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Executive Summary

The primary goals of this project are identifying hidden geothermal resources in the USA and
designing profitable enhanced geothermal systems (EGS). Many non-obvious processes and
parameters could characterize geothermal resources and could control the ultimate energy potential
of geothermal fields. Diverse datasets (e.g., geology, geochemistry, geophysics, satellite, airborne
geophysics) are available to help characterize geothermal resources, but this data is sparse and
multi-scale. This has hindered attempts to leverage the datasets for geothermal exploration and
profitable EGS design. Recent advancements in machine learning (ML) give promise to overcome
these issues. Modern ML methods and tools can (1) analyze large datasets, (2) assimilate model
ensembles that include a multitude of inputs and outputs, (3) process sparse datasets, (4) perform
transfer learning between sites with different data quality, (5) extract hidden geothermal signatures
from field and simulation data, (6) label geothermal resources and processes, (7) identify high-
value data acquisition targets, and (8) guide geothermal exploration and production by selecting
optimal exploration, production, and drilling strategies.

In this work, we implement ML-based geothermal exploration and an enhanced geothermal
systems (EGS) design tool to achieve the above goals. Our exploration tool is GeoThermalCloud
(GTC) EGS design tool is GeoDT-ML. GTC (github.com/SmartTensors/GeoThermalCloud.jl)
utilizes a LANL unsupervised ML platform called SmartTensors (https://tensors.lanl.gov/) to
automate data analyses and interpretations by extracting hidden signatures to identify geothermal
prospects. It enables the identification of critical measurements needed to identify geothermal
resource signatures. GeoDT-ML (github.com/SmartTensors/GeoThermalCloud.jl/tree/master/)
adds coupling to GeoDT (https://github.com/GeoDesignTool/GeoDT.git) for stochastic EGS
design optimization and performance prediction. GeoDT-ML leverages recent advances in deep
learning and high-performance computing. Contributors to this effort include LANL, PNNL,
Google, Stanford, and Julia Computing.

To test our new tools, we analyzed eight datasets from USA using GTC to identify prospective
geothermal resources. The first data set includes 44 locations in southwest New Mexico and 18
geological, hydrogeological, geophysical, geothermal, and geochemical attributes. We defined
low- and medium-temperature hydrothermal systems and discovered a new highly prospective site.
The second data set analyzed 18 shallow water chemistry attributes at 14,342 locations in the Great
Basin. It demarcated modestly, moderately, and highly prospective sites including key attributes
for each type of prospectivity. The third data set analyzed Utah FORGE data including satellite
(InSAR), geophysical (gravity, seismic), geochemical, and geothermal attributes. This enabled
prospectivity analysis to identify future drilling locations using geological, geochemical, and
geophysical attributes. Maps of temperature at depth and heat flow are constructed based on the
available data. Prospectivity maps were generated, and drilling locations were proposed for future
geothermal field exploration. The fourth data set analyzed 21 attributes at 120 locations in Tularosa
Basin, New Mexico; data comes from past play fairway analyses in this region. ML analyses
identified geothermal signatures associated with modestly, moderately, and highly prospective
systems. We also defined dominant attributes and spatial distribution of the geothermal signatures.
The fifth, sixth, seventh, and eighth datasets include Tohatchi Springs, New Mexico, Hawaii,
Brady site, Nevada, and EGS Collab, respectively.



Moreover, we coupled GTC and magnetotellurics data to pinpoint drilling locations for developing
geothermal projects in the Tularosa Basin, New Mexico. GTC found potential prospective
locations for geothermal resources near White Sands Missile Range and McGregor Range at Fort
Bliss. Magnetotellurics data determined the potential depth (~1800m) of geothermal prospects at
McGregor Range based on apparent resistivity structures/layers in the subsurface. The McGregor
Range consists of three resistivity layers and two resistivity structures. Magnetotellurics data also
helps identify that the western portion of the McGregor Range has thick and low-resistivity earth
materials. The low resistivity to the west is most likely from a fault system. The west-central part
of the McGregor Range appears to hold the highest geothermal potential because of increased
porosity and permeability attributed to faults.

Supporting this effort, we devised a coupling strategy between a process model and GTC to
characterize hydrogeological conditions and geothermal conditions, respectively. The process
model characterizes hydrogeological and geothermal conditions on highly prospective geothermal
sites provided by GTC. We developed a physics-informed neural network (PINN) version of the
Burns equation that can be easily coupled with GTC.

Furthermore, we performed a design optimization effort with the goal of maximizing the economic
value of an EGS power plant. This study optimized flow rates and well spacing between injection
and production wells using an estimated net present value in dollars (NPV). For this task, we used
GeoDT to simulate Utah FORGE EGS development but with the consideration of drilling to deeper
depths and drilling higher numbers of wells. This model includes natural fractures, stimulated
fractures, long-term fluid circulation, heat production, power cycle analysis, and economics to
combine drilling costs and power production into a common metric (i.e., NPV) as a unified and
quantified target for optimization.

Next, we deployed our ML tools to estimate the permeability of geothermal reservoirs. Predicting
permeability of geothermal reservoirs is a non-trivial task because of huge computational runtimes
and a lack of measurements. To overcome these limitations, we used chemistry data and our
convolutional neural network based ML model, based on a high-fidelity model. Next, we predicted
permeability using Markov chain Monte Carlo simulation. We found that Markov chain Monte
Carlo simulation predicts permeability with a high certainty if the prediction zone in the simulation
area has chemical concentration data.

Finally, we analyzed the DOE funded INGENIOUS and GeoDAWN projects data. For discovering
hidden geothermal systems in the Great Basin, the INGENIOUS project accumulated old data,
collected new data, and released them in 2022. The dataset includes a total of 24 geological,
geophysical, and geochemical attributes. Data resolution and scale significantly vary. We brought
all data into the same resolution and scale by applying the inverse distance weighting interpolation
technique for predicting data in unsampled locations. Subsequently, we analyzed LiDAR data of
the GeoDAWN project. We received data in tiles format. The DOE’s overarching goal is to use
ML on LiDAR data for finding favorable geological structures (e.g., step up faults in Brady,
Nevada). To serve this purpose, we need to label favorable geologic structures that correspond to
LiDAR data. We developed an algorithm to label the LiDAR data with favorable geologic
structures.



Overall, this project achieved its primary objectives of identifying prospective locations for
geothermal energy exploration and development as well as design optimization of Enhanced
Geothermal Systems (EGS). In the process, we developed data analysis and design tools that are
now released open source for others to benefit from. These tools include GeoThermalCloud for
unsupervised learning to discover hidden signatures of geothermal resources and GeoDT-ML for
deep learning enabled EGS design optimization. Supporting this effort, is our physics-based
ensemble technoeconomic assessment tool GeoDT that was used to predicting the performance of
EGS in highly uncertain site conditions. Our work identifies new prospective locations for hidden
geothermal resources in southern New Mexico, southern Nevada, and western Texas.



Chapter 1: GTC and GeoDT-ML and Their Usage

GTC

Introduction

The project is motivated by the challenges, risks, and costs associated with geothermal exploration
and production'. Many processes and parameters impacting geothermal conditions are poorly
understood. Diverse datasets are available to help characterize subsurface geothermal conditions
(public and proprietary; satellite, airborne surveys, vegetation/water sampling, geological,
geophysical, etc.). Yet, it is unclear how to properly leverage these datasets for geothermal
exploration due to an incomplete understanding of how physical processes impacting subsurface
geothermal conditions are represented in these observations. Recent advancements in machine
learning (ML) promise to resolve these issues'.

The tremendous challenges and risks of geothermal exploration and production bring the demand
for novel ML methods and tools that can (1) analyze large field datasets, (2) assimilate model
simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer learning
(between sites with different exploratory levels), (5) extract hidden geothermal signatures in the
field and simulation data, (6) label geothermal resources and processes, (7) identify high-value
data acquisition targets, and (8) guide geothermal exploration and production by selecting optimal
exploration, production, and drilling strategies®. Our goals and work under Phases 1 and 2 (as
proposed) of this project address all these needs.

Under Phase I&I1, we have developed GTC and GeoDT-ML. GTC is an unsupervised ML-based
tool to discover and extract new (unknown/hidden) geothermal signatures in existing site,
synthetic, and regional datasets. Our ML analyses also identified high-value data acquisition
strategies that can reduce geothermal exploration/production costs and risks. Moreover, GTC
categorized geothermal data, which is applied to generate geothermal data labels (e.g., geothermal
resource types). GTC allows for the treatment of both public and proprietary datasets. This is an
essential feature considering the high sensitivities associated with using proprietary data.
Moreover, the GTC framework includes a series of advanced pre-processing, post-processing, and
visualization tools, which tremendously simplify its application for real-world problems. These
tools make the ML results understandable and visible even for non-experts. Thus subject-matter
expertise is not a critical requirement during the training phase of the GTC framework; however,
their opinions are useful for verifying the outputs.

GeoDT-ML is an enhanced geothermal system (EGS) prospecting tool. It is an ML version of
GeoDT? . GeoDT is a very fast modeling tool to run thousands of realization tweaking reservoir,
drilling, and geothermal plant parameters. The main mechanism is to use GTC for geothermal
resources exploration to find favorable geothermal locations and then use GeoDT-ML for
exploring EGS prospectivity. Figs 1.1 and 1.2 demonstrate the schematics of GTC and GeoDT-
ML, respectively.


https://www.zotero.org/google-docs/?EEkpfW
https://www.zotero.org/google-docs/?MQ24ZL
https://www.zotero.org/google-docs/?bbQkV4
https://www.zotero.org/google-docs/?lvhdPt

We have used GTC on ten geothermal datasets. Eight datasets include site/real data, including a
large and sparse dataset of the Great Basin, and two datasets are synthetic data. The analyses found
critical information that could not be found using supervised ML or exploratory statistical
analyses. Most of the data and analyses are available on GitHub as well. Obtained results can be
reproduced and further expanded by adding additional data. Practitioners and researchers are
welcome to utilize GTC to solve other geothermal problems. GeoDT-ML can be used to study
FORGE EGS prospectivity.
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Fig. 1.1: Specific components of developers, users, and subject matter experts in the GTC platform.

Capabilities

GTC capabilities include (1) analyzing large field datasets, (2) assimilating model simulations
(large inputs and outputs), (3) processing sparse datasets, (4) performing transfer learning
(between sites with different exploratory levels), (5) extracting hidden geothermal signatures in
the field and simulation data, (6) labeling geothermal resources and processes, (7) identifying high-
value data acquisition targets, and (8) guiding geothermal exploration and production by selecting
optimal exploration, production, and drilling strategies. The GTC is an open-source tool available
at https://github.com/SmartTensors/GeoThermalCloud.jl (a part of our SmartTensors framework;
http://tensors.lanl.gov, https://github.com/SmartTensors)* and its counterpart docker image is
https://hub.docker.com/r/bulbulahmmed/geothermalcloud-vl.
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Fig. 1.2: Specific components of developers, users, and subject matter experts in the GTC and
GeoDT-ML platforms.

Methods

ML methods, in general, can be subdivided into three categories: supervised, physics-informed,
and unsupervised. The supervised methods require attributes and corresponding labels of the
analyzed data’. The labeling should be done by subject-matter experts who can identify, for
example, locations with high-, intermediate-, and low-temperature geothermal prospectivity or
specific geologic features such as fault offsets. The supervised methods are then applied to learn
geothermal prospectivity based on the available data. However, the successful training of
supervised methods requires large, continuous (without data gaps), non-noisy (with small
measurement errors) training datasets that are typically not available for geothermal exploration.
In essence, the supervised methods cannot discover something that is not already known and
provided as labels in the training dataset. The supervised methods are highly efficient in processing
large datasets and finding out how the processed data can be categorized. For example, they can
be trained to recognize images of cats and dogs; however, they will not recognize horses if they
have not been trained already to identify them. Furthermore, the supervised ML methods are
sensitive to noise in the analyzed data or the so-called “adversarial examples”® where small random
noise, undetectable to the human eye, can fool the detection capabilities of these methods. All of
these features make the application of supervised ML methods challenging for real-world science
applications. Commonly used supervised methods include deep neural networks®?, convolutional
neural networks'?, recurrent neural networks'', and random forest'?.

Physics-informed ML (PIML) methods also learn from data like supervised methods. They also
include preconceived science knowledge through equations and models representing physics laws,
constitutive relationships, and processes. Physics information can be (1) directly embedded in the


https://www.zotero.org/google-docs/?TYrtMR
https://www.zotero.org/google-docs/?Z5gRHa
https://www.zotero.org/google-docs/?CbbtHZ
https://www.zotero.org/google-docs/?DfgEth
https://www.zotero.org/google-docs/?4VmH7z
https://www.zotero.org/google-docs/?C4047W

ML framework!® or (2) added as penalties in the ML loss minimization process'*. However, the
physics-informed neural networks (PINN) are problem specific and not general like the traditional
supervised deep neural networks. Therefore, the construction PINN needs subject-matter expertise
related to the analyzed problem. Still, PIML analyses have better efficiency, accuracy, and
robustness compared to the traditional ML analyses. In contrast, the unsupervised ML techniques
extract information from existing datasets without any prior labeling or subject-matter
preprocessing. The unsupervised ML is applicable to discover unknown features and unmix mixed
signals present in the processed data.

GTC utilizes our novel, open-source, LANL-developed, patented ML methods and computational
tools. All these methods are distributed as SmartTensors. SmartTensors is a toolbox for
unsupervised and physics-informed ML based on matrix/tensor factorization constrained by
penalties enforcing robustness and interpretability (e.g., nonnegativity; physics and mathematical
constraints; etc.). SmartTensors has already been successfully applied to analyze diverse datasets
related to a wide range of problems, from COVID-19'3 to wildfires and text mining. Also, the
SmartTensors framework can handle big data and has already been demonstrated to perform tens
of TBs of data using DOE supercomputers.

The two most commonly used ML algorithms in SmartTensors are nonnegative matrix/tensor
factorization methods coupled with customized k-means clustering (NMFk and NTFk). They
perform nonnegative matrix/tensor factorization coupled with customized k-means clustering!6.
NMFk and NTFk are capable of identifying (i) the optimal number of hidden signatures in data,
(i1) the dominant set of attributes in data that correspond to identified hidden signatures, and (iii)
locations associated with each hidden signature.

All datasets are formed by directly observable quantities, while the underlying processes or data
signatures usually remain unseen, hidden, or latent'®. These hidden signatures (or features/signals)
can be either impossible to measure directly or are simply unknown. For example, let us assume
that a series of microphones are placed in a noisy ballroom where many people are talking. The
collected data records the mixtures of voices, sounds, and noises. The latent signatures are the
individual voices that cannot be recorded separately but can be extracted from the collected data.
Extracting latent signatures reduces the dimensionality of the data and defines low-dimensional
subspaces!” that represent the entire dataset. After the extraction, the obtained information is post-
processed by subject-matter experts to identify the physical meaning or the origin of the extracted
signatures.

Similarly, our unsupervised ML techniques have been applied here to extract latent signatures and
hidden (mixed) physical processes embedded in large, diverse geothermal datasets. Hidden (latent)
signatures provide a low-dimensional and compressed representation of the processed dataset.
They can also be viewed as basis vectors providing optimal data projection. In the case of
geothermal applications, these signatures typically represent information about a series of physical
processes that occur in observable and/or simulated datasets. These signatures can be multi-
dimensional capturing processes occurring in spatiotemporal space and captured by a set of diverse
attributes. Geothermal attributes we have processed in this report include temperature, gradients,
geothermometers, conductivity, permeability, fluxes, fracture densities, in-situ stresses, etc.
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To discover hidden signatures and their optimal number in large geothermal datasets, NMFk and
NTFk are at the forefront among various unsupervised ML methods such as nonnegative matrix
factorization (NMF)!7, principal component analysis (PCA)'®, independent component analysis
(ICA)®, singular value decomposition (SVD)?°, nonnegative tensor factorization (NTF)?!, and
Gaussian process/mixture modeling??. In contrast, with traditional NMF'”, NMFk allows for
automatic identification of the optimal number of signatures (features) present in the data'->*, The
nonnegativity constraint makes the decomposed matrices easier to interpret than PCA, SVD, and
ICA because the extracted signatures are additive. Moreover, NMFk and NTFk can handle huge
(TBs), real, categorical, and missing data. Dealing with missing data is challenging or impossible
for other supervised and unsupervised ML methods. Even more importantly, the missing data
(some or all of it) can be reconstructed from available data using the obtained NMFk and NTFk
results. Our ML methods also provide estimates of uncertainties associated with the estimated
missing data. All of these features of our ML methods make them very suitable for geothermal
ML analyses.

Detailed descriptions of our novel NMFk and NTFk algorithms are provided in our papers!®.
Here, we give just a high-level description of the NMFk and NTFk methodologies to support the
discussion of geothermal analyses in this report. NMFk performs matrix factorization of a data
matrix, Xy, «n, Where the m rows represent measurement locations, and the n columns are the values
of the geothermal attributes. The goal of NMFK is to find the optimal number of signatures k that
describe the analyzed dataset. This is accomplished by matrix factorization, which can be
represented as using:

X =WXH (1.1)

where W, 1s an “attribute” matrix characterizing the significance of attributes and Hyy, a
“location” matrix captures the importance of locations and their spatial association. It is important
to note that all the elements of matrices  and H are unknown. The number of signatures £ is also
unknown. The matrix factorization in (1) provides an approximate representation of the data X. To
solve for all the unknowns, NMFk performs a series of matrix factorization with random initial
guesses for W and H elements and for a range of values of k; theoretically, k& can range between 2
and min(m,n). For a given number of signatures k, Equation 1 is solved iteratively by minimizing
the reconstruction error O (k):

(k) =[1X — W xH||f (1.2)

by constraining the / and H elements to be greater or equal to zero (nonnegative), and F defines
the Frobenius norm?*. Under the NMFk algorithm, NMF is executed numerous times (typically
1,000), which generates a series of solutions for W and H matrices for a given k value. The resulting
multiple H solutions are clustered into k clusters using a customized k-means clustering'-'®. The
average silhouette width S(k) based on cosine norm is computed for all £ clusters. This metric
measures how well the random NMF solutions are clustered for a given value of k. The values of
S(k) theoretically can vary from -1 to 1.
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These operations are repeated for a series of k values. The optimal number of signatures, &, is
estimated on how the reconstruction errorO (k) and the average silhouette width S(k) vary with
the increase of k. The reconstruction error decreases as k increases. The average silhouette width
behavior is more complicated; S(k)generally declines as k increases from 1 to -1. However, S(k)
values frequently spike up for specific £ values, indicating that these k values are potentially
optimal. In an ideal case, a given k value is considered optimal when adding another signature does
not significantly improve the reconstruction of X (i.e., lower O(k)) and does not lower S(k). In
practice, a solution with S(k) greater than 0.5 and the lowest O(k) value can be chosen as an
optimal solution. The solutions with & values less than the optimal value and S(k) values > 0.5 are
acceptable; they provide underfitting representations of the data matrix X. All the solutions with &k
values greater than the optimal value are not acceptable; they provide overfitting representations
of the data matrix X.
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Fig. 1.3: ML of faces using NMF and PCA. Nonnegativity constraint provides additive, sparse and
interpretable results where facial features such as eyes and noses are well defined"’.
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We listed the benefits of NMFk over similar unsupervised ML tools above. PCA is the closest
similar tool to NMFk. PCA factorizes the data matrix X into score (S) and principal component
(P) matrices. The factorization can be represented as:

X = SP (1.3)

S is a diagonal matrix. As in NMF, Equation 3 is solved iteratively by minimizing the following
function

L=|lx-SP||, (1.4)

PCA searches for linear combinations in the data by projecting each data point onto an optimal set
of principal components (PCs) to obtain a low-dimensional representation of data while preserving
maximum data variation. PCs are ordered by the magnitude of data variance as captured by the S
diagonal elements.

Even though NMF and PCA are mathematically similar, the ML results obtained by both methods
are very different. For instance, both NMF and PCA can reconstruct human faces very well (Fig.
1.3). Both methods extracted 49 basic facial features (can also be called dictionaries, basis vectors,
or eigenvectors; the matrices on the left) needed to reconstruct the entire training set of ~1,000
faces (i.e., both methods performed data dimensionality reduction from ~1,000 to 49). However,
the nonnegativity constraints provide additive, sparse, and interpretable results where facial
features such as eyes and noses are well defined (Fig. 1.3; W matrix; top left). NMF face
reconstruction is obtained by adding a series of dominant features shown as black squares in the
H matrix. In contrast, the interpretation of PCA results is challenging. The first face (upper left
corner of matrix P) is the average face of the training set, and the reconstruction of face X is
obtained by adding and subtracting a series of facies features (in P) based on the weights (in S; red
defines negative values or feature subtraction; black represents positive values or feature addition).

XmGeHaWaV

|, M, N o |, M

Fig. 1.4: Example factorization of a data tensor X into a smaller core tensor G and three matrix

factors for each dimension. Matrix factors represent signatures in different dimensions. G defines
how these signatures are mixed.
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In addition to matrices, our ML methods can process multi-dimensional datasets, i.e., tensors. Most
of the geothermal data are multi-dimensional. The data indices can be space coordinates and time
for each spatiotemporal location, and there might be numerous observables coming from different
data sources (streams). Similarly, geothermal model outputs are multi-dimensional. There is a
limited number of ML methods that can process multi-dimensional datasets, and our novel
nonnegative tensor factorization method coupled with k-means clustering (NTFk) is at the
forefront. The factorization process converts a data tensor (labeled as X in Fig. 1.4) into a smaller
core tensor (labeled as G in Fig. 1.4) and three matrix factors for each dimension (labeled as H, W,
and V in Fig. 1.4). Matrix factors represent signatures in different dimensions. In the example
presented in Fig. 1.4, H, W and V contain 5, 4, and 3 signatures, respectively. G defines how these
signatures occurring in different dimensions are mixed to reproduce the original data tensor. The
tensor factorization is again achieved through solving a minimization problem and the estimation
of the optimal number of signatures in each dimension is performed using customized k-means
clustering®!-

We performed IDW interpolation to determine attributes at unknown locations using highly
variable data. IDW is efficient, intuitive, and provides relatively accurate data for a large number
of points. The output value of an unknown location is attributed to the sample points located near
it. Sample points, within a specified radius, have a greater “weight” associated with them making
points that are closer to one another are more alike than those that are far apart’>?’. Since the
weights of the sample points are proportional to the inverse of the distance raised to a power value
P, as the distance from an unknown point increases, the weight decreases quickly?®?’. The formula
of IDW is given by:

n (i)

=1\ aP

i

Zp = —7 % (1.5)
C (i)

i=1\ 4P
L

where z, is the value of the unknown point, z; is the value of the known point, d® is the distance to
the known point, and # is a fixed number of closest points.

MT is a passive geophysical technique used for measuring electrical resistivity structures in the
subsurface?®3!. Solar winds and lightning from thunderstorms cause natural variations in the
earth’s magnetic field that penetrate the subsurface and induce an electrical current®. The
electromagnetic fields (EM) from an MT survey are recorded at frequencies generally ranging
from 0.001 kHz to 10 kHz*?. The low-frequency response (<1 Hz) originates from solar winds,
and the high-frequency response originates from worldwide lightning strikes?*2,

In MT data, a time series of the two components of the electric field (£, and E)) and three
components of the magnetic field (., H,, and H:) are measured on the earth’s surface (Fig. 1.5).
The ratio between the electric and magnetic field components (£/H) is called the impedance tensor
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(2). As a proportion of the electric and magnetic fields are used to compute the impedance tensor.
The impedance tensor, Z, is used to determine the apparent resistivity and phase?**2. The following
equations use the components of Z to calculate apparent resistivity and phase. Both apparent
resistivity and phase are commonly plotted as a function of frequency for MT data analysis to
decipher subsurface structures.

X (North)

Y (East) Acquisition
H Unit

Fig. 1.5: Schematic of the arrangement and setup of electrodes and coils in the field during MT
data acquisition®.

While NMFk is effective for defining potential geothermal resources and identifying their spatial
location, for small site data, regional geothermal and hydrogeologic estimates are required for
developing geothermal fields. Regional conditions dictate the sustainability of geothermal fields.
For instance, information on the advective heat flow will provide insight into the sustainability of
the heat source to the aquifer. To capture regional hydrogeological and geothermal conditions,
Burns, et al.,, 2015 formulated a 1D analytical solution, which evaluates geothermal and
hydrogeologic controls on regional groundwater temperature distribution T (s)>*.

T(S) = [TLOS + ATgeothermal + ATviscous] + [TO - TL()S - ATgeothermal - ATviscous]efos (1'6)

where T(s) is temperature at space s, T/ is temperature at land surface at s = 0, T, is the
temperature at s = (0 where groundwater flows into domain, ATyeotpermar 18 the change in
temperature across the vadose zone required to conduct the heat flow entering the aquifer at the
basement, AT;scous 15 the change in temperature across the vadose zone to conduct the viscous
heat generated, and fis a function of aquifer width and volumetric flux.

Input parameters in Burns equation include land surface temperature, groundwater flux, hydraulic
head, vadose thermal conductivity, depth to water, and basal heat flux. The outputs include aquifer
temperature, viscous heat flux, vadose heat flux, and advective heat flux that assist in quantifying
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components of heat flux that contribute to aquifer temperature. GTC includes both analytical
solutions and equivalent neural network-based ML models.

Besides reconstruction error and silhouette width, we also used R’ to determine the accuracy of
prediction.

IR0y’

R’ =1 -
Z?:J(yi_zi)

(1.7)

where n, y;, y;, and y; represent the number of data points, actual data, predicted data, and mean
of data, respectively.

Case Studies

ML methods embedded in the GTC have been extensively tested and validated against various
datasets (Fig. 1.6)>%. Outputs of these applications have been published in presentations,
conference papers, and peer-reviewed papers.

West Texas
Tularosa Basin
Montana | ¢« Tohatchi Hot Springs
* SWNM
e Brady, NV

Great Basin
Utah

Colorado

500

. Kilometers

Sources: Esri, USGS, NOAA

Fig. 1.6: Locations of 7 out of 9 analyzed site datasets by the GTC framework. Datasets for Hawaii
and EGS Collab are not shown here.
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. West Texas: Westen Texas has a rich well dataset that provides the opportunity for refined

resource mapping. We analyzed this region using three geothermal attributes including thermal
conductivity, heat flow, geothermal gradient, and bottom hole temperatures to estimate the
temperature at depth and suitability for geothermal development

Great Basin: In this dataset, we analyzed 18 shallow water chemistry attributes at 14,342
locations. This work extracted hidden geothermal signatures associated with low-, medium-,
and high-temperature hydrothermal systems, their dominant characterization attributes, and
spatial distribution within the study area*®. The analyses are based on the public data available
on the Nevada Bureau of Mines and Geology website.

Southwest New Mexico (SWNM): Here, we analyzed 18 attributes at 44 locations and
identified low- and medium-temperature hydrothermal systems; found dominant attributes and
spatial distribution of extracted hidden hydrothermal signatures; demonstrated blind
predictions of the regional physiographic provinces'.

Brady site, Nevada: We identified key geologic factors controlling geothermal production in
the Brady geothermal field*’.

Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 120
locations®®; data comes from past PFA work in this region®®. ML analyses identified
geothermal signatures associated with low-, medium-, and high-temperature hydrothermal
systems. Dominant attributes and spatial distribution of the geothermal signatures were also
defined.

Tohatchi Springs, New Mexico: Explored 19 geothermal attributes at 43 locations in Tohatchi
Springs, New Mexico*’. Successfully defined geothermal signatures associated with low- and
medium-temperature hydrothermal systems. Also, we found their dominant attributes and
spatial distribution.

Hawaii: Analyzed four islands’ data separately and jointly; ML identified low-, medium-, and
high-temperature hydrothermal systems and their dominant characterization attributes*'.

. Utah FORGE: Performed prospectivity analysis to identify future drilling locations using

geological, geochemical, and geophysical attributes*?. Maps of temperature at depth and heat
flow are constructed based on the available data. Processed data includes satellite (InSAR),
geophysical (gravity, seismic), geochemical, and geothermal attributes. Prospectivity maps
were generated, and drilling locations were proposed for future geothermal field exploration.

EGS Collab: Field-laboratory data from the Sanford Underground Research Facility (SURF)
was processed to extract dominant temporal patterns observed in 49 data streams; erroneous
measurement attributes and periods were automatically identified; interrelated data streams
were automatically identified. This work has not been published yet.
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Setup and Usage

GTC can be used in three ways (i) on Julia, (ii) on Python, and (iii) on a Cloud platform (e.g.
JuliaHub, Google Cloud Platform, Amazon Web Services, Azure Cloud Services through Docker).
Julia's installation is explained at given below.

import Pkg
Pkg.add("GeoThermalCloud")
import GeoThermalCloud

GeoThermalCloud.SWNM() # performs analyses of southwest New Mexico
GeoThermalCloud.GreatBasin() # performs analyses of the Great Basin region
GeoThermalCloud.Brady() # performs analyses of the Brady site, Nevada.

The Python installation process is described below:

$ python3
import julia
julia.install()

from julia import Base
from julia import Main
Main.eval("import Pkg; Pkg.build(\"GeoThermalCloud\")")

Docker image can found at https://hub.docker.com/r/bulbulahmmed/geothermalcloud-v1.

Conclusions

GTC 1is an open-source cloud-based ML framework for geothermal exploration that can
simultaneously handle both public and proprietary datasets. Also, it consists of a series of advanced
pre-processing, post-processing, and visualization tools that tremendously simplify its application
for real-world problems. These tools make the ML results understandable and visible even for non-
experts; therefore, ML and subject-matter expertise are not critical requirements to use our ML
framework. GTC utilizes a series of novel LANL-developed patented ML tools called
SmartTensors (https://github.com/SmartTensors). SmartTensors has already been applied to solve
a wide range of real-world problems, from COVID-19 to wildfires (http://tensors.lanl.gov), and it
has won two 2021 R&D 100 awards, including a bronze award for market disruptor tools. Now, it
has two components (i) GTC and (ii) GeoDT-ML.

GTC 1is developed to process and analyze diverse small and large datasets. Also, it can handle
sparse datasets with missing values. It analyzes and finds actionable information to enable
decision-makers to make sound decisions for geothermal exploration, development, and
production. It finds such actionable information by finding mapping functions between all input
parameters. We analyzed eight diverse site datasets and found critical information that would not
be possible by visual inspection or any other statistical tools. Overall, GTC can (1) analyze large
field datasets, (2) assimilate model simulations (large inputs and outputs), (3) process sparse
datasets, (4) perform transfer learning (between sites with different exploratory levels), (5) extract
hidden geothermal signatures in the field and simulation data, (6) label geothermal resources and
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processes, (7) identify high-value data acquisition targets, and (8) guide geothermal exploration
and production by selecting optimal exploration, production, and drilling strategies.

GeoDT-ML

Introduction

GeoDT-ML is an ML-based version of GeoDT, which is a fast, simplified multi-physics solver to
evaluate EGS designs in uncertain geologic systems>*S. It is numerically efficient enough to model
thousands of realizations in a few hours using a desktop computer. The underlying assumptions of
this model are empirically based on laboratory and field data to partially account for complex
coupled processes, obviating the need to run expensive numerical simulations. The intent of this
model is to run it with full uncertainty, as informed by a broad spectrum of relevant prior laboratory
and field measurements, and to reduce the uncertainty only when suitable information is available.
When a promising EGS design is identified, it can be investigated in greater detail and at higher
fidelity using other more powerful but more expensive numerical modeling codes.

The primary features of GeoDT-ML include (Fig. 1.7):
1. Pressure and flow rate prediction for 3D networks of intersecting wells and fractures

modeled as pipes and nodes.

2. Hydraulic stimulation prediction with shear and tensile mechanisms where fracture
apertures depend on effective stress.

3. Transient heat production predictions that depend on fluid enthalpy, rock conductivity, and
stored energy change over time.

4. Electrical power generation using the combined single-flash Rankine and isobutane binary
cycle.

5. Net present value prediction based on geothermal cost estimation tools, electricity sales,
and a simple earthquake cost model.

‘ System parameters ‘
s
Q
§. ‘ Fracture and weII geometry - 10000 1 W
< B
= =
c§ ‘ Geomechamcs solver ‘ 2 T 75001 Flash Rankine
§5 £ 3
iz q Flow solver & = 50001 Binary - Isobutane
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]
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Fig. 1.7: GeoDT or GeoDT-ML stochastically predicts reservoir parameters, flow networks,
hydraulic stimulation, heat production, power production, injection-induced seismicity potential,
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and ultimately net present value by fast and simplified methods. Most models complete in ~15
seconds using a common desktop computer with a single processor thread.

Multiple datasets have been generated using GeoDT for EGS Collab and Utah FORGE site. One
was used for the PIVOT 2022 Datathon to simulate the whole geothermal development cycle from
the initial well design to the end of production. This dataset includes the Utah FORGE site
characteristics and its measured uncertainties. The database includes 44,492 unique realizations,
each with at least 30 years of production. Based on site characteristics, fractures are stochastically
created (Fig. 1.8). Next, simulations are performed to compute power outputs for each situation
(Fig. 1.9).
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Fig. 1.8: Stochastically generated fracture and well scenario with injection into one well across
seven isolated intervals and production from two bounding wells. The parallel hydraulic fractures
propagated from each injection interval are shown in red, indicating that these fractures require
relatively low pressure for activation (Pc).

20



6000 8000

=)}
(=
(=
o

4000

2000

Electrical Power Output (kW)

__ 4000
g ° o
= 0 200 400 600 800 1000
3
s Well Spacing (m)
8
]
g _ 8000
* 2000 ]
5
a
5
o
]
]
o
o
g
0 5
0 2 4 6 8 10 12 14 16 18 20 ulj 0 2 a4 6 8
Time (yr) Injection Intervals (number)

Fig. 1.9: Geothermal power production simulations based on the Utah FORGE parameters. In the
time series plot, a high-performing case is highlighted in red, and a poor performer is highlighted
in green. There is also a clear link between the well spacing and power output in addition to the
number of injection intervals (i.e., isolated zones) and power output (plots on the right).

GeoDT-ML Workflow

In this section, we describe the workflow scripts for GTC for EGS techno-economic analysis. The
Python scripts for the workflow development are available at https://github.com/SmartTensors/
GeoThermalCloud.jl/tree/master/EGS/GeoDT ML _v1/Python_Scripts. Jupyter Notebooks and
Google Colab notebooks will be made available in the future at this GTC GitHub location.

Data Processing and Curation

The GeoDT code (https://github.com/GeoDesignTool/GeoDT.git) is used to generate the training
database®*. The data for DL modeling is available at https:/github.com/SmartTensors/
GeoThermalCloud.jl/tree/master/EGS/GeoDT ML _vli/Data. In our study, a total of 4078
realizations are generated. The Python scripts — get _inp _out.py and get preprocessed data.py are
used to process the raw data and curate it using various pre-processing methods such as
StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, PowerTransformer (Yeo-
Johnson), QuantileTransformer (uniform output), and QuantileTransformer*’. The Python script —
get train_val_test splits.py allows us to split the curated data into 80% training, 10% validation,
and 10% testing. When the DL model identifies a promising EGS design, it can then be further
investigated in greater detail. For example, we can use high-fidelity process models and simulation
codes such as PELOTRAN* to explore promising EGS scenarios. This current study does not
include the use of high-fidelity codes, but these Python scripts can be leveraged and modified to
perform such DL analysis with minimal effort.
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Local and Global Sensitivity Analysis

The data worth analysis is performed wusing the get ftest mi npv.py and
get_ftest mi_npv_others.py scripts. These Python scripts allow us to perform local and global data
worth analysis. Sensitivity analysis is performed using two different approaches, F-test and mutual
information*>*’. F-test is a univariate linear regression test returning F-statistic and p-values. It
provides insights on the linear dependency of a given EGS design parameter with respect to
economics (e.g., undiscounted cash flow), thereby allowing us to identify potentially predictive
design parameters for DL model training for undiscounted cash flow. On the other hand, mutual
information provides insights on the non-linear dependency between EGS design parameters and
undiscounted cash flow. The MI between an EGS design parameter and undiscounted cashflow is
a non-negative value and is equal to zero if and only if two variables are independent, and higher
values mean higher non-linear dependency.

DL Model Training and Hyperparameter Tuning

This curated data is given as input to deep neural networks, which are trained on multiple cores
available on high-performance computing machines (HPC). This Al training at scale is performed
in parallel, allowing us to train and tune various deep neural networks in minimal time. We
combine Python and Al modules such as mpid4py, multiprocessing, parallel hdf5, and TensorFlow
to achieve this training at scale. The performance of the trained DL models is compared using the
validation loss, and a tuned model is then selected. This hyperparameter tuning is computationally
intensive and requires a lot of HPC resources. Python scripts such as get dir hp dnn_*py and
get _dnn_results *py are available to achieve this. They provide specifics on how to run on
MacOSX, Linux, and HPC resources. We trained these models on an HPC resource at PNNL using
20,000 CPU cores. Fig. 1.10 shows a plot of one such DL model training and inference.

Conclusions

GeoDT-ML is an ML-based version of GeoDT, a fast, simplified multi-physics solver to evaluate
EGS designs in uncertain geologic systems. It is numerically efficient enough to model thousands
of realizations in a few hours using a desktop computer. It is designed to find prospective enhanced
geothermal systems in hot, dry rocks. In this study, we developed and provided preliminary DL
workflow scripts to estimate EGS economics from design parameters. The database for DL model
training is developed using GeoDT, a multi-physics solver. Sensitivity analysis using F-test and
mutual information is performed on this database to gain insights into the GeoDT parameters. The
DL model training requires HPC resources as training and hyperparameter tuning is
computationally expensive. To overcome this challenge, we will also provide notebooks and pre-
trained ML models in GitHub for the geothermal community. Advanced hyperparameter tuning
scripts using open-source software such as DeepHyper and Keras-Tuner will also be made
available at https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS.
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Fig. 1.10. Training loss and one-to-one plots for training, validation, and test datasets of a
preliminary DL model. More than 20,000 DL models are trained on HPC resources to estimate
the EGS economics. This trained deep neural network model has three hidden layers, with neurons
[1000, 500, 250] in each of these layers. Leaky ReLU is used as an activation function with alpha
value of 0.1. The dropout value, which allows for minimizing over-fitting during the training
process, is assigned a value of 0.1. The total number of epochs for training is equal to 100. Batch
size, which is the number of training samples that a DL model sees for each iteration in an epoch,
is equal to 64. The resulting DNN has approximately 750K trainable weights.

Setup and Usage
The following are the steps to use the GeoDT-ML through GTC:

1. Create a virtual python environment (e.g., myenv)
a. conda create --name myenv

b. Install the following additional packages in the virtual environment: tensorflow,
keras-tuner, mpidpy, hSpy

2. @it clone https://github.com/SmartTensors/GeoThermalCloud.jl.git

3. cdto EGS/GeoDT ML v1/Python_Scripts

4. On terminal run — python <file name.py>
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These above instructions will be available through the readme markdown file on GTC. As the
scripts utilize HPC resources for training ML models, a user can use their own HPC systems to
run these scripts in parallel. These parallel scripts are not available through Jupyter Notebooks or
Google Colab notebooks. Such instructions will be made available at GTC GitHub repository.

Publications

1.

Al pinpoints renewable energy in Albuquerque Journal, 2020.

2. Unearthing clean energy in LANL magazine 1663.

YouTube Videos

3.

GeothermalCloud: https://www.youtube.com/watch?v=ryFxdyQgCJg&list=PLpVcrIWN
1P22LfyluSMSZ7WHp7q0MNjsj&index=11

SmartTensors Platform: https://www.youtube.com/watch?v=ni3EgQVypbQ&list=PLpV
crIWNIP22L fyluSMSZ7WHp7g0MNjsj&index=17.

NMFk optimization process: https://www.youtube.com/watch?v=6NAvJmY3Ae8&list=
PLpVcrIWNIP22L fyluSMSZ7WHp7q0MNjsj&index=36

Unsupervised ML workshop GSA: https://www.youtube.com/watch?v=8a6Gw29RHc
M&list=PLpVcrIWNIP22LfyluSMSZ7WHp7q0MNjsj&index=12

Demo Problems
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7.

10.

1.

12.

SWNM: https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/
SWNM/notebook

Brady: https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/Brady/
notebook

Great Basin: https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/
GreatBasin/notebook

Ingenious: https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/

Ingenious/notebooks

Utah FORGE: https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/utah

GeoDT-ML: https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/
GeoDT ML v1/Python Scripts
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Chapter 2: Location Drilling Sites with NMFk and MT data in the
Tularosa Basin

Introduction

The United States Energy Information Administration projects a 50% increase in global energy
consumption between 2018 and 2050*®. Specifically, in the United States, geothermal electric
power capacity has the potential to increase from 2.3 GW. in 2019 to 60 GW. by 2050%-%,
Geothermal energy is generated from the decay of naturally occurring radioactive elements and
stored deep in the subsurface. Even though there is essentially an inexhaustible geothermal energy
supply in the subsurface, much of the heat is unevenly distributed, seldomly concentrated, and too
deep to be economically exploited®'. However, there are locations where thermal energy is
accessible by drilling that are the targets for geothermal exploration.

Productive geothermal systems have three major characteristics: high heat flow, temperature, and
permeability. Geothermal resources are confined to regions of high heat flow and temperature due
to magmatism and/or crustal thinning>2. Specifically, extensional settings exhibit intermediate to
high heat flow that can be the target of geothermal exploration, and temperatures of 125-225°C
can produce geothermal energy’>>3. However, finding the optimal location for the development of
such resources and the potential depth of drilling is challenging because of high drilling and
development costs. Typically, play fairway analysis (PFA), a heavily used tool in the hydrocarbon
industry, is used for finding spatial locations of geothermal resources. Next, an magnetotellurics
(MT) survey or exploration drilling is performed to identify the optimal drilling depth. PFA
separately computes the importance of each attribute in a geothermal dataset and estimates a
composite score by combining scores for all attributes. The composite score is used for defining
spatial locations of geothermal resources. Such a study has a significant human bias. Here, we
propose an ML-based alternative PFA approach that simultaneously analyzes all attributes in a
dataset without human intervention to find spatial locations of geothermal resources. Finally, we
integrate MT data in the workflow to identify the most prospective drilling depth. Note that no
such study in the literature combines ML-based PFA and MT data.

Integrating ML and geophysical techniques assesses heat flow, temperature, and permeability for
geothermal exploration and development. Here, we use unsupervised ML called non-negative
matrix factorization with k-means clustering (NMFk). This approach clusters/groups data related
to heat flow, temperature, and permeability to establish groups with geothermal resource
significance in both attribute and spatial domains'®>*.

NMFk has been successful in various geothermal applications in identifying the location of
potential geothermal resources® and geologic factors associated with geothermal production®’.
MT is a passive geophysical technique used for measuring electrical resistivity structures in the
subsurface and is commonly used to characterize geothermal resources?®>!%. Generally, high-
potential geothermal systems are characterized by low resistivity because of the high salinity of
geothermal fluids. Geothermal systems commonly include faults and fractures filled with highly
conductive high-salinity fluids. In addition, clay products from mineral alteration in a geothermal
system also have low electrical resistivity. The correlation between low resistivity measurements
and geothermal resources makes MT surveys ideal for geothermal resource development.
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This study aims to demonstrate how NMFk analysis identifies the most prospective locations for
geothermal resource development, and MT inversion aids in the subsurface characterization of
those resources. Play fairway analysis (PFA) performed by Ruby Mountain Inc. and the Energy
and Geoscience Institute at the University of Utah identifies two highly prospective geothermal
locations within the Tularosa Basin, New Mexico: White Sands Missile Range and the McGregor
Range at Fort Bliss. Due to data limitations, heat flow, temperature, and permeability data from
White Sands Missile Range is used to demonstrate the ability of NMFk to characterize a
predetermined high-potential geothermal location further, whereas McGregor Range is used to
demonstrate the ability of MT data to identify geothermal prospects in the subsurface. Finally, we
demonstrate how NMFk and MT may be integrated to provide a 3D assessment of high-potential
geothermal resources, facilitating fast and economic geothermal play development.

Geologic Background

The Tularosa Basin is located on the eastern flank of the Late Paleogene Rio Grande rift**7. The
Rio Grande Rift occurs as a north-trending, intermontane graben within south-central New Mexico
and is bounded to the east by the Sacramento Mountains and to the west by the Organ and San
Andreas Mountains (Fig. 2.1). Faults associated with the Rio Grande Rift have several thousand
feet of displacement and separate the basin from the surrounding uplifted mountains>®. Paleogene
rifting induces high heat flow within southwestern New Mexico, making the southern portion of
the Tularosa Basin favorable for geothermal exploration®®. In the basin's southern part,
temperatures recorded from wellbores range from 170°C to 200°C>®%, and clay mineral analysis
indicates temperatures as high as 225°C>0,

The Tularosa Basin is filled with strata of Paleozoic to Tertiary age>®%°%? (Fig. 2.2). Bedrock
consists primarily of Paleozoic carbonates, including Ordovician and Silurian dolomite, Devonian,
and Mississippian interbedded chert-rich shales and limestones, and Pennsylvanian limestone with
thinly bedded shales. Tertiary felsic intrusions commonly crosscut the Paleozoic bedrock, and
Quaternary graben fill overlies the bedrock. It is composed of gravel, sand, silt, and clay derived
from prograding alluvial fans originating from the edge of the rift valley.

Data

The dataset has 10 attributes at 120 locations (Fig. 2.3). With an observational dataset, obtaining
values for 10 attributes at each location is difficult. In this study, the only attribute available at all
120 locations is temperature 2 m, and the remaining attributes had missing values for some
locations. To address the missing values, we apply the nearest neighbor interpolation techniques®
based on distance (not points) to heat flow, gravity, NaK-Giggenbach geothermometer, K-Mg
geothermometer, NaK-Fourneir geothermometer, silica geothermometer, and Li" concentration.
The distance is calculated using a variogram analysis. We also use block mean®®, kriging®, and
inverse distance weighting?® interpolation techniques. However, the nearest neighbor method
provides the best results for the dataset used in this study. R? score (Eq. 1.7) based on interpolated
and actual values is used to evaluate four interpolation techniques. ArcMap is used to interpolate
fault distance and fault density values. Specifically, the near coverage tool was used to find the
distance from the location to the nearest fault, and the kernel density function was used to calculate
fault density.
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Fig. 2.1: Location of the White Sands Missile Range and McGregor Range study areas within the
Tularosa Basin of southern New Mexico. The Tularosa Basin is an intermontane graben located

Rio Grande Rift

on the eastern flank of the Rio Grande Rift.

Fig. 2.2: Generalized stratigraphic succession of the Tularosa Basin sedimentary and igneous fill.
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Fig. 2.3: Locations (120 total) near White Sands is selected as input data for NMFk. At each site,
11 geothermal attributes are collected and used as input into the NMFk model.

A 56-station MT survey was conducted at the McGregor Range by Quantec Geoscience, and the

inversion modeling was completed by the Energy and Geoscience Institute at the University of
Utah (Fig. 2.4)%.

Results

Geothermal Characterization of NMFk Signatures

We applied NMFk to the dataset, which determines the optimal solution by evaluating
reconstruction quality and average silhouette width (Fig. 2.5). Optimal solutions have low and
high values. Generally, low and >0.25 are acceptable solutions’®. NMFk is run for 2 to 10
signatures, and the k=4 solution is optimal because of its low and high values. The solution with
k<4 is an underfitting data representation, whereas k>4 is an overfitting data representation.
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Fig. 2.4: Geologic map of the McGregor Range with MT station locations (blue) and slimhole core
locations (red). Recent eolian sands largely cover McGregor, although Paleozoic and Tertiary
outcrops occur in the northeast portion of the study area at Davis Dome.
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Fig. 2.5: NMFk reconstruction error (red curve) and silhouette width (blue curve) for different
numbers of clusters k. The optimal k value has low reconstruction error and higher silhouette
values. In this study, the optimal number of signatures is 4.
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Each column of the attribute matrix, H,.« 1S known as a signature and captures certain
characteristics in the dataset (Fig. 2.6A). The characteristics are defined by the contribution/weight
of each attribute in a signature. The warm colors represent a high weight between the signatures
and attributes, and the cool colors represent a relatively low weight (Fig. 2.6A). Furthermore, the
warm colors correlate to high values for the geothermal attributes, and the cool colors correlate to
lower values. The spatial distribution of each signature is plotted with a different color in Fig.
2.6B.

The dominant attributes of signature A are heat flow, K-Mg geothermometer, silica
geothermometer, and quaternary fault density, indicating high heat flow, subsurface temperature,
and permeability. Like signature A, signature B is characterized by high heat flow, temperature 2
m, and Li" concentration. Furthermore, the high Li" concentration indicates that signature B is
characterized by high vertical permeability. No geothermometer had a significant contribution to
signature B. Fault distance is the major attribute in signature C. This indicates locations assigned
as C have lower potential vertical permeability because they are relatively far from faults that act
as conduits for fluid flow. Signature C is characterized by lower heat flow and temperature relative
to the other signatures. The dominant attributes for signature D are the Na-K Giggenbach
geothermometer and NaK-Fourneir geothermometer indicating high subsurface temperatures.
Moderate weights for quaternary fault density and Li concentrations in signature D indicate
relatively high permeability. Heat flow and temperature 2 m have a relatively low contribution to
signature D.
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Fig. 2.6: Results from the NMFk model. A) Heatmap identifying the dominant geothermal
attributes in each signature. The warmer the color the more dominant the attribute for a particular
signature. B) Spatial distribution of signatures for the 120 locations at White Sands.
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Subsurface Characterization of Potential Geothermal Locations

Apparent resistivity and phase curves display resistivity trends using the period as a proxy for
depth (longer periods correspond to increased depth). Congruent MT apparent resistivity curves
of Zyy, and Zx indicate a 1D resistivity structure, whereas separation indicates more complicated
2D or 3D resistivity structure®. For example, MT apparent resistivity curves for station 017
located in the northeast section of the survey show separation between the two curves at shorter
periods, i.e., shallower depths (Fig. 2.7). This corresponds to geological structures related to Davis
Dome, a small intra-bolson horst near station 017,
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Fig. 2.7: Apparent resistivity curves for station MT017. The period is a proxy for depth, i.e., longer
periods are deeper depths. Separation of and curves at 0.05 s indicate 2D or 3D resistivity
Structures.

MT apparent resistivity and phase curves of Z,, and Z, from all 56 MT sites are shown in Fig. 2.8.
The apparent resistivity values show a cyclic trend from shorter to longer periods (shallower to
deeper depths). At shallower depths, the apparent resistivity gradually decreases. Between 1 s and
100 s, the apparent resistivity increases. At deeper depths, longer than 100s, the apparent resistivity
decreases. Furthermore, at longer periods, the Zy, and Z, curves diverge indicating complex, 3D
resistivity structure at deeper depths. The depth of the low apparent resistivity varies from east to
west. For MT stations 019, 022, and 025 the troughs for apparent resistivity occur at 1 s, 0.3 s, and
0.1 s, respectively (Fig. 2.9). The longer period to the west indicates that the low resistivity unit
occurs deeper in the west than in the east.
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Fig. 2.8: The apparent resistivity from 56 MT stations is lower at shorter periods, increases at
medium periods, and then decreases at longer periods for a low-high-low trend. Furthermore, at
longer periods, the Z,, and Z,x curves separate indicating 2D or 3D structure at deeper depths.

The dimensionality of the resistivity structure is determined by phase tensors. One-dimensional
resistivity structures indicate a natural change in resistivity with depth due to compaction®>*’.
Phase tensors are useful in identifying lateral variations (2D and 3D resistivity structures) in the
underlying regional resistivity*2. Lateral variations in resistivity result from changes in porosity
due to fault- and/or fracture-related diagenesis and/or changes in lithology.

The phase tensor is commonly plotted as an ellipse with a minimum and maximum principal axis
and skew angle, b (a measure of asymmetry) (Fig. 2.10A). In Fig. 2.10B, ellipses are colored based
on the skew angle. Yellow colors indicate a skew angle of 0, and the red and blue colors indicate
larger skew angles (= 5°). The larger the skew angle, the more asymmetric the phase tensor,
indicating higher dimension resistivity structures. For 1D resistivity structures, the minimum and
maximum principal axes are the same (fqx = fumin), resulting in the phase tensor characterized by a
yellow, circular shape. The phase tensor of a 2D resistivity structure is characterized by an
elliptical shape and skew angle close to zero (+ 3°). For 3D resistivity structures, the phase tensor
is asymmetric; hence, the phase tensor is characterized by blue or red. Furthermore, a rapid
direction change in the phase tensor’s principal axes between sites indicates a 3D resistivity
structure®®,

In general, across the study area, the shorter periods are characterized by 1D resistivity structures
and then higher dimension 2D and 3D resistivity structures with depth (Fig. 2.10B). This
observation is consistent with the separation in apparent resistivity curves at longer periods (Fig.
2.7). Specifically, at 0.01s and 0.1s, the phase tensors are characterized by 1D structures, as
indicated by the yellow circles. An exception to this observation is the northeastern corner of the
study area, where the shape of the tensors is more elliptical, and the skew angle is higher, indicating
lateral variation in the resistivity structure. This increase in dimensionality is consistent with
shallow structural features and northwest-trending faults associated with Davis Dome®'. The shape
of the ellipses and the red, blue, and orange colors at periods greater than 1s indicate 2D or 3D
resistivity structures. Specifically, the abrupt changes in the ellipse’s shape at 10s suggest possible
faulting. Caution must be taken when interpreting phase tensors at longer periods as they are more
affected by attenuation.

32


https://www.zotero.org/google-docs/?AKFTqM
https://www.zotero.org/google-docs/?UcgqKz
https://www.zotero.org/google-docs/?q0IQ9W
https://www.zotero.org/google-docs/?3C89Of

MTO19

_ 107 T— ny
£ —Lyx| ¥
o 1 =
@ 10" nn“a—.. A e et
é "n-... ‘."ﬁl""ﬂu"'a.k 2
Byl -
& ] . iEFL
<
10° I ! ] . ‘ !
k=3 60: - {‘#-W;EEE '.I
g ] ey P
2 3] . ey
=
o 1 .ﬁiw'"
0
10° 10° 10" 10" 10’ 10° 10° 10
Period (s)
MT Stations o MT022
N| = |=2
C01g 002 0034 004y T £ —Zx iRl
005 G "
® 06y 007g uoa. 009. 010. = 1 lf_-;" S
n 4 A
012. 013. 014. 01.5 018 .D1T .013 g 10 *ﬁ,."““\ _l" ._‘_E"!-.?
LA
019 g Vg 022 e 4 02% | & ﬁhﬁqéf o
028 030 031 03z
026y 027y e 0284 030g - 02| < o
034 036 Q37 038 038 I - I I : I
Yo e 03y L] ] [ L %l =
042 044 046 047 [=] 1 -
0d1g s g - » 3 6ol ‘-’::::’%E%IE
osg, o043 00 051 g5y  O53g ra hﬁ,!' s e
054 055 056 057 053 s 30 P
£
G -3 I-2 l-l IU I1 J 2 IS 4
10 10 10 10 10 10 10 10
Period (s)
, MT025
10 T,
— Zyz‘xy o
E — 4 S~
g e 1l "!:ﬂji
w 1 aiad "137 L
o 10 sl ﬂ'.
o =, el {_
-1 Ty, *;‘:v'-
2‘ q*‘-r;"’
10" . ) . . !
5 L :
o ] o= 1
o 60_ .-m%‘. ..3.. ZRIL
- < 8 -
30 o =
= a—"b.
£ -—m.-.:wi'g‘
10° 10° 10" 10° 10' 10° 10° 10°

Period (s}

Fig. 2.9: Apparent resistivity curves for MT stations 019, 022, and 025. The curves show a change
in the low resistivity unit depth from west to east. The low apparent resistivity trough of the Zy
and Z,x curves for MT019 occurs at 1s. The trough of the Z., and Z,x curves for MT022 occurs at
0.3 5. The trough of the Z, and Z,. curves for MT025 occurs at 0.1 s.
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Fig. 2.10: A) Graphical representation of the phase tensor. B) Phase tensor maps at 0.1, 0.01, 1,
10, 50 and 100s indicate the spatial distribution of resistivity structures with depth.

Discussion

Geothermal Resource Potential

Temperature, heat flow, and permeability are the main geothermal attributes driving geothermal
success 2. The locations associated with signature A have high geothermal resource potential
because of the characteristically high heat flow, high K-Mg and silica geothermometers, and
medium to high quaternary fault density. Therefore, signature A has a high likelihood of
possessing higher temperature, heat flow, and permeability compared to the other signatures. The
locations associated with signature D have moderate geothermal potential because of the
combination of high NaK-Giggenbach and NaK-Fourneir geothermometer values and low
temperature at 2 m and heat flow. The locations associated with signature B have moderate
geothermal potential because of high temperature at 2 m, heat flow, quaternary fault density, and
Li" concentrations; however, low values for the geothermometers suggest subsurface temperatures
may not be suitable for a geothermal resource. The locations associated with signature C have the
lowest geothermal resource potential because no geothermal attributes have a major contribution
to the signature.

MT Inversion Interpretation

Once a spatial location is determined through NMFk, MT can be a valuable tool to aid in the
subsurface characterization of a potential geothermal resource by analyzing resistivity trends.
Resistivity values are found through numerical inversion of MT data. Generally, geothermal fluid
demonstrates low resistivity because of the presence of high-concentration elemental composition
or total dissolved solids. The resistivity values of the McGregor geothermal system potentially
indicate three resistivity layers and two resistivity structures (Fig. 2.11).
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Layer 1 (L1) is characterized by the lowest resistivity (<8 Qm) and is confined generally to the
upper 500 m of the study interval. L1 is thickest to the west and thins to about 300 m in the east
(Fig.2.11). L1 is the thinnest in the northeast corner near Davis Dome. This regional low resistivity
cap is most likely attributed to basin-fill deposits. O’Donnell, Jr., et al.’! performed a seismic
reflection survey over the same study area and observed a wedge-shaped feature above the bedrock
attributed to alluvial fan deposits shed from the surrounding mountains. The observed thickening
of L1 to the west in the MT data is consistent with the wedge-shaped feature observed in the
seismic survey (Fig. 2.11).

Layer 2 (L2) is a low resistivity (10 — 100 Qm) layer with the top 200 — 600 m beneath the surface.
In general, L2 is shallower to the east (~300 m) and deeper to the west (~ 600 m). Wells drilled in
the northeast portion of the study area suggest that the top of L2 corresponds to Paleozoic
(Pennsylvanian limestone) bedrock®®%’. Finger & Jacobson®® observed and measured fracture
permeability in cores in nearly all Paleozoic units. Phase tensor analysis in the western part of the
study area indicates a 2D resistivity structure that suggests the presence of a possible fault system
(Fig. 2.10B). The thicker and lower resistivity L2 in the west may be attributed to increased
fractures and/or faults that act as storage or conduits for geothermal fluids decreasing resistivity,
i.e., L2 in the west is influenced by higher fractured and/or faulted units.

A low resistivity structure (RS1) is present below MT stations 039, 047, 051, 052, and 053 in the
southeast section of the study area (Fig. 2.11). The structure has similar resistivity as L2 but
extends to 2000 m. The lower resistivity of RS1 is interpreted to be related to a deformation
observed in surrounding wells. A thrust fault and overturned beds are observed in cores from well
51-8 located to the northeast of cross-section EW3, suggesting deformation in the area (Fig. 2.11).
Units related to this structure are pervasively fractured and may provide a conduit for fluid flow
and associated lower resistivity in RS1, as observed in Fig. 2.11.

A high resistivity structure (RS2) is present in the northeast portion of the study area and has
similar resistivity values to L3 (Fig. 2.11). The spatial distribution of resistivity and cored wells in
the area (45-5, 46-6, and 61-6) suggest RS2 coincides with structures related to Davis Dome, an
intrusive igneous laccolith (Fig. 2.11). Cored wells encounter felsic sills, a felsic laccolith, and
Mississippian limestone and shale at relatively shallow depths between 360 m and 530 m>®°!, The
thin L2 layer above RS2 is most likely fractured Paleozoic strata and high resistivity RS2 is most
likely a low permeability felsic body associated with the Davis Dome intrusion. These
interpretations are consistent with a structural high from a laccolith intrusion observed in reflection
seismic data velocity and gravity models from O’Donnell Jr. et al.®!.

The west-central section of L2 is interpreted as a possible fault system with the highest geothermal
potential. Geothermal reservoirs tend to have resistivity values between 10 — 60 Qm, similar to
those observed in L23%%8, The location where L2 is the thickest coincides with north-northwest
trending, anomalously high thermal gradients (up to 140°C/km). The anomaly may be due to
geothermal waters rising along a common fault zone or fractured bedrock adjacent to the fault
zone®, which is consistent with the highly faulted and/or fractured units observed in L2 to the west
(Fig. 2.11). Furthermore, the westward thickening of L2 suggests the possibility for a
corresponding increase in reservoir transmissivity and an increase in well productivity?°.
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Fig. 2.11: Three north-south and east-west MT cross sections with interpreted resistivity layers
and structures. The low resistivity to the west is interpreted as a fault system. The faults, fractures,
and possible dissolution because of geothermal fluids increase porosity thus decreasing resistivity.
Assuming temperature is consistent with a geothermal reservoir, the west-central part of the
McGregor Range has the highest geothermal potential because of the increase in porosity and
associated permeability attributed to the interpreted fault system.
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Limitations of MT

MT data is limited by its hectometer-scale vertical resolution. Resistivity is measured in well 56-
6 using wireline logs with a vertical resolution of 0.6”'. Compared to inverted MT resistivity, the
well logs provide more detailed variations in resistivity (Fig. 2.12). For example, from 90 — 220
m, well-log resistivity is characterized by high variability due to thinly interbedded limestones and
shales that are not detected in the MT resistivity. Only general interpretations of fluid saturation
and porosity can be made with MT data because of the low vertical resolution.
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Fig. 2.12: Comparison of wireline logs, resistivity logs, and MT resistivity of well 56-5. The
resistivity from well logs provides more detailed variations in resistivity that are not detected from
lower resolution, inverted MT resistivity data. Lithologies are based on petrophysical

interpretations from accompanying gamma ray (GR), neutron and density porosity, photoelectric
effect (PE), deep resistivity logs, and core cutting descriptions.
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Lithologic interpretations from MT inversions are difficult since resistivity is primarily influenced
by the salinity of pore-filling fluid and secondarily by porosity®. Because all rock matrices are
potentially saturated with similar saline water, porosity controls resistivity variations. In general,
lithification increases with depth and is associated with a decrease in porosity and permeability
consistent with the observed increase in MT resistivity from L1 to L3 (Fig. 2.11)®’. Correlations
between the four cored wells in the northeast portion of the study area indicate that L1 coincides
with Quaternary basin fill that is under-compacted and highly porous and permeable and, therefore,
characterized by low resistivity. Older strata associated with L2 and L3 are highly compacted and
cemented and characterized by lower porosity and permeability and higher resistivity. The
transition from L2 to L3 is controlled by porosity rather than lithology. For example, as seen in
EW?2, L2 thickness increases to the west, suggesting an increase in porosity. The phase tensors in
the west show 2D resistivity structures with increasing depth suggestive of a possible fault system
(Fig. 2.11). Secondary pore networks derived from fluid-rock interactions induced by the high
permeability fault system are interpreted to be filled with high salinity and low resistivity fluids.
Also, cored wells 61-6, 45-5, 46-6, 56-6, and 51-5 indicate that L2 and L3 coincide with Paleozoic
bedrock composed primarily of resistive carbonates. The resolution limitations of MT resistivity
measurements mean that small-scale changes in carbonate lithologies are not detected and suggest
that differences between L2 and L3 are not related to lithology (Fig. 2.12).

Conclusions

NMF* is a useful ML tool to assess prospective geothermal regions by evaluating variability in
geothermal, geological, geophysical, and geochemical attributes. In the southwestern portion of
the Tularosa Basin at White Sands Missile Range, four signatures (A-D) were established through
NMFk for their geothermal resource potential. Signature A is interpreted to have the highest
geothermal potential due to a combination of high heat flow, reservoir temperatures, and
comparatively high porosity and permeability. Signatures B and D have moderate potential
because of their relatively low heat flow and temperature. Signature C has the lowest geothermal
resource potential because no geothermal attributes have a major contribution to the signature.

MT inversions detect subsurface geothermal prospects based on resistivity. MT provides insight
into relative porosity and associated permeability that is related to the subsurface resistivity trends
detected in the MT inversion. From an MT survey from McGregor Range, three resistivity layers
(L1, L2, and L3) and 2 resistivity structures (RS1 and RS2) are identified. The layers are inferred
to be related to a combination of depth-related compaction and lithification effects, and the
resistivity structures are related to Davis Dome, laccolith, and faulting. A fault system is
interpreted in the western portion of the study area as indicated by the thickening of L2. Because
low resistivity is a defining characteristic of geothermal prospects, the western portion of the
McGregor MT survey has the highest geothermal potential.

The low vertical resolution of MT data, in contrast with high-resolution borehole resistivity
measurements, makes it difficult to relate lithological variability and associated rock attributes
with MT inversions. MT is limited because the interpreted resistivity layers only provide insight
into relative porosity and do not correlate with lithological or stratigraphic units. Only large-scale
characterization of porosity and associated permeability can be made when interpreting MT
inversions. Therefore, the MT survey may be used as a preliminary study before drilling a well,
which will provide more detailed information for developing a geothermal field.
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Chapter 3: Characterization of Potential Geothermal Energy
Utilization in West Texas

Introduction

The total U.S. energy consumption is ~13.68x10° GJ*¥, mostly from fossil fuels that emit carbon
into the atmosphere. To reduce CO; emissions, carbon-free energy sources such as wind, solar,
and geothermal are becoming more prevalent. Geothermal energy is poised to become an
important continuous source of heat and energy. Currently, geothermal energy makes up <1% of
U.S. electricity generation but can increase dramatically as the U.S. has ~2x10'* GJ of extractable
geothermal energy™®.

Large areas of land in the U.S. with a high geothermal gradient may possess hot water resources.
Most importantly, many oil and gas fields have high thermal gradients that can be converted into
geothermal energy. As geothermal energy use becomes more prevalent, it is important to easily
determine the proper setting and attributes to displace the greatest amount of fossil fuels.
Therefore, the main purpose of this work is to estimate geothermal prospectivities and commercial
feasibility in western Texas (Fig. 3.1) using publicly available oil and gas field data.

Plains
Eastern
Lower Rio Grande Valley

Far West

BEREN

Winter Garden and South/Central

Fig. 3.1: The map of Texas, including their basin configuration. The study area is in west Texas,
bounded by the red rectangle.

Western Texas because it not only has a high number of existing and orphaned oil fields/wells but
also has a medium geothermal gradient and easy-to-drill sedimentary formations. These existing
or abandoned oil wells are a great opportunity for geothermal energy as their interconnected piping
infrastructure and drilled wells can be repurposed for geothermal energy production, reducing a
large portion of the costs associated with geothermal development. Medium geothermal gradient
and soft sedimentary formations favor drilling new wells if necessary. Additionally, geothermal
resources in the form of water and other heated fluids can be found along with oil and gas.
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We mainly used three geothermal attributes including thermal conductivity, heat flow, geothermal
gradient, and bottom hole temperatures (BHT). Next, preprocessing was performed to remove
spurious data. Next, we interpolated using the inverse distance weighting (IDW) technique to
estimate values at unknown locations based on known locations. Next, we delineated the proper
utilization of this geothermal energy for electricity production, spas & balneology, and greenhouse
farming based on their temperatures at 1, 2, 3, and 4 km depths.

Three variables used in this study contained about 48% outliers. For instance, the maximum and
minimum values for the temperature gradient far exceeded the appropriate range of the geothermal
gradient throughout the U.S. Whereas the average geothermal gradient range in western Texas is
contoured between 15 — 40°C/km, the provided data ranged between 0 - 1386°C/km’>. We
removed these outliers from the data by creating a new dataset that only included values that were
greater than or equal to 15°C/km or less than or equal to 40°C/km. Additional outliers existed
within the heat flow data set, so we instead opted to use the following formula to calculate new
data for the heat flow throughout the West Texas region:

q = K;VT (3.1)

where q is heat flow (W/m?), Kr is thermal conductivity (W/mC), and VT is temperature gradient
(C/m). To obtain accurate heat flow data, we located the thermal conductivity points either in the
same location or closest to those in the new geothermal gradient dataset. To do so, we conducted
a nearest neighbor calculation using a binary search tree or K-D tree to determine the shortest
Euclidean distance between points based on the longitude and latitude data. The data provided by
this calculation allowed us to extract only the points in thermal conductivity data that geospatially
coincided with the new geothermal gradient dataset. Next, we performed the IDW described in the
method section of Chapter 1.

Utilization Scheme

Each industry has a unique temperature requirement to continue its business. For spas, a
comfortable inlet water temperature is around 40 °C with 50 °C. While current spas can use water
temperatures above 50 °C, this water requires additional cooling to achieve a safe temperature.
Following Germany’s example, the maximum allowed inlet water temperature was 60 °C.

The temperature required for heating systems in greenhouses ranges from 40 — 100 °C, as
greenhouses can use various heating systems. These greenhouses can utilize this geothermal
energy through finned pipes, fan coil units, soil heating, plastic tubing, cascading, bare pipes, unit
heaters, or a combination. The heating method used in these greenhouses will determine the inlet
temperature for the water.

There are three major types of geothermal power plants, dry steam, flash steam, and binary (Table
3.1). A dry steam power plant primarily uses steam extracted directly from the geothermal
reservoir. Flash steam is the most common type of power generation plant in operation today but
required temperatures greater than 150°C. The power plant with the greatest potential for
geothermal utilization is the binary cycle power plant. This plant differs by heating a secondary
fluid through a heat exchanger. The benefit here is that binary cycle power plants can use low-
enthalpy fluids with temperatures ranging from 95 - 150°C.
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Table 3.1: Geothermal power plant types, corresponding fluid types and temperature ranges.

Geothermal power plant type Fluid type Temperature range (°C)
Dry steam Steam >150

Flash steam Water >150

Binary Organic 95-150

Results and Discussion

We received numerous attributes from the Bureau of Economic Geology, UT Austin. Among those
attributes, only bottomhole temperature, geothermal gradient, thermal conductivity, and heat flow
possess good quality data (Fig. 3.2). Continuous interpolated contour at 1 km depth of each
attribute is shown in Fig. 3.2a-c.
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Fig. 3.2: Contours of geothermal gradient (a), thermal conductivity (b), and heat flow (c).
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Thermal gradient is the change in temperature per unit depth and is vital in determining
temperatures at specified depths. The geothermal gradient in the study area had much greater
variation in values than the other attributes and averaged 27.5°C/km with a maximum of
39.5°C/km and a minimum of 15.3°C/km (Fig. 3.2a). The average of 27.5°C/km is only 5.3%
below the average gradient for the continental U.S. However, when compared to western states,
the West Texas geothermal gradient was 21.14% below the 34°C/km value.

The thermal conductivity throughout the majority of the West Texas region lies at approximately
2.5 W/mK with spikes in conductivity up to 5.44 W/mK towards the western edge and throughout
the center of the region (Fig. 3.2b). Thermal conductivity describes a material's ability to transfer
heat through conduction. For a geothermal resource, thermal conductivity is critical to understand
as it directly controls the steady state temperature field’?. Additionally, it can have a large impact
on required bore hole depth to meet the heating demands of a utility when utilizing a ground-
source heat pump or ground coupled heat exchanger.

Heat flow in a geothermal context is the movement of heat/energy from the interior of the Earth to
the surface. A larger heat flow is typically indicative of good geothermal heat production.
Additionally, heat flow determines vertical conductive heat flow losses as geothermal fluids rise
to the surface either naturally or through piping. Throughout the West Texas Region heat flow
averages around 0.0637 W/m?, with a few spikes up to 0.1635 W/m? (Fig. 3.2¢).

To determine the borehole temperatures at depths between 1 km and 4 km with 1 km incremental
depth, the geothermal gradient dataset was multiplied by the chosen depth and added to the
standard surface temperature of 25°C. Utilities were then added to their corresponding temperature
ranges on the plots to highlight the potential forms of utilization and their pervasiveness throughout
the region (Figs. 3.3-3.6). Bottom hole temperature rises following geothermal gradients, ranging
from a minimum of 40°C at 1 km to a maximum of 178°C at 4 km, hence the utilization (Table 2).
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Fig. 3.3: Spas could be a favorable utility at 1 km depth.
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Fig. 3.4: Green house farming could be a favorable utility at 2 km depth.
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Fig. 3.5: Electricity production through binary geothermal power plant could be a favorable utility
at 3 km depth.
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BHT at 4km (°C)
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Fig. 3.6: Electricity production through binary & steam flash geothermal power plant could be a
favorable utility at 4 km depth.

Table 3.2. Summary of potential utilities for 1 - 4 km depth.

Utility 1km | 2km 3km 4km
Spas & GH Farming N/A N/A
GH Farming 6.8% 0.10%
GH Farming & Elec Prod (Binary) N/A 10.97%

Elec Prod (Binary) N/A

Elec Production N/A

It is important to note that Table 3.2 is reflective of only the data points created from the
interpolated datasets and not the actual geospatial locations. As displayed above, at 1km, spas and
greenhouse farming could be the dominant utility encompassing 98.94% of the West Texas
geothermal resources. However, beyond 1 km, the temperature becomes too high to support safe
and efficient geothermal spas, so spas are essentially infeasible. At 2 km, the greenhouse farming
utility dominates 98.84% of the potential available utilities. Since the average depth of crude oil
and natural gas wells is approximately 2 km, geothermal greenhouse farming operations become
the most potentially viable utilities if they are able to take advantage of the existing infrastructure.
Additionally, 2 km is where it can be seen that some binary electricity production can begin to
occur. At 3 and 4 km, binary electricity production becomes the dominant utility with some
potential for greenhouse farming. The flash steam power plant is only feasible at or beyond 4 km.
While BHT at 4 km is still considered reasonable, it is quite costly to drill that deep. If electric
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utility companies are willing to spend higher upfront costs, there is a large potential for the
expansion of flash steam cycle energy production.

We also plotted orphan wells on top of the BHT map at 2km (Fig. 3.7). Many of the wells are
located on top of geothermal resources that could be used for greenhouse farming, with some
located on resources that could be used to produce electricity from a binary cycle power plant (Fig.
3.7). These orphan wells might be a good avenue to reduce upfront cost to set up utility facilities.
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Fig 3.7: Orphan wells could be used to extract hot fluid, however, a detail study is required on
whether they can sustain thousands of barrel fluid withdrawal in a day.

Conclusions

West Texas has a huge potential for certain geothermal utilization facilities ranging from spas to
electricity production that varies with depth. For instance, at 1 km depth, geothermal spas could
be a favorable utility while greenhouse farming can be expected to make great use of not only the
geothermal resources but also the existing oil and gas infrastructure at 2 km depth. At 3 & 4 km,
binary cycle power plants would predominantly use the geothermal resource to produce clean and
continuous electricity. At a depth of 4 km, a steam-flash power plant could be used to generate
electricity, although spatially sporadically. Orphan wells can be used to reduce cost; however, a
thorough study is required to determine if they can sustain 1000 barrels of fluid extraction in a day.
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Chapter 4: Machine Learning and a Process Model to Better
Characterize Hidden Geothermal Resources in Tularosa Basin

Introduction

Geothermal is a growing renewable energy resource that can be utilized 24 hours a day without
shutting off a geothermal power plant. However, in the U.S. ~3.7 GJ/year (<1%) of electricity
generation is from geothermal resources*® although it has ~2 x 10'* GJ/year tappable energy”*"*.
This potential energy resource is largely unexplored because many geothermal reservoirs are
hidden or blind (no apparent surface exposures), which often leads to expensive and risky
exploration’>’®, Typically, play fairway analysis (PFA), adapted from the oil and gas industry, is
performed for geothermal discovery, exploration, and development. PFA integrates available
geologic, geophysical, and geochemical attributes indicative of geothermal activity and estimates
the importance of these attributes for the characterization of the geothermal resource’’ 2. PFA
separately quantifies the relative importance of each attribute instead of the simultaneous usage of
all attributes. Here, we used a tool called GTC, which simultaneously analyzes available attributes,
finds geothermal prospectivities, and discovers key parameters defining geothermal
prospectivities'’.

GTC utilizes different machine learning (ML) methods. GTC can (1) analyze large field datasets,
(2) assimilate model simulations (large inputs and outputs), (3) process sparse datasets, (4)
perform transfer learning (between sites with different exploratory levels), (5) extract hidden
geothermal signatures in the field and simulation data, (6) label geothermal resources and
processes, (7) identify high-value data acquisition targets, and (8) guide geothermal exploration
and production by selecting optimal exploration, production, and drilling strategies. Although
GTC can implement different ML methods, its core component is an unsupervised machine
learning (ML) called non-negative matrix factorization with customized k-means clustering
(NMFk)"-16-2534 Here, we applied NMFk to the Tularosa Basin PFA dataset collected by the
Department of Energy (DOE).

The Tularosa Basin is located in the Basin and Range province, which exhibits high favorability
of occurrence for geothermal resources due to high heat flow related to the Rio Grande rift. A
few geothermal facilities have been developed within the Basin and Range province®***,
Recently, it has been the subject of geothermal studies due to its high geothermal potential
coupled with the U.S. Army’s interest in using the geothermal resource as an energy source for
White Sands Missile Test Range and McGregor Range®36%-6!|

Geologically, the Tularosa Basin is located on the eastern flank of the Rio Grande rift zone as a
north-trending, intermontane graben located in south-central New Mexico. It is bounded to the east
by the uplifted Sacramento Mountains and to the west by the uplifted Organ and San Andreas
Mountains. Faults related to the Rio Grande rift with several thousand feet of displacement
separate the basin from the surrounding, uplifted mountains. Stratigraphically, the Tularosa Basin
consists of Paleozoic limestones and shales to Tertiary age rocks>®%°%2, Rifting during the
Paleogene resulted in characteristically high heat flow in south-central New Mexico®>#¢. High heat
flow makes the southern part of the Tularosa Basin favorable for geothermal exploration.

46


https://www.zotero.org/google-docs/?7VMZQo
https://www.zotero.org/google-docs/?BnbxA6
https://www.zotero.org/google-docs/?sJjQ5a
https://www.zotero.org/google-docs/?tSFfq5
https://www.zotero.org/google-docs/?R2gvgN
https://www.zotero.org/google-docs/?NaYVPa
https://www.zotero.org/google-docs/?ybhlK1
https://www.zotero.org/google-docs/?XHRNzl
https://www.zotero.org/google-docs/?CxMGhQ
https://www.zotero.org/google-docs/?RonHGc

Recently, the DOE has collected data to develop geothermal fields in the Tularosa Basin. The data
include geological, geophysical, geothermal, and geochemical attributes. Also, a comprehensive
PFA study was conducted by Ruby Mountain Inc.’*®, and they demonstrated prospective
geothermal locations. In this study, we curated data from the DOE Geothermal Data Repository
and then used them as input parameters for GTC. Results from GTC provide insights into the
relationship between attributes and prospective geothermal locations, which we then compared to
the PFA study by Ruby Mountain Inc.. Lastly, we discussed how NMFk and Burns’ equation*
can be coupled to obtain a better understanding of prospective geothermal sites.
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Fig. 4.1: Data locations and Quaternary faults in the study area.

Data

In this study, we used a total of 10 attributes: temperature at 2m depth (temperature at 2m),
heatflow, NaK-Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir
geothermometer, silica geothermometer, gravity, fault distance, quaternary fault density, and Li
concentration. All these attributes are critical for geothermal resources discovery and exploration.
Temperature at 2 m has been used to explore geothermal fields at Dead Horse Wells, the
Hawthorne Army Depot, and Emerson Passin in Nevada®’. Heatflow defines how heat flows to the
geothermal reservoir from the deep subsurface. Geothermometers (NaK-Giggenbach
geothermometer, K-Mg geothermometer, NaK-Fourneir geothermometer, and silica
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geothermometer) are used to estimate potential reservoir temperature and geochemical processes
in the reservoir. These geothermometers help estimate potential reservoir temperature, leading to
less exploratory well drilling. Gravity may represent secondary mineralization and help
characterize geologic structure®®. Faults can act as conduits of (1) groundwater flow water from
depth to the ground surface as well as (2) groundwater recharge. We have two fault attributes: fault
distance and quaternary fault density. Fault distance represents the distance from the fault to the
data point. Fault density (quaternary) is the number of faults per square meter of an area. Finally,
Li concentration is a geochemical element that represents deep fluid circulation. All these
attributes were used at 120 locations (Fig. 4.1)

However, all attributes are dispersely located and are not available at 120 locations except
temperature at 2 m. We applied different interpolation techniques to sample all attributes at the
specified 120 locations. For heatflow, NaK-Giggenbach geothermometer, K-Mg geothermometer,
NaK-Fourneir geothermometer, silica geothermometer, gravity, and Li concentration interpolation
was used by making the study area as a grid. Interpolation was performed based on block mean,
kriging, and inverse distance weighting. Next, R? score was computed based on interpolated values
and real values. We found all methods provide equivalent R? scores. Block mean was selected as
the optimal interpolation method because it takes the least time to execute. The interpolated values
were used in the nearest neighbor algorithm to sample 120 values at 120 locations. The nearest
neighbor algorithm finds a mean value based on the radius or the number of points around a point.
Here, we use radius to find the mean value. The radius was calculated based on a variogram study
of the data.

Fault distance and fault density were estimated using different approaches. For estimating fault
distance, we generated a normal raster on ArcMap. The raster was converted to points. Next, a
near coverage tool on ArcMap was used to compute the distance of each point from the nearest
faults. For estimating fault density, we also generated a normal raster followed by converting
points. Next, the near coverage tool was used to find the distance from a point to the nearest faults.
Finally, the kernel density function was used to calculate fault density. The unit of fault density is
m/m?’.

To develop a neural network-based ML model, we generated data based on Eastern Snake River
Plain by varying input parameter ranges based on variance and mean of data using Eqn. 6. Next,
we form a 1D deep neural network with three layers. Each layer has 256, 128, and 64 layers,
respectively. We used relu as the activation function. We trained the model for 500 epochs with a
learning rate of 0.001. Using a data matrix instead of generating files is the main benefit of utilizing
the neural network model. Also, point-based prediction is feasible with the neural network-based
model but is not possible with Burns’ equation.

Results

Fig. 4.2 shows the reconstruction quality O(k) and average silhouette width S(k) for different
numbers of geothermal signatures k. O (k) values exponentially decrease with the increase of the
number of signatures. However, that is not generally true S(k). Although optimal solutions have
low O(k) and high S(k)values, their optimal values are not theoretically established. Generally,
low O (k) and S(k)>0.25 can be considered to be acceptable. Here, the solutions for £=2, 3, 4, 5,
and 6 were accepted, while the =8 to 10 solutions were rejected by the algorithm. This conclusion
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is based on the high S(k)values (>0.25) and the O (k) decline curve (Fig. 4.2). The k=4 solution is
found to be optimal because of its low O (k) and high S(k) values. The solution with k<4 is an
underfitting representation of data, while £>3 is an overfitting data representation. In the following
paragraphs, we will describe each signature of the &=4 solution (Fig. 4.3).
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Fig. 4.2: NMFk results for normalized reconstruction quality/fit O(k)in red color and solution
robustness (based on the average silhouette S(k) width of the clusters) in blue color for different
numbers of signals k.

Fig. 3 shows a heatmap of signatures found by GTC. Each signature captures certain characteristics
in the dataset. The colors in each signature represent the contribution of each attribute. Green,
yellow, and brown-red colors represent minor, moderate, and major contributions. The minor and
major contributions also mean the dataset's low and high attribute values.

The dominant attributes of Signature A are heat flow, K-Mg geothermometer, silica
geothermometer, and quaternary fault density (Fig. 3a). Heat flow is one of the main geothermal
attributes while K-Mg and silica geothermometers potentially represent high reservoir
temperature. Low contribution from NaK-Giggenbach and NaK-Fourneir geothermometers
suggests that geochemical processes in the reservoir are not controlled by Na enriched minerals.
High contribution of quaternary fault density may indicate elevated secondary permeability. The
contribution of Temperature at 2 m is medium that is consistent with high heat flow. Another
critical component of this signature is low contribution from fault distance. Low fault distance
means fault is close to the locations associated with this signature that may lead to elevated
secondary permeability. All these factors are good indicators for high geothermal prospects;
therefore, the locations associated with Signature A have a high chance of having geothermal
resources (Fig. 3b).
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Fig. 4.3: Geothermal signature heatmap (a) and their spatial distribution (b). Each signature
captures certain characteristics in the data. Here, Signatures A and B represent highly prospective
geothermal signatures. Green, golden, and red colors in (a) represent low, medium, and high
contributions, respectively.

The dominant attributes of Signature B are Temperature 2 m and heat flow, quaternary fault
density, and Li concentration (Fig. 3a). Temperature 2 m and heat flow are two main geothermal
attributes. The high contribution of quaternary fault density may indicate elevated secondary
permeability. The high contribution from Li suggests a potential fluid circulation from the deep
subsurface that is a good indicator of potential geothermal resources. The contribution from fault
distance is also low. Low fault distance means faults are close to the locations associated with this
signature. All these factors are good indicators for high geothermal prospects; therefore, the
locations associated with Signature B have a high chance of potential geothermal resources (Fig.
3b). However, no geothermometers had major contributions on this signature except close to
medium contribution from silica geothermometer suggesting the geothermal potential is not as
high as Signature A. a careful approach should be taken prior to making any decision about
geothermal resource development.

No geothermal attributes had a major contribution on Signature C; therefore, we conclude that the
locations associated with it have a low chance of possessing geothermal resources. In Signature
D, the dominant attributes are NaK-Giggenbach and NaK-Fourneir geothermometers. These
attributes suggest that the reservoir has a high temperature. The medium and high contribution of
Quaternary fault density and Li concentration suggest elevated secondary permeability and deep
fluid circulation. However, temperature 2 m and heat flow had low contributions. All these factors
suggest that the locations associated with Signature D (Fig. 3b) may or may not have high

50



prospectivity. However, Signature D has some positive characteristics for exploring geothermal
resources and because of its proximity to Signature A (high prospective signature), there is some
potential for sustainable geothermal resources in the locations associated with Signature A. Note
that the prospective geothermal locations are consistent with the Ruby Mountain’s PFA
prospective locations.

NMFk results help us discover potential geothermal resources and their spatial locations. Regional
hydrogeological and geothermal conditions would facilitate a better understanding on whether we
can develop a long-term geothermal facility here. To obtain such results, we can apply Eq. (3) to
compute aquifer temperature, viscous heat flux, vadose heat flux, and advective heat flux. Among
these four attributes, viscous heat flux and advective heat flux could be used to estimate the
potential time to heat up the geothermal reservoir temperature during energy production and
injection, hence, the viability and sustainability of geothermal reservoirs. We coupled the Burns’
equation with NMFk, and GTC can perform such tasks. However, we could not demonstrate a
study because of a lack of data. We will conduct and demonstrate such a study if we receive a good
dataset in the future.

Conclusions

Tularosa basin has potential geothermal resources, which can be used to support several federal
facilities in the area. To find geothermal prospects, we studied 10 attributes at 120 locations.
Attributes include temperature 2 m, heatflow, NaK-Giggenbach geothermometer, K-Mg
geothermometer, NaK-Fourneir geothermometer, silica geothermometer, gravity, fault distance,
quaternary fault density, and Li concentration. The dataset was used as input parameters to GTC.
GTC finds four signatures (A, B, C, and D), two of which are geothermal signatures. The locations
associated with Signatures A and B have high geothermal resource prospectivities that are spatially
consistent with the Ruby Mountain’s PFA study. We also found that the locations associated with
Signature D are not as prospective as Signatures A and B, but they might assist a sustainable
geothermal reservoir in the area around the locations of Signature A. The key attributes defining
the geothermal resources are heat flow, K-Mg geothermometer, silica geothermometer, quaternary
fault density, temperature 2 m, fault density, and Li concentration. Finally, we discussed how we
can couple an existing analytical equation to GTC computing the viability and sustainability of
geothermal reservoirs.
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Chapter 5: A FORGE Datathon Case Study to Optimize Well
Spacing and Flow Rate for Power Generation

Introduction

Enhanced geothermal systems (EGS) present a significant and long-term opportunity for
widespread power production and direct heat’®®. However, high exploration costs and
uncertainties associated with subsurface characteristics (such as permeability, reservoir
temperature, fault connectivity, geochemistry, and in situ stress distribution) have impeded the
geothermal market growth’®®. Moreover, building a profitable EGS is a major challenge.
Profitable EGS fields will depend on many design parameters®*. We will focus on the parameters
of reservoir depth, project lifespan, injection temperature, well spacing, well length, well azimuth,
well depth, well skew (i.e., non-parallel wells), well count, well toe (i.e., decreasing well spacing
from heel to toe), well proportion (i.e., the ratio of injection well length to production well length),
well phase (i.e., the placement of the production well above, beside, or below the injection well),
well intervals (i.e., the number of isolated perforation clusters), production well pressure
drawdown, stimulation flow rate, stimulation volume, and circulation flow rate. Finding optimal
values for these design parameters is a computationally expensive task to say the least.

To tackle this challenge, PIVOT organized a first-ever Geo Datathon event in 2022%. The primary
goal of this Datathon was to identify production well placement. Participants in this event used
different machine-learning methods to solve a geothermal engineering problem on a simulated
dataset of the Utah FORGE site (Fig. 5.1). Data for the Datathon was generated by the geothermal
design tool (GeoDT) to investigate the power production potential of an EGS system. Six teams
(Team Naturals, Benjamin Cassidy, Pebbles, GeoT360, S-Team, and GeotherML) completed the
competition in this event. Team Naturals of Stanford University, Benjamin Cassidy of Hammer
and Tongs Polymer Development, and Pebbles of the Colorado School of Mine were awarded
champion, 1st runner up, and 2nd runner up, respectively.

Despite a short time for the competition and a challenging task, each team made a great
contribution to identifying suitable locations for the production well. Team Naturals included
metrics for risk by considering averages and standard deviations in power production. Also, they
clearly demonstrated that net power production was not the best value to optimize. Benjamin
Cassidy applied a unique set of approaches to the ML challenge to optimize well placement from
more than one perspective. Crucially, these competitors also revealed several problems that needed
to be solved to get the best answer to optimizing the well spacing: (1) identifying a suitable
objective function (e.g., net present value), (2) finding a robust optimization method for the
complex dataset, and (3) accounting for uncertainty and risk tolerance.

Here, the primary purpose of our study is to find optimal well spacing (w_spacing) and per-interval
circulation flow rate (Qinj) for the same dataset. First, we define a new objective function, which
yields reduced parameters for comparing realizations, e.g., average power or net present value
(NPV) in dollar amount. We chose NPV because it provides the best estimate of monetary value.
Second, we developed a binning-based optimization approach. Third, we identified optimized
w_spacing and Qinj with an assessment of uncertainty.
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Fig. 5.1: Utah FORGE site with the injection well 16A(78)-32 and five monitoring wells (taken
from Moore et al. 2021°).

Net Present Value (NPV) Estimation

Our new economic module in GeoDT yields estimated NPV in circa 2019 U.S. dollar amounts for
ahot dry rock EGS geothermal project®?. Such a reduced value is critical for optimizing geothermal
design parameters. This module considers capital costs, maintenance costs, pumping costs, and
power sales. Following the theme of fast-simplified physics, this module uses simplified methods
to estimate costs where the underlying goal is to give a conservative view of the economic potential
of a project. The cost terms that we employ in this study are summarized in Table 5.1. True costs
for an EGS site depend on many factors beyond what our simple model includes. Ultimately, we
use this cost model as an objective function to better contrast increasing power production with
increasing capital costs and other financial risks.

Table 5.1: Constants used to estimate NPV.

Parameter Unit Value Reference
Electricity sales per kilowatt-hour USD/kWh 0.1372 EIA, 2022
Drilling cost per length USD/m 2763 Lowry et al., 2017
Drill pad cost kUSD 590 Lowry et al., 2017
Power plant cost USD 2026 GETEM
Exploration cost per depth USD/m 2683 GETEM
Operating cost per kilowatt-hour USD/kWh 0.0365 GETEM

53


https://www.zotero.org/google-docs/?24mMX4
https://www.zotero.org/google-docs/?HI9hWs

Outputs from GeoDT that pair with these cost factors include the net power output (Pout) for each
model timestep and timestep parameters (TimeSteps and LifeSpan). The net power production
term (Pout) for the Datathon only included the flash steam cycle for power generation. In this
study, we add a simplified estimate for isobutane binary-cycle power generation and an improved
estimate of injection well pumping losses that account for open-loop fluid losses
(https://github.com/GeoDesignTool/GeoDT). Each power term includes the effect of
inefficiencies, with this study using a conservative 85% efficiency (GenEfficiency). Discrete
fracture networks with open-flow boundaries formed the basis of all the GeoDT models.

Data Description

The 16 most critical controllable design parameters (Table 2) can be divided into four categories:
reservoir/site, power cycle, well, and stimulation. Of these, only 10 design parameters were varied
to a meaningful degree because the first well at the site, well 16A(78)-32, has already been drilled
at a diameter of 0.11 m to a depth of 2350 m with a highly deviated lateral length of 1114 in the
direction of 1.833 radians Azimuth at a dip of 0.483 rad below the horizon. This azimuthal
direction is near-parallel to the in-situ minimum horizontal stress direction. Reservoir depth is the
only controllable reservoir parameter, but it is not a variable in this study because of the preceding
reasons. Injection temperature was the only power cycle parameter that was varied because this
study focuses on subsurface EGS design optimization, not power systems engineering. While
GeoDT is capable of modeling hydraulic stimulation separately from circulation, in this study, the
circulation stage is treated as a continuous stimulation stage for the lifespan of the EGS, so we did
not parameterize these two stages independently. In other words, GeoDT predicts hydraulic
fracturing and shearing at the same rate of injection as what is used for long-term circulation and
heat mining. Our focus for design optimization will be set on well spacing (w_spacing) and per-
interval circulation rate (Qinj) because these two terms were predicted to be first-order controls
for power production.

Using statistical distributions for all the known and unknown sites, fracture network, and design
parameters, 44,492 realizations were generated for the Datathon (PIVOT, 2022). All the well
parameters were generated using uniform distributions. The minimum and maximum values of the
distribution are listed in Table 5.2, and histograms of six example parameters are shown in Fig.
5.2. The lifespan of the field was considered only 30 years, and injection temperatures varied from
85-99°C (Fig. 5.3). The injection rates per-interval (Qinj), which also serve as the stimulation rates,
were generated using exponential distribution because this offers improved resolution for
realizations with low flow rates, relative to the maximum simulated flow rate. When the optimal
flow rate is not known, the exponential distribution helps explore a larger probability space in
order to more clearly identify the optimal flow rates.
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Table 5.2: EGS project design parameters and corresponding units, minimum and maximum
values, and their statistical distributions. Parameters in green color cells were optimized in this
study.

Variable Parameter Unit | Min Value | Max Value | Distribution
ResDepth Nominal reservoir depth m 2340 2360
LifeSpan Project lifespan yr 30 30 -

Tinj Injection temperature C 85 99 -
T E T
w length Well length m 1114 1114 Lognormal
w azimuth Well azimuth deg 1.833 1.833 Uniform
w dip Well dip deg 0.438 0.438 Uniform
w skew Well skew deg |-10 10 Uniform
w count Well count wells |1 4 Uniform
w toe Well toe deg |-5 5 Uniform
w proportion | Well proportion deg 0.8 1.1 Uniform
w phase Well phase deg 0 360 Uniform
w intervals | Well intervals zones | 1 6 Uniform
dPp Production well pressure rise | MPa | -10 2 Uniform
perf Perforation count perfs | 1 1 Uniform

T O T T
Methods

In any optimization technique, identifying a suitable objection function is a crucial first step. Here,
our goal is to maximize the NPV value of a geothermal project because NPV provides a common
framework to measure the relative benefit and cost of each design decision. This contrasts with
optimizing power production, where the most productive scenarios can be unreasonably expensive
with respect to drilling and pumping costs. The traditional parameter estimation study fits a
physical model to data, finding optimal parameters. Such a study finds a single optimal value for
each parameter and then the Markov chain Monte Carlo (MCMC) method or its variant is
performed to generate distributions of parameters to provide uncertainty of the value in its
distribution. However, MCMC cannot provide uncertainty based on the most likely scenarios for
peak NPVs, an important attribute to investors.
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Investors would like to see what is the most likely chance of a profitable geothermal project based
on NPVs; for instance, what are the 10®, 50%, and 90 percentile of NPVs for a given set of design
parameters? Therefore, we chose binning-based optimization in this study (Fig. 5.4). In this
technique, we define a bin volume based on discrete splitting of the design parameter values of
injection rate and well spacing. Then, we compute NPVs of each realization in the corresponding
volume. Finally, we compute the 10™, 50™, and 90™ percentile of NPVs and their corresponding
design parameters. Here, percentile values of NPV demonstrate the profitability of geothermal
fields while the design parameter ranges provide the range within which the NPV would be
profitable. For this study, w_spacing and Qinj were evenly split into 9 and 4 intervals, giving a
total of 36 bins for our realizations. Nine intervals provided the finest discretization that yielded
suitably large populations of data within each bin for achieving statistical significance.

1071 ]

Qinj [m3/s]

1072 7

1073 1

0 100 200 300 400 500 600 700
Well spacing [m]

Fig. 5.4: Binning based optimization technique where blue dots represent each realization and red
color rectangle shows example binned areas.
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Results

The model’s NPV values are widely distributed, ranging from negative to hundreds of millions
USD (Fig. 5.5). We plotted the frequency distribution plot of NPVs using 30 bins. The most
common outcome was negative NPV due to the relatively cold 200°C temperature at the current
depth of FORGE when treated as an EGS. Out of 44,492, 42,960 (96.55%) realizations fall into
this non-profitable category. Only 3.45% or 1,532 realizations fall into the profitable category. The
profitable NPVs range from 0 to ~1500 million USD. The most likely profitable range was 25 to
676 million USD.
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Fig. 5.5: Histogram of NPVs where negative and positive values represent non-profitable and
profitable geothermal fields, respectively. The number on top of each bar represents the total count
of NPV for the corresponding bar. All drilling costs and pumping losses are included in this model.
Note that this plot includes non-optimized flow rates and well spacing. For additional reading,
please refer to Frash et al., 2023'%3,

All NPVs are plotted against Qinj and w_spacing in Fig. 5.6. Here, only positive or profitable
NPVs are present, while negative values are absent. It is clearly shown that geothermal fields are
non-profitable or marginally profitable for Qinj < 0.01 m%/s. High and extreme Qinj at rates above
0.2 m*/s do not make a geothermal project profitable either. Therefore, the optimization of Qinj is
critical for achieving economic EGS, which confirms our apriori expectation but now better
quantifies this trend. A similar optimization trend is less visible for w_spacing because profitable
to non-profitable geothermal fields are present across the full w_spacing range. Therefore, we
applied a binning-based optimization technique to find optimal w_spacing and Qinj.
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Fig. 5.6: Positive (profitable) NPVs against Qinj and w_spacing where color and size represent
NPVs. Warm and larger-sized circles represent higher NPVs or vice versa. Most realizations are

not in this plot because of their negative USD values.

The 10" percentile values show profitable geothermal fields most likely occur between 110 to 348
mw_spacing and 0.0005 to 0.001 m*/s Qinj (Fig. 5.7a). Here, the closer space provides more profit
because of the presence of fluid. The highest profit within the 10" percentile reached up to 0.5
million USD. The 50™ percentile values demonstrate that profitable geothermal fields are feasible
between 190 and 747 m w_spacing and 0.001 - 0.01 m>/s Qinj (Fig. 5.7b). The highest profit within

the 50th percentile reached up to 5.5 million USD.
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Fig. 5.7: 10" (a), 50" (b), and 90" (c) percentile values of NPV in USD.
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The 90™ percentile values show more interesting characteristics across the ranges for both Qinj
and w_spacing (Fig. 5.7¢). Although all Qinj seem profitable, the prominent Qinj is 0.01 to 0.1
m?>/s. The next most profitable Qinj range is 0.1 to 0.3 m?/s. The w_spacing range between 190 to
747 m is profitable. Among these ranges, the most profitable range is between 509 to 588 m. The
next most profitable w_spacing range is between 668 to 747 m. The highest profit within the 90
percentile can reach up to ~36 million USD. For both 50™ and 90" percentile cases, low w_spacing
provides less profit, and high w_spacing provides higher profits. This phenomenon contradicts the
idea that close spacing will benefit from having a better flow rate. Here, the total fluid volume
generated more heat, thereby, more profits. So, it is clear that a total hot fluid volume is preferred
to the flow rate in estimating NPV. In other words, more w_spacing provides more volume,
facilitating more fluid extraction.

Conclusions

We analyzed GeoDatathon data based on the Utah FORGE site parameters. The dataset has a total
of 16 design parameters that control geothermal energy production, hence, its NPVs in USD. The
primary goal of this study is to find the optimal design values for well spacing (w_spacing) and
per-interval injection rate (Qinj) for developing profitable geothermal fields with specified
uncertainties. We used a binning-based optimization technique to compute NPVs. We subdivided
the whole realizations into 36 bins based on nine ranges for both w_spacing and Qinj. Following,
NPV was calculated for all realizations in each bin. Next, we computed 10%, 50", and 90®
percentile scores of NPV in all bins. Based on the analysis, we came to the following conclusions:
(1) The 10" percentile values demonstrate that profitable geothermal fields are feasible between
110 to 348 m w_spacing and 0.0005 to 0.001 m>/s Qinj. The maximum profit can reach up to 0.5
million USD. (2) The 50™ percentile values demonstrate that profitable geothermal fields are
possible between 190 to 747 m w_spacing and 0.001 - 0.01 m?/s Qinj. Low w_spacing provides
less profit, and high w_spacing provides high profits. The maximum profit can reach up to 5.5
million USD. The 90™ percentile values are better to consider than the 10" and 50" percentile
values because of (1) higher certainty and wide ranges of w_spacing and Qinj. The most profitable
Qinj is between 0.01 to 0.3 m%/s. The w_spacing range between 190 to 747 m is profitable. Among
these ranges, the most profitable range is between 509 to 588 m. The next most profitable
Ww_spacing range is between 668 to 747 m. The maximum profit can reach up to 35 million USD.
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Chapter 6: Coupling Thermo-hydro-chemical Modeling and
Markov Chain Monte Carlo Method for Permeability and
Porosity Estimation in a Geothermal Reservoir

Introduction

Accurate geothermal reservoir characterization and maintenance help design a profitable
geothermal power plant®®. Specifically, accurate estimation of permeability and porosity is crucial
for understanding the fluid flow mechanism and resource estimation of a geothermal field. For
instance, higher permeability and porosity values could provide over-optimistic resource
estimation and resource extraction mechanisms or vice versa. However, the detailed permeability
and porosity field of geothermal fields remains unknown because of sparse core measurements.
Crucially, there is no workflow for determining permeability and porosity values with quantified
certainties from sparse measurements. The primary goal of this study is to demonstrate a workflow
that estimates the permeability and porosity distribution in a geothermal site from sparse core
measurements.

Several studies predicted the permeability of geothermal reservoirs using either numerical
simulation or lab experiments®*'®. One notable study was performed by Jafari and Babadagli®’
on estimating correlation coefficient of fractures by investigating the fractal and statistical
parameters of fractures. The major limitation of this study is that they did not use critical
geothermal measurements, e.g., groundwater temperature and tracer concentration, to constrain
the model. Catinat et al.”® used nuclear magnetic resonance measurements to establish a
relationship between porosity and permeability. This approach is reliable with two limitations: (1)
data are sparse, and (2) it fails to provide a good relation if one considers the total porosity. Weibel
et al.”> developed a relationship between porosity and permeability in low-enthalpy geothermal
reservoirs by investigating the effect of diagenesis on sandstone permeability. However, they did
not verify the relationship between groundwater temperature and tracer concentration. Jiang et al.”
estimated heterogeneous permeability distributions in an enhanced geothermal synthetic reservoir
by combining an autoencoder neural network and a Bayesian inversion algorithm based on Markov
chain Monte Carlo (MCMC) sampling. They used single-well injection withdrawal as
measurement data that are not readily available. Suzuki et al.!® developed a supervised machine-
learning-based model, random forest, for estimating permeability distributions for a geothermal
field using temperature and pressure distribution as measurements.

The preceding studies did not estimate permeability or porosity, constraining the model based on
critical attributes for geothermal exploration. The critical attributes are groundwater temperature
and tracer (e.g., Li*, Ba?") concentration in the subsurface. Groundwater temperature captures
thermal gradient or heat flow, while tracer concentration indicates deep fluid circulation'!'°!.
Moreover, they are easy to measure, and USGS installed numerous wells to measure these two
attributes. To address the limitations, we estimated permeability and porosity of a 3D reservoir
scale model constrained by groundwater temperature and tracer concentration.

For such a parameter estimation study, many flow, heat flux, and chemical transport simulations
are often needed. Although the high-fidelity coupled thermal-hydrologic-chemical (THC) model
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is reliable and accurate in performing this task, the computational cost is huge. With the growth of
parallel computing hardware like Graphical Processing Units(GPU), integrating machine learning
(ML) tools could greatly speed up the simulations while maintaining accuracy. In this study, we
train a deep CNN model as the surrogate using a relatively small and accurate simulation dataset
obtained from the coupled THC model runs using PFLOTRAN**. Next, we generated 6,000
permeability and porosity distribution realizations coupling the CNN model and MCMC sampling.
Moreover, we discuss when MCMC performs better.

Data Generation

This study is on thermal-hydrologic-chemical physical processes involved in heat conduction and
energy transfer due to fluid flow and chemical transport in a site-scale reservoir'®2. The governing
equations for fluid flow, chemical transport, and heat transfer processes are explained in Mudunuru
et al.!2, This study develops a 3D model with heterogeneous and anisotropic porous geologic
systems representing the Tularosa Basin in New Mexico using PFLOTRAN. The model dimension
is 6000 x 6000 x 6000 m>, discretized into 10 x 10 x 30 grid cells. We developed a big model to
capture the optimal temperature distribution in the model domain'®.

The PFLOTRAN simulator takes the following terms as the variable input: the permeability, the
initial temperature profile, the heat flux on the bottom of the reservoir modeling the geothermal
resource, and the tracer concentration of lithium and boron. Other modeling parameters, such as
fluid thermal conductivity, solid thermal conductivity, rock density, and diffusivity, are known
and are considered uniform over the simulation domain. The same Neumann boundary conditions
are applied to the west, east, north, and south faces of the 3D rectangular domain, i.e., no flow, no
heat or concentration flux. The pressure on the top and bottom faces is fixed; the flow is upward
with the higher bottom pressure. Zero concentration fluxes are assumed on the top and bottom
surfaces. The only varying boundary condition is the heat flux on the bottom face.

Aiming for a neural network surrogate model to predict the pressure, tracer concentration, and
temperature field, we adopt a dataset containing various combinations of a stratified permeability
field, initial temperature gradient, and heat flux on the bottom as the input, the corresponding
future temperature gradient, liquid pressure, tracer concentration as the output.

The initial temperature field is determined with the initial temperature gradient; the initial
temperature at the top surface is assumed to be 25°C/km and 25°C. The temperature is proportional
to depth in the entire domain, assuming a uniform geothermal gradient of 25°C/km. The bottom
heat flux and initial temperature gradient are randomly drawn from the uniform choices shown in
Table 6.1. The permeability field of the modeling domain is discretized into nine geologic layers.
The rock types, depth, and range of permeability of each layer are listed in Table 6.2"1%. The
temperature, tracer, and pressure distribution at the first and last time steps are shown in Figs 6.1
and 6.2, respectively.

63


https://www.zotero.org/google-docs/?gjCnOj
https://www.zotero.org/google-docs/?xLN5c1
https://www.zotero.org/google-docs/?w7ABg3
https://www.zotero.org/google-docs/?z146V0
https://www.zotero.org/google-docs/?Ks3M9z

Table 6.1: Input parameters ranges for the initial temperature gradient and the bottom heat flux.

Parameter Name

Uniform random choices

Initial temperature gradient: °C/m

[0.023,0.024, ..., 0.04]

Bottom heat flux: W/m?

[0.06, 0.07,0.08, 0.09]

Table 6.2: Permeability of the 9 layers. The permeability of each layer is drawn from the three
choices following Gaussian distribution.

60.0
45.0
30.0

5.0

Layers Rock type Thickness [m] | log,,k [m?] range
Layer 1 Fluvial sediments 800 [— 13 —12, —11]
Layer 2 Lava flow and ash flow 1000 [—1 ,—15]
Layer 3 | Sandstone, shale, and conglomerate 2000 [— 1 —16]
Layer 4 | Sandstone, shale, and conglomerate 200 (18 —17 —16]
Layer 5 | Mudstone, sandstone, and siltstone 200 [—16,—15, —14]
Layer 6 Limestone, shale and dolomite 800 (—12, —11 —10]
Layer 7 Limestone and shale 200 [—13,-12, —11]
Layer 8 Limestone and dolomite 400 [— 1 ,—12]
Layer 9 Granite and metamorphic 300 [—16, —15, —14]
T(x): °C Crracer(X): mol/L

230.0 20.0

177.5 15.0

125.0 10.0

72.5 5.0 1

a) 20.0 b) 0.0 c) 0.0

Fig. 6.1: Distribution of (a) temperature, (b) tracer, and (c) pressure at the first time step.

T(x): °C
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C : I/L
230.0 Tracer(X): mol/

177.5
125.0
72.5

20.0 b)

P(x): MPa
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10.0

5.0

0.0 c)

Fig. 6.2: Distribution of (a) temperature, (b) tracer, and (c) pressure at the last time step.
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Neural Network Surrogate

For inverse analysis and the MCMC approach, the model is evaluated multiple times.
Consequently, the development of a surrogate model significantly accelerates the analysis. We
train a deep neural network (DNN) in order to perform the same task as the PDE solver. For the
surrogate model, we choose an image-to-image 3D Convolutional Neural Network (CNN) with
encoder-decoder architecture because it performs well for simulating contaminants transports in
the subsurface!%'%. The input of the model is a 6-channel of 10 x 10 x 30 voxels, consisting of
the initial pressure, initial temperature, initial tracer concentration, permeability, porosity, and heat
flux. For using heat flux as a boundary condition, the heat flux input is a 3D matrix with zero
values everywhere except the bottom, where the value of the boundary heat flux is given. The
permeability in the vertical direction is defined as 1/10 of the horizontal permeability; therefore,
the vertical input was not as an input as it would be redundant.

The kernel of the CNN model consists of 3 x 3 x 3. For capturing physics in the dataset, the number
of layers in the encoder part is increased while the number of voxels is decreased after every
convolution. The proposed architecture is based on DenseNet, which transfers the features from
all the preceding layers to facilitate backpropagation of gradient information'?’. The softplus is
used for the activation function. The decoder part takes the same steps as the encoder but in reverse
order, resulting in the output matrices having the same dimensions as the input. The initial number
of filters after the first convolution and the rate of increase of the filters after each following
convolution for the encoding are two hyper-parameters that are investigated for their influence on
the model accuracy. The L norm is used as the loss/cost/objective function for training the model.

The output of the model is 72 channel 10 x 10 x 30 voxels, which consists of pressure, temperature,
and tracer concentration for 24 time-steps corresponding to the PFLOTRAN output timesteps. A
different approach would be an auto-regressive approach that would predict the features for the
next time steps and use them as input for the next time step. The approach of using all the time
steps as the output instead of advancing the CNN for one time step each time is selected because
the outputs can have a varying time interval without cumulative errors.

The output data consists of three quantities of interest with significantly different orders of
magnitude; for this reason, the data is normalized, and all input and output values are divided by
their corresponding standard deviation. Furthermore, the concentrations of the tracers are more
difficult to predict and more localized; therefore, they are weighted differently for the regions
where significant changes are observed in the domain. The weight of the localized L norm of the
tracer W¢ is an additional hyperparameter that was tuned during the study to achieve the best-
performing surrogate model. The ADAM algorithm is used to optimize the CNN model because
it is good at searching a wide range of hyperparameters'®®. The additional hyperparameters are the
learning rate and the weight decay of ADAM algorithm. A grid search was performed for the
hyperparameters and is listed in Table 6.3.
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Table 6.3: Hyperparameter range for the optimization of the CNN model.

Parameter Name Values

Initial layer number [64, 128, 256, 512]
Growth rate [32, 64, 128]
Learning rate [le-4, le-5, 5e-6, le-6]
Weight decay [le-4, 1e-5, 1e-6]
Tracer weight [1, 10, 50, 100, 200, 500]

MCMC analysis

This step's main objective is to estimate the porosity and permeability of model layers using
temperature, tracer concentration, and pressure as proxies of measurements. For an efficient
sampling of model parameters, the No-U-Turn Sampler (NUTS) is selected for the MCMC
framework'?”, which is a gradient-based modified Hamiltonian Monte Carlo (HMC) approach!!°.
For MCMC, a PFLOTRAN forward solution is used as the ground truth. The data/measurements
are the surface temperature, the heat flux, and the initial temperature gradient. Additionally, we
consider that the time series for the temperature, tracer concentration, and pressure for voxels are
scarcely distributed in three vertical columns. This sampling imitates the use of three vertical wells
measuring the required information. Therefore, the unknown parameters we obtain through
inference are porosity and permeability.

Each layer's permeability and porosity realizations are generated using the uniform distribution
with their corresponding range. Subsequently, the values are normalized and formed as the input
of the trained CNN model. Next, a normally distributed random noise is added to the model outputs
to capture the model and measurement errors. The final outputs are conditioned to the solution of
the ground truth obtained. Finally, the MCMC sampler is used to obtain the posterior distribution
of the inputs. Experiments are performed on hardware with the following specification: Intel
Xenon Gold 6126 CPU (2.6 GHz), 60GB RAM, and Nvidia V100 GPU with 16GB vVRAM.

Results

CNN Surrogate Training

The 2,000 simulation results are used to train and evaluate the surrogate model. After generating
the input-output pairs, 1,600 are used for training, and the remaining 400 pairs serve as the testing
set. The evaluation of the model is based on the R? value (Fig. 6.3). Training and testing scores are
close to 1 in the best-performing CNN models (Table 6.4). The optimal hyperparameters for the
best-performing models are listed in Table 6.4.
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Fig. 6.3 High and consistent training and testing scores suggest a well-trained model.

Table 6.4: The best-performing models and their corresponding hyperparameters.

R2 R? Initial | Growth | Learning | Weight | Tracer

Train Set | Test Set | number rate rate decay | weight
0.995 0.996 512 128 10~* 10-° 100
0.994 0.995 256 128 10~% 1075 100
0.994 0.995 512 128 104 10-6 100
0.993 0.994 256 64 10~* 10—° 100
0.992 0.994 256 64 10°* 106 100
0.992 0.994 512 64 104 10~° 100
0.992 0.994 256 128 10°* 106 100
0.993 0.994 512 64 104 10— 100
0.992 0.993 512 128 10~ 10-° 200
0.992 0.993 512 64 1074 107° 200

The CNN model is only trained for 400 epochs because, after it, the R? scores of training and
testing reach a plateau (Fig. 6.3). The optimal initial number of channels and the growth rate are
relatively large compared to models with similar architecture used for other tasks. The potential
reasons are relatively larger outputs and more time steps in the outputs. However, similar R? values
for training and testing sets indicate that the model is not overfitted instead of complexity in the
dataset (Fig. 6.3). The minimum difference between the prediction of temperature, tracer, and
pressure by PFLOTRAN and ML model also suggests a well trained ML model (Fig. 6.4).

MCMC Inference

We drew a total of 6000 samples and discarded 2000 samples in the burn-in stage; therefore, the
estimation of the parameters relies on 4000 samples. MCMC inference of porosity and
permeability values for the first three (bottom) layers is consistent (Figs 6.4—6.5). However, there
are discrepancies in the porosity and permeability prediction for the top six layers. Note, the first
layer has a high tracer concentration while the top layers have a low tracer concentration.
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T(x): °C Ctracer(X): mol/L P(x): MPa

230.00 20.00 60.00
203.75 17.50 I 52.50
F 177.50 ~ 15.00 - 45.00

- 151.25 - 12.50 - 37.50

- 125.00 - 10.00 - 30.00

- 98.75 - 7.50 - 22.50

72.50 15.00
46.25

20.00

20.00 0.30

10.00
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-20.00 h) -0.30

Fig. 6.4: Distribution of temperature by PFLOTRAN (a), ML model (d), and PFLOTRAN-ML
model (g); tracer distribution by PFLOTRAN (b), ML model (e), and PFLOTRAN-ML model (h),
pressure distribution by PFLOTRAN (c), ML model (f), and PFLOTRAN-ML model (i) after the
last time step.

The discrepancy of the real value and the estimated value for the higher layers can be explained
by the fact that the tracer plume is not reaching above the third layer and therefore there is no
information that can be assessed by the model. It is worth noting that for the first layer for which
there is the most flow of the tracer the standard deviation of the estimated parameters are in the
order of 0.05 and 0.01 for permeability and porosity accordingly. The difficulty of the MCMC
method to estimate the parameters of the higher layers shows the importance of the correct
regularization as the tracer moves upwards is diluted and the concentration decreases by an order
of magnitude. Therefore, if there was no normalization the MCMC would not be able to provide
any reliable information for the second and third layer.

NUTS sampling uses gradient information to facilitate faster convergence of the distribution. The
main advantage of the use of the neural network surrogate model is the efficient calculation of
every iteration, as the average time for sampling is 1.5 secs. Additionally, the PELOTRAN or other
subsurface simulators are not developed to leverage the GPU architecture; thereby, its integration
with a probabilistic programming platform would be more challenging. The use of the open-source
and off-the-shelf solution for both the surrogate model and the MCMC inference do not only
decrease the development time but also increase the efficiency as the implementation have been
developed and maintained to fully utilize modern hardware.
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Fig. 6.5: Histograms of assimilated permeability on each layer. The green shaded area indicates
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Fig. 6.6: Histograms of assimilated porosity on each layer. The green shaded area indicates the
range of the initial guess, and the dotted line is the ground truth.
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Conclusions

For this study, the use of MCMC with NUTS sampling was proposed to infer permeability and
porosity of a geothermal reservoir. The model used was a surrogate CNN trained on data generated
by a PDE-based model. For the inference of the parameters, an example of the generated dataset
was used as ground truth and the model is conditioned to data on virtual vertical wells with sparse
information. The analysis concludes in the following findings:

1. The CNN-based surrogate model can reproduce the results of the PDE-based solution of both
thermal and advection processes.

2. The MCMC using a surrogate model can evaluate the unknown parameters if enough
information is provided, as it happens for the first layers.

3. For the areas where there is no change of concentration and temperature, the permeability and
porosity inference is unreliable, as the inverse problem is ill-posed.

4. The use of a surrogate model can significantly decrease the computation time as the complex
PDE-based model is evaluated only 2000 times, which is the number of realizations needed
for the training of the model.

This study shows that the CNN surrogate model can reproduce PDE-based solutions and can be
used for inference; they have the same limitations as the PDE-based solutions. In our case, in the
area where there was no significant movement of the tracer, it was possible to retrieve the rock
parameters reliably. The gain of the proposed workflow is that the time-consuming PDE-based
simulation is used to explore the parameter space to train the model and then is substituted with
the faster CNN-based model to sample the unknown parameters to reduce computational time.
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Chapter 7: INGENIOUS and GeoDAWN Data Processing

INGENIOUS

The U.S. Department of Energy’s Geothermal Technologies Office has collected plenty of data
through INnovative Geothermal Exploration through Novel Investigations Of Undiscovered
Systems (INGENIOUS) Project with an aim to accelerate discoveries of new, commercially viable
hidden geothermal systems in the Great Basin, NV, US. The INGENIOUS Project released its data
in 2022 on the geothermal data repository available at (https:/gdr.openei.org/
submissions/1391)!"!. The dataset includes 24 geological, geophysical, and geochemical
attributes. Data counts for each attribute significantly vary. Some attributes have too fine resolution
data, others are too sparse, and others are between two. The main purpose of this task is to bring
them on the same scale so that ML practitioners can load the data and use it for their purpose
without going through excruciating preprocessing steps. We curated and processed the dataset.
Next, we sometimes used only inverse distance weighting (IDW) or both NMFk and IDW
algorithms for predicting data in unsampled locations.

This regional scale dataset provides information for predicting geothermal favourability in the
Great Basin region. The geochemical attributes include AlI**, B, Ba?*", Be*", Br—, Ca*’,
chalcedony, C1—, HCO3, K*, Li*, Mg**, Na“, quartz, total dissolved solids (TDS), groundwater
temperature. These data are heavily sparse. To remove the sparsity, we used NMFk followed by
IDW for interpolation. The common locations were 14,341 geochemical data locations in the Great
Basin®. The scaled data are shown in Figs 7.1-7.4.

Other geological and geophysical attributes include depth to the basement, dilation rate, magnetic
anomaly, seismicity (N50_alpha_107'%/yr), strain rate, shear rate, temperature at 2 m, and heat flow
(Figs 7.5-7.6). Depth to the basement, dilation rate, magnetic anomaly, seismicity (N50 alpha 10
lz/yr), strain rate, and shear rate contain fine resolution data while temperature 2 m and heat flow
contain both coarse resolution and sparse data (Figs 7.5-7.6). We applied IDW to upscale the fine-
resolution data and downscale the coarse-resolution data (Figs 7.5-7.6).

Moreover, we fed the processed data to GTC and estimated prospectivities in the Great Basin. It
mostly provided accurate results except one false positive (Fig. 7.7). Here, we discovered that we
require more geochemistry data for a better prediction in the white rectangular region of Fig. 7.7.
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Fig. 7.1: The top and bottom rows represent ingenious and interpolated data, respectively. Here,
each attribute was fine-scaled applying IDW on NMFk prediction.
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Fig. 7.2: The top and bottom rows represent ingenious and interpolated data. Here, each attribute
was fine-scaled applying IDW on NMFk prediction.
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Fig. 7.3: The top and bottom rows represent ingenious and interpolated data. Here, each attribute
was fine-scaled, applying IDW on NMFk prediction.
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Fig. 7.4: The top and bottom rows represent ingenious and interpolated data. Here, each attribute
was fine-scaled, applying IDW on NMFk prediction.
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Fig. 7.5: The top and bottom rows represent ingenious and interpolated data. Here, each attribute
was upscaled by applying IDW.

Strain rate (-) Shear rate (-) Temperature at 2m (-) Heat flow (-)
TS 1 .- o . - EN ; ' v ¥y v

L Vi

Interp. shear rate

Fig. 7.6: The top and bottom rows represent ingenious and interpolated data. Applying IDW,
strain and shear rates were upscaled while the temperature and heat flow at 2m depth were fine-
scaled.
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Fig. 7.7: Geothermal prospectivity based on INGENIOUS data. Black circles represent known hot
springs in the study area. The white rectangular portion lacks geochemistry data.

GeoDAWN

A recent interagency agreement—Geoscience Data Acquisition for Western Nevada
(GeoDAWN)—unites EERE’s Geothermal Technologies Office (GTO) with the USGS Earth
Mapping Resource Initiative (Earth MRI) and 3D Elevation Program!'2. This initiative aims to
collect LIDAR and electromagnetic data to find hidden geothermal resources and critical minerals.
Next, use advanced machine learning algorithms to analyze the data and to discover new
geothermal and critical mineral resources. So far, this project disseminated LiDAR point cloud
(LPC) within Nevada and parts of the CA region (Fig. 7.7). Such a dataset has a huge potential to
reduce the risks and costs associated with geothermal exploration and production.
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To appropriately utilize this dataset, we need to create labels of favorable geothermal settings with
corresponding LPC data. Labeling such a dataset is a non-trivial task because they are huge (in
terabytes scale) and contain 1000s of tiles. We have to sort the tiles and find their neighboring
tiles. Then, label each tile and whether they contain favorable geothermal settings. For this
purpose, we wrote a Python script to sort the tiles and find their neighboring tiles.

Fig. 7.7: Each color represents a unique flight line duration used to collect lidar data at different
times (a) and intensity distribution of the collected lidar data (d).
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Chapter 8: Report Conclusions

GTC, an open-source, cloud-based ML framework, is designed for geothermal exploration and can
handle public and proprietary datasets. It features advanced pre-processing, post-processing, and
visualization tools that simplify applications for non-experts, eliminating the need for deep ML or
subject-matter expertise. Built on the novel, award-winning SmartTensors technology from
LANL, GTC, along with its component GeoDT-ML, efficiently processes and analyzes diverse,
even sparse datasets, uncovering critical actionable insights for decision-making in geothermal
exploration and production. Our analysis of eight diverse site datasets demonstrates its capability
to reveal key insights not discernible through conventional methods.

Overall, GTC can (1) analyze large field datasets, (2) assimilate model simulations (large inputs
and outputs), (3) process sparse datasets, (4) perform transfer learning (between sites with different
exploratory levels), (5) extract hidden geothermal signatures in the field and simulation data, (6)
label geothermal resources and processes, (7) identify high-value data acquisition targets, and (8)
guide geothermal exploration and production by selecting optimal exploration, production, and
drilling strategies.

GeoDT-ML, an ML-enhanced version of GeoDT, is a fast, multi-physics solver optimized for EGS
design evaluation in uncertain geological conditions, capable of modeling thousands of scenarios
quickly on a desktop computer. This study introduces preliminary deep learning workflows to
predict EGS economics from design parameters, using a database created with GeoDT and
analyzed through sensitivity tests for deeper insights. We offer notebooks and pre-trained ML
models on GitHub for the geothermal community to address the computational demands of training
and tuning.

In addition to developing GTC and GeoDT-ML, we provided comprehensive solutions for various
geothermal challenges. These include (1) accurately determining drilling depths, (2) exploring
geothermal resources in West Texas, (3) identifying key design parameters essential for
geothermal energy production, and (4) utilizing machine learning techniques for permeability
estimation. Furthermore, we enhanced our Great Basin analysis with INGENIOUS data and
prepared GeoDAWN data for future applications. The following paragraph details the
contributions and outcomes of the first four items.

1. To enhance the precision of our analysis, we integrated field data from the GTC framework
with magnetotellurics data. This combination significantly improved our ability to pinpoint
drilling depths with greater certainty. We successfully applied this dual-method approach to
data from the Tularosa Basin.

2. West Texas offers reasonable geothermal potential across various depths, enabling diverse
applications from spas at 1 km depth to greenhouse farming at 2 km. Leveraging geothermal
resources and existing oil and gas infrastructure, deeper at 3 and 4 km, binary cycle and steam-

77



flash power plants become viable for continuous, clean electricity generation. While orphan
wells present an opportunity to reduce costs, their feasibility for sustaining thousands of
barrels of fluid extraction daily requires in-depth study.

In our analysis of the GeoDatathon data, focused on the Utah FORGE site, we examined 16
design parameters crucial for geothermal energy production and their impact on Net Present
Values (NPVs). Our primary objective was to identify optimal well spacing (w_spacing) and
per-interval injection rate (Qinj) for profitable geothermal fields under specific uncertainties,
utilizing a binning-based optimization approach. This involved dividing the data into 36 bins
based on w_spacing and Qinj ranges and calculating NPVs' 10th, 50th, and 90th percentile
scores in each bin. Our findings indicate that the most profitable scenarios are achieved with
w_spacing between 190 to 747 m and Qinj between 0.01 to 0.3 m?/s, particularly in the 509
to 588 m range for w_spacing, with potential profits up to 35 million USD.

MCMC was used with NUTS sampling to infer permeability and porosity in a geothermal
reservoir, employing a surrogate CNN model trained on data from a PDE-based model. Our
findings revealed that the CNN surrogate effectively replicates PDE-based results for thermal
and advection processes and can estimate unknown parameters in well-informed layers.
However, in areas with no significant data, permeability and porosity inference proved
unreliable due to the ill-posed nature of the inverse problem. The study highlights that, while
CNN surrogates mirror PDE model limitations, they offer computational time savings by
replacing the need for repeated PDE simulations, especially in areas with minimal tracer
movement, allowing for efficient parameter space exploration and faster parameter sampling.
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ADDENDUM TO THE FINAL REPORT

DANIEL M. TARTAKOVSKY, STANFORD UNIVERSITY

The Stanford team consisted of Professor Daniel Tartakovsky (Stanford PI) and PhD students
Zitong Zhou, Dimitrios Belivanis, and Xiaoyu Yang. Throughout the project, the team interacted
closely with its LANL collaborators. The team’s effort resulted in publications [1, 2, 3, 4]. Key results
and findings are reported below.

1. MACHINE LEARNING FOR FRACTURED ROCK CHARACTERIZATION

The interpretation of hydraulic and tracer experiments involves inverse modeling. The choice of a
strategy for the latter depends on the properties of interest, the data considered, the models available
to reproduce the data, and the prior information about the studied environment. For canonical fracture
configurations between two boreholes, (semi-)analytical and numerical models can be used to the cross-
borehole flow-meter experiments mentioned above to evaluate the transmissivity and storativity of the
fractures that intersect the boreholes at known depths. Large-scale systems with complex fracture
configurations require the use of sophisticated inversion strategies designed for high volumes of data.
Most of such studies generate data via hydraulic and/or tracer tomography experiments, and use the
inversion to identify the geometric and hydraulic properties of a fracture network. These studies limit
the number of fractures in a network in order to work with a tractable number of parameters to invert.

Forward models relating the fracture network properties to chemical or thermal breakthrough curves
show that the shape of these curves is impacted by two factors. The first is the degree of heterogeneity
of the fracture network and the matrix block size distribution; the second is the fracture density and
fractal dimension, with the latter impacting the breakthrough curves when a fracture network is dense
and flow is slow. In contrast to strategies inferring geometric and hydraulic properties, the number of
statistical parameters in this framework is sufficiently low to be identified via inverse modeling.
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FIGURE 1. Physics-based and FCNN (fully connected neural network) predictions of
iCDFs (inverse cumulative distribution functions) of the particle breakthrough times
in discrete fracture networks (DFNs) characterized by different parameter-pairs (C, D)
not used for training.

Identification of these parameters rests on ensemble-based computation, which involves repeated
solves of a forward model. Two complementary strategies for making the inversion feasible for large,
complex problems are i) to reduce the number of forward solves that are necessary for the inversion
algorithm to converge, and ii) to reduce the computational cost of an individual forward solve. The
former strategy includes the development of accelerated Markov chain samplers, Hamiltonian Monte
Carlo sampling, iterative local updating ensemble smoother, ensemble Kalman filters, and learning on

1
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statistical manifolds. The latter strategy aims to replace an expensive forward model with its cheap
surrogate/emulator /reduced-order model. Among these techniques, various flavors of deep neural
networks (DNNs) have attracted attention, in part, because they remain robust for large numbers of
inputs and outputs. Another benefit of DNNs is that their implementation in open-source software is
portable to advanced computer architectures, such as graphics processing units and tensor processing
units, without significant coding effort from the user.
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FiGURE 2. Examples of the normalized posterior PDF's of the DFN parameters C' and
D: fija(m;-), m = (C, D) T, for three experiments defined by the reference parameter
values (blue circles). These PDFs are computed via Bayesian assimilation of either
10* runs of the physics-based model (top row) or additional 107 runs of the FCNN
surrogate (bottom row).

We [4] combined these two strategies for ensemble-based computation to develop an inversion
method, which makes it possible to infer the statistical properties of a fracture network from cross-
borehole thermal experiments (CBTEs). To alleviate the high cost of a forward model of hydro-thermal
experiments, we used a meshless, particle-based method to solve the two-dimensional governing equa-
tions for fluid flow and heat transfer in discrete fracture networks (DFNs). These solutions, obtained
for several realizations of the DFN parameters, were used to train an accurate and robust surrogate
based on a fully connected neural network (Fig. 1). The latter’s cost is so negligible as to enable us to
deploy a fully Bayesian inversion that, unlike ensemble Kalman filter, does not require our quantity
of interest to be (approximately) Gaussian. Our numerical experiments showed that our approach
is four orders of magnitude faster than the equivalent inversion based on the physics-based model.
These synthetic experiments also revealed (Fig. 2) that the CBTE data allow one to obtain accurate
estimates of fracture density, while the inference of a DFN’s fractal dimension is less robust.

2. AI-ASSISTED ANALYSIS OF WELL-TEMPERATURE LOGS

Downhole measurements are widely used to characterize fractures in geothermal reservoirs, espe-
cially to identify the fractures intersected by the borehole. While the inference of a complete subsurface
fracture pattern from downhole measurements is challenging due to the limited sampling space of a
wellbore, those measurements still provide effective near-wellbore fracture delineation. The latter may
be further combined with other information, e.g., chemical data, to obtain a more complete fracture
characterization. The basic idea is to generate detectable signals and then identify fractures based
on model-derived relations. A prime example of such measurable signals is the downhole temperature
measured by either traditional production logging tools or the fiber-optic-based distributed tempera-
ture sensing (DTS).
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Thanks to their high spatiotemporal resolution, DTS measurements have become one of the most
commonly measured signals over the life of a well. The continuous and integrated temperature infor-
mation reflects dynamic thermal transport between wellbore and reservoir, which is strongly coupled
with flow behavior and therefore influenced by the fracture characteristics. Inverse methods, used
to infer fracture distribution from wellbore temperature, include stochastic approaches, e.g., Markov
chain Monte Carlo and optimization-based techniques such as the Gauss-Newton method and the
Levenberg-Marquardt method. The accuracy and robustness of such algorithms depend, in large part,
on the adequacy of the forward mapping. Physics-based forward models simplify complex flow and
heat-transfer processes in a fractured reservoir, which causes the temperature-fracture mapping to be
imperfect and may lead to the inversion failure. Data-driven algorithms (e.g., machine learning or
ML) do not require a pre-established perfect forward map, directly learning a mapping relation from
data. ML has been used to solve inverse problems in geothermal applications. Unlike physics-based
algorithms that process cases one by one, well-trained machine learning algorithms can automatically
process a large number of cases at the same time, rendering the solution of inversion problems more
efficient and effective.
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FiGURE 3. Labeled and predicted fracture distributions for a real warmback case.

While wellbore DTS measurements are available in geothermal projects, attempts to use wellbore
temperature in ML-based solutions of geothermal inverse problems are scarce. Yet, wellbore temper-
ature data are known to contain rich information about fractures, specifically those intersecting the
wellbore. Hence, temperature series are a good data-source to train a ML algorithm for near-wellbore
fracture characterization. We [2] used DTS profiles at different stages, i.e., injection, warmback and
the static stage to carry out a fracture-distribution inversion facilitated by a ML-based surrogate.
This neural-network surrogate, LSTM-FCN, is a fusion of a long short-term memory network (LSTM)
and a fully convolutional network (FCN). A unique feature of our approach is its ability to capture
simultaneously the long-term dependencies and local characteristics of temperature signals, and to
detect multiple fractures in a complex fractured reservoir system (Fig. 3).

We [3] deployed our LSTM-FCN surrogate not only to identify fracture locations intersecting the
wellbore but also to quantify the contribution of flow into fractures during injection. By capturing
both the long-term dependencies and the local characteristics of the downhole temperature series,
the LSTM-FCN model learns the fracture-temperature mapping relation and identifies the fracture
flowrate distribution (Fig. 4). A unique feature of our work was to compare the performance of
the machine learning method and the particle swarm optimization (PSO) method on field data, and
to demonstrate the advantages of machine learning for accurately capturing the fracture-affected
abnormal temperature signals. Another unique feature was to evaluate the effectiveness of multistage
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FIGURE 4. The comparison of measured and machine learning predicted fracture
flowrate distribution for a real injection case.

temperature information fusion on fracture flowrate quantification by combing injection and warmback
temperature as input features of the machine learning models.
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