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In this chapter we first discuss the theory and computational challenges of the rel-
ativistic coupled-cluster methods. Example calculations of heavy-atom-containing
molecules are then presented to demonstrate the importance of scalar-relativistic,
spin-orbit coupling, and electron-correlation effects on molecular properties as well
as the applicability and usefulness of relativistic coupled-cluster methods in calcu-
lations aiming at high-accuracy results. A unique applicability of the spinor-based
relativistic coupled-cluster methods is also highlighted using the calculations of open-
shell actinide-containing small molecules. Finally, a summary is given together with

an outlook into future developments.
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I. INTRODUCTION

The treatment of electron correlation plays an indispensable role in accurate quantum-
chemical computations of molecular properties.!"? In a so-called “single-reference” electronic
state, a Hartree-Fock (HF) wave function accounts for the majority of the total electronic
wave function and the corresponding HF energy accounts for more than 99% of the total
electronic energy. However, electron correlation, defined as the remaining correction to the
HF model, contributes significantly to molecular properties of chemical relevance. A classic
example is that the Hartree-Fock F-F bond energy in the simple fluorine molecule (F5) takes
a positive value. Namely, F is unstable at the HF level.? It is mandatory to treat electron
correlation to obtain chemically meaningful results in computational quantum chemistry.
The coupled-cluster (CC) theory? S has been established as an effective framework for treat-
ing electron-correlation effects in atoms and molecules.” ! Employing an exponential ansatz
for the wave operator that transforms the HF wave function into the CC wave function!?!3,
the CC theory provides size-extensive correlation energies. Namely, a CC correlation energy
scales linearly with respect to the system size. This correct scaling is an important prereq-
uisite for accurate calculations of atoms and molecules. The hierarchy of the CC methods
with a variety of truncation schemes also offers systematic improvement of the computed
energies and properties. The CC singles and doubles (CCSD) method!* shows robust perfor-
mance and provides qualitatively correct results. The CCSD augmented with a noniterative
inclusion of triple excitations [CCSD(T)] method!® 7 often provides highly accurate results
and is sometimes referred to as a “gold standard” in quantum chemistry. The CC meth-
ods with the inclusion of high-level correlation effects beyond CCSD(T), especially the full

18-33

triples corrections and the quadruples contributions, systematically approach the full



configuration interaction (FCI) limit and can provide results for many molecular applica-
tions that are essentially quantitative. Importantly, since the single excitations in the CC
theory can take into account orbital rotation effectively,* the CC methods can handle com-
plex systems with strong orbital-relaxation effects. This is particularly beneficial for treating
metal-containing molecules, e.g., CC calculations of transition-metal-containing molecules

involving large singles amplitudes have been shown to provide accurate results.?>37

The importance of electron correlation in the calculations of molecular properties is uni-
versal across the periodic table. It thus is necessary to treat relativistic effects®® 43 together
with electron correlation accurately to obtain accurate computational results for heavy-
atom-containing molecules. Scalar-relativistic effects induce significant contraction of s- and
p-type orbitals in heavy atoms. This “direct” relativistic contraction of s- and p-type or-
bitals further induces “indirect” effects on the d- and f-type orbitals, resulting in the slight
expansion of these orbitals. Furthermore, spin-orbit coupling can induce spatial contrac-
tion of p-type orbitals in heavy p-block elements. Namely, the np;/, component exhibits a
significant spatial contraction compared with the nps/, component, which has spatial distri-
bution similar to the corresponding scalar-relativistic np orbitals. Because special relativity
has these pronounced effects on the orbitals, the coupling between relativistic and electron-
correlation effects is expected to be important in the calculations of molecules containing
heavy atoms. Therefore, relativistic electron-correlation calculations are required when aim-

ing at high accuracy for heavy-atom-containing molecules.

We focus our discussion on the inclusion of relativistic effects in the CC calculations. A
perturbational treatment is a natural option to include scalar-relativistic effects in CC calcu-
lations of energies and properties, when aiming at high accuracy for light-atom-containing

molecules. The early development along this direction has been based on the Breit-Paul
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Hamiltonian.** A scalar-relativistic correction to the electronic energy is obtained as the
first derivative of the electronic energy by using the non-relativistic calculation as the
zeroth-order treatment and the scalar-relativistic terms in the Breit-Paul Hamiltonian as
the perturbation. This approach has been successfully used to include scalar-relativistic
effects in high-accuracy model thermochemistries.*>46 The scalar-relativistic corrections to
nuclear gradients have been calculated as the analytic second derivatives of the electronic
energy, enabling efficient geometry optimizations with the inclusion of the scalar-relativistic

48-51 have been based on

effects.®” More recent developments of perturbational approaches
the direct perturbation theory (DPT).??%% While the use of the Breit-Pauli Hamiltonian is
restricted to the leading-order perturbation theory, the DPT framework is compatible with

the inclusion of higher-order contributions.

Meanwhile, the non-perturbative treatments of relativistic effects in the CC methods
by combining the CC methods with relativistic four- and two-component Hamiltonians®*?
in principle share the same CC formulations as in the non-relativistic theory, since the
relativistic Hamiltonians in the occupation-number representation can be written in a same
generic form as the non-relativistic Hamiltonian using molecular orbitals as the one-electron
basis. Interestingly, a spin-free two-component calculation only requires the replacement
of the non-relativistic one-electron Hamiltonian integrals with the scalar-relativistic two-
component Hamiltonian integrals. The additional computational cost associated with this
step is insignificant compared with the subsequent many-electron treatments. A spin-free
four-component CC calculation has additional costs in the evaluation and transformation of
the small-component integrals, but shares the same computational machinery as the non-

relativistic one in the CC steps. Therefore, a spin-free two-component or four-component CC

calculation is more efficient than a calculation of scalar-relativistic corrections as an energy



derivative of the non-relativistic CC energy. Scalar-relativistic CC calculations have been
reported using the scalar-relativistic effective core potentials,®® the spin-free Douglas-Kroll-

5860 in its one-electron

Hess Hamiltonians,>> 57 the spin-free exact two-component theory
variant (the SFX2C-1e scheme),% % the SFX2C theory in its mean-field variant,®* and the
spin-free Dirac-Coulomb (SFDC) approach.> %7 Analytic gradient techniques have recently
been developed for the SFX2C-1e- and SFDC-CC methods to expedite the calculations of

molecular properties using these scalar-relativistic approaches at CC levels of theory.5367-71

The CC methods with non-perturbative treatments of spin-orbit coupling, hereafter re-
ferred to as the “SO-CC” methods,?® are the methods of choice for calculations aiming
at high accuracy for atoms and molecules, in which either the magnitude of the spin-orbit
coupling contributions is too large to be handled accurately using perturbation theory or
a non-perturbative treatment of spin-orbit coupling enables more efficient calculations by
focusing the treatments on fewer electronic states. In contrast to the ease of performing
a spin-free two- or four-component CC calculation, a SO-CC calculation necessitates using
the complex algebra and dealing with double group symmetry.3* Consequently, more exten-
sive modifications of the CC algorithms and implementations are required for performing
SO-CC calculations. The SO-CC calculations are more expensive than the corresponding
non-relativistic or scalar-relativistic calculations. For example, the floating point opera-
tion (FLOP) count for a CCSD calculation using spinors, i.e., orbitals with the inclusion
of spin-orbit coupling, is around 20 times that of a non-relativistic or scalar-relativistic
CCSD calculation.™® Recent years have seen many efforts to extend the applicability of
the SO-CC methods to larger molecules.?> 7 New algorithms have been developed to remove
the major computational bottlenecks of the SO-CC calculations.®> 87 Analytic SO-CCSD(T)

gradients”®® have been developed to enable efficient calculations of molecular properties.



Highly parallelized implementations®®®” have also been reported.

We should mention that, because of the high cost of the SO-CC methods, perturbative
treatments of spin-orbit coupling at the CC levels are computationally appealing. Pertur-
bational treatments of spin-orbit coupling using the non-relativistic equation-of-motion CC
(EOM-CC) wave functions'®1% or state-specific multireference CC wave functions'® as
the zeroth-order wave functions have been reported to provide accurate spin-orbit split-
tings in light-atom-containing molecules. A perturbative treatment of spin-orbit coupling

using the SFX2C-1e EOM-CC wave functions as the zeroth-order wave functions!?%17 ca

n
further provide accurate results for molecules containing heavy atoms, because the scalar-
relativistic effects on both the unperturbed wave functions and the spin-orbit integrals have
been accurately taken into account. We expect the SFX2C-1e-CC methods augmented with

perturbative treatments of spin-orbit coupling to evolve into standard tools for accurate

calculations of molecular energies and properties.

In this chapter, we first discuss the generalities of the CC theory in combination with
various relativistic approaches, the computational challenges, and promising routes to ex-
tend the applicability to larger molecules. We then present example calculations to demon-
strate the usefulness of the relativistic CC methods. We use the calculations of copper
quadrupole-coupling constants as an example for the importance of scalar-relativistic effects
and significance of the coupling between scalar-relativistic effects and electron correlation.
Spinor-based relativistic CC calculations of bismuth quadrupole-coupling constants are then
employed to show the importance of spin-orbit coupling effects on properties of molecules
containing a 6p-block element. These examples involve calculations of electric-field gradi-
ents, a “core property” that samples the inner-shell electron density, for which the relativistic

effects are very pronounced. Finally, relativistic CC calculations of thermochemical param-
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eters for uranium-containing molecules are presented to demonstrate a unique applicability

of spinor-based CC methods for calculations of heavy-atom-containing open-shell molecules.

II. THEORY
A. General aspects of relativistic coupled-cluster (CC) theory

In the CC theory, a single-determinant reference function is transformed into a CC wave

function using an exponential wave operator e’ 1011

[Wec) = €T ). (1)

The cluster operator 7' is a linear combination of excitation operators weighted by the cluster

amplitudes
T = Z thala; + Z tfjb Laba]al - (2)
ia Uab
in which ¢’s are cluster amplitudes, i, 7, --- and a, b, - -- in the subscripts and superscripts

refer to the occupied and virtual orbitals, respectively, af denotes a creation operator and a
a destruction operator. For example, the action of ala; or aLaZajai on |U.) gives a singly
excited determinant |U¢) with an electron in the orbital ¢ in the reference function promoted

to an unoccupied orbital a or a doubly excited determinant ]\I/?jb) with the electrons in ¢ and

7 promoted to a and b,
U§) = abai|Wres) , |05)) = alafa;aiWrer). (3)
Multiplying the time-independent Schrodinger equation

HeT|W,o) = EeT|U,e) (4)



with e~ from the left hand side leads to
F[’quef> = E’\Ijref>a (5)

with H being the CC similarity-transformed Hamiltonian

A= THE = H 4 [H,T] + S[[H,7],7] + %[[[H,T],T],T] + o llH, .7, 71,7, (6)

The commutator structure of H guarantees the connectivity of H and hence the size-
extensivity of the CC theory. Note that the Baker-Campbell-Hausdorff expansion of H
terminates at the quartic commutators, because T consists of excitation operators exclu-
sively. This leads to a compact structure for the CC working equations. Projecting Eq. 5

onto the reference function and the excited determinants gives the CC energy equation
(Wret| H |V rer) = E, (7)
and the CC amplitude equations
(UE | H|Wrer) = 0, (VG| H|Trer) =0, -+, (8)

respectively. The reference function is the most often chosen as a Hartree-Fock (HF) wave
function. On the other hand, since the single excitations in the CC theory take care of orbital

rotation effectively, the CC results are relatively insensitive to the choice of the reference

functions. The non-HF reference functions are often found very useful in applications.!?8

The Hamiltonian operator in Eq. 4 can be written in the occupation-number represen-

tation as*?

H = prq{a ag + ngq rs{a a asar} (9)

quS

= hpq + Z Ipiqi- (10)



In the non-relativistic theory and relativistic two-component theories, p, ¢ --- in the sub-
scripts include all the molecular orbitals. The many-electron Hamiltonians in the four-
component approaches employ the “no-pair” projection,!® i.e., p, ¢ --- include the positive-
energy-state (PES) orbitals and exclude all the negative-energy-state (NES) orbitals. h, g,
and f represent the one-electron Hamiltonian matrix, the antisymmetrized two-electron in-
teraction matrix, and the Fock matrix, respectively. In Eq. 9, {---} represents the normal
ordering of the second-quantized operators with respect to the reference determinant W, as
the redefined vacuum. It should be emphasized that all the non-relativistic and relativistic
electronic Hamiltonians share this generic form and differ in terms of the actual values of
the one- and two-electron matrix elements f,, and ¢pqrs. The non-relativistic theory as
well as the two- and four-component relativistic approaches based on the Dirac-Coulomb
Hamiltonian have the instantaneous Coulomb interaction as the two-electron interaction.

The corresponding matrix elements are given by

pars = (Palrs) — (palsr), (11)
(pqlrs) = /cbl,(ﬂ)qbr(ﬁ)ﬁ%(%)%(%)dﬂd%, (12)

The Dirac-Coulomb-Gaunt (DCG) or Dirac-Coulomb-Breit (DCB) Hamiltonian includes

additional contributions from the Gaunt or Breit term.

B. Relativistic approaches adopted in the present study

The example studies in the next section include CC calculations in combination with the
non-relativistic theory, the SFX2C-1e scheme,®%? and the X2C Hamiltonian with atomic
mean-field spin-orbit integrals (the X2CAMF scheme).!'%!1! We take the differences between

the SFX2C-1e scheme and the non-relativistic theory as the scalar-relativistic contributions.
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The differences between the X2CAMF and SFX2C-1e results represent the spin-orbit con-
tributions. In this subsection we briefly discuss these relativistic approaches, especially
the structures of the corresponding wave functions, to facilitate the discussion in the next
subsection on their applicability and efficiency in CC calculations.

The SFX2C-1le scheme performs an exact block-diagonlization for the spin-free one-
electron Dirac Hamiltonian in its matrix representation with a single unitary transfor-
mation and then uses the resulting electronic block together with the untranformed two-
electron Coulomb interaction in the many-electron treatments. The other spin-free two-
component approaches, including the spin-free finite-order Douglas-Kroll-Hess (DKH) meth-
ods and®°%12 the spin-free zeroth-order regular approximation (ZORA) method,''? are
approximate variants of the SFX2C-1e scheme. The spin-free versions of an infinite-order
DKH method''# 16 and and the infinite-order two-component method''"'*® can be viewed
as more complicated versions of the SFX2C-1e scheme involving multiple transformations
of the four-component Hamiltonian matrix. In the non-relativistic theory, the one-electron
Hamiltonian consists of the non-relativistic kinetic energy and the nuclear attraction poten-
tial energy operators. The two-electron interaction is the instantaneous Coulomb interaction.
Both these one- and two-electron Hamiltonian operators are spin-free. A molecular orbital

¢, has a single spin component, namely,

o5 0
Op = or ¢, = , (13)
0 o

and is real-valued. Both the one- and two-electron Hamiltonian matrix elements thus are
spin-free and real-valued. The SFX2C-1e scheme differs from the non-relativistic theory only
in the one-electron Hamiltonian matrix elements, i.e., the SFX2C-1e scheme replaces the

non-relativistic one-electron Hamiltonian matrix with the SFX2C-1e Hamiltonian matrix,
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which is still spin-free. The SFX2C-le scheme thus preserves the spin symmetry. We
should mention that the "no-pair” spin-free Dirac-Coulomb (SFDC) approach perhaps offers
the most rigorous treatment of scalar-relativistic effects. The underlying approximation
of the SFX2C-1e scheme, compared with the SFDC approach, lies in the neglect of the
scalar two-electron picture-change effects. In other words, the transformation of the two-
electron Coulomb interaction is neglected. It has been shown that the scalar two-electron
picture-change corrections to molecular properties are in general small;"!® the SFX2C-1e
scheme recovers the scalar-relativistic corrections to molecular properties very accurately.
The SFDC approach also preserves the spin symmetry. A SFDC-CC calculation thus can
also directly use the non-relativistic CC machineries in the CC steps. The SFDC positive-

energy-state molecular orbitals ¢,’s are spin-free four-component spinors

o 0
0 o
bp = or ¢, = (14)
e 0
0 ¢>P

It thus is necessary to include the contributions from the small-component integrals in the
evaluation of the molecular-orbital (MO) two-electron integral matrix. This renders the
SFDC integral transformation significantly more expensive. The atomic-orbital (AO)-based
algorithms are also less efficient for the SFDC approach than for the non-relativistic or
SFX2C-1e scheme.

In contrast, the X2CAMF scheme works with complex-valued two-component spinors

O
Op = - (15)
o

The corresponding relativistic one-electron Hamiltonian matrix is in general complex-valued
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and does not have spin symmetry, i.e., the o and  spin components are coupled together.
The two-electron Hamiltonian matrix elements also become spin-dependent and in general
complex-valued. The X2CAMF scheme exploits the X2C transformation®®%? and the atomic
mean-field spin-orbit approach'?” to eliminate all molecular relativistic two-electron integrals
to enhance the computational efficiency. The underlying approximations of the X2CAMF
scheme compared with the four-component “no-pair” Dirac-Coulomb (DC) approach in-
clude the scalar two-electron picture-change effects and the atomic approximation for the
two-electron spin-orbit contributions. These approximations have been shown to introduce
only small errors in calculations of molecular energies and properties.'%!t We mention
that the inclusion of scalar-two-electron picture-change effects in the two-component cal-
culations within the atomic approximation have been explored in density-functional theory

calculations'?7123

and have recently been implemented for the Hartree-Fock reference func-
tion in combination with CC calculations.'?® It will be of interest for future study to assess
the accuracy of the atomic approximation for the scalar two-electron picture-change effects

in calculations of molecular properties. Finally, in the DC approach, a four-component

spinor ¢, can be written as

¢L,a
o
pr = : (16)
o

gbg’ﬁ

While the two-electron integral matrix still takes the same compact form as in the two-
component theory, the four-component two-electron integrals receive contributions from the

small components of the four-spinors.
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C. Computational challenges in relativistic CC calculations

The non-relativistic and relativistic CC calculations share the same formal compu-
tational scalings. The computationally most intensive steps in the solution of the CC
singles and doubles (CCSD) amplitude equations are the calculations of the particle-

particle ladder term %3 (ab||cd)tsd with a scaling of O(NZ. N}

2..N:;) and the ring terms

P_(ij)P_(ab) Y, (mbllej)tes and P_(ij)P-(ab) " (mj||eb)tis with ascaling of O(N2 N3

occ ViI‘)'
In the following we compare the computational costs for these terms in a spin unrestricted

non-relativistic or scalar-relativistic CCSD calculation with those in a Kramers unrestricted

spinor-based relativistic CCSD calculation.

Because the non-relativistic Hamiltonian is spin-free, a non-relativistic unrestricted

CCSD calculation involves three independent spin cases for the doubles amplitudes and

apa BpB apf .
ol s tglﬂjf’ﬂ, and tfa;’ﬁ for the amplitudes and (p®q®||r®s®),

the two-electron integrals, i.e., ¢
(pPqP||rPs?), and (pq®||r®s®) for the integrals. Therefore, the evaluation of the particle-
particle ladder term consists of three independent contributions 5 3° a . (a®0||c*d®)t5 %,
%Zcﬂdﬁ<aﬁbﬁ||05d5)t§5%, and Y o s (a*0P|c*d®) fj;lf. The floating point operation (FLOP)
count for this term thus is (NG ) (N2)2+ (NI (VL) + (NN ) (NE)A(NE,). Let

occ occ occ occ

us assume N, = N® ~ N? and N, = N®_ ~ N8

vir vir occ occ*

The FLOP count is then rewritten as
2N} N2 Similarly, a ring term can be decomposed into ten independent contributions

vir

and has a FLOP count of 10N3 N3. We should emphasize that, since a spin-free two- or
four-component Hamiltonian preserves the spin symmetry, a spin-free relativistic CCSD
calculation shares the same FLOP count as the non-relativistic case and thus has exactly

the same cost as a non-relativistic CCSD calculation. Actually, the spin-free relativistic CC

calculations can directly use the non-relativistic CC machineries for the CC steps.
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In contrast, the spinor-based CC calculations, i.e., CC calculations with the inclusion of
spin-orbit coupling in the orbitals, are computationally more intensive than the correspond-
ing non-relativistic or spin-free relativistic CC calculations.”%? They also require non-trivial
extensions of the computational infrastructure. Because of the spin-symmetry breaking, the
contributions to the CC amplitude equations cannot be factorized into separate spin com-
ponents. Furthermore, the presence of spin-orbit coupling in the Hamiltonians necessitates
using the complex algebra. Both factors increase the computational costs significantly, al-
though the formal computational scaling for a given CC model remains unchanged. Let
us compare the FLOP counts for the particle-particle ladder term and a ring term in a
Kramers unrestricted spinor-based CCSD calculation with that in a non-relativistic spin-
unrestricted CCSD calculation. The FLOP count for the evaluation of the particle-particle
ladder term 3 -, (ab||cd)ts? in a spinor-based CCSD calculation amounts to § Ni o NZgo X3,
in which the factor of three comes from the ratio between the FLOP of a complex matrix-
matrix multiplication and that of a real matrix-matrix multiplication.!?® Since the total
number of orbitals in a spinor-based calculation is equal to the sum of the o and 3 or-

bitals in the corresponding non-relativistic calculation, i.e., Ny so = N, + N, f 2N, and

vir vir

Noso = N& + N

occ occ

~ 2N,, the FLOP count for the ladder term in a spinor-based CCSD
calculation becomes 3N} oo N2 oo ~ 24N NZ, which is 19.2 times the value of 2NINZ for a
non-relativistic CCSD calculation. Similarly, the FLOP count for the evaluation of a ring
term in a SO-CCSD calculation is NJgoN3go x 3 &= 192NJNZ, with the factor of 3 again
originating from the use of the complex algebra. This is also 19.2 times the value of 10N3 N3
in the case of the non-relativistic calculation. Therefore, the FLOP of a SO-CCSD calcu-
lation is around 20 times that of a non-relativistic calculation. Since a CCSD calculation

has a formal scaling of N®, where N represents the system size, SO-CCSD should be able
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to handle around half the system size that the non-relativistic CCSD method can. On the
other hand, it is non-trivial to realize this potential of SO-CCSD, because of the additional

challenge in dealing with large MO two-electron integral matrices.

The transformation of the two-electron integrals from the AO representation into the
MO representation as well as the sorting of the MO two-electron integrals from the Mulliken
notation to the Dirac notation have lower computational scalings than the solution of the
CC equations. However, these steps are difficult to implement efficiently, and are often in-
put/output (I/O) very intensive. They thus emerge as major bottlenecks in CC calculations.
The size of the MO two-electron integral matrix (pg||rs) in a spin-unrestricted spin-free
two-component or four-component calculation is the same as in a non-relativistic calcu-
lation. The independent MO two-electron integrals include three spin cases (p®q®||r®s®),

(p7q°||r"s”), and (p*q”||rs”), the sizes of which are §(Ng,)*, 1(Ng,)*, and (N )*(Ni7,)%,

i
respectively. Assuming Ny, = N2, ~ NP | the total size of the integral matrix file is around
%Nr‘fw. For comparison, a spinor-based Kramers unrestricted CC calculation works with MO
two-electron integrals without spin symmetry. As a result, the size of the MO two-electron
matrix is %Néﬁo, g0 X 2, with the factor of two coming from the use of the complex algebra.

Since Npo, so & 2N, the size of the MO two-electron integral matrix can be rewritten

as SN

o Which is around 5 times the value of %Nﬁm for the non-relativistic case. This is

a significant overhead. For example, for a CCSD calculation that correlates 100 electrons
and 1000 virtual orbitals, the two-electron integral file in the spinor-based calculation is as
large as 5 TB, to be compared with the size of around 1 TB in the non-relativistic or scalar-
relativistic case. It is computationally challenging to handle integral matrices of such a size.
It is difficult to implement the integral transformation efficiently, when the targeted MO

integral matrices cannot be held in fast memory. Furthermore, the sorting of the integrals
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from the Mulliken notation (pg|rs) into the Dirac notation (pg||rs) with antisymmetrization
is I/O very intensive. Consequently, although the integral transformation only scales as the
fiftth power of the system size and integral sorting step only as the fourth power, they are
sometimes reported to be even more time-consuming than the CC steps in a spinor-based

CC calculation®?S.

D. Toward spinor-based relativistic CC calculations of larger molecules

The scalar-relativistic two-component CC calculations are as efficient as the non-relativistic
CC calculations and hence share the same applicability. The spinor-based relativistic CC
calculations, on the other hand, are significantly more expensive. A highly parallelized
implementation of the spinor-based CCSD method has recently been reported to extend
the applicability to larger molecules on supercomputers.?®?” At the same time, since the
computational overheads mainly come from the spin-symmetry breaking, an underlying
idea for improving the efficiency of spinor-based CC calculations is the recovery of spin
symmetry in the rate-determining steps of the calculations. One approach is to use AO-
driven algorithms for the computationally demanding terms to enhance the computational
efficiency,®® hereby exploiting the spin-free nature of the instantaneous Coulomb inter-
action and the corresponding AO two-electron integrals. Note that the AO two-electron
integrals in a spinor-based two-component CC calculation are the same as those in the
corresponding non-relativistic or scalar-relativistic calculation. This partial recovery of the
spin symmetry by using AO-based algorithms not only avoids the evaluation, sorting, and
storage of large MO two-electron integral matrices, but also reduces the FLOP count for
the particle-particle ladder term by a factor of 3-4. This AO-based algorithm has been im-

plemented for the X2CAMF-CC method together with the corresponding analytic-gradient
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techniques to expedite the calculations of molecular properties including structures and
vibrational frequencies.”®%
An alternative scheme is to work with spin-free relativistic orbitals and to incorporate

86,126-120 Ty

the spin-orbit coupling contributions into the Fock matrix in CC calculations
this case the MO two-electron integral matrix is the same as in the corresponding spin-free
relativistic calculation. This thus alleviates the computational bottleneck due to large MO
integral matrices. The remaining overhead comes from the coupling among different spin
components of the CC equations due to spin-orbit coupling. Wang and collaborators have
shown that such a SO-CCSD calculation is about 15 times more time-consuming than a
corresponding non-relativistic or scalar-relativistic calculation.® Since single excitations in
the CC theory can account for orbital rotation, the orbital relaxation due to spin-orbit cou-
pling is effectively taken into account in this scheme. Benchmark calculations have shown
that the use of scalar-relativistic orbitals in SO-CC calculations can provide accurate results
for closed-shell'*® or nondegenerate open-shell molecules containing heavy atoms.!*' Ana-

132

Iytic gradients!3? and hessians'®® have been implemented for this scheme to enable efficient

geometry optimizations and calculations of vibrational frequencies.

II1. EXAMPLE CALCULATIONS

In the section we present example calculations to demonstrate the usefulness of relativistic
coupled-cluster methods for calculations of properties for heavy-atom-containing molecules.
Relativistic coupled-cluster calculations have been widely used in high-accuracy calculations
of small molecules containing heavy atoms. We refer the readers to Ref. 1271347188 for an obvi-
ously incomplete account of interesting applications. Here we demonstrate the importance of

scalar-relativistic effects and the coupling between scalar-relativistic and electron-correlation
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effects using the calculations of nuclear quadrupole-coupling constants for copper-containing
molecules. The calculations of bismuth quadrupole-coupling constants are used to discuss
the significance of spin-orbit contributions and the coupling between the spin-orbit cou-
pling and electron-correlation effects. Furthermore, we present the calculations of thermo-
chemical parameters for uranium-containing atomic and molecular species to show a unique
applicability of spinor-based relativistic coupled-cluster methods for calculations of heavy-
atom-containing open-shell species. The SFX2C-1le scheme and the X2CAMF scheme as
implemented in the CFOUR program package®94110:111.189 haye heen used for all the calcu-

lations presented here.

A. Scalar-relativistic and correlation effects on Cu quadrupole-coupling

constants

A nuclear quadrupole-coupling tensor x represents the interaction between the electric-
field gradients ¢ at the position of the target nucleus and the nuclear electric quadrupole

moment ()

x = eQq. (17)

A tensor component ., in MHz takes the value of

Xuv = ﬁQqua (18)

in which @ is the value of the nuclear electric quadrupole moment in millibarn (mb), g, is the
value of the corresponding electric-field gradient component in a.u., the elementary charge
“e” takes a value of unity in a.u., and the conversion factor x take a value of 1/0.2349647
for the units chosen here. Since electric-field gradient involves an operator localized at the

targeted nucleus, nuclear quadrupole-coupling constants sample the electron density in the
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TABLE 1. Copper quadrupole-coupling constants (MHz).!?® The uncontracted ANO-RCC basis

1927194 115v6 heen used in all the calculations with all the electrons correlated. The differ-

sets
ences between the SFX2C-1e and non-relativistic (Nonrel) results represent the scalar-relativistic

corrections (ASR).

HF-SCF CCSD(T)
Nonrel ASR SFX2C-1e Nonrel ASR SFX2C-1e Experiment
CuF  67.1 -3.0  64.1 326 -9.6  23.0 21.9562(24)195
CuCl 453 -1.3 439 21.2 57 155 16.16908(72)19
CuCN 624 -16  60.8 302 -6.2 240 24.523(17)17
CuCCH 585 -25  56.0 221 -7.0 151 16.391(21)197
CuCHz 376 -41 335 0.1 -5  -7.6 -3.797(47)7

vicinity of the nucleus and exhibit strong relativistic effects. In Table I, we summarize
the computed Cu quadrupole-coupling constants for several representative molecules at the
non-relativistic and SFX2C-1e-HF and CCSD(T) levels of theory taken from Ref.!®. Here
we have computed the electric-field gradients at the position of the Cu atoms and then used
a value of -220(15) mb for the Cu electric quadrupole moment!'®! to convert the computed
electric field gradients into the Cu quadrupole-coupling constants. The differences between
the SFX2C-1e and non-relativistic results represent scalar-relativistic corrections and are

denoted as ASR in Table 1.

Electron correlation plays a central role in accurate calculations of Cu quadrupole-
coupling constants in these molecules. The HF values obtained from both non-relativistic
and SFX2C-1e calculations grossly overestimate the values of the Cu quadrupole-coupling

constants. Importantly, the coupling between scalar-relativistic and electron-correlation ef-
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fects is significant. The CCSD(T) scalar-relativistic contributions (ASR in Table I) are
several times larger than the HF values. It thus is necessary to treat scalar-relativistic and
electron-correlation effects consistently to obtain accurate results. Spin-orbit contributions
and scalar two-electron picture-change effects have been shown to be insignificant for Cu
quadrupole-coupling constants.” The SFX2C-1e-CCSD(T) results thus compare favorably
with the experimental data. We should emphasize that a SFX2C-1e-CC calculation is as
efficient as the corresponding non-relativistic CC calculation. Therefore, the SFX2C-1e CC

methods are clearly the methods of choice for these calculations.

B. Spin-orbit and correlation effects on Bi quadrupole-coupling constants

Heavy p-block elements, especially the 6p- and 7p-block elements, exhibit extraordinarily
large spin-orbit effects. Spin-orbit coupling not only induces large energy splittings for the
valence p orbitals in these elements, but also significantly affects the shape of the orbitals
and hence can be strongly coupled with electron correlation. Here we use the calculations
of bismuth quadrupole-coupling constants to demonstrate the importance of the spin-orbit
contributions. The Bi quadrupole-coupling constants in Table II have been obtained by using
the computed electric field gradients at the positions of the Bi atoms taken from Ref.!!? and
the recent recommended value of 422(3) mb for the Bi nuclear electric quadrupole moment.!*®
We mention that the Bi electric quadrupole moment has been determined by using the
computed electric-field gradients and the measured Bi quadrupole-coupling constants in
the Bi atom or bismuth-containing small molecules.??110:1987200 The differences between the
X2CAMF and SFX2C-1e results in Table II represent the spin-orbit contributions. We have
given the HF values, the correlation contributions at the CCSD(T) level, and the total

CCSD(T) values obtained from the SFX2C-1e and X2CAMF calculations for comparison.
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TABLE II. Bismuth quadrupole-coupling constants (MHz).11? The contracted ANO-RCC basis sets
have been used in all the calculations. The Bi 5p5d6s6p electrons as well as the valence electrons
in N, P, F, Cl, I have been correlated in the CC calculations. The electron correlation have been
treated at the CCSD(T) level of theory. The differences between the X2CAMF and SFX2C-le

results represent the spin-orbit contributions.

SFX2C-1e X2CAMF
HF correlation total HF correlation total Experiment
BiN 1270  -277 993 569 350 919 894.5607(69)2%1
BiP 1309  -341 968 973 -53 920 898.2172(46)201
BiF -1128 132  -996 -1323 175 -1148 -1148.08(10)202
BiCl -992 97 -894 -1182 148 -1034 -1027.0(120)%03
Bil -802 45 758 -1051 124 -927 -909.5(20)204

The computed Bi quadrupole-coupling constants exhibit significant spin-orbit contribu-
tions. At the HF level, the spin-orbit contributions reduce the values by 30-50% in the
cases of BiN and BiP, and increase the absolute magnitude of the computed values by 20-
30% in the cases of BiF, BiCl, and Bil. The electron-correlation contributions for BiN and
BiP obtained in the SFX2C-1e calculations differ dramatically from those from X2CAMF
calculations. The SFX2C-1e electron-correlation contributions amount to -277 and -341
MHz, respectively, to be compared with the X2CAMF values of 350 and -53 MHz. This is
consistent with the observation in Ref.?. In the calculations for BiF, BiCl, and Bil, the cou-
pling between the spin-orbit and electron-correlation contributions is also significant. The
X2CAMF electron-correlation contributions amount to 175, 149, and 124 MHz, significantly

higher than the corresponding SFX2C-1e values of 132, 97, and 45 MHz. The remaining
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corrections to the X2CAMF scheme, including the scalar two-electron picture-change effects
and the multiple-center two-electron spin-orbit contributions have been shown to be small
for Bi quadrupole-coupling constants.!'® Therefore, as shown in Table II, the X2CAMF-

CCSD(T) results are in good agreement with the experimental values.

C. Spinor-based relativistic CC calculations of uranium thermochemistry

We present a unique applicability of spinor-based relativistic coupled-cluster theory in
calculations of heavy-atom-containing open-shell atoms and molecules.?”> The parameters
targeted here include the ionization energies of U, UO, and UO, as well as the bond energies
of UO and UQO,. The electronic states involved here include the electronic ground states
for U, UT, UO, UOT, UO, and UO5. All these electronic states are dominated by single
determinants in the spinor representation. The high-spin analogue of the ground state 5 Lg of
the uranium atom is dominated by [Rn][5 f525/2)" [5f5/2.3/2]" [5.f5/2,1/2]" [6d3/2,3/2)" [751/2,1/2)"
[7s1/2,-1/2)", while that of the 4_79/2 state of U™ is dominated by [Rn][5f5/2,5/2]" [5f5/2,3/2)"
5f5/2.1/2)" [Ts1/2,1/2]" [7s1/2,-1/2). The leading valence configurations of UO with Q = 4 and
UO™ with Q = 4.5 are [5f5/2,5/2]1 [5f5/2,3/2]1 [5f5/2,1/2]1 [751/2,—1/2]1 and [5f5/2,5/2]1 [5f5/2,3/2]1
[5f5 /2,1 /2}1, respectively. The electronic ground state of UO5 and UO; take valence electron
configurations [5L705/2,5/2]1 [731/2,71/2]1 and [5f5/2,5/2]1-

On the other hand, we should mention that the open-shell species with more than one
open-shell 5f-electrons, including U, Ut, UO, and UO™, have multideterminantal wave func-
tions in scalar-relativistic calculations using real-valued wave functions. For example, the
leading configuration of UO™, [5f,=sm.=1/2]" [5fm=2me=1/2]" [0 fini=1,m.=1/2)", 18 a single
complex-valued determinant. Either the real or the imaginary part is a linear combination

of four real-valued determinants. Therefore, a calculation of such a state using a standard
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TABLE III. Ionization energies (IEs) for U, UO, and UOg, and equilibrium dissociation energies
(D¢’s for UO and UO9 computed at the CCSD(T) level of theory (in kJ/mol) using triple-zeta basis
sets with valence electrons correlated.??> “X2C-1e” represents the exact two-component approach in
its one-electron variant, “As..g0” respresents the two-electron spin-orbit contributions obtained as
the differences between the X2CAMF and X2C-1e results, and “Agreit” represents the contributions

from the Breit term obtained by including the Breit term in the X2CAMF scheme.

kJ/HlOl X2C—1e A2e-SO ABreit

IE(U) 599.9 3.2 0.2
IE(UO) 5737 1.5 1.6
IE(UOy)  585.0 0.0 2.3
D.(UO)  718.1 11.4 0.1
D.(UOs)  700.9 29.8 4.6

quantum-chemistry program packages with real-valued wave functions requires the use of
multireference methodologies. It is a unique applicability of spinor-based representation to
enable single-reference CC calculations of such open-shell systems with high-level treatments

of dynamical correlation.

As shown in Table III, the two-electron spin-orbit (2e-SO) interactions make signifi-
cant contributions to the computed thermochemical parameters in general, e.g, the 2e-SO
contributions to the dissociation energies of UO and UO, amount to 11 kJ/mol and 30
kJ/mol, respectively. The smallness of the 2e-SO contributions to the ionization energies
of UO and UQy is due to that the ionized electrons are in the 7s orbitals. Furthermore,
it is necessary to take into account the Breit term when aiming at chemical accuracy in

these calculations. One should be aware of the potential importance of quantum electro-
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TABLE IV. Ionization energies (IEs) for U, UO, and UO2 as well as equilibrium dissociation
energies (D.’s) for UO and UOs2 computed using the X2CAMF scheme for treating relativistic

effects (in kJ/mol).2%

kJ/mol HF CCSD CCSD(T) CCSD(T)a Experiment
IE(U) 577.1 (-20.5) 596.1 (-1.5) 598.5 (0.9) 594.8 (-2.8) 597.6208
IE(UO) 515.5 (-66.0) 569.8 (-11.7) 578.1 (-3.4) 577.6 (-3.9) 581.5%209

IE(UO,) 519.3 (-71.0) 577.1 (-13.2) 587.8 (-2.5) 588.2 (-2.1) 590.3210

D.(UO) 403.6 (-353/-354)  714.6 (-42/-43)  752.7 (-4/-5) 761.1 (4/3)  757+13%11 /758410212

D.(UOy) 347.1 (-406/-388)  671.1 (-82/-64)  729.7 (-23/-5)  739.7 (-13/5) 753414211 /735415212

dynamics (QED) contributions as well. The QED contribution to the U ionization energy
has been shown to be around 1 kJ/mol.?°® On the other hand, at the present stage, the
treatments of electron correlation with accurate inclusion of relativistic effects remain the
central challenge in accurate calculations of thermochemical parameters. The spinor rep-
resentation enables single-determinantal description of these electronic states and the use
of coupled-cluster methods to treat dynamic correlation effects accurately. Table IV shows
systematic improvement of computed results with the inclusion of the CCSD correlation
contributions and the triples corrections obtained from CCSD(T)! or CCSD(T)"" calcu-
lations. The X2CAMF-CCSD(T) and CCSD(T), results in general compare favorably with
the measured values.

It should be noted that the triples corrections calculated using the two perturbative triples
approaches are significant. They amount to more than 35 kJ/mol in the case of D.(UO)
and more than 50 kJ/mol for D.(UOy). Furthermore, the CCSD(T) and CCSD(T), results

differ by around 10 kJ/mol. The study of high-level correlation effects, including the full
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triples corrections and the quadruples contributions, will be important to provide more
accurate results. The difference between the four-component Dirac-Coulomb results and
the X2CAMEF results has been shown to be rather small. On the other hand, it will still be
useful to study the accuracy of the atomic approximation for the Breit term in the X2CAMF
scheme, by comparing the X2CAMF results with full Dirac-Coulomb-Breit calculations.
Finally, it would be very helpful to have reference values with reduced uncertainties to
benchmark the calculations. The current reference values show relatively large uncertainties
for D.(UO) and D.(UQO,); as listed in Table IV, the two latest reference values for D.(UO3)

differ from each other by around 18 kJ/mol.

IV. SUMMARY AND OUTLOOK

Relativistic coupled-cluster methods provide high-level treatments of electron-correlation
effects for heavy-atom-containing molecules, provided that the wave function is dominated
by a single determinant. This chapter reviews the general aspects of relativistic coupled-
cluster theory, with an emphasis on the computational considerations. The usefulness of
relativistic coupled-cluster methods is demonstrated using example calculations of molecular
properties, in which scalar-relativistic effects and spin-orbit coupling exhibit strong coupling
with electron correlation. A unique applicability of the spinor representation is also discussed
using spinor-based relativistic coupled-cluster calculations of open-shell uranium-containing
atomic and molecular species.

The scalar-relativistic two-component CC theory has essentially the same applicability
as the non-relativistic CC theory. In contrast, the spinor-based relativistic CC methods
are computationally more expensive. Highly parallelized implementations of spinor-based

relativistic coupled-cluster methods are expected to significantly extend the applicability
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of these methods to larger molecules on supercomputers. Meanwhile, the recent develop-
ment of new algorithms to improve the computational efficiency through partial recovery
of spin symmetry will enable calculations of larger molecules. With the ongoing develop-
ments of analytic-gradient techniques and the implementation of low-scaling computational
techniques for spinor-based relativistic coupled-cluster methods, we expect significantly en-

hanced capabilities for practical applications to heavy-element chemistry and spectroscopy.
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