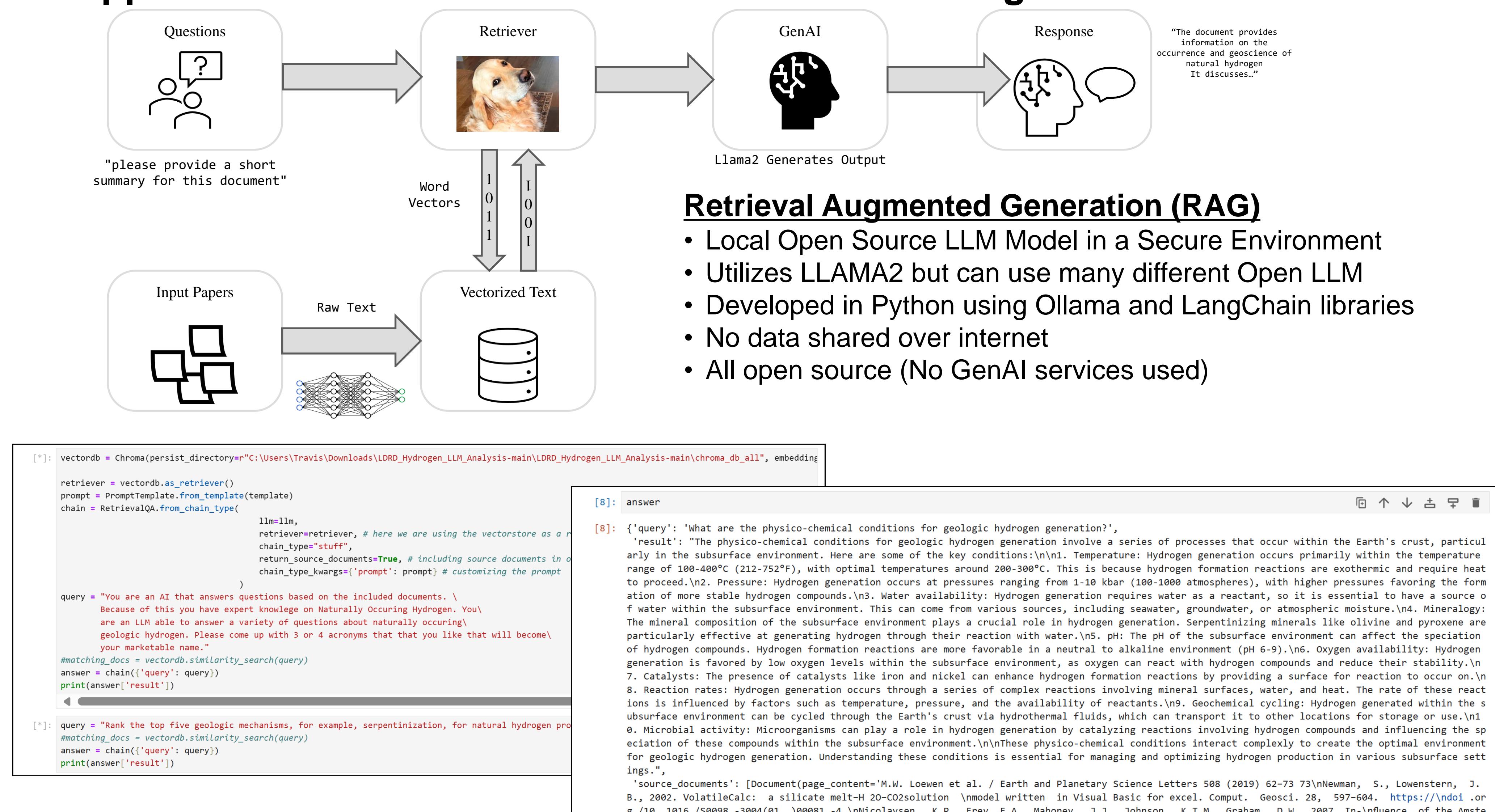

Developing a geologic hydrogen resources assessment approach using AI-assisted literature review and geo-data driven assessment tool

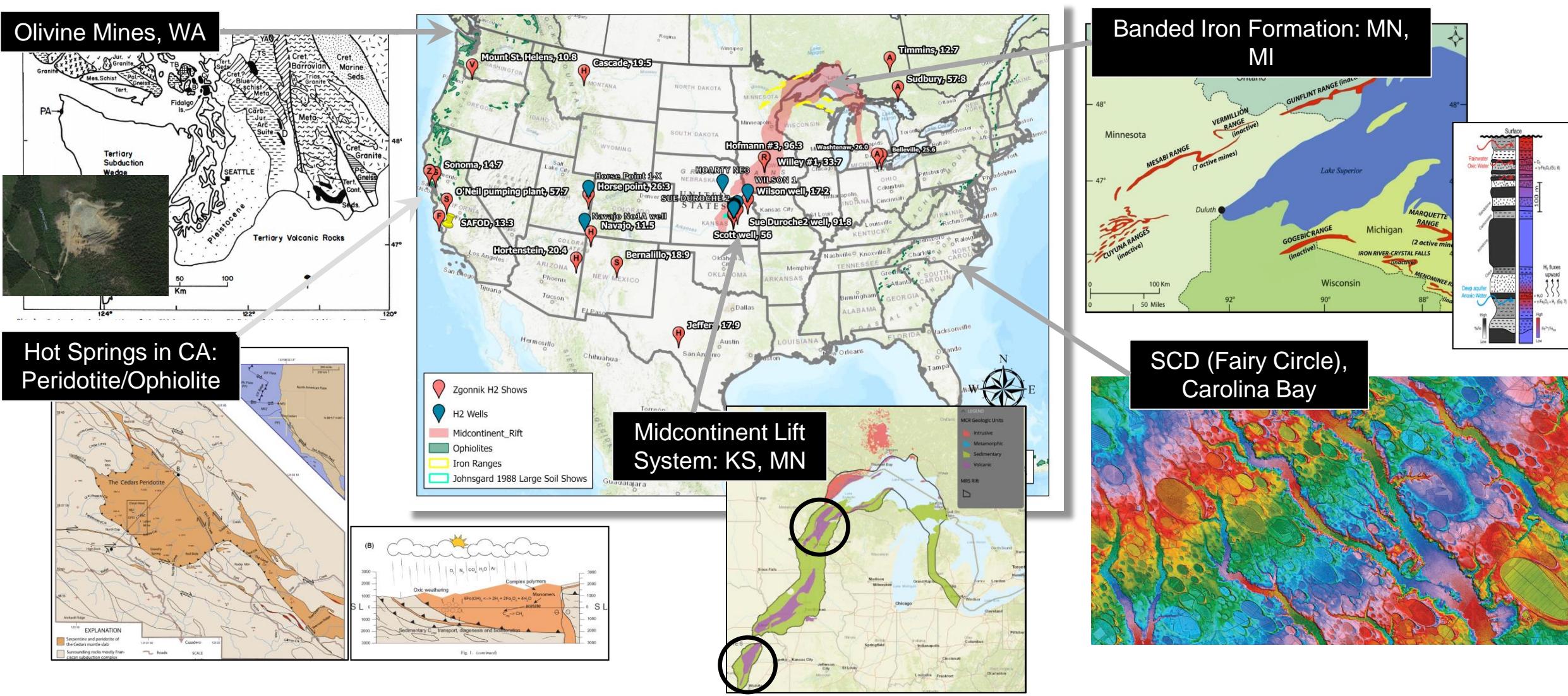
Yongkoo Seol¹, Mengwei Liu¹, Travis Warner¹, Mathias Pohl¹, Michael Sabbatino¹, Gabriel Creason¹

¹National Energy Technology Laboratory, Department of Energy, Morgantown, WV 26505


Introduction

Goal

- Develop insights on potential natural hydrogen generation knowledge gaps
- Identification of potential hydrogen resources in US
- Domestic and regional assessment of potential hydrogen resources (preliminary development of workflow/tool and evaluation of technically recoverable resources)
- Evaluating hydrogen system as a natural analog for natural hydrogen storage
- Coupled processes related with hydrogen production (CO₂ storage/critical mineral exploration)
- Develop a new research portfolio for future in-house and collaborative research.


Approach: Literature Review with Machine Learning

Hydrogen vs. Petroleum System

"Typical"...	Petroleum Systems			(Potential for commercial-scale production) Geologic Hydrogen Systems								
	System Subtype Name	"Primary Production"	"Enhanced Production"	"Reservoir Emplaced into Source"	"Migration Pathway Target"	"Natural"	"Anthropogenic"					
Analog	Example Field/Play	Prudhoe Bay, AK, USA	SACROC, TX, USA	Marcellus Shale, Appalachian basin, USA	Mid-Continental rift, KA, USA (Coveney et al., 1987)	Bourakebougou, Mali	"Orange Hydrogen" concepts (Osselin, et al., 2022)					
Source	Lithology	Organic mudstone			Mantle rock; Greenstones; BIFs	Mantle rock	Greenstones (e.g., Ophiolites; Basalts; Ultra-mafics; Peridotites); Banded Iron Formations (BIFs)					
	Component	Organic material			Fe-hydrides; Fe-rich minerals	Fe-hydrides	Fe-rich minerals (olivine; Fe-hydrides)					
	Anthropogenic Input	-			-		Thermal (steam) or chemical (water)					
	Generation Mechanism(s)	Thermal maturation			Active/ongoing degassing or serpentinization	Active/ongoing degassing	Active/ongoing serpentinization					
	Generation Timeframe	Geologic-scale			Project-scale							
Migration	Pathway(s)	Open discontinuities; dipping porous permeable rock		Project-scale-effective fractures; faults; discrete boundaries	Deep-seated paths (faults; kimberlite boundaries) to shallower discrete boundaries	Fractures; faults; discrete boundaries	Project-scale-effective fractures; faults; discrete boundaries					
	Mechanism(s)/Drive	Advection; buoyancy		Advection; gas phase - buoyancy; in solution - pressure gradients								
Reservoir	Lithology	Porous permeable siliciclastics and carbonates		fractured/propped (otherwise impermeable) source rock	Migration Pathway rock	Porous siliciclastics and carbonates						
	Production Drive	Primary (overpressure)	Secondary (anthropogenic)	Primary (overpressure) after physical stimulation	Primary (overpressure) after thermo-chemical stimulation of source							
	Anthropogenic Input	-		Physical (hydraulic fractures and proppant)	-							
	Project-scale timeframe Loss Mechanism(s)	(Biotic) biogenic consumption		Physical (containment-breaking hydraulic fractures)	Physical (advection or diffusion through seals); Biotic (biogenic consumption); Chemical (oxidation)							
Containment	Seal Lithology	Low-permeability lithologies (e.g., mudstones and evaporites)		-								
	Trap Geometry	Structural closure of seal and/or trapping elements (domes; anticlines; faults); stratigraphic pinchouts; permeability pinchouts (e.g., secondary diagenetic cements)		Structural closure of seal and/or trapping elements (domes; anticlines; faults); stratigraphic pinchouts; permeability pinchouts (e.g., secondary diagenetic cements)								
	Containment timeframe	Geologic-scale			Project-scale (containment rate must exceed combined rates of production and loss)							
Extraction Project	Project-Scale Renewability	Non-renewable hydrocarbons; non-renewable inputs			Renewable hydrogen							
	Infrastructural Needs	Production well	Injection well; Ongoing supply of reservoir input	Production well; One-time hydraulic fracture stimulation	Production Well	Injection well; Production well; Ongoing supply of reservoir input;	Possibly one-time hydraulic fracture stimulation					

Potential H₂ sites in US for future production

Conclusions

- H₂ demand + C footprint → natural H₂..!!
- Global in-place H₂ reserves: from thousands to billions of megatons. Over 100 field discoveries with H₂ detected in concentration over 10% in volume.
- AI-assisted + Geo-data driven tools → identify potential H₂ sites..
- Hydrogen vs. Petroleum system → similar, opportunities to applying the existing knowledge for future H₂ production.
- In North America, favorable geological settings for potential natural H₂ production includes midcontinent rift system underlying parts of the Upper Midwest and Great Plains, Precambrian rocks underlying Atlantic coastal plain, west coastal ophiolite complex and geothermal system, and Alaskan subduction zones.

References

Bay Roger et al., 2024. "Natural hydrogen in the energy transition: Fundamentals, promise, and enigma", Renewable and Sustainable Energy Reviews, Elsevier, Vol 189(PA).
 O'Brien, 2008. "The Iron Ranges of Minnesota", Mining History Association 19th Annual Conference, June 12-15, 2008, Chisholm, Minnesota.
 Environ, 2024, 192 web. <https://prism.enviro/canprism/>
 Gessert et al., 2017. "Natural H₂ in Kansas: Deep or shallow origin?", Geochemistry, Geophysics, Geosystems, Vol. 18 Issue 5, Pages 1841-1865.
 Johnson, 1983. "The fracture pattern of the Sulfur Islands and Oahu Java Plateau collision zone", Tectonophysics, 103, pp. 137-150. doi:10.1016/0040-1907(83)90088-4.
 Hand, 2023. "Hidden Hydrogen", Science 2023, Vol. 379, Pages 630-631.
 Johnson, 1983. "The fracture pattern of the Sulfur Islands and Oahu Java Plateau collision zone", Tectonophysics, 103, pp. 137-150. doi:10.1016/0040-1907(83)90088-4.
 Meiss, P. and A.J. Lutz, 2008. "Geothermometry and petrology of the Sulfur Islands and Oahu Java Plateau collision zone", Tectonophysics, 462, pp. 222-240.
 NETL, "Natural Fuels, NETL, PRISM, 2024".
 Trudeau et al., 2024. "A deep reservoir for hydrogen drives intense degassing in the Bullock ophiolite", Science 2024, Vol. 383, Issue 6863, Pages 619-621.
 USGS, "Map of the iron ranges of the Lake Superior region", ca. 2015. W.F. Cannon [online]. <https://www.mtsu.edu/geomap/iron-ranges-lake-superior-region>
 USGS, "Understanding the Mineral Resources of the Monoclonal Rift System", January 25, 2016 [online]. <https://www.usgs.gov/science-topic/understanding-mineral-resources-monoclonal-rift>
 Zgusta, et al., 2015. "Evidence for natural molecular hydrogen seepage associated with Carlsbad caves (surface, vadose, deep)", Geochimica et Cosmochimica Acta 2015, Vol. 159, Pages 222-240.

Disclaimer

Disclaimer: This project was funded by the United States Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.