduction 
performance can be improved by exploring the numbers of 
teams and the numbers of elements to accumulate in a loop 
iteration. When the OpenMP clause for the number of teams 
is not specified by a programmer, the heuristics may be further 
optimized in a compiler’s implementation of the OpenMP 

reduction. Distributing the reduction across the CPU and the 
GPU in the UM mode could achieve higher performance than 
the CPU-only or GPU-only execution. 

With the descriptions of the motivation and scope of the 
study, the rest of the paper is organized as follows. Section II 
introduces the OpenMP device offload support and the Grace-
Hopper system. Section III describes the implementations and 
evaluations of the reductions with OpenMP offload on the 
GPU. Section IV describes the implementations and 
evaluations of simultaneous reductions on the CPU and the 
GPU. Section V summarizes related work, and Section VI 
concludes the paper. 

II. BACKGROUND 

A. Sum Reduction 

The focus of the work is an unsegmented form of sum 
reduction. Listing 1 shows the sequential sum reduction as a 
reference. Taking a binary associative operator “+” and an 
array of “M” numbers as inputs, the reduction returns as 
output one value. To make the reduction more generic, the 
type of each input number is “T” and the result is of type “R”. 
The data types are not necessarily the same. “M” is a 64-bit 
integer. From the perspective of device offload, the input 
numbers are copied from a host to a device, and then reduced 
in parallel, and finally the output of the reduction is copied 
back to a host. 

  T in[M]; 

  R sum = 0; 

  for (i = 0; i < M; i++) 

sum += in[i]; 

Listing 1. The sequential sum reduction 

A parallel implementation divides the reduction into 
independent partial sums, computes each partial sum in an 
arbitrary order, and produces a result by combining these 
partial sums. The idea can be generalized to reductions on 
vectors of arbitrary size. 

B. OpenMP 

OpenMP is an evolving standard that makes it easier to 
write portable, heterogeneous parallel codes. OpenMP-
specific directives allow a user to parallelize C, C++ or 
Fortran applications with code annotation. Features have been 
added to the specification to keep up with heterogeneous 
computing [ 13 ]. In the specification, the OpenMP target 
directives specify that a region of code should be executed on 
a target device (e.g., GPU). An OpenMP application utilizing 
device offload is commonly labelled as an OpenMP target 
offload application. Multiple open-source and commercial 
compilers support execution of OpenMP code regions on a 
GPU device. The OpenMP 4.5 specification provides 



significant support for device offload [14]. The latest OpenMP 
specifications add clarifications and feature enhancements to 
OpenMP device offload [15]. 

C. The NVIDIA Grace Hopper System 

The system has distinct physical memory regions attached 
to the Grace CPU and the Hopper GPU. The ARM datacenter 
CPU is connected to the low-power double data rate 5X 
(LPDDR5X) memory subsystem [16 ] while the NVIDIA 
Hopper GPU is equipped with the third-generation high 
bandwidth memory (HBM3). The CPU and the GPU 
communicate via the high-bandwidth NVLink Chip-2-Chip 
interconnect [17]. The technology facilitates a unified single 
address space where the CPU and GPU can access memory 
without explicit data movement [ 18 ] and benefits most 
applications with minimal porting efforts [19]. Overall, the 
system provides a high-performance solution for scientific 
applications and benchmarks [20]. 

This work uses a Grace-Hopper (GH) system as a 
computing testbed. It consists of a 72-core ARM Neoverse V2 
CPU, and an NVIDIA H100 GPU. The CPU has 480 GB 
LPDDR5X memory, and the GPU has 96 GB HBM3 memory. 
The operating system is Red Hat Enterprise Linux 9.3 with 
CUDA 12.4 and GPU driver 550.54.15. The peak GPU 
memory bandwidth is 4022.7 GB/s. 

III. SUM REDUCTION WITH OPENMP OFFLOAD ON GPU 

A. Parallel Reduction with OpenMP Offload 

The OpenMP reduction clause specifies thread-private 
variables that are subject to a reduction operation in a parallel 
region. All supported reduction operators are described in the 
OpenMP specification. The OpenMP reduction clause 
specifies a reduction-identifier and one or more list items. In 
OpenMP C/C++, a reduction-identifier is an arithmetic, 
logical, or comparison operator. A list item is a variable that 
will combine private copies of the variable using the 
operator-associated combiner at the end of the parallel region. 
Annotating the sequential version of the reduction with 
OpenMP directives, a parallel version of the sum reduction is 
shown in Listing 2. 

 
#pragma omp target teams distribute parallel for \ 

                                 reduction(+:sum) 

for (i = 0; i < M; i++) { 

  sum += in[i]; 

} 

Listing 2. Sum reduction with the OpenMP offload directives 

 
#pragma omp target teams distribute parallel for \    

 num_teams(teams) thread_limit(threads) reduction(+:sum) 

for (i = 0; i < M; i++) { 

  sum += in[i]; 

} 

Listing 3. Sum reduction with the specifications of team size and 
thread size in the OpenMP offload directives 

 

The “target teams distribute parallel” worksharing-loop 
construct is semantically equivalent to explicitly specifying a 
“target” directive immediately followed by a “teams distribute 
parallel” worksharing-loop directive. The “target” construct 

maps variables to a device data environment and executes the 
construct on that device. The loop has a canonical loop form.  

In addition, the OpenMP standard supports two clauses 
that allows a user to specify the number of teams and the 
number of threads in a team for performance tuning. The 
“num_teams” clause sets the bounds on the number of teams. 
The “thread_limit” clause specifies an upper bound to the 
number of threads that may participate in a contention group 
initiated by each team. The number of teams and the number 
of threads created by an OpenMP runtime are implementation 
defined. However, the runtime will process and check any 
values requested by a user through directives or environment 
variables. Listing 3 shows the two clauses. 

Inspired by the vectorized memory accesses that can 
improve the reduction performance on accelerators [21, 22, 
23], this work proposes to sum up “V” elements, where “V” 
is a power of two, in each loop iteration as shown in Listing 
4. Compared to the loop construct in Listing 3, the number of 
teams are reduced by a factor of “V” and the loop counter is 
incremented by “V” after executing the loop body. 

Compiling the OpenMP program shows that the OpenMP 
compiler in the NVIDIA HPC Software Development Kit 
(NVHPC SDK) [24] may fail to build the program because 
the loop increment is not in a supported form. Hence, the loop 
is rewritten as shown in Listing 5 to address the issue. 

B. Evaluation Setup 

This work chooses four use cases for evaluation. In the 
first case (C1), both input and output values are 32-bit signed 
integers (“T”, “R” = int32). The number of 32-bit integers to 
reduce on the GPU is 1048576000, approximately 4 GB in 
memory size. In the second case (C2), each input number is 
an 8-bit signed integer (“T” = int8), and the output is a 64-bit 

#pragma omp target teams distribute parallel for \ 

 num_teams(teams/V) thread_limit(threads) \ 

 reduction(+:sum) 

for (i = 0; i < M; i = i + V) { 

  sum += in[i] + in[i+1] + … + in[i+V-1]; 

} 

Listing 4. Each loop iteration accumulates V elements. 
 

#pragma omp target teams distribute parallel for \ 

 num_teams(teams/V) thread_limit(threads) \ 

 reduction(+:sum) 

for (m = 0; m < M / V; m++) { 

  i = V × m; 

  sum += in[i] + in[i+1] + … + in[i+V-1]; 

} 

Listing 5. Rewrite the loop in Listing 4 
 

// Start timing 

for (n = 0; n < N; n++) { 

  sum = 0; 

  #pragma omp target update to(sum) 

  // Same as the code snippet in Listing 5 

  #pragma omp target update from(sum) 

} 

// Stop timing 

 

bandwidth = 1e-9 × M × sizeof(T) * N / elapsed_time 

 

Listing 6. Performance measurement of the sum reduction 
 



signed integer (“R” = int64). The number of 8-bit integers is 
four times the number of 32-bit integers in C1. In the third 
case (C3), both input and output values are single-precision 
floating-point numbers (“T”, “R” = float32). In the last case 
(C4), both input and output values are double-precision 
floating-point numbers (“T”, “R” = float64). Both C3 and C4 
reduce 1048576000 floating-point numbers. Reduction over 
sufficiently large numbers may mitigate under-utilization of 
GPU sources such as compute units and memory bandwidth. 

The OpenMP program is compiled with the NVHPC SDK, 
version 12.5. The compiler optimization option is “-O3”. The 
total time of executing the reduction for N (N = 200) times is 
measured with the C++ standard chrono library. As shown in 
Listing 6, the elapsed time comprises the initialization of the 
“sum” variable for each kernel execution, kernel execution 
time on a device, and result copyback after the reduction is 
complete. Note the host-to-device transfer of input numbers is 
not included in the timing measurement. The performance of 

the reduction is reported with the bandwidth metric (GB/s). It 
measures the reduction performance when data resides on a 
GPU. The GPU results are verified using the CPU results. 

C. Experimental Results 

The sum reduction annotated with the OpenMP directives 
indicates that the parameter space for the reduction spans 
over three dimensions: the number of OpenMP teams, the 
OpenMP thread limits, and the number of elements to add in 
each loop iteration. The parameter search space may be 
reduced by setting the OpenMP thread limit to 256. The 
number of teams and the number of elements to accumulate 
in a loop are power-of-two numbers, ranging from 128 to 
65536 and 1 to 32, respectively. 

Figures 1 show the reduction performance as a function 
of the number of teams and the number of elements on the 
GPU for the four cases. The number of elements to sum per 
loop iteration is prefixed with the variable “v”. For example, 
“v4” means that there are four elements to add in each loop 

 

Fig. 1a. Reduction performance (y-axis) as a function of the 
number of teams (x-axis) and the number of elements to add per 
loop iteration (v) on the GPU. For C1, “T” and “R” are int32. 
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Fig. 1d. Reduction performance (y-axis) as a function of the 
number of teams (x-axis) and the number of elements to add per 
loop iteration (v) on the GPU. For C4, “T” and “R” are float64. 
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Fig. 1b. Reduction performance (y-axis) as a function of the 
number of teams (x-axis) and the number of elements to add per 
loop iteration (v) on the GPU. For C2, “T” is int8 and “R” is int64. 
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Fig. 1c. Reduction performance (y-axis) as a function of the 

number of teams (x-axis) and the number of elements to add per 

loop iteration (v) on the GPU. For C3, “T” and “R” are float32. 
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iteration. The team size for the “num_teams” clause (not 
shown in the figures) is the number of teams divided by the 
number of elements added per loop. Before a threshold is 
reached, increasing the team size could improve the reduction 
performance regardless of the number of elements to add per 
loop iteration. The increase turns a compute-bound kernel 
into a memory-bound kernel. For C1, C3, and C4, the 
performance becomes almost saturated when the number of 
teams is 4096. For C2, the performance becomes almost 
saturated when the number of teams is 32768. The highest 
bandwidths are 3795 GB/s, 3596 GB/s, 3790 GB/s, and 3833 
GB/s for the four cases, respectively. 

Profiling the OpenMP program reveals that the grid sizes 
of the GPU reduction kernels match the team sizes specified 
by the “num_teams” clause. When the clause is not specified, 
the OpenMP runtime selects a grid size that is equal to the 
number of input values divided by the number of threads in a 
team for C1, C3, and C4. The grid size is 16777215 
(0xFFFFFF) for C2, which is less than the number of input 
values divided by the number of threads in a team. The 
number of threads in a team is 128 in any case. 

Table 1 lists the performance of the baseline reduction 
shown in Listing 2, the highest performance of the optimized 
reduction, performance speedup, and efficiency for each case. 
The optimized reductions can improve the performance of the 
baseline reductions with a speedup ranging from 6.120 to 
20.906. “Efficiency” is defined as the ratio of the OpenMP 
reduction performance in the experiment to the peak GPU 
memory bandwidth. The efficiency of the baseline reductions 
is capped at 15.4%. The optimized reductions achieve 
approximately 95% efficiency for C1, C3, and C4. For C2, 
the efficiency is approximately 89% though the speedup is 
the highest. The comparison shows that the heuristics may be 
further optimized in the vendor’s implementation of the 
OpenMP reduction. 

IV. EXECUTION OF SUM REDUCTION ON CPU AND GPU 

As mentioned in Section III, the reduction performance is 
measured without considering the movement of an input 
array from the host to the device. In practice, the offload 
overhead may be considered as an integral part of a reduction 
application. While the reduction is offloaded to the GPU, the 
CPU is idle until the offloaded computation is complete. 
Using both the GPU and the CPU simultaneously [25] may 
improve the reduction performance. In addition, it will be 
interesting to evaluate the reduction performance with the 
UM technology available in the GH system. 

 

A. Parallel Reduction with OpenMP Offload 

Listing 7 shows the implementation of the co-execution 
using OpenMP directives. The OpenMP “master” directive 
could exploit simultaneous CPU and GPU execution. The 
“master” directive specifies a structured block that will be 
executed by the master thread of the team. Other threads in 
the team will not execute the associated structured block. 
There is no implied barrier either on entry to or exit from the 
master construct [15]. In the structured block, part of the 
reduction work is offloaded to the GPU with the OpenMP 
target directive. The data “map” clause manages the data 
movement from the host to the device. The “nowait” clause 
avoids synchronization between the threads running on the 
CPU and GPU. The remaining work is parallelized on the 
CPU. The “simd” directive may instruct the compiler to make 
the loop vector-friendly by having multiple loop iterations 
executed simultaneously. The directive may provide tuning 
hints for CPU targets; the directive is ignored for GPU targets 
[24]. There is an implicit barrier at the end of the OpenMP 

Table 1. Performance evaluation and comparison of the baseline and 

optimized sum reductions in OpenMP device offload on the GPU 

Case Base 
(GB/s) 

Optimized 
(GB/s) 

Speedup Efficiency 
(%) 

C1 620 3795 6.120 15.4 / 94.3 

C2 172 3596 20.906 4.3 / 89.4 

C3 271 3790 13.985 6.7 / 94.2 

C4 526 3833 7.287 13.1 / 95.3 

 

// A1: Allocate memory for input array 

for (p = 0; p <= 1; p = p + 0.1) { 

  // A2: Allocate memory for input array 

  // Compute the array lengths for the CPU and GPU 

  // Start timing 

  for (n = 0; n < N; n++) { 

    sumH = sumD = 0; 

    #pragma omp parallel 

    { 

      // Simultaneous reduction on the CPU and GPU 

    } 

    sum = sumH + sumD; 

  } 

  // Stop timing 

  bandwidth = 1e-9 × M × sizeof(T) * N / elapsed_time 

} 

 

Listing 8. Performance measurement of the sum reduction. The 
CPU part of the reduction (“p”) ranges from 0 to 1. Memory 
allocation for the input array occurs at A1 or A2.  

 

LenH = M × CPU_part; 

LenD = M – LenH; 

sumD = sumH = 0; 

 

#pragma omp parallel 

{ 

  #pragma omp master 

  { 

#pragma omp target teams distribute  

 parallel for nowait map(to: inD[0:LenD]) 

for (i = 0; i < LenD; i++) 

  sumD += inD[i]; 

  } 

  #pragma omp for simd 

  for (i = 0; i < LenH; i++) 

sumH += inH[i]; 

} 

sum = sumD + sumH; 

 

Listing 7. The OpenMP implementation utilizes the CPU and 
GPU simultaneously. The lengths of the input array to reduce on 
the host and device are represented with LenH and LenD, 

respectively. inD and inH are pointers to the same input array 

at the proper places. The baseline reduction on the device is 
shown in the code snippets. 

 



parallel region. Finally, the partial sums from the CPU and 
GPU are added to produce the final sum.  

UM is supported on the GH system, and the feature is 
enabled with the option -gpu=mem:unified added to the 

command line of the OpenMP compiler. In the UM mode, the 
compiler assumes that system memory is accessible on the 
GPU. The whole program state is shared between the CPU 
and the GPU. The GPU does not operate on a copy of the data 
even if the program contains respective directives. The 
compiler may utilize CUDA managed memory for dynamic 
allocations by automatically replacing explicit memory 
allocation and deallocation (e.g., calls to malloc/free 
functions) with cudaMallocManaged- and cudaFree-

style allocation and deallocation [26]. The “map” clause will 
not result in any device allocation or data transfer. The 
OpenMP runtime may leverage such a clause to communicate 
preferable data placement to the CUDA runtime by means of 
memory hint [24]. 

B. Evaluation  

The total time of offloading the reduction for N (N = 200) 
times is measured with the C++ standard chrono library. As 
shown in Listing 8, the elapsed time comprises the 
initialization of partial sums, co-execution of the reduction on 
the CPU and GPU, and the sum of partial sums. The 
allocation of an input array can occur before (A1) or after 
(A2) the loop iteration over the CPU part (“p”) of the 
reduction work. The impacts of the two locations upon the 
reduction performance will be assessed. 

Figure 2a shows the performance of the baseline 
reduction with respect to the CPU part of the reduction in the 
UM mode. The allocation of the input array occurs at A1. 
When the CPU part is zero, the reduction is offloaded to the 
GPU entirely. When it is one, no reduction is offloaded to the 
GPU. The reduction performance for C1 and C3 are almost 
the same. The reduction performance for C2 and C4 are also 
close to each other. Distributing the reduction across both 
devices could achieve higher performance than the CPU-only 

or GPU-only execution. The highest speedups over the GPU-
only execution are 2.732, 2.246, 2.692, and 2.297 for the four 
cases, respectively. The average speedup is approximately 
2.492. 

Figure 2b shows the performance of the optimized 
reduction with respect to the CPU part of the reduction in the 
UM mode. The allocation of the input array occurs at A1. 
Based on the reduction performance shown in Figures 1, the 
values of the parameters that result in saturated bandwidth on 
the GPU are selected. The number of teams is 65536. “V” 
equals 4 for C1, C3, and C4. For C2, “V” equals 32. 
Distributing the reduction across both devices could achieve 
higher performance than the CPU-only or GPU-only 
execution. The highest speedups over the GPU-only 
execution are 2.253, 3.385, 2.100, and 2.197 for the four 
cases, respectively. The average speedup is approximately 
2.484. 

 

Fig. 2a. Performance of the baseline reductions in the UM 

mode for the four cases. The workload is distributed between 

the CPU and the GPU. The CPU part of the reduction ranges 

from 0 to 1. The input array is allocated at A1 for each case. 
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Fig. 2b. Performance of the optimized reductions in the UM 

mode for the four cases. The workload is distributed between 

the CPU and the GPU. The CPU part of the reduction ranges 

from 0 to 1. The input array is allocated at A1 for each case. 
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Fig. 3. Performance speedups of the optimized reductions over 

the baselines when co-running the reduction in the UM mode. 

The CPU part of the reduction ranges from 0 to 1. The input 

array is allocated at A1 for each case. 
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Figure 3 shows the performance speedups of the 
optimized reductions in Figure 2b over the baseline 
reductions in Figure 2a with respect to the CPU part of the 
reduction in the UM mode. The speedup ranges from 0.996 
to 10.654. The speedups are significant when the GPU parts 
account for at least 50% of the total workloads. 

Figure 4a shows the performance of the baseline 
reduction with respect to the CPU part of the reduction in the 
UM mode when the allocation of the input array occurs at A2. 
The performance trends indicate that distributing the 
reduction across both devices does not achieve higher 
performance than the CPU-only execution. 

Figure 4b shows the performance of the optimized 
reduction with respect to the CPU part of the reduction in the 
UM mode when the allocation of the input array occurs at A2. 
Distributing the reduction across both devices could achieve 
higher performance than the CPU-only or GPU-only 
execution. The highest speedups over the GPU-only 
execution are 1.139, 1.062, 1.050, and 1.017 for the four 
cases, respectively. The average speedup is approximately 
1.067. 

Figure 5 shows the performance speedups of the 
optimized reductions in Figure 4b over the baseline 
reductions in Figure 4a with respect to the CPU part of the 
reduction in the UM mode. The speedup ranges from 0.998 
to 6.729. The speedups are significant when the GPU parts 
account for at least 90% of the total workloads. 

The performance of co-running the optimized reductions 
with A1 is on average 2.299X higher than that with A2. 
However, the performance of the CPU-only reduction with 
A1 is 1.367X lower than that with A2. The memory for the 
input array is allocated once in A1 whereas it is allocated per 
loop iteration in A2. The initialization of the input array is 
performed on the CPU, so memory pages are placed on the 
CPU during initialization. For the loop over the CPU part of 
the workload, the reduction is offloaded entirely to the GPU 
in the first loop iteration. Hence, the pages that will be 
accessed by the GPU are migrated from the CPU memory to 

the GPU memory to improve the performance. For A1, these 
migrated pages will reside in the GPU memory, improving 
the reduction performance on the GPU as there is no 
migration overhead from the CPU to the GPU for subsequent 
loop iterations. For A2, allocating memory for each loop 
iteration will also enable automatic migration of memory 
regions between the GPU and CPU physical memory, but the 
migration overhead occurs per iteration. When the reduction 
runs entirely on the CPU in A2, there is no data migration 
from the GPU memory to the CPU memory or data read from 
the HBM memory by the CPU since memory pages are 
placed on the CPU memory during initialization. 

V. RELATED WORK 

In [27], the performance of the integer sum reduction with 
OpenMP offload is evaluated on an AMD MI100 discrete 
GPU. This work evaluates the integer and floating-point 
reductions on an NVIDIA Grace-Hopper system. The 
experimental results show that the proposed reduction can 

 

Fig. 4a. Performance of the baseline reductions in the UM 

mode for the four cases. The workload is distributed between 

the CPU and the GPU. The CPU part of the reduction ranges 

from 0 to 1.  The input array is allocated at A2 for each case. 
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Fig. 4b. Performance of the optimized reductions in the UM 

mode for the four cases. The workload is distributed between 

the CPU and the GPU. The CPU part of the reduction ranges 

from 0 to 1.  The input array is allocated at A2 for each case.  
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Fig. 5. Performance speedups of the optimized reductions over 

the baselines when co-running the reduction in the UM mode. 

The CPU part of the reduction ranges from 0 to 1. The input 

array is allocated at A2 for each case. 
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improve the baseline performance on the NVIDIA GPU. In 
[28], the performance of the baseline and optimized integer 
sum reductions written in HIP is evaluated on an AMD GPU. 
To improve the reduction performance over the baselines, the 
OpenMP offload implementations require less modifications 
to the existing code base while the HIP or CUDA 
implementations need more coding effort. In [ 29 ], the 
advantages and disadvantages of abstractions for reductions 
from different programming models are discussed. In this 
work, the OpenMP abstraction is the focus. It will be 
interesting to evaluate other abstractions in future studies. In 
[30], the authors find that it is beneficial to use additional 
private variables to reduce thread local contributions before 
reducing into OpenMP reduction variables. However, 
whether this technique can improve the performance of an 
application on an NVIDIA GPU depends on the 
implementation of an OpenMP compiler. In this work, adding 
multiple elements per loop iteration (i.e., thread local 
contribution) and exploring team sizes can improve the 
reduction performance with the vendor’s compiler. In [14], 
the authors acknowledge that it is challenging for a compiler 
runtime to determine the best grid geometry for each target 
region. Hence, heuristics are often adopted by an 
implementation that yields high GPU occupancy. In this 
experiment, the performance of the baseline reductions 
indicates that the heuristics may be further optimized in the 
implementations of the OpenMP reduction. In [18], the 
authors introduce an instrumentation tool for automatic 
offload of a subset of the CPU linear algrebra library calls to 
the GPU on the GH system without user code modifications 
or recompilation. The mechanism is commonly used in 
profilers. In our work, the offload of the reduction operations 
is implemented with OpenMP directives entirely. 

In the co-execution experiments for the full airplane 
simulation on an IBM Power 9 cluster with NVIDIA V100 
GPUs [31], the authors find that co-execution reduces the 
maximum elapsed time for the pure GPU execution by 23%. 
When benchmarking query performance of database engines 
on the NVIDIA Jetson AGX Xavier and AMD A10-7850K 
edge devices, the implementations of a co-running model 
obtain 2.95X bandwidth utilization over the GPU-only 
methods and 1.82X over the CPU-only methods [32]. On the 
Jetson platform, CUDA and OpenMP are the programming 
models for the GPU and CPU, respectively. After corunning 
the machine learning benchmarks on the AMD Ryzen 5 
2400G architecture with an integrated GPU, the authors find 
that most applications gain performance benefits from CPU-
GPU co-running, that the optimal work partitioning ratio 
varies with the characteristics of the workloads, and that the 
performance of co-running with zero-copy is always higher 
regardless of the ratio of task partitioning [ 33 ]. For six 
benchmarks that represent regular and irregular memory 
behaviors, the speedup of co-execution over the GPU 
execution approximately ranges from 1 to 2.5 with dynamic 
scheduling and a unified shared memory programming model 
on an Intel Core i5-7500 CPU with an integrated GPU [34]. 
In this work, co-running the reduction in the UM mode could 
achieve higher performance than the GPU-only execution. 
The performance speedups and optimal partition ratio depend 

on the optimization of the reduction kernels on the GPU, the 
data types of array elements, and where the array is allocated 
in the program. 

VI. CONCLUSION 

This work annotates a serial loop of sum reduction with 
OpenMP target directives for parallel execution on a target 
device. Then, it describes the proposed reduction in which the 
numbers of teams and the number of elements to sum per loop 
iteration are explicitly specified by a programmer. Comparing 
the baseline reductions with the proposed reductions on the 
NVIDIA Hopper GPU shows that the performance speedup of 
the optimized reductions over the baselines on the GPU ranges 
from 6.120 to 20.906, and the efficiency ranges from 89% to 
95% of the theoretical memory bandwidth. 

The study finds that simultaneous execution of the 
reduction on the CPU and GPU in the unified memory (UM) 
mode can improve the reduction performance compared to the 
CPU-only or GPU-only execution. However, where the input 
array is allocated in the program affects the performance of 
co-running the reduction. When the input array is allocated 
before the iteration of the CPU part of the workload, the 
average speedup over the GPU-only execution is 
approximately 2.484, the speedup of the optimized reductions 
over the baseline reductions ranges from 0.998 to 10.654, and 
the speedup is significant when the GPU parts account for at 
least 50% of the total work. When the input array is allocated 
for every iteration of the CPU part of the workload, the 
average speedup over the GPU-only execution is 
approximately 1.07, the speedup of the optimized reductions 
over the baseline reductions ranges from 0.998 to 6.729, and 
the speedup is significant when the GPU parts account for at 
least 90% of the total work. The data migration overhead from 
the CPU memory to the GPU memory contributes to the 
performance slowdown. 

Future studies would evaluate other reduction abstractions 
and performance of applications that use sum reduction on the 
GH system or on other vendors’ platforms where full UM 
capabilities are supported. 
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