

LA-UR-22-30686

Approved for public release; distribution is unlimited.

Title: Application of Strain Functionals for Physics Informed Machine Learning

Author(s): Kober, Edward Martin
Mishra, Avanish
Adams, Colin M.
Mathew, Nithin

Intended for: Society of Engineering Science 2022, 2022-10-16 (College Station, Texas, UNITED STATES)

Issued: 2024-12-07 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Application of Strain Functionals for Physics Informed Machine Learning

Edward M. Kober, Avanish Mishra, Colin M. Adams, Nithin Mathew
Theoretical Division
Los Alamos National Laboratory

Society for Engineering Science 2022 Annual Meeting
College Station, TX
10/16-19/22

Introduction

- Quantify MD simulations of dislocation-GB interactions
 - Stukowski approaches (OVITO): *ad hoc* and incomplete
 - SOAP more complete (& redundant): no direct physical interpretation
- Development of quantifiable metrics
 - Strain Functional Descriptors (initial development XWG6)
 - Mathematically complete and unique (non-redundant)
- Basis for Physics Informed Machine Learning analysis
 - Leading to physically justifiable models
 - Also maps onto diffraction analysis cleanly

N. Mathew, J.P. Tavenner, C.M. Adams and E.M. Kober, *Development of Strain Functionals to Characterize Atomistic Geometries*, in preparation.

Strain Functional Derivation: Map atomic quantities to continuum field

Map atomic quantities g_j to continuum field G using a Gaussian kernel

$$G(\mathbf{r}) = \sum_j g_j W_j = \sum_j \frac{g_j}{V_0} \exp\left(-\frac{|\mathbf{r} - \mathbf{r}_j|^2}{2\sigma^2}\right)$$

N = number density	$g_j = 1$
ρ = number density	$g_j = \text{atomic mass}$
U = velocity field	$g_j = \text{atomic velocity}$

Define local number density (N) as a Taylor series expansion about \mathbf{r}_i : $\mathbf{r} = \mathbf{r}_i + \Delta\mathbf{r}$

$$N(\mathbf{r}) \approx N(\mathbf{r}_i) + \Delta\mathbf{r} \odot \frac{\partial N}{\partial \mathbf{r}} \bigg|_{\mathbf{r}_i} + \frac{\Delta\mathbf{r} \otimes \Delta\mathbf{r}}{2} \odot \frac{\partial^2 N}{\partial \mathbf{r}^2} \bigg|_{\mathbf{r}_i} + \frac{\Delta\mathbf{r} \otimes \Delta\mathbf{r} \otimes \Delta\mathbf{r}}{6} \odot \frac{\partial^3 N}{\partial \mathbf{r}^3} \bigg|_{\mathbf{r}_i} + \dots$$

$$\frac{\partial N}{\partial \mathbf{r}} \bigg|_{\mathbf{r}_i} = \sum_j \frac{\partial W_j}{\partial \mathbf{r}} \bigg|_{\mathbf{r}_i} = - \sum_j \frac{\mathbf{r}_{ij}}{\sigma^2} \frac{1}{V_0} \exp\left(-\frac{|\mathbf{r}_{ij}|^2}{2\sigma^2}\right) = - \sum_j \frac{\mathbf{r}_{ij}}{\sigma^2} w_{ij} \quad \text{Weighted sum of neighbor distances}$$

$$\frac{\partial^2 N}{\partial \mathbf{r}^2} \bigg|_{\mathbf{r}_i} = \frac{1}{\sigma^2} \sum_j \left[\frac{\mathbf{r}_{ij} \otimes \mathbf{r}_{ij}}{\sigma^2} - \mathbf{I}_2 \right] w_{ij} \quad \sim \text{conventional strain: deviatoric and total (trace)} \\ (\text{Han, Zimmerman})$$

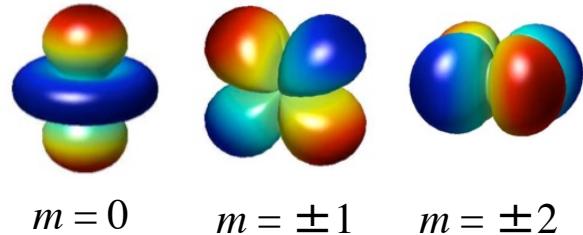
$$\frac{\partial^4 N}{\partial \mathbf{r}^4} \bigg|_{\mathbf{r}_i} = \frac{1}{\sigma^4} \sum_j \left[\frac{\mathbf{r}_{ij} \otimes \mathbf{r}_{ij} \otimes \mathbf{r}_{ij} \otimes \mathbf{r}_{ij}}{\sigma^4} - 6 \frac{\mathbf{r}_{ij} \otimes \mathbf{r}_{ij}}{\sigma^2} \otimes \mathbf{I}_2 + \mathbf{I}_4 \right] w_{ij} \quad \text{Tensor Hermite polynomials}$$

Strain Functional Derivation: Taylor Series Expansion & Atomic Orbital Analogy

- Standard nth order convergence in accuracy of describing the neighborhood
- Local nth order derivatives \Leftrightarrow local nth order moments (shapes)
- Atomic volume V_0 defines σ ($\sim 1.2 \text{ \AA}$ for Cu)
 - 50-80 neighbors for numerical precision
 - Shapes are strongly dominated by the 1st nearest neighbors
- Hermite polynomials readily map onto Harmonic polynomials
 - Solid spherical harmonics with pure Gaussian weighting
 - That transformation generates radial nodes for subspaces (e.g. 1s vs 2s orbital)
 - Retain Principal Quantum Number (PQN) notation vs bispectrum approach
 - Readily partitioned onto rotation sub-spaces of the SO(3) 3D rotation space

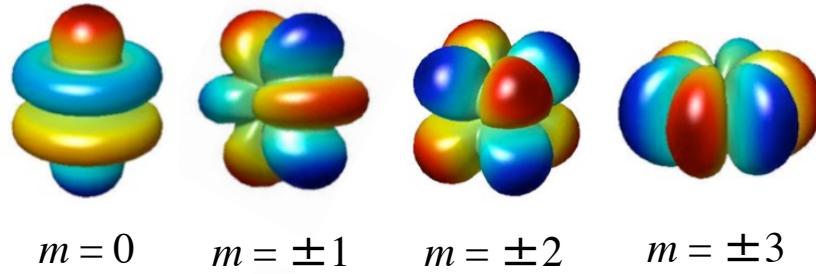
Strain Functional Derivation: Solid Harmonic Polynomials: $r^l Y_{lm}(\theta, \phi) \exp(-br^2)$

$l = 2$
d orbital
tension, shear

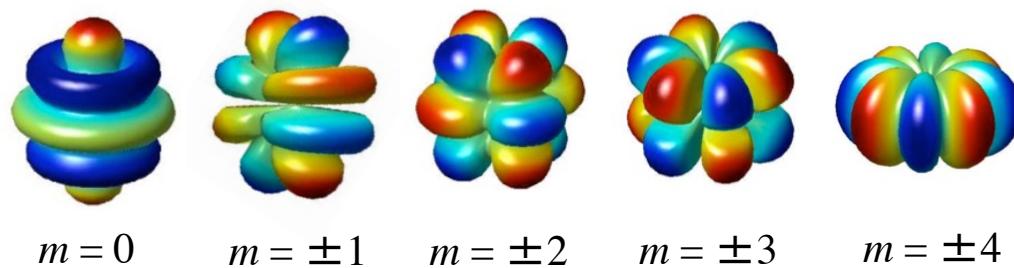


Blue = positive phase,
red = negative phase;
consider as density
changes to a sphere...

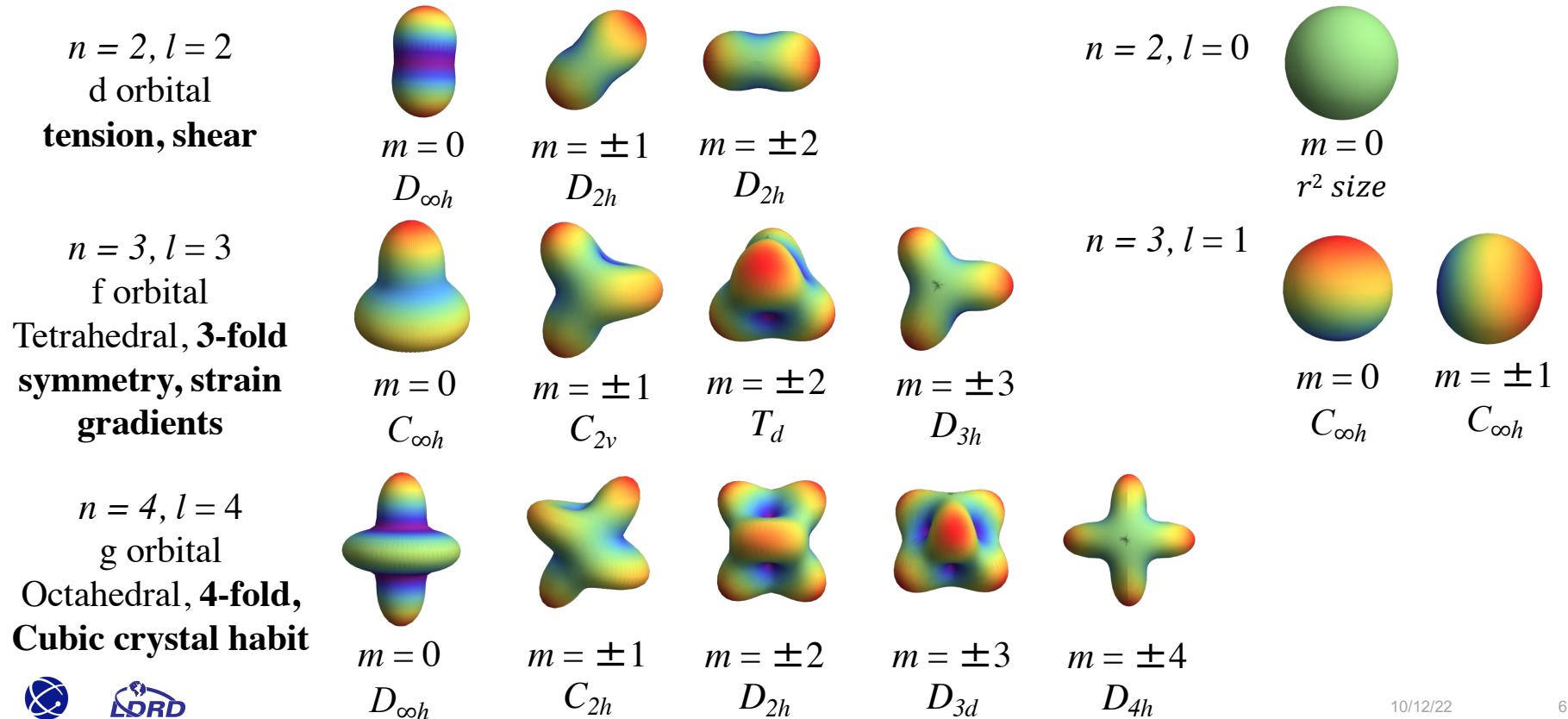
$l = 3$
f orbital
Tetrahedral, 3-fold
symmetry, strain
gradients



$l = 4$
g orbital
Octahedral, 4-fold,
Cubic crystal habit



Strain Functional Derivation: Solid Harmonic Polynomials: $R_{nlm} \sim r^n Y_{lm}(\theta, \phi) \exp(-br^2)$



Strain Functional Derivation: Contrasts with SOAP (GAP), SNAP

- Use of pure Gaussian weights
 - Transformation generates radial nodes defined by σ
 - Analogous to hydrogen-like orbitals with Principal Quantum Numbers: n, l, m
 - The n th shell tracks the n th order of the Taylor series expansion
- Use of non-Gaussian weights loses this
 - Requires the bispectrum approach which mixes terms between orders: convergence?
 - SOAP, GAP (Csanyi group): truncated Gaussian, Bessel Functions
 - SNAP (Thompson): stronger cut-off function: completeness
 - General spherical harmonic properties retained: Y_{lm} , but not R_{nlm}
- SFDs and PQN labels map directly onto Spherical Tensors
 - Spherical Tensor \Leftrightarrow Angular Momentum Vector $\Leftrightarrow Y_{lm} \Leftrightarrow \{Y_{l1}, \dots, Y_{ll}\}$
 - These map onto different subspaces of SO(3) 3D rotation space
 - General rank n tensor can be expressed in terms of irreducible spherical tensors

Strain Functionals: Irreducible Spherical Tensors

“The description of the physical properties of condensed matter using irreducible tensors”

J. Jerphagnon, D. Chemla, R. Bonneville

Advances in Physics **27**, 609 (1978)

Identifies number of independent components and subspaces for various physical properties

Stress: $6 = 1 \times 5 + 1 \times 1$

Strain Gradient: $10 = 1 \times 7 + 1 \times 3$

Cauchy: $15 = 1 \times 9 + 1 \times 5 + 1 \times 1$

Elasticity: $21 = 1 \times 9 + 2 \times 5 + 2 \times 1$

Each subspace should be expressible as rotational invariants...

Table 1. Reduction spectrum of tensors up to rank 4.

Rank	Indices partition	Example	Number of components	$J :$	Reduction spectrum								
					0	1	2	3	4				
					Name :	scalar	vector	deviator	septor				
					nonor								
0		Pressure	1		1								
1	r	Spontaneous polarization	3			1							
2	rs	Optical activity	9		1	1	1						
	(rs)	Stress and strain	6		1		1						
3	rst	Optical mixing	27		1	3	2	1					
	$(rs)t$	Piezo-electric effect	18			2	1	1					
	(rst)	Kleinman symmetry in SHG	10			1		1					
4	$rstu$	Optical mixing	81		3	6	6	3	1				
	$(rs)tu$	Photo-elastic effect	54		2	3	4	2	1				
	$(rs)(tu)$	Kerr effect	36		2	1	3	1	1				
	$(rst)u$	Third harmonic generation	30		1	1	2	1	1				
	$((rs)(tu))$	Elasticity	21		2		2		1				
	$(rstu)$	Cauchy relations	15		1		1		1				

Construction of Rotational Invariants

- Addition of angular momentum vectors: $\nu_{l(n)}^m \sim r^n Y_l^m \exp(-br^2)$
 - $\nu_l = \{\nu_l^{-l}, \nu_l^{-l+1}, \dots, \nu_l^{l-1}, \nu_l^l\}$: $2l+1$ terms (DOF)
 - Addition using Clebsch-Gordan coupling coefficients (Lo & Don, Edmonds)
 - *Analogous to tensor inner & outer products, contractions*
 - Can then add in a third, fourth, ... vector (infinite...)
- For $j=0$, the result is a rotationally invariant scalar
 - For $l=l', j=0$ this is the norm of the vector ν_l
 - For two different vectors $\nu_l \neq \nu_{l'}, j=0 \rightarrow$ dot product defining relative orientation
 - $2l+1$ contractions define the $2l+1$ DOF: no more, no less
 - But an infinite number of possible contractions...

“3-D Moment Forms: Their Construction and Application to Object Identification and Positioning” C.-H. Lo, H. S. Don *IEEE Trans. Patt. Analysis Mach. Intel.* **11**, 1053 (1989)

“Angular Momentum and Quantum Mechanics” A. R. Edmonds, Princeton, 1974

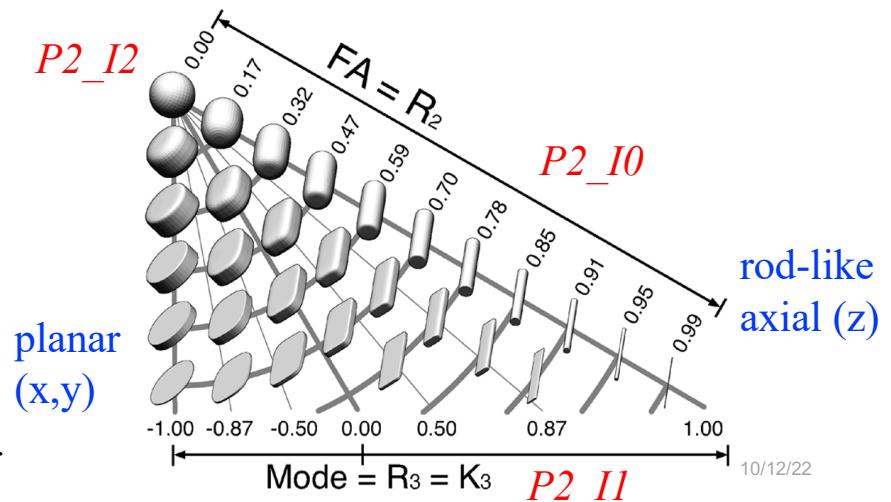
Rank 2 Invariants: Shear & Size

- Rank 2 moment tensors have 6 independent factors
 - Traceless rank 2 tensor & scalar trace: $1 \times 5 + 1 \times 1$
 - Scalar is the mean of the eigenvalues (EV): $P2_I2 = \nu_{0(2)}^0$
 - Traceless rank 2 tensor (spherical tensor) has two invariants
 - Net 2-fold distortion: rms EV: $P2_I0 = \nu(2,2)_0^0$
 - Skewness EV: $P2_II = \nu((2,2)_2, 2)_0^0$
 - 3 degrees of freedom define orientation wrt arbitrary axis
 - $O2_I0 = \nu(2, Z^2)_0^0$
 - $O2_II = \nu((2,2)_2, Z^2)_0^0$
 - $O2_I2 = \nu((2,2)_2, X^2 - Y^2)_0^0$

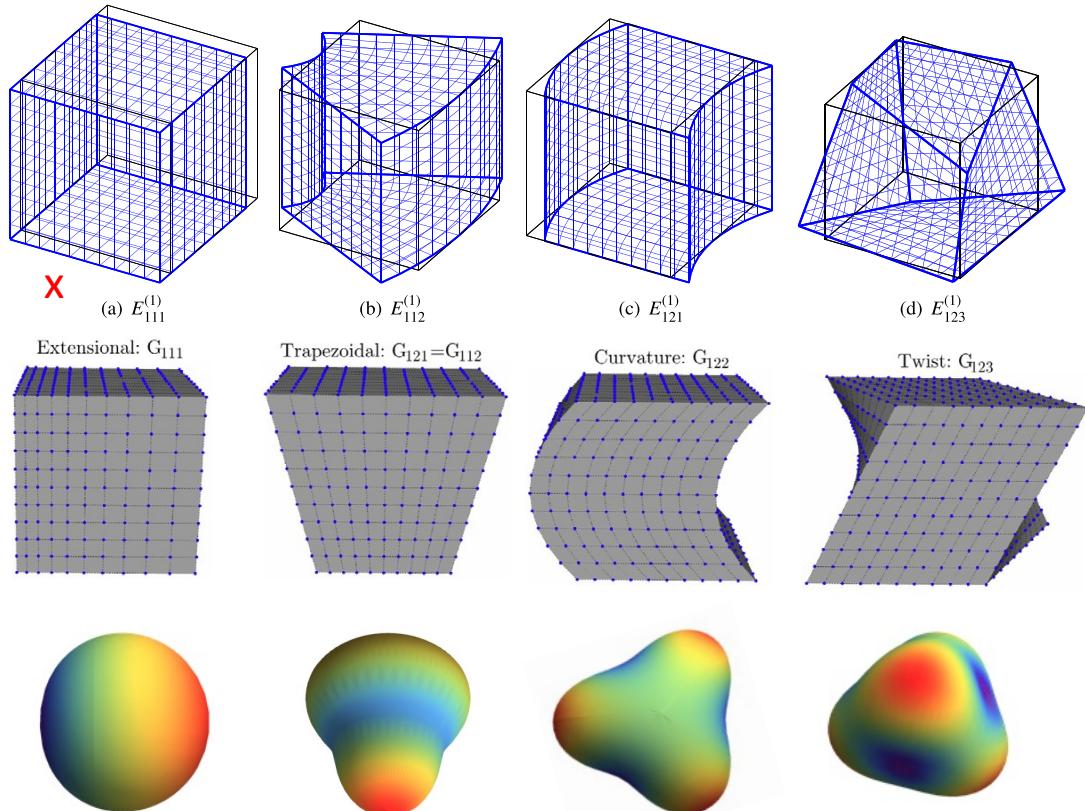
$$Z^2 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad X^2 - Y^2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

MRI Analysis: Water diffusion tensor
 G. Kindlmann *IEEE Trans. Med. Imag.*
 2007, **26**, 1483

$$M = \begin{bmatrix} XX & XY & XZ \\ XY & YY & YZ \\ XZ & YZ & ZZ \end{bmatrix}$$



Rank 3 Tensors = Strain Gradients



$v_{1(3)}^0$

v_3^0

$v_3^{\pm 3}$

$v_3^{\pm 2}$

Admal, N.C., J. Marian, and G. Po, *The atomistic representation of first strain-gradient elastic tensors*. Journal of the Mechanics and Physics of Solids, 2017. **99**: p. 93-115.

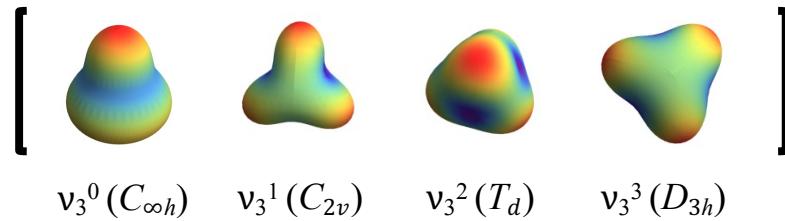
Luscher, D.J., D.L. McDowell, and C.A. Bronkhorst, *A second gradient theoretical framework for hierarchical multiscale modeling of materials*. International Journal of Plasticity, 2010. **26**(8): p. 1248-1275.

Rank 3 Invariants = Strain Gradients

$$v(3,3)_0^0 = |v_3^0, v_3^{\pm 1}, v_3^{\pm 2}, v_3^{\pm 3}|$$

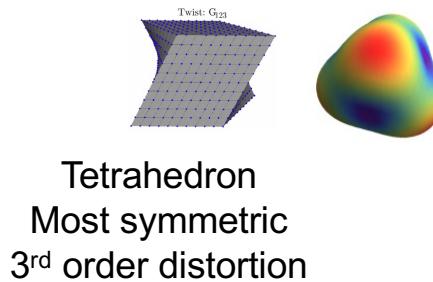
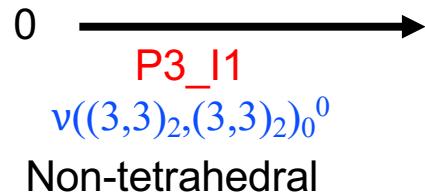
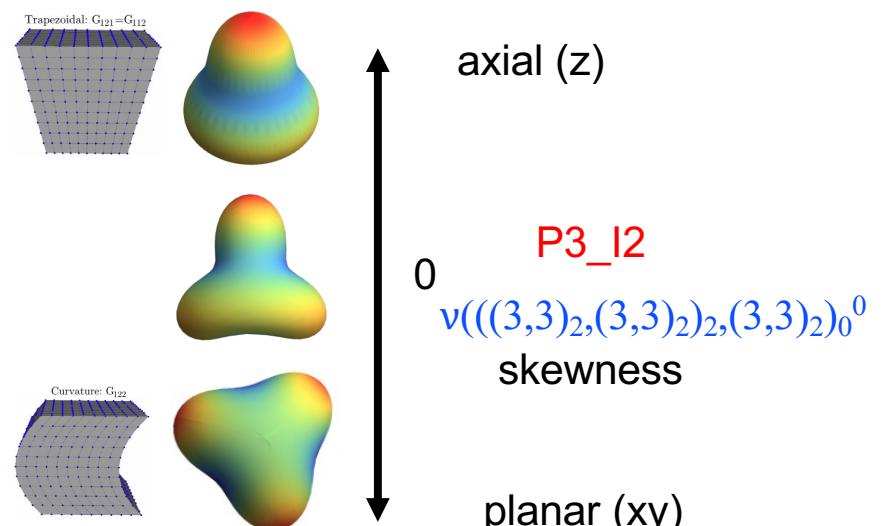
Net 3rd order distortions

P3_I0

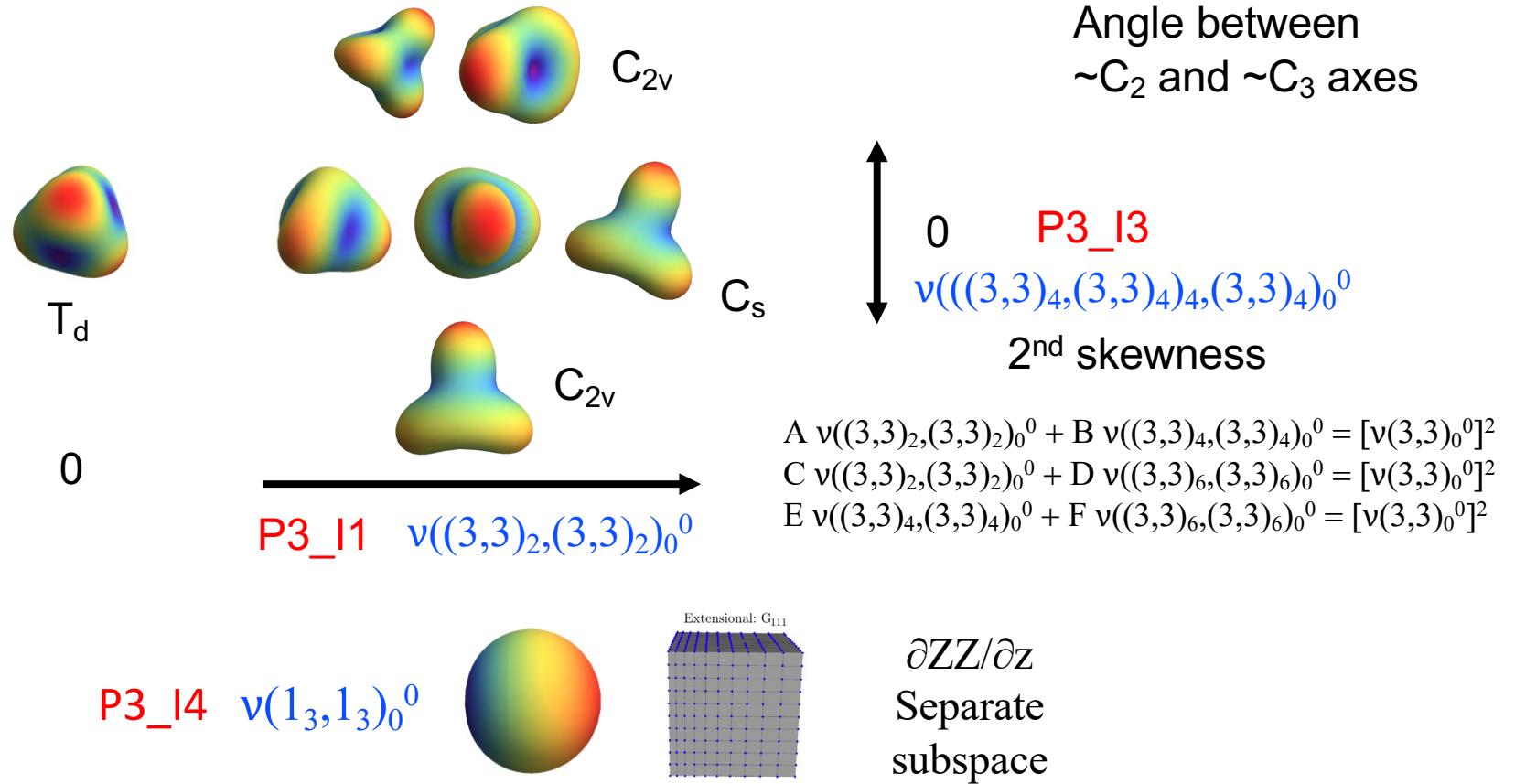


$$v((3,3)_3,3)_0^0 = 0$$

$$v((3,3)_3,(3,3)_3)_0^0 = k [v(3,3)_0^0]^2$$



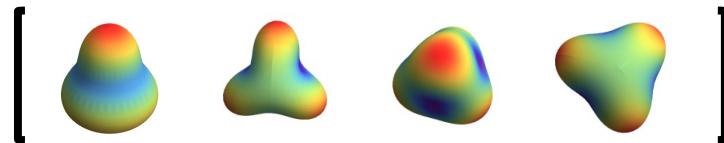
Rank 3 Invariants = Strain Gradients



Rank 3 Invariants (Strain Gradients 3x3x3): 10 DOF

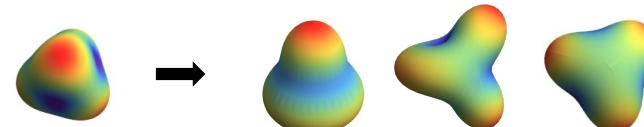
$$P3_I0 = v((3,3)_0^0) = |v_3^0, v_3^{\pm 1}, v_3^{\pm 2}, v_3^{\pm 3}|$$

General 3rd order deviatoric



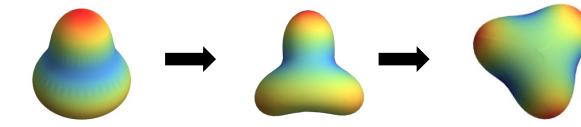
$$P3_I1 = v(((3,3)_2, (3,3)_2)_0^0)$$

Non-tetrahedral



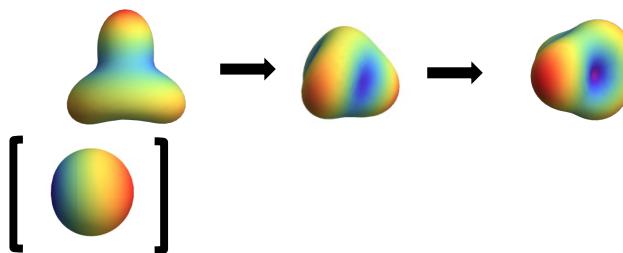
$$P3_I2 = v(((3,3)_2, (3,3)_2)_2, (3,3)_2)_0^0$$

Axial skewness, axes



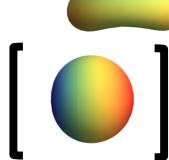
$$P3_I3 = v(((3,3)_4, (3,3)_4)_4, (3,3)_4)_0^0$$

2nd skewness, low symmetry



$$P3_I4 = v(I_3, I_3)_0^0$$

Extensional gradient



External orientation

$$O3_I0 = v((3,3)_2, Z^2)_0^0$$

Internal orientation

$$O3_I1 = v(((3,3)_2, (3,3)_2)_2, Z^2)_0^0$$

$$P3_I5 = v((3,3)_2, (1,1)_2)_0^0$$

$$O3_I2 = v(((3,3)_2, (3,3)_2)_2, X^2 - Y^2)_0^0$$

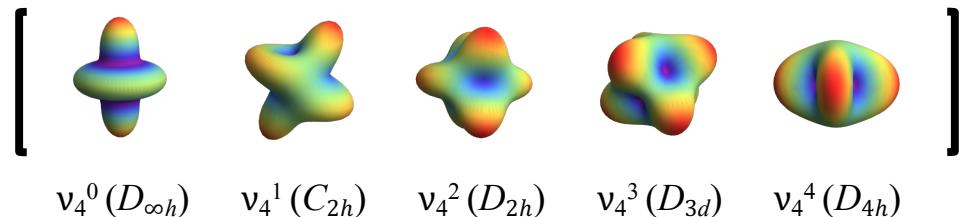
$$P3_I6 = v(((3,3)_2, (3,3)_2)_2, (1,1)_2)_0^0$$

Rank 4 Invariants = Cubic deformations

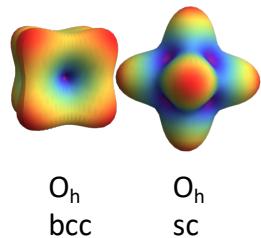
$$v(4,4)_0^0 = |v_4^0, v_4^{\pm 1}, v_4^{\pm 2}, v_4^{\pm 3}, v_4^{\pm 4}|$$

Net 4th order distortions

P4_I0

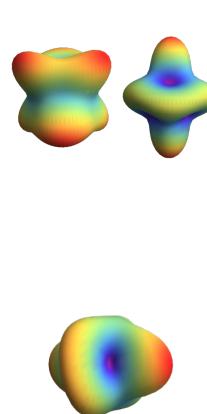


Octahedron
Most symmetric
4th order distortion



0

P4_I1
 $v((4,4)_2, (4,4)_2)_0^0$
Non-octahedral



0

P4_I2 defines internal axes

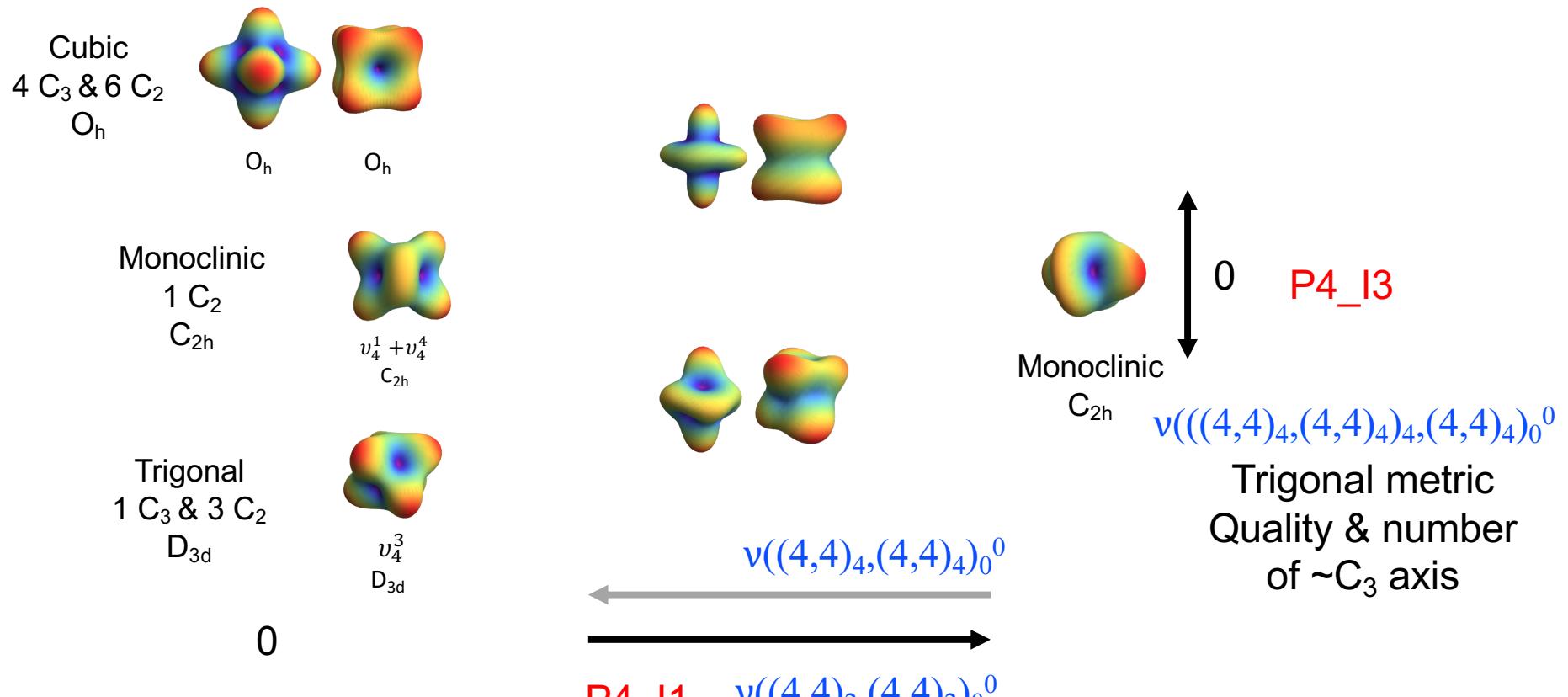
axial (z)
Tetragonal $a > b = c$

P4_I2

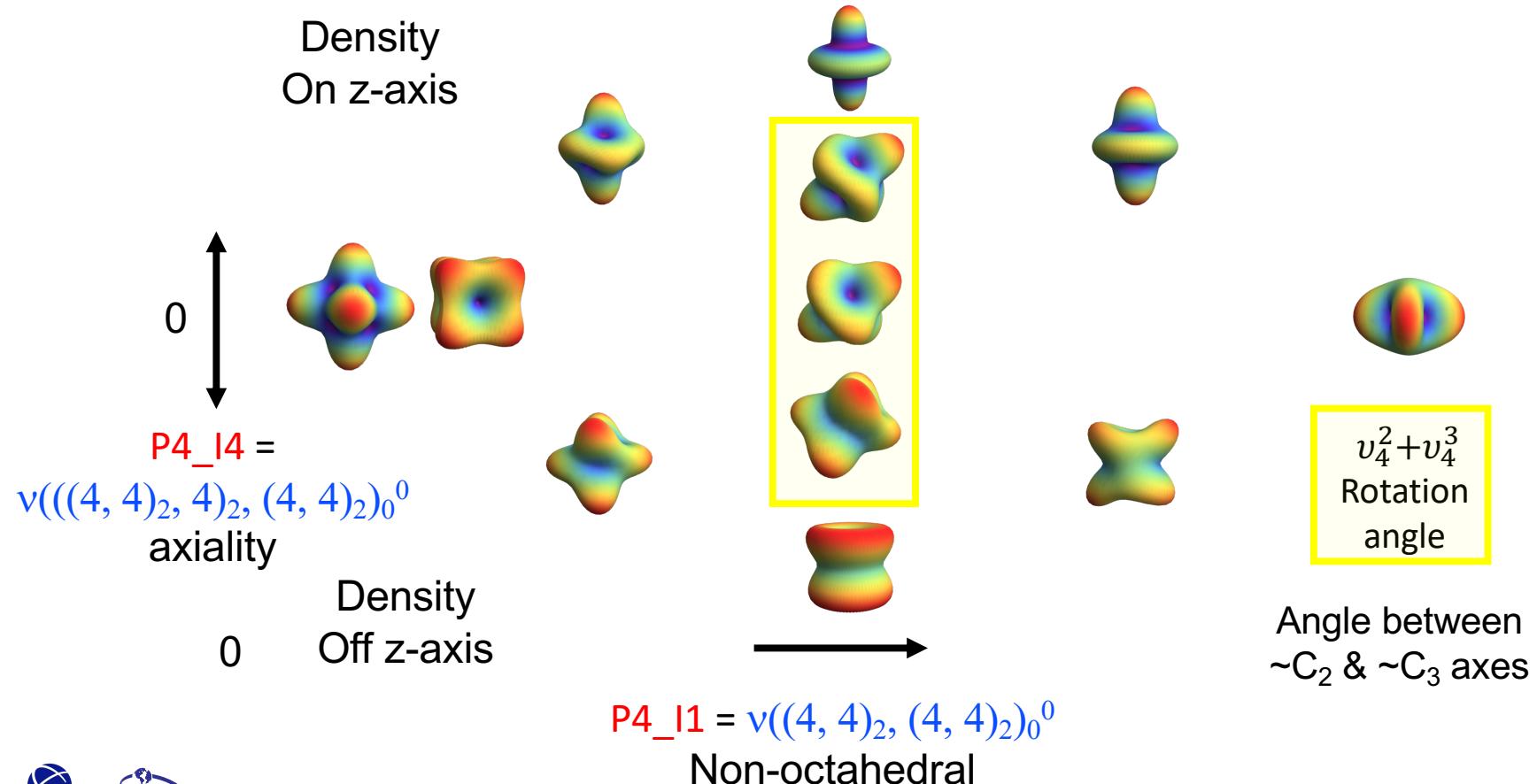
$v(((4,4)_2, (4,4)_2)_2, (4,4)_2)_0^0$
rhombohedral

planar (xy)
Tetragonal $a < b = c$

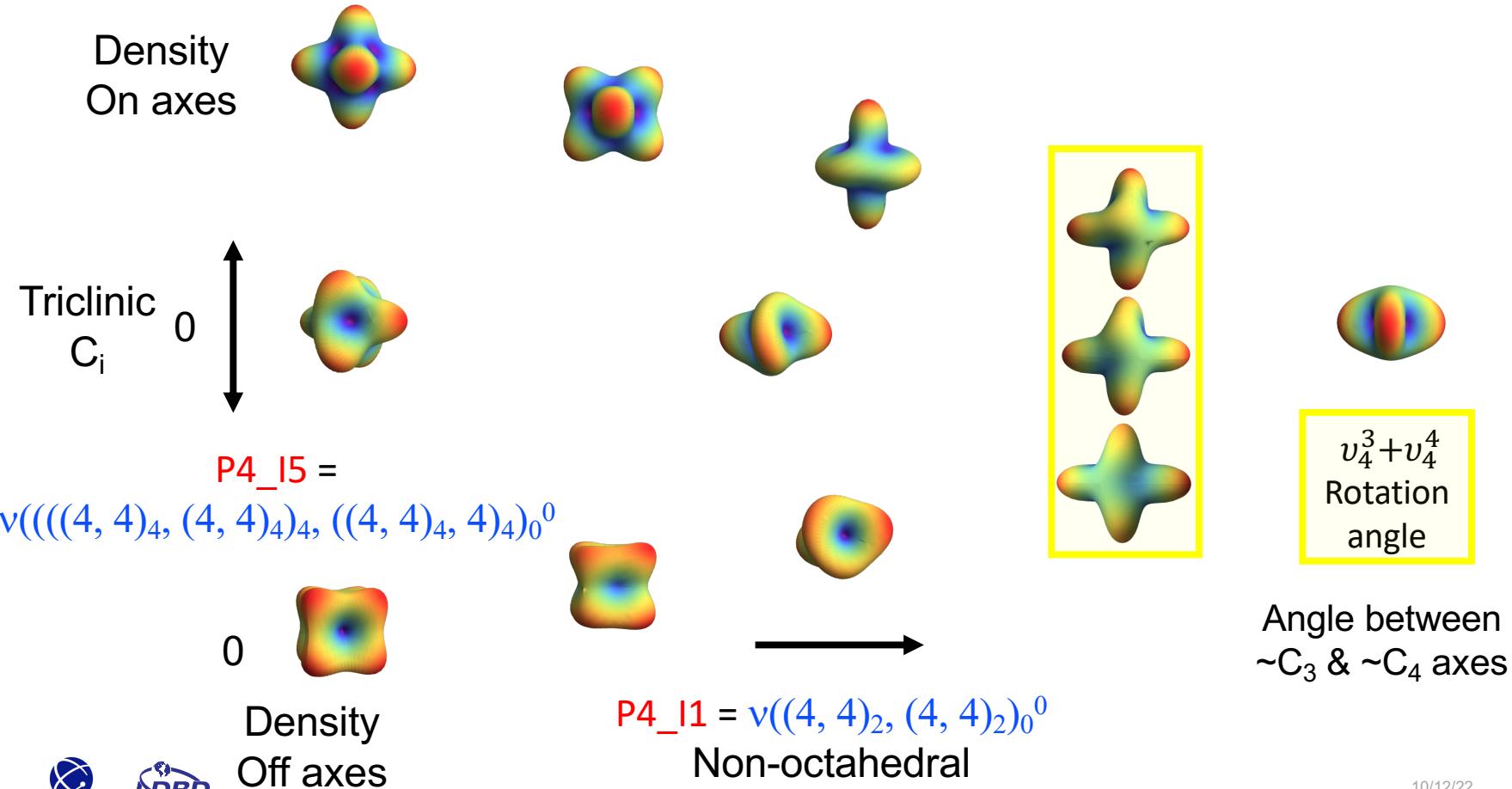
Rank 4 Invariants = Cubic deformations



Rank 4 Invariants = Cubic deformations

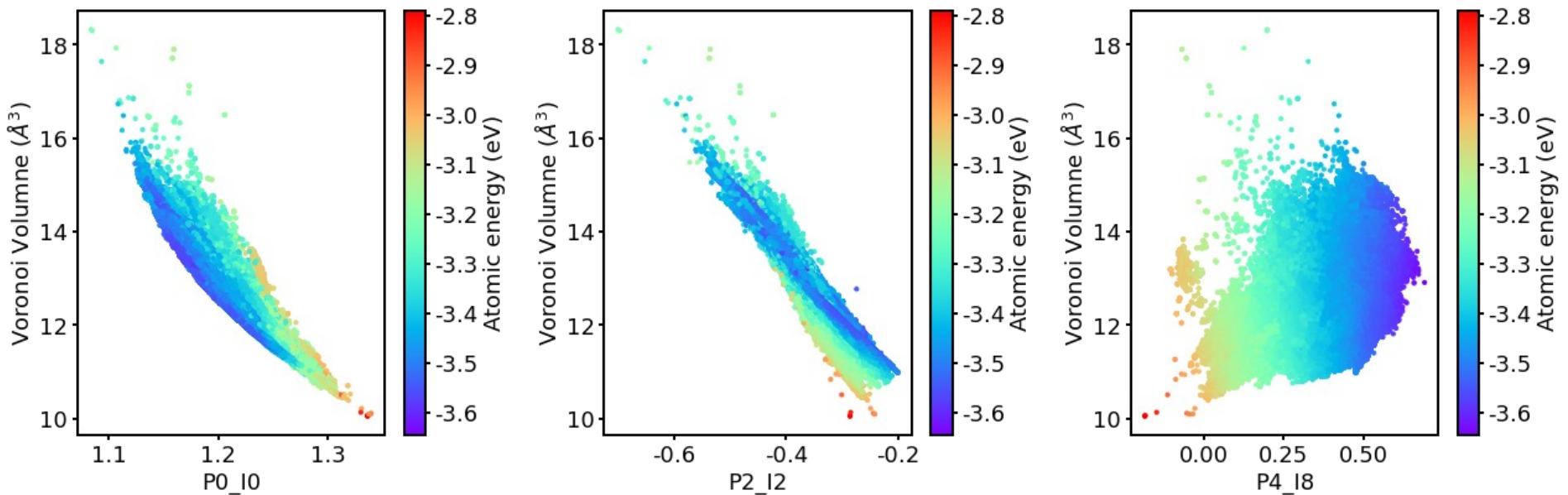


Rank 4 Invariants = Cubic deformations



Voronoi volume and SFDs

- Combined dataset shows also a correlation of 0.94 is observed between Voronoi volume and P0_I0



Rank 4 Invariants: 15 for Cauchy ($\partial^4/\partial r^4$) unique & complete

	Harmonic Polynomials	Rotational Invariants	
R_{44m} (5g)	v_4^4 v_4^3 v_4^2 v_4^1 v_4^0 v_4^{-1} v_4^{-2} v_4^{-3} v_4^{-4} $v_2^2 \cdot (r^2-a)$ $v_2^1 \cdot (r^2-a)$ $v_2^0 \cdot (r^2-a)$ $v_2^{-1} \cdot (r^2-a)$ $v_2^{-2} \cdot (r^2-a)$ $v_0^0 \cdot (r^4-br^2-c)$	$v(4, 4)_0^0$ $v((4, 4)_2, (4, 4)_2)_0^0$ $v(((4, 4)_2, (4, 4)_2)_2, (4, 4)_2)_0^0$ $v(((4, 4)_4, (4, 4)_4)_4, (4, 4)_4)_0^0$ $v(((4, 4)_2, 4)_2, (4, 4)_2)_0^0$ $v(((4, 4)_4, (4, 4)_4)_4, ((4, 4)_4, 4)_4)_0^0$ $v((4, 4)_2, Z^2)_0^0$ $v(((4, 4)_2, (4, 4)_2)_2, Z^2)_0^0$ $v(((4, 4)_2, (4, 4)_2)_2, X^2-Y^2)_0^0$ $v(2_4, 2_4)_0^0$ $v((2_4, 2_4)_2, 2_4)_0^0$ $v((4, 4)_2, 2_4)_0^0$ $v((2_4, 2_4)_2, (4, 4)_2)_0^0$ $v(((4, 4)_2, (4, 4)_2)_2, 2_4)_0^0$ $v(0_4, 0_4)_0^0$	4 th order shapes
R_{42m} (4d)			Orientations with respect to external frame
R_{400} (3s)			r ⁴ radial extent (with 2 radial nodes)

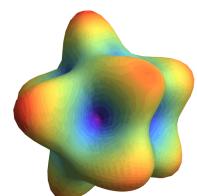
Elasticity (compliance) tensor has 21 elements with additional 4d' & 3s' terms arising from inequivalence of XYXY and XXYY type terms

Rank 5 Invariants

$$v(5,5)_0^0 = |v_5^0, v_5^{\pm 1}, v_5^{\pm 2}, v_5^{\pm 3}, v_5^{\pm 4}, v_5^{\pm 5}|$$

Net 5th order distortions

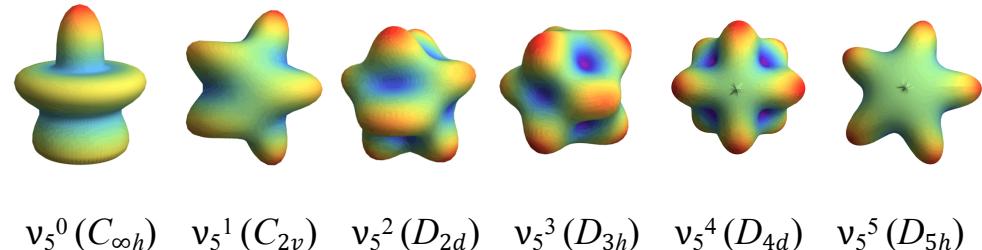
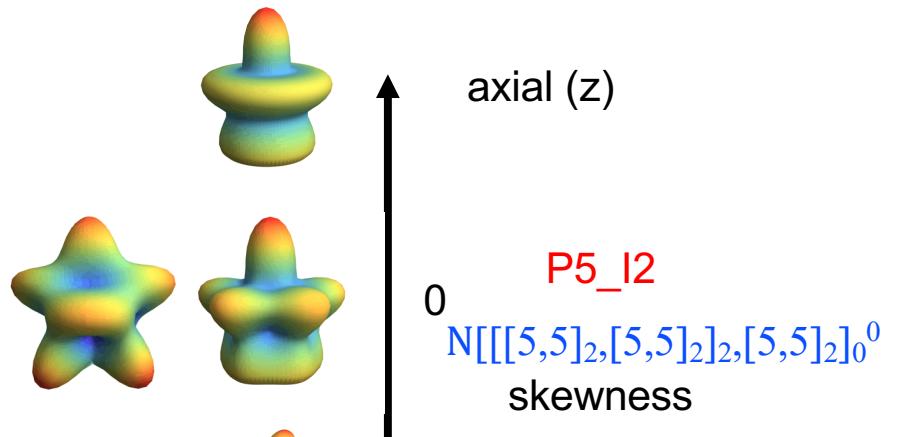
P5_I0



“The Blob” C_s
No symmetric
5th order structure

0 \longrightarrow

P5_I1
 $N[[5,5]_2, [5,5]_2]_0^0$
5-fold character



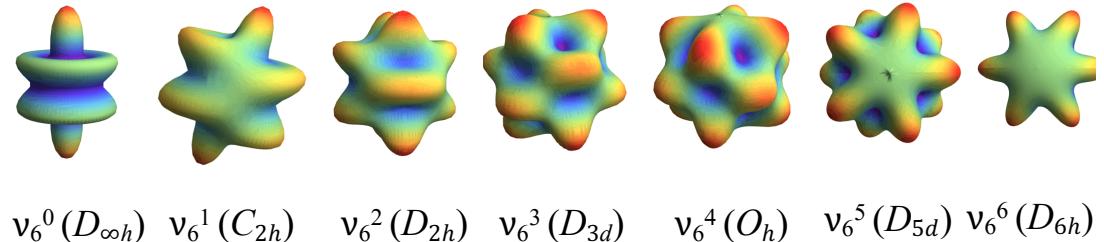
P5_I2 defines
internal axes

Rank 6 Invariants

$$v(6,6)_0^0 = |v_6^0, v_6^{\pm 1}, v_6^{\pm 2}, v_6^{\pm 3}, v_6^{\pm 4}, v_6^{\pm 5}, v_6^{\pm 6}|$$

Net 6th order distortions

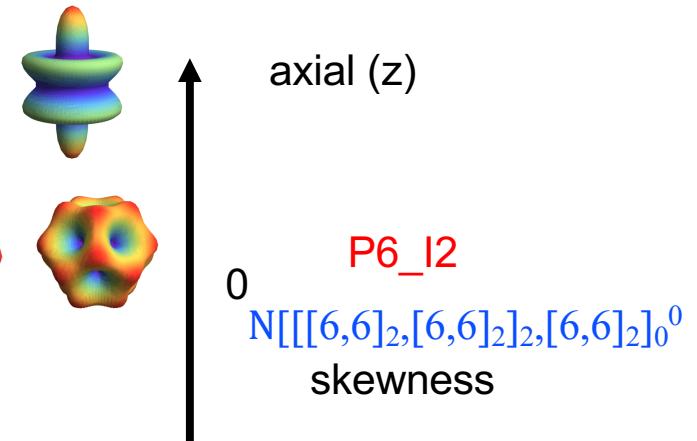
P6_I0



O_h (bcc w 2nd)
6th order ideal
 O_h (fcc)
Close, but
Not zero

0 →

P6_I1
 $N[[6,6]_2,[6,6]_2]_0^0$
 5-fold character



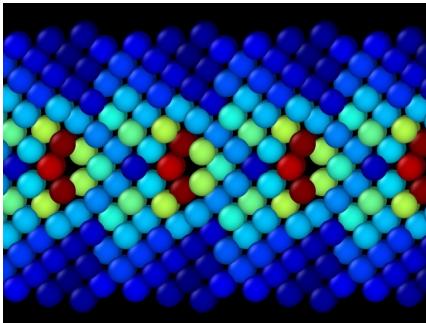
P6_I2 defines
 internal axes

P6_I2
 $N[[[6,6]_2,[6,6]_2]_2,[6,6]_2]_0^0$
 skewness

Characterizing Simulations

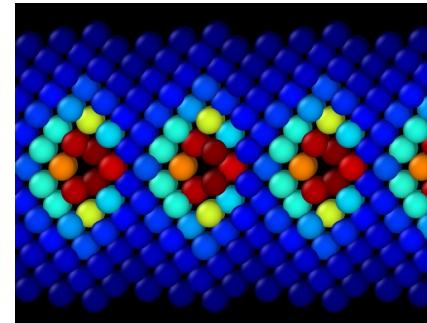
- SFDs provide numerical measures of different geometric distortions
- Single snapshots can be noisy: time-average or minimize
- Physically complete and interpretable basis for classification

P4_I1
Non-fcc (O_h) metric

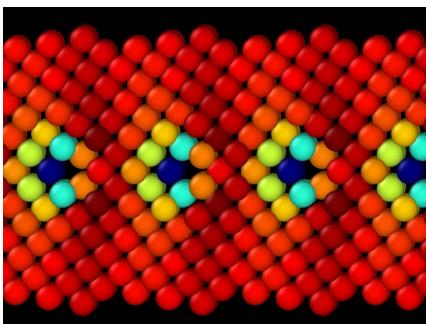


{100} symmetric tilt
Misorientation = 74°

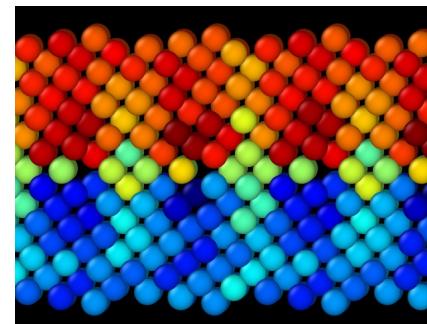
P3_I0
net strain gradient



P2_I2
average r^2



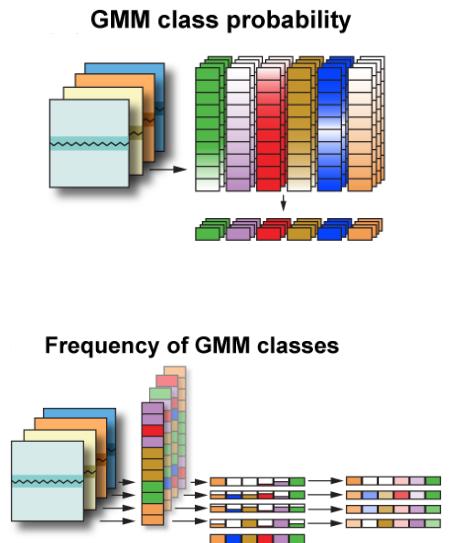
O4_I2
rotation angle



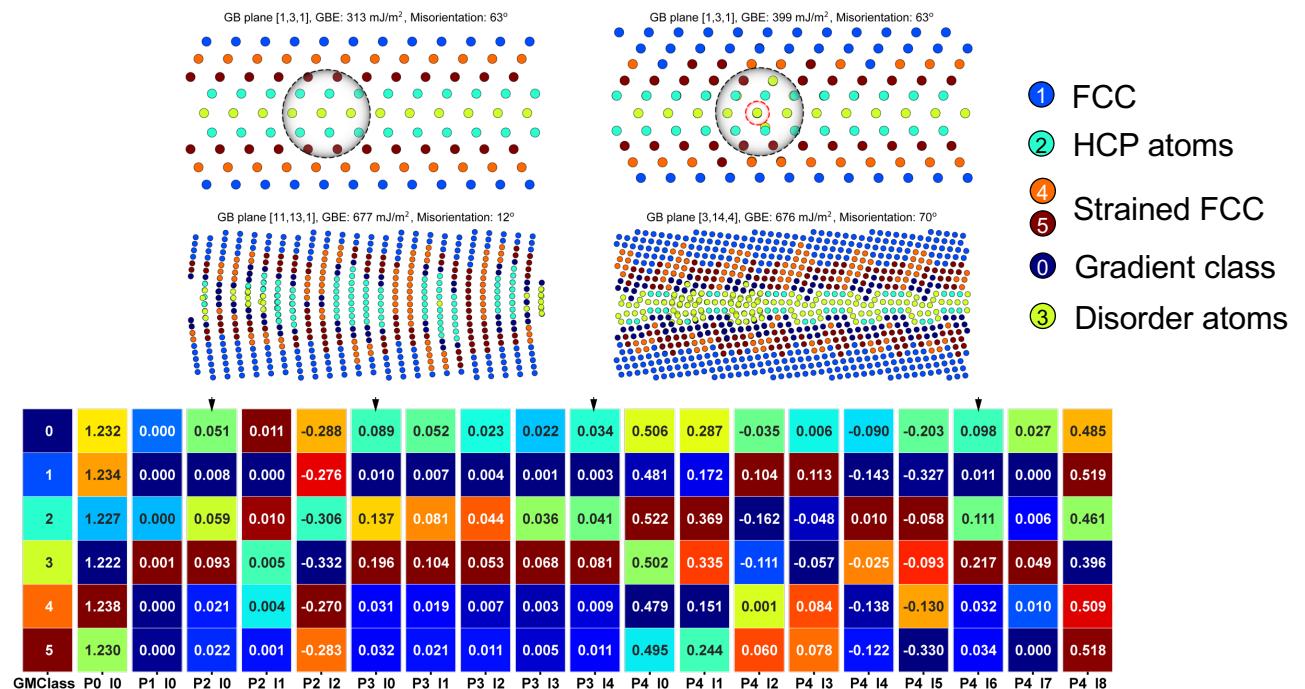
GBE prediction using GMM classes

- Regression models are developed using **GMM class probability and frequency**

Six-class GMM



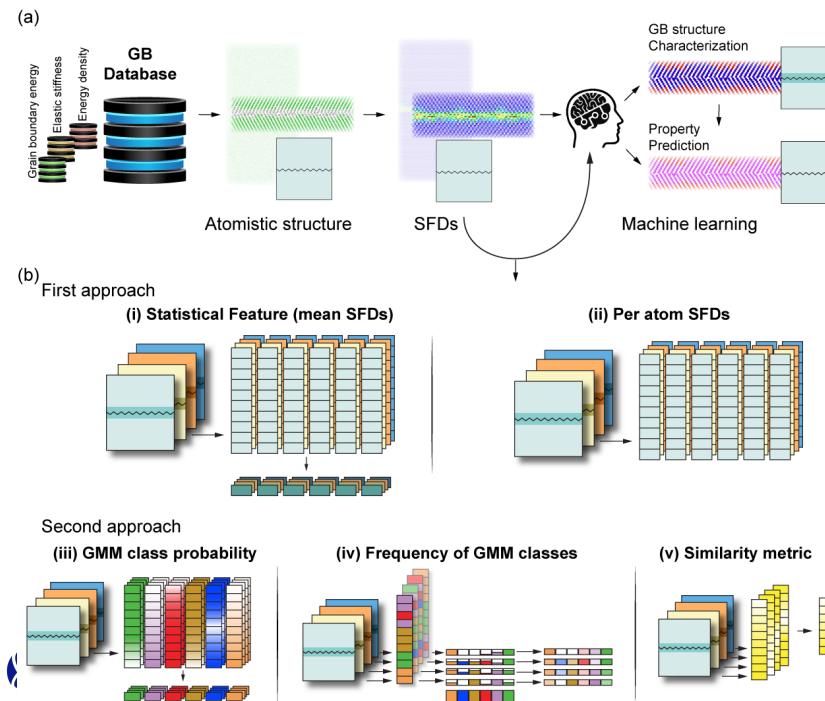
<112> symmetric tilt



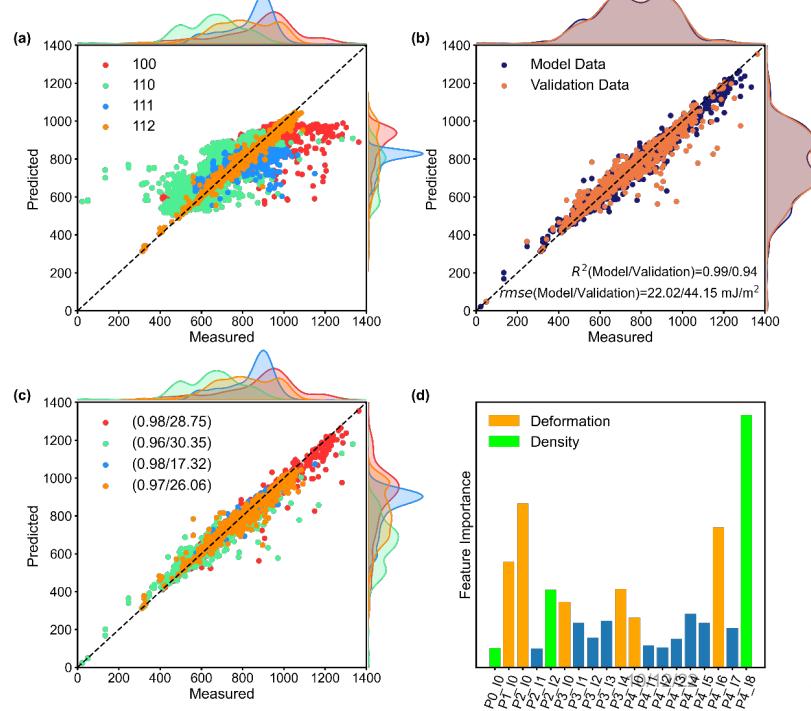
Grain boundary database and strain field descriptor

- Symmetric tilt grain boundary database of Cu (>5000) and grain boundary energy (GBE) prediction using ML

Database and workflow



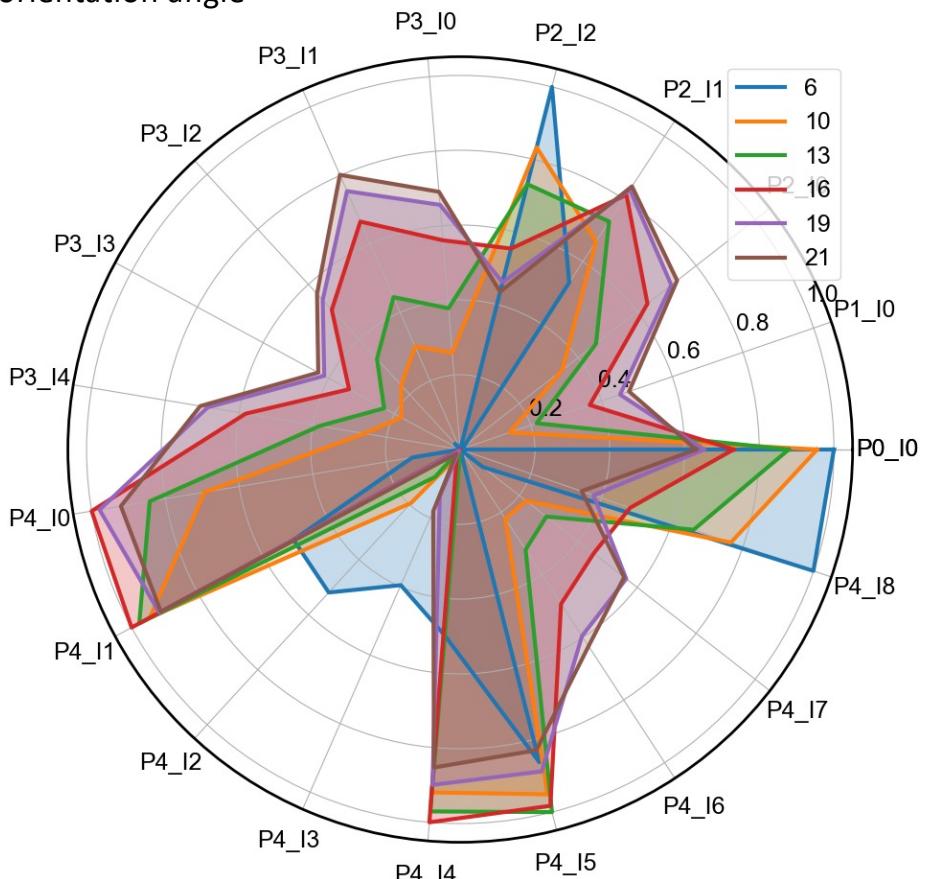
GBE prediction using ML



(100) Symmetric tilt

3	170.40	169.78	168.73	75.91	74.19	75.61	485.00	6.00
0	170.03	170.68	165.46	75.95	72.22	75.51	656.00	10.00
18	170.23	170.01	165.67	76.27	72.10	74.32	720.00	13.00
14	169.34	172.34	162.97	66.72	71.68	29.57	796.00	16.00
13	170.43	174.46	161.12	79.32	70.76	76.18	838.00	19.00
1	170.57	177.14	159.89	72.73	71.06	15.27	865.00	21.00
9	168.46	175.85	158.93	75.14	71.00	28.78	878.00	23.00
7	170.28	177.19	159.53	81.92	70.44	69.35	915.00	28.00
15	169.06	174.87	160.61	79.18	71.78	32.41	939.00	32.00
6	167.31	180.24	161.46	82.21	73.04	61.70	905.00	37.00
10	173.80	183.34	162.44	81.48	72.69	56.92	983.00	44.00
16	176.36	186.27	162.77	79.30	73.90	37.92	988.00	46.00
4	178.68	195.10	159.14	86.15	74.38	13.32	951.00	53.00
2	189.12	194.70	163.25	77.23	74.48	16.49	941.00	56.00
19	190.52	198.42	162.92	78.48	74.32	28.48	917.00	58.00
11	193.30	200.42	163.50	78.11	74.38	34.32	856.00	62.00
5	202.32	204.96	164.57	77.38	74.44	30.09	790.00	67.00
17	204.86	210.69	165.41	77.20	74.89	28.26	732.00	71.00
8	209.36	213.41	166.08	77.66	75.18	27.26	677.00	74.00
12	213.14	218.77	166.92	78.15	75.68	26.09	595.00	77.00
20	218.82	221.86	168.69	76.73	76.09	24.20	411.00	83.00
	c11	c22	c33	c44	c55	c66	GBE	mis

Label are misorientation angle



Summary

- Demonstrated SFDs as a rigorous approach to describing atomic environments
 - Minimal, complete and non-redundant for n th order expansion
 - Physical basis for classification, machine learning
- SFD further development
 - Extension to sixth order (full characterization of hexagonal space groups)
 - Application to diffraction analysis, neutron scattering of defects
 - Extension to vector (displacement) & tensors (compliance)
- Application future
 - Characterize general GBs (twist & tilt): 2D patterns
 - Characterize GB changes with transmission, absorption
 - Strong basis for general ML: GBs, dislocations, diffraction

Funding LDRD-DR “Investigating How Material’s Interfaces and Dislocations Affect Strength (iMIDAS)” (XX9A, Abby Hunter, PI)