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Abstract

The AEOLUS Center is dedicated to developing a unified optimization-under-uncertainty frame-
work for (1) learning predictive models from data and (2) optimizing experiments, processes, and
designs governed by these models, all driven by complex, uncertain energy systems. AEOLUS ad-
dressed the critical need for principled, rigorous, scalable, and structure-exploiting capabilities for
exploring parameter and decision spaces of complex forward simulation models—the so-called outer
loop. This report summarizes the work done under DE-SC0021077 on (1) nonlocal models for so-
lidification problems, (2) a multifidelity method for a nonlocal diffusion model, and (3) multifidelity
Monte Carlo methods.

1 Nonlocal models for solidification problems

This work was published in [1, 2].
As has been noted, nonlocal models are better suited, compared to local PDE models, to model

phenomena such as jump discontinuities. One setting in which jump discontinuities are desirable
are in multi-phase problems for which the two phases appear only in their pure form, i.e., at each
point, only one of the phases is present. Local models such as the Cahn-Hilliard equations can
(approximately) model sharp transitions between pure phases only if a regularization parameter is
very small and only if grids are seriously refined in the vicinity of the transitions. Here, we report
on nonlocal versions of the Cahn-Hilliard phase-field model that we have developed, analyzed, and
implemented and which can model sharp transitions independently of any parameter appearing in
the local model and also without the need for severe grid refinement.

Local (PDE) Cahn-Hilliard models. The classical Cahn-Hilliard (C-H) model is derived as the
gradient flow of the Ginzburg–Landau energy

E(u) =
ε

2

∫
Ω
|∇u|2 +

∫
Ω
W (u),

in the Hilbert space H−1(Ω), where ε denotes and interface width parameter and W (u) denotes a
potential function. The resulting C-H equations are given by

∂tu+ (−∆)(−ε∆u+W ′(u)) = 0 in Ω ⇐⇒

{
∂tu−∆w = 0

w = −ε∆u+W ′(u)
(1)

u(t = 0) = u0
∂u

∂n
=

∂∆u

∂n
= 0 (2)

Three choices for the potential W (u) are given in the Figure 1.
The local C-H model may be generalized by replacing one or two of the Laplacian operators in

(1) and (2) by general second-order elliptic PDE operators. Note that local C-H models result in
sharp interfaces only in the limit ε→ 0.
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regular double-well potential logarithmic potential (c > 0) obstacle potential

1
2 (1− u2)2, u ∈ R

1

2
(1− u2) + c(1 + u) ln(1 + u)

+ (1− u) ln(1− u) , u ∈ (−1, 1)

{
1
2 (1− u2) if |u| ≤ 1

+∞ if |u| > 1

Figure 1: Three choices for the potential W (u).

Nonlocal (PDE) Cahn-Hilliard models. Let Ω ⊂ Rn denote a bounded domain and, for a
given δ > 0, let the function the γδ(x, y) satisfy

γδ(x, y) ̸= 0 for all y ∈ Bδ(x) := {y ∈ Rn : |y − x| ≤ δ, δ > 0}.

Thus, two points x and y interact with each other only if |y−x| < δ; δ is referred to as the horizon
or interaction radius. The interaction domain ΩI ⊂ Rn corresponding to Ω is then defined as

ΩI := {y ∈ Rn \Ω : γδ(x, y) ̸= 0, x ∈ Ω}.

We also define the nonlocal flux operator

Nu(x) :=

∫
Ω∪ΩI

(u(x)− u(y))γδ(x, y) dy = 0 ∀x ∈ Ω}

which is the nonlocal analog of the local flux operator ∇u · n.
We use the notation B to denote nonlocal operators that are analogs of local second-order elliptic

PDE operators. We consider two types of nonlocal operators:

type 1: Neumann type

Bu(x) = ε

∫
Ω∪ΩI

(u(x)− u(y))γδ(x, y) dy ∀x ∈ Ω

along with Nu = 0 for x ∈ ΩI

(3)

type 2: regional type Bu(x) = ε

∫
Ω∪ΩI

(u(x)− u(y))γδ(x, y) dy ∀x ∈ Ω. (4)

For type 1 operators, nonlocal interactions occur in Ω∪ΩI whereas for type 2, nonlocal interactions
occur solely in Ω.
With A = −∆ and B either a nonlocal Neumann (with Nu = 0 on ΩI) or nonlocal regional

operator, a nonlocal Cahn-Hilliard model with smooth or logarithmic potential has the form

∂tu+Aw = 0 ∀x ∈ Ω, w = Bu+W ′(u) ∀x ∈ Ω, and
∂w

∂n
= 0 ∀x ∈ ∂Ω (5)

For cf > 0, the obstacle potential can be defined as

W (u) = W0(u)+O[−1,1](u) where W0(u) =
cF
2
(1−u2) and O[−1,1](u) :=

{
0 if |u| ≤ 1

+∞ otherwise.
(6)
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W0(u) is differentiable with, of course, W ′
0 = −cFu. However, O[−1,1](u) is not differentiable so

that subdifferentials are used. The subdifferential of O[−1,1](u) is given by

∂O[−1,1](u) =


(−∞, 0] if u = −1
0 for u ∈ (−1, 1)
[0,+∞) if u = 1

so that the subdifferential of W (u) is given by ∂W (u) = −cFu + ∂O[−1,1](u). Then, a nonlocal
Cahn-Hilliard model with the obstacle potential has the form

∂tu+Aw = 0 and w = Bu+W ′
0(u) + ∂O[−1,1](u). (7)

This leads to a variational inequality system which can be written as a complementarity system
with Lagrange multiplier λ = ∂O[−1,1](u).
To discretize the nonlocal C-H models, we use continuous piecewise linear finite element methods

for spatial discretization and the backward-Euler method for temporal discretization.

Analysis and numerical analysis. We have analyzed the nonlocal Cahn-Hilliard models and
their finite element approximation. In particular,
– we have proved that the energy decays in time for both the continuous problem and for the

fully discrete problem
– we have proved that for certain specifically defined combinations of the parameters in the

problem, the interface is sharp, that is, u can only take on the values −1 and 1
– we have proved well posedness
– we have derived error estimates for finite element approximations.

Numerical results. We provide some sample numerical results that illustrate the differences be-
tween solutions of the local C-H equations and the nonlocal C-H equations with obstacle potentials
and also to illustrate the differences between solutions of the Type 1 and Type 2 nonlocal C-H
equations. For the sake of brevity, we do not provide any details about the specifics of the calcu-
lation. Detailed descriptions can be found in [?]. We do point out that the kernel γδ(x, y) used
for the computations is integrable which implies that the space in which nonlocal models are well
posed include functions with jump discontinuities [11, 12].
We first consider the one-dimensional setting. Figure 2 corresponds to the Type 1 nonlocal

“Neumann”-type C-H equations. We can clearly observe that the nonlocal solution has jump
discontinuities (with respect to the employed computational grid) and, in for sufficiently large
times, admits pure states (i.e., the solution values are either −1 or 1) whereas the local solution
also takes on values in (−1, 1) even for large times. These observations are in agreement with our
theoretical results.
Figures 3 and 4 correspond to the Type 2 nonlocal “regional” C-H equations with the difference

between the two figures being that the former corresponds to the obstacle potential (6) whereas the
latter corresponds to a modification of that potential. In contrast to the example of Figure 2, in
Figure 3 we no longer observe sharp interfaces in the nonlocal solution whereas in Figure 4 we do
observe sharp interfaces in the nonlocal solution. Thus, Type 2 nonlocal “regional” C-H equations
have the flexibility of being able to model both sharp and diffuse interface. These results are in
agreement with our theoretical results.
Next, we consider the two-dimensional setting and the “Neumann”-type nonlocal C-H equations.

In Figures 5 and 6, we plot the snapshots of the local and nonlocal solutions at different time steps.
The difference between the two solutions is in their initial conditions. Figure 5 corresponds to a
smooth initial condition u0(x) whereas for Figure 6 the initial condition is defined by sampling
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t = 0.02 t = 0.03

t = 0.06 t = 2.00

Figure 2: Snapshots of the solutions of the nonlocal “Neumann”-type Cahn-Hilliard equations and
solutions of the local PDE Cahn-Hilliard equation at different time instances.

t = 0.02 t = 0.03

t = 0.06 t = 2.00

Figure 3: Snapshots of the solutions of the nonlocal “regional”-type Cahn-Hilliard equations and
solutions of the local PDE Cahn-Hilliard equation at different time instances.

from a uniform random distribution on [−1, 1] at each grid point. In Figure 5, we observe that
local and nonlocal solutions look alike. However, whereas the nonlocal model can describe perfectly
sharp interfaces up to the resolution of the discretization mesh, the interfaces for local solution are
diffuse. In Figure 6, we observe that the local and nonlocal solution are quite different in a pointwise
manner, but are qualitatively the same. We also again observe that the nonlocal model can describe
perfectly sharp interfaces up to the resolution of the discretization mesh but the interfaces for local
solution are again diffuse. These results are in agreement with our theoretical results.
Finally, in Figure 7 we consider the “regional”-type nonlocal C-H equations with the modified

5



t = 0.02 t = 0.03

t = 0.06 t = 2.00

Figure 4: Snapshots of the solutions of the nonlocal “regional”-type Cahn-Hilliard equations and
solutions of the local PDE Cahn-Hilliard equation at different time instances.

t = 0.004 t = 0.009 t = 0.0225 t = 1

Figure 5: For a smooth initial condition, snapshots of the solutions of the local C-H equations (top)
and of the “Neumann”-type C-H equations (bottom) at different time instances.

obstacle potential and with a random initial condition. The observations made corresponding to
Figure 6 hold for this case and again the results are in agreement with our theoretical results.
In summary
– the numerical results reported are in agreement with out theoretical results
– stable computations without regularization are possible in the nonlocal case
– in general, “Neumann”-type nonlocal C-H equations result in sharp interfaces
– in general, “regional”-type nonlocal C-H equations can result in sharp or diffuse interfaces,

depending on parameter choices
– in local case, the thickness of the interface depends on the parameter ε and sharp interfaces

can be obtained only in the limit ε → 0 so that to obtain nearly sharp interfaces ε must be small
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local

nonlocal
t = 0.01 t = 0.1 t = 0.4

Figure 6: For a random initial condition, snapshots of the solutions of the local C-H equations (top)
and of the “Neumann”-type C-H equations (bottom) at different time instances.

local

nonlocal
t = 0.02 t = 0.5 t = 1

Figure 7: For a random initial condition, snapshots of the solutions of the local C-H equations
(top) and of the “regional”-type C-H equations with a modified obstacle potential at different time
instances.

and severe grid refinement near the interface is needed whereas, in the nonlocal case, parameter
choices can be made so that

sharp interfaces can be obtained independently of ε
so that

no grid refinement is needed near the interface
and also for parameter choices that result in diffuse interfaces,

the thickness of those interfaces are also independent of ε.
Following up our previous efforts (see [10]) on nonlocal models for the Cahn-Hilliard and Allen-

Cahn equations, during the second reporting period we defined a novel nonlocal model for the
solidification of pure materials. For such materials, the Kobayashi model for the solidification

7



of pure materials [4] is described by a coupled system of partial differential equations equations
involving two variables: a nonlinear Allen-Cahn model for the phase field variable u (with u = 0
corresponding to a liquid and u = 1 to a solid state) and a nonlinear partial differential equation
for the temperature T . Specifically, the Kobayashi model is given by

∂T

∂t
= D∆T +K

∂u

∂T
(a)

τ
∂u

∂t
= ∇ · (ε(θ)2∇u)−∇ ·

(
|∇u|2ε(θ) ∂ε(θ)

∂(∇u)

)
− F ′

reg(u, T ), (b)
(8)

where we have the double-well potential

Freg(u, T ) =
1

4
u2(1− u)2 +m(T )

(
1

3
u3 − 1

2
u2
)

(9)

and ε is a nonlinear function of the gradient which in the two-dimensional case Ω ⊂ R2 is given by

ε(θ) = ε̃σ(θ(∇u)), (10)

where D and K are constants, θ̃ is a mean value of ε and σ(θ) = 1 + δ cos(j(θ − θ0)), and θ is an
angle between ∇u and a certain direction. The coupling of the phase field and the temperature is
effected via the ∂u/∂T term in (8a) and the function

m(T ) =
(α
π

)
tan−1 (ρ(Te − T )) , 0 < α < 1, |m(T )| < 1/2 (11)

that appears in (8b) through (10).
The novel nonlocal model for the solidification of pure materials we have developed can be consid-

ered to be analogue of the Kobayashi model in which the principal modification is the replacement
of the nonlinear local differential operator in (8b) for the phase-field variable by the linear nonlocal
operator

Bu :=

∫
Ω∪ΩI

(u(x)− u(y))γ(x,y) dy = cγ(x)u(x)− (γ ∗ u)(x), x ∈ Ω, (12)

where γ(·, ·) ≥ 0 (which is referred to as the kernel), (γ ∗ u)(·) denotes the convolution operation,

ΩI := {y ∈ Rn \Ω : γ(x,y) ̸= 0, x ∈ Ω}

(which is referred as the interaction domain corresponding to Ω), and cγ(x) =
∫
Ω∪ΩI

γ(x− y) dy.

We make two additional modifications of the Kobayashi model.1 First, we use of a Cahn-Hilliard
type model instead of the Allen-Chan type model; we do this because Cahn-Hilliard type models
allow for sharp interfaces whereas Allen-Cahn-type models do not. Second, we replace the smooth
potential (9) by the non-smooth obstacle potential

Fobs(u, T ) :=
cF
2
u(1− u)− cmm(T )u+ I[0,1](u), cF , cm > 0,

where I[0,1](u) denotes the indicator function; we do so because the obstacle potential only allows
values of the phase field in the interval [0, 1] whereas the smooth potential allows for values less
than zero and greater than one. See the figure below for plots of the two types of potentials.

1These modifications can also be effected for the Kobayashi model itself.
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The obstacle potential is non-smooth so we resort to the notion of subdifferentials to define the
derivative of Fobs, i.e., we have

∂Fobs(u, T ) = −cFu+
cF
2
− cmm(T ) + ∂I[0,1](u), (13)

where ∂I[0,1](u) is a subdifferential of the indicator function defined as

∂I[0,1](u) =


(−∞, 0] if u = 0

0 for u ∈ (0, 1)

[0,+∞) if u = 1.

m > 0 m = 0 m < 0

Comparisons of the regular Freg(u, T ) and obstacle Fobs(u, T ) double-well potentials.

The nonlocal solidification model then given by
∂T

∂t
= D∆T +K

∂u

∂t

τ
∂u

∂t
+ (I − β∆)w = 0

w = Bu+ ∂Fobs(u, T ),

(14)

where β ≥ 0. Note that if β = 0 the last two equations above reduce to a nonlocal Allen-Cahn
model with the double-well obstacle potential. The model (14) can be rewritten as [2]

∂T

∂t
= D∆T +K

∂u

∂t
,

τ
∂u

∂t
+ (I − β∆)w = 0

w = −ξu+ γ ∗ u− cF
2

+ cmm(T )− λ, λ ∈ ∂I[0,1](u),

(15)

where ∗ denotes the convolution operator and

ξ(x) =

∫
Ω̃
γ(x− y) dy − cF and γ ∗ u =

∫
Ω̃
u(y)γ(x− y) dy. (16)

We supplement (14) or (15) with additional constraints placed on u on ΩI and on w on the
boundary of Ω. We set cF = 1/6 = cm = 1/6, so that as is the case for the regular potential,
Fobs(0, T )− Fobs(1, T ) = m/6.
To discretize the model (15), we employ an implicit-explicit time stepping scheme, where we

discretize the nonlocal convolution term γ ∗ u together with the coupling term m(T ) explicitly.
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This choice of the discretization allows us to decouple the problem and to obtain an efficient
solution strategy. In particular, the phase field variable u can be obtained via a projection formula
so that no solution of the dense nonlocal system is necessary. For spatial discretization we use
piecewise-linear continuous finite elements.
We have conducted several computational examples using different kernels and different model

data. Here, we give results for two examples. For both, we use the kernel γ(x−y) = Cδ max
(
0, 1−

|x−y|2
δ2

)
, where Cδ = 15/2δ3 in one dimension and Cδ = 24/πε4 in two dimensions. For the two-

dimensional example, we use parameter values for pure nickel and the spatial-temporal domain is
chosen as Ω = (4.5, 2.25)× (4.5, 2.25) and t = [0, 3.5]. For the local model, we choose2 ϵ = 10−2 ∼
5h. For the nonlocal model we choose δ = 0.0753 (∼ 4h) and choose other model parameters to
simulate nickel solidification. Th first figure below is illustrative of the 2D results we have obtained.
The 1D results given in the second figure below clearly illustrate the differences in how local

and nonlocal models handle the interface between the liquid and solid states. Using the obstacle
potential and the same grid spacing for both models, the interface thickness for the local model
is 8 or 9 grid intervals wide whereas the nonlocal interface is 2 intervals wide. The disparity is
even worse for the local model with the very common choice of the smooth potential for which the
interface is 20 or so intervals wide. For the local model, reducing ϵ by a factor of 8 requires the
refinement of the grid by a factor of 8 near the interface to produce an interface thickness akin to
that of the nonlocal model.

Left: the local interface spreads over ϵ ∼ 5 or more grid cells. Right: the nonlocal interface spreads
at most 1 or 2 grid cells.

2For the local model, the thickness of the interface is of order ϵ so that sharp interfaces can only occur in the limit
of ϵ → 0. A a result, if one wants to obtain sharp approximate interfaces, one must refine the spatial grid in the
vicinity of the moving interface.
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Predicted 1D interfaces at a final time for different models (zoomed-in). For the local model, two
grid spacings are used and both the regular and obstacle potentials are considered. For the nonlocal
model, the obstacle potential is considered and the grid corresponds to the coarser grid used for the
nonlocal model.

2 A multifidelity method for a nonlocal diffusion model

This work was published in [9].
Nonlocal models feature a finite length scale, referred to as the horizon, such that points sepa-

rated by a distance smaller than the horizon interact with each other. Such models have proven,
compared to differential equations models, to more faithfully agree with observations in settings
such as fracture, subsurface flows, and image processing. However, due to the reduced sparsity
of discretizations, they are also generally computationally more expensive compared to their local
differential equation counterparts, so much so that in multi-query applications such as uncertainty
quantification, optimization, and control the increased computational costs can render nonlocal
modeling to be infeasible. Not surprisingly, there have been several proposed approaches such as
reduced-order modeling (e.g., proper orthogonal decomposition) or better sampling strategies (e.g.,
alternatives to Monte Carlo sampling) aimed at mitigating this situation.
In local settings such as for the numerical solution of differential equations, multifidelity methods

that judiciously combine a “truth” model of interest with less costly surrogate models have been
shown, e.g., in multi-query settings, to effectively reduce costs without compromising accuracy;
see, e.g., [5, 6]. We have developed, implemented, and tested a a multifidelity Monte Carlo method
for nonlocal models; see [9]. We emphasize that due to the reduced sparsity of nonlocal models
the need for approaches such the one we have developed is much greater than that of related PDE
models and thus multifidelity methods have greater impact for nonlocal models compared to local
models.

A nonlocal diffusion model. Given a domain3 Ω = (0, L) ⊂ R and a length scale δ (referred to
as the interaction radius or horizon), we define the interaction domain ΩI = {y ∈ R\Ω : |y−x| ≤
δ for some x ∈ Ω} = [−δ, 0] ∪ [L, L+ δ], i.e., ΩI consists of all points in R \Ω that interact with
points in Ω. For given functions b(x), g(x), and γ(x, x′) defined on Ω, ΩI , and (Ω∪ΩI)×(Ω∪ΩI),

3To simplify the exposition, we confine ourselves to a one-dimensional setting (as a proof of concept); generalization
to higher dimensions is a straightforward exercise.
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respectively, the one-dimensional, steady-state nonlocal diffusion model we consider is given by−2
∫ x+δ

x−δ

(
uδ(x

′)− uδ(x)
)
γ(x, x′) dx′ = b(x) ∀x ∈ Ω = (0, L) (a)

uδ(x) = g(x) ∀x ∈ ΩI = [−δ, 0] ∪ [L, L+ δ] . (b)

(17)

Note that (17) is a nonlocal analog of the PDE Dirichlet boundary-value problem −∇· (a(x)∇u) =
b(x) in Ω and u = g(x) on the boundary of Ω. Indeed, as the horizon δ → 0, the nonlocal model,
when properly formulated, reduces to such a PDE problem; see, e.g., [11, 12, 13].
The function γ(x, x′) in (17) is referred to as the kernel; the choice made for γ(x, x′) determines the

properties of solutions including their smoothness properties. As a result of the flexibility available
in the choice of γ (x, x′), nonlocal models can model a wide variety of observed behaviors. For
example, for bounded kernels, the nonlocal problem admits solutions having jump discontinuities;
of course, such solutions are not obtainable from second-order elliptic PDEs.
Nonlocal models such as (17) have been subject to discretization via the same approaches as

those used for discretizing PDEs. Which of these approaches one selects is not germane to our
goals. For the sake of concreteness, we use a finite difference method. The reduced sparsity of
the discretizations is now easily explained. For a fixed horizon δ, as the grid size h is reduced,
the number of nodes that interact with a given node, i.e., the stencil associated with a give node,
increases and the same occurs if h is fixed and δ increases. This is in contrast to the local setting
for which the stencil remains the same as h is reduced.

A brief review of multifidelity Monte Carlo methods. We provide a brief account of the
multifidelity Monte Carlo (MFMC) method of [5]. For the sake of concreteness, we consider the
uncertainty quantification setting.
The goal is to determine approximate statistical information about a desired “truth” output of

interest (OoI) f (1)(z) : Z → F , where z is a random input selected from the input domain Z ⊂ Rd

and F ⊂ R denotes the corresponding output domain. Again, for the sake of concreteness, we
consider the (statistical) quantity of interest (QoI) to be the expected value E[f (1)(z)]; other QoIs
such as higher moments of the OoI can be treated in a similar manner. We approximate the QoI
via Monte Carlo (MC) sampling, i.e., for MMC independent and identically distributed random
samples zm ∈ Z, m = 1, . . . ,MMC , drawn from a given probability density function, we have the
MC estimator

fMC
MMC

=
1

MMC

MMC∑
m=1

f (1)(zm) ≈ E
[
f (1)(z)

]
. (18)

If MMC ≫ 1 and f (1)(·) is expensive to evaluate, (18) may be prohibitive in cost.
Suppose we have in hand a set of lower-cost surrogate OoIs f (2), . . . , f (K) : Z ⊂ F with corre-

sponding costs wk, k = 2, . . . ,K. Then, for a given set of weights α2, . . . , αK and a given set of
sample sizes 0 < M1 ≤M2 ≤ · · · ≤Mk, the unbiased MFMC estimator is defined as

fMFMC
MMF

= f
(1)
M1

+
K∑
k=2

αk

(
f
(k)
Mk
− f

(k)
Mk−1

)
≈ E

[
f (1)(z)

]
, (19)

where f
(k)
Mk

and f
(k)
Mk−1

denote the MC estimators for the OoI f (k)(·), respectively, using Mk and
Mk−1 input samples drawn from the input domain Z, i.e.,

f
(k)
Mk

=
1

Mk

Mk∑
m=1

f (k)(zm) and f
(k)
Mk−1

=
1

Mk−1

Mk−1∑
m=1

f (k)(zm). (20)
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Note that the Mk−1 samples taken in the second sum can be reused in the first sum so that the total
number of evaluations of f (k)(·) for each term in (19) is Mk. Thus, the cost incurred to determine
the MFMC estimator (19) is given by

∑K
k=1wkMk.

For k = 1, . . . ,K, let σ2
k = Var

(
f (k)(z)

)
, ρ1,k = Cov

(
f (k)(z), f (1)(z)

)
/(σkσ1) = Pearson correla-

tion coefficient. Then, the optimal values for the weights αk and the number of samples Mk are
determined, for a given budget p, by minimizing the variance of fMFMC

MMF
subject to the constraints∑K

k=1wkMk = p and 0 < M1 ≤M2 ≤ · · · ≤Mk. If one assumes that

|ρ1,1| > · · · > |ρ1,K | and µk =
wk−1

wk
> νk =

ρ21,k−1 − ρ21,k
ρ21,k − ρ21,k+1

for k = 2, . . . ,K (21)

with ρ1,K+1 = 0 hold, this optimization problem has the unique analytic solution (see [5])

αk =
ρ1,kσ1
σk

and Mk = M1rk for k = 2, . . . ,K with M1 =
p∑K

k=1wkrk
, (22)

where rk =
(
w1(ρ

2
1,k − ρ21,k+1)/wk(1 − ρ21,2)

)1/2
for k = 1, . . . ,K. We note that the constraint

M1 > 0 ensures that the accuracy of the MFMC estimator corresponds to that of the truth model
f (1)(·), i.e., the accuracy is not damaged by the use of surrogate models.
The first requirement in (21) is easily satisfied by re-ordering the OoIs f (k)(·). The second

requirement is violated whenever the decrease in the accuracy of the low-fidelity model k (in the
order of decreasing correlation coefficient) is more significant that the reduction of its cost of
evaluation. The models that violate the second requirement in (21) are then eliminated from the
set of models used in the MFMC estimator. It is worth mentioning that the second requirement
is defined by comparing each model to the preceding one in the order of decreasing correlation
coefficient. One then continues the winnowing process of checking the second requirement and
eliminating the models that violate this requirement until all the remaining models satisfy the
second requirement.
Note that (22) does not, in general, yield integer values for the number of samples Mk. In

this study, we have chosen to round up to the nearest integer. Also, the values of σk and ρ1,k
are generally not known a priori, so that in practice they are estimated by computing a very few
realizations of the models f (k)(·) for k = 1, . . . ,K, where “very few” is relative to the very large
number of samples one would have to use if one were to use a straightforward MC estimator for
E[f (1)(·)]. Such realizations can even be reused to estimate the costs wk of evaluating f (k)(·) should
those costs not be known.4

A numerical illustration. Consider the discretization of the nonlocal diffusion model (17) with
L = 1, a random constant source term b for x ∈ (0, 1), the constraints u(x) = g with g a random
constant for x ∈ [−δ, 0], u(x) = 0 for x ∈ [1, 1+δ], and the constant kernel function γ(x, x′) = 1/2δ3

for |x − x′| < δ. The random inputs are independently, identically, and uniformly distributed
realizations of z = (b, g) within the input domain Z = [−1.1 − 0.9] × [0.9 1.1] ⊂ R2. Note that
the dependence of the kernel on δ is a scaling factor that ensures that as δ → 0, i.e., as the
extent of nonlocal interactions vanish, the nonlocal problem reduces to its local differential equation
counterpart −d2u/dx2 = b.5

4We note that multilevel Monte Carlo methods [14, ?] are a special case of multifidelity Monte Carlo methods; the
former usually involve surrogates that depend on coarser grid sizes and for which a hierarchy of costs, correlations,
etc. are known a priori. Multifidelity Monte Carlo methods do not assume that such a hierarchy is available and
also, in general, can involve surrogates of many different types.

5This is not a requirement for the proposed multifidelity framework. We choose the specific model we consider
only for validation purposes.
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The truth quantity of interest (QoI) is the expected value of the output of interest (OoI) f (1,1) (z) =(∫
Ω u(x, δ1, h1; z)

2dx
)1/2

for δ1 = 0.25 and h1 = 1/N1 = 2−10. An approximation of the truth value

of the QoI E[f (1,1) (z)] is defined as the Monte Carlo (MC) estimator (19) using MMC = 5 × 108

samples of (b, g) ∈ Z.
We define eight lower-cost surrogate estimators by using two smaller horizon values δ2 = 0.25/2

and δ3 = 0.25/22 and/or two larger grid length values h2 = 2−9 and h3 = 2−8. The models are
indexed using a pair of indices (i, j) with the first index representing the δ-model, and the second

index the h-model, e.g., f (i,j) (z) =
(∫

Ω u(x, δi, hj ; z)
2dx
)1/2

. Including the truth estimator, we
specifically solve the discretized nonlocal model (17) for samples zm = (bm, gm) ∈ Z to obtain
f (i,j)(zm) for i, j = 1, . . . , 3. Letting k = j+3(i− 1) for i, j = 1, . . . , 3, the costs wk and correlation
coefficients ρ1,k for the surrogates are approximated by the averages over 50 samples of the random
inputs; cost measurements are defined as wall-clock times. Using 500 or even 1000 samples to
estimate costs and correlation coefficients results in similar numbers as given below for 50 samples.
We consider four specific cases.
1. The MC estimator (18) with the truth values δ = 0.25 and h = 2−10 and with the number of

samples MMC limited by a given budget p.
2. h = 2−10 is fixed at the truth value and δ1 = 0.25, δ2 = 0.25/2, and δ3 = 0.25/22 so that

the first of these gives the truth model f (1,1) and the other two define cheaper and lower-fidelity
surrogates f (2,1) and f (3,1), respectively. These three models satisfy both requirements in (21) in
their current order (f (1,1), f (2,1), f (3,1)). We refer to this case as the “three-δ case.”
3. δ = 0.25 is fixed at the truth value and h1 = 2−10, h2 = 2−9, and h3 = 2−8 so that the first of

these gives the truth model f (1,1) and the other two defining cheaper and lower-fidelity surrogates
f (1,2) and f (1,3), respectively. Similar to Case 2, these three models satisfy both requirements in
(21) in their current order (f (1,1), f (1,2), f (1,3)). We refer to this case as the “three-h case.”
4. δ1 = 0.25, δ2 = 0.25/2, and δ3 = 0.25/22 and h1 = 2−10, h2 = 2−9, and h3 = 2−8 so that in

addition to the truth model, there are eight lower-cost surrogate models. In this case, the second
requirement in (21) is not satisfied. As a result, only the four surrogates f (1,2), f (1,3), f (2,3), and
f (3,3) and, of course, the truth model f (1,1), survive the winnowing process mentioned above. We
refer to this case as the “five-δ, h case.”

Discussion of results. For each surrogate and for the truth model, the number of samples taken
for each model is determined from (22). Figure 8 provides the distribution of number of samples
for the four cases. Because the pair of “three-h” surrogates f (1,2) and f (1,3) are better correlated to
the truth model f (1,1) than are the pair of “three-δ” surrogates f (2,1) and f (3,1), fewer number of
samples of the truth model are needed for the former compared to that for the latter. Of course, the
“five-δ-h” case requires an even smaller number of samples of the truth model, but the improvement
over the “three-h” case is small compared to the improvement between the “three-δ” and “three-
h” cases. The relative effectiveness of the MC estimator and the three MFMC estimators as a
function of the budget available and as measured by the mean-squared error (MSE) is illustrated
Figure 9. The MSE is estimated by comparison to the Monte Carlo estimator with 5×108 samples.
Viewing the plots in Figure 9 vertically, we observe that for the same chosen budget value p, all
three MFMC estimators, when compared to the use of only the MC estimator, result in better
accuracy for the same costs, with the “three-δ” estimators yielding about one order of magnitude
and the “three-h” and “five-δ, h” estimators yielding two or three orders of magnitude reductions
in the error for the same cost. Viewing the plots horizontally, we observe that for a desired MSE,
all three MFMC estimator result in lower costs, with again the “three-h” and “five-δ, h” estimators
yielding the largest gains. We also observe from Figure 9 that the use of surrogate models defined
for larger values of h outperforms the use of surrogate models defined for smaller values of δ. Most
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Figure 8: The figure shows the distribution of the total number of samples across different models
used in each MFMC case. Note the logarithmic scale on the vertical axis. The gray boxes indicate
surrogates that were not included for each particular case. The boxes with crosses indicate surrogates
that were eliminated because they violated the second requirement of (21).

of the gain that the “five-δ, h” estimator achieves over the single-model case is due to the inclusion
of different h surrogates relative to the gains affected by instead using different δ surrogates.

Figure 9: Estimated mean-squared errors vs. the budget p in wall-clock seconds for the three MFMC
estimators and the MC estimator.
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3 Multifidelity Monte Carlo methods for “realistic” computational
budgets6

This work was published in [3].

Multifidelity Monte Carlo (MFMC) methods have shown great promise for the efficient and
flexible estimation of statistical quantities. As experimental data can take a variety of forms,
the primary advantage of MFMC estimation is its ability to accommodate a diverse ensemble of
information sources which may be unrelated apart from predicting the same quantity of interest.
However, despite their success, MFMC methods can “break down” when the model simulation costs
are large relative to the available computational budget.

MC and MFMC estimators. Let {f1(z), f2(z), . . . , fK(z)} denote scalar outputs of interest
of a set of K computational models that depend on the random vector of parameters z ∈ Γ
with decreasing computational complexity, where here Γ denotes a parameter domain. Recall that
Monte Carlo (MC) sampling yields the K unbiased estimators

QMC
k =

1

Mk

Mk∑
m=1

fk(zm) ≈ E
[
fk
]

for k = 1, . . . ,K,

where z1, . . . , zMk
denote Mk i.i.d. samples in Γ and E [ · ] denotes the expected value.

The goal of MFMC is to estimate the expectation quantity of interest Q = E
[
f1
]
using a linear

combination of standard MC estimators. These can be used to define the MFMC estimator

QMFMC = QMC
1 +

K∑
k=2

αk

(
QMC

k −QMC
k−1

)
≈ E

[
f1
]

(23)

which is unbiased by linearity and where {αk}Kk=2 denotes a set of scalar weights and {Mk}Kk=1

denotes a set of increasing integers defining the number of samples.
Letting Ck detnote the cost of evaluating the kth model output fk, the costs of computing the

respective MC and MFMC estimators are given as

CMC
k = MkCk and CMFMC =

K∑
k=1

CkMk = C ·M,

where C and M denote K-vectors having components {Ck}Kk=1 and {Mk}Kk=1, respectively.
For a fixed computational budget b = C ·M, MFMC aims to construct an optimal sampling

strategy M = {Mk}K1=2 along with an optimal set of weights α = {αk}Kk=2 so that the mean
squared error (MSE) of the estimator QMFMC is lower than that of the Monte Carlo estimator
QMC

1 .
Denoting the variance of the kth model output fk and the correlation between models fk and

fk′ by

σ2
k = Var

[
fk(z)

]
and ρk,k′ =

Cov
[
fk(z), fk′(z)

]
σkσk′

,

6Anthony Gruber (postdoc) at Florida State University and Professors Lili Ju and Zhu Wang at the University of
South Carolina were collaborators on this project; they were not supported by AEOLUS related grants. FSU and USC
personnel were supported by U.S. Department of Energy grants DE-SC0020418 and DE-SC0020270, respectively.
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respectively, we have that the MSE of the MC estimator QMC
k of the quantity of interest Q is

simply

e(QMC
k ) = E

[(
E
[
fk(z)

]
−QMC

k

)2]
= E

[
fk(z)

]2
− E

[
fk(z)2

]
=

σ2
k

Mk
,

whereas the MSE of QMFMC is given by (see [5]) as

e(QMFMC) = Var
[
QMFMC

]
=

σ2
1

M1
+

K∑
k=2

(
1

Mk−1
− 1

Mk

)(
α2
kσ

2
k − 2αkσkσ1ρ1,k

)
. (24)

Then, the optimal weights {α∗
k}Kk=2 and sampling numbers {M∗

k}kk=1 of the MFMC sampling strat-
egy are defined through as the solution to the mixed integer minimization problem (MIP)

argmin
M∈Zk,α∈Rk−1

e(QMFMC) such that M1 ≥ 1, Mk−1 ≤Mk, 2 ≤ k ≤ K, C ·M ≤ b. (25)

Analytic solutions to the problem (25) are not easy to obtain (if they even exist). However, the
continuous relaxation obtained by letting Mk ∈ R+ for all k = 1, 2, . . . ,K has an analytic solution
(see [5, Theorem 3.4]). Unfortunately, the optimal sampling numbers M∗ computed according to
this relaxation are not guaranteed to be integers. Thus, in practice, MFMC is implemented by
rounding downwards, i.e., we make the substitution M∗ ← ⌊M∗⌋ for the optimal sampling number
(see [5, Algorithm 2]).
For large budgets b, this is of little consequence – each model output is evaluated at least once

and often some of the models are evaluated many times, so replacing M∗
k by largest smaller integer

provides a simple and reasonable solution which is guaranteed to be feasible (if potentially sub-
optimal) for the original problem (25). However, this approach could be unsuitable in cases for
which the cost of obtaining model outputs is large but computational budgets do not allow for a large
number of samples of those outputs. Rounding in this case not only can violate the constraints of
the problem but also the biases the estimator QMFMC , destroying the performance of the method.
To remove the bias, one could instead round up, i.e., use ⌈M∗

k ⌉. However, in the case of expensive
outputs, one finds that M∗

1 ≪ 1 and perhaps likewise for other sample numbers so that rounding
up to the nearest integer results in violation of the available computational budget.

A modified MFMC estimator. Whereas simple rounding is not sufficient to repair MFMC
estimation, a slightly modified MFMC algorithm always yields a solution which is budget constraint-
preserving, feasible for (25), and optimal up to the rounding downwards of M∗

k of some M∗
k . First,

note that it can be shown by repeating the arguments in [5] that the Lagrangian

Lk = e(QMFMC) + λ

(
K∑

k′=k

Ck′Mk′ −

(
B −

k−1∑
k′=1

Ck′

))
+

K∑
k′=k+1

µk′ (Mk′ −Mk′−1)− ξMk (26)

has a unique global minimizer corresponding to a pair (M∗,α∗) ∈ RK−k+1×RK−k for any 1 ≤ k ≤
K.
Lemma. Let {fk}Kk=1 denote the computational model outputs of interest with correlation coef-

ficients {ρ1,k}Kk=2 and computational costs {Ck}Kk=1 respectively satisfying

|ρ1,k−1| > |ρ1,k| and
Ck−1

Ck
>

ρ21,k−1 − ρ21,k
ρ21,k − ρ21,k+1

, k = 2, . . . ,K. (27)

17



Let

r∗k =
M∗

k′

M∗
k

=

√√√√ Ck

Ck′

(
ρ21,k′ − ρ21,k′+1

ρ21,k − ρ21,k+1

)
, k = k′, . . . ,K.

Then, for each k = 1, . . . ,K, the unique global minimum (M∗,α∗) ∈ RK−k+1 × RK−k of the
Lagrangian Lk

M∗
k =

B −
∑k−1

k′=1Ck′∑K
k′=k Ck′rk′

, M∗
k′ = M∗

k r
∗
k′ , and α∗

k′ =
ρ1,k′σ1
σk′

, k = k′ + 1, . . . ,K. □

The solution pair (M∗,α∗) ∈ RK × RK−1 may or may not contain components M∗
k < 1. If

if no component of M∗ is less than one, then no modification is needed and simple rounding
downwards produces the model evaluation numbers M∗ ← ⌊M∗⌋ which are nearly optimal
and preserves the computational budget.

Otherwise,
if the first component M∗

1 < 1, then that component is redefined to be M∗
1 = 1 and the

function L2 in (26) is minimized for the remaining K − 1 components of M∗.
This gives a new solution vector (M∗

2 , . . . ,M
∗
k ) which may or may not contain entries less than

1. If it does not, the model evaluation vector becomes M∗ = (1,M∗
2 , . . . ,M

∗
k ), where here Mk,

k = 2, . . . ,K are have been rounded downwards. Otherwise,
this process is repeated and the functions Lk are minimized until there are no more indices
k satisfying M∗

k < 1.
The result is

a pair (M∗,α∗) ∈ RK × RK−1 which represents a small perturbation from continuous
optimality at each step and is guaranteed to be nearly optimal for the original problem (25).

In fact, there is the following guarantee.

Theorem. Suppose M∗ is the solution to the relaxation of (25) with M∗
1 < 1. Then, M∗

1 ← 1 is
optimal for (25). Similarly, M∗

k ← 1 is optimal for (25) whenever M∗
1 = · · · = M∗

k−1 = 1 are fixed

and M∗
k < 1 is defined by the global minimizer of Lk. □

This theorem provides a guarantee that the modification is optimal for the original MIP (25),
and leads to the immediate conclusion that the modified MFMC algorithm is at least as optimal
for (25) as the original algorithm from [5]. Indeed, the above shows that M∗

1 ← 1 is the integer
value leading to the smallest QMFMC whenever M∗

1 < 1 solves the relaxation of (25). Similarly,
if M∗

1 = · · · = M∗
k−1 = 1 and M∗

k < 1 minimizes Lk, then M∗
k ← 1 leads to the smallest QMFMC

and satisfies the constraints of the MIP (25). Repeating this sequentially until there are no more
M∗

k < 1 immediately yields the following corollary.

Corollary. The modified MFMC algorithm is optimal up to the rounding M∗ downwards inherent
in the original procedure. □

This corollary is analogous to the similar guarantees in [5, 6] which establish optimality of the
model evaluation vector M∗ for the relaxation of (25).

A numerical illustration. A simple example is presented which compares the performance of
the modified MFMC estimator to both the simple MC estimator and the original MFMC estimator
of [5] on a benchmark experiment use in that paper. Consider the analytic model of a short column
with rectangular cross-sectional area subject to bending and axial force. The high-fidelity model is

f1(z) = 1− 4z4
z1z22z3

−
(

z5
z1z2z3

)2

,
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where z ∈ Γ = [5, 15] × [15, 25] × R+ × R2 ⊂ R5. The random variable z is chosen such that
the width and depth z1, z2 are distributed uniformly, the yield stress z3 is distributed log-normally
with mean 5 and standard deviation 0.5, the bending moment z4 is distributed normally with mean
2000 and standard deviation 400, and the axial force z5 is distributed normally with mean 500 and
standard deviation 100. Surrogates are taken to be

f2(z) = 1− 3.8z4
z1z22z3

−

(
z5
(
1 + z4−2000

4000

)
z1z2z3

)2

f3(z) = 1− z4
z1z22z3

−
(
z5(1 + z4)

z2z3

)2

f4(z) = 1− z4
z1z22z3

−
(
z5(1 + z4)

z1z2z3

)2

f5(z) = 1− z4
z1z22z3

−
(

z5
z1z2z3

)2

,

where we note that f3 and f5 are reversed from their definitions in [5]. Letting ρ1 = {ρ1,k}Kk=1, the
costs and model correlation coefficients are

C =
(
100 50 20 10 5

)⊺
ρ1 =

(
1.0000000 0.9998791 0.6621724 0.8603847 0.9967698

)⊺
,

where 1000 i.i.d. samples of z are used to compute the displayed (approximate) correlations. With
this data, the model selection procedure [5, Algorithm 1] selects the subset {f1, f2, f5} to be used
in constructing the MFMC estimator for Q = E

[
f1
]
.

Now, recall that the original MFMC procedure [5, Algorithm 2] can break down in the case
that the budget b is “small”. On the other hand, the optimal solution to (25) can be näıvely
approximated by rounding Mk upwards when Mk < 1 and rounding Mk downwards otherwise, at
the expense of potentially overshooting the budget constraint C ·M∗ = b.

Consider using simple MC and both versions of MFMC to estimate Qref =
1

107
∑107

n=1 f
1 (zn) ≈

E
[
f1(Z)

]
with budgets b = 300i for i = 1, . . . , 5. To further mitigate the inherent dependence on

stochasticity, the expectations and MSEs predicted for the three estimation methods are themselves
averaged over 1000 independent runs of each method, so that

E
[
Q♯

j

]
≈ 1

1000

1000∑
j=1

Q♯
j , E

[(
Q♯

j −Qref

)2]
≈ 1

1000

1000∑
j=1

(
Q♯

j −Qref

)2
,

where, Q♯
j ≈ E

[
f1
]
for Q♯

j with ♯ = {MC, rounded MCMF, modified MFMC} denotes the approx-
imation produced at run j.
The table and figure below illustrate the results of the comparison between MC and both variants

of MFMC. As expected, both MFMC procedures effect an MSE reduction of about an order of
magnitude relative to MC and remain similar to each other in performance as the budget increases.
However, the rounding procedure necessary for a direct application of [5, Algorithm 2] clearly
exceeds the budget for the low budget cases b = 300 and 600. Also note that the high-fidelity model
is only queried once and that almost all the sampling is done using the least costly model. Also,
as expected, the prescribed budget is never exceeded when using the modified MFMC algorithm.
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MC Modified MFMC (Rounded MFMC)

b e(QMC)× 105 Budget # f1 # f2 # f5 e(QMFMC)× 106

300 8.183 300 (375) 1 (1) 1 (1) 30 (45) 14.91 (11.87)
600 3.612 550 (650) 1 (1) 1 (2) 80 (90) 6.579 (4.102)
900 2.572 890 (930) 1 (1) 3 (3) 128 (136) 3.198 (3.315)
1200 1.896 1180 (1205) 1 (1) 4 (4) 176 (181) 2.442 (2.984)
1500 1.475 1470 (1485) 1 (1) 5 (5) 224 (227) 1.856 (1.857)
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