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Abstract 

We present a preliminary version of the East Asia Tomography (EAT) model, an adjoint 

waveform tomography model of East and Southeast Asia. We used SPiRaL (Simmons et al., 

2021) as our starting model and source parameters for 238 earthquakes from the Global Centroid 

Moment Tensor catalogue (Ekström et al., 2012). After 50 iterations on Lawrence Livermore 

National Laboratory’s Lassen supercomputer, we converge on a model with a minimum period of 

50 seconds. The preliminary model shows improved slab structure compared to SPiRaL and 

shows significantly reduced misfit. In later versions of the model, we aim to harness techniques 

proposed in other studies to improve waveform predictions that travel through the ocean (e.g., 

Wehner et al., 2022) and use relative amplitude-based misfit functions (e.g., Tao et al., 2018) to 

better constrain Earth structure. We hope to iterate the current extent of the model to 25 seconds 

minimum period before iterating to shorter periods for a smaller subregion of the full model. 

 

Introduction 

The Eurasian continent is a heavily studied region in seismic tomography due to the complex 

tectonic processes that have shaped the region. East Asia hosts numerous subduction zones along 

the Ring of Fire, spanning from the Kamchatka Peninsula in northeastern Russia to the 

Philippine Islands near the Equator. In central Eurasia, the Indian subcontinent collides with 

southwestern China, creating the Himalaya Mountains and the extrusion of the Tibetan Plateau to 

the east. Intraplate volcanism in northeastern China has debated origins in the deep mantle or 

from deep dehydration of the subducted Pacific Slab.  These features and more have led to 

extensive imaging studies of Eurasia. 

 



While traditional imaging studies have used body wave tomography (e.g., Fu et al., 2023; Fukao 

and Obayashi, 2013) and surface wave tomography (e.g., Li et al., 2013; Li et al., 2022; Liu and 

Zhao, 2016; Yang et al., 2021), recent imaging studies of East Asia have focused on using adjoint 

waveform tomography (AWT) to produce detailed models of the region (e.g., Liu et al., 2024; 

Ma et al., 2022; Simute et al., 2016; Tao et al., 2018; Xi et al., 2024). Compared to traditional 

techniques, AWT uses more of the seismic waveform by windowing data around certain phases 

(e.g., Xi et al., 2024) or by windowing based on similarity between the observed and synthetic 

data (e.g., Ma et al., 2022). AWT methods have been shown to improve waveform predictions 

over traditional models (Rodgers et al., 2022) and produce more defined subsurface features, 

particularly of subducting slabs (Rodgers et al., 2024).  

 

In this preliminary study, we present a long period model of greater East and Southeast Asia. 

Even at long periods, we see improvement in slab structure compared to SPiRaL, our starting 

model, and reduce the misfit by 45% over 50 iterations. As we begin including shorter period 

information, we aim to harness methodological advances of recent studies to improve subsurface 

structure by considering relative amplitudes in our misfit function and to simulate seismic waves 

through the ocean layer. Though these choices increase computational expense, we hope that 

they will improve both waveform predictions and subsurface structure.  

 

Data 

Because of its tectonic complexity, East Asia experiences significant moderate-magnitude 

seismicity. The Global Centroid Moment Tensor (GCMT) Catalogue (Dziewonski et al., 1981; 

Ekström et al., 2012), a global moment tensor catalogue for events over Mw 5 includes over 



2400 events between Mw5.0-7.0 between 1 January 2010 and 31 March 2021. Because using all 

available events is infeasible, we spatially binned the available events. We used bins that are 100 

km by 100 km laterally and 25 km in depth. Because events are scarce in the deep Earth, we 

included all events with depths greater than 500 km. Binning the events reduced the number of 

events to around 600. We simulated data for all binned events and picked windows for all events 

using a modified version of the FLEXWIN algorithm (Maggi et al., 2009). If an event had less 

than 20 stations contributing data or if less than 40% of stations contributed windows to an 

event, they were removed from the dataset due to their limited data or poor data quality. After 

quality control, we converged on a final dataset of 238 events (Figure 1). Data is downloaded 

from the EarthScope Data Management Center using the Obspy MassDownloader tool. Around 

800 stations from both permanent and temporary networks contributed data to the inversions.  

 



 

Figure 1. Map of the 238 events used in the construction of the EAT model. Moment tensors are 
taken from the Global Centroid Moment Tensor (GCMT) catalogue and are colored by the depth 
of the event. Red triangles represent seismic stations used in the inversion of the EAT model.  
 

Methods 

We used Salvus (Afanasiev et al., 2019) to run inversions of the EAT model. Forward 

simulations are run using the spectral element method (Komatitsch & Tromp, 1999; Komatitsch 

& Vilotte, 1998). Simulations were run on Lawrence Livermore National Laboratory’s Lassen 

high-performance computing system on four NVIDIA Tesla V100 GPUs. After we calculated 

synthetics, we picked windows using a modified version of the FLEXWIN algorithm (Maggi et 

al., 2009) proposed in Krischer et al. (2015). Windows were not restricted to given phases; 

instead, data were windowed based on a variety of constraints on the similarity between the 

observed and synthetic data (see Doody et al., 2023a for a detailed description). After window 



picking, we weighted windows based on the event-dependent station weighting scheme from 

Ruan et al. (2019). Station weights were calculated based on distance from the source and station 

density in a given region (i.e., clustered stations are downweighted while isolated stations are 

upweighted).  

 

We calculated the misfit between the observed and synthetic data using the time-frequency phase 

misfit function (Fichtner et al., 2008). The time-frequency phase misfit function first transforms 

the time domain data into the time-frequency domain (Kristeková et al., 2006, 2009) then 

calculates the weighted phase difference and envelope similarity. The time-frequency phase 

misfit function is a phase-based misfit function, so relative amplitudes are not included in the 

calculation of the misfit. We then computed sensitivity kernels for each event based on the 

interaction of the forward and adjoint wavefields. The sensitivity kernels were smoothed 

anisotropically, with 0.5 wavelength smoothing laterally and 0.2 wavelength smoothing 

vertically. The smoothing length was chosen by Vsv wavelengths. To minimize source and 

receiver effects, we set kernel values to zero around sources and receivers. The source/receiver 

cutouts are spherical with 300 km and 75 km radii respectively.  

 

Model updates were computed using the trust-region Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm, which is a quasi-Newton optimization algorithm (e.g., 

Conn et al., 2000; Nocedal and Wright, 2006). L-BFGS methods, and the trust-region L-BFGS 

method particularly, provide significant computational speed-up over conjugate gradient methods 

(Modrak and Tromp, 2016; Thrastarson et al., 2021). We used the trust-region L-BFGS method 

of Boehm et al. (2018), which solves an auxillary optimization problem to minimize the 



quadratic approximation of the misfit surface. In this approach, the size of model updates are 

constrained by the ratio between the predicted and actual misfit reduction of a given model 

update. Alignment between the predicted and actual misfit reductions allows us to make many 

model updates and avoid being trapped in local minima. We iterated on the model until the 

misfits could no longer be reduced; after an iteration failed to reduce the misfit with two target 

models, we ended the iteration stage.  

 

Discussion 

The model presented below is a preliminary model of East Asia, iterated to a minimum period of 

50 seconds. At the 50-150 second period band, we iterated on the model 50 times. The misfit was 

reduced by 45% across all 50 iterations (Figure 2). While 30% of the misfit is reduced in the first 

8 stages, continuing to iterate on the model significantly reduces the misfit over the remaining 42 

iterations. Previous studies have highlighted the importance of running many iterations to make 

it less likely that the model will converge to a local minimum (e.g., Rodgers et al., 2024).  

 



 

Figure 2. Absolute and relative time-frequency phase misfit reduction over 50 iterations in the 
50-120s period band.  
 

As for the preliminary EAT model, Figure 3 shows the model after 50 iterations compared to its 

starting model, SPiRaL. Compared to SPiRaL, EAT shows higher-amplitude slab features in the 

upper- to mid-mantle depths (150-600 km). The third column shows the natural log of the ratio 

between the two models. The natural log shows the spatial pattern of the updates; the values 

represent the amplitude of the changes to absolute velocities. Sharp boundaries in the upper 

mantle (Figures 3a-b) and the mid-mantle (Figures 3g-h) represent the Moho and the 410 km 

boundary, respectively. We honored Moho topography from Crust1.0 (Laske et al., 2013) and 

410 km and 660 km topography from Lawrence and Shearer (2008). The subducting Pacific Slab 



underneath eastern Russia is low-amplitude in SPiRaL (Figure 3g), making it appear as if the 

slab is discontinuous between the Kamchatka Peninsula and Hokkaido, Japan. In EAT, by 

contrast, the Pacific Slab appears continuous in this region (Figure 3h). At 600 km, the stagnant 

Pacific Slab is visible in both models underneath northern China; the slab is higher amplitude in 

the EAT model (Figure 3k) and has faster amplitudes below the Chiangbaishan intraplate 

volcano. Further iterations at shorter periods will better constrain slab structure, so we reserve 

any tectonic interpretation for the final model.  

 

 

Figure 3. Map view comparisons of SPiRaL (Simmons et al., 2021) and the EAT model after 50 
iterations. Voigt-averaged isotropic VS values for the SPiRaL model are plotted in the leftcolumn 
and VS values for the preliminary EAT model are plotted in the middle column. The color scale is 
the same for the two models. The right column shows the natural log between the ratio of the two 



models. The blue regions show areas where the VS of the EAT model is faster than SPiRaL; red 
regions show areas where the VS of the EAT model is slower than SPiRaL.  
 

To refine the structure of the model, we plan to follow a multi-scale approach and iteratively 

lower the minimum period to resolve smaller scale features. We aim to reach a minimum period 

of 25 seconds. On top of lowering the minimum period, we also plan to change to a misfit 

function that considers relative amplitudes (e.g., Tao et al., 2017, 2018) once we begin iterating 

below 30 seconds. Considering relative amplitudes on top of phase will improve waveform 

predictions and provide more accurate constraints on mantle structure. Finally, we plan to couple 

acoustic and elastic simulations to simulate waves propagating through the ocean layer to 

improve waveform predictions. Traditional spectral-element simulations use an ocean loading 

approximation (Komatitsch and Tromp, 2002b), which holds at long periods but breaks down at 

shorter periods (Fernando et al., 2020; Wehner et al., 2022). A large portion of our domain covers 

the Pacific Ocean and accurately modelling the effect of the oceans on waveforms from stations 

on Pacific Islands will improve our ability to predict short-period waveforms.  

 

Conclusions 

We present a preliminary version of the East Asian Tomography (EAT) model, an adjoint 

waveform tomography model of greater East Asia. The EAT model used SPiRaL (Simmons et 

al., 2021) as a starting model and used data from nearly 240 events recorded at over 800 

permanent and temporary seismic stations. We ran 50 iterations at 50-150 second period band 

and achieved a 45% reduction in misfit compared to SPiRaL. The preliminary EAT model shows 

improved slab structure in the mid-mantle compared to SPiRaL, though we reserve any tectonic 

interpretation for future work. To further improve the model, we plan on: 1. Iterating at shorter 



periods using a multi-scale approach, 2. Introducing a relative-amplitude-based misfit function 

(Tao et al., 2018), and 3. Modelling wave propagation through the ocean layer to further improve 

waveform predictions.  
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