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Abstract— Sum reduction is a primitive operation in parallel
computing. With OpenMP directives that enable data and
computation offload to a graphics processing unit (GPU), the
work annotates the serial sum reduction with the directives and
evaluates the baseline and optimized reductions on an NVIDIA
Grace-Hopper system. The study explores the impacts of the
number of teams, the number of elements to sum per loop
iteration, and simultaneous reduction on the central-processing
unit (CPU) and GPU in the unified memory (UM) mode upon
the reduction performance. The results show that the optimized
reductions are 6.120X to 20.906X faster than the baselines on
the GPU, and their efficiency ranges from 89% to 95% of the
peak GPU memory bandwidth. Depending on where an input
array is allocated in the program when co-running the reduction
on the CPU and GPU in the UM mode, the average speedup over
the GPU-only execution is approximately 2.484 or 1.067, and the
speedup of the optimized reductions over the baseline
reductions ranges from 0.996 to 10.654 or from 0.998 to 6.729.
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L INTRODUCTION

Sum reduction is a primitive operation commonly used in
scientific computing [1, 2, 3, 4]. There are different methods
of parallel reduction over a large vector. For example,
reductions were implemented and optimized using the CUDA
programming model on NVIDIA graphics processing units
(GPUs) [5, 6, 7]. OpenMP device offload may simplify the
development of an application targeting a GPU by annotating
a serial implementation with OpenMP directives. However, it
might sacrifice performance for the ease of programming [8,
9,10, 11].

The focus of this study is a parallel sum reduction with
OpenMP device offload on a heterogeneous computing
system with a central-processing unit (CPU) and a GPU
connected with a hardware-based memory-coherent and high-
bandwidth interconnect. The connection facilitates a unified
memory (UM) space for a GPU programming language and
faster data movement between a CPU and a GPU [12]. More
specifically, this work annotates a serial loop of sum reduction
with OpenMP directives and specifies a parameter space
composed of the number of elements to accumulate in each
loop iteration and the number of teams. Then, it sweeps over
the space on the GPU in the system for performance
exploration. With the performance optimization, it further
explores simultaneous reduction on both devices in the UM
mode. The experimental results show that the reduction
performance can be improved by exploring the numbers of
teams and the numbers of elements to accumulate in a loop
iteration. When the OpenMP clause for the number of teams
is not specified by a programmer, the heuristics may be further
optimized in a compiler’s implementation of the OpenMP

reduction. Distributing the reduction across the CPU and the
GPU in the UM mode could achieve higher performance than
the CPU-only or GPU-only execution.

With the descriptions of the motivation and scope of the
study, the rest of the paper is organized as follows. Section 11
introduces the OpenMP device offload support and the Grace-
Hopper system. Section III describes the implementations and
evaluations of the reductions with OpenMP offload on the
GPU. Section IV describes the implementations and
evaluations of simultaneous reductions on the CPU and the
GPU. Section V summarizes related work, and Section VI
concludes the paper.

IL. BACKGROUND

A. Sum Reduction

The focus of the work is an unsegmented form of sum
reduction. Listing 1 shows the sequential sum reduction as a
reference. Taking a binary associative operator “+” and an
array of “M” numbers as inputs, the reduction returns as
output one value. To make the reduction more generic, the
type of each input number is “T” and the result is of type “R”.
The data types are not necessarily the same. “M” is a 64-bit
integer. From the perspective of device offload, the input
numbers are copied from a host to a device, and then reduced
in parallel, and finally the output of the reduction is copied
back to a host.

for (1 = 0; i < M; i++)
sum += in[i];

Listing 1. The sequential sum reduction

A parallel implementation divides the reduction into
independent partial sums, computes each partial sum in an
arbitrary order, and produces a result by combining these
partial sums. The idea can be generalized to reductions on
vectors of arbitrary size.

B. OpenMP

OpenMP is an evolving standard that makes it easier to
write portable, heterogeneous parallel codes. OpenMP-
specific directives allow a user to parallelize C, C++ or
Fortran applications with code annotation. Features have been
added to the specification to keep up with heterogeneous
computing [13]. In the specification, the OpenMP target
directives specify that a region of code should be executed on
a target device (e.g., GPU). An OpenMP application utilizing
device offload is commonly labelled as an OpenMP target
offload application. Multiple open-source and commercial
compilers support execution of OpenMP code regions on a
GPU device. The OpenMP 4.5 specification provides
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significant support for device offload [14]. The latest OpenMP
specifications add clarifications and feature enhancements to
OpenMP device offload [15].

C. The NVIDIA Grace Hopper System

The system has distinct physical memory regions attached
to the Grace CPU and the Hopper GPU. The ARM datacenter
CPU is connected to the low-power double data rate 5X
(LPDDR5X) memory subsystem [16] while the NVIDIA
Hopper GPU is equipped with the third-generation high
bandwidth memory (HBM3). The CPU and the GPU
communicate via the high-bandwidth NVLink Chip-2-Chip
interconnect [17]. The technology facilitates a unified single
address space where the CPU and GPU can access memory
without explicit data movement [ 18] and benefits most
applications with minimal porting efforts [19]. Overall, the
system provides a high-performance solution for scientific
applications and benchmarks [20].

This work uses a Grace-Hopper (GH) system as a
computing testbed. It consists of a 72-core ARM Neoverse V2
CPU, and an NVIDIA H100 GPU. The CPU has 480 GB
LPDDR5X memory, and the GPU has 96 GB HBM3 memory.
The operating system is Red Hat Enterprise Linux 9.3 with
CUDA 124 and GPU driver 550.54.15. The peak GPU
memory bandwidth is 4022.7 GB/s.

111. SUM REDUCTION WITH OPENMP OFFLOAD ON GPU

A. Parallel Reduction with OpenMP Offload

The OpenMP reduction clause specifies thread-private
variables that are subject to a reduction operation in a parallel
region. All supported reduction operators are described in the
OpenMP specification. The OpenMP reduction clause
specifies a reduction-identifier and one or more list items. In
OpenMP C/C++, a reduction-identifier is an arithmetic,
logical, or comparison operator. A list item is a variable that
will combine private copies of the variable using the
operator-associated combiner at the end of the parallel region.
Annotating the sequential version of the reduction with
OpenMP directives, a parallel version of the sum reduction is
shown in Listing 2.

#pragma omp target teams distribute parallel for \
reduction (+:sum)
for (1 = 0; 1 < M; i++) {
sum += inf[i];

}
Listing 2. Sum reduction with the OpenMP offload directives

#pragma omp target teams distribute parallel for \
num_teams (teams) thread limit (threads) reduction (+:sum)
for (1 = 0; 1 < M; i++) |
sum += inf[i];
}
Listing 3. Sum reduction with the specifications of team size and
thread size in the OpenMP offload directives

The “target teams distribute parallel” worksharing-loop
construct is semantically equivalent to explicitly specifying a
“target” directive immediately followed by a “teams distribute
parallel” worksharing-loop directive. The “target” construct

maps variables to a device data environment and executes the
construct on that device. The loop has a canonical loop form.

In addition, the OpenMP standard supports two clauses
that allows a user to specify the number of teams and the
number of threads in a team for performance tuning. The
“num_teams” clause sets the bounds on the number of teams.
The “thread limit” clause specifies an upper bound to the
number of threads that may participate in a contention group
initiated by each team. The number of teams and the number
of threads created by an OpenMP runtime are implementation
defined. However, the runtime will process and check any
values requested by a user through directives or environment
variables. Listing 3 shows the two clauses.

Inspired by the vectorized memory accesses that can
improve the reduction performance on accelerators [21, 22,
23], this work proposes to sum up “V” elements, where “V”
is a power of two, in each loop iteration as shown in Listing
4. Compared to the loop construct in Listing 3, the number of
teams are reduced by a factor of “V”’ and the loop counter is
incremented by “V” after executing the loop body.

#pragma omp target teams distribute parallel for \
num_teams (teams/V) thread limit (threads) \
reduction (+:sum)

for (1 = 0; 1 < M; 1 =1

sum += in[i] + in[i+1]

V) |

+
+ ..+ in[i+V-1];

}
Listing 4. Each loop iteration accumulates V elements.

Compiling the OpenMP program shows that the OpenMP
compiler in the NVIDIA HPC Software Development Kit
(NVHPC SDK) [24] may fail to build the program because
the loop increment is not in a supported form. Hence, the loop
is rewritten as shown in Listing 5 to address the issue.

#pragma omp target teams distribute parallel for \
num_teams (teams/V) thread limit (threads) \
reduction (+:sum)

for (m = 0; m <M / V; m++) {

i =V x m;
sum += in[i] + in[i+1] + ..

}
Listing 5. Rewrite the loop in Listing 4

+ in[i+V-1];

B. Evaluation Setup

This work chooses four use cases for evaluation. In the
first case (C1), both input and output values are 32-bit signed
integers (“T”, “R” = int32). The number of 32-bit integers to
reduce on the GPU is 1048576000, approximately 4 GB in
memory size. In the second case (C2), each input number is
an 8-bit signed integer (“T” = int8), and the output is a 64-bit

// Start timing
for (n = 0; n < N; n++) {
sum = 0;
#pragma omp target update to (sum)
// Same as the code snippet in Listing 5
#pragma omp target update from (sum)
}
// Stop timing

bandwidth = le-9 x M x sizeof(T) * N / elapsed time

Listing 6. Performance measurement of the sum reduction
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Fig. 1a. Reduction performance (y-axis) as a function of the
number of teams (x-axis) and the number of elements to add per
loop iteration (v) on the GPU. For C1, “T” and “R” are int32.
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Fig. 1c. Reduction performance (y-axis) as a function of the
number of teams (x-axis) and the number of elements to add per
loop iteration (v) on the GPU. For C3, “T” and “R” are float32.

signed integer (“R” = int64). The number of 8-bit integers is
four times the number of 32-bit integers in Cl. In the third
case (C3), both input and output values are single-precision
floating-point numbers (“T”, “R” = float32). In the last case
(C4), both input and output values are double-precision
floating-point numbers (“T”, “R” = float64). Both C3 and C4
reduce 1048576000 floating-point numbers. Reduction over
sufficiently large numbers may mitigate under-utilization of
GPU sources such as compute units and memory bandwidth.
The OpenMP program is compiled with the NVHPC SDK,
version 12.5. The compiler optimization option is “-O3”. The
total time of executing the reduction for N (N = 200) times is
measured with the C++ standard chrono library. As shown in
Listing 6, the elapsed time comprises the initialization of the
“sum” variable for each kernel execution, kernel execution
time on a device, and result copyback after the reduction is
complete. Note the host-to-device transfer of input numbers is
not included in the timing measurement. The performance of
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Fig. 1b. Reduction performance (y-axis) as a function of the
number of teams (x-axis) and the number of elements to add per
loop iteration (v) on the GPU. For C2, “T” is int8 and “R” is int64.
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Fig. 1d. Reduction performance (y-axis) as a function of the
number of teams (x-axis) and the number of elements to add per
loop iteration (v) on the GPU. For C4, “T” and “R” are float64.

the reduction is reported with the bandwidth metric (GB/s). It
measures the reduction performance when data resides on a
GPU. The GPU results are verified using the CPU results.

C. Experimental Results

The sum reduction annotated with the OpenMP directives
indicates that the parameter space for the reduction spans
over three dimensions: the number of OpenMP teams, the
OpenMP thread limits, and the number of elements to add in
each loop iteration. The parameter search space may be
reduced by setting the OpenMP thread limit to 256. The
number of teams and the number of elements to accumulate
in a loop are power-of-two numbers, ranging from 128 to
65536 and 1 to 32, respectively.

Figures 1 show the reduction performance as a function
of the number of teams and the number of elements on the
GPU for the four cases. The number of elements to sum per
loop iteration is prefixed with the variable “v”. For example,
“v4” means that there are four elements to add in each loop



iteration. The team size for the “num teams” clause (not
shown in the figures) is the number of teams divided by the
number of elements added per loop. Before a threshold is
reached, increasing the team size could improve the reduction
performance regardless of the number of elements to add per
loop iteration. The increase turns a compute-bound kernel
into a memory-bound kernel. For C1, C3, and C4, the
performance becomes almost saturated when the number of
teams is 4096. For C2, the performance becomes almost
saturated when the number of teams is 32768. The highest
bandwidths are 3795 GB/s, 3596 GB/s, 3790 GB/s, and 3833
GBY/s for the four cases, respectively.

Profiling the OpenMP program reveals that the grid sizes
of the GPU reduction kernels match the team sizes specified
by the “num_teams” clause. When the clause is not specified,
the OpenMP runtime selects a grid size that is equal to the
number of input values divided by the number of threads in a
team for Cl, C3, and C4. The grid size is 16777215
(OXFFFFFF) for C2, which is less than the number of input
values divided by the number of threads in a team. The
number of threads in a team is 128 in any case.

Table 1 lists the performance of the baseline reduction
shown in Listing 2, the highest performance of the optimized

reduction, performance speedup, and efficiency for each case.

The optimized reductions can improve the performance of the
baseline reductions with a speedup ranging from 6.120 to
20.906. “Efficiency” is defined as the ratio of the OpenMP
reduction performance in the experiment to the peak GPU
memory bandwidth. The efficiency of the baseline reductions
is capped at 15.4%. The optimized reductions achieve
approximately 95% efficiency for C1, C3, and C4. For C2,
the efficiency is approximately 89% though the speedup is
the highest. The comparison shows that the heuristics may be
further optimized in the vendor’s implementation of the
OpenMP reduction.

Table 1. Performance evaluation and comparison of the baseline and
optimized sum reductions in OpenMP device offload on the GPU

Case | Base Optimized | Speedup | Efficiency
(GB/s) (GB/s) (%)

Cl 620 3795 6.120 | 15.4/94.3

C2 172 3596 20.906 | 4.3/89.4

C3 271 3790 13985 | 6.7/94.2

C4 526 3833 7.287 | 13.1/95.3

IV. EXECUTION OF SUM REDUCTION ON CPU AND GPU

As mentioned in Section III, the reduction performance is
measured without considering the movement of an input
array from the host to the device. In practice, the offload
overhead may be considered as an integral part of a reduction
application. While the reduction is offloaded to the GPU, the
CPU is idle until the offloaded computation is complete.
Using both the GPU and the CPU simultaneously [25] may
improve the reduction performance. In addition, it will be
interesting to evaluate the reduction performance with the
UM technology available in the GH system.

LenH = M x CPU part;
LenD = M - LenH;
sumD = sumH = 0;

#pragma omp parallel
{
#pragma omp master
{
#pragma omp target teams distribute
parallel for nowait map(to: inD[0:LenD])
for (i = 0; i < LenD; i++)
sumD += inD[1i];
}
#pragma omp for simd
for (1 = 0; 1 < LenH; i++)
sumH += inH[i];
}

sum = sumD + sumH;

Listing 7. The OpenMP implementation utilizes the CPU and
GPU simultaneously. The lengths of the input array to reduce on
the host and device are represented with LenH and LenD,
respectively. inD and inH are pointers to the same input array
at the proper places. The baseline reduction on the device is
shown in the code snippets.

A. Parallel Reduction with OpenMP Offload

Listing 7 shows the implementation of the co-execution
using OpenMP directives. The OpenMP “master” directive
could exploit simultanecous CPU and GPU execution. The
“master” directive specifies a structured block that will be
executed by the master thread of the team. Other threads in
the team will not execute the associated structured block.
There is no implied barrier either on entry to or exit from the
master construct [15]. In the structured block, part of the
reduction work is offloaded to the GPU with the OpenMP
target directive. The data “map” clause manages the data
movement from the host to the device. The “nowait” clause
avoids synchronization between the threads running on the
CPU and GPU. The remaining work is parallelized on the
CPU. The “simd” directive may instruct the compiler to make
the loop vector-friendly by having multiple loop iterations
executed simultaneously. The directive may provide tuning
hints for CPU targets; the directive is ignored for GPU targets
[24]. There is an implicit barrier at the end of the OpenMP

// Al: Allocate memory for input array
for (p = 0; p<=1; p=p + 0.1) {
// A2: Allocate memory for input array
// Compute the array lengths for the CPU and GPU
// Start timing
for (n = 0; n < N; n++) {
sumH = sumD = 0;
#pragma omp parallel
{
// Simultaneous reduction on the CPU and GPU
}
sum = sumH + sumD;
}
// Stop timing
bandwidth = le-9 x M x sizeof(T) * N / elapsed time
}

Listing 8. Performance measurement of the sum reduction. The
CPU part of the reduction (“p”) ranges from 0 to 1. Memory
allocation for the input array occurs at A1 or A2.



parallel region. Finally, the partial sums from the CPU and
GPU are added to produce the final sum.

UM is supported on the GH system, and the feature is
enabled with the option ~gpu=mem:unified added to the
command line of the OpenMP compiler. In the UM mode, the
compiler assumes that system memory is accessible on the
GPU. The whole program state is shared between the CPU
and the GPU. The GPU does not operate on a copy of the data
even if the program contains respective directives. The
compiler may utilize CUDA managed memory for dynamic
allocations by automatically replacing explicit memory
allocation and deallocation (e.g., calls to malloc/free
functions) with cudaMallocManaged- and cudaFree-
style allocation and deallocation [26]. The “map” clause will
not result in any device allocation or data transfer. The
OpenMP runtime may leverage such a clause to communicate
preferable data placement to the CUDA runtime by means of
memory hint [24].

B. Evaluation

The total time of offloading the reduction for N (N =200)
times is measured with the C++ standard chrono library. As
shown in Listing 8, the eclapsed time comprises the
initialization of partial sums, co-execution of the reduction on
the CPU and GPU, and the sum of partial sums. The
allocation of an input array can occur before (Al) or after
(A2) the loop iteration over the CPU part (“p”) of the
reduction work. The impacts of the two locations upon the
reduction performance will be assessed.

Figure 2a shows the performance of the baseline
reduction with respect to the CPU part of the reduction in the
UM mode. The allocation of the input array occurs at Al.
When the CPU part is zero, the reduction is offloaded to the
GPU entirely. When it is one, no reduction is offloaded to the
GPU. The reduction performance for C1 and C3 are almost
the same. The reduction performance for C2 and C4 are also
close to each other. Distributing the reduction across both
devices could achieve higher performance than the CPU-only

Bandwidth (GB/s) of the baseline reductions in
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Fig. 2a. Performance of the baseline reductions in the UM
mode for the four cases. The workload is distributed between
the CPU and the GPU. The CPU part of the reduction ranges
from O to 1. The input array is allocated at A1 for each case.

or GPU-only execution. The highest speedups over the GPU-
only execution are 2.732,2.246, 2.692, and 2.297 for the four
cases, respectively. The average speedup is approximately
2.492.

Figure 2b shows the performance of the optimized
reduction with respect to the CPU part of the reduction in the
UM mode. The allocation of the input array occurs at Al.
Based on the reduction performance shown in Figures 1, the
values of the parameters that result in saturated bandwidth on
the GPU are selected. The number of teams is 65536. “V”
equals 4 for Cl, C3, and C4. For C2, “V” equals 32.
Distributing the reduction across both devices could achieve
higher performance than the CPU-only or GPU-only
execution. The highest speedups over the GPU-only
execution are 2.253, 3.385, 2.100, and 2.197 for the four
cases, respectively. The average speedup is approximately
2.484.

Speedups of the optimized reductions in the UM mode
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Fig. 3. Performance speedups of the optimized reductions over
the baselines when co-running the reduction in the UM mode.
The CPU part of the reduction ranges from 0 to 1. The input
array is allocated at A1 for each case.
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Fig. 2b. Performance of the optimized reductions in the UM
mode for the four cases. The workload is distributed between
the CPU and the GPU. The CPU part of the reduction ranges
from 0 to 1. The input array is allocated at A1 for each case.
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Fig. 4a. Performance of the baseline reductions in the UM

mode for the four cases. The workload is distributed between
the CPU and the GPU. The CPU part of the reduction ranges
from 0 to 1. The input array is allocated at A2 for each case.

Figure 3 shows the performance speedups of the
optimized reductions in Figure 2b over the baseline
reductions in Figure 2a with respect to the CPU part of the
reduction in the UM mode. The speedup ranges from 0.996
to 10.654. The speedups are significant when the GPU parts
account for at least 50% of the total workloads.

Figure 4a shows the performance of the baseline
reduction with respect to the CPU part of the reduction in the
UM mode when the allocation of the input array occurs at A2.
The performance trends indicate that distributing the
reduction across both devices does not achieve higher
performance than the CPU-only execution.

Figure 4b shows the performance of the optimized
reduction with respect to the CPU part of the reduction in the
UM mode when the allocation of the input array occurs at A2.
Distributing the reduction across both devices could achieve
higher performance than the CPU-only or GPU-only
execution. The highest speedups over the GPU-only
execution are 1.139, 1.062, 1.050, and 1.017 for the four
cases, respectively. The average speedup is approximately
1.067.

Figure 5 shows the performance speedups of the
optimized reductions in Figure 4b over the baseline
reductions in Figure 4a with respect to the CPU part of the
reduction in the UM mode. The speedup ranges from 0.998
to 6.729. The speedups are significant when the GPU parts
account for at least 90% of the total workloads.

The performance of co-running the optimized reductions
with Al is on average 2.299X higher than that with A2.
However, the performance of the CPU-only reduction with
Al is 1.367X lower than that with A2. The memory for the
input array is allocated once in A1 whereas it is allocated per
loop iteration in A2. The initialization of the input array is
performed on the CPU, so memory pages are placed on the
CPU during initialization. For the loop over the CPU part of
the workload, the reduction is offloaded entirely to the GPU
in the first loop iteration. Hence, the pages that will be
accessed by the GPU are migrated from the CPU memory to
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Fig. 4b. Performance of the optimized reductions in the UM

mode for the four cases. The workload is distributed between
the CPU and the GPU. The CPU part of the reduction ranges
from 0 to 1. The input array is allocated at A2 for each case.
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Fig. 5. Performance speedups of the optimized reductions over
the baselines when co-running the reduction in the UM mode.
The CPU part of the reduction ranges from 0 to 1. The input
array is allocated at A2 for each case.

the GPU memory to improve the performance. For Al, these
migrated pages will reside in the GPU memory, improving
the reduction performance on the GPU as there is no
migration overhead from the CPU to the GPU for subsequent
loop iterations. For A2, allocating memory for each loop
iteration will also enable automatic migration of memory
regions between the GPU and CPU physical memory, but the
migration overhead occurs per iteration. When the reduction
runs entirely on the CPU in A2, there is no data migration
from the GPU memory to the CPU memory or data read from
the HBM memory by the CPU since memory pages are
placed on the CPU memory during initialization.

V. RELATED WORK

In [27], the performance of the integer sum reduction with
OpenMP offload is evaluated on an AMD MI100 discrete
GPU. This work evaluates the integer and floating-point
reductions on an NVIDIA Grace-Hopper system. The
experimental results show that the proposed reduction can



improve the baseline performance on the NVIDIA GPU. In
[28], the performance of the baseline and optimized integer
sum reductions written in HIP is evaluated on an AMD GPU.
To improve the reduction performance over the baselines, the
OpenMP offload implementations require less modifications
to the existing code base while the HIP or CUDA
implementations need more coding effort. In [29], the
advantages and disadvantages of abstractions for reductions
from different programming models are discussed. In this
work, the OpenMP abstraction is the focus. It will be
interesting to evaluate other abstractions in future studies. In
[30], the authors find that it is beneficial to use additional
private variables to reduce thread local contributions before
reducing into OpenMP reduction variables. However,
whether this technique can improve the performance of an
application on an NVIDIA GPU depends on the
implementation of an OpenMP compiler. In this work, adding
multiple elements per loop iteration (i.e., thread local
contribution) and exploring team sizes can improve the
reduction performance with the vendor’s compiler. In [14],
the authors acknowledge that it is challenging for a compiler
runtime to determine the best grid geometry for each target
region. Hence, heuristics are often adopted by an
implementation that yields high GPU occupancy. In this
experiment, the performance of the baseline reductions
indicates that the heuristics may be further optimized in the
implementations of the OpenMP reduction. In [18], the
authors introduce an instrumentation tool for automatic
offload of a subset of the CPU linear algrebra library calls to
the GPU on the GH system without user code modifications
or recompilation. The mechanism is commonly used in
profilers. In our work, the offload of the reduction operations
is implemented with OpenMP directives entirely.

In the co-execution experiments for the full airplane
simulation on an IBM Power 9 cluster with NVIDIA V100
GPUs [31], the authors find that co-execution reduces the
maximum elapsed time for the pure GPU execution by 23%.
When benchmarking query performance of database engines
on the NVIDIA Jetson AGX Xavier and AMD A10-7850K
edge devices, the implementations of a co-running model
obtain 2.95X bandwidth utilization over the GPU-only
methods and 1.82X over the CPU-only methods [32]. On the
Jetson platform, CUDA and OpenMP are the programming
models for the GPU and CPU, respectively. After corunning
the machine learning benchmarks on the AMD Ryzen 5
2400G architecture with an integrated GPU, the authors find
that most applications gain performance benefits from CPU-
GPU co-running, that the optimal work partitioning ratio
varies with the characteristics of the workloads, and that the
performance of co-running with zero-copy is always higher
regardless of the ratio of task partitioning [33]. For six
benchmarks that represent regular and irregular memory
behaviors, the speedup of co-execution over the GPU
execution approximately ranges from 1 to 2.5 with dynamic
scheduling and a unified shared memory programming model
on an Intel Core 15-7500 CPU with an integrated GPU [34].
In this work, co-running the reduction in the UM mode could
achieve higher performance than the GPU-only execution.
The performance speedups and optimal partition ratio depend

on the optimization of the reduction kernels on the GPU, the
data types of array elements, and where the array is allocated
in the program.

VL CONCLUSION

This work annotates a serial loop of sum reduction with
OpenMP target directives for parallel execution on a target
device. Then, it describes the proposed reduction in which the
numbers of teams and the number of elements to sum per loop
iteration are explicitly specified by a programmer. Comparing
the baseline reductions with the proposed reductions on the
NVIDIA Hopper GPU shows that the performance speedup of
the optimized reductions over the baselines on the GPU ranges
from 6.120 to 20.906, and the efficiency ranges from §9% to
95% of the theoretical memory bandwidth.

The study finds that simultaneous execution of the
reduction on the CPU and GPU in the unified memory (UM)
mode can improve the reduction performance compared to the
CPU-only or GPU-only execution. However, where the input
array is allocated in the program affects the performance of
co-running the reduction. When the input array is allocated
before the iteration of the CPU part of the workload, the
average speedup over the GPU-only execution is
approximately 2.484, the speedup of the optimized reductions
over the baseline reductions ranges from 0.998 to 10.654, and
the speedup is significant when the GPU parts account for at
least 50% of the total work. When the input array is allocated
for every iteration of the CPU part of the workload, the
average speedup over the GPU-only execution is
approximately 1.07, the speedup of the optimized reductions
over the baseline reductions ranges from 0.998 to 6.729, and
the speedup is significant when the GPU parts account for at
least 90% of the total work. The data migration overhead from
the CPU memory to the GPU memory contributes to the
performance slowdown.

Future studies would evaluate other reduction abstractions
and performance of applications that use sum reduction on the
GH system or on other vendors’ platforms where full UM
capabilities are supported.
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