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Introduction

• Quantify MD simulations of dislocation-GB interactions
− Stukowski approaches (OVITO): ad hoc and incomplete
− SOAP more complete (& redundant): no direct physical interpretation

• Development of quantifiable metrics
− Strain Functional Descriptors (initial development XWG6)
− Mathematically complete and unique (non-redundant)

• Basis for Physics Informed Machine Learning analysis
− Leading to physically justifiable models
− Also maps onto diffraction analysis cleanly

N. Mathew, J.P. Tavenner, C.M. Adams and E.M. Kober, Development of Strain 
Functionals to Characterize Atomistic Geometries, in preparation.
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Strain Functional Derivation:
Map atomic quantities to continuum field

Define local number density (N) as a Taylor series expansion about ri : r = ri + ∆r

N = number density gj = 1
r = number density gj = atomic mass 
U = velocity field    gj = atomic velocity

Map atomic quantities gj to continuum field G using a Gaussian kernel
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Strain Functional Derivation:
Taylor Series Expansion & Atomic Orbital Analogy
• Standard nth order convergence in accuracy of describing the neighborhood
• Local nth order derivatives ó local nth order moments (shapes)
• Atomic volume V0 defines s (~1.2 Å for Cu)

− 50-80 neighbors for numerical precision
− Shapes are strongly dominated by the 1st nearest neighbors

• Hermite polynomials readily map onto Harmonic polynomials
− Solid spherical harmonics with pure Gaussian weighting
− That transformation generates radial nodes for subspaces (e.g. 1s vs 2s orbital)
− Retain Principal Quantum Number (PQN) notation vs bispectrum approach
− Readily partitioned onto rotation sub-spaces of the SO(3) 3D rotation space
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Strain Functional Derivation:
Solid Harmonic Polynomials: rl Ylm(q,f) exp(-br2)

l = 4 
g orbital

Octahedral, 4-fold,
Cubic crystal habit

l = 3 
f orbital

Tetrahedral, 3-fold
symmetry, strain 

gradients

m = ±2m = ±1m = 0 

m = ±2m = ±1m = 0 m = ±3 m = ±4

m = ±2m = ±1m = 0 m = ±3

l = 2 
d orbital

tension, shear
Blue = positive phase, 
red = negative phase; 
consider as density 
changes to a sphere…
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Strain Functional Derivation:
Solid Harmonic Polynomials: Rnlm ~ rn Ylm(q,f) exp(-br2)

n = 4, l = 4 
g orbital

Octahedral, 4-fold,
Cubic crystal habit

n = 3, l = 3 
f orbital

Tetrahedral, 3-fold
symmetry, strain 

gradients

n = 2, l = 2 
d orbital

tension, shear m = ±2
D2h

m = ±1
D2h

m = 0
D∞h

m = ±2
Td

m = ±1
C2v

m = 0
C∞h

m = ±3
D3h

m = ±2
D2h

m = ±1
C2h

m = 0
D∞h

m = ±3
D3d

m = ±4
D4h

m = 0
C∞h

m = ±1
C∞h

n = 3, l = 1 

n = 2, l = 0 

m = 0
𝑟2 𝑠𝑖𝑧𝑒
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Strain Functional Derivation:
Contrasts with SOAP (GAP), SNAP
• Use of pure Gaussian weights

− Transformation generates radial nodes defined by s
− Analogous to hydrogen-like orbitals with Principal Quantum Numbers: n, l, m
− The nth shell tracks the nth order of the Taylor series expansion

• Use of non-Gaussian weights loses this
− Requires the bispectrum approach which mixes terms between orders: convergence?
− SOAP, GAP (Csanyi group): truncated Gaussian, Bessel Functions
− SNAP (Thompson): stronger cut-off function: completeness
− General spherical harmonic properties retained: Ylm, but not Rnlm

• SFDs and PQN labels map directly onto Spherical Tensors
− Spherical Tensor ó Angular Momentum Vector ó Ylmó {Yl-l,…,Yll}
− These map onto different subspaces of SO(3) 3D rotation space
− General rank n tensor can be expressed in terms of irreducible spherical tensors
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Strain Functionals: Irreducible Spherical Tensors
“The description of the physical properties of 
condensed matter using irreducible tensors”
J. Jerphagnon, D. Chemla, R. Bonneville
Advances in Physics 27, 609 (1978)

Identifies number of independent components 
and subspaces for various physical properties

Stress: 6 = 1x5 + 1x1
Strain Gradient: 10 = 1x7 + 1x3
Cauchy: 15 = 1x9 + 1x5 + 1x1
Elasticity: 21 = 1x9 + 2x5 + 2x1

Each subspace should be expressible as 
rotational invariants…
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Construction of Rotational Invariants
• Addition of angular momentum vectors: nl(n)

m ~ rn Yl
m exp(-br2)

− nl = {nl -l, nl -l+1, …, nl l-1, nl l}: 2l+1 terms (DOF)
− Addition using Clebsch-Gordan coupling coefficients (Lo & Don, Edmonds)
− Analogous to tensor inner & outer products, contractions
− Can then add in a third, fourth, … vector (infinite…)

“3-D Moment Forms: Their Construction and Application to Object Identification and 
Positioning” C.-H. Lo, H. S. Don IEEE Trans. Patt. Analysis Mach. Intel. 11,  1053 (1989)
“Angular Momentum and Quantum Mechanics” A. R. Edmonds, Princeton, 1974

𝜈 𝑙, 𝑙′ => = &
?@AB

B

𝑙,𝑚, 𝑙C, 𝑘 − 𝑚 𝑙, 𝑙C, 𝑗, 𝑘 𝜈B?𝜈BC>A?

• For j=0, the result is a rotationally invariant scalar
− For l=l’, j=0 this is the norm of the vector nl
− For two different vectors nl ≠ nl’, j=0 è dot product defining relative orientation
− 2l+1 contractions define the 2l+1 DOF: no more, no less
− But an infinite number of possible contractions…
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Rank 2 Invariants: Shear & Size
• Rank 2 moment tensors have 6 independent factors

− Traceless rank 2 tensor & scalar trace: 1x5 + 1x1
− Scalar is the mean of the eigenvalues (EV): P2_I2 = n0(2)0
− Traceless rank 2 tensor (spherical tensor) has two invariants

§ Net 2-fold distortion: rms EV: P2_I0= n(2,2)00

§ Skewness EV: P2_I1= n((2,2)2,2)00
− 3 degrees of freedom define orientation wrt arbitrary axis

§ O2_I0 = n(2,Z2)00
§ O2_I1 = n((2,2)2, Z2)00
§ O2_I2 = n((2,2)2, X2-Y2)00

M =

XX XY XZ

XY YY YZ

XZ YZ ZZ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

𝒁𝟐 =
1
6

−1 0 0
0 −1 0
0 0 2

𝑿𝟐−𝒀𝟐=
1
2

1 0 0
0 −1 0
0 0 0

MRI Analysis: Water diffusion tensor
G. Kindlmann IEEE Trans. Med. Imag. 
2007, 26, 1483

1486 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 11, NOVEMBER 2007

Fig. 1. Illustration of the bivariate space of and
for tensors of fixed norm . The space is properly arranged as a right triangle;
this creates orthogonality between the isocontours of FA and Mode.

1 and 1, proportional to eigenvalue skewness [41].1 Negative
mode indicates planar anisotropy (oblateness, two large eigen-
values and one small eigenvalue); positive mode indicates linear
anisotropy (prolateness, one large eigenvalue and two small).
Fig. 1 illustrates the space spanned by tensor mode and FA,
using superquadric tensor glyphs [53], [54]. Mode becomes less
meaningful when or is low.

Tensor mode is significant in at least two contexts. Anal-
ysis of DTI partial voluming shows how adjacent regions
of linear anisotropy along orthogonal orientations can create
planar anisotropy [55], [56]. Planar anisotropy can also arise
in populations of differently-oriented fibers mixing at a scale
below imaging resolution [57]–[59]. Tensor mode may be more
sensitive to noise than other invariants [60], though this also
suggests the value of isolating tensor mode in our framework,
so that it may be selectively utilized or ignored.

The tensor-valued gradients of and form the first half
of our framework. They are derived in [41]

(12)

where . Orthogonality was proven in [41]

(13)

(14)

Note that [41].
That is, the two most popular invariants, bulk mean diffusivity

1Skewness is the third standardized moment , where is the third
central moment and is the standard deviation. In the DTI literature,
however, skewness sometimes refers to .

(“ADC”) and FA, are not orthogonal measures, despite their fre-
quent paired use. The choice between and may de-
pend on the application, though our initial experience suggests
that results are similar with either set. Detecting white matter
structures in the healthy brain, for example, may benefit from
the empirical constancy of bulk mean diffusivity in the
parenchyma [2], [60], leaving and to capture remaining
anisotropy information. If some pathology is indicated by re-
duced , then the set may be more effective.

To create elements of an orthonormal basis, we al-
ways normalize invariant gradients. denotes the unit-norm
tensor-valued gradient of invariant

(15)

A consequence of this normalization for our framework is that
invariants are effectively insensitive to changes in parameter-
ization. For example, relative anisotropy (RA) [13] is in fact
a monotonic reparameterization of FA [48], which implies

. The role of an invariant in our
framework is thus to parameterize some degree-of-freedom
in tensor shape (represented locally by the direction of the
invariant gradient), while the specifics of that parameterization
(encoded in the magnitude of the gradient) are immaterial.

B. Rotation Tangents

In contrast to our definition of invariant gradients (without
reference to tensor eigenvalues), the rotation tangents in the
second half of our framework are defined explicitly in terms of
the tensor eigenvectors , due to their importance in
DTI applications. In nervous tissue, the principal eigenvector
is aligned with the direction of the white matter fiber tracts [2],
[14], [16], which is the basis of most deterministic fiber tracking
algorithms [61], [62].

Let be rotation by angle around . We define
the rotation tangent associated with eigenvector of

as the change in tensor value due to infinitesimal rotations
around . In terms of the group action (4)

(16)

Manipulating matrix representations in the principal frame leads
to a coordinate-free expression for , as shown in (17)
at the bottom of the next page.The other rotation tangents are
similarly derived

(18)

(19)

Like the eigenvectors with which they are defined, the func-
tions have no intrinsic sign. Tensor field measures created with
the (Sections III-A and III-B) must, therefore, be invariant
with respect to the sign of .

P2_I2

planar
(x,y)

rod-like
axial (z)

P2_I1

P2_I0
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Rank 3 Tensors = Strain Gradients

Luscher, D.J., D.L. McDowell, and C.A. 
Bronkhorst, A second gradient theoretical 
framework for hierarchical multiscale 
modeling of materials. International Journal 
of Plasticity, 2010. 26(8): p. 1248-1275.

Collecting the results of our derivations, the atomistic expressions of the material tensors of first strain-gradient elasticity are:
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where Rαβ is the vector connecting atom α to atom β, Ωℓ is the volume of the primitive lattice cell, and Gαβℓ is a fourth-order tensor,13

and :1,1
denotes the single contraction of two fourth-order tensors in the first index, resulting in a sixth-order tensor, i.e.

T S T S( : ) =IJMKLN PIJM PKLN
1,1

.
It is interesting to note the role of the lattice in the above expressions. In the atomistic model, lattice points have no physical

standing. On the other hand, since the expressions given in (2.33) are evaluated at lattice points, the lattice plays a more important
role in the atomistic definition of continuum tensors. The classical elasticity tensors σ0 and  , evaluated at a lattice point Xℓ, depend
on the relative vectors between atoms, and the energy of the basis atoms associated to the lattice point. They do not explicitly depend
on the shift vectors. Therefore, the definitions of σ0 and  depend on Assumption 1, and not on Assumption 2. On the other hand,
the definitions of gradient elastic tensors τ0,  and  , given in (2.33b), (2.33d) and (2.33e), respectively, and evaluated at a lattice
point Xℓ, depend not only on the relative vectors between atoms and the energy associated with Xℓ, but also on the shift vectors.
Therefore, Assumptions 1 and 2 play an important role in the definitions of τ0,  and  .

Fig. 2. A cube centered at the origin is deformed according to the polynomial map (2.7) for E 0=(0) , C n0= ( > 1)n( ) and corresponding to different non-zero
components of E(1). For small values of E(1), these are uniform strain-gradient deformation modes. (a) Elongation gradient along the elongation axis. (b) Elongation
gradient orthogonal to elongation axis. (c) In plane shear gradient. (d) Out of plane shear gradient.

13 The tensor Gαβℓ is symmetric in its second and third indices, and its components are defined as:(2.34)
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N.C. Admal et al. J. Mech. Phys. Solids 99 (2017) 93–115

100

Admal, N.C., J. Marian, and G. Po, The 
atomistic representation of first strain-
gradient elastic tensors. Journal of the 
Mechanics and Physics of Solids, 2017. 
99: p. 93-115.

n3 0n1(3) 
0 n3 ±3 n3 ±2

x
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Rank 3 Invariants = Strain Gradients

ν((3,3)2,(3,3)2)0
0

ν(3,3)0
0 = |ν3

0, ν3
±1, ν3

±2,  ν3
±3|

ν(((3,3)2,(3,3)2)2,(3,3)2)0
0

planar (xy)

Net 3rd order distortions

axial (z)

Non-tetrahedral

ν30 (C∞h) ν31 (C2𝑣) ν32 (T𝑑) ν33 (D3h)
P3_I0

P3_I1

P3_I2

skewnessTetrahedron
Most symmetric

3rd order distortion
0

0

P3_I2 defines 
internal axes

ν((3,3)3,3)0
0 = 0

ν((3,3)3,(3,3)3)0
0 = k [ν(3,3)0

0]2
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Rank 3 Invariants = Strain Gradients

ν(((3,3)4,(3,3)4)4,(3,3)4)00

Angle between 
~C2 and ~C3 axes

P3_I1

P3_I3

2nd skewness

0

0
Cs

C2v

C2v

A ν((3,3)2,(3,3)2)00 + B ν((3,3)4,(3,3)4)00 = [ν(3,3)00]2
C ν((3,3)2,(3,3)2)00 + D ν((3,3)6,(3,3)6)00 = [ν(3,3)00]2
E ν((3,3)4,(3,3)4)00 + F ν((3,3)6,(3,3)6)00 = [ν(3,3)00]2

Td

P3_I4   ν(13,13)00
∂ZZ/∂z

Separate 
subspace

ν((3,3)2,(3,3)2)00
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Rank 3 Invariants (Strain Gradients 3x3x3): 10 DOF
P3_I0 = ν(3,3)00 = |ν30, ν3±1, ν3±2,  ν3±3|
General 3rd order deviatoric

P3_I2 = ν(((3,3)2,(3,3)2)2,(3,3)2)00

Axial skewness, axes

P3_I1 = ν((3,3)2,(3,3)2)0
0

Non-tetrahedral

P3_I3 = ν(((3,3)4,(3,3)4)4,(3,3)4)00

2nd skewness, low symmetry
P3_I4 = ν(13,13)00

Extensional gradient
O3_I0 = n((3,3)2,Z2)00

O3_I1 = n(((3,3)2,(3,3)2)2,Z2)0
0

O3_I2 = n(((3,3)2,(3,3)2)2,X2-Y2)0
0

External orientation
Internal orientation
P3_I5 = ν((3,3)2,(1,1)2)0

0

P3_I6 = ν(((3,3)2,(3,3)2)2,(1,1)2)00

10 DOF: complete and non-redundant
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Rank 4 Invariants = Cubic deformations

ν((4,4)2,(4,4)2)0
0

ν(4,4)0
0 = |ν4

0, ν4
±1, ν4

±2, ν4
±3, ν4

±4 |

ν(((4,4)2,(4,4)2)2,(4,4)2)0
0

planar (xy)

Net 4th order distortions

axial (z)

Non-octahedral

ν40 (D∞h) ν41 (C2ℎ) ν42 (D2ℎ) ν43 (D3d)
P4_I0

P4_I1

P4_I2

rhombohedral

Octahedron
Most symmetric

4th order distortion

0

0

P4_I2 defines 
internal axes

ν44 (D4ℎ)

Oh
bcc

Oh
sc

Tetragonal a < b = c

Tetragonal a > b = c
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Rank 4 Invariants = Cubic deformations

ν(((4,4)4,(4,4)4)4,(4,4)4)00

P4_I1

P4_I3

Trigonal metric
Quality & number 

of ~C3 axis
0

0

ν((4,4)2,(4,4)2)00

Cubic
4 C3 & 6 C2

Oh
Oh Oh

Monoclinic
1 C2
C2h 𝜐"# +𝜐""

C2h

𝜐)+
D3d

Trigonal
1 C3 & 3 C2

D3d

Monoclinic
C2h

ν((4,4)4,(4,4)4)00
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Rank 4 Invariants = Cubic deformations

P4_I1 = n((4, 4)2, (4, 4)2)00
Non-octahedral

P4_I4 =
n(((4, 4)2, 4)2, (4, 4)2)00

axiality

Density
On z-axis

Density
Off z-axis

𝜐EF+𝜐EG
Rotation 

angle

Angle between 
~C2 & ~C3 axes0

0
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Rank 4 Invariants = Cubic deformations

P4_I1 = n((4, 4)2, (4, 4)2)00
Non-octahedral

P4_I5 =
n((((4, 4)4, (4, 4)4)4, ((4, 4)4, 4)4)00

Density
On axes

Density
Off axes

𝜐EG+𝜐EE
Rotation 

angle

Angle between 
~C3 & ~C4 axes0

0Triclinic
Ci
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Voronoi volume and SFDs

• Combined dataset shows also a correlation of 0.94 is observed between Voronoi volume and P0_I0
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Rank 4 Invariants: 15 for Cauchy (∂4/∂r4) unique & complete
Harmonic Polynomials

ν4
4

ν4
3

ν4
2

ν4
1

ν4
0

ν4
-1

ν4
-2

ν4
-3

ν4
-4

ν2
2 • (r2-a)

ν2
1 • (r2-a)

ν2
0 • (r2-a)

ν2
-1 • (r2-a)

ν2
-2 • (r2-a)

ν0
0 • (r4-br2-c)

Rotational Invariants
n(4, 4)0

0

n((4, 4)2, (4, 4)2)0
0

n(((4, 4)2, (4, 4)2)2, (4, 4)2)0
0

n(((4, 4)4, (4, 4)4)4, (4, 4)4)0
0

n(((4, 4)2, 4)2, (4, 4)2)0
0

n((((4, 4)4, (4, 4)4)4, ((4, 4)4, 4)4)0
0

n((4, 4)2, Z2)0
0

n(((4, 4)2, (4, 4)2)2, Z2)0
0

n(((4, 4)2, (4, 4)2)2, X2-Y2)0
0

n(24, 24)0
0

n((24, 24)2, 24)0
0

n((4, 4)2, 24)0
0

n((24, 24)2, (4, 4)2)0
0

n(((4, 4)2, (4, 4)2)2, 24)0
0

n(04, 04)0
0

R44m 
(5g)

R400  
(3s)

R42m  
(4d)

Orientations with respect 
to external frame

4th order shapes

2nd order shapes
(with 1 radial node)
Orientation 2nd order 
wrt 4th order shapes

r4 radial extent
(with 2 radial nodes)

Elasticity (compliance) tensor has 21 elements with additional 4d’ & 3s’ terms 
arising from inequivalence of XYXY and XXYY type terms
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Rank 5 Invariants

Ν[[5,5]2,[5,5]2]0
0

ν(5,5)0
0 = |ν5

0, ν5
±1, ν5

±2, ν5
±3, ν5

±4,  ν5
±5 |

Ν[[[5,5]2,[5,5]2]2,[5,5]2]0
0

planar (xy)

Net 5th order distortions

axial (z)

5-fold character

ν50 (C∞h) ν54 (D4𝑑)ν52 (D2𝑑) ν53 (D3h)P5_I0

P5_I1

P5_I2

skewness“The Blob” Cs
No symmetric

5th order structure
0

0

P5_I2 defines 
internal axes

ν51 (C2𝑣) ν55 (D5ℎ)
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Rank 6 Invariants

Ν[[6,6]2,[6,6]2]0
0

ν(6,6)0
0 = |ν6

0, ν6
±1, ν6

±2, ν6
±3, ν6

±4, ν6
±5, ν6

±6 |

Ν[[[6,6]2,[6,6]2]2,[6,6]2]0
0

planar (xy)

Net 6th order distortions

axial (z)

5-fold character

ν60 (D∞h) ν64 (Oℎ)ν62 (D2ℎ) ν63 (D3d)
P6_I0

P6_I1

P6_I2

skewnessOh (bcc w 2nd)
6th order ideal

0

0

P6_I2 defines 
internal axes

ν61 (C2ℎ) ν65 (D5𝑑) ν66 (D6ℎ)

Oh (fcc)
Close, but
Not zero
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Characterizing Simulations
• SFDs provide numerical measures of different geometric distortions
• Single snapshots can be noisy: time-average or minimize
• Physically complete and interpretable basis for classification

P4_I1
Non-fcc (Oh) metric

P3_I0
net strain gradient

P2_I2
average r2

O4_I2
rotation angle

{100} symmetric tilt
Misorientation = 74°
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GBE prediction using GMM classes 
• Regression models are developed using GMM class probability and frequency

<112> symmetric tiltSix-class GMM

1 FCC

3 Disorder atoms

4 Strained FCC5

2 HCP atoms

0 Gradient class
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Grain boundary database and strain field descriptor

• Symmetric tilt grain boundary database of Cu (>5000) and grain boundary energy (GBE) prediction using ML

Database and workflow GBE prediction using ML
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(100) Symmetric tilt
Label are misorientation angle
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Summary
• Demonstrated SFDs as a rigorous approach to describing atomic environments

− Minimal, complete and non-redundant for nth order expansion
− Physical basis for classification, machine learning

• SFD further development
− Extension to sixth order (full characterization of hexagonal space groups)
− Application to diffraction analysis, neutron scattering of defects
− Extension to vector (displacement) & tensors (compliance)

• Application future
− Characterize general GBs (twist & tilt): 2D patterns
− Characterize GB changes with transmission, absorption
− Strong basis for general ML: GBs, dislocations, diffraction

Funding LDRD-DR “Investigating How Material’s Interfaces and Dislocations Affect 
Strength (iMIDAS)” (XX9A, Abby Hunter, PI)


