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Introduction

» Quantify MD simulations of dislocation-GB interactions
— Stukowski approaches (OVITO): ad hoc and incomplete
— SOAP more complete (& redundant): no direct physical interpretation

» Development of quantifiable metrics
— Strain Functional Descriptors (initial development XWG6)
— Mathematically complete and unique (non-redundant)

» Basis for Physics Informed Machine Learning analysis
— Leading to physically justifiable models
— Also maps onto diffraction analysis cleanly

N. Mathew, J.P. Tavenner, C.M. Adams and E.M. Kober, Development of Strain
Functionals to Characterize Atomistic Geometries, in preparation.
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Strain Functional Derivation:
Map atomic quantities to continuum field

Map atomic quantities g; to continuum field G using a Gaussian kernel
rjlz N = number density

gj r— ;
Gr)= ) g;jW; = 7. P\~ 5 p = number density
7 7o g U = velocity field

Define local number density (IN) as a Taylor series expansion about rj: r =r; + Ar

Ar®Ar _ 92N
2 or?

N(r) = N(r;) +Ar©g—];/

N ArQ@ArQAr o 03N
6 or3

L ri ri

gi=1
g; = atomic mass
g; = atomic velocity

2
JdN aVV] rij 1 ( |Ti]'| ) rij . . .
—| =) < =) H_— L) == L. Weighted sum of neighbor distances
or Z or 52V, P\ T 52 Z o2l 8 &
T j L J ]
92N 1 T @1 ~ conventional strain: deviatoric and total (trace)
arz| o2 Z o2 2] Wij (Han, Zimmerman)
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Strain Functional Derivation:
Taylor Series Expansion & Atomic Orbital Analogy

» Standard nth order convergence in accuracy of describing the neighborhood
 Local nth order derivatives < local nth order moments (shapes)

« Atomic volume V, defines c (~1.2 A for Cu)
— 50-80 neighbors for numerical precision
— Shapes are strongly dominated by the 15! nearest neighbors

* Hermite polynomials readily map onto Harmonic polynomials
— Solid spherical harmonics with pure Gaussian weighting
— That transformation generates radial nodes for subspaces (e.g. 1s vs 2s orbital)
— Retain Principal Quantum Number (PQN) notation vs bispectrum approach
— Readily partitioned onto rotation sub-spaces of the SO(3) 3D rotation space
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Strain Functional Derivation:
Solid Harmonic Polynomials: ' Y,,,(6,4) exp(-br?)

[=2
d orbital
tension, shear

Blue = positive phase,
red = negative phase;
consider as density
changes to a sphere...

[=3

f orbital

Tetrahedral, 3-fold
symmetry, strain
gradients

=4
g orbital
Octahedral, 4-fold,

Cubic crystal habit
@  omp




Strain Functional Derivation:
Solid Harmonic Polynomials: R, ~ ' Y,,,(6.¢) exp(-br?)

n=210=2 n=2,1=0
d orbital G p @ &

tension, shear m=+1 m= +2 m=0

2 size

n=31=3 \ n=31=1
f orbital C
Tetrahedral, 3-fold

symmetry, strain m==+1 m==x2 m==+3 m==*x1
gradients Cooh Cs, T, Dy, Cooh Coon

n=4,1=4
g orbital
Octahedral, 4-fold,

Cubic crystal habit
@  omp




Strain Functional Derivation:
Contrasts with SOAP (GAP), SNAP

» Use of pure Gaussian weights
— Transformation generates radial nodes defined by ¢
— Analogous to hydrogen-like orbitals with Principal Quantum Numbers: n, I, m
— The nth shell tracks the nth order of the Taylor series expansion

» Use of non-Gaussian weights loses this
— Requires the bispectrum approach which mixes terms between orders: convergence?
— SOAP, GAP (Csanyi group): truncated Gaussian, Bessel Functions
— SNAP (Thompson): stronger cut-off function: completeness
— General spherical harmonic properties retained: Y, but not R,

« SFDs and PQN labels map directly onto Spherical Tensors
— Spherical Tensor < Angular Momentum Vector < Y, & {Y.,...,Y)}
— These map onto different subspaces of SO(3) 3D rotation space
— General rank n tensor can be expressed in terms of irreducible spherical tensors
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Strain Functionals: Irreducible Spherical Tensors

Table 1. Reduction spectrum of tensors up to rank 4.

“The description of the physical properties of . ombeo g B RESET
ndices umber o H
condensed matter using irreducible tensors” Rank  puctition  fxemple components 2+ PSS ° HEEE BN
. ame : scalar vector deviator septor nonor
J. Jerphagnon, D. Chemla, R. Bonneville . P X X
Advances in Physics 27, 609 (1978) 1oy Spontancous 3 1
polarization
2 s Optical 9 1 1 1
activity
Identifies number of independent components (r9) Stress and 6 1 1
and subspaces for various physical properties 3 Optical 27 I N
mixing
(rs)t Pieﬂ)-elecbric 18 2 1 1
effect
Stress: 6 =1x5 + 1x1 (rst) Kleinman 10 1 1
. . symmetry
Strain Gradient: 10 = 1x7 + 1x3 EHG
4 rstu Optical 81 3 6 6 3 1
Cauchy: 15=1x9 + 1Ix5 + 1x1 mixing
. . (rs)tu Photo-elastic 54 2 3 4 2 1
Elasticity: 21 =1x9 + 2x5 + 2x1 effect
(rs)(tw) Kerr effect, 36 2 1 3 1 1
(rstyu Th}ird . 30 1 1 2 1 1
Each subspace should be expressible as goneration
. . . ((rs)(Fu)) Elasticity 21 2 2 1
rotational invariants... o) Cony s : . :
relations
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Construction of Rotational Invariants

- Addition of angular momentum vectors: v, ~ 1" Y/" exp(-br?)
- y={yL vyt . vyt oy 21+1 terms (DOF)
— Addition using Clebsch-Gordan coupling coefficients (Lo & Don, Edmonds)
— Analogous to tensor inner & outer products, contractions
— Can then add in a third, fourth, ... vector (infinite...)

l
V(1 1)k = z Lm Uk —mlL U, j, k) vitvk—m
m=—l1
» For j=0, the result is a rotationally invariant scalar
— For I=I’, j=0 this is the norm of the vector v
— For two different vectors v # v;’, j=0 = dot product defining relative orientation
— 2I/+1 contractions define the 2/+7 DOF: no more, no less
— But an infinite number of possible contractions...
“3-D Moment Forms: Their Construction and Application to Object Identification and

Positioning” C.-H. Lo, H. S. Don IEEE Trans. Patt. Analysis Mach. Intel. 11, 1053 (1989)

‘@ &Dﬁ) “Angular Momentum and Quantum Mechanics” A. R. Edmonds, Princeton, 1974



Rank 2 Invariants: Shear & Size

* Rank 2 moment tensors have 6 independent factors

XX XY XZ
— Traceless rank 2 tensor & scalar trace: 1x5 + 1x1 M=l xy vy vz
— Scalar is the mean of the eigenvalues (EV): P2_12 = v, X7 YZ 77

— Traceless rank 2 tensor (spherical tensor) has two invariants
= Net 2-fold distortion: rms EV: P2 10= v(2,2),’
= Skewness EV: P2 I1= v((2,2),2),’

— 3 degrees of freedom define orientation wrt arbitrary axis
= 02 10=v2272))
0211 =v(22), 2, P2_I2
= 02 12=w(22), X>-Y?),

1[-1 0 o {1 0 0 |
Z’=—|0 -1 0 X2—Y2=\/—_ 0 -1 0 rod-like
Velo o 2 20 0 o0

planar axial (z)

MRI Analysis: Water diffusion tensor (X,y)

) oy G. Kindlmann /EEE Trans. Med. Imag. » ,
= RD 2007, 26, 1483 Mode=Rs=Ks pp y

-1.00 -0.87 -0.50 0.00 0.50 0.87 1.00
)




Rank 3 Tensors = Strain Gradients

<\
R —— , A
Weiis 5}% A0 L
Gt A | BT i s T 2L : ,
Pttt | g A | it ; el i Admal, N.C., J. Marian, and G. Po, The
s SRR EE T e |l S SN 5;;;52;; g8l SRS 80 RS atomistic representation of first strain-
o rE s | Sy pae=== iR NI/ N ZeRSol (0 % gradient elastic tensors. Journal of the
Vol R e P b Mechanics and Physics of Solids, 2017
agangEesce SRy W SSEeEe s ’ :
=y 4 e 99: p. 93-115,
@ Ey ®) EYY, © E}3) @ £},

Extensional: Gy

Trapezoidal: Gj9)=Gj9

Curvature: Gyyy

Luscher, D.J., D.L. McDowell, and C.A.
Bronkhorst, A second gradient theoretical
framework for hierarchical multiscale
modeling of materials. International Journal
of Plasticity, 2010. 26(8): p. 1248-1275.

> €3 V 0
o omb 1(3)
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Rank 3 Invariants = Strain Gradients

(& & @ V|

V3O (Cooh)

V(373)00 = |V309 V3i13 V3i29 V3i3|

Net 3™ order distortions
P3 10

V((393)393)OO =0
V((393)39(393)3)OO =k [V(3a3)00]2

Twist: Giog

Tetrahedron
Most symmetric
3rd order distortion

P3 11
'\ iIn V((373)2)(393)2)OO
'®  Lorb Non-tetrahedral

V3% (Ty) v3? (D3)

' e 4 axial (2)

P3 12
v(((3,3)2,(3,3)2)2,(3.3)2)°

Lolo

(} skewness
> . v planar (xy)

P3 12 defines
internal axes 10112122 i



Rank 3 Invariants = Strain Gradients

Angle between
~C, and ~C; axes

0 P3 I3
V(((3 93)49(3 93)4)49(3 93)4)00
2nd skewness

A V((3,3)2,(3,3)2)00 +B V((3,3)4,(3,3)4)OO = [V(3,3)00]2
0 > C V((3a3)2’(393)2)00 +D V((3’3)69(3a3)6)00 = [V(393)00]2

P3 11 v((3.,3),(3,3)))"  EV(G363.300°+FV(B3,3)e(3.3)6)” = V33T

7 0Z7/0z
P3 14 v(1;,15), U . Separate
subspace

<
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Rank 3 Invariants (Strain Gradients 3x3x3): 10 DOF
P3_10=v(3,3))" = v, v3*!, v3*2, v3*| ‘ \ Q D
General 3" order deviatoric
P3 11 =v((3,3)5(3,3)2)¢’ Q - 4 .
Non-tetrahedral
P3_12 = v(((3,3)2,(3,3)9(3.3))4f - [( - @
Axial skewness, axes |
P3 13 =v(((3,3)4(3,3)4)4(3.3) 1)’ G ‘ . — Q
2nd skewness, low symmetry |
P3_I4 — V(]3,13)00 U
Extensional gradient

03 10 = v((3,3),,72),’ Internal orientation

External orientation O3 11 = v(((3,3)5,(3,3):),72°)," P3_15=v((3,3)2(1,1)2)¢"
03 12 = V((3,3),,(3.3)2),X2-Y2) 0 P3_16 =v(((3,3)2(3,3)2)2.(1.1)5)/°

'®  fomb 10 DOF: complete and non-redundant



Rank 4 Invariants = Cubic deformations

v(4.4)" =[v, vitt, v, vgB, vt
Net 4th order distortions
P4 10
V' (Do) V4 (Can) Va2 (Dap)
E_ e A
Octahedron

Most symmetric ! a

4th order distortion
On On
bcc SC

0=

\ .

0 >
P4 |1

V((434)27(494)2)00
Non-octahedral

® o

¢ Q@]

Vi3 (D3q)  V4* (Day)

axial (z)
Tetragonala>b =c

P4 12

0
V(((4,4)2,(4,4),)2,(4,4)2)"

rhombohedral

planar (xy)
Tetragonala<b=c

P4 |2 defines
internal axes



Rank 4 Invariants = Cubic deformations

Cubic
4 C3 &6 C,
Monoclinic (’ 0 P4 13
 FU . - Monoclinic
- CZh V(((494)49(494)4)47(494)4)00

1C,
Trigonal &) Trigonal metric

C2h
1 C3 & 3 C2 1
3 Quality & number
D Uy 0
3d Dag V((494)49(474)4)0 Of ~C3 aXiS

0 >
P4_11  V((44)2,(4,4))"
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Rank 4 Invariants = Cubic deformations

Dersty =
¢ & €
@ @

| @&

P4 14 = é\ G ’ ? V2403
V(((4, 4)2, 4)2, (4, 4)2)o° : Rotation
axiality 2 angle
Density

0 Off z-axis e

P4_I1=v((4,4),, (4, 4)2)"
® i Non-octahedral

L RD

Angle between
~C, & ~C; axes



Rank 4 Invariants = Cubic deformations
Density ¢ ;\
o |
N axes & :‘
Triclinic | 6’
v

&

<
4
&

P4 |5 = vi+vg
Rotation
V(((4, 4)a, (4, D)), (4, Da, Da)o” @ angle
! W E Angle between
0 ' ~C; & ~C, axes
Density P4_I1=v((4,4),, (4, 4)2)"

@ (omp, Off axes Non-octahedral



Voronoi volume and SFDs

+ Combined dataset shows also a correlation of 0.94 is observed between Voronoi volume and P0O_10

2.8 2.8

18 l - 181 - 18
2 30~ o 3.0~ o
< 16 3 16 3 S16
g 313 g 313 é
5 328 3 328 3
S 14 S S1a S 514
3 339 2 338 2
: E £ E 5
S 12 242 812 24 5 12

35 35
10 - ‘o -3.6 10+ (A -3.6 104+ *~
11 1.2 13 0.6 0.4 0.2 0.00 025 0.50
PO_I0 P2_I2 P4_I8

P
‘;:Q EDR\D 1011222 19



Rank 4 Invariants: 15 for Cauchy (d%/dr4) unique & complete

Harmonic Polynomials Rotational Invariants
~ v v(4, 4)° 4% order shapes
vy v((4, 4)2, (4, 4),)"
V42 V(((49 4)29 (43 4)2)27 (49 4)2)00
V41 V(((49 4)49 (43 4)4)47 (49 4)4)00
R441’Il m V40 V(((49 4)27 4)23 (47 4)2)00
(Sg) \)4_1 V((((49 4)49 (49 4)4)4a ((49 4)49 4)4)00
V2 v((4, 4),, %) Orientations with respect
V4_3 v(((4, 4)2’ (4, 4),),, 22)00 to external frame
- \)4_4 V(((4a 4)2, (43 4)2)29 X2-Y2)00
V,2 ¢ (r?-a) V(24, 24)¢" 2nd order shapes
R42m Vo' e (r?-a) V(245 24)2, 24)o° (with 1 radial node)
(4d) — VZO ° (r2—a)
vy e (r*-a)
R, L v2e(a) |
(345)0 { v’ * (rf-br’-c) v(04, 04)" r radial extent

(with 2 radial nodes)
= Elasticity (compliance) tensor has 21 elements with additional 4d” & 3s’ terms
"® (orb arising from inequivalence of XYXY and XXYY type terms



Rank 5 Invariants
V(5,5)" =1[vs’, vstl, vst2, vst, vs, vt

Net 5t order distortions
P5 10

f(&&* A

Vs (Coon) V5! (Cap) V52 (D2q) V5P (Dsn)  Vs*(Dag)  Vs® (Dsp)

4 axial (2)
0 P5 |12
N[[[535]29[575]2]29[535]2]00
“The Blob” Cs skewness
No symmetric

5th order structure "fk,
0 > x! v lanar (x
P5_I1 planar (xy)

R N[[5,512[5.5]2]¢° P5_12 defines
'®  Lorb 5-fold character internal axes oz 8



Rank 6 Invariants
V(696)00 = |V609 V6i19 V6i29 V6i39 V6i49 V6i59 V6i6 |

Net 6t order distortions
P6 10

FEEREEK

Ve’ (Do) V6! (Can) V&2 (D2r) V6l (D3g) Vet (On) V6 (Dsa) Ve® (Den)

é r  ainl )
2P @ ~

N[[[6,6]2,[6,61,12,[6,61,]°
On (bcc w 2nd)  On (fec) skewness

6th order ideal Close, but

NOtozero > JZ v planar (xy)
P6 |1

o o N[[6,6]2,[6,6]2]0° P6_I2 defines
'®  Lorb 5-fold character internal axes oz .




Characterizing Simulations
» SFDs provide numerical measures of different geometric distortions
» Single snapshots can be noisy: time-average or minimize

» Physically complete and interpretable basis for classification

{100} symmetric tilt
Misorientation = 74°

P4 |1
Non-fcc (Oy) metric

P3_10
net strain gradient

P2 12
average r?

04 12
rotation angle
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GBE prediction using GMM classes

* Regression models are developed using GMM class probability and frequency

Six-class GMM <112> symmetric tilt

GB plane [1,3,1], GBE: 313 mJ/m?, Misorientation: 63° GB plane [1,3,1], GBE: 399 mJ/m?, Misorientation: 63°
® 6 ¢ ¢ ¢ o6 o o o o o o

GMM class probability

® FCC
@ HCP atoms

GB plane [11,13,1], GBE: 677 mJ/m?, Misorientation: 12°

(@) .
6 Strained FCC

® Gradient class
® Disorder atoms

A Y

0.034 0.506 0.287 -0.035 0.006 -0.090 -0.203 0.098 0.027 0.485
0.481 § 0.172 § 0.104 | 0.113 §-0.143 M 0.000 w
(OZY RN 0.522 § 0.369 J-0.162 ] -0.048 | 0.010 | -0.058 QRVAKENE 0.006 WR:L]

0.502 M m I M 0.217 § 0.049 j 0.396
0.001 H LR KD 0.032 § 0.010 § 0.509
- B EE B - - | e

1 P32 P33 P34 P40 P41 P42 P43 P4l P45 P46 P47 P48




Grain boundary database and strain field descriptor

«  Symmetric tilt grain boundary database of Cu (>5000) and grain boundary energy (GBE) prediction using ML

Database and workflow

D

ry energy
Elastic stiffness
'Energy density

Grain boundal

Atomistic structure

b)
First approach

(i) Statistical Feature (mean SFDs)

Second approach
(iii) GMM class probability
==

-8

GB structure
Characterization

. <<«<<<<<«<<«E

Property
Prediction

Machine learning

(ii) Per atom SFDs

(iv) Frequency of GMM classes

///J/ /// /<<<(////E

=1

(v) Similarity metric

!

-8

GBE prediction using ML

@ 4400 -~ (®) 1400 -
* 100 e e Model Data &
1200 110 1200{ « Validation Data 7.
.
o M :
10001 . 112 1000 .
D
8 800 3 800
2 o
3 K
& 600 £ 600
400 ] I 400
7 § f
200 200{ 3. R?(Model/Validation)=0.99/0.94
- ~fmse(Model/Validation)=22.02/44.15 mJ/m?
0¥ 0
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Measured Measured
©) 1400 A{
o (0.98/28.75) ‘/ Deformation
1200 (0.96/30.35) e B Density
o (0.98/17.32) °
10001 . (0.97/26.06) . 2
8
B 800 5
Q2 . 5
o ] =
2 600 ; o
T . 5
R ®
400 ’,»’ i
%
200 74
ok

200 400 600 800 1000 1200 1400
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Loh®
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(100) Symmetric tilt

Label are misorientation angle

W 170.40 | 169.78 | 168.73 [NERIINIRCREI 7561 | 485.00
o IO E) BIOXEY 16546 7595 Al 656.00 RGN
o JROVED BGIXE 16567 7627 BEZETW BEZRYE 72000 BEEXN
169.34 | 172.34 PEEZXIMl 6672 | 7168 | 29 Wl 16.00
170.43 [ 174.46 | 161.12 PREER 19.00
170 57 159.89 - . 21.00
P 16846 | 175.85 | 158.903 [ERESM 71.00 23.00
N 17028 | 177.19 | 159.53 8182 7044 | 69.35 | 915.00 | 28.00
=¥ 169.06 | 174.87 | 160.61 [RCKEI 71.78 939.00
167.31 | 180.24 8221 PEX 61.70 | 905.00 PRTA
173.80 | 183.34 TN 7269 | 5692 EERXN  44.00
176.36 - 16277 7930 7390 3792 [EEEXNE 46.00
175 68 IREEROM 159.14 | 86.15 [RZEEEM 1332 | 951.00 PEXN
19470 16325 7723 7448 [JRCECH IEZXKLN 56.00
198.42 16292 7848 7432 [N IEEALY 58.00
200.42 16350 7811  74.38 - 856.00 |
20496 16457 7738 7444 [PENCM 79000 PN

N 16541 77.20 732.00 [RZED)
YEVED | 166.08 77.66 677.00 [JEZEN)
213.14 | 218.77 78.15 77.00

221.86 | 168.69 |N(NE] 83.00

218.82 .
el c22 ¢33 cd4 55 c66 GBE mis

P3_I1

13 14 1

865.00

28.78 | 878.00

16 10 6 1

2

' '
= | =
© o
o j©
o =
NN

19

1

5

.

N =
88 3

N o
0 W W
o N O

20 12 8 17

209.36

P4_13

411.00




Summary

* Demonstrated SFDs as a rigorous approach to describing atomic environments

— Minimal, complete and non-redundant for nth order expansion
— Physical basis for classification, machine learning

« SFD further development
— Extension to sixth order (full characterization of hexagonal space groups)
— Application to diffraction analysis, neutron scattering of defects
— Extension to vector (displacement) & tensors (compliance)

 Application future
— Characterize general GBs (twist & tilt): 2D patterns
— Characterize GB changes with transmission, absorption
— Strong basis for general ML: GBs, dislocations, diffraction

Funding LDRD-DR “Investigating How Material’s Interfaces and Dislocations Affect
Strength (iMIDAS)” (XX9A, Abby Hunter, PI)
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