

1

A NOVEL ‘SMART MICROCHIP PROPPANTS’ TECHNOLOGY FOR PRECISION

DIAGNOSTICS OF HYDRAULIC FRACTURE NETWORKS

 Final Report

(for the period October 1, 2019 – August 31, 2024)

Prepared for:

U.S. Department of Energy

National Energy Technology Laboratory

3610 Collins Ferry Road

Morgantown, WV 26505-2353, USA

Cooperative Agreement No. DE-FE0031784

Prepared by:

Amirmasoud Kalantari Dahaghi, University of Kansas (Lead institution)

Aydin Babakhani, University of California at Los Angeles (UCLA) (Subawardee)

John Lovell, MicroSilicon Inc. (Subawardee)

Larry Britt, NSF Fracturing (Contractor)

Sherilyn Williams-Stroud, Confractus Inc (Contractor)

 “EOG Resources Inc: Cost share provider”

University of Kansas Center for Research, Inc.

2385 Irving Hill Road, Lawrence, KS 66045-7568

November 2024

2

DISCLAIMER

This research report was prepared by the above-referenced project team as an account of work

sponsored by the U.S. Department of Energy National Energy Technology Laboratory (DOE

NETL). To the best of the project teams’ knowledge and belief, this report is true, complete, and

accurate; however, because of the research nature of the work performed, neither the University

of Kansas Center for Research, Inc. nor the other participating entities, nor any of their directors,

officers, or employees makes any warranty, express or implied, or assumes any legal liability or

responsibility for the use of any information, apparatus, product, method, process, or similar item

disclosed or represents that its use would not infringe privately owned rights. Reference herein to

any specific commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its endorsement or recommendation by the

above-referenced project team.

ACKNOWLEDGMENT

This material is based upon work supported by DOE NETL under Award Number No. DE-

FE0031784

DOE DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government, nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility

for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights. Reference herein to

any specific commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

by the United States Government or any agency thereof. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the United States Government or any

agency thereof.

3

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY……………………………………………………………...14

2. INTRODUCTION…………………………………………………………………….....16

2.1 Current State-of-the-Art Technologies………………………………………............16

3. FIELD TESTING SITE SELECTION AND STATIC DATA COLLECTION…...........17

3.1 EOG Asset Screening………………………………………………………………..17

3.2 GEOMECHANICAL EVALUATION, UN-PROPPED CRACK TEST, FLUID

SENSITIVITY TEST, AND EMBEDMENT TEST OF THE PADDOCK FORMATION

(BOYD STATE #15H EDDY COUNTY, NEW MEXICO) ……………………............18

3.2.1 Introduction………………………………………………………………………...19

3.2.2 Discussion……………………………………………………………………….....22

4. SMART MICROCHIP PROPPANT: DESIGN, DEVELOPMENT, LAB TESTING,

AND VERIFICATION FOR THE FIELD TRIAL……………………………………...34

4.1 Summary………………………………………………………………………..........34

4.2 Introduction…………………………………………………………………………..34

4.3 Smart Microchips Proppants Technical Specifications and System Details………...37

4.4 Laboratory Testing of Smart MicroChips for Fracture Mapping Under High Pressure

and High Temperature...45

4.4.1 Energy Harvesting Verification…………………………………………………....45

4.4.2 Microchip Functionality Verification...46

4.4.3 Coherent Power Combining Verification………………………………………….49

4.4.4 Fracture Mapping Verification…………………………………………………….51

4.4.5 High-Temperature Verification…………………………………………………....53

4.4.6 High-Pressure Verification………………………………………………………...55

4.5 Smart Microchip Proppants Manufacturing and Production for Field

Testing…………………………………………………………………………………....58

4.5.1 Resonance Frequency Tuning……………………………………………………...59

4.5.2 Smart MicroChips Proppants PCB Mass Production……………………………...60

4.5.3 Additional Hardware and MicroChips Built During this Project.............................60

4.5.3.1 Miniaturization of the localizer PCB used for mapping fractures ………………62

4.5.3.2 Design of TX coils for efficient wireless powering of the microchips ………….64

5. DOWNHOLE TOOL FOR TRANSMITTING POWER AND RECEIVING SIGNAL:

DESIGN, DEVELOPMENT, LAB TESTING, AND VERIFICATION FOR THE FIELD

TRIAL…………………………………………………………………………………....66

5.1 Summary……………………………………………………………………………..66

5.2 Initial feasibility study……………………………………………………………….66

5.3 Circuit development………………………………………………………………….75

5.4 Final Antenna and Downhole Tool Construction for the Field Trial………………...85

6. PHYSICS- INFORMED AND AI-EMPOWERED i-GEO SENSING FRACTURE

DIAGNOSTIC SOFTWARE PACKAGE DEVELOPMENT, AN OPEN-SOURCE

PYTHON-BASED PACKAGE………………………………………………………….99

6.1. Overview of the i-Geo Sensing……………………………………………………...99

6.2. Synthetic case description…………………………………………………………...99

6.2.1. For the unsupervised ML workflow………………………………………………99

6.2.2. For the supervised ML workflow……………………………………………….102

4

6.3. Intuition in understanding the sensor distribution inside the subsurface fracture

environment………………………………………………………………………...105

6.4. The unsupervised machine learning workflow……………………………………107

6.5. Sensor data profiling ………………………………………………………………109

6.6. Calibration of the fracture geometry and history matching from the unsupervised

machine learning workflow…………………………………………………………111

6.7. Design of Experiment………………………………………………………………113

6.8. Synthetic data generation, wrangling, and tabulation processing………………….117

6.9. Supervised machine learning workflow……………………………………………118

6.10. ML experimenting in the supervised workflow ………………………………...120

6.11. Probabilistic and continual-training capabilities of the supervised machine learning

proxy ……………………………………………………………………………….121

6.12. Refinement of the supervised proxy inside i-Geo Sensing……………………..121

6.13. Supervised workflow explainability ……………………………………………124

7. SUCCESSFUL FINAL FIELD TESTING (PILOT) IN THE EOG RESOURCES

OPERATED WELL IN NEW MEXICO………………………………………………130

7.1 Pilot Testing Details………………………………………………………………...130

7.2 Smart Microchip Signal Reception and Analysis…………………………………..138

7.2.1 Successful Signal Reception from Smart Microchip Proppants in the Field……..138

7.2.2 Interpreted Smart Microchips' Signal Results……………………………………139

7.3 Future Applications and Alignment with DOE Priorities…………………………..144

8. CONCLUSION………………………………………………………………………....145

9. REFERENCES …………………………………………………………………….......146

APPENDIX A: EOG CORE SAMPLES AND LOGS FROM A PLUG-BACK

PILOT…………………………………………………………………………………..151

10. APPENDIX B: BOYD STATE #15H (PADDOCK FORMATION) QUALITY

ASSURANCE AND MINERALOGY..154

11. APPENDIX C: SHEAR AND COMPRESSIONAL VELOCITY TESTING

PROCEDURES AND RESULTS……………………………………………………...168

12. APPENDIX D: BOYD STATE #15H (PADDOCK FORMATION) UN-PROPPED

CRACK TESTING..172

13. APPENDIX E: BOYD STATE #15H (PADDOCK FORMATION) FLUID

SENSITIVITY TESTING……………………………………………………………...174

14. APPENDIX F: CONSTRUCTING MULTIPLE SYNTHETIC FRACTURE NETWORK

MODELS TO BUILD SYNTHETIC CORES USING 3D PRINTING TECHNOLOGY

TO TEST THE FUNCTIONALITY OF SMART MICROCHIPS FOR FRACTURE

MAPPING IN THE LAB……………………………………………………………….180

15. APPENDIX G: I-GEO SENSING GRAPHICAL USER INTERFACE……………….183

16. APPENDIX H: I-GEO SENSING CODE EXCERPTS………………………………..190

5

LIST OF FIGURES

Figure 1a: Smart Microchip Proppants technology: A closed-loop fracture diagnostic and modeling

architecture……………………………………………………………………………………….15

Figure 1b: Received core and log data and the CT scan of the full slab core……………………18

Figure 2: Ternary Diagram Of The Paddock Core Samples…………………………………......22

Figure 3: Anhydrite Nodule Within Dolomitic Paddock Formation Core Set 2 – Sample ID 9,

Depth 2597.40 feet…………………………………………………………….…………………23

Figure 4: Paddock Core Sample Showing A Fissure or Flaw in The Sample Core Set 1 – Sample

ID 7, Depth 2509.75 feet…………………………………………………………………………25

Figure 5: Static Young Modulus from Dynamic To Static Correlation Britt Rock Mechanics

Laboratory, SPE 125525…………………………………………………….…………………...27

Figure 6: Britt Rock Mechanics Laboratory Test Apparatus…………………………………….27

Figure 7: Test Cell Head with Piston and Inlet Ports……………………………………………. 28

Figure 8: Test Cell Head with Piston and Inlet Ports…………………………………………….28

Figure 9: The Effect of Stress on Wet Nitrogen Injection (2156.23 meters) …...…………………29

Figure 10: Schematic of a water-frac…………………………………………………………….29

Figure 11: Fluid Sensitivity Testing w/ KCl (CS-1, ID-7, 2509.75 feet) ………………………….31

Figure 12: Fines Migration and Embedment Testing Schematic………………………………….32

Figure 13: Embedment Testing (Core Set 1, ID 7, Depth 2509.75 ft) …………………………….32

Figure 14: Conceptual representation of fracture mapping using WSNs…………………………36

Figure 15: Localizer image with size compared with a nickel……………………………………38

Figure 16: Simulated (a) re(Z11), (b) inductance, and (c) quality factor of the localizer coil

……………………………………………………………………………………………………38

Figure 17: (a) TX coil and its measured (b) re(Z11), (c) inductance, and (d) quality

factor……………………………………………………………………………………………..39

Figure 18: (a) RX coil and its measured (b) re(Z11), (c) inductance, and (d) quality

factor………………………………………………………………………..……………………40

Figure 19: Measured |S11| for matched (a) TX and (b) RX coils………………………………...41

Figure 20: Simulated path loss between TX coil and localizer coil at a separation of 6 cm……….41

Figure 21: Localizer architecture…………………………………………………………………42

Figure 22: Rectifier schematic……………………………………………………………………44

Figure 23: Simulated (a) rectifier efficiency and (b) peak-to-peak divider output voltage versus

input power for one, two, three, and four-stage rectifiers. One-stage rectifier shows the best

sensitivity………………………………………………………………………………………...44

Figure 24: Die micrograph……………………………………………………………………….45

6

Figure 25: Measured rectifier voltage with respect to input rms voltage………………………..46

Figure 26: Measurement setup used for chip functionality verification………………………….46

Figure 27: Received signal spectrum at the maximum operating range………………………….47

Figure 28: Received 13.56 MHz signal power in dBm across different separations between the TX

coil and the localizer DL coil, and the RX coil and the localizer UL coil…………………………48

Figure 29: Measurement setup used for obtaining the received power profile with respect to

different angular orientations of the TX and RX coils………………………………………….....49

Figure 30: Received 13.56 MHz signal power in dBm across different angular orientations of the

TX and RX coils ……………………………………………………………………..…………..50

Figure 31: (a) Schematic and (b) picture of the coherent power combining measurement setup

……………………………………………………………………………………………………50

Figure 32: Received power from (a) one, (b) two, and (c) three localizers ……………………….51

Figure 33: Fracture mapping setup……………………………………………………………….52

Figure 34: 1-D fracture mapping results for the y-direction. The red box indicates the region that

was mapped by smart Microchips that are placed in the fractures (3D printed cores with

fractures)…………………………………………………..……………………………………..52

Figure 35: 1-D fracture mapping results for the x-direction. The red box indicates the region that

was mapped by smart Microchips that are placed in the fractures (3D printed cores with

fractures)…………………………………………………………………………………………53

Figure 36: 2-D fracture mapping results by smart Microchips that are placed in the fractures (3D

printed cores with fractures)…………..………………………………………………………….53

Figure 37: (a) Schematic and (b) picture of the measurement setup for verification at high

temperatures……………………………………………………………………………………...54

Figure 38: Received signal power at temperatures from 20 °C to 250 °C …………………...........55

Figure 39: Measurement setup for verification at high pressures. The entire setup is inside a

compression sensing machine ……………………………………………………………...........56

Figure 40: (a) Second cube after it fractures at 24 MPa. (b) Received signal from the second

localizer when the second cube fractures …………………………………………………...........57

Figure 41: Two versions of PCBs developed for fracture mapping………………………………58

Figure 42: VNA measurements for the resonance of the PCB coils………………………………59

Figure 43: Setup picture for sensing node validation……………………………………………..60

Figure 44: Mass-produced PCBs…………………………………………………………………60

Figure 45: SMD-based antennas used in prior proppant chips…………………………………..61

Figure 46: Measurement setup…………………………………………………………………...61

Figure 47: Top and bottom view of the miniaturized 4-layer PCB………………………………61

Figure 48: Received signal spectrum at the maximum operating range…………………………62

7

Figure 49: Top and bottom view of the new 4-layer PCB with only TX coil replaced by SMD

inductor…………………………………………………………………………………………..63

Figure 50: Top and bottom view of the new 2-layer PCB with both TX and RX coils replaced by

SMD inductors…………………………………………………………………………………...63

Figure 51: Test setup……………………………………………………………………………..64

Figure 52: Coupling coefficient vs TX coil diameter and distance between TX coil and localizer

……………………………………………………………………………………………………65

Figure 53: 5 cm X 5 cm TX coil………………………………………………………………….65

Figure 54: 10 cm X 10 cm TX coil………………………………………………………………..65

Figure 55: System Context Diagram……………………………………………………………..66

Figure 56: Antenna Fixturing…………………………………………………………………….67

Figure 57: Antenna frames mounted on the slider……………………………………………….68

Figure 58: Receiver testing configuration………………………………………………………..68

Figure 59: Moku-Lab testing configuration………………………………………………………69

Figure 60: Lock-In-Amplifier configuration……………………………………………………..69

Figure 61: Dramatic drop-off at a fixed distance, this at 2W…………………………………….71

Figure 62: The "baseline" chart at 1 cm moveout…………………………………………………73

Figure 63: Higher-order artifacts visible even as chip signal degrades with distance……………..73

Figure 64: A robust 13.56 filter was identified (and subsequently used in the downhole tool)

………………………………………………………...………………………………………….74

Figure 65: The structure of the near-field receiver……………………………………………....76

Figure 66: The structure of the near-field receiver components- circuit schematic (1) …………76

Figure 67: The structure of the near-field receiver components- circuit schematic (2) …………77

Figure 68: The structure of the near-field receiver components- circuit schematic (3) …………77

Figure 69: The structure of the near-field receiver components- circuit schematic (4) …………78

Figure 70: The structure of the near-field receiver components- circuit schematic (5) …………78

Figure 71: Structure of the transmitter……………………………………………………………79

Figure 72: Structure of the near-field transmitter components- circuit schematic (1) ……………79

Figure 73: Structure of the near-field transmitter components- circuit schematic (2) ……………80

Figure 74: Flowchart for the transmitter…………………………………………………………81

Figure 75: (a) Flowchart for the receiver & (b) The completed circuit board designs

……………………………………………………………………………………………………82

Figure 76: Fit the circuit boards in the prototype test configuration………………………………83

Figure 77: GUI to verify signal in desired FFT band ……………………………………………84

8

Figure 78: Final set of electrical components……………………………………………………84

Figure 79: Transmitter outputs a magnetic field …………………………………………………85

Figure 80: Schematic of the designed Coil ………………………………………………………85

Figure 81: Thread chart and specification ……………………………………………………….86

Figure 82: The Kemlon's attached to the bulkhead……………………………………………… 86

Figure 83: The TX and RX loops are completed inside the pressure

housing………………………………. ………………………………………………………….87

Figure 84: The matching circuit idea testing and demonstration…………………………………88

Figure 85: 3D-Printed Capacitor Assembly for Shock and Vibration Resistance in Wellbore

Applications ………………………………………………………………….………………….88

Figure 86: The crossover is attached to the bulkhead and antennae …………………………… .89

Figure 87: Fiber-glass housing Assembly with RTV Filling for Vibration Protection and Antenna

Dielectric Matching……………………………………………………………………………...89

Figure 88: Internal View of the Crossover Assembly Showing Toroids, Capacitor Plate, and Tuning

Mechanism……………………………………………………………………………………….90

Figure 89: Impedance measurement of receiver coil using Spectrum Analyzer ………………….90

Figure 90: Transmitter Impedance Measurement and VSWR Tolerance Analysis with MOSFET

Integration………………………………………………………………………………………. 91

Figure 91: MOSFET Heat Sink Assembly: MRFAN101 Mounted on Aluminum and Copper

Blocks for Thermal Management ………………………………………………………………..91

Figure 92: Copper Block Mounted to Metal Crossover for Enhanced Thermal Conductivity……92

Figure 93: Implementation of a Third Toroid to Mitigate Common Mode Interference in the

Receiver………………………………………………………………………………………… 92

Figure 94: Addition of a 13.56 MHz Bandpass Filter for Signal Optimization………………….92

Figure 95: Receiver and Transmitter PCBs Mounted on Chassis and Secured to

Bulkhead…………………………………………………………………………………………93

Figure 96: Fully Assembled System Powered by a 30V, 29Ah Lithium Battery with On/Off

Switch……………………………………………………………………………………………94

Figure 97: Top-End USB Access for Data Retrieval Without Chassis Removal

……………………………………………………………………………………………………95

Figure 98: Integration of MDM Connector and Criterion Circuit for Battery Depassivation Before

Deployment……………………………………………………………………………………....95

Figure 99: Chassis Installation into the 3 5/8” Pipe ………………………………………………96

Figure 100: Lower Crossover Secured with Spanner Wrenches …………………………………96

Figure 101: Top-End Subassembly with Threads and O-Rings for Final Pressure Seal and Rope

Socket Attachment……………………………………………………………………………….97

9

Figure 102: Final downhole tool at the pilot testing site for deployment………………..………98

Figure 103: The raw 2D scanned core images used to design synthetic fracture networks…….. 100

Figure 104: 2D projection of the synthetic fracture networks (complexity increases from left to

right) ……………………………………………………………………………………………101

Figure 105: An overview of the test case for the supervised ML workflow …………………...102

Figure 106: Variation of Young Modulus and Poisson Ratio over the model’s depth………….103

Figure 107: Overview of the injection schedule for the model………………………………...103

Figure 108: Bottom Hole Pressure data for the model’s simulation lifecycle………………….104

Figure 109: Oil production rate data for the model’s simulation lifecycle………………………104

Figure 110: Total fracture aperture at early propagation (left) and late propagation (right) …...105

Figure 111: Total proppant volume fraction at early propagation (left) and late propagation (right)

…………………………………………………………………………………………………..105

Figure 112: Distribution of the Micro Chips subsurface (generated from the synthetic environment)

…………………………………………………………………………………...……………...106

Figure 113: The unsupervised ML workflow …………………………………………………...107

Figure 114: Processing of the geo-location data for the 1st synthetic fracture network ………….108

Figure 115: Effect of assisted affine transformation on the performance of UMAP in the 1st

synthetic fracture network (with transformation – left, without transformation – right) ………109

Figure 116: The ground truth fracture geometry (reconstructed from ResFrac® software) …….110

Figure 117: Sample sensor data profiling …………………………………………………….....111

Figure 118: Sample sensor data profiles at two different time steps…………………………......111

Figure 119: Fracture calibration workflow in i-Geo Sensing…………………………………...112

Figure 120: The Bayesian Optimizer engine used in the i-Geo Sensing …………………….......113

Figure 121: Design of Experiment generator in i-Geo Sensing …………………………………114

Figure 122: An illustration of the DoE for fracture geometry in i-Geo Sensing……………........114

Figure 123: Visual of the joint plot (DoE’s coverage) between distributions of two parameters “Sgr”

and “Sor” ………………………………………………………………………………………..115

Figure 124: In-place change of ResFrac’s “relativefracturetoughnesspersqrt

fracturelengthscale” entry ……………………………………………………………………...116

Figure 125: The semi-coupling between ResFrac® and i-Geo Sensing ………………………...117

Figure 126: Sample of a directory in which simulation results for realizations are stored…….118

Figure 127: The supervised machine learning workflow ………………………………………119

10

Figure 128: Visual of a decision tree’s mechanism …………………………………………….119

Figure 129: Overview of ML model experimenting design in i-Geo Sensing ……...………….120

Figure 130: BHP proxy, first-round refinement……………………………………………….. 122

Figure 131: BHP proxy, second-round refinement …………………………………………….122

Figure 132: BHP proxy, final-round refinement ……………………………………………….123

Figure 133: Oil rate proxy, first-round refinement……………………………………………. 123

Figure 134: Oil rate proxy, second-round refinement …………………………………………124

Figure 135: Oil rate proxy, final-round refinement ……………………………………………124

Figure 136: Different levels of model explainability in i-Geo Sensing………………………. 124

Figure 137a: Key Performance Indicators, the base BHP model……………………………... 125

Figure 137b: Key Performance Indicators, the final BHP model ……………………………..126

Figure 138a: Key Performance Indicators, the base oil rate model ……………………………126

Figure 138b: Key Performance Indicators, the final oil rate model …………………………...127

Figure 139a: SHAP’s bee-swarm plot for the BHP model ………………………………………128

Figure 139b: SHAP’s waterfall plot for the BHP model ………………………………………129

Figure 140a: SHAP’s bee-swarm plot for the oil rate model ………………………………….129

Figure 140b: SHAP’s waterfall plot for the oil rate model ……………………………………129

Figure 141: Satellite imagery of the pilot testing site (Capella BOP Fed #1)………………….131

Figure 141: (a: left) and (b: right) - The wellbore diagram before and after deepening for the pilot

testing …………………………………………………………………………………………..132

Figure 142: Smart Microchips ready for the injection (200 microchips were injected) (left), Shut-

in pressure of 3300 psi (the middle), and Recorded 3700 psi formation break-down pressure during

the hydraulic fracturing (right)………………………………………………………………….133

Figure 143: The chassis was loaded into the 3 5/8” pipe (left), and the lower cross-over was torqued

in place with spanner wrenches. (the middle), and at the top-end, we provided another small sub

with threads and o-rings that can be torqued in place and provide the final pressure seal. At the top

of that sub is a thread whose profile was provided by EOG for attachment to the rope socket on

slickline unit. (right)…………………………………………………………………...………..134

Figure 144: Downhole tool transportation to the wellsite ……………………………………… 135

Figure 145: Downhole Tool Setup and Assembly Onsite………………………………………..135

Figure 146: Well deployment of the downhole tool …………………………………………...136

Figure 147: Well deployment of the downhole tool ……………………………………………137

Figure 148: Downhole tool after operation complete…………………………………………. 138

11

Figure 149: Transition of Smart Microchips from Passive to Active State: Remote Power

Activation and Signal Transmission ……………………………………..…………………… 139

Figure 150: The Most Exciting News: We Received Signals!!!. Three main clusters of signals

transmitted by the Smart Microchips were detected, indicating the presence of three primary

hydraulic fractures.…………………………………………………………………………….. 140

Figure 151: Initially filtered frequency versus depth data (y-axis: Frequency, x-axis: Depth)

for all eight sweeps ……………………………………………………………………………..140

Figure 152: Processed signals amplitude versus depth for all eight sweeps……………………140

Figure 153: An example of raw and processed signals (Left and right) for one of the

sweeps………………………………………………………………………….……………….141

Figure 154: Base and updated models showing homogenous vs heterogeneous proppant

distributions …………………………………………………………………………………….143

Figure 155: Fracture geometry profiling diagnostic by dimensionless flow back type curves

..143

Figure A.1: 2507-2510 ft interval………………………………………………………………151

Figure A.2: 2507-2510 ft interval ……………………………………………………………...151

Figure A.3: 2507-2510 original core and logs in box_IMG_5627………………………………152

Figure A.4: 2597-2600 ft interval ………………………………………………………………153

Figure B.1: 2507.50 feet (Top and Side View) ………………………………………………….155

Figure B.2: 2507.75 feet (Top and Side View) …………………………………………………156

Figure B.3: 2508.25 feet (Top and Side View)…………………………………………………. 157

Figure B.4: 2808.50 feet (Top and Side View)…………………………………………………. 158

Figure B.5: 2808.75 feet (Top and Side View) ………………………………………………….159

Figure B.6: 2809.50 feet (Top and Side View) ………………………………………………….160

Figure B.7: 2509.00 feet (Top and Side View) ………………………………………………….161

Figure B.8: 2597.00 feet (Top and Side View)………………………………………………… 162

Figure B.9: 2597.40 feet (Top and Side View) ………………………………………………….163

Figure B.10: 2597.90 feet (Top and Side View) ………………………………………………..164

Figure B.11: 2600.20 feet (Top and Side View)………………………………………………... 165

Figure B.12: 2600.60 feet (Top and Side View) ………………………………………………..166

Figure B.13: 2600.90 feet (Top and Side View) ………………………………………………..167

Figure C.1: Dynamic vs. Static Moduli …………………………………………………………171

Figure D.1: Un-Propped Crack Test: Paddock Core Set 2, ID-11, (2600.20’) …………………172

Figure E.1: Fluid Sensitivity Test: Paddock Formation, Core Set 1, ID-7 (2509.75’)……….......174

12

Figure E.2: Embedment Test: Paddock Formation, Core Set 1, ID-7 (2509.75’)………………..179

Figure F.1: Projected 2D overviews of the synthetic fracture networks...……………………… 181

Figure F.2: 3D Synthetic Fracture Network from Core Sample 2……………………………… 182

Figure F.3: 3D Printed Synthetic Core with Complex Fracture Geometry for Microchips Testing

…………………………………………………………………………………………………..182

Figure G.1: Welcome interface in i-Geo Sensing………………………………………………. 183

Figure G.2: Reading report in -Geo Sensing for the base case…………………………………184

Figure G.4: Distribution section in the Design of Experiments module ………………………..185

Figure G.5: Pop-up window for distribution of a DoE parameter………………………………185

Figure G.6. The pop-up to execute a batch data generation …………………………………….186

Figure G.7. An example of generated files post DoE batch run execution……………………..187

Figure G.8: The “Fracture Calibration Proxy” module………………………………………….187

Figure G.9: A successful validation for the selected folder(s)…………………………………..188

Figure G.10: Input pop-up window for the sensor data profile(s)………………………………189

Figure G.11: Completion notification for the proxy dataset generation ………………………..189

Figure G.12: An overview of the functional hidden in the “Validate parameter” tab……………190

13

LIST OF TABLES

Table 1: Collected average resistivity values from multipole EOG reservoirs for pilot

selection………………………………………………………………………………………….17

Table 2: Summary of the Core Tests Performed On The Paddock Formation………………….. 19

Table 3: Summary of the Mineralogy Of The Paddock Formation……………………………… 21

Table 4: Summary of the Sonic Travel Times as a Function of the Confining Pressure………… 24

Table 5: Summary of the Dynamic Rock Properties For The Paddock Formation ………………25

Table 6: Initial Test Results………………………………………………………………………71

Table 7: Evaluation results for the unsupervised ML workflow (synthetic environment) …….108

Table 8: The test case’s DoE parameters’ distributions ………………………………………...115

Table 9: A snapshot of one DoE case…………………………………………………………...116

Table B.1: Mineralogy testing of the Paddock Formation……………………………………… 154

Table C.1: Compressional and Shear Wave Velocity Analysis ………………………………….169

Table D.1: Procedures: Paddock Formation, Core Set 2, ID-11 (2600.20

ft)………………………………………………………………………………………………..173

Table D.2: Laboratory Data: Paddock Formation, Core Set 2, ID-11 (2600.20

ft)………………………………………………………………………………………………..173

Table E.1: Procedures: Boyd State #15H (Paddock Formation) Core Set 1, ID-

7…………………………………………………...…………………………………………….175

Table E.2: Lab Data: Boyd State #15H (Paddock Formation) Core Set 1, ID-

7…………………………………………………………………………………………………178

Table E.3: Procedures: Embedment Test: Core Set 1, ID-7

(2509.75’)…………………………………….…………………………………………………179

14

1. EXECUTIVE SUMMARY

This project introduces innovative technology to improve subsurface characterization,

visualization, and diagnostics of unconventional reservoirs (fossil resources). Through a

collaborative effort involving the University of Kansas, UCLA, MicroSilicon Inc., and EOG

Resources, the project aims to deliver precision diagnostics for hydraulic fractures using novel

high-resolution imaging technology based on smart microchip proppants. Additionally, it seeks to

enhance the accuracy and predictability of integrated numerical, and machine-learning modeling

techniques for hydraulic fracture characterization and simulation.

This groundbreaking technology addresses significant gaps in understanding unconventional and

tight reservoir behavior and optimizing well-completion strategies, enabling more cost-efficient

recovery of unconventional resources. Figure 1 illustrates the proposed technology, showcasing

areas of innovation. It envisions a closed-loop fracture diagnostic and modeling architecture

designed to improve fracture design and optimize well spacing.

The project comprises both computational and experimental components. The computational

component involves real-time fracture mapping, hydraulic fracture diagnostics, and simulations

powered by physics-informed machine learning. The experimental component includes:

• Detailed geomechanical rock characterization.

• Laboratory testing of smart microchip sensors using 3D-printed synthetic and real core

samples.

• Development and lab testing of downhole tools to power the microchip proppants and

receive their signals.

• Field testing of the technology.

A key innovation is the battery-less, wireless, and fine-sized sensor technology, which offers real-

time, cost-efficient, high-resolution, and “direct” fracture mapping. By employing microchip sizes

tailored to various proppants, this technology provides better calibration and interpretation of other

indirect diagnostic tools currently used for fracture characterization. Once injected into the

formation, the MicroChip proppants generate real-time data, enabling a more accurate evaluation

of small-scale hydraulic fracturing performance.

This project supports the Department of Energy’s (DOE) objectives to enhance the economic and

energy security of the United States. By providing advanced technology, it aims to maximize the

recovery efficacy of unconventional resources while minimizing environmental impacts through

optimized well spacing and improved completion designs. Furthermore, it ensures the United

States maintains its technological leadership in advanced energy technologies for efficient and

environmentally responsible fossil fuel production.

During this project, the team successfully completed key tasks, conducted comprehensive

laboratory testing and measurements, and achieved successful testing outcomes. These

accomplishments include:

• Completion of rock characterization and geomechanical studies for the selected site.

15

• Successful laboratory testing of Smart MicroChip proppants for functionality and

transport.

• Verification of MicroChips' functionality at a high temperature of 250℃ (482℉).

• Verification of MicroChips' functionality under high pressure, achieving 3,490 psi (24.06

MPa) without epoxy protection embedded in cement under compressive forces, and up to

10,000 psi with epoxy-type protection.

• Successful testing of the downhole tool in a lab environment, demonstrating its ability to

self-power the smaller MicroChips.

• Development of the i-Geo Sensing web-based platform for physics-informed machine

learning to process Smart MicroChip data and other diagnostic tools for efficient fracture

mapping and simulation.

• Successful field trial conducted in an EOG-operated well in New Mexico.

Figure 1a: Smart MicroChip Proppants technology: A closed-loop fracture diagnostic and modeling

architecture

The following report is a summary of the work conducted and refers to a series of appendixes that

contain more thorough and specific information about each section.

16

2. INTRODUCTION

Unconventional oil and gas reservoir development requires a detailed understanding of the

geometry and complexity of the generated hydraulic fractures. The current categories of fracture

diagnostic tools include a variety of methods for near-wellbore fracture diagnostics (e.g.,

production and temperature logs, tracers, and borehole imaging) as well as a variety of far-field

techniques (e.g., microseismic fracture mapping). These techniques provide indirect and

interpreted fracture geometry; therefore, none of these methods consistently provides a fully

detailed and accurate description of the character of created hydraulic fractures.

2.1 Current State-of-the-Art Technologies

Other methods of research and development studies that are currently underway to better

understand the complex interaction of the rock and fracture systems in unconventional plays may

provide important additional information but still without the precision required to fully

understand the near-well processes associated with a stimulation treatment. Fracture diagnostics

using electromagnetic induction have an accuracy of 30-50 feet, which is still far from what is

needed to understand the detailed complexity of the near-wellbore zone. An additional drawback

to electromagnetic induction methods is that large amounts of conductive proppants are needed,

which significantly increases the completion cost. Another method that has been used is deep sub-

surface resistivity imaging with or without conductive particles, but this method also suffers from

limited resolution (~50 ft). Microseismic (MS) emitters may provide additional location

information but are very expensive ($10-100 per proppant) and their interpretation is subjective.

Microseismic mapping suffers from a lack of correlation with fracture conductivity and geometry.

Capturing the complexity within the near wellbore region where induced fractures originate and

interact with the rock has proven to be one of the most elusive monitoring tasks. An important

observation from most hydraulic fracturing treatments is that because of the mode of failure in the

near-wellbore region, the microseismic signal may not be detected and as a result is not coincident

with the perforations. The interaction of the rock around the borehole with induced and existing

fractures requires a method of observation that is both high resolution (~1 ft) and cost-effective.

Therefore, finding innovative ways to directly characterize the height, length, and orientation of

hydraulic fractures will provide critical information to fill the gap between what can be determined

with current observational methods and the point where failure initiates. Optimizing hydraulic

fracture treatments is critically dependent on understanding the near-wellbore processes. The

technology proposed in this work, which focuses on collecting information in this zone, is based

on frequency-shifting electromagnetic smart proppants that solve multiple key issues:

i. Due to the frequency-shift nature of the proppants, the signal transmitted from the proppants

can be easily separated from the electromagnetic reflections from the reservoir. Consequently,

a very small amount of proppants (a few gallons) is needed to perform fracture mapping.

ii. This technology can achieve a resolution of better than 1ft, which is two orders of magnitude

better than the conventional methods.

iii. The electromagnetic frequency-shifting proppants are based on silicon technology, which can

be produced at almost no cost (a few cents per proppant) in large volumes.

17

iv. Precise near-wellbore fracture diagnostics using our proposed technology enables better

calibration and understating of fracture treatment applications.

3. FIELD TESTING SITE SELECTION AND STATIC DATA COLLECTION

3.1 EOG Asset Screening

EOG Resources assets are screened to identify multiple locations for the field pilot testing of Smart

MicroChip Proppants. One of the key design parameters of the Microchips is a suitable range of

formation resistivity. Table 1 summarizes the list of different plays and reservoirs that EOG

resources operate with their range of resistivity (Ohm-m). Based on our field screening, Woodford,

Paddock, and Blineberry reservoirs in Permian were selected as the top candidates for the pilot

test.

Table 1: Collected average resistivity values from multipole EOG reservoirs for pilot

selection

Formation Reservoir
Average Formation Resistivity

(Ohm-m)

Permian
Bone Spring

sands
4 to 30

Permian Wolfcamp < 49

Permian Leonard <35

Permian Basin in New

Mexico
Paddock 430

Permian Basin in New

Mexico
Blineberry 180

Permian Basin in New

Mexico
Basal Abo 400

South Texas
Lower Eagle

Ford
<15

South Texas Upper Eagle Ford <30

South Texas Austin Chalk 60

Anadarko Woodford 440

Anadarko
Meramec

(Mississippian)
105

Rockies Mowry <30

Rockies Niobrara <40

Rockies Bakken < 40

Rockies Turner < 30

Rockies Codell <10

Based on our final field screening, Permian Basin, Yeso Field Reservoir in New Mexico is

selected for the initial data collection and rock characterization and field trial. Accordingly, 6

ft of core and logs were obtained from the Boyd XState well that was used for geomechanical

laboratory testing.

18

Figure 1b: Received core and log data and the CT scan of the full slab core.

3.2 GEOMECHANICAL EVALUATION, UN-PROPPED CRACK TEST, FLUID

SENSITIVITY TEST, AND EMBEDMENT TEST OF THE PADDOCK FORMATION

(BOYD STATE #15H EDDY COUNTY, NEW MEXICO)

Summary:

A laboratory investigation was conducted on the core from the Boyd State #15H in the Paddock

Formation. Tests were conducted on mineralogy, grain density, and ultrasonic velocity to

determine the geomechanical properties of the Paddock Formation. Triaxial compression tests to

determine the static Young’s Modulus, although planned, couldn’t be performed due to the small

sample size of the available core plugs.

In addition to the geomechanical testing an un-propped crack test, fluid sensitivity test, and

embedment test were conducted to better understand and evaluate the fracturing characteristics

and the brittleness/fracability of the Paddock Formation. In addition, these tests were used to assess

the viability of various proppants (type, size, concentration) and fluids (treated water, linear gel,

or cross-linked polymers) for their use in hydraulic fracturing.

Findings:

• The Paddock samples were primarily made up of dolomite constituents (an average of 82%

dolomite).

• The Paddock samples tested had a range in dynamic Young’s Modulus of 11.92 to 17.96 x

106 psi and an average of 14.51 x 106 psi.

• The dynamic Poisson’s Ratio ranged from 0.18 to 0.33 and averaged 0.273 for the thirteen

samples tested.

• Using the dynamic to static Young’s Modulus correlation developed by

o Britt Rock Mechanics Laboratory (SPE 125525)

19

o Estatic = 0.835×Edynamic – 0.424,

o The average static Young’s Modulus was estimated to be 11.69 x 106 psi,

• Little shear anisotropy (< 5%) was identified in all but one of the samples tested and that

sample was visibly fissured,

• Wet nitrogen could flow through an un-propped crack at 3000 psi confining pressure in the

shale samples and retain extraordinary permeability.

• Little to no fluid sensitivity was noted in the Paddock Formation,

• Little proppant embedment (0.068 lbs/ft2) was noted in the Paddock Formation.

Field Implications and Recommendations:

• The Paddock Formation has a high dynamic Young’s Modulus which translates into a high

static Young’s Modulus.

• The Paddock Formation has little fluid sensitivity and proppant embedment making it a

good fracturing application for a variety of materials (fluids and proppants).

• The Paddock Formation is a viable water frac candidate due to the ability to retain

permeability and flow wet nitrogen through an unpropped fracture at confining pressure.

All lab data indicates that the Paddock Formation is very brittle.

3.2.1 Introduction:

A laboratory investigation was conducted to evaluate the geomechanical rock properties of the

Paddock Formation. Tri-axial compression testing couldn’t be conducted as the core plug samples

were too small to determine the static Young’s Modulus. Ultrasonic velocity measurements were

made and the dynamic Young’s Modulus was estimated and evaluated with an established dynamic

to static Young’s Modulus correlation developed by Britt Rock Mechanics Laboratory (SPE

125525). In addition to the geomechanical testing, grain density, mineralogical, unpropped crack

test, fluid sensitivity test, and an embedment test were performed to assess the viability of this

formation for hydraulic fracturing. Table 2 summarizes the tests conducted on the core plugs from

these Paddock Formation samples.

Table 2: Summary of the Core Tests Performed on The Paddock Formation

Well

Name

ID Depth,

(feet) FTIR

Grain

Density

Ultrasonic

Velocity

Crack

Test

Fluid

Sensitivity

Embedment

Test

Boyd

State #

15H

1 2507.50 X X X

Boyd

State #

15H

2 2507.75 X X X

20

Boyd

State #

15H

3 2508.25 X X X

Boyd

State #

15H

4 2508.50 X X X

Boyd

State #

15H

5 2508.75 X X X

Boyd

State #

15H

6 2509.50 X X X

Boyd

State #

15H

7 2509.75 X X X X X

Boyd

State #

15H

8 2597.10 X X X

Boyd

State #

15H

9 2597.40 X X X

Boyd

State #

15H

10 2597.90 X X X

Boyd

State #

15H

11 2600.20 X X X X

Boyd

State #

15H

12 2600.60 X X X

Boyd

State #

15H

13 2600.90 X X X

21

As shown, the core plugs were utilized for mineralogy, rock mechanics, unpropped cracks, fluid

sensitivity, and embedment tests. Thirteen ultrasonic velocity tests were conducted on the Paddock

core samples along with an un-propped crack test, a fluid sensitivity test, and an embedment test.

Table 3: Summary of the Mineralogy of The Paddock Formation

Well

Name ID

Core

Set

Depth,

(feet) Carbonate Clay Anhydrite Feldspar Quarts

Boyd State

#15H

1 1 2507.50 94 0 2 4 0

Boyd State

#15H

2 1 2507.75 92 1 6 1 0

Boyd State

#15H

3 1 2508.25 95 0 4 1 0

Boyd State

#15H

4 1 2508.50 94 2 3 1 0

Boyd State

#15H

5 1 2508.75 94 0 3 3 0

Boyd State

#15H

6 1 2509.50 92 0 6 2 0

Boyd State

#15H

7 1 2509.75 95 0 5 0 0

Boyd State

#15H

8 2 2597.10 68 12 17 2 2

Boyd State

#15H

9 2 2597.40 66 1 32 0 0

Boyd State

#15H

10 2 2597.90 90 4 3 2 0

Boyd State

#15H

11 2 2600.20 66 6 27 0 0

Boyd State

#15H

12 2 2600.60 85 6 7 2 0

Boyd State

#15H

13 2 2600.90 56 5 38 1 0

22

In addition, Fourier Transform Infrared Spectroscopy (FTIR) and grain density tests were

conducted on all of the samples to better assess the carbonate and clay mineralogy (Appendix B).

3.2.2 Discussion:

First, the mineralogy of the samples was investigated. Fourier Transform Infrared Spectroscopy

(FTIR) tests were conducted on all of the samples to assess the carbonate and clay mineralogy of

the Paddock Formation. Analysis of the samples showed that the Paddock has a significant amount

of dolomite with some anhydrite mineral constituents and some albeit little clay mineralogy. Table

2 summarizes the results of the core analysis of the Paddock Formation highlighting the mineral

constituents of significance such as Carbonates (dolomite and calcite), Clays, Anhydrite, Feldspars,

and Quartz.

As shown, the core samples from the core set one (2507.50 to 2509.75 ft) are predominately

dolomite (> 89%) with small amounts of calcite (3-4%), anhydrite, feldspar, and clay. Samples

from the core set two (2597.10 to 2600.90 ft) have significantly fewer dolomite constituents (56%

to 90%) with no calcite and more anhydrite and clay. The sample from a depth of 2508.25 feet

(Core Set 1-Sample ID 3), for example, had ninety-one percent dolomite, four percent anhydrite,

and calcite, and only one percent feldspar and no clay constituents. Alternatively, the samples from

2600.20 feet (Core Set 2-Sample ID 11) were made up of sixty-six percent dolomite, twenty-seven

percent anhydrite, and six percent clay, respectively.

23

From a mineralogical perspective, these core samples appear to have some differences given the

variation in the primary mineral constituents of dolomite and anhydrite. Throughout the Permian

and Delaware Basins, the abundant amounts of sulfate from evaporated seawater combined with

the liberation of calcium during the dolomitization process resulted in significant amounts of

anhydrite being deposited in the Clearfork and Paddock Formations. Figure 3 shows a Paddock

sample from 2597.40 feet (Core Set 2 - Sample ID 9) which highlights an anhydrite nodule on the

upper edge of the core sample.

With respect to the clay constituents, all of the core samples had few clay constituents with the

samples having from 0 to 12 percent clays, respectively. These clays are primarily illite and

smectite; however, given the core small amounts (average of only 2%) no extraordinary efforts

should be utilized to minimize their effects in the completion and fracture stimulation process.

Appendix B summarizes the quality control measures taken and details the mineralogy of each of

the samples studied.

Next, a series of ultrasonic measurements were made on each core plug. Each sample was

subjected to a sonic frequency of 300 to 500 KHz in the lab and the compressional and shear

velocities were measured. Table 4 summarizes the sonic (shear and compressional) travel times as

a function of confining pressure for each sample.

24

Table 4: Summary of the Sonic Travel Times as a Function of the Confining

Pressure

ID

Bulk r,

gm/cc

1,000 psi Confinement 2,000 psi Confinement 3,000 psi Confinement

P,

ft/sec

S1,

ft/sec

S2,

ft/sec

P,

ft/sec

S1,

ft/sec

S2,

ft/sec

P,

ft/sec

S1,

ft/sec

S2,

ft/sec

1 2.824 21201 12254 11512 22093 12648 11890 22513 12785 12070

2 2.842 21814 11772 12077 22730 11965 12316 22969 12270 12566

3 2.842 21430 11391 12248 22326 11578 12640 22441 11900 12781

4 2.803 21539 11368 12112 21850 11512 12325 21959 11693 12580

5 2.870 19642 10554 11443 20420 10919 11930 21486 11214 12014

6 2.848 22208 11998 12226 22818 12323 12603 23281 12477 12775

7 2.845 21352 11827 0 21919 12021 0 21988 12297 0

8 2.822 21133 13133 11808 21905 13409 11708 22170 13426 11910

9 2.855 21168 10833 11119 21995 11064 11301 22069 11098 11745

10 2.813 21535 12138 12216 21996 12540 12869 22114 12568 12923

11 2.830 21845 12225 12720 21969 12479 12898 22015 12650 12926

12 2.815 22050 12313 12512 22112 12578 12615 22305 12720 12949

13 2.851 22224 13273 13170 22552 14135 14284 23405 14966 14965

It should be noted that two shear travel times (i.e., S1 and S2) are reported. The second shear travel

time is measured perpendicular to the first. Such a comparison of shear travel times is a measure

of shear anisotropy. Comparison of the shear velocities shows little evidence of significant

anisotropy in these samples.

Paddock samples as the shear anisotropy recorded were less than 5% on seven of the samples, less

than 10 percent on another five samples, and only one sample (Core Set-1, ID-7) showed

significant anisotropy and that was a sample with a visible crack. The average shear anisotropy of

the twelve unflawed samples was 4.83%.

Figure 4 shows the Paddock core sample from 2509.75 feet (Core Set 1-Sample ID 7) which

highlights a fissure that extends nearly throughout the sample. Such a flaw dramatically affects the

shear anisotropy.

25

Next, the shear and compressional velocities and the bulk density were then utilized to calculate

dynamic rock properties for the core samples. The dynamic rock properties calculated from these

laboratory measurements are summarized in Table 5. As shown, the Poisson’s Ratio varies from

0.18 to 0.33 and the dynamic Young’s Modulus varies from 11.92 to 17.96 x 106 psi at 2000 psi

confining pressure.

Table 5: Summary of the Dynamic Rock Properties For The Paddock Formation

ID 1,000 psi

Confinement

2,000 psi Confinement 3,000 psi

Confinement

n Edynamic,

MMpsi

 n E_dynamic,

MMpsi

E_static*

MMpsi

n Edynamic,

MMpsi

1 0.25 14.20 - 0.26 15.21 12.3 0.26 15.61 -

2 0.29 13.66 - 0.31 14.27 11.5 0.30 14.91 -

3 0.30 12.88 - 0.32 13.44 10.8 0.30 14.07 -

4 0.31 12.69 - 0.31 13.02 10.4 0.30 13.37 -

5 0.30 11.11 - 0.30 11.92 9.5 0.31 12.70 -

6 0.29 14.22 - 0.29 15.00 12.1 0.30 15.43 -

26

7 0.28 13.64 - 0.28 14.16 11.4 0.27 14.67 -

8 0.19 15.46 - 0.20 16.32 13.2 0.21 16.50 -

9 0.32 11.88 0.33 12.46 10.0 0.33 12.54

10 0.27 14.07 0.26 14.93 12.0 0.26 15.02

11 0.27 14.42 0.26 14.90 12.0 0.25 15.21

12 0.27 14.57 0.26 15.05 12.1 0.26 15.37

13 0.22 16.46 0.18 17.96 14.6 0.15 19.75

Also shown for a 2000-psi confining pressure is the calculated static Young’s Modulus derived

from the Britt Rock Mechanics Laboratory Correlation first published in 2009. This correlation,

shown as Equation 1, has a correlation:

Estatic = 0.835×Edynamic - 0.424 (1)

coefficient, R2, of 0.714 and includes hundreds of samples of sands, shales, and carbonates from

around the world.

Figure 5 shows a plot comparing the Dynamic Young’s Modulus from the ultrasonic tests to the

Static Young’s Modulus derived from the above correlation at 2000 psi confining pressure for all

samples. Core Set 1 samples are in green and Core Set 2 samples are in red. As shown, the dynamic

Young’s Modulus and the correlated static Young’s Modulus are quite high; however, they are

consistent with other dolomites that have been tested in the Clearfork of the Permian Basin and

the Potosi and Bonne Terre Formation dolomites of Southwestern Missouri. Appendix C details

the testing procedures, ultrasonic velocity tests, and interpretation.

In addition to geomechanical testing, a series of tests were conducted to evaluate whether an

unpropped hydraulic fracture could retain conductivity in the Paddock Formation. Residual

fracture width has been observed both in the laboratory and in field experiments. Surface asperities

or roughness at the fracture face may account for this residual width. A laboratory study by

Schlumberger investigated this aspect of treated water fracture stimulations. Their results showed

that an un-propped induced fracture under effective confining pressure conditions in excess of

what is anticipated in the Paddock Formation could be expected to have some fracture

conductivity. Their work further showed that fracture displacement and surface asperities were

required to provide adequate fracture conductivity in the absence of proppants and suggested that

high-strength proppants and higher, more conventional, concentrations of proppant were required

to mitigate the need for the fracture displacement and surface asperities effect on fracture

conductivity.

27

Figure 6: Britt Rock Mechanics Laboratory Test Apparatus

28

Figure 7: Test Cell Head with Piston and Inlet Ports

Figure 8: Test Cell Head with Piston and Inlet Ports

One un-propped crack test (Core Set 2, ID 11-2600.20 feet) from the Paddock Formation was

conducted. To conduct this work, a core plug was cracked lengthwise with a masonry rock splitter

to emulate a hydraulically created fracture. Sample ID 11 was chosen for this test because it had a

nearly through-going natural fissure and split easily. Next, the cracked core plug was placed in

Britt Rock Mechanics Laboratory “built for purpose” laboratory equipment, and confining

pressure was applied. Figure 6 shows a picture of the equipment that was built and used in this

study. This equipment consists of a test cell that can handle confining pressures from 0 to 10,000

29

psi and temperatures up to 300oF. A piston head is used to apply confining pressure and includes

inlet electronic and flow ports. In the induced crack testing, the piston is actuated to apply

confining pressure and emulate flow and shut-in conditions. While confined at pressure and

temperature, flow is established through the inlet ports, and the permeability of the core and

induced crack is measured. Figure 7 displays the head of the test cell. Shown in this figure is the

piston head for applying confining pressure and inlet electronic and flow ports. During this study,

effective confining pressures up to 1250 psi were applied to emulate the likely possible field

conditions of the Formation.

Outlet flow ports exist both in the core direction perpendicular to the core as shown in Figure 8.

In this study, we attempted to measure the retained permeability of the core in the direction of the

induced crack as a function of confining pressure. A retained experiment was performed with the

core plug prepared as described in the previous paragraphs. The test was designed to determine

the retained permeability of the core while flowing wet nitrogen as the confining pressure was

increased to 1250 psi and maintained for a couple of days. Results of the testing (Figure 9) show

that the retained permeability measured at 100 psi (Step 1) was 62.1 md while the retained

permeability as the confining pressure was increased 1.89-fold while being confined at 1250 psi

for two days.

Figure 9: The Effect of Stress on Wet Nitrogen Injection (2156.23 meters)

Any formation can be a viable water frac target, but some lend themselves to the use of treated

water as a fracturing fluid better than others. Low permeability naturally fissured formations, for

example, make excellent water-frac candidates. This is because water-frac stimulations differ from

more conventional gelled fracture stimulations as water is a cleaner fluid than conventional gels

and does little damage to any natural fissures present and water is a poor fluid for transport of the

proppant within the fracture. This latter issue (poor transport fluid) is the basis for our water-frac

designs. The resulting fracture after a water-frac has two distinct components as shown in Figure

29. The first part of the fracture is the bottom of the fracture where all of the proppant settles during

the treatment. The second part of the fracture is the upper part which has little or no proppant as it

has all settled to the bottom of the fracture. Figure 10 shows a schematic of a water-frac where

30

forty percent of the fracture is filled with proppant and sixty percent of the fracture is unpropped.

Reservoir simulations of such a fracture provide the basis of design for a water-frac treatment.

Figure 10: Schematic of a water-frac

These simulations showed that a water-frac stimulation will perform as a fully propped fracture

provided the ratio of the un-propped conductivity of the fracture to the product of the reservoir

permeability and the height of the un-propped part of the fracture is in excess of 2. If this ratio is

less than a value of 2 it indicates that the retained conductivity of the un-propped part of the fracture

is too small for the reservoir permeability and un-propped fracture height. In this scenario, the only

thing that can be done to improve the situation is to reduce the un-propped fracture height by

pumping more proppant and filling up more of the fracture. Results of the crack testing indicate

that the un-propped conductivity of the fracture in the Paddock Formation is significant and that

the Paddock Formation can support tens of feet of un-propped fracture (assuming the reservoir

permeability is less than 0.10 md for leak-off considerations).

In addition to the geomechanical testing, a fluid sensitivity test was conducted to evaluate whether

fluid sensitivity or damage is important to the hydraulic fracturing of the Paddock Formation. The

test included conducting a KCl sensitivity test utilizing BRML’s built-for-purpose equipment. This

laboratory investigation consisted of loading a test cell with a core sample and then saturating the

core sample with 6% KCl, 4% KCl, and 2% KCl while measuring the permeability and the

cumulative fluid injected. The confining pressure of the cell during the testing was maintained at

1250 psi and the retained permeability was measured until stabilized for each KCl concentration.

The test consisted of using a fissured core sample from 2,509.75 feet injected and decreased to 7.3

md as the core was saturated with 6% KCl. The retained permeability for the 4% KCl and 2% KCl

saturated core decreased to 5.1 md and 4.4 md, respectively. Such a small reduction in permeability

is insignificant damage given the fluid dynamics of the test and the fact that the permeability was

31

being measured through a crack in the core. Appendix E details the testing procedures, raw data,

and interpretive plots.

In addition to the geomechanical testing, a test was conducted to evaluate whether embedment is

(Core Set 1, ID-7) to determine the potential for fluid damage in the Paddock Formation. Figure

11 shows a plot of the retained permeability as a function of KCl concentration for the core sample.

Analysis of this figure shows that the initial permeability was 39.1 md as 6% KCl was important

to the hydraulic fracturing of the Paddock Formation.

The test included conducting an embedment test utilizing BRML’s built-for-purpose equipment.

Figure 12 shows a schematic of the embedment testing procedure. This laboratory investigation

consisted of loading a test cell with the formation core cut in half and filled with a quarter inch of

40/70 mesh (d = 0.01462 inches) Carbo-Ceramic proppant. The confining pressure of the cell was

then increased incrementally from 100 to 3,000 psi with the confining pressure stabilized at each

pressure.

After each increase in confining pressure, the sample/cell dimensions were measured and

documented. These dimensions were then evaluated to establish a relationship between

embedment and proppant stress. The test consisted of using the sample from 2,509.75 meters (Core

Set 1, ID 7) to determine the potential for proppant embedment in this shale formation.

32

33

Figure 12 shows a plot of the embedment versus proppant stress data generated for the core sample

and the 40/70 mesh Carbo-Lite proppant. As shown, the embedment increased nearly linearly with

proppant stress from 1500 to 3000 psi at which point the test ended. Based on this analysis, an

estimate of the proppant embedment, 0.068 lbs/ft² (58.1% of a grain diameter) at 3000 psi was

determined. Further analysis of the data from Figure 32 shows a best-fit line through the data

resulting in a correlation coefficient, R², of 0.9757. The correlation is shown in Equation 2:

y = 106 x - 6741.4 (2)

To determine the maximum stress on the proppant, utilize Equation 3.

As shown, the stress the proppant sees depends on the overburden stress, POB, the reservoir

pressure, Pres, the bottomhole pressure in the fracture, Pf, the ability of the vertical stress to be

transmitted in the horizontal direction (related to Poisson’s Ratio, n), and the tectonic stress, T. A

few observations can be made by reviewing this equation.

First, as the reservoir pressure is depleted, the stress on the proppant decreases. Secondly, as the

well is drawn down, the stress on the proppant will increase. Finally, since the pressure in the

fracture increases away from the wellbore (i.e. assumes finite conductivity fracture), for

conventional fracturing the maximum stress on the proppant will be seen early in the well life at

the wellbore.

 In fact, it can be shown that the maximum stress on the proppant will occur at hydrocarbon

breakthrough during the well cleanup unless the flowing bottom-hole pressure is rigorously

controlled.

However, proppant embedment is not an issue in the Paddock Formation as this dolomite only has

a total embedment at 3,000 psi which is only one-third that seen for the average formation

(approximately 0.200 lbs/ft2). Obviously, this formation is brittle enough to support hydraulic

fracturing with treated water.

34

4. SMART MICROCHIP PROPPANT: DESIGN, DEVELOPMENT, LAB TESTING,

AND VERIFICATION FOR THE FIELD TRIAL

4.1 Summary

Fracture mapping is essential in hydraulic fracturing and finds applications in the oil and gas

industry. Mapping of fractures using traditional radioactive or micro-seismic methods involves

contamination and is prone to being inaccurate, thereby reducing the yield in fracturing

applications. Therefore, wireless sensor networks (WSNs) with each sensing node having a small

form factor and low power consumption are currently being investigated for use in such

applications. This article presents a fully battery-less system of coherent sensing nodes using

wireless energy harvesting. These nodes are capable of mapping fractures reliably at temperatures

up to 250oC and pressures up to 24 MPa.

Each node comprises a microchip having dimensions of 1.1 mm × 0.56 mm, two coils of 8 mm

diameter each, and resonating capacitors. The microchip was fabricated in the Taiwan

Semiconductor Manufacturing Company (TSMC) 0.18 µm process. The node receives a 40.68

MHz radio frequency (RF) signal in the industrial, scientific, and medical applications (ISM)

band and transmits back a locked subharmonic 13.56 MHz ISM band RF signal.

The subharmonic signal is generated on-chip using a digital divide-by-3 circuit, drastically

reducing the microchip power consumption compared with injection-locked oscillators or phase-

locked loops (PLLs). The sensor nodes used in the system have a form factor of 17 mm × 12 mm

× 0.2 mm and a minimum average power consumption of 1.5 µW.

Index Terms – Battery-less, coherent, complementary metal–oxide–semiconductor (CMOS),

energy harvesting, fracture mapping, high temperature, hydraulic fracturing, sensing nodes,

wireless, wireless sensor network (WSN).

4.2 Introduction

IRELESS sensor networks (WSNs) have become increasingly popular in recent years for use

in various applications [1], [2], [3]. These networks include many spatially scattered sensor

nodes, each of which senses some information from its environment, processes it, and

transmits the processed data back to another node or a base station. WSNs can be battery-

powered or wirelessly powered. Since wirelessly powered WSNs harvest energy from the

environment, they do not have to encounter issues regarding the replacement or recharging of

batteries.

Therefore, they provide significant advantages for sensing in regions that are remote or

inaccessible. In addition, WSNs have the advantage of scalability, which enables the convenient

addition or removal of nodes to/from the network. Since WSNs are mostly used in applications

where powering them is inconvenient, the major constraint affecting the design of these nodes is

low power consumption.

Among the many applications where WSNs can be used, hydraulic fracturing is essential for its

widespread use in the energy industry, especially the oil and gas industry. Hydraulic fracturing

35

has been used to increase the flow rate of oil and natural gas in oilfields [4]. Extensive knowledge

about the location and orientation of the fractures is required to increase production efficiency

inside these oilfields [5]. Traditionally, fractures have been mapped using techniques, such

as radionuclide monitoring, where radioactive tracers are injected into the fractures along with the

propellant fluid [6]. However, these techniques are prone to high contamination risks if

parameters, such as the amount, toxicity, and half-life of the tracers, are not strictly controlled.

More advanced applications use microseismic mapping, which includes monitoring the seismic

activities along the fractures and is similar to seismology [7], [8], [9]. However, there

is not enough understanding of the seismological processes inside the fractures. Moreover,

they suffer from coherent noise within the band of seismic recordings. These shortcomings prompt

us to look into wirelessly powered WSNs having a small form factor and low power consumption

as a cleaner, newer, and more power-efficient technique for fracture mapping.

Fig. 14 shows a conceptual representation of fracture mapping using WSNs. Advancements in

semiconductor technology have made it possible to reduce the size of microchips rapidly,

therefore reducing the size of these sensing nodes. Currently, the size of these nodes is

dominated by the size of the passive components, which include the off-chip resistors,

capacitors, and coils or antennas. In applications, such as fracture mapping in oil and gas fields,

the signals received and transmitted by the node should be able to penetrate the intervening

medium between the transmitter (TX) and the node.

The requirements for penetration depth restrict the frequencies of signals that can be used

below hundreds of megahertz. At these frequencies, reducing the form factor to a few

millimeters entails the usage of an electrically small antenna or inductive coupling between coils

in which the coil on the node is much smaller than the TX or receiver (RX) coil. These constraints

reduce the efficiency of wireless powering links and, therefore, the harvested power for the

microchip [10], [11], ultimately leading to a constraint on the power consumption of the

microchip while still using it for extremely complex sensing and wireless communication

applications.

Previous systems for fracture mapping have primarily focused on using nanoparticles

and their responses to electromagnetic or acoustic waves inside fractures. Aderibigbe et al. [12],

[13] use paramagnetic nanoparticles for the detection of fractures using susceptibility

measurements at different locations. Sun [14] used a nanofluid and the convection and diffusion

processes that affect it, while Liu et al. [15] measured the magnetic anomaly responses due to

the injection of magnetic proppant.

However, for small fractures, the changes in magnetic susceptibility and fields are weak in the

presence and absence of fractures, reducing the accuracy of fracture mapping. To the best of our

knowledge, Al-Shehri et al. [16], [17] are the only works in the literature to date that use WSNs

for fracture mapping through a technology called FracBots (Fracture Robots). These FracBots use

off-the-shelf components and near-field communication and are placed inside fractures to receive

and transmit signals. However, these nodes have a large size, large coils for the RX and TX, and

use milliwatt-level power.

36

Figure 14: Conceptual representation of fracture mapping using WSNs.

In recent years, hydraulic fracturing has been undertaken in high-temperature rock formations

for applications, such as obtaining natural gas from unconventional reservoirs [18].

These reservoirs are often located at large depths inside the surface at temperatures close to

250oC and pressures close to 7 MPa. Ensuring the functionality of the system at high

temperatures and pressures is, therefore, an essential part of using WSNs for fracture

mapping. Mobility variation, threshold voltage reduction, and junction leakage currents are the

major factors affecting the use of standard silicon complementary metal–oxide–semiconductor

(CMOS) processes at high temperatures.

Therefore, silicon carbide (SiC), silicon-on-insulator (SOI), and other III–V semiconductors were

conventionally considered the materials of choice for designing microchips at such temperatures

[19], [20], [21]. Scaling of CMOS process nodes has resulted in an increase in doping

concentration, resulting in lower junction leakage current at high temperatures. However, scaling

also results in a lower value of threshold voltage, leading to more channel leakage. Since the

junction leakage dominates at high temperatures, standard silicon CMOS processes have been

recently used for high-temperature applications in fields, such as aerospace, automobile, and

deep-well drilling [22], [23], [24].

This work presents a wirelessly powered system of coherently transmitting sensor nodes having

a small form factor, low measurement latency, and ultralow power consumption. These nodes use

the received 40.68 MHz radio frequency (RF) signal to transmit back a subharmonic 13.56 MHz

37

RF signal, therefore aggressively minimizing power consumption in comparison with the

traditionally used transmitting techniques, such as oscillators or phase-locked loops (PLLs).

The amplitude of the received signal can be used to detect the location of the node. These nodes

are experimentally verified to transmit power coherently, enabling their use in WSNs. The nodes

were also used for fracture mapping applications using a prototype in both one and two

dimensions. Moreover, these nodes are verified to transmit back power at temperatures up to

250 ◦C and pressures up to 24 MPa. Therefore, they are viable to be used for fracture mapping

at high temperatures and pressures in oil and gas fields for applications, such as hydraulic

fracturing.

4.3 Smart Microchips Proppants Technical Specifications and System Details

The proposed system for fracture mapping includes several printed circuit boards (PCBs)

fabricated on FR4 or flexible polyimide substrates acting as nodes for receiving and transmitting

RF signals. These PCBs are hereafter referred to as localizers in the rest of this article. Fig.

15 illustrates the localizer and annotates its dimensions.

Each localizer consists of a microchip and two identical coils. The RF power transmitted by

the TX coil is received by the on-PCB downlink (DL) coil, while the RF power is transmitted

from the microchip using the on-PCB uplink (UL) coil, which is received by the RX coil.

Capacitors of values 16.8 and 160 pF are connected in parallel to the DL and UL coils,

respectively. This causes the DL and UL coils to resonate at 40.68 and 13.56 MHz, respectively,

improving the received and transmitted power at these desired frequencies.

The diameter of the DL and UL coils is limited to 8 mm to minimize the form factor of the

entire system. Since the inductance of coils of such dimensions is very low: 1) the trace widths of

these coils are minimized; 2) the number of turns is maximized; and 3) the thickness of the

substrate is reduced to obtain the maximum possible value of inductance. A larger inductance

improves the link efficiency for wireless power transfer (WPT) by increasing the mutual

inductance between two coils. Therefore, these coils are fabricated on a 0.2 mm-thick two-layer

FR4 substrate with six turns on each layer.

Since these coils have a small size, the parasitic inductance of connectors is comparable to

the coil inductance, making it unfeasible to measure their S-parameters or inductance using

commercially available equipment, such as a vector network analyzer (VNA) [25], [26].

Figure 16 (a) – (c) shows the simulated real part of Z11, inductance, and quality factor of these

coils using Ansys HFSS, respectively. It can be observed that these coils have a self-resonant

frequency (SRF) of 100.74 MHz, an inductance of 0.96 µH, and quality factors of 63.77 and

48.59 at our desired frequencies of 40.68 and 13.56 MHz, respectively. Since these coils are

connected to high-impedance nodes, they are not matched to 50 Q for maximum power transfer.

38

Figure 15: Localizer image with size compared with a nickel.

Figure 16: Simulated (a) re(Z11), (b) inductance, and (c) quality factor of the localizer coil.

39

The TX and RX coils are designed to be large enough to transmit and receive a sufficient

amount of power to and from the localizer, respectively. Therefore, the TX coil has a diameter

of 3.5 cm, while the RX coil has a diameter of 4.5 cm. Both these coils are fabricated on a 1.6

mm-thick two-layer FR4 substrate. The TX coil has three turns, while the RX coil has six turns on

each layer. The performance of these coils was measured using a Keysight N5230C PNA-L

Network Analyzer. Figs. 17 (a)–(c) and 18 (a)–(c) show the measured real part of Z11, inductance,

and quality factor of the TX and RX coils, respectively.

Figure 17: (a) TX coil and its measured (b) re(Z11), (c) inductance, and (d) quality factor.

40

Figure 18: (a) RX coil and its measured (b) re(Z11), (c) inductance, and (d) quality factor.

It can be observed that the TX coil has an SRF of 59.08 MHz, an inductance of 1.91 µH, and

a quality factor of 56.83 at 40.68 MHz, while the RX coil has an SRF of 17.95 MHz, an

inductance of 12.5 µH, and a quality factor of 26.99 at 13.56 MHz. The TX and RX coils

are matched to 50 Q for maximum power transfer. Fig. 19 (a) and (b) show the measured

magnitude of S11 for the matched TX and RX coils, respectively. Simulations were done in Ansys

HFSS to estimate the path loss between the TX and localizer coils. Fig. 20 shows a simulated

path loss of −43.765 dB at a separation of 6 cm.

41

Figure 19: Measured |S11| for matched (a) TX and (b) RX coils.

Figure 20: Simulated path loss between TX coil and localizer coil at a separation of 6 cm.

42

The microchip includes a full-wave rectifier, a diode limiter, and a digital divide-by-3 circuit.

The block diagram of the localizer, including the microchip, is shown in Fig. 21.

Figure 21: Localizer architecture.

A passive one-stage cross-coupled topology is chosen for the rectifier, as shown in Fig. 22.

Figure 22: Rectifier schematic.

43

Cross-coupled rectifiers have been shown to have higher power conversion efficiency (PCE) than

other topologies [26], [27], [28], improving the link efficiency of the system. Coupling capacitors

of 6 pF are used for the rectifier to pass the differential input signal with less than 1%

attenuation. The transistors are sized to have maximum efficiency. A 1.8-nF on-chip storage

capacitor (Cp) is used to reduce the ripple at the output of the rectifier.

The diode limiter limits the output voltage of the rectifier to 3.8 V, providing over-voltage

protection to the microchip. The output voltage of the rectifier VR works as a supply voltage for the

digital divide-by-3 circuit, which divides the frequency of the received RF power signal by 3. It

includes a mod-3 counter and D flip-flops with an asynchronous set–reset operation.

The divide-by-3 ensures subharmonic locking of the frequency of the received RF signal to that of

the transmitted signal. The divide-by-3 circuit has an extremely low power consumption of 1.5

µW for the lowest amplitude of the RF input signal, for which it generates a measurable output.

Since multiple localizers placed at different locations transmit signals back to the RX coil,

it is imperative to synchronize the frequency and phase of the signals received from different

localizers, so that they can constructively add up at the RX. Conventionally, this has been done

using oscillators in PLLs as TXs [29].

However, PLLs have the drawbacks of using an off-chip crystal oscillator for precise reference

frequency generation. Moreover, PLLs are extremely power-hungry and, therefore, unsuitable for

wireless powering applications. Another feasible way to do this is by using injection-locked power

oscillators such as TXs [30], [31], [32].

However, these oscillators consume static power and have a limited locking range, which

decreases with an increase in the quality factor of inductors, requiring a higher amplitude of

injection RF signal for certain applications. For our application, the phase differences between

different localizers can be neglected, since the operating range is lesser than the wavelength at the

operating frequency by at least an order of magnitude.

The divide-by-3 circuit does not consume static power and does not require the generation of an

injection RF signal. Moreover, the frequency of the transmitted signal is always locked to the

frequency of the received signal, enabling the use of the entire bandwidth allowed by the industrial,

scientific, and medical applications (ISM) band.

The PCE of the rectifier and the peak-to-peak values of the divider output are simulated.

Fig. 23 (a) and (b) show the PCE of the rectifier and peak-to-peak divider output voltage

versus input power for one, two, three, and four-stage rectifiers, respectively. Reducing the

sensitivity and increasing the transmitted power is paramount for increasing the operating range

of the system. The sensitivity of the system is determined by that of the rectifier and the divider.

The sensitivity of the rectifier is defined as the minimum input power for which it generates a

supply voltage that is large enough for the divider. The sensitivity of the divider, on the other

hand, is defined as the minimum input power for which it generates a detectable peak-to-peak

output. From Fig. 23, it is observed that reducing the number of stages in the rectifier increases

the sensitivity of both the rectifier and the divider. Increasing the number of stages generates a

44

larger supply voltage and, therefore, more transmitted power but reduces the sensitivity. Since a

much larger RF power is required to power the microchip than detect the transmitted power,

sensitivity dominates over transmitted power. Therefore, only one stage is used for the rectifier.

Figure 23: Simulated (a) rectifier efficiency and (b) peak-to-peak divider output voltage versus

input power for one, two, three, and four-stage rectifiers. One-stage rectifier shows the best

sensitivity.

45

4.4 Laboratory Testing of Smart MicroChipsfor for Fracture Mapping Under High

Pressure and High Temperature

The annotated die micrograph of the microchip having the dimensions of 1.1 mm × 0.56 mm is

shown in Fig. 24. The microchip was fabricated using the Taiwan Semiconductor Manufacturing

Company (TSMC) 0.18 µm process. A signal generator (HP 8340B) generates the RF signal used

for powering the microchips. The RF power of the signal was increased by connecting the

output of the signal generator to a power amplifier (PA) (Minicircuits ZHL−20W−13+) having

a small signal gain of 50 dB and a saturated output power of 20 W, increasing the operating

range of the system.

Figure 24: Die micrograph.

A spectrum analyzer (Tektronix RSA 306B) is used to measure the magnitude of the received RF

signal. The following sections 4.4.1 to 4.4.6 report all the measurements performed in the lab

using the localizers.

4.4.1 Energy Harvesting Verification

For this measurement, the input terminals of the rectifier are wired to the RF signal generator to

generate an RF signal at 40.68 MHz, and the dc output of the rectifier is measured using an

oscilloscope. Fig. 25 shows the rectifier output voltages for different root mean square (rms) input

voltages. It is observed that the rectifier generates sufficient dc voltage to power the microchip at

input rms voltages above 0.8 V.

46

Figure 25: Measured rectifier voltage with respect to input rms voltage.

4.4.2 Microchip Functionality Verification

The measurement setup used for verifying the functionality of the microchip is illustrated in Fig.

26. The maximum operating range of the system is determined using the largest amplitude of

RF signal available in the laboratory.

Figure 26: Measurement setup used for chip functionality verification.

47

Using the RF signal generator, a 40.68 MHz RF signal with −14 dBm power is delivered

to the PA with a small signal gain of 50 dB. Therefore, an RF power of 36 dBm is delivered to

the TX coil. The RX coil is connected to the spectrum analyzer for detecting the received power

from the localizer. Keeping the RX coil very close to the localizer, the distance between the

localizer and the TX coil is increased until the received 13.56 MHz tone merges with the

noise floor of the spectrum analyzer. It is observed that the localizer can be wirelessly powered

at a maximum distance of 6 cm between the localizer and the TX coil with 36 dBm power.

Increasing the TX power would increase this maximum distance. Keeping the distance between

the localizer and the TX coil fixed at 6 cm, the distance between the localizer and the RX coil

is then increased until the received 13.56 MHz tone merges with the noise floor of the

spectrum analyzer. It is observed that the RF signal transmitted from the localizer can be

received by the RX coil at a maximum distance of 32.8 cm from it. While performing this

measurement, since the received signal frequency was locked to that of the transmitted signal,

the span and resolution bandwidth of the spectrum analyzer could be reduced, helping in

lowering its noise floor. Fig. 27 shows the received 13.56 MHz tone having −118.15 dBm power

at 6 and 32.8 cm distance between the localizer and TX and RX coil, respectively.

Figure 27: Received signal spectrum at the maximum operating range.

Using the same setup, the received power is recorded for different separations between the

following: 1) the TX coil and the localizer DL coil and 2) the RX coil and the localizer UL coil.

For each separation distance between the TX coil and the localizer DL coil, the lowest TX power

required to power the microchip is used to maintain uniformity in the received power for different

distances. Fig. 28 illustrates the contour plot of the received power profiles across different

separations.

48

Figure 28: Received 13.56 MHz signal power in dBm across different separations between the

TX coil and the localizer DL coil, and the RX coil and the localizer UL coil.

 Two paper protractors are added around the TX and RX coils, as illustrated in Fig. 29, and the

TX and RX coils are rotated to measure the power profiles at different angular orientations to the

localizer. For the purpose of this experiment, a separation of 5.5 cm is used between the TX coil

and the localizer, while a separation of 12 cm is used between the RX coil and the localizer.

Figure 29: Measurement setup used for obtaining the received power profile with respect to

different angular orientations of the TX and RX coils.

49

Fig. 30 illustrates the contour plot of the received power profiles across different angular

orientations. It can be observed that the system is robust to angular misalignments of up to 60o

between the TX coil and the localizer and up to 80o between the RX coil and the localizer.

Figure 30: Received 13.56 MHz signal power in dBm across different angular orientations of

the TX and RX coils.

As shown in Fig. 20, a path loss of −43.765 dB is expected between the TX coil and the

localizer coil at a distance of 6 cm. From Fig. 19, the TX and RX coils have an |S11| of less than

−20 dB at the desired frequencies. Therefore, the loss due to matching the TX and RX coils

can be considered negligible. For a TX power of 36 dBm, de-embedding the path loss gives us

a power of −7.765 dBm at the localizer coil. From the sensitivity simulations illustrated in

Fig. 23, a minimum power of around −20 dBm is required at the input of the rectifier to obtain

a measurable 13.56 MHz tone at the output. The rest of the losses can, therefore, be attributed

to the imperfect matching of the impedance of the localizer coil to the dynamic input impedance

of the rectifier.

4.4.3 Coherent Power Combining Verification

The measurement setup used for verifying the coherent power combining of RF signals

transmitted by different localizers is illustrated in Fig. 31. A 40.68 MHz TX power signal of

50

−14 dBm is amplified to 36 dBm using the PA as in the previous measurement. In three

different measurements, one, two, and three localizers are placed close to each other on a

surface, such that they can be wirelessly powered by the same TX coil. The TX and RX coils

are placed at a distance of 6 and 10 cm, respectively, from the localizers to transmit and

receive RF signals from them. A spectrum analyzer (Tektronix RSA 306B) is connected to

the RX coil to measure the power received from the localizers.

Figure 31: (a) Schematic and (b) picture of the coherent power combining measurement setup.

51

Figure 32: Received power from (a) one, (b) two, and (c) three localizers.

Fig. 32 (a)–(c) shows the power received at 13.56 MHz from one, two, and three localizers,

respectively. It is observed that the power received from two and three localizers (around 2

and 3 pW, respectively) is almost equal to twice and thrice that received from one localizer

(around 1 pW), which verifies the fact that the signals transmitted by the localizers add up

coherently.

4.4.4 Fracture Mapping Verification

The measurement setup for fracture mapping is illustrated in Fig. 33. For this study, a prototype

rock with fractures along its height was designed, and multiple prototypes were 3D-printed to

test the functionality of smart microchips for fracture mapping in the lab, simulating hydraulic

fractures typically found in oil and gas wells. The details of the design and generation of these

synthetic core samples with complex fractures are provided in Appendix F.

The localizers are coated with nonconductive epoxy and are placed inside the fractures that are

to be mapped. The distances of the TX and RX coils from the fractures are similar to the

previous measurements. Using motorized rails in the X – and Y -directions, the TX and RX

coils are moved over the entire region that is desired to be mapped. The presence or absence

of a fracture at a specific coordinate is determined by the presence or the absence of a 13.56

MHz tone in the received signal.

A spectrum analyzer is connected to the RX coil to record the spectrum at different coordinates,

which is, in turn, connected to a laptop for data processing using MATLAB. The fractures are

52

mapped in the X - and Y -directions separately with a resolution of 1 mm in both X - and Y -

directions.

Figure 33: Fracture mapping setup.

Fig. 34 illustrates the fracture mapping results for the Y-Y-direction, while Fig. 35 illustrates

the same for the X -X-direction. Fig. 23 illustrates the 2-D fracture mapping results. It is

observed that the fractures are mapped with considerable accuracy using the localizers.

Figure 34: 1-D fracture mapping results for the y-direction. The red box indicates the region

that was mapped by smart Microchips that are placed in the fractures (3D printed cores with

fractures).

53

Figure 35: 1-D fracture mapping results for the x-direction. The red box indicates the region

that was mapped by smart Microchips that are placed in the fractures (3D printed cores with

fractures).

Figure 36: 2-D fracture mapping results by smart Microchips that are placed in the fractures

(3D printed cores with fractures).

4.4.5 High-Temperature Verification

The functionality of the localizers is also verified at high temperatures. The schematic and

picture of the measurement setup for the high-temperature measurements are shown in Fig. 37

(a) and (b), respectively. In this measurement, the localizer is placed inside a microwave

54

oven. The RF signal generator and PA are used to generate a 36 dBm 40.68 MHz power signal

as in the previous measurements. It is observed that at the previously measured maximum

distance of 6 cm between the TX coil and the localizer, the rectifier does not generate

enough dc voltage for the proper functioning of the microchip at higher temperatures. The

TX coil is, therefore, positioned at a distance of 2 cm from the localizer inside the oven, so

that the microchip can be powered at all temperatures in the range of our measurements. The

RX coil is connected to the spectrum analyzer and placed at a distance of 10 cm from the

localizer. The temperature inside the oven is increased using the knob on the oven. The oven

temperature is measured by an oven thermometer (Admetior Kitchen Oven Thermometer).

Figure 37: (a) Schematic and (b) picture of the measurement setup for verification at high

55

temperatures.

Fig. 38 shows the received signal power from the localizer at temperatures from 20 ◦C to 250
◦C.

Figure 38: Received signal power at temperatures from 20 °C to 250 °C.

4.4.6 High-Pressure Verification

The localizers are also verified to work under high-pressure conditions using a concrete

compression sensing machine. Wet cement is placed inside three different cube-shaped molds

and allowed to cure for 24 hrs.

While pouring the wet cement into the molds, one localizer is placed in each mold at a depth

of 1 cm from the bottom. Each cube with a localizer embedded in it is then placed in the

compression sensing machine, and a compressive force is applied using the cylindrical pistons

from the top and bottom. The high-pressure measurement setup is illustrated in Fig. 39.

The RF signal generator and the PA are used to generate a 36 dBm 40.68 MHz power

signal as in the previous measurements. Due to the metallic nature of the compression sensing

machine, the distance of the TX and RX coils from the localizer is reduced, such that the

localizer can be powered.

The applied compressive pressure is slowly increased until the cement cubes fracture. The three

cubes fracture at pressures of 8.53 MPa (1237 psi), 24.06 MPa (3490 psi), and 18.40 MPa (2669

psi), respectively.

56

Figure 39: Measurement setup for verification at high pressures. The entire setup is inside a

compression sensing machine.

Fig. 40 (a) shows the second cube after it fractures. The received 13.56-MHz tone from the

localizer is still observed even at the highest of these pressures (3490 psi). Fig. 40 (b) shows the

received signal from the second localizer when the second cube fractures at 24-MPa pressure.

57

Figure 40: (a) Second cube after it fractures at 24 MPa. (b) Received signal from the second

localizer when the second cube fractures.

58

Please note that the verification of MicroChips' functionality under high pressure was conducted

without epoxy protection. These tests were performed with chips embedded in cement under

compressive forces. With proper epoxy protection during field testing, the chips are expected to

withstand pressures of up to 10,000 psi.

 In this series of lab testing and verification, a wirelessly powered Smart MicroChip proppants

sensing system of coherent sensing nodes has been presented and proposed for use in fracture

mapping applications at high temperatures. A power-efficient scheme using the RF power signal

and a digital divide-by-3 circuit has been used to generate a locked subharmonic signal to be

transmitted by the microchip. This enables an average power consumption of only 1.5 µW for the

system. The system has also been verified to work reliably at temperatures up to 250oC and

pressures up to 24 MPa, which are one of the highest using a standard CMOS process. The

system, having a small form factor and ultra-low power consumption, also finds use in other

sensing and localization applications using WSNs.

4.5 Smart Microchip Proppants Manufacturing and Production for Field Testing

We successfully demonstrated the effectiveness of wireless localizers for fracture mapping in

laboratory conditions. The wireless nodes consist of a sensing chip wire-bonded onto a

miniaturized printed circuit board (PCB). The chip, fabricated using standard 180 nm technology,

receives power at 40.68 MHz (RX) and transmits signals back at 13.56 MHz (TX). Both frequency

bands are from the ISM bands. These nodes can reliably map fractures at temperatures up to 250°C

and pressures up to 24 MPa and have an average power consumption of 1.5µW [30].

For the field testing of Smart MicroChips proppant technology, we have developed several

different versions for this project. One of the versions utilizes two side-by-side coils with

dimensions of 17 mm x 12 mm x 0.2 mm. Another version has dimensions of 9 mm x 12 mm x

1.6 mm and features a surface for powering and a surface-mount device inductor (SMDL) for

transmitting signals (see Fig. 41). The second version offers orthogonal coupling directions for

two frequencies, while the first version supports only one direction for RX and TX.

Figure 41: Two versions of PCBs developed for fracture mapping

59

4.5.1 Resonance Frequency Tuning

For our application, accurate frequency tuning of the samples is essential. We used a wide-

band coil and a vector network analyzer (VNA) to detect the precise resonance frequencies of

our samples. Accurate and high-quality tuning is crucial for maximizing power transfer

efficiency and operational distance. The results of the frequency tuning and component values

for each sample are shown in Fig.42.

Figure 42: VNA measurements for the resonance of the PCB coils

4.5.2 Smart MicroChips Proppants PCB Mass Production

Both PCBs were measured to be operational at a distance of 4 cm using 20 dBm (100 mW)

of RF power. They can function with a misalignment of 45° and a distance of 3 cm. For

validation measurements, we used a single double-tuned coil (refer to [31]) for both

transferring 40.68 MHz power and reading back 13.56 MHz signals (see Fig. 43). Following

initial validation, we ordered 200 samples of each version for manufacturing. The assembly

is performed in-house. The mass-produced PCBs are shown in Fig.44.

60

Figure 43: Setup picture for sensing node validation

Figure 44: Mass-produced PCBs

4.5.2 Smart MicroChips Proppants PCB Packaging- Resin-protected

In the end, it is crucial to protect the sensing nodes from heat and pressure with proper

packaging. For the initial packaging, we are using UV-cured epoxy resin followed by a HPHT

epoxy.

The HPHT epoxy is resistant to acids, bases, and solvents. Once cured, it exhibits several

desirable physical properties, including high modulus and exceptional compressive strength.

It is a toughened system that can endure rigorous thermal cycling. The formulation includes

a quartz filler, which enhances its dimensional stability and abrasion resistance. Additionally,

the epoxy is a reliable electrical insulator and has a service temperature range from -60°F to

+450°F.

4.5.3 Additional Hardware and MicroChips Built During this Project

In addition to the final design reported in the previous sections, the team has performed a series of

experiments on a custom wirelessly powered chip with a new miniaturized antenna configuration.

The antenna uses an SMD inductor for receiving the wireless power at 40.68MHz ISM band and

transmitting back a signal at 1/3 of the received frequency (13.56GHz ISM band). Figure 45 shows

a picture of the pcb assembly. The chip dimensions are 5 mm X 15.5 mm X 1.6 mm, which is

suitable for use in fractures that are up to 5 mm wide. This chip was designed to be sensitive to a

magnetic field that is aligned to the longest dimension of the chip. This is suitable for fracs that

61

are orthogonal to the direction of the wellbore (and the downhole tool). Measurements were

performed with a powering coil having a 5-cm diameter and matched at 40.68 MHz.

Figure 45: SMD-based antennas used in prior proppant chips

 We achieved a wireless powering distance of 35 mm by using 1W of transmit power. Figure 46

shows the measurement setup.

Figure 46: Measurement setup.

Some other variations of the proppant chips were made as shown in Figures 7 and 8. The

functionality of previously fabricated miniaturized 4-layer PCBs in which the RX coil was

designed using the top two layers, and the TX coil was designed using the top two layers to reduce

the form factor (Fig. 47), was successfully verified.

Figure 47: Top and bottom view of the miniaturized 4-layer PCB.

62

Since the RX and TX coils in this version have the same design as in the old version of the PCB,

significant changes in their operating range are not expected. Using this PCB, the microchip could

be wirelessly powered at a maximum distance of 5 cm between the localizer and the transmitter

(TX) coil with 36 dBm RF power at 40.68 MHz. The 13.56 MHz signal transmitted by the

microchip could be received at a maximum distance of around 30 cm by the receiver (RX) coil.

Fig. 48 depicts the 13.56 MHz tone having −118.15 dBm power obtained at the maximum

operating range possible for wireless powering and transmission. Another version of the PCB

having pre-assembled SMD capacitors for the RX and TX matching networks was also fabricated

for convenience.

Figure 48: Received signal spectrum at the maximum operating range.

Further miniaturization of the PCBs was investigated using SMD inductors for wireless powering

and transmission, which have a lower size than the planar on-PCB coil, as depicted in the next

section.

4.5.3.1 Miniaturization of the localizer PCB used for mapping fractures

SMD inductors are currently being investigated for use in place of wireless powering coils to

further reduce the form factor of the PCB. To determine the feasibility of the solution, two PCBs

have been fabricated. In one of the PCBs (as shown in Fig. 49), only the TX coil is replaced by an

SMD inductor. This is a 4-layer PCB in which the RX coil is fabricated using the top two layers.

63

This is an important intermediate step to study and de-embed the effect of the SMD inductor on

the effectiveness and the operating range of the reception of the 13.56 MHz signal transmitted

from the microchip.

Figure 49: Top and bottom view of the new 4-layer PCB with only TX coil replaced by SMD

inductor.

 In the second PCB (as shown in Fig. 50), both the RX and TX coils are replaced by SMD

inductors. This is now a 2-layer PCB since all the coils are replaced. This PCB demonstrates the

final objective, which is to use SMD inductors for both wireless powering and transmission. The

use of the SMD inductors also further reduces the form factor of the PCB to 8 mm X 10 mm X 1.6

mm which is lower than the previous version. The vertical dimension (10 mm) can be further

reduced by removing the pads (which are included only for the purposes of measurement), which

have a length of 3 mm.

Figure 50: Top and bottom view of the new 2-layer PCB with both TX and RX coils replaced

by SMD inductors.

For both PCBs, the largest SMD inductor footprint of 1812 (4532) was chosen as the first step to

verify the feasibility of this solution since the quality factors of these inductors at the desired

frequencies are comparable to the planar on-PCB coils that were used previously. In future

generations, the size of the SMD inductors will be gradually reduced. Both PCBs are currently in

fabrication. Once the PCBs are fabricated, future steps will involve the assembly of these SMD

inductors and the corresponding matching SMD capacitors for both RX and TX and the

measurement of these PCBs with different values and footprints of inductors to have an idea about

their effects on wireless powering and transmission.

In some of the fabricated PCB (as shown in Fig. 50), both the RX and TX coils are replaced by

SMD inductors having a footprint of 1812 (4532). A 1.8 µH SMD inductor having a typical Q-

64

factor of 35 at 10 MHz was used for wireless powering and receiving on the RX and TX side

respectively. Corresponding SMD capacitors of 8.5 pF and 76.5 pF are used to resonate with both

the inductors. Since the axis of the SMD inductors is parallel to the plane of the PCBs, it allows

for effective wireless powering of these PCBs inside fractures and does not require a TX coil

oriented parallel to the PCB. Using this PCB, the microchip could be wirelessly powered at a

maximum distance of 3 cm between the localizer and the transmitter (TX) coil with 36 dBm RF

power at 40.68 MHz. The wireless powering distance and orientation are depicted in Fig. 51. The

13.56 MHz signal transmitted by the microchip could be received at a maximum distance of around

20 cm by the receiver (RX) coil. A smaller inductor having a 0805 footprint was also used on the

TX side to determine the effects of the size of the SMD inductors. Using this inductor, the signal

transmitted by the microchip could be received at a maximum distance of around 3 cm by the RX

coil. The reason for the reduction in operating range is currently being investigated. It could

potentially be due to the coupling between the two SMD inductors, which have the same

orientation on two layers of the PCB.

Figure 51: Test setup.

4.5.3.2 Design of TX coils for efficient wireless powering of the microchips

 It was observed that the range of operation of the localization system is limited by the maximum

separation between the coils for wireless powering. The link efficiency for wireless powering of

the microchips depends on the coupling coefficient between the TX coil and localizer coil and the

product of the quality factor of these two coils (𝜂 ∝ 𝑘2𝑄1𝑄2). Fig. 52 shows the coupling

coefficient vs TX coil diameter and the distance between TX coil and localizer for an 8 mm

diameter localizer coil. From Fig. 52, it can be observed that the coupling coefficient does not

increase significantly for TX coil diameters above 10 cm. Therefore, single-layer TX coil PCBs

having dimensions of 5 cm X 5 cm and 10 cm X 10 cm and having a high Q factor were designed

to improve the range of wireless powering of the microchips. The coils (shown in Figs. 53 and 54

respectively) were designed using the Webench coil designer tool. The smaller TX coil has 3 turns,

with a trace width of 2.54 mm and a 1.78 mm separation between the traces, whereas the larger

TX coil has 4 turns, with a trace width of 1.78 mm and a 7.62 mm separation between the traces.

65

Figure 52: Coupling coefficient vs TX coil diameter and distance between TX coil and

localizer.

Figure 53: 5 cm X 5 cm TX coil.

Figure 54:10 cm X 10 cm TX coil.

66

5. DOWNHOLE TOOL FOR TRANSMITTING POWER AND RECEIVING SIGNAL:

DESIGN, DEVELOPMENT, LAB TESTING, AND VERIFICATION FOR THE

FIELD TRIAL

5.1 Summary

By the end of the project, the construction and testing of a downhole tool for transmitting power

to the chips and receiving their signal were completed. The tool is rated to 100oC and 8000 psi and

has an OD of 3 5/8” making it applicable to a large market within the USA and beyond.

The design/construction was completed in three phases. The first phase was the overall concept

and included some mockups of the transmitter/receiver. The second phase included the

development of the downhole circuitry to convert incoming power to MHz and transmit that power

while simultaneously receiving chip response at a lower MZ value. The circuits were designed to

be largely independent of the ultimate antenna, meaning that the circuit manufacturing could be

launched concurrently with optimizing Smart Microchips. The third phase was the tool

construction for the field trial.

5.2 Initial feasibility study

The Near Field SAS was conceived to map 3-space in a downhole application using high frequency

(HF) radio technology and locally dispersed transceiver “chips” designed by UCLA. To determine

the feasibility of such an undertaking, it was necessary to 1) understand the capabilities of the

UCLA transceiver chips and 2) identify realizable RF technologies capable of extracting sub-100

mV signals in the receive signal chain.

To that end, MicroSilicon built a complete RF prototype system that exploited Liquid Instruments’

Moku: Lab instrumentation as a near-term stand-in for a custom design. The overall goals of this

phase included identifying likely typical moveout distances for transmission and reception; the

relationship between transmitter power and chips excitation; efficiency of the lock-in amplifier for

extracting low-level signals in the presence of noise.

Figure 55: System Context Diagram

67

The Moku:Lab is an off-the-shelf hardware platform configurable with various lab instruments.

The impetus for choosing this device was the integration of a lock-in amplifier (LIA), which is

known for its ability to extract signals below the noise floor. The Moku:Lab’s LIA contains an

adjustable input gain, 12-bit ADC, signal multiplier (mixer), low-pass filter, signal processing,

output gain, an auxiliary signal generator, and a data logger. The custom design will require each

of these subcomponents, with final implementation being a design-time consideration. The output

signal chain contained a generic power amplifier block. While the supplied antennas are not

designed for high power, a power stage will be required in the final product. Therefore, some low-

power tests were conducted to determine the effectiveness of the current antenna design. On the

input side, a high-Q bandpass filter was inserted in the signal chain. Since there is a 1:3 relationship

between the transmit and receive frequencies, and the transmitter is expected to be high power, it

was necessary to filter the RF input to 1) avoid damaging the receiver and 2) overwhelm the

receiver with noise or unwanted signals. The identified, and acquired, band-pass filter was not

tested in the circuit because the power levels did not warrant doing so. However, we conducted a

VNA test of the KR device to demonstrate that it operated as advertised, and that component was

subsequently used inside the downhole tool.

To accurately characterize the prototype system, and therefore extrapolate to a larger system, it

was important to isolate the individual capabilities of each system component, namely, the

transmitting system, the receiving system, and the signal processing system.

To isolate the transmitting and receiving systems, a simple fixture was constructed to ensure

repeatability. The fixture included transmitter antenna frames, receiving antenna frames, and a

DSLR (camera) slider instrumented with an adhesive tape measure.

Figure 56: Antenna Fixturing

There were two sides to the test fixture – transmit and receive. Each side was designed to

accommodate the specific antenna size (40 MHz or 13 MHz) and are interchangeable on the

68

stanchions. The stanchions were designed to fit on the DLSR slider and to hold the antenna fixtures

while ensuring that the “targets” are aligned regardless of fixture orientation. The fixed stanchion

was affixed to the slider frame, while the moving stanchion was affixed to the DSLR based on the

slider frame. The spacers provide a gap from the target area to the physical antenna face to optimize

the chip/antenna interface. Observations during testing indicated that a chip too close to the

receiving antenna severely degraded the received signal power. The frame dimensions were 6 x 6

cm for the individual antenna.

Figure 57: Antenna frames mounted on the slider

The chip on/off characterizing configuration consisted of the 40 MHz TX antenna in the fixed

stanchion, the 13.56 RX antenna in the movable stanchion, and the chip taped to the target interface

of the RX antenna. The slider was used to change the position of the chip relative to the transmitter

while monitoring the microchip's on/off state. The chip on/off state was inferred by the receiver

signal.

Figure 58: Receiver testing configuration

69

The receiver testing configuration had the 40 MHz TX antenna in the fixed stanchion, the 13.56

MHz RX antenna in the movable stanchion, and the chip taped to the target interface of the TX

antenna. The slider was used to change the position of the receiver relative to the chip while

monitoring the output of the lock-in-amplifier.

Figure 59: Moku-Lab testing configuration

On the instrumentation side, the Moku:Lab’s was configured analogously to the expected custom

system design. The general LIA configuration involved using a local oscillator (synchronized to

the auxiliary oscillator) to mix with the input signal and the auxiliary oscillator that drove the

transmitter signal chain.

Figure 60: Lock-In-Amplifier configuration

70

The key LIA configuration parameters were: Auxiliary Oscillator frequency: 40.68 MHz, Local

Oscillator (LO) frequency: 13.558 MHz Low-pass filter (LPF) corner frequency: 5 kHz Low-pass

filter slope: 6 dB/octave (first order filter) System “output”: Rectangular.

The LO frequency was set to 13.558 MHz, 2 kHz from the expected 13.56 MHz response. The

purpose was to demonstrate that the received signal can be “mixed-down” into the audio range (or

any range) whereby the final product can utilize high fidelity off-the-shelf ADCs in the order of

20 -24 bits. The LPF filters 1 order and higher-order byproducts of the mixing process.

The purpose of the receiver moveout test was to measure how far the receiving antenna can be

from the chip while the LIA continues to discriminate. For this test, the chip was taped to the

transmitter target interface on the fixed stanchion. The receiving antenna was affixed to the

movable stanchion.

At the minimum distance, the signal amplitude was 5.15 mV pp. At 6.8 cm the 2 kHz signal was

discernable on the scope around 67 µV pp and the frequency was locked. As the moveout

increased, the sinewave degraded into an increasingly noisy square wave until at approximately

26 cm, the 2 kHz signal was no longer detected. The signal floor appeared to be approximately 64

µV pp.

Using the Spectrum analyzer, a similar test was conducted to get a feel for the signal level. At 8

mm distance, the signal level from the chip is -37 dBm; at 7 cm, the signal level is -103 dBm and

at 33 cm, the signal level hits the noise floor of the SA at -103 dBm.

In an attempt to see the effect of two active chips, two chips were taped, one on top of the other,

to the target interface on the transmitter side. Unfortunately, the proximity of the two chips

prevented either chip from working.

Directionality tests were also conducted and the results demonstrated that the beam width of the

PCB planar antennas was very narrow. If the receiver or chips are misaligned, even as little as 1-2

cm, the system will not work.

The purpose of the transceiver reach test was to objectively determine how far the transceiver chip

can transmit once energized. There were three tests in this sequence. The first test was a 10-mW

transmission test, the second test a 2W test, and the third test a graduated power test.

The chip was affixed to the receiving antenna's target interface and progressively moved away

until the chip turned off. The 10 mW transmission power is an estimate of the RMS output of the

Moku:Lab Auxiliary oscillator into a nominal 50-ohm load. The ultimate tool design would enable

100W. At a 10mW power level, the chip would abruptly shut off at approximately 2 cm moveout

from the transmitter.

For the 2W test, the Akozon RF power amplifier was inserted into the transmit signal chain with

500 mV pp output. At this power level, the chip would abruptly turn off at about 5.4 cm

demonstrating that more transmission energy can improve the system performance.

71

Figure 61: Dramatic drop-off at a fixed distance, this at 2W

The graduated power test was an attempt to extend the transmission reach by slowly increasing

the output power of a 100W transmitter, from near 0 W to 100 W.

To facilitate this test, an external signal generator was used. The MRF101AN 100W reference

appliance was set up with a 2.5 V bias and the signal generator input was increased to achieve the

power gain. For this test, a VSWR/Power meter was inserted in the signal chain. The MRF101AN

device was then subsequently also chosen for the downhole tool.

Prior to beginning the system test, a 35 W 50-ohm dummy load was installed as the load to ensure

that the VSWR meter accurately measured VSWR. Regardless of the power level, the VSWR

reading was close to 1. The results of the test were somewhat disappointing, however, as the

performance of the prototype transmitting antenna degraded significantly as power increased.

Table 6: Initial Test Results

72

Technical discussions with Liquid Instruments (makers of Moku:Lab) revealed that the LIA could

discriminate signals below the noise floor of the ADC by adding white noise. Further investigation

by Liquid Instruments demonstrated this to be true. An explanation offered as the reasoning behind

the result is that white noise summed with the signal can bring the amplitude above the noise floor

thereby making it detectable. Taking this concept to its next logical step, a test was conducted

whereby white noise was injected into the signal chain via a Mini-Circuits combiner/splitter, model

Z99SC-62-S+.

For the white noise generator, a Moku:Go was configured as an arbitrary waveform generator

outputting a Gaussian waveform with an initial frequency range of 1 MHz. The results showed

that the signal was clearly noisier with reduced amplitude, likely due to the combiner.

Testing the moveout, the RX antenna could only be moved to about 21 cm before the LIA lost the

2 kHz IF signal. This is compared to about 26 cm when direct connections are used. Also, changing

the frequency of the white noise generator neither improved nor detracted from the results.

It appeared that adding white noise, at least in this rudimentary way, did not add any value and

was dropped from subsequent development.

We performed a Zero Hz IF test to learn whether using an identical LO/input signal frequency

would improve the performance of the LIA. The only setup change was to set the LIA local

oscillator to 13.56 MHz. Results showed that the DC level hits the minimum threshold around 62

uV DC. This minimum was reached at 7.5 cm moveout, nowhere near the capability when using

the low frequency IF.

We performed another of this test to learn how far the TX antenna transmits to another 40.68 MHz

antenna.

For this test, antennas in both fixtures were 40.68 MHz antennas. The Spectrum Analyzer was used

to record a few points along the slider path. As the moveout continued, the signal level dropped in

a somewhat linear fashion until about 33 cm out, where it was at a minimum value of -90 dBm.

From 33 cm to 67 cm, the signal level seemed to increase back up to -72 dBm, again in a linear

fashion.

A series of tests were conducted, and data was collected for moveout distances from 5 to 25 cm in

5 cm increments. Two additional points were added 1 cm and 26 cm to represent the closest and

farthest points in the test respectively.

The Moku:Lab Data Logger was configured for 10 k Sa/s and the LIA with a 5 kHz low pass filter

to minimize frequency foldback due to Nyquist frequency. The transmitter was set to a nominal 10

mW output. The data were imported into Excel and processed with 4096 sample FFT for each

moveout distance. The figure below shows the “baseline” chart at 1 cm moveout.

As expected, the 2 kHz IF frequency was well above the noise floor at approximately 5.4 mV

RMS. What was surprising, however, was the 2nd order mixer artifact of 4 kHz, shown below the

73

fundamental chart. Throughout the test, the 4 kHz signal continued to be above the noise until after

the 22 cm moveout, long after the 2 kHz signal was buried in the noise, between 18 and 19 cm.

Figure 62: The “baseline” chart at 1 cm moveout.

Figure 63: Higher-order artifacts are visible even as the original chip signal degrades with

distance

74

Those similar higher-order artifacts will be noted in the ultimate field data.

Various attempts to excite multiple transceivers were made. For example, taping one transceiver

on top of another, taping one transceiver to the transmitter target and the other to the receiver target,

and placing one transceiver within excitation distance on either side of the transmitter with another

receiving antenna on the same side. All attempts failed due to interference either from the

transceivers being too close together or having the additional receiving antenna too close to the

working transmitter/receiver pair.

Since the transmission power levels were well below that required to insert the bandpass filter into

the receiver signal chain, it was prudent to evaluate the filter for it’s potential in the implementation

project.

Figure 64: A robust 13.56 filter was identified (and subsequently used in the downhole tool).

The upper and lower markers are at approximately 13.56H Hz +/- 1.28M/2 Hz and are -3 dB down

from the peak. The center marker is 13.56M Hz. The data shows that the filter appears to work as

advertised. These KR filters were ultimately used in the final product deployed.

Some other observations from this initial feasibility phase:

• On multiple occasions, a transceiver chip was damaged by being too close to the

transmitter. It appears that too much near-field energy can destroy a transceiver. This raises

the possibility that repeat passes of the downhole tool could end up electrically damaging

very close chips.

75

• The planar antennas have a narrow beam width in the orthogonal direction. Performance

quickly dropped for any device that deviated from the center of the beam. This is in

agreement with the theoretical radiation.

• The prototype transmitter planar antenna from UCLA was not designed for high power. In

one instance (2W), excessive exposure to the power burned the FR4 material and in

another, the antenna stopped working after being subjected to higher power. It is assumed

that one or more of the capacitors are damaged. Also, when applying higher power signals,

the antenna performance dropped off significantly.

• Because the transmitter antennas were not effective under higher power conditions and are

extremely directional, it is impossible to compare distance vs power for transceiver turn-

on tests.

• Setting the mixer local oscillator input to the transceiver frequency (resulting in a LIA DC

output) was not an effective recovery method compared to using a small offset, in this case,

2 kHz.

• The chip transceivers have a turn-on “wall,” a threshold where the chip abruptly transitions

from off to on. Once on, however, they perform consistently.

• The reach of the system is subject to two constraints: 1) turning on chips and 2) receiver

sensitivity. Turning on the chips requires effective transmitter and power, both are design-

in qualities. In the above experiments, the chips could “reach” tens of cm.

• While conducting the Receiver Moveout test, the graphic on the LIA output indicated that

it could discriminate the 2k Hz IF signal (frequency counter) up to 24- or 25 cm. However,

the 10k-point (1 s) FFT of anything over 18-19 cm showed the 2k Hz signal to be below

the noise floor (of the FFT). It is possible that a longer FFT could lower the noise floor

further, although there is a limit to this technique.

• These feasibility results were very repeatable and gave confidence in moving forward with

circuit construction.

The goal of the first phase of the project was to evaluate the feasibility of using the transceiver

chips to map 3-space and to take Smart Microchips prototype hardware and investigate what

improvements would be needed for a commercial downhole product. The results showed that such

a system is possible, however, limitations with the supplied antennas prevented a complete

characterization of transceiver chip performance. After reviewing these results, and in discussion

with the rest of the team, it was agreed to move to the next phase, that of circuit development.

5.3 Circuit development

The structure of the near field receiver is as shown below:

76

Figure 65: The structure of the near-field receiver

Figure 66: The structure of the near-field receiver components- circuit schematic (1)

77

Figure 67: The structure of the near-field receiver components- circuit schematic (2)

Figure 68: The structure of the near-field receiver components- circuit schematic (3)

78

Figure 69: The structure of the near-field receiver components- circuit schematic (4)

Figure 70: The structure of the near-field receiver components- circuit schematic (5)

79

Figure 71 shows the structure of the transmitter.

Figure 71: The structure of the transmitter

Figure 72: The structure of the near-field transmitter components- circuit schematic (1)

80

Figure 73: The structure of the near-field transmitter components- circuit schematic (2)

81

The flowchart for the transmitter is illustrated in Figure 74.

Figure 74: The flowchart for the transmitter

Figure 75 shows the flowchart for the receiver.

82

Figure 75: The flowchart for the receiver.

83

The completed circuit boards are illustrated in Figure 76.

Figure 75: The completed circuit boards designs

Once the circuit boards were built, the components could fit very well into the prototype test

configuration designed in the first feasibility phase:

Figure 76: Fit the circuit boards in the prototype test configuration

84

We also developed a rudimentary GUI to allow us to verify in real time that there was a signal in

the desired FFT band:

Figure 77: GUI to allow us to verify in real-time that there was a signal in the desired FFT band:

Another decision made during construction was to allow the possibility of both DC and AC

power, with DC to be used for the first test (i.e. with batteries) and allowing for AC on

subsequent field tests (i.e. with surface power at 240V AC). This reduced the final set of

electrical components to the four shown below.

Figure 78: final set of electrical components

85

5.4 Final Antenna and Downhole Tool Construction for the Field Trial

In close consultation with the team, the design of the antenna was finalized as a 40 MHz transmitter

and 13 MHz receiver with a configuration as shown below. In particular, the coupled TX/RX

system comprises two coils whose axes are aligned. The transmitter outputs a magnetic field

primarily in the direction of that axis, which is also the main sensitivity of the receiver. There is a

minimal field generated in the plane of the coil. It is believed that this directionality could prove

useful when the tool is deployed downhole: different orientations of the tool will excite different

azimuthal planes of the wellbore.

Figure 79: Transmitter outputs a magnetic field

The coils, shown below, are wound of thick, 10 AWG copper so provide minimal resistive losses

even at 20 Amps. The coils will be subject to hydrostatic pressure in the wellbore whereas the

remaining electronics are inside a pressure housing. This requires a bulkhead, also shown below,

to pass the electric field from the high pressure to the low.

Figure 80: Schematic of the designed Coil

86

Each termination of the coil has been equipped with a Kemlon K-25 BMA connection, including

a rubber “boot” that provides a secondary barrier to pressure. The connectors are rated to 25 kPsi,

16Amps, and 6 kV. The max RF power from the tool is 100 watts.

Figure 81: Thread chart and specification

The Kemlon’s attached to the bulkhead are shown below:

Figure 82: The Kemlon’s attached to the bulkhead

87

The TX and RX loops are completed inside the pressure housing by attaching to 6kV rated

tunable capacitors with a range from 5 pF to 120pF and Q > 500.

Figure 83: The TX and RX loops are completed inside the pressure housing

The antenna coils are highly inductive, but this reactance is canceled by appropriately tuning the

capacitors, so the subsequent electronics only see the real part of the antenna impedance, which is

less than 1.5 ohms. The transmitter and receiver PCB’s are designed around 50 ohm impedance,

which creates a requirement for a matching circuit. We investigated the idea of matching with a

combination of capacitors as had been done by UCLA on their TX/RX (see figure below)

88

Figure 84: The matching circuit idea testing and demonstration

We were concerned that downhole temperature would cause the capacitance to change, and our

analysis showed that even small changes in capacitance would significantly impair the impedance

match. So instead, we used a toroid configuration where the primary was the antenna loop and the

secondary would have N turns. The impedance scales as N^2 so only a small number of turns will

be needed. One key difference between transformers at MHz vs low frequency is that the primary

and secondary wires must be wound together (termed “bifilar” winding). The transformer would

not work at all if, say, the primary was on the left and the secondary on the right.

The capacitors are toroids mounted on 3D printed “ASA” plastic so that they would be secured in

position despite any shock and vibration to the tool in the wellbore. That assembly was mounted

onto the bulkhead and then a metal crossover piece was bolted on.

Figure 85: 3D-Printed Capacitor Assembly for Shock and Vibration Resistance in Wellbore

Applications

89

This cross-over provides a crucial link between the inner and outer components of the tool. The

bulk of the tool consists of an ~8 ft long, 3 5/8” diameter pressure housing that holds the battery,

etc. At the base of the 3 5/8” pipe are threads that can engage with threads, and o-rings on the

crossover to provide pressure-tight connection. The interior of the crossover includes connection

points to allow attaching the rest of the chassis. The crossover is shown below attached to the

bulkhead and antennae.

Figure 86: The crossover is attached to the bulkhead and antennae.

The top of the crossover provides a mechanism to add a fiber-glass housing. That housing was

then (partially) filled with RTV. The RTV covered the copper. The purpose of the RTV was two-

fold: partly to protect against vibration and also to provide the antenna with a dielectric constant

more similar to what the tool will see downhole. That way the matching of the antenna would still

be valid downhole.

Figure 87: Fiber-glass housing Assembly with RTV Filling for Vibration Protection and Antenna

Dielectric Matching

90

Looking down at the inside of the crossover you can see the toroids and the plate holding the

capacitors. The capacitors are beneath the plate but their tuning screws are above the plate so the

antenna can be tuned after everything is in place. A long, electrically insulating tuning screwdriver

was used to avoid accidental contact with high voltage.

Figure 88: Internal View of the Crossover Assembly Showing Toroids, Capacitor Plate, and

Tuning Mechanism

The combination of coils, capacitors, and toroids should present an impedance with zero reactance

at the resonant frequency and close to 50 ohms real impedance. We got essentially perfect

agreement on the receiver coil (50.04+0.23j)

Figure 89: Impedance Measurement of the Receiver Coil at Resonant Frequency Using a

Spectrum Analyzer

91

And fair agreement on the transmitter 61.4 + 1.3j. This transmission impedance was very

acceptable because its next component, a MOSFET, could accept VSWR up to 65 and we had

plenty of safety margin on the voltage rating of the capacitors.

Figure 90: Transmitter Impedance Measurement and VSWR Tolerance Analysis with MOSFET

Integration

The MOSFET had a max power rating of 100W but required a heat sink. The MRFAN101 was

commercially available and already attached to an aluminum block. We then mounted that

aluminum onto a block of copper (using thermal paste in between)

Figure 91: MOSFET Heat Sink Assembly: MRFAN101 Mounted on Aluminum and Copper

Blocks for Thermal Management

92

And then that copper block was bolted to the metal crossover, which itself was going to be in good

thermal contact with the 3 5/8” pipe.

Figure 92: Copper Block Mounted to Metal Crossover for Enhanced Thermal Conductivity

The resulting bandwidth on the receiver was very sharp but when the transmitted was activated

measurement circuitry still detected 40MHz, which certainly could not have been coming through

the receiver antenna. It was determined to be a common mode, so we added a third toroid and

wound the coax around that toroid.

Figure 93: Implementation of a Third Toroid to Mitigate Common Mode Interference in the

Receiver

93

And then finally we added the dedicated bandpass filter that had been identified during the

feasibilty phase.

Figure 94: Addition of a 13.56 MHz Bandpass Filter for Signal Optimization

We have previously presented the receiver and transmitter PCB’s. These were mounted onto the

chassis and the chassis secured to the bulkhead with 1/8” roll pins.

Figure 95: Receiver and Transmitter PCBs Mounted on Chassis and Secured to Bulkhead

94

The system is powered by a 30V, 29Ah Lithium battery and we placed an on/off switch at the top

end of the battery.

Figure 96: Fully Assembled System Powered by a 30V, 29Ah Lithium Battery with On/Off

Switch

In addition to the on/off switch, we ran a long USB cable from the receiver PCB to the top of the

chassis so that we could download data without pulling the chassis from the 3 5/8” pipe.

95

Figure 97: Top-End USB Access for Data Retrieval Without Chassis Removal

Lastly, we added an MDM connector to allow communication to a Criterion circuit installed

inside the battery that allows us to depassivate the battery before deployment.

Figure 98: Integration of MDM Connector and Criterion Circuit for Battery Depassivation

Before Deployment

96

Finally, the chassis was loaded into the 3 5/8” pipe.

Figure 99: Chassis Installation into the 3 5/8” Pipe

The lower crossover was torqued in place with spanner wrenches.

Figure 100: Lower Crossover Secured with Spanner Wrenches

97

At the top end, we provide another small sub with threads and o-rings that can be torqued in place

and provide the final pressure seal. At the top of that sub is a thread whose profile was provided

by EOG for attachment to the rope socket on the slickline unit.

Figure 101: Top-End Subassembly with Threads and O-Rings for Final Pressure Seal and Rope

Socket Attachment

And success:

98

Figure 102: Final downhole tool at the pilot testing site for deployment

99

6. PHYSICS- INFORMED AND AI-EMPOWERED I-GEO SENSING FRACTURE

DIAGNOSTIC SOFTWARE PACKAGE DEVELOPMENT, AN OPEN-SOURCE

PYTHON-BASED PACKAGE

6.1. Overview of the i-Geo Sensing

The complete development of the i-Geo Sensing code holds the responsibility of processing the

geo-location data from the sensor in an end-to-end manner. This end-to-end manner is summarized

via the following statements.

- i-Geo Sensing processes the sensor data or it requests a continuous stream of sensor data that

brings the geo-location of the sensors as a triplet (X, Y, Z) coordinate.

- i-Geo Sensing conducts an initial suggestion of the fracture geometry (i.e., expected half-

length, fracture height, and average fracture aperture) via the code’s unsupervised machine

learning (ML) algorithm workflow. This initial suggestion purely relies on the geo-location

data provided by the sensors and does not rely on the properties of the formation(s) the sensors

are injected into.

- i-Geo Sensing conducts possible corrections of the fracture geometry (i.e., the quantities from

the unsupervised ML workflow plus physical-fracture propagation properties) via the code’s

supervised ML workflow. This later correction relies on the properties of the formation(s) the

sensors are injected into.

- i-Geo Sensing provides a secondary Graphical User Interface that connects the user interaction

with the research code that is briefly described above.

6.2. Synthetic case description

To comply with the illustrative purpose of demonstrating the ML workflows, two synthetic

environments are described in this report. The synthetic environment for the unsupervised ML

workflow has a core aim to validate the clustering and fracture planar diagnostic efficacy, and the

environment for the supervised ML workflow has a core aim to validate the calibration, history

matching, and explainability aspects.

6.2.1. For the unsupervised ML workflow

The efficacy of the unsupervised ML workflow is tested by three synthetic fracture networks.

These three synthetic fracture networks are designed based on the 2D scanned core images of

fracture networks subsurface at different measured depths in feet (9490-9493, 9560-9563, 9566-

9569) and different levels of geometry complexity (referred to Figure 103). Figure 103 provides

details of the raw 2D scanned core images (stored in JPEG format). To generate inputs for the

unsupervised ML workflow, the format of the input data is processed as Cartesian coordinates or

transformable to Cartesian coordinates (preferably TXT format). As a result, additional image

processing steps are conducted to achieve the desirable TXT input format.

Core samples’ images are initially imported and transformed into grayscale, which is further

capable of separating irrelevant pixels from fracture networks’ pixels (i.e. “fractured” pixels). In a

gray-sale image, pixels are scaled in their intensity values, which vary in a scale between 0-255.

Initial analysis for a gray-scale image typically starts with its histogram of pixel intensity. The

separation process is performed by Otsu image segmentation. Otsu algorithm chooses the optimal

value from an image’s histogram of pixel intensity and further detaches the image into two

fragments: the main fracture network (which has pixel intensity 255 - white) and irrelevant pixel

100

body (which has pixel intensity 0 - black). Albeit Otsu segmentation can extract the closest version

to the desired base fracture networks, additional algorithms are necessary to extract the desirable

and complete synthetic fracture networks. The supporting algorithms include pixel filling (i.e. fill

fractured pixels into desired voids), fragment separation (i.e. divide a fracture network into smaller

fragments to perform more effective pixel filling), and fractured pixel recovery (i.e. recover a

group of fractured pixels in a fracture’s network fragment).

Desirable fracture networks extracted from the scanned core images are maintained as 2D images

(stored in PVG format). Under the assumption that the propagation of a fracture network is uniform

along the remaining dimension, commercial 3D editing & printing software conducts extension of

the 2D imaging base fracture networks into 3D imaging fracture networks (stored in STL format).

The stored format of the 3D imaging fracture networks is processed and randomly sampled (reflect

the practical aspect of the fact that transmissible SMPs have no specific pattern inside the fracture

networks) to create synthetic input geo-location data from Smart Microchips as Cartesian

coordinates. Figure 104 provides the projected 2D overviews of synthetic 3D imaging fracture

networks used in this study (fracture propagation direction is perpendicular to the projected

images). For design purposes, the synthetic fracture networks in Figure 104 increase complexity

from left to right. The 1st synthetic network (Figure 104, left) is composed of 4 fractures with

almost uniformity in shape. The 2nd synthetic network (Figure 104, middle) is composed of 3

fractures and one smaller network with moderate non-uniformity in shape and low complexity in

branching. The 3rd synthetic network (Figure 104, right) is composed of one fracture and two

smaller networks with non-uniformity in shape and high complexity in branching.

Figure 103: The raw 2D scanned core images used to design synthetic fracture networks

101

Figure 104: 2D projection of the synthetic fracture networks (complexity increases from left to

right)

The unsupervised ML workflow performance is evaluated based on the following criteria:

1. Prediction capability: this is qualitatively defined by the detection of the fracture propagation

direction, geometry complexity (i.e. the clustering’s efficacy to recognize the fractures in the

fracture network), and shape of the predicted geometry (when compared to the synthetic

fracture networks as “ground-truth”).

2. Robustness in execution: this is defined by similarity in prediction for different runs, under the

context of a specified number of transmissible Smart Microchips. This criterion is proposed to

test the stability of unsupervised ML workflow to control any stochasticity. The total

robustness of all transmissible Smart Microchips is defined as Equation (4).

𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
1

𝑁𝑆𝑀𝑃
∑

∑ 𝑅𝑗
𝑁𝑟
𝑖=1

𝑁𝑟

𝑁𝑆𝑀𝑃
𝑗=1 (4)

3. Consistency: this is defined by the remapping capability for the tested fracture network under

the context that not 100% of the Smart Microchips injected subsurface can transmit the geo-

location data back (because of the high temperature, high-pressure condition subsurface). To

evaluate this criterion, 9 separate consistency cases of the number of transmissible Smart

Microchips (between 50-90% of the total Smart Microchips injected, increment of 5%) are

used for each synthetic network. The weighted average of the consistency from the 9 scenarios

represents the overall consistency for each synthetic network. This weighted average is used

based on the convention that the lower percentage of the total injected SMPs incurs more

difficulty (since less data is available). Consistency score is defined as Equations (5) and (6).

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
1

𝑁𝑐𝑎𝑠𝑒
∑ 𝑊𝑖 𝐶𝑖

𝑁𝑐𝑎𝑠𝑒
𝑖=1 (5)

∑ 𝑊𝑖
𝑁𝑐𝑎𝑠𝑒
𝑖=1 = 1 (6)

In Equation (4), 𝑅𝑗 denotes the similarity score between the result from the unsupervised ML

workflow (one run, one Smart Microchip) and the “ground-truth” result from the design of the

synthetic cases. A 𝑅𝑗 value of 0 means dissimilarity and a 𝑅𝑗value of 1 means similarity. 𝑁𝑟 is the

number of runs from the unsupervised ML workflow. 𝑁𝑆𝑀𝑃 is the total number of transmissible

Smart Microchips.

102

In Equation (5), 𝐶𝑖 is the consistency score between the consistency cases. A 𝐶𝑖 value of 0 means

inconsistency between the cases, and a 𝐶𝑖value of 1 means consistency between the cases. 𝑊𝑖 is

the weighting factor for the consistency cases to determine the weighted average (which directly

explains the summation of 1 in Equation (6)).

6.2.2. For the supervised ML workflow

A compositional simulation case for a horizontal well, hydraulically fractured, serves as the

comprehensive test case for the supervised machine learning workflow. An overview of the

reservoir and the single horizontal well (visual provided in ResFrac® academic license) [65] is

provided in Figure 1. 59 geological layers in the reservoir vary between 7500 ft to 8958 ft. A single

well penetrates through the target depth at 8243 ft. Reservoir properties (e.g., minimum horizontal

stresses, porosity, permeability, relative permeability curves) are in the Static Model and Initial

Conditions, Geological Units. A plot of the Young Modulus and Poisson Ratio variation along the

model’s depth is presented in Figure 106. The academic license of ResFrac allows similar plots for

other geological properties in its plot interactive interface.

Figure 105: An overview of the test case for the supervised ML workflow

103

Figure 106: Variation of Young Modulus and Poisson Ratio over the model’s depth

The single horizontal well is injected for a total of 238.07 minutes with an injection pressure of

20000 psi. The injection schedule is presented in Figure 107.

Figure 107: Overview of the injection schedule for the model

After the injection schedule is performed, the well is shut down for an additional 120 minutes and

later is converted into the producer mode. The Bottom Hole Pressure (BHP) and the oil production

rate are presented in Figures 108 and 109, respectively. The data plot in Figure 108 indicates that

the Initial Shut-In Pressure (ISIP) is approximately 5800 psi at close to 20 days of simulation time.

104

Figure 108: Bottom Hole Pressure data for the model’s simulation lifecycle

Figure 109: Oil production rate data for the model’s simulation lifecycle

Since ResFrac® is a coupled fracture-propagation simulator and a reservoir flow simulator,

fracture propagation properties can be visualized along the model’s life cycle along with

conventional reservoir properties (as in Figures 108 and 109). Figure 110 provides the total fracture

aperture in inches at an early propagation time step (left) and a late propagation time step (right).

Figure 111 provides the total proppant volume fraction (dimensionless) at the two similar time

steps as Figure 110. In Figures 110 and 111, the color scale for the specific property (i.e., total

aperture or total proppant volume fraction) is similar across the simulation time in ResFrac, and

henceforth these Figures present the expected observations of proppant transport in the test case.

In the early time steps, the aperture is continuously opened along the wellbore’s perforation

direction, and the amount of injected proppant is not substantial. At the later time steps, the fracture

is gradually closed (i.e., a gradual decrease in fracture aperture), and a substantial amount of

proppant is settled inside the fracture. ResFrac uses a multi-opening fracture tip model to locate

the front of the propagating fracture (Multi-El Tip model), which more details can be found in

[65].

105

Figure 110: Total fracture aperture at early propagation (left) and late propagation (right)

Figure 111: Total proppant volume fraction at early propagation (left) and late propagation

(right)

To test against the supervised ML workflow within the context of this test case, the synthetic Micro

Chips’ data is sampled along the model’s life cycle under the following assumptions:

1. A higher proppant volume fraction indicates a higher density of sensors located. This is

intuitive since the Micro Chips are injected along with the conventional proppants.

2. There is a random “dead rate” of sensors across fracture dynamically, and this dead rate is a

dependent variable on “ground-truth” fracture aperture and fracture pressure (which determine

the confinement stress to the conventional proppant, and intuitively the Micro Chips shall be

exposed to the similar confinement stress).

Besides the synthetic sensor data as the input to the supervised machine learning workflow, other

calibration data such as ISIP, BHPs (as specific time steps), and oil production rates (at specific

time steps) are provided to the supervised ML workflow. The calibration objective is to match the

ISIP, BHP, and oil production rates within an acceptable uncertainty. Further details are provided

in 6.5 and 6.7. From 6.3 and below, geo-location data is the abbreviation of the data from Micro

Chips.

6.3. Intuition in understanding the sensor distribution inside the subsurface fracture

environment

106

Throughout the i-Geo Sensing code, the sensor data is requested/processed in the form of three-

dimensional coordinates, or a normalization from three-dimensional coordinates. Under the

subsurface, the Micro Chips are supposed to be injected into the formation (the 1st assumption in

6.2) Consequently, except for recording geo-location data, the distribution of the Micro Chips

inside the fractures(s) shall have a similar look as Figure 112 for a single fracture (at any point of

time within the lifetime of the reservoir) [32].

Figure 112: Distribution of the MicroChips subsurface (generated from the synthetic

environment)

Coupled with the nature of the proppant distribution inside the fractures, the following statements

can be appropriately declared.

1. Sensors are more concentrated at the locations close to the injection point, and the “density”

of sensors during the lifetime of the reservoir shall follow the pattern of proppant existence

inside the reservoir [32].

2. Since the fractures are propagated with a substantially long half-length and fracture height

dimensions (in the degrees of ft) compared to the aperture (in the degrees of in), sensors are

expected to locate around a planar surface in which their projection of the geo-location data to

that planar surface reveals an approximation of the fracture aperture.

3. Although some Micro Chips are “dead” during the lifetime of the reservoir because of

subsurface environments, the amount of data transferred from the sensors is, naturally,

proportional to a quantity that correlates with the proppant distribution (e.g., proppant volume

fraction).

These 3 statements serve as essential foundations that lead to all further development

understanding and algorithmic thinking of the workflows that exist in the i-Geo Sensing. Each of

the sub-sections below 6.3 reflects one or more of them and is further explained in the sub-section

itself below.

6.4. The unsupervised machine learning workflow

107

The unsupervised ML workflow is a stand-alone module inside i-Geo Sensing that receives the

transmissible, 3D geolocation data. Its architecture is presented in Figure 113 [43, 60]. Reminded

of intuitions 1 and 4 from the previous section, the unsupervised module is designed to characterize

the fracture networks via fracture clusters. Three core algorithms contribute to this module include

Uniform Manifold Approximation and Projection (UMAP) [34, 44], Hierarchical Density-Based

Spatial Clustering of Applications with Noise (HDBSCAN) [35, 54], and Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [35, 54, 56].

UMAP performs dimensional projection of the geo-location data from 3D into a 2D latent space

(or sub-space) for unsupervised clustering. The couple DBSCAN – HDBSCAN forms the

Ensemble Clustering and performs unsupervised clustering in the 2D latent space to identify the

prospective fractures in the fracture network as “fracture clusters”, including propagation

directions and branching complexity. During the unsupervised clustering by the Ensemble

Clustering, the Mixture Clustering Epsilon coefficient is facilitated to control the clustering’s

performance [54].

Figure 113: The unsupervised ML workflow

An immediate challenge to control these hyperparameters in the unsupervised ML workflow is the

fact that hyperparameters in both UMAP and HDBSCAN are typically controlled manually and

empirically based on the specific nature of the input data [34, 44]. In the workflow, applying

geometrical assumptions based on the specific nature of fracture networks’ geo-location data leads

to the following hyperparameter estimations, referred to as Equations (7), (8), (9), and (10).

𝐴 = [

𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

] (7)

𝑑𝑚 = 0.05 ± 5 × 10−3 (8)

𝑘 = 0.1𝑁 ± 100 (9)

𝐶𝑠𝑚 = 𝑆𝑚 = 0.01𝑁 + 𝑛𝑐 (10)

In Equations (7) and (8), N is the number of functional Micro Chips (i.e. the Micro Chips that can

transmit signals). In Equation (10), 𝑛𝑐 is a positive integer, defined as the additional number of

samples to avoid the critical “tiny cluster” and “condensed tree failure” errors while executing

HDBSCAN. 𝑛𝑐 physically represents a control to avoid small clusters of Micro Chips can be

108

grouped as a fracture cluster (in fact they belong to another fracture cluster). Additionally, the

existence of 𝑛𝑐 contributes to minimizing the “noise” classification for the input in HDBSCAN,

since HDBSCAN naturally considers a certain amount of noise in its input data. However, noise

from the geo-location data is minor because almost all transmissible Micro Chips are useful. The

empirical process in this study indicates the value of 𝑛𝑐 ranging between 5 and 15. The evaluation

noise score metric (𝑠𝑁) that is defined as Equation (11).

𝑠𝑁 =
𝑁𝑛𝑜𝑖𝑠𝑒

𝑁
 (11)

In Equation (11), 𝑁𝑛𝑜𝑖𝑠𝑒 is the number of noise data points classified by HDBSCAN. An optimal

hyperparameter set for a specific value of N is the set that minimizes 𝑠𝑁, preferably a zero-

proximity value (to reflect the unavoidable presence of “minor clusters”). The value of N ranges

between 1000-5000 as a practical measure for the number of injected Micro Chips. The target

variable 𝑠𝑁 has a mixture of records between zero and non-zero values.

Figure 114: Processing of the geo-location data for the 1st synthetic fracture network

Figure 4 provides the visualization of the unsupervised ML workflow for the 1st synthetic case in

this study, and all images in Figure 111 are 2D projections from the 3D realizations. From left to

right in Figure 114, the following sub-images are presented: the synthetic fracture network

transmissible data from the Micro Chips, the fracture network’s structure diagnostic, and one

realization of the fracture network exported from the unsupervised ML workflow that has the

closest visual compared to the original synthetic input.

Table 7: Evaluation results for the unsupervised ML workflow (synthetic environment)

Fracture

network

Evaluation criterion

Prediction

capability

Robustness in

execution
Consistency

1 Highly satisfied 100% 100%

2 Satisfied 90% 100%

3 Fairly satisfied 85% 100%

109

Table 7 reveals valuable insights into the unsupervised ML workflow’s performance. The

consistency is achieved at 100% for all synthetic cases, indicating the workflow functionality is

independent of the amount of transmissible Micro Chips. The robustness is achieved at 100% and

90% for the 1st and 2nd synthetic cases, however, is capped at 85% for the 3rd synthetic case.

Therefore, the use of assisted affine transformation is less effective for the high geometry

complexity in the 3rd synthetic case. The rated prediction capability for the 3rd synthetic case falls

behind the other 2 synthetic cases, which solidly prompts further reasoning for the impact of high

geometry complexity on the workflow’s performance.

Figure 115 compares the effect of the affine transformation [41] to the performance of UMAP, and

consequently HDBSCAN in the workflow. As aforementioned, the coupled algorithm is implied

as a matrix to scale the received geo-location data and alter the absolute distances between the

Micro Chips. Affine transformation inherently does not modify the internal structure of the fracture

network. Consequently, raw geo-location data processed by any affine transformations improves

the low-dimensional projection result from UMAP since UMAP is very sensitive to the absolute

distances between neighbors (i.e., the absolute distances between the Micro Chips). Figure 115

compares the effect of using affine transformation and not using affine transformation for the 1st

synthetic case. In figure 115 (left), UMAP with the coupled algorithm reflects the designed

structure of the 1st synthetic fracture network. The projected subspace has viewed 4 clusters

corresponding to the 4 fractures. In contrast, in Figure 115 (right), the standalone UMAP does not

reflect the designed structure of the 1st synthetic fracture network, as the projected subspace is

viewed as three clusters. The two fractures at the bottom of the 1st synthetic case have extreme

proximity, and UMAP is not capable of separating them in the projected subspace without using

affine transformation. A similar effect is observed in the 2nd and 3rd synthetic cases.

Figure 115: Effect of assisted affine transformation on the performance of UMAP in the 1st

synthetic fracture network (with transformation – left, without transformation – right)

6.5. Sensor data profiling

According to the foundations from 6.2, the geo-location data is received as a three-dimensional

“point cloud” that has an arbitrary representative geometry. Although there exist processing

approaches from this three-dimensional point cloud that map the local and/or global spatial

characteristics of the points to the representation of the geometry, these approaches require

extensive computational power to be trained and deployed as scalable proxy models (details about

proxy modeling is later described in 6.9 and 6.10) [47, 48]. Additionally, these approaches are

aimed at developing geometries that are, unfortunately, not representative of fractures subsurface.

110

Therefore, we implement a processing technique in the i-Geo Sensing code to process the sensor

data that is robust and provides scalability for later proxy modeling in 6.9 and 6.10. This technique

is named sensor data profiling. To better understand the technique, it is more illustrative to present

the fracture geometry that comes from the ResFrac® software. This illustration is provided in

Figure 116.

Figure 116: The ground truth fracture geometry (reconstructed from ResFrac® software [50])

One noticeable observation from Figure 116 is that the presented fracture geometry has some

degree of complexity in shapes as it is “curved” along the y-axis (the axis that has a contrast

between the minimum horizontal stresses). This complexity is caused by the non-drastic difference

between the horizontal stresses. Essentially, Figure 116 divides the ground-truth fracture geometry

into uniform regions (namely, fracture elements in ResFrac®), and in each of these elements, there

is a dynamic occupation of Micro Chips. Throughout the lifetime of the reservoir, it is not abnormal

to observe that some of these elements may not have an occupation of Micro Chips. Across the

dimensions of the fracture, the density of Micro Chips per element, or propagation length (i.e.,

half-length), mainly depends on the fracture pressure (which impacts the “dead rate” of the Micro

Chips) and fracture aperture (which determines the cumulation of Micro Chips within the fractures,

similar to conventional proppants). Consequently, i-Geo Sensing creates sensor data profiles that

summarize the fracture aperture (i.e., the y-dimension recording in Figure 116) along the half-

length propagation and the fracture height propagation at any time it receives geo-location data.

Within each time step that i-Geo Sensing receives the geo-location data, it deploys the

unsupervised machine learning workflow to recognize the fracture plane per cluster. Per the

fracture plane, i-Geo Sensing successively determines the smallest dimension in geolocation value

(after normalization to the centroid of the data). For example, Figure 116 indicates the smallest

dimension is the Y dimension, and consequently, X and Z are the larger dimensions. Reminded

that the fracture aperture is a fraction in value compared to the fracture half-length or fracture

height (a fraction of an inch versus hundreds of feet), the smallest dimension is the dimension

holding the fracture aperture information. Per the larger dimension, it is divided into uniform

intervals, and per interval, the average value of the smaller dimension of which the sensors’ larger

111

dimension falls into that interval is computed and averaged. Consequently, the larger dimension

provides a 1D array of values with size [N, 1], in which N is the number of divided intervals, or

namely, the resolution of the profile. There is a maximum of 2 sensor data profiles per time step.

Figure 117 presents a sensor data profile for the half-length dimension between -600 ft and 600 ft

(normalized in ResFrac® around the centroid which is at 0 ft), and with a resolution of 50 intervals.

Figure 117: Sample sensor data profiling

To further illustrate the validity of the information the sensor data profiles provide to the i-Geo

Sensing, Figure 118 presents the sensor data profiling for one larger dimension at two different

time steps. Figure 118 clearly shows that the fracture propagation at the later time step (right) has

a growth on the two “tails” of the profile compared to the initial time step in which the two “tails”

of the profile remain flat (i.e., zero or significantly low value of aperture). Additionally, the later

time step presented in Figure 118 (right) indicates that the fracture is entering its closing phase

(since the profile is lower at the centroid and is higher expanding from the centroid). Sensor data

profiles contribute their usefulness at the proxy deployment phase, which is again, further

described in 6.8 and 6.9.

Figure 118: Sample sensor data profiles at two different time steps

6.6. Calibration of the fracture geometry and history matching from the unsupervised

machine learning workflow

112

As described in 6.3, the unsupervised ML workflow is responsible for suggesting an initial

diagnostic of the fracture geometry. This initial diagnostic is purely based on the geo-location data

and is not informed any further by the reservoir’s characteristics. Consequently, this initial

diagnosis needs to be corrected in realistic scenarios in which field data is available (besides the

geo-location data) [51].

In fracture model calibration, the conventional approach involves matching typical parameters

such as the Initial Shut-In Pressure (ISIP) and “early” after-shut-in pressure. After being calibrated,

the fracture geometry is coupled with a reservoir simulator (in terms of grid/mesh refinement) for

further history matching with the field production data. Under the addition of near-wellbore

fracture geometry data from the Smart Microchips, information about the initial fracture aperture

(𝑤𝑓0) and initial fracture height (𝐻𝑓0) is available. 𝑤𝑓0 and 𝐻𝑓0 are estimated using Single Value

Decomposition (SVD). Consequently, fracture model calibration in the i-Geo Sensing additionally

includes the match for these parameters besides the match for typical parameters mentioned above

(which are conducted once).

Figure 119: Fracture calibration workflow in i-Geo Sensing

In history matching, the conventional approach involves uncertain parameters (e.g., porosity,

permeability & relative permeability curves, and saturation profile), providing the one-time

calibration for the fracture model. Under the addition of sensor data profile(s) per simulation time

step, history matching in i-Geo Sensing uses the sensor data profiles to calibrate the uncertain

parameters. Since i-Geo Sensing facilitates proxy modeling techniques (i.e., estimation of the

response parameter(s) via a surrogate model in replacement of a local derivative estimation),

history matching in the i-Geo Sensing is performed using the global-space optimization algorithm

via Tree Parzen Estimator’s Bayesian Optimizer [63, 64, 66].

The objective function for history matching in i-Geo Sensing is defined as the BHP, flow-

back/production data misfit function(s) (for example, Mean Square Error). After the sensitivity

113

study for all uncertain parameters and initial manual tuning (if necessary), a global search space is

initialized. Per iteration of the optimization loop, the objective function’s metrics are compared

against the previous iteration, and the Tree Parzen Estimator (TPE) measures the Estimation of

Improvement (EI) between the subsequent iterations. The EI further determines the search

direction of all uncertain parameters within the initial search space, until a convergence in the EI

is satisfied. Schematic of the optimization loop is presented in Figure 120.

Figure 120: The Bayesian Optimizer engine used in the i-Geo Sensing

Within the scope of history matching, traditionally simulations are required to run for the

uncertainty quantification metrics and the misfit evaluation. In i-Geo Sensing, this task is speeded

up by using the surrogate modeling inside the supervised ML workflow (quantile-loss Extreme

Gradient Boosting/Gradient Boosting Machine). Details about the proxy models and the

supervised ML workflow are in 6.8 and 6.9.

6.7. Design of Experiment

Through 6.2-6.6, proxy modeling is mentioned as an effective surrogate to estimate the response

parameters without running the specific simulation case at the time of performing fracture

calibration or history matching task. To fully leverage the proxy modeling in the i-Geo Sensing,

Design of Experiment (DoE, [67]) combined with ResFrac® is used. ResFrac® offers the multi-

physics Linear Elastic Fracture Model (LEFM) that is field-scalable, and it has a fracture

propagation simulator coupled with a reservoir flow simulator. Therefore, in this project,

ResFrac® is selected to serve as i-Geo Sensing backend simulators, in a semi-automated manner.

Figure 121 presents the scheme Design of Experiments embedded inside i-Geo Sensing.

The DoE code in the i-Geo Sensing exists as a standalone module, which is responsible for

processing base simulation files from ResFrac®. A ResFrac simulation run requires two simulation

files, named “settings” and “input” text files, both are human readable. ResFrac defines the

simulation model via a system of multiple “entry” variables (in both settings and input files). Each

entry variable holds the variable name, the variable length, and the variable data in this sequential

order. To generate DoE cases in batches and perform fracture model calibration/history matching

studies, i-Geo Sensing’s DoE module is capable of:

114

1. Parse the two simulation files in ResFrac per simulation run into encoded entries and their

corresponding data.

2. Diagnose the optimal variable data type per entry.

3. Connect a DoE case data to the correct entry variable (regardless of its location inside

settings or input files)

4. Re-write the settings and/or input files and batch-run the simulation after the re-written

process.

Figure 121: Design of Experiment generator in i-Geo Sensing

i-Geo Sensing provides the DoE for ResFrac in a semi-automatic because of the limitation of the

ResFrac academic license, and users are still required to submit the simulation jobs to the

ResFrac® server. An illustration of the DoE outcome for fracture geometry realizations is

provided in Figure 122.

Figure 122: An illustration of the DoE for fracture geometry in i-Geo Sensing

The fracture calibration in i-Geo Sensing fully leverages the sensor data sensor data profiles at

(synthetically) recorded time steps. Consequently, the fracture calibration proxy processes the

sensor data profiles, additional fracture propagation properties (if requested by the users), and the

recorded time (converted to dimensionless) as proxy input variables, and a pressure quantity (e.g.,

BHP) as the output variable. The prediction of the pressure quantity is sequentially processed as

115

one of the inputs for the history-matching proxy. Table 8 provides selected parameters to be

facilitated for the test case’s fracture calibration and history matching.

Table 8: The test case’s DoE parameters’ distributions

Parameter Corresponding ResFrac entry Distribution

Residual water

saturation
matrixcurvesets norm (0.2, 0.05)

Residual oil

saturation
matrixcurvesets norm (0.2, 0.05)

Residual gas

saturation
matrixcurvesets

norm (0.03,

0.005)

Relative fracture

toughness

relativefracturetoughnesspersqrt

fracturelengthscale
uniform (0.5, 1)

Figure 123: Visual of the joint plot (DoE’s coverage) between distributions of two parameters

“Sgr” and “Sor”

Figure 123 illustrates a functionality in i-Geo Sensing to visualize 2 distributions of users’ selected

variables simultaneously to determine the DoE efficacy in generating data. The example presented

in Figure 123 indicates that there needs to be further coverage for the two variables at the four

edges of the DoE experimental surface. Figure 124 demonstrates the in-place change of a ResFrac

settings text file(s) (inside the DoE simulation cases) for the ResFrac’s variable named

“relativefracturetoughnesspersqrtfracturelengthscale” after processed through the i-Geo Sensing’s

DoE module.

116

Figure 124: In-place change of ResFrac’s “relativefracturetoughnesspersqrt

fracturelengthscale” entry

Using the DoE module in i-Geo Sensing and the trial parameters in Table 8, a total of 140

realization cases for the 4 conventional DoE parameters and the 50-interval-resolution sensor data

profile are generated to serve the training of the supervised machine learning model. 100

realization cases are selected as the initial data batch to train, and the remaining 40 realization

cases are maintained as the additional backup to Quality Control the training performance.

Table 9: A snapshot of one DoE case

Table 9 provides an overview of a DoE case generated from the i-Geo Sensing, in terms of the

tabular data arrangement. Column-wise and from left to right, i-Geo Senning writes in the

following sequential order: the simulation time (unit is similar to ResFrac result files, typically in

hours), the DoE parameters, the dynamic sensor data profiles (in the X-Y-Z order per interval

resolution, described in Algorithm 1), and the response parameters. For illustration, Table 9 shows

a fraction of a DoE case, as a complete DoE case for the test in 6.2 shall have 150 X-Y-Z columns

117

for the sensor data profiles (a single sensor data profile is used for the test case in 6.2, and it has a

50-interval-resolution, henceforth 150 columns).

6.8. Synthetic data generation, wrangling, and tabulation processing

As a figurative description, the complete data generation and processing for the proxy modeling

using ResFrac® as the back-end simulator is outlined in Figure 125. Provided that the simulation

data stored in ResFrac® for the test case serves as the base case, i-Geo Sensing accesses the

corresponding ResFrac® folder, parses the simulation data files (i.e., settings text file and input

text file in Figure 125) and extracts the ResFrac® entries (i.e., ResFrac® components defining a

specific property in the simulation) that define the complete simulation.

Figure 125: The semi-coupling between ResFrac® and i-Geo Sensing

Per entry defining the simulation, i-Geo Sensing reads the name of the variable representing the

entry, its length, and its value (an example is presented in Figure 124). To create realizations via a

Design of Experiment study, i-Geo Sensing requests the distributions and written location from

the users, in case an entry does not hold a single value (e.g., relative permeability curves). Using

the distributions and write locations provided by the users, i-Geo Sensing creates and stores a

desirable number of simulation realizations locally. Typically, the entries that hold feasible “Design

of Experiment” properties (e.g., fracture propagation properties, fracture confinement properties,

layer-based properties, rock physics) are located in the settings text file and not the input text file.

Therefore, users are strongly discouraged from selecting the entries that belong to the input text

file.

As i-Geo Sensing utilizes the academic license of ResFrac, users need to run simulations in

ResFrac® manually. Fortunately, i-Geo Sensing readily performs in-place changes for the Design

of Experiment properties, therefore users are not required to use the ResFrac® builder interface to

make necessary changes. Users are only required to use the ResFrac® builder interface to import,

save, and run/batch run the realizations created in i-Geo Sensing [63, 65].

After all realizations are finished in ResFrac®, users shall provide the directory in which all

simulations for the realizations are stored locally (similar to Figure 126). i-Geo Sensing accesses

118

all realizations and reads the data files that have fracture elements and flow back/production data.

By default, the fracture elements are stored in the “RawRes” folder, and the flowback/production

data is stored in the “Results” folder. As fracture elements in ResFrac® are recorded at all

simulation time steps, sensor data profile(s) are sampled from the fracture elements as described

in 6.5 and arranged as a 1D data array. Combined with the Design of Experiment data that is stored

previously, i-Geo Sensing generates tabular data that has the columns ordered sequentially as all

the DoE data in the order the users request, the sensor data profile(s), and the calibration/history

matching data. For test case 6.2, the final tabular data (main training source) has a total of 5572

rows and 57 columns.

Figure 126: Sample of a directory in which simulation results for realizations are stored

6.9. Supervised machine learning workflow

Figure 127 presents the complete supervised ML workflow in i-Geo Sensing. In Figure 127, the

“PDFinput” component represents the outcomes from the DoE module, and the grey-shaded

components represent the intervention of the Bayes Optimizer engine (detailed in Figure 120 in

6.6). The remaining and central component of this workflow, “Quantile Boosted Trees”, is further

detailed in 6.9-6.13. As briefly mentioned in 6.2, 6.4, and 6.6, the “Quantile Boosted Trees”

component serves as the proxy modeling that backs the supervised ML workflow.

Recalled from 6.7 and 6.8, the proxy data generation process inside i-Geo Sensing returns tabulated

dataset(s). Consequently, the ML model that backs the supervised ML workflow in i-Geo Sensing

shall have the following characteristics.

1. Highly robustness to tabulated data learning and prediction.

2. Behave consistently in the existence of outliers and abnormality in data.

3. Being resistant to the different scales between input variables (i.e., scaling effect)

4. Highly visualizable and highly explainable.

Under the context that pre-processing for tabulated data is conducted appropriately, classical ML

models are proven to outperform DL models. Besides, several classical ML models have a trait to

be highly explainable to practitioners, in contrast to DL models which are both not highly efficient

and hardly explainable for tabular datasets. Among classical ML models, the model family that

satisfies all three criteria above is the Ensembled Boosted Trees algorithm family (e.g., Gradient

Boosting Machine, XG-Boost). In i-Geo Sensing, GBM and XGB are implemented as the ML

model to back the supervised proxy, and XGB is the default option [68, 69].

119

Figure 127: The supervised machine learning workflow

Figure 128: Visual of a decision tree’s mechanism

GBM and XGB are both foundational from decision tree models, and an example of a decision

tree is presented in Figure 128. Essentially, a decision tree determines internal criteria formed by

the input variable(s) (“f1” and “f4” notations in Figure 128) to split toward the predive traits of the

output variable(s), until no further split is achievable (i.e., a leaf in Figure 128). Decision tree

models are highly interpretable however are prone to unstable behaviors in predictive capabilities.

To mitigate the unstable behaviors from decision trees, ensemble tree models are found, e.g.,

Random Forest (RF), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGB).

These ensemble tree models have a higher level of robustness and are proven to extract meaningful

traits from tabular datasets. In practice, an ensemble tree model may contain hundreds of sub-trees

120

and subsequent learning enhancements to perform a better overall learning outcome (i.e.,

bagging/voting algorithms, as implemented in RF), or to improve the learning outcome from initial

“weak” sub-trees (i.e., boosting algorithms, as implemented in GBM/XGB).

Although GBM and XGB have multiple hyperparameters that control their learning performance,

i-Geo Senning preserves specific hyperparameter controls internally to avoid the “over-boosting

effect” [68]. They include the number of estimators, fraction of sub-samples, learning rate, and the

number of boosting rounds (specific to XGB). Except for the restriction above, the i-Geo Sensing

code provides both a default hyperparameter selection and a customizable approach for

hyperparameter selection from the users.

6.10. ML experimenting in the supervised workflow

Regardless of the ML models that are deployed for prediction, it is never guaranteed that a single

training and validation for a model will lead to deployment. To adopt this philosophy, i-Geo

Sensing implements ML experimenting in joint with the supervised ML workflow, using the

MLflow API [72]. ML experimenting, which is a different concept than DoE mentioned in sub-

section 6, refers to the practice of creating, registering, storing, and deploying ML models through

the versioning control that is similar to code versioning control. A high overview of the ML

experimenting in i-Geo Sensing is provided in Figure 129.

Figure 129: Overview of ML model experimenting design in i-Geo Sensing

In i-Geo Sensing, the code relies on the selected model(s), the provided hyperparameter inputs (if

any), and the number of experiments required to run. Since all ML models in i-Geo Sensing are

regressors, i-Geo Sensing automatically manages all experiments within a local directory named

“mlruns”, and default reloads and deploys the ML model with the optimal evaluation metric(s).

For example, provided that a proxy in i-Geo Sensing is served for history matching purposes, i-

121

Geo Sensing reloads the ML model that has its correct serving purpose and the lowest Mean Square

Error (MSE).

6.11. Probabilistic and continual-training capabilities of the supervised machine learning

proxy

Several ML proxy modeling workflows predict deterministic outputs (i.e., a single output per

input). In i-Geo Sensing, all the ML models that are deployed from the supervised ML workflow

predict probabilistic values based on the predictive distribution of the output variable(s).

Embedded in both GBM and XGB as the i-Geo Sensing central proxy modeling backends, the

supervised ML workflow always predicts a lower bound output (the 5% quantile), a mean output

(the 50% quantile), and a higher bound output (the 95% quantile). This scheme of predictive ability

is possible via the optimization of Pinball Loss, which is formulated as Equation 12 as a conditional

loss function [71].

𝐿𝛼 = (𝑑 − 𝑓) 𝛼 𝒊𝒇 𝑑 ≥ 𝑓, 𝐿𝛼 = (𝑓 − 𝑑) (1 − 𝛼) 𝒊𝒇 𝑑 < 𝑓 (12)

Besides the probabilistic predictive ability as mentioned above, i-Geo Sensing leverages the geo-

location data at the received time via a technique named continual training (which occurs during

the deployment phase of the supervised ML workflow). The synthetic environment is designed to

reflect the reality that geo-location data, once received, becomes ground-truth data that can be used

as training data. Therefore, i-Geo Sensing leverages this benefit to perform the following during

the deployment phase of the supervised ML workflow.

1. As soon as the geo-location data is received, the ML model(s) inside the supervised ML

workflow is deployed for prediction.

2. An immediate computation of the evaluation metric between the prediction and ground-truth

response data is performed.

3. In case the evaluation metric exceeds a tolerance, the incident is reported to i-Geo Sensing.

4. The geolocation data and ground-truth response data are joined with previously trained data,

and the ML model(s) are re-trained and registered for the upcoming time steps.

Typically, continual training is performed at the early time steps, since the deployed ML model(s)

are expected to encounter data drift in reality. As enhancement in continual training progresses,

the re-trained ML model(s) shall adapt to reality and improve their dynamic performance at the

later time steps. Consequently, the number of incident reports to i-Geo Sensing decreases over the

lifetime of deployment.

6.12. Refinement of the supervised proxy inside i-Geo Sensing

In i-Geo Sensing, both fracture calibration and history matching proxies that back the supervised

ML workflow are sequentially refined to optimize their prediction validity. The refinement

progresses through three stages: the initial deterministic model (first round), the optimized quantile

model (second round), and the optimized & continual-trained quantile model (final round).

Provided the test environment for the supervised ML workflow in 6.2, Figures 130, 131, and 132

present the refinement for the fracture calibration proxy which predicts the BHP as an output

variable from the following input variables: geo-location data received time and the sensor data

profiles. Recalled from 6.7, the total number of input variables is 51.

122

Figure 130: BHP proxy, first-round refinement

Figure 131: BHP proxy, second-round refinement

Figure 132: BHP proxy, final-round refinement

In Figures 130-132, the x-axis presents the time (dimensionless), and the y-axis presents the BHP

(dimensionless). i-Geo Sensing automatically pre-processes all input and output variables before

123

training any ML models, commonly via standardization/normalization/scaling methods,

Henceforth, it explains the notation “normalized” and the y-axis scale provided in Figures 130-

133. Figures 130-133 validate that the supervised ML workflow progressively improves to follow

the physical behavior of the output variable. Compared to Figure 130, Figure 131 demonstrates

that the quantile-loss ML model in i-Geo Sensing (specifically in this test, XGB) narrows the

differences between the ground-truth output data and the prediction confidence (the 95%

confidence in Figure 131 at the early time). Compared to Figures 130 and 131, Figure 132

demonstrates that continual training brings benefits later in which there is a drastic drop in the

output variable (the 5% confidence in Figure 132).

The evaluation metric, MSE, is progressively reduced through the optimization rounds from

0.0221 to 0.01382 and eventually to 0.0052 for the first, second, and final rounds, respectively.

Figures 133, 134, and 135 present the refinement for the history matching proxy which predicts

the oil production rate as an output variable from the following input variables: BHP (predicted

from the fracture calibration proxy) and the DoE parameters. Recalled from 6.7, the total number

of input variables is 5.

In Figures 133-135, axes have similar representations as Figures 130-132, and similar observations

are deducted from them compared to Figures 130-132. Compared to Figure 133, Figure 134

demonstrates that the quantile-loss ML model in i-Geo Sensing (specifically in this test, XGB)

narrows the differences between the ground-truth output data and the prediction confidence (the

95% confidence in Figure 134 at the early time). Compared to Figures 130 and 131, Figure 132

demonstrates that continual training brings benefits later in which there is a drastic increase in the

output variable (the 95% confidence in Figure 135 at the later time). The 95% confidence is greatly

improved in the final round refinement, and this improvement covers the failure to predict the oil

rate at the later times (compared to the previous refinement rounds).

The evaluation metric, MSE, is progressively reduced through the optimization rounds from

0.16609 to 0.17814 and eventually to 0.01 for the first, second, and final rounds, respectively.

Figure 133: Oil rate proxy, first-round refinement

124

Figure 134: Oil rate proxy, second-round refinement

Figure 135: Oil rate proxy, final-round refinement

6.13. Supervised workflow explainability

As mentioned in 6.9, GBM and XGB are implemented as the backbone of the supervised module

in i-Geo Sensing. To exceed the explainable capability of these models in i-Geo Sensing, Shapley

Additive Explanation (referred to as SHAP [70]) is embedded as the additional criteria. In i-Geo

Sensing, there are two levels of mode explainability, as outlined in Figure 136.

Figure 136: Different levels of model explainability in i-Geo Sensing

125

The first level of explainability is the training-based level [70]. Since GBM and XGB are used in

i-Geo Sensing, this level of explainability is directly extracted via the ranking plot for Key

Performance Indicators (presented in Figures 137a and 137b for the fracture calibration task). In

Figures 137a and 137b, the x-axis presents the absolute value of an input variable’s weight to the

decision by the boosted trees, and the y-axis presents the names of all input variables. Both Figures

137a and 137b indicate that time is a dominant factor, however, this phenomenon is observable in

case the sensor data profile(s) are not used.

Henceforth, the interest in the model’s explainability comes from the other input variables, i.e., the

variables forming the data sensor profile(s). The input variables for the data sensor profiles in i-

Geo Sensing are encoded in the format of the dimension name followed by the resolution interval

number. In Figures 137a and 137b, the encoding means that the z-dimension data is used (and as

described in 6.3, this dimension discloses information about the fracture aperture). Although there

is not a clear pattern for the base model (Figure 137a), the pattern in Figure 137b is insightful. The

top-ranked profile variables are z0 and z1, indicating that the most-left edge of the fracture

contributes the highest impact to the BHP. The second-top-ranked profile variables are z20 , z17,

z16, z23, z21, z31 , and z35. These profile variables are located approximately in the middle of the

propagated fracture, indicating that the central area of the fracture contributes the second-highest

impact to the BHP.

Albeit different refinements (as in 6.9) may change the order of the resolution interval indexes

slightly, this observation complies with the fracture propagation physics. At the beginning of

propagation, the edges of the fractures tend to open because of an increase in BHP. During the

middle-late propagation, the central area of the fractures, in which the proppant is primarily settled,

holds the fracture pressure and eventually the BHP.

Figure 137a: Key Performance Indicators, the base BHP model

126

Figure 137b: Key Performance Indicators, the final BHP model

Figures 138a and 138b present the Key Performance Indicators for the model that is responsible

for the history-matching task). The axes and their representations in Figures 138a and 138b are

similar to Figures 137a and 137b. For the history-matching task, the model still complies with the

physics during the well production phase, however, the explanation is more straightforward

compared to the fracture-calibration task. BHP plays a major role in controlling the oil rate after

the proppant injection is finished and the well is no longer an injector. Furthermore, the relative

permeability variables contribute more than the fracture propagation variable during production.

Therefore, the ranking for the variable “relative fracture toughness” is lower compared to the

relative permeability variables, and this observation is reflected better in the final model (Figure

138b, in which relative fracture toughness ranked the least important).

Figure 138a: Key Performance Indicators, the base oil rate model

127

Figure 138b: Key Performance Indicators, the final oil rate model

The second level of explainability is the inference-based level [70]. Different from the training-

base level which extracts the feature importance after the model is trained, the inference-based

level extracts the influence direction that a variable embeds into the model when the model is

deployed for a blind test or a new input sample. The influence direction in the context of i-Geo

Sensing includes both the direction and the magnitude.

i-Geo Sensing provides the interpretation for the second-level explainability through two types of

plots: the bee-swarm plot (Figures 139a and 140a) and the waterfall plot (Figures 139b and 140b).

Figures 139a and 139b present the second-level explainability for the fracture calibration proxy.

Per the definition of the second-level explainability, both the fracture calibration and history-

matching proxies are readily trained using the datasets in 6.7 and are now deployed for the

simulation data in the synthetic environment defined in 6.2.

In Figure 139a, the x-axis presents the mean SHAP impact value, and the input variable contributes

to the model’s predictive decision of the output variable (in this case, BHP and oil production rate).

A similar dominance of the time variable is observed in Figure 139a, as this is readily observed in

Figures 137a and 137b. A closer look at the “Feature value” color map, the direction of impact for

the time variable is explained as follows. When the time value is small (blue dots), it positively

influences the BHP, and the magnitude of the influence is moderate. When the time value is high

(magenta dots), it negatively influences the BHP, and the magnitude of influence is lower. A

reflection of the reservoir dynamics in the synthetic environment discloses a similar description.

Within the synthetic environment, at the early times, a change in time value determines a moderate

change in the BHP (since proppant injection and fracture propagation occur at the early times). At

later times when the well enters the producer mode, a smaller or larger change in time value

fluctuates the BHP slightly. Figure 139a, henceforth, highly correlates with Figure 108 in which

the BHP plot from ResFrac® simulator is presented.

128

Figure 139a: – SHAP’s bee-swarm plot for the BHP model

Figure 139b provides a quantitative model inference for the fracture calibration task. The gist

of Figure 139b reveals the contribution of each input variable to the expectation shift of the

model’s prediction from its baseline prediction (reflected by the expected value “E(x)” in the

x-axis). Figure 139b emphasizes the importance of the fracture central area (i.e., the input

variables z29, z14, and z16), as this area almost balances the expectation shift of the model’s

prediction from its baseline to the expectation shift caused by time.

Similar interpretations can be deducted from Figures 140a and 140b, which present the second-

level explainability for the history-matching proxy. An additional insight from Figures 140a

and 140b is that, under the synthetic environment, the DoE parameters play an almost

insignificant role in the predictive behavior of any models. Henceforth it is strongly suggested

that, in the case a user requests these DoE parameters to the i-Geo Sensing, he/she may need

to re-consider a better selection to interpret the dynamics of the studied reservoir.

129

Figure 139b: SHAP’s waterfall plot for the BHP model

Figure 140a: SHAP’s bee-swarm plot for the oil rate model

Figure 140b: SHAP’s waterfall plot for the oil rate model

130

7. SUCCESSFUL FINAL FIELD TESTING (PILOT) IN THE EOG RESOURCES

OPERATED WELL IN NEW MEXICO

Summary

This section of the report details the successful field testing of a novel "Smart Microchip

Proppants" technology for high-precision diagnostics of hydraulic fracture networks. Developed

under Department of Energy award DE-FE0031784, the project was led by the University of

Kansas in partnership with UCLA, MicroSilicon Inc., and field trial operator and cost share

provider EOG Resources Inc.

The pilot test, conducted in August 2024 in Lea County, New Mexico, validated the ability of the

Smart Microchip technology to provide unprecedented high-resolution insights into proppant

placement and fracture mapping. The success of this field trial marks a major milestone in the

development of next-generation direct fracture diagnostic techniques and opens transformative

possibilities for characterizing and managing subsurface systems.

7.1 Pilot Testing Details

 The "Smart Microchip Proppants" technology leverages Smart Microchips that are injected during

a small-scale hydraulic fracturing. These engineered Microchips are designed to withstand the

harsh downhole environment. The built specialized downhole tool is later deployed to remotely

power the embedded microchips and receive their transmitted signals. This enables detailed

mapping of proppant placement and fracture geometry at a resolution of one foot, an unparalleled

level of detail compared to conventional fracture diagnostic methods.

Field Testing Methodology The field trial was executed in the Capella BOP Fed #1 well operated

by EOG Resources in Lea County, New Mexico. Fig.141 is the satellite imagery of the pilot testing

site.

The testing process involved the following key steps:

1. Site Preparation: The well was deepened via a workover rig to the target stimulation

interval of 8765'-8800' in preparation for hydraulic fracturing and Smart Microchip

injection.

The workover rig was deployed on August 13, 2024, to prepare the well for the trial. EOG's

operation team performed several crucial steps, including pulling tubing, deepening the well by

drilling out the shoe, and running a packer and work string. The open hole was drilled with a 4.75"

bit, targeting the interval from 8765' to 8800' for hydraulic fracturing and smart Microchip

injection.

Figure 141(a) and (b) illustrate the wellbore diagram before and after deepening for the pilot

testing.

131

Figure 141: satellite imagery of the pilot testing site (Capella BOP Fed #1)

132

Figure 141: (a: left) and (b: right) - the wellbore diagram before and after deepening for the pilot

testing.

2. Small-scale hydraulic fracturing and Smart Microchip Injection:

Hydraulic fracturing was conducted on August 19, 2024. Over 200 lab-verified Smart Microchip

samples were injected during the stimulation, which involved pumping 56 barrels of fluid at rates

up to 2.2 barrels per minute. Breakdown pressure was approximately 3700 psi, and the well was

shut in at 3300 psi.

To increase robustness against misalignment during deployment, two types of Printed Circuit

Boards (PCBs) were utilized:

1. First Version: Designed and injected for general alignment robustness.

2. Second Version: Featured an upgraded Surface-Mount Device (SMD) inductor serving as

the coil.

The resonance frequencies of the microchips, specifically at 13.56 MHz and 40.68 MHz, were

verified using a Vector Network Analyzer (VNA). Prior to deployment, all samples were validated

using a spectrum analyzer and signal source to ensure optimal performance and reliability.

133

The epoxy encapsulating the microchips was custom ordered to withstand high temperatures and

high pressure, ensuring durability under the well conditions. Over 100 samples of each Smart

Micochips PCBs version were injected into the formation.

Injection Process Details:

• The injection rate was gradually increased to 2.2 barrels per minute (bpm).

• A total of 56 barrels (bbl) of fluid was pumped, which included 5 bbl more than the

calculated well displacement.

• The injection pressure was carefully controlled, avoiding a maximum surface pressure of

4,000 psi to ensure that the bottom hole pressure remained below 9,000 psi.

The details of the HF job and operation are illustrated in Figure 142.

Figure 142: Smart Microchips ready for the injection (200 microchips were injected) (left), Shut-

in pressure of 3300 psi (the middle), and Recorded 3700 psi formation break-down pressure

during the hydraulic fracturing (right)

3. Extended Shut-In Period: To rigorously test microchip resilience, the well was left shut-in

for ten days before initiating chip activation and data collection on August 28, 2024.

On August 19, 2024, the hydraulic fracturing operation was successfully completed, and Smart

Microchips were injected into the formation. Following this, a ten-day silence period was

implemented to allow the well and the system to stabilize fully before proceeding with the

activation of Smart Microchips. This silence period was a deliberate measure to ensure that the

134

microchips were exposed to the harsh downhole environment for a sufficient duration, providing

an opportunity to validate their functionality and durability.

The decision to delay the activation of the Smart Microchips was made to address potential

concerns regarding their long-term survivability. Activating the microchips immediately after

injection would not have provided a complete demonstration of their ability to withstand extreme

conditions over time. By scheduling the activation for August 28, 2024, the team ensured that the

microchips endured realistic downhole conditions, which allowed for a more robust evaluation of

their performance and resilience.

4. Downhole Tool Deployment: A custom-designed downhole tool, encased in 3-5/8" tubing,

was deployed on slickline to TD at 8800 ft. The tool was raised and lowered in three 50 ft

sweeps to activate and collect data from the Smart Microchips.

4.1 Preparation Phase

The preparation for the deployment involved assembling and configuring key components to

ensure a smooth operation. The chassis was securely loaded into a 3 5/8” pipe, a critical step in

preparing the downhole tool for deployment. The lower crossover was torqued into place using

spanner wrenches, providing a firm and reliable connection. At the top end of the assembly, a

small sub equipped with threads and O-rings was installed, ensuring a final pressure seal. This sub

also featured a thread profile supplied by EOG, designed for easy attachment to the rope socket on

the slickline unit.

Figure 143 illustrates the details of the downhole tool preparation for the field deployment.

Figure 143: The chassis was loaded into the 3 5/8” pipe (left), and the lower cross-over was

torqued in place with spanner wrenches. (the middle), and at the top-end, we provided another

small sub with threads and o-rings that can be torqued in place and provide the final pressure

seal. At the top of that sub is a thread whose profile was provided by EOG for attachment to the

rope socket on slickline unit. (right)

135

4.2 Transportation to the Site

The well site was located approximately 30 miles east of Carlsbad, New Mexico, accessible only

by a dirt road. The journey to the site was challenging due to the poor condition of the road, which

caused several vehicles to become stuck and require towing on two separate occasions. Despite

these difficulties, the team successfully reached the wellhead and began the setup process

(Fig.144).

Figure 144: Downhole tool transportation to the wellsite

4.3 Setup and Assembly

Upon arrival, the slickline crew initiated their preparations by verifying the rope socket thread and

mating components on the MicroSilicon tool, ensuring all connections were secure and properly

aligned. The downhole tool was successfully activated during this phase.

However, a minor challenge arose when it was discovered that the lubricator on-site was designed

for a 2 7/8” tool, whereas the deployed tool had a diameter of 3 5/8”. After consulting with the

EOG operations team, it was determined that the well could remain open for a brief period without

risk, allowing the lubricator to be adjusted for proper fit. The lubricator was then carefully placed

above the tool, which was lowered into the well and securely fastened (Fig.145).

Figure 145: Downhole Tool Setup and Assembly Onsite

136

4.4 Well Deployment

The deployment process began with the tool being lowered into the well using the lubricator. As

the lubricator was opened, the wellhead emitted a noticeable "hiss," indicating air was being drawn

into the well. This sound confirmed the safety of proceeding with the deployment.

Once the tool was running, the crew monitored the wire and periodically checked the pressure

gauge to ensure there was no buildup of internal pressure. The descent slowed as the tool

approached the total depth (TD) of 8,800 feet, with the weight on the wire signaling that the tool

had reached the bottom (Figures 146 and 147).

Figure 146: Well deployment of the downhole tool

137

Figure 147: Well deployment of the downhole tool

4.5 Activation of Smart Microchips and Signal Reception

The Smart Microchips were activated successfully during the deployment process. The tool was

maneuvered in the well with sweeps of 50 feet up and down, each lasting approximately 12

minutes. After completing three such sweeps, the crew pulled the tool out of the well and

disconnected it. Upon inspection, the tool's bottom was found to have some mud, but the fiberglass

antenna housing remained completely undamaged, confirming the structural integrity of the tool

(Figure 148).

Figure 148: Downhole tool after the operation is complete.

138

Further analysis revealed no Smart Microchips present in the mud, suggesting that all the

microchips had successfully entered the fractures as intended. When the rope-socket joint was

opened, a page of memory was successfully read, demonstrating that signals had been recorded

during the deployment. Data was downloaded from the tool, and the signal reception was verified,

confirming the effectiveness of the operation.

On the activation date, August 28, 2024, the Smart Microchips transitioned from a zero-energy,

inactive state to a fully powered and operational state (Figure 149). During this activation process,

the microchips were remotely powered and began transmitting signals as designed. This transition

marked a significant milestone, as it demonstrated the microchips' ability to function effectively

in challenging environments while maintaining their structural integrity and operational

capabilities. The ten-day silence period and the subsequent activation of the Smart Microchips

successfully validated their robustness and reliability. This methodical approach ensured that the

microchips could perform as intended under demanding conditions, addressing any potential

concerns about their functionality and long-term durability.

Figure 149: Transition of Smart Microchips from Passive to Active State: Remote Power

Activation and Signal Transmission

7.2 Smart Microchip Signal Reception and Analysis

7.2.1 Successful Signal Reception from Smart Microchip Proppants in the Field

The activation of Smart Microchips in the field yielded significant results, confirming their

successful placement in the created hydraulic fractures. Signals were detected during multiple

sweeps of the downhole tool, validating the robust performance of the microchips under field

conditions. Notably, the microchips were observed at the same location during some sweeps but

not consistently in every sweep. This variation was attributed to the antenna's directional

limitations and potential tool rotation during operation.

A spectrogram analysis revealed three main clusters of signals corresponding to three primary

hydraulic fractures. The y-axis represented frequency, while the x-axis denoted time, highlighting

the distribution and strength of the detected signals (Figure 150).

139

Figure 150: The Most Exciting News: We Received Signals!!!. Three main clusters of signals

transmitted by the Smart Microchips were detected, indicating the presence of three primary

hydraulic fractures.

7.2.2 Interpreted Smart Microchips’ Signal Results

The initially filtered signals from the Smart Microchips demonstrated strong correlations across

eight sweeps. Each sweep corresponded to a different angular position of the downhole tool,

enabling comprehensive 360-degree data capture (Figure 151).

This thorough coverage confirmed the successful placement of the microchips within the hydraulic

fractures. The signal strength, indicative of a high concentration of microchips, provided further

evidence of their distribution within the fractures.

140

Figure 151: Initially filtered frequency versus depth data (y-axis: Frequency, x-axis: Depth)

for all eight sweeps.

The processed signals from Smart Microchips highlight their amplitude versus depth for all eight

sweeps (Figure 152). This data demonstrates strong correlations and consistency, confirming the

successful activation and functionality of the microchips. The consistent patterns reveal hydraulic

fractures with high precision, achieving detailed characterization with an accuracy of just a few

feet. This level of detail signifies a breakthrough in high-resolution hydraulic fracture

characterization.

Figure 152: Processed signals amplitude versus depth for all eight sweeps

141

The processed signals analyzed through the iGeoSensing platform identify key hydraulic fractures.

Using Chebyshev Type I low-pass filters, bandwidth frequency analysis, and adaptive depth

filtering, three main signal clusters were detected at depths of 8,766 ft, 8,780 ft, and 8,788 ft. These

clusters correspond to the primary hydraulic fractures, with the strongest amplitude observed in

the third interval, indicating a higher concentration of microchips (Figure 153).

Figure 153: An example of raw and processed signals (Left and right) for one of the sweeps

These fractures are typically represented as homogeneous and simple in most fracture diagnostic

tools and models, especially for a few feet stimulated intervals.

These insights are typically difficult for operators to achieve, as indirect fracture measurements

often fail to provide this level of high-resolution detail.

142

Such details could not have been observed or diagnosed previously without obtaining core samples

from the hydraulically fractured well which is very unlikely to be obtained in normal operations.

However, this is now possible to get this valuable information at less than 1 ft resolutions with our

Smart Microchips technology.

To demonstrate the importance of the data generated by Smart Microchips, a "base" high-

resolution fracture and numerical simulation model was developed. This model was created using

the ResFrac Simulator, seamlessly integrated with iGeoSensing as its backend.

The models were built using a fine-scale grid size of 1x1x1 foot, enabling simulations of a

100x100x100-foot reservoir volume, amounting to one million grid blocks. The fluid model

applied to the reservoir was a saturated black oil model, ensuring realistic fluid behavior. The

open-hole hydraulic fracture spanned depths between 8,765 feet and 8,800 feet.

The pumping schedule was designed to align with field data, functioning as a mini-fracture

operation. This schedule involved injecting a total slurry volume of up to 55 barrels at a rate of 2.2

barrels per minute to deploy the microchips. The hydraulic fracture properties included a fracture

half-length (Xf) of 10 feet, fracture conductivity (FC) ranging between 8,236 and 8,312 millidarcy-

feet, and fracture height (Hf) of 35 feet.

The simulation accounted for various operational phases, including the mini-fracture, a shut-in

period, and field-informed flow-back stages. Critical fracture geometry parameters, such as

fracture toughness (K), were made adjustable through iGeoSensing’s advanced back-end module,

allowing for fine-tuning and precise modeling.

The base model indicated a homogeneous distribution of the stimulated rock volume across the

entire treated interval. This is typically the standard output reported by simulation engineers for

hydraulic fracturing jobs. However, such models may not fully or accurately capture the

complexity of actual hydraulic fractures, potentially leading to significant overestimations or

underestimations of the predicted flow behavior.

However, the Smart Microchips signals indicate that fracture growth is primarily restricted to the

active and detected depth intervals where hydraulic fractures are generated, with signals detected

at approximately 8766 ft, 8780 ft, and 8788 ft. This suggests non-uniform fracture propagation

across the entire stimulated interval. A similar phenomenon was observed in another project, where

core samples from a hydraulically fractured well revealed heterogeneous fracture initiation. This

included both bi-wing and complex fracture networks within a few feet intervals, which typically

cannot be characterized using conventional fracture diagnostic tools and are often treated as

homogeneous in hydraulic fracturing simulations.

The updated model (Figure 154) leveraged Smart Microchip data to showcase heterogeneous

proppant distributions, replacing the simplified homogeneous assumptions of the base model. The

transmitted signals from microchips allowed adjustments to the fracture model, creating a more

realistic depiction of stimulated intervals. This advanced modeling demonstrates the value of

integrating Smart Microchip data for accurate fracture mapping.

143

Figure 154: Base model: Stimulated interval profile without knowing the Smart Microchips

signals shows homogenous distributions of proppants (left), Simulated heterogeneous proppant

distributions in the updated model, as observed from the Smart Microchips, transmitted signals

(right), and fracture toughness (right) for the high-resolution updated model

New diagnostic plots generated from the iGeoSensing platform highlighted the differences

between the base model (without Smart Microchip input) and the updated model. Dimensionless

flowback type curves demonstrated how microchip-derived data significantly impacted fracture

characterization. The plots showed that higher initial fracture toughness influenced flowback

behavior, with its effect diminishing over time. This diagnostic approach underscores the

importance of incorporating advanced data analytics into hydraulic fracture modeling.

Figure 155: Fracture geometry profiling diagnostic by dimensionless flow back type curves

144

 In summary, the field trial achieved a critical milestone: the successful transmission and reception

of data signals from the downhole Smart Microchips. The key outcomes were:

1. Smart MicoChips Signal Detection: Raw signal data revealed three distinct clusters of

microchip transmissions, indicating the presence and location of hydraulic fractures at

specific depth intervals. The consistent signal detection across multiple tool sweeps at

various orientations confirmed the effective placement and survivability of the microchips.

2. Smart MicoChips Data Processing and Modeling: The raw microchip data was processed

and integrated into a physics-informed AI modeling platform called iGeoSensing. Detailed

analysis of signal amplitudes enabled the resolution of proppant distribution and fracture

geometry at each depth interval at a scale of 1ft which revealed significant vertical

heterogeneity in the proppant distribution, a level of detail previously obtainable only

through extensive coring which is very unlikely to obtain during normal operation.

Conventional fracture diagnostics typically lack the resolution to capture such fine-scale

variability.

3. Diagnostic plots based on Smart MicoChips data: The Smart Microchip data was used to

develop new diagnostic tools, including fracture geometry profiles and dimensionless

flowback curves. These powerful visualizations illustrate the transformative impact of

integrating high-resolution proppant distribution Smart Microchips data into fracture

modeling and simulation.

7.3 Future Applications and Alignment with DOE Priorities

The successful field validation of the Smart Microchip Proppants technology has opened up a wide

horizon of potential applications that align with the strategic priorities of the Department of

Energy's Office of Fossil Energy and Carbon Management:

1. Near wellbore Fracture mapping: Enhance characterization by enabling Smart Microchips

to communicate with each other, amplifying power and signal strength.

2. CCUS (Carbon Capture, Utilization, and Storage): Upgrade Smart Microchips with

chemical sensing capabilities to detect low concentrations of CO2 in monitoring wells. This

early detection of leakage minimizes contamination of underground sources of drinking

water (USDWs) and supports compliance with DOE and EPA Class VI permit

requirements.

3. Hydrogen, CO2, and Natural Gas Transmission Leak Monitoring and Surveillance:

Enhance monitoring and surveillance capabilities for detecting leaks and emissions in

hydrogen, CO2, and natural gas transmission systems with AI-powered unmanned aerial

surveillance equipped with Smart Microchip chemical sensors.

4. Natural Hydrogen Production and Underground Storage Integrity: The next generation of

Smart Microchips, equipped with chemical sensing capabilities, can detect gases such as

CH4, CO2, and H2 in the wellbore. These microchips can be integrated with downhole

membranes for efficient bottom-hole separation of H2 from impurities.

5. Critical Mineral Characterization: Integrating Smart Microchips with advanced EPR,

hyperspectral, and THz spectroscopy could revolutionize in-situ mineral characterization

for optimized critical mineral recovery.

145

8. CONCLUSION

The resoundingly successful field trial of the Smart Microchip Proppants technology represents a

major leap forward in our ability to understand and characterize subsurface fracture systems and

proppant distribution. By enabling proppant mapping and fracture diagnostics at the scale of

individual feet, this novel technology has unlocked an unprecedented level of reservoir insight.

The results of this field test strongly validate Smart Microchips' ability to withstand harsh

downhole conditions while successfully transmitting valuable data to the surface as a novel direct

fracture mapping technology. By integrating this granular data into the open-source, physics-

informed, AI-empowered iGeoSensing modeling platform, comprehensive signal processing was

achieved. These signals were seamlessly converted into meaningful fracture characterization and

flow simulation outcomes through its backend simulators. This approach uncovered previously

unresolvable heterogeneity in hydraulic fracture geometry and proppant placement, providing

unprecedented insights into the complexity of hydraulic fracturing.

The foundational capabilities demonstrated in this field trial will serve as a launch pad for the

development of next-generation subsurface diagnostic technologies aligned with the United States

evolving energy and resource priorities.

With further refinement and adaptation, Smart Microchip technology is poised to play a

transformative role. This includes enhancing near-wellbore fracture mapping, improving wellbore

integrity, and ensuring the security of geologic carbon storage. Additionally, their role in

optimizing the recovery of critical minerals, pipeline integrity, and hydrogen production, storage,

and transport integrity is expected to be game-changing.

This comprehensive capability underscores the versatility and transformative impact of Smart

Microchips, making them an indispensable technology for addressing modern energy challenges.

146

References:

[1] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of wireless sensor

networks: An up-to-date survey,” Appl. Syst. Innov., vol. 3, no. 1, pp. 1–24, Mar. 2020.

[2] H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo, and F. Muralter, “A review

of IoT sensing applications and challenges using RFID and wireless sensor networks,”

Sensors, vol. 20, no. 9, p. 2495, Apr. 2020.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A

survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422, 2002, doi: 10.1016/S1389-

1286(01)00302-4.

[4] P. A. Charlez, Rock Mechanics: Petroleum Applications. Paris, France: Editions Technip,

1997, p. 239.

[5] Modern Shale Gas Development in the United States: A Primer, Ground Water Protection

Council (U.S.), ALL Consulting (Firm), Department of Energy, Office of Fossil Energy, and

National Energy Technology Laboratory, Washington, DC, USA, 2009.

[6] J. C. Reis, Environmental Control in Petroleum Engineering. Houston, TX, USA: Gulf,

1976.

[7] J. H. Le Calvez, R. C. Klem, L. Bennett, A. Erwemi, M. Craven, and J. C. Palacio, “Real-

time microseismic monitoring of hydraulic fracture treatment: A tool to improve completion

and reservoir management,” in Proc. SPE Hydraulic Fracturing Technol. Conf., Jan. 2007.

[8] M. C. Fehler, “Stress control of seismicity patterns observed during hydraulic fracturing

experiments at the Fenton Hill hot dry rock geothermal energy site, New Mexico,” Int. J.

Rock Mech. Mining Sci. Geomech. Abstr., vol. 26, nos. 3–4, pp. 211–219, Jul. 1989.

[9] N. Yekeen, E. Padmanabhan, A. K. Idris, and P. S. Chauhan, “Nanoparticles applications for

hydraulic fracturing of unconventional reservoirs: A comprehensive review of recent

advances and prospects,” J. Petroleum Sci. Eng., vol. 178, pp. 41–73, Jul. 2019.

[10] G. L. Barbruni, P. M. Ros, D. Demarchi, S. Carrara, and D. Ghezzi, “Miniaturised wireless

power transfer systems for neurostimulation: A review,” IEEE Trans. Biomed. Circuits

Syst., vol. 14, no. 6, pp. 1160–1178, Dec. 2020, doi: 10.1109/TBCAS.2020.3038599.

[11] A. Costanzo and D. Masotti, “Energizing 5G: Near- and far-field wireless energy and data

trantransfer as an enabling technology for the 5G IoT,” IEEE Microw. Mag., vol. 18, no. 3,

pp. 125–136, May 2017, doi: 10.1109/MMM.2017.2664001.

[12] A. Aderibigbe, K. Cheng, Z. Heidari, J. Killough, T. Fuss, and W. T. Stephens,

“Detection of propping agents in fractures using mag- netic susceptibility measurements

enhanced by magnetic nanoparticles,” in Proc. SPE Annu. Tech. Conf. Exhib., Oct. 2014, doi:

10.2118/170818- MS.

[13] A. Aderibigbe, K. Cheng, Z. Heidari, J. Killough, and T. Fuss-Dezelic, “Application of

magnetic nanoparticles mixed with propping agents in enhancing near-wellbore fracture

detection,” J. Petroleum Sci. Eng., vol. 141, pp. 133–143, May 2016.

[14] T. Sun, “Study on preparation and performance of nano-ferrofluids used in diagnostic of

hydraulic fracture,” M.S. thesis, Dept. Oil Natural Gas Eng., China Univ. Petroleum, Beijing,

China, 2016.

[15] J. Liu, S. Cao, X. Wu, and J. Yao, “Detecting the propped fracture by injection of magnetic

proppant during fracturing,” Geophysics, vol. 84, no. 3, pp. JM1–JM14, May 2019.

[16] A. A. Al-Shehri, I. F. Akyildiz, J. M. Servin, and H. K. Schmidt, “FracBot technology for

mapping hydraulic fractures,” in Proc. SPE Annu. Tech. Conf. Exhib., Oct. 2017, doi:

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1109/TBCAS.2020.3038599
http://dx.doi.org/10.1109/MMM.2017.2664001
http://dx.doi.org/10.2118/170818-MS
http://dx.doi.org/10.2118/170818-MS

147

10.2118/187196-MS.

[17] A. A. Alshehri, C. H. Martins, S.-C. Lin, I. F. Akyildiz, and H. K. Schmidt,

“FracBot technology for mapping hydraulic fractures,” SPE J., vol. 26, no. 2, pp. 610–626,

Apr. 2021.

[18] W. G. P. Kumari et al., “Hydraulic fracturing under high temperature and pressure

conditions with micro-CT applications: Geothermal energy from hot dry rocks,” Fuel, vol.

230, pp. 138–154, Oct. 2018.

[19] P. L. Dreike, D. M. Fleetwood, D. B. King, D. C. Sprauer, and T. E. Zipperian, “An

overview of high-temperature electronic device technologies and potential applications,”

IEEE Trans. Compon., Packag., Manuf. Technol., A, vol. 17, no. 4, pp. 594–609, Dec. 1994,

doi: 10.1109/95.335047.

[20] D. M. Fleetwood, F. V. Thome, S. S. Tsao, P. V. Dressendorfer, J. Dandini, and J. R.

Schwank, “High-temperature silicon-on- insulator electronics for space nuclear power

systems: Requirements and feasibility,” IEEE Trans. Nucl. Sci., vol. NS-35, no. 5, pp. 1099–

1112, Oct. 1988, doi: 10.1109/23.7506.

[21] P. G. Neudeck, R. S. Okojie, and L.-Y. Chen, “High-temperature electronics—A role for

wide bandgap semiconductors?” Proc. IEEE, vol. 90, no. 6, pp. 1065–1076, Jun. 2002, doi:

10.1109/JPROC.2002.1021571.

[22] T.-H. Chen, L. T. Clark, and K. E. Holbert, “Memory design for high- temperature

radiation environments,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2008, pp. 107–114, doi:

10.1109/RELPHY.2008.4558870.

[23] N. Sadeghi, A. Sharif-Bakhtiar, and S. Mirabbasi, “A 0.007-mm2 108- ppm/◦C 1-MHz

relaxation oscillator for high-temperature applications up to 180 ◦C in 0.13 µm CMOS,”

IEEE Trans. Circuits Syst.I, Reg. Papers, vol. 60, no. 7, pp. 1692–1701, Jul. 2013,

doi: 10.1109/TCSI.2012.2226500.

[24] C. Davis and I. Finvers, “A 14-bit high-temperature E modulator in standard CMOS,”

IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 976–986, Jun. 2003, doi:

10.1109/JSSC.2003.811973.

[25] I. Habibagahi et al., “Vagus nerve stimulation using a miniaturized wirelessly powered

stimulator in pigs,” Sci. Rep., vol. 12, no. 1, p. 8184, May 2022, doi: 10.1038/s41598-022-

11850-0.

[26] A. Ray, I. Habibagahi, and A. Babakhani, “Fully wireless and batteryless localization and

physiological motion detection system for point-of-care biomedical applications,” in Proc.

IEEE Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2022, pp. 26–30.

[27] J. Jang, I. Habibagahi, H. Rahmani, and A. Babakhani, “Wire- lessly powered,

batteryless closed-loop biopotential recording IC for implantable leadless cardiac monitoring

applications,” in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2021, pp. 1–4, doi:

10.1109/BIOCAS49922.2021.9644988.

[28] U. Guler and M. Ghovanloo, “Power management in wireless power-sipping devices: A

survey,” IEEE Circuits Syst. Mag., vol. 17, no. 4, pp. 64–82, 4th Quart., 2017, doi:

10.1109/MCAS.2017.2757090.

[29] B. Razavi, “The role of PLLs in future wireline transmitters,” IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 56, no. 8, pp. 1786–1793, Aug. 2009.

[30] Ray, Arkaprova, and Aydin Babakhani. "A Wirelessly Powered System of Coherent

Sensing Nodes for Fracture Mapping Applications at Temperatures up to 250° C and Pressures

up to 24 MPa." IEEE Sensors Journal 23.10 (2023): 10605-10615.

http://dx.doi.org/10.2118/187196-MS
http://dx.doi.org/10.1109/95.335047
http://dx.doi.org/10.1109/23.7506
http://dx.doi.org/10.1109/JPROC.2002.1021571
http://dx.doi.org/10.1109/RELPHY.2008.4558870
http://dx.doi.org/10.1109/TCSI.2012.2226500
http://dx.doi.org/10.1109/JSSC.2003.811973
http://dx.doi.org/10.1038/s41598-022-11850-0
http://dx.doi.org/10.1038/s41598-022-11850-0
http://dx.doi.org/10.1109/BIOCAS49922.2021.9644988

148

[31] I. Habibagahi, R. P. Mathews, A. Ray and A. Babakhani, "Design and Implementation of

Multisite Stimulation System Using a Double-Tuned Transmitter Coil and Miniaturized

Implants," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 3, pp. 351-354,

March 2023, doi: 10.1109/LMWC.2022.3217519.

[32] Andreas Wuestefeld, Thedor I. Urbancic, Adam Baig, Marc Prince. A decade monitoring

Shale Gas plays using microseismicity: advances in the understanding of Hydraulic

Fracturing. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8-

10 October 2012

[33] Alexander Katashov et.al. Using markers for Production Logging in horizontal gas wells

with multistage hydraulic fracturing. SPE-201624-MS, SPE Annual Technical Conference &

Exhibition, Denver, Colorado, USA, 5 – 7 October 2020.

[34] Becht, E. et al, 2019. Dimensionality reduction for visualizing single-cell data using

UMAP

[35] Claudia Malzer and Marcus Baum. A hybrid approach To Hierarchical Density-based

Cluster Selection. 2020 IEEE International Conference on Multisensor Fusion and Integration

for Intelligent Systems (MFI), Virtual Conference, Sept. 14-16, 2020.

[36] Gustavo A. Ugueto et.al. Application of Integrated Advanced Diagnostics and Modeling to

Improve Hydraulic Fracture Stimulation Analysis and Optimization. SPE-168603, SPE

Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, USA, 4–6

February 2014.

[37] King G.E. Thirsty Years of Gas Shale Fracturing: What Have We Learned? SPE 133456,

SPE Annual Technical Conference and Exhibition, Florence, Italy, Sep 19-22, 2010.

[38] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of

Machine Learning Research 9, p2579-2605., 2008.

[39] Marian Morys, Sergei Knizhnik, Andrew R Duncan, Brady E. Tingey. Advances in

Borehole Imaging in Unconventional Reservoirs. Unconventional Resources Technology

Conference (URTeC), Houston, Texas, USA, 23-25 July 2018.

[40] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Reconstruction.

Eurographics Symposium on Geometry Processing, 2006.

[41] S. C. Shrivastava. A Review on Affine Transformation. International Advanced Research

Journal in Science, Engineering and Technology, Vol3, Issue 8, August 2016.

[42] Soumyadeep Ghosh et.al. Insights into fracture fluid distribution and fracture geometry in

hydraulically fractured horizontal wells through thermal simulations and fiber optics

distributed temperature sensing (FO - DTS) measurements. DOI 10.15530/urtec-2020-3028,

Unconventional Resources Technology Conference, Austin, Texas, USA, 20- 22 July 2020.

[43] Vuong Van Pham et.al. i-GeoSensing Fracture Diagnostic (i-GSFD) For Fast Processing

Of The Smart Microchip Proppants Data. Annual Technical Conference and Exhibition

(ATCE) 2021, Dubai, UAE, 9/21-9/23, 2021.

[44] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding

How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE,

UMAP, TriMAP, and PaCMAP for Data Visualization. Journal of Machine Learning Research

22 (1-73), 7/21/2021.

[45] Andreas Wuestefeld, Thedor I. Urbancic, Adam Baig, Marc Prince. A decade monitoring

Shale Gas plays using micro-seismicity: advances in the understanding of Hydraulic

Fracturing. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8-

10 October 2012

149

[46] Alexander Katashov et.al. Using markers for Production Logging in horizontal gas wells

with multistage hydraulic fracturing. SPE-201624-MS, SPE Annual Technical Conference &

Exhibition, Denver, Colorado, USA, 5 – 7 October 2020.

[47] Biggs, Norman (1993), Algebraic Graph Theory, Cambridge Mathematical Library

(2nd ed.), Cambridge University Press, Definition 2.1, p. 7.

[48] Charles R. Qi* et.al, Point Net: Deep Learning on Point Sets for 3D Classification and

Segmentation. arXiv:1612.00593v2. April 10th, 2017.

[49] Claudia Malzer and Marcus Baum. A hybrid approach To Hierarchical Density-based

Cluster Selection. 2020 IEEE International Conference on Multisensor Fusion and Integration

for Intelligent Systems (MFI), Virtual Conference, Sept. 14-16, 2020.

[50] Gidley, J.L., Holditch, S.A., Nierode, D.E. et al. Three-Dimensional Fracture-Propagation

Models. In Recent Advances in Hydraulic Fracturing, 12. Chap. 5, 95. SPE, 1989.

[51] Gustavo A. Ugueto et.al. Application of Integrated Advanced Diagnostics and Modeling to

Improve Hydraulic Fracture Stimulation Analysis and Optimization. SPE-168603, SPE

Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, USA, 4–6

February 2014.

[52] John Lawson. Design and Analysis of Experiments with R. CRC Press, Taylor & Francis

Group, 2017.

[53] King G.E. Thirsty Years of Gas Shale Fracturing: What Have We Learned? SPE 133456,

SPE Annual Technical Conference and Exhibition, Florence, Italy, Sep 19-22, 2010.

[54] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of

Machine Learning Research 9, p2579-2605., 2008.

[55] Marian Morys, Sergei Knizhnik, Andrew R Duncan, Brady E. Tingey. Advances in

Borehole Imaging in Unconventional Reservoirs. Unconventional Resources Technology

Conference (URTeC), Houston, Texas, USA, 23-25 July 2018.

[56] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu. A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise. 2nd International Conference

on Knowledge Discovery and Data Mining (KDD-96)

[57] Meng Tang, Yimin Liu, and Louis J. Durlofsky, Stanford University. History Matching

Complex 3D Systems Using Deep-Learning-Based Surrogate Flow Modeling and CNN-PCA

Geological Parameterization. SPE Reservoir Simulation Conference, 19 October 2021. SPE-

203924-MS

[58] Michael J. Economides et.al, 2002. Unified Fracture Design: bridging the Gap between

Theory and Practice. Nolte, K.G. and Smith, M.G. Interpretation of Fracturing Pressures. J Pet

Technol 33 (9): 1767–1775, 1981. SPE-8297-PA.

[59] Paul Webster*, Barbara Cox, Mathieu Molenaar; Shell Canada. Developments in

Diagnostic Tools for Hydraulic Fracture Geometry Analysis. Unconventional Resources

Technology Conference (URTeC). Denver, Colorado, USA, 12-14 August 2013.

[60] Vuong Van Pham et.al. i-GeoSensing Fracture Diagnostic (i-GSFD) For Fast Processing of

The Smart Microchip Proppants Data. Annual Technical Conference and Exhibition (ATCE)

2021, Dubai, UAE, 9/21-9/23, 2021.

[61] Sergey Stolyarov, Eduardo Cazeneuve, Karim Sabaa, David Katz, and Junjei Yang, BHGE.

A Novel Technology for Hydraulic Fracture Diagnostics in the Vicinity and Beyond the

Wellbore. SPE Hydraulic Fracturing Technology Conference and Exhibition. Woodlands,

Texas, USA, 5-7 February 2019. SPE-194373-MS

150

[62] James Bergstra, Remi Bardenet, Yoshua Bengio, Balazs Kegl. Algorithms for Hyper-

Parameter Optimization. Advances in Neural Information Processing Systems 24 (NIPS

2011)

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc63

5690-Paper.pdf

[63] Charles A. Kang, Mark W. McClure, Somasekhar Reddy. Description of ResFrac

automated history matching and optimization workflow. Submitted 25th November 2021.

[64] Garrido-Merchan and D. Hernandez-Lobato. Dealing with categorical and integer-valued

variables in Bayesian Optimization with Gaussian processes. Neurocomputing 380 (2020)

20–35.

[65] Mark McClure, Charles Kang, Soma Medam, Chris Hewson, Egor Dontsov, Ankush Singh,

Carlo Peruzzo, Elizaveta Gordeliy. ResFrac technical write-up.

https://arxiv.org/abs/1804.02092. Submitted 6th April 2018, last revised 22nd April 2024.

[66] Hyper-opt documentation. https://hyperopt.github.io/hyperopt/

[67] Sacks, J. and Schiller, S. B., and Welch, W. J. Designs for computer experiments,

Technometrics 31 (1) (1989) 41–47.

[68] Tianqi Chen, Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.

 arXiv:1603.02754.

[69] Friedman, Jerome H. Greedy Function Approximation: A Gradient Boosting Machine.

Annals of Statistics (2001): 1189-1232.

[70] Scott M. Lundberg, Su-In Lee. A Unified Approach to Interpreting Model Predictions.

Advances in Neural Information Processing Systems 30 (NIPS 2017)

[71] Tilmann GNEITING and Adrian E. RAFTERY. Strictly Proper Scoring Rules, Prediction,

and Estimation. Journal of the American Statistical Association March 2007, Vol. 102, No.

477, Review Article DOI 10.1198/016214506000001437

[72] MLflow documentation. https://github.com/mlflow/mlflow

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://arxiv.org/abs/1804.02092
https://hyperopt.github.io/hyperopt/
https://github.com/mlflow/mlflow

151

APPENDIX A: EOG CORE SAMPLES AND LOGS FROM A PLUG-BACK PILOT

BOYD X STATE X STATE #15H – API 30-015-42223-00-00, PADDOCK FORMATION.

Figure A.1.2507-2510 ft interval

Figure A.2. 2507-2510 ft interval

152

Figure A.3 2507-2510 original core and logs in box_IMG_5627

EOG_Boyd_X_STATE_

COM_15H_XMAC_RUN2_ANI.las

EOG_BOYD_X_STATE

_COM_15H_XMAC_RUN1.las

BOYD-X-STATE-COM

-15H_ZDL-CN-DSL-HI-RES_1370-4568_RUN1.las

BOYD-X-STATE-COM

-15H_MREX-FLEX-DSL_1370-4568_RUN1.las

BOYD-X-STATE-COM

-15H_IMAGE_1370-4568_RUN1.las

BOYD-X-STATE-COM

-15H_HDIL-XMAC-GR_1370-4568_RUN1.las

30015422230000_Boy

d 15H_pilot.las

8_BOYDXCOM_RUN2

_HIRES.las

8_BOYDXCOM_RUN2

.las

8_BOYDXCOM_MRE

X_FLEX_RUN2.las

8_BOYDXCOM_MRE

X_BW_REPEAT_RUN2.las

EOG_Boyd_X_STATE_

COM_15H_XMAC_RUN2_DTC_DTS.las

153

Figure A.4 2597-2600

154

APPENDIX B

BOYD STATE #15H (PADDOCK FORMATION)

QUALITY ASSURANCE AND MINERALOGY

Table B.1: Mineralogy testing of the Paddock Formation

155

Figure B.1 2507.50 feet (Top and Side View)

- :)

156

Figure B.2 2507.50 feet (Top and Side View)

 2507.75 feet (Top and Side View)

157

Figure B.3. 2508.25 feet (Top and Side View)

 2508.25feet (Top and Side View)

158

Figure B.4. 2808.50 feet (Top and Side View)

 feet (Top and Side View)

159

Figure B.5. 2808.75 feet (Top and Side View)

 2808.75 feet (Top and Side View)

160

Figure B.6. 2809.50 feet (Top and Side View)

 : 2809.50 feet (Top and Side View)

161

Figure B.7. 2509 feet (Top and Side View)

 2509.75 feet (Top and Side View)

162

Figure B.8. 2597 feet (Top and Side View)

 2597.10 feet (Top and Side View)

163

Figure B.9. 2597.4 feet (Top and Side View)

 2597.40 feet (Top and Side View)

164

Figure B.10. 2597.9 feet (Top and Side View)

2597.90 feet (Top and Side View)

165

Figure B.11. 2600.2 feet (Top and Side View)

2600.20 feet (Top and Side View)

166

Figure B.12. 2600.6 feet (Top and Side View)

2600.60 feet (Top and Side View)

167

Figure B.13. 2600.9 feet (Top and Side View)

2600.90 feet (Top and Side View)

168

APPENDIX C

SHEAR AND COMPRESSIONAL VELOCITY

TESTING PROCEDURES AND RESULTS

BOYD STATE #15H (PADDOCK FORMATION)

Dynamic moduli can be derived from sonic measurement. In this approach, compressional

velocity, Vp, and shear velocity, Vs, are measured with a Pulse Transmission technique with

nominal velocities of 300-500 KHz. The bulk density of each core sample is measured and the

Young’s Modulus, E, Shear Modulus, and Poisson’s Ratio, n, are calculated from the following

equations.

The procedures for conducting laboratory shear and compressional velocity tests are, for the most

part, relatively standardized. The assembled sample and instrumentation fixtures are installed in a

pressure vessel. After this, typical procedures might include the following steps:

• The core plugs are cleaned, evacuated, and allowed to come to thermal and vapor equilibrium

with the atmosphere.

• The sample is then saturated with 25,000 ppm NaCl brine under a pressure of 1,000 psi for 12

hours.

• The samples are then placed in a pressure vessel, confining pressure and pore pressure

increased to 250 psi for five minutes and then released.

• Velocities are measured using the Pulse Transmission technique. The nominal frequency of

the measurements is 500 KHz for the compressional wave velocity and 350 KHz for the shear

wave velocity.

169

Table C.1. Compressional and Shear Wave Velocity Analysis

170

171

Figure C.1: Dynamic E vs Static E

172

APPENDIX D

BOYD STATE #15H (PADDOCK FORMATION)

UN-PROPPED CRACK TESTING

Figure D.1: Un-Propped Crack Test: Paddock Core Set 2, ID-11, (2600.20’)

173

Table D.1: Procedures: Paddock Formation, Core Set 2, ID-11 (2600.20 ft)

Table D.2: Laboratory Data: Paddock Formation, Core Set 2, ID-11 (2600.20 ft)

174

Appendix E Boyd State #15H (Paddock Formation)

Fluid Sensitivity Testing

Figure E.1: Fluid Sensitivity Test: Paddock Formation, Core Set 1, ID-7 (2509.75’)

175

Table E.1 Procedures: Boyd State #15H (Paddock Formation) Core Set 1, ID-7

176

177

178

Table E.2: Lab Data: Boyd State #15H (Paddock Formation) Core Set 1, ID-7

179

Figure E.2: Embedment Test: Paddock Formation, Core Set 1, ID-7 (2509.75’)

Table E.3: Procedures: Embedment Test: Core Set 1, ID-7 (2509.75’)

180

APPENDIX F:

CONSTRUCTING MULTIPLE SYNTHETIC FRACTURE NETWORK MODELS TO

BUILD SYNTHETIC CORES USING 3D PRINTING TECHNOLOGY TO TEST THE

FUNCTIONALITY OF SMART MICROCHIPS FOR FRACTURE MAPPING IN THE

LAB

Synthetic fracture networks are designed based on the 2D scanned core images (JPG format) of

fracture networks subsurface at different measured depths (9490-9493 ft, 9560-9563 ft, 9566-9569

ft) and different levels of geometry complexity. To generate inputs for the i-Geo Sensing, the

format of the input data is required to be Cartesian coordinates or transformable to Cartesian

coordinates (preferably TXT format). As a result, additional image processing steps are further

conducted to achieve the desirable TXT input format.

Core samples’ images are imported and transformed into grayscale, which is further capable of

separating irrelevant pixels from fracture networks’ pixels (i.e. “fractured” pixels). In a gray-sale

image, pixels are scaled in their intensity values, which vary in a scale between 0-255. Initial

analysis for a gray-scale image typically starts with its histogram of pixel intensity. The separation

process is performed by Otsu image segmentation. Otsu algorithm chooses the optimal value from

an image’s histogram of pixel intensity and further detaches the image into two fragments: the

main fracture network (which has pixel intensity 255 - white) and irrelevant pixel body (which has

pixel intensity 0 - black). Albeit Otsu segmentation can extract the closest version to the desired

base fracture networks, supporting algorithms are necessary to extract the desirable and complete

synthetic fracture networks. The supporting algorithms include pixel filling (i.e. filling fractured

pixels into desired voids), pixel sampling (i.e. dividing a fracture network into smaller fragments

to perform more effective pixel filling), and pixel tracking (i.e. recovering a group of fractured

pixels in a fracture’s network fragment).

 Desirable base fracture networks extracted from the scanned core images are maintained as 2D

images (PVG format). Under the assumption that the propagation of a fracture network is uniform

along the remaining dimension, commercial 3D editing & printing software as Blender® conducts

extension of the 2D imaging base fracture networks into 3D imaging fracture networks (STL

format).

The stored format of 3D imaging fracture networks is capable of being seamlessly processed from

Blender® and randomly sampled to create synthetic input geo-sensor data from Smart Microchip

Proppants as Cartesian coordinates. Figure 4 provides the projected 2D overviews of synthetic 3D

imaging fracture networks used in this study. For design purposes, the synthetic fracture networks

in Figure F.2 increase complexity from left to right. The 1st synthetic network (left) is composed

of 4 fractures with almost uniformity in shape. The 2nd synthetic network (middle) is composed of

3 fractures and one smaller network with moderate non-uniformity in shape and low complexity

in branching. The 3rd synthetic network (right) is composed of 1 fracture and two smaller networks

with non-uniformity in shape and high complexity in branching.

181

Figure F.1: Projected 2D overviews of the synthetic fracture networks

Figure F.2: 3D synthetic fracture network from core sample 2

The following final setup of the complex fracture geometry is 3D printed using the high-

temperature material and will be used for the next level laboratory testing of MicroChips with

varying sizes. The 3D-printed synthetic core dimensions are 0.115 m × 0.115 m × 0.15 m (4.5 inch

× 4.5 inch × 5.9 inch).

182

Figure F.3 – 3D printed Synthetic Core with the complex fracture geometry for the Microchips

Testing

183

APPENDIX G:

I-GEO SENSING GRAPHICAL USER INTERFACE

As described throughout in section 6 of this report, i-Geo Sensing contributes two major

algorithmic workflows and one supportive Design of Experiments module. i-Geo Sensing,

additionally, comes with a Graphical User Interface (GUI) that allows users to interact and

analyzes the technical aspects of the embedded workflows. This Appendix G provides a walk-

through of the GUI in i-Geo Sensing.

Inside the code package includes a README.txt file that reads the instructions to install the

appropriate environment (preferably Anaconda 3) to run i-Geo Sensing. As i-Geo Sensing is

written in Python 3.10 and has a web-based interactive interface, the initial launch of the i-Geo

Sensing brings a user a similar capture as in Figure G.1.

Figure G.1: Welcome interface in i-Geo Sensing

The welcome interface in i-Geo Sensing loads the Design of Experiments module by default

(corresponds to 6.7 and 6.8). As seen in the left-sided task bar, users may find the two other

modules: “Fracture Calibration Proxy” and “Receive Sensor & deploy”. The module “Fracture

Calibration Proxy” corresponds to 6.9, 6.10 and 6.11. The module “Fracture Calibration Proxy”

loads the processing of the Micro Chips’ geo-location data in the synthetic environment (presented

as local directory with necessary data as the geo-location data).

 Within the “Design of Experiments” module, users are required to input the module’ project main

directory and the directory which contains the simulation files in ResFrac® (and is considered as

the location of the base case in this module). A base case is provided in the code package for

convenience, named “doe_simulation_2 SOP”. This folder contains all simulation results that are

downloadable from ResFrac® server for the synthetic environment described in 6.2. Users now

may click “Import base file” to allow i-Geo Sensing the access ability to the base case’s folder and

184

click “Read base file” to allow i-Geo Sensing parsing the settings and input text files that define

the base case. (referred to 6.7). The following notification shall pop-up:

Figure G.2: Reading report in -Geo Sensing for the base case

Users are notified, similarly to Figure G.2, that i-Geo Sensing parses the text files successfully and

recognizes the entries encoded in them (referred to 6.7 about the definition of an entry in

ResFrac®). At this point, users may move to the “Identifiable parameters from the base files”

section in the module. In the “Setting file” tab on the left, users now can select the entries that are

preferable to conduct a Design of Experiments study/data generation for the supervised ML

workflow in i-Geo Sensing. For example, selecting the entry “maxtrixcurvesets” brings the users

to Figure G.3.

Figure G.3: An example pop-up window to request the entry’s necessary inputs for data generation

In this pop-up, users are allowed to select an entry (in case more than one entry is selected for data

generation, users are required to select all entries in any order) and select the location that writes

the changes to create new Design of Experiments case. In most of the entries, the location to write

is -1, however some specific entries have multiple locations to write. i-Geo Sensing supports

displaying certain specific entries’ written locations for the users’ convenience (referred to Figure

G.3). In this pop-up, user may see an input named “Input the Design of Experiment parameters”.

185

Users may enter the names of the parameters that are later read by i-Geo Sensing as the parameters

to be used in the supervised ML workflow. For example, in case the users need to study the water

saturation, they may enter “S_wr” in the input box named above. Users shall click “Confirm write

location” per entry to enable the recording of the written locations to i-Geo Sensing. After

completing, users may close this pop-up.

Now users shall move to the “Setting file” tab on the right (Figure G.4) and select the entries one

more time. Note that, under this selection, users shall see the entry list that is selected previously

on the “Setting file” tab on the left, as now i-Geo Sensing limits the selection options to the entries

that users request as being further used for data generation (referred to 6.7). After clicking on

“Select distribution”, a pop-up window as Figure G.5 appears.

Figure G.4: Distribution section in the Design of Experiments module

The list of supported distributions (e.g., normal, log-normal, gamma, beta) are provided as

dropdown in the pop-up window as Figure G.5. As a reminder, an entry may come with multiple

DoE parameters, therefore users shall pay attention in choosing the correct entry and its DoE

parameters, one at a time. In the input box “Input parameters for the distribution”, users have to

provide all required parameters that define the distribution of interest. For example, a normal

distribution must require an input of 2 numbers, i.e., mean and standard deviation, separated by a

comma between the numbers. I-Geo Sensing shall parse the numbers for the users appropriately.

After providing all necessary inputs to define a distribution for a specific DoE parameter, users

shall click “Confirm distribution” to complete the process (per entry, per DoE parameter).

Figure G.5: Pop-up window for distribution of a DoE parameter

186

At this time, i-Geo Sensing receives all required inputs to deploy a batch data generation for a

DoE. Users shall proceed to click on “Generate cases” in the module to open the pop-up for the

DoE execution. This pop-up is similar to Figure G.6. The information displayed in Figure G.6 shall

be straight-forward enough for the users to follow. In Figure G. 6, the input boxes for “Amount”

refers to the amount of DoE cases to be generated in a single batch. The input boxes for “Last

case” and “Batch number” receive any non-negative number, although users are recommended to

input them in a sequential manner when referenced to the previous batch run. For example, in case

a DoE batch run was previously executed to generate 100 cases indexed from 0-100 (batch 0), the

next batch run is expected to generate an additional 100 cases indexed from 101 to 200 (batch 1).

Therefore, users shall input 0 in the box “Ast case” and 1 in the box “Batch number” (provided

that the batch 0 was run previously). After entering all inputs in this pop-up window, users click

“Generate” and expect a wait time for the batch run to finish. After a batch run is executed, users

may find inside the directory provided to save the DoE files, a similar look as Figure G.7.

As described in 6.7, the support of i-Geo Sensing to ResFrac® is semi-automatic, and therefore

users are required to import all generated settings/input files into ResFrac® GUI and batch run the

corresponding simulations to ResFrac® server. Users have to save changes in ResFrac® GUI prior

to submitting the files to the server, otherwise simulations may not be completed properly.

Figure G.6. The pop-up to execute a batch data generation

After all simulations are completed and downloaded from the ResFrac® server, users shall find

simulation results for all generated cases from the current batch run in i-Geo Sensing, under the

folders having naming conventions that are similar to Figure 126. Users may keep those folders

in-place or move to another directory of interest, however users have to provide i-Geo Sensing the

directory of which the folders are located/moved into later in the “Fracture Calibration” module.

187

Figure G.7. An example of generated files post DoE batch run execution

At the bottom of the Design of Experiments module, users find the “Coverage” section. In this

section, users may input the DoE parameters that were previously inputted to generate the recent

batch run, and generate the coverage plot (i.e., a “joint” plot as in Figure 123). This section is

designed to provide users an overview of the current batch run’s efficacy in covering the expected

DoE area for the parameters of study.

Below the “Design of Experiments” module is the “Fracture Calibration Proxy” module (Figure

G.8). This module is essentially central to the supervised ML workflow. Similar to the “design of

Experiments” module, users require to input the project main directory in which all proxy models

are stored and re-loaded, if necessary, and select the task that the supervised ML workflow shall

be trained and deployed for (e.g., fracture calibration or history-matching, referred to 6.9). The

look of the “Fracture Calibration Proxy” module is practically similar to the “Design of

Experiments” module. Therefore, users have a better view of the module’s functionality at this

point.

Figure G.8: The “Fracture Calibration Proxy” module

188

As recalled in the “Design of Experiments” module, users input certain DoE parameters to execute

a batch run. Since the “Fracture Calibration Proxy” module uses the information from the “Design

of Experiments” module, it receives those DoE parameters. Therefore, users shall see them in the

“Select parameter” tab. Next to the “Select parameter” tab is the “Select dataset” tab, in which

users may find all folders that are within the provided project main directory above. Users may

select any of those folders and click “Confirm selection” to request to i-Geo Sensing that the

selected folder(s) shall be used as training and/or validation data.

To ensure that the selected folder(s) mentioned above do have the ResFrac® simulation results

needed to the module, users may click “Validate dataset directory” to confirm. In case the folder

contains necessary data, the pop-up as Figure G.9 appears.

Figure G.9: A successful validation for the selected folder(s)

Recalled in 6.5 regarding the sensor data profiles, the Fracture Calibration Proxy” module provides

a button named “Fracture profile resolution” for the users to click and input the necessary

parameters that define a sensor data profile. They include the minimum & maximum values of the

larger dimensions, and the resolution interval. As common sense in i-Geo Sensing, users shall click

to confirm the inputs prior to existing the pop-up window. At this point, i-Geo Sensing receives

enough information to generate the complete dataset to train and validate the proxy. Users need to

click “Generate proxy dataset” and prompt to wait for a while before this process is complete.

Figure G.10: Input pop-up window for the sensor data profile(s)

After the proxy dataset is generated, users may visualize the properties of the dataset via the

“Validate parameter” and “Validate dataset” tabs. Under the “Validate parameter” tab users may

open a pop-up window to visualize distributions of the DoE parameters, and time series data for

the response parameters (e.g., BHP, production rate). An example is provided in Figure G.12. The

“Validate dataset” is used to provide the users with any abnormality in the generated dataset. In

189

case the dataset has missing values, i-Geo Senning automatically in-place imputes those missing

values.

Figure G.11: Completion notification for the proxy dataset generation

Figure G.12: An overview of the functional hidden in the “Validate parameter” tab

The “Proxy configuration” and “Proxy explanation” sections all refer to 6.9-6.11. Users have the

option to select either the GBM or XGB to back the supervised ML workflow. As mentioned in

6.9, i-Geo Sensing limits certain hyperparameters to be tuned by the users, and consequently users

may only see a subset of the model’s hyperparameters compared to the official model’s

documentation (for example, referred to XGB: https://xgboost.readthedocs.io/en/stable/). For the

ML experimenting functionality (found in “Proxy experiment” and “Proxy visual” tab, users may

select either the “Fit” mode or the “Optimize” mode. The “Fit” mode essentially does not optimize

the hyperparameters via a optimization space, in contrast the “Optimize” mode performs the

optimization for the hyperparameters via an optimization space. Users may expect to access the

model’s explainability in the “Proxy explanation” section, in which plots similar to Figures 137-

140 are provided.

The module “Receive sensor & deploy proxy” module shall automatically process outputs from

both the “Design of Experiments” and the “Fracture Calibration Proxy” modules. Users only need

to provide this module with the directory in which the synthetic Micro Chips’ geo-location data is

stored, and the module shall update periodically. The final proxy performance may look similar to

Figures 133 and 135.

https://xgboost.readthedocs.io/en/stable/

190

APPENDIX H:

I-GEO SENSING CODE EXCERPTS

.fa-chevron-right {

 transition: transform 0.2s ease-in-out 0s;

}

/* rotate the chevron when the open class is applied */

li.open .fa-chevron-right {

 transform: rotate(90deg);

}

.nav li {

 font-size: 18px;

}

.sidebar .nav-link {

 width: 100%;

 max-width: 100%;

 overflow: hidden;

 white-space: nowrap;

 display: flex;

 padding-right:1rem;

 padding-left:1rem;

 padding-top:1rem;

}

import dash

import dash_bootstrap_components as dbc

191

from dash import dcc

from dash import html, dash_table

from dash import Input, Output, State

from dash import callback, callback_context

from dash import DiskcacheManager

from dash.exceptions import PreventUpdate

from dash import callback_context as ctx

from dash import register_page

from dash_bootstrap_components import Tab, Table, InputGroup, Col, Row

from dash_bootstrap_components import Modal, ModalTitle, ModalBody, ModalHeader,

ModalFooter

from dash_bootstrap_components import Placeholder

import diskcache

import os, shutil, time, timeit

import pickle, joblib, jsonpickle

import numpy as np

import pandas as pd

import scipy

from scipy.stats import distributions

from matplotlib import pyplot as plt

import seaborn as sns

import plotly

from plotly import express as px

from plotly import graph_objects as go

192

import hyperopt

from hyperopt import hp, space_eval

from hyperopt.pyll.base import scope

cache = diskcache.Cache("./cache")

background_callback_manager = DiskcacheManager(cache)

from base.base import *

from gui_utils.utils import *

from simulator.base import utils

from simulator.base import regex_templates

from simulator.base import parse

from simulator.simulation.simulation_helpers import *

from DoE.doe.doe_v1 import *

##

#############

################################ Page's main UI callbacks

#################################

##

#############

@callback(

 [Output("doe_main_dir_placeholder", "data")],

 [Input("doe_main_dir_gui", "value"),

193

 Input("doe_import_base_file", "n_clicks")],

 prevent_initial_call=True)

def get_doe_main_directory(main_dir, n_clicks):

 if n_clicks > 0:

 print("Main dir: ", main_dir)

 return [main_dir]

 else:

 raise PreventUpdate

@callback(

 [Output("doe_base_file_placeholder", "data")],

 [Input("doe_base_file_gui", "value"),

 Input("doe_import_base_file", "n_clicks")],

 prevent_initial_call=True)

def get_doe_main_directory(base_file, n_clicks):

 if n_clicks > 0:

 print("Base file: ", base_file)

 return [base_file]

 else:

 raise PreventUpdate

@callback(

 [Output("doe_settings_entry_placeholder", "data"),

 Output("doe_input_entry_placeholder", "data"),

 Output("doe_settings_var_names", "data"),

 Output("doe_input_var_names", "data")],

194

 [Input("doe_main_dir_placeholder", "data"),

 Input("doe_base_file_placeholder", "data"),

 Input("doe_read_base_file", "n_clicks")],

 prevent_initial_call=True)

def read_base_file(main_dir, base_file, n_clicks: int):

 if n_clicks > 0:

 settings_file_name = 'settings_' + base_file + '.txt'

 input_file_name = 'input_' + base_file + '.txt'

 base_file_dir = os.path.join(main_dir, base_file)

 settings_file_dir = os.path.join(base_file_dir, settings_file_name)

 input_file_dir = os.path.join(base_file_dir, input_file_name)

 all_settings_entries = utils.parse_file(file_name=settings_file_dir)

 all_input_entries = utils.parse_file(file_name=input_file_dir)

 #

 parsed_settings_entries = list()

 parsed_input_entries = list()

 for (_, setting_entry) in enumerate(all_settings_entries):

 parsed_ = parse.parse_entry(setting_entry)

 parsed_settings_entries.append(parsed_)

 for (_, input_entry) in enumerate(all_input_entries):

 parsed_ = parse.parse_entry(input_entry)

 parsed_input_entries.append(parsed_)

 #

 settings_file_size = len(all_settings_entries)

 input_file_size = len(all_input_entries)

 #

 settings_var_names = [parse.parse_entry(all_settings_entries[_]).variable_name for _ in

 range(settings_file_size)]

195

 input_var_names = [parse.parse_entry(all_input_entries[_]).variable_name for _ in

range(input_file_size)]

 return jsonpickle.encode(value=parsed_settings_entries), jsonpickle.encode(

 value=parsed_input_entries), settings_var_names, input_var_names

 else:

 raise PreventUpdate

@callback(

 Output("doe_settings_entry_input", "options"),

 Input("doe_settings_var_names", "data"),

 config_prevent_initial_callbacks=True

)

def parse_all_settings_entries(settings_var_names):

 if settings_var_names is not None:

 return settings_var_names

 else:

 raise PreventUpdate

@callback(

 Output("doe_input_entry_input", "options"),

 Input("doe_input_var_names", "data"),

 config_prevent_initial_callbacks=True

)

def parse_all_settings_entries(input_var_names):

 if input_var_names is not None:

 return input_var_names

 else:

196

 raise PreventUpdate

@callback(

 [Output("doe_notify_settings", "children"),

 Output("doe_notify_input", "children")],

 [Input("doe_settings_var_names", "data"),

 Input("doe_input_var_names", "data")],

 State("doe_read_base_file", "n_clicks"),

 config_prevent_initial_callbacks=True

)

def write_doe_read_base_file_report(settings_var_names, input_var_names, n_clicks):

 if n_clicks == 0:

 raise PreventUpdate

 else:

 setting_report = "Total of " + str(len(settings_var_names)) + " entries are parsed."

 input_report = "Total of " + str(len(input_var_names)) + " entries are parsed."

 return setting_report, input_report

@callback(

 Output("doe_settings_write_loc_placeholder", "data"),

 Input("doe_settings_entry_input", "value"),

 config_prevent_initial_callbacks=True

)

def update_settings_write_loc_placeholder(settings_var_names):

 if settings_var_names is not None:

 return settings_var_names

197

 else:

 raise PreventUpdate

@callback(

 Output("doe_settings_write_loc_dropdown", "options"),

 Input("doe_settings_write_loc_placeholder", "data"),

 config_prevent_initial_callbacks=True

)

def update_settings_write_loc_dropdown(settings_var_names):

 if settings_var_names is not None:

 return settings_var_names

 else:

 raise PreventUpdate

@callback(

 Output("doe_settings_write_loc_entry", "children"),

 [Input("doe_settings_write_loc_dropdown", "value"),

 Input("doe_settings_entry_placeholder", "data")],

 config_prevent_initial_callbacks=True

)

def display_settings_write_loc_entry(settings_var_name, settings_entries):

 if settings_var_name is not None:

 settings_entry = None

 settings_entries_ = jsonpickle.decode(settings_entries)

 for (_, settings_entry_) in enumerate(settings_entries_):

 if settings_entry_.variable_name == settings_var_name:

198

 settings_entry = settings_entry_

 if settings_var_name == 'matrixcurvesets':

 matrix_rel_perm = settings_entry.value_struct.value_struct[0]['matrixrelperm'][-1]

 return convert_numpy_to_data_table(matrix_rel_perm, columns=['S_p_full_max',

 'exponent', 'k_r multiplier'])

 elif settings_var_name == 'facieslist':

 facies_list = settings_entry.value_struct.value_struct

 return convert_dict_to_data_table(facies_list, columns=None)

 elif settings_var_name not in irregular_variable_names:

 return str(settings_entry.value_struct.value_struct)

 else:

 # TODO: Complete this to display correct data

 return dash.no_update

 else:

 raise PreventUpdate

@callback(

 Output("doe_params_dist_placeholder", "data"),

 [Input("doe_settings_dist_confirm", "n_clicks"),

 Input("doe_settings_dist_entry_dropdown", "value"),

 Input("doe_settings_dist_params_dropdown", "value"),

 Input("doe_settings_dist_dropdown", "value")],

 State("doe_params_dist_placeholder", "data"),

 config_prevent_initial_callbacks=True

)

def update_all_distributions(n_clicks, entry_name, param_name, dist_name, all_dists):

 print('All distributions: ', all_dists)

199

 if callback_context.triggered_id == "doe_settings_dist_confirm" and n_clicks:

 if bool(all_dists) is False:

 all_dist = {'entry_name': [entry_name], 'param_name': [param_name], 'dist_name':

[dist_name]}

 return all_dist

 else:

 all_dists_ = all_dists

 if 'entry_name' in all_dists_.keys():

 all_dists_['entry_name'] = all_dists['entry_name'] + [entry_name]

 if 'param_name' in all_dists_.keys():

 all_dists_['param_name'] = all_dists['param_name'] + [param_name]

 if 'dist_name' in all_dists_.keys():

 all_dists_['dist_name'] = all_dists['dist_name'] + [dist_name]

 return all_dists_

 else:

 raise PreventUpdate

@callback(

 Output("doe_params_write_locs_placeholder", "data"),

 [Input("doe_settings_write_loc_confirm", "n_clicks"),

 Input("doe_settings_write_loc_dropdown", "value"),

 Input("doe_settings_write_loc_input", "value"),

 Input("doe_settings_params", "value")],

 State("doe_params_write_locs_placeholder", "data"),

 config_prevent_initial_callbacks=True

)

def update_all_write_locations(n_clicks, entry_name, write_loc, param_names, all_write_locs):

 print('All write locations: ', all_write_locs)

200

 if callback_context.triggered_id == "doe_settings_write_loc_confirm" and n_clicks:

 param_names_ = param_names.split(sep=",")

 if bool(all_write_locs) is False:

 return {'entry_name': [entry_name], 'write_loc': [write_loc], 'param_names':

[param_names_]}

 else:

 all_write_locs_ = all_write_locs

 if 'entry_name' in all_write_locs_.keys():

 all_write_locs_['entry_name'] = all_write_locs['entry_name'] + [entry_name]

 if 'param_name' in all_write_locs_.keys():

 all_write_locs_['write_loc'] = all_write_locs['write_loc'] + [write_loc]

 if 'dist_name' in all_write_locs_.keys():

 all_write_locs_['param_names'] = all_write_locs['param_names'] + [param_names_]

 return all_write_locs_

 else:

 raise PreventUpdate

##

#############

################################ Page's modal callbacks

###################################

##

#############

@callback(

 Output("doe_settings_write_loc_modal", "is_open"),

 [Input("doe_settings_entry_write_loc", "n_clicks"),

 Input("doe_settings_write_loc_button", "n_clicks")],

201

 [State("doe_settings_write_loc_modal", "is_open")],

)

def toggle_doe_settings_write_loc_modal(n_write_loc, n_write_loc_modal,

 is_open):

 if n_write_loc or n_write_loc_modal:

 return not is_open

 else:

 return is_open

@callback(

 Output("doe_notify_read_base_file_modal", "is_open"),

 [Input("doe_read_base_file", "n_clicks"),

 Input("doe_notify_read_base_file_button", "n_clicks")],

 [State("doe_notify_read_base_file_modal", "is_open")],

)

def toggle_doe_notify_read_base_file_modal(n_read_base_file, n_read_base_file_modal,

 is_open):

 if n_read_base_file or n_read_base_file_modal:

 return not is_open

 return is_open

@callback(

 Output("doe_settings_dist_modal", "is_open"),

 [Input("doe_settings_entry_dist", "n_clicks"),

 Input("doe_settings_dist_button", "n_clicks")],

 State("doe_settings_dist_modal", "is_open"),

202

)

def toggle_doe_settings_dist_modal(n_dist, n_dist_modal,

 is_open):

 if n_dist or n_dist_modal:

 return not is_open

 else:

 return is_open

@callback(

 Output("doe_case_generator_modal", "is_open"),

 [Input("doe_generate_cases", "n_clicks"),

 Input("doe_case_generator_button", "n_clicks")],

 State("doe_case_generator_modal", "is_open"),

)

def toggle_doe_case_generator_modal(n_case, n_case_modal,

 is_open):

 if n_case or n_case_modal:

 return not is_open

 else:

 return is_open

from base.base import *

from gui_utils.utils import *

from gui_utils.experimental import *

from workflow.surrogate import *

from workflow.objective_function import *

from workflow.calibrate_fracture import *

203

from workflow.history_match import *

from proxy.proxy_experiment import *

##

#############

################################## Page's modal callbacks

#################################

##

#############

@callback(

 Output("frac_cal_frac_profile_modal", "is_open"),

 [Input("frac_cal_profile_res", "n_clicks"),

 Input("frac_cal_frac_profile_button", "n_clicks")],

 [State("frac_cal_frac_profile_modal", "is_open")],

 config_prevent_initial_callbacks=True

)

def toggle_fracture_profile_modal(n_profile_res, n_profile_button, is_open):

 if n_profile_res or n_profile_button:

 return not is_open

 else:

 return is_open

@callback(

 Output("frac_cal_val_data_dir_modal", "is_open"),

204

 [Input("frac_cal_validate_data_dir", "n_clicks"),

 Input("frac_cal_val_data_dir_button", "n_clicks")],

 [State("frac_cal_val_data_dir_modal", "is_open")],

 config_prevent_initial_callbacks=True

)

def toggle_validate_data_dir_modal(n_val_dir, n_val_dir_button, is_open):

 if n_val_dir or n_val_dir_button:

 return not is_open

 else:

 return is_open

@callback(

 Output("frac_cal_generate_data_modal", "is_open"),

 [Input("frac_cal_generate_data", "n_clicks"),

 Input("frac_cal_generate_data_button", "n_clicks")],

 [State("frac_cal_generate_data_modal", "is_open")],

 config_prevent_initial_callbacks=True

)

def toggle_generate_proxy_data_modal(n_gen_data, n_gen_data_button, is_open):

 if n_gen_data or n_gen_data_button:

 return not is_open

 else:

 return is_open

@callback(

 Output("frac_cal_validate_params_modal", "is_open"),

205

 [Input("frac_cal_proxy_config_right_params_validate", "n_clicks"),

 Input("frac_cal_validate_params_button", "n_clicks")],

 [State("frac_cal_validate_params_modal", "is_open")],

 config_prevent_initial_callbacks=True

)

def toggle_validate_proxy_params_modal(n_val_params, n_val_params_button, is_open):

 if n_val_params or n_val_params_button:

 return not is_open

 else:

 return is_open

@callback(

 Output("frac_cal_validate_datasets_modal", "is_open"),

 [Input("frac_cal_proxy_config_right_sources_validate", "n_clicks"),

 Input("frac_cal_validate_datasets_button", "n_clicks")],

 [State("frac_cal_validate_datasets_modal", "is_open")],

 config_prevent_initial_callbacks=True

)

def toggle_validate_proxy_datasets_modal(n_val_data, n_val_data_button, is_open):

 if n_val_data or n_val_data_button:

 return not is_open

 else:

 return is_open

@callback(

 Output("frac_cal_proxy_hyper_params_modal", "is_open"),

206

 [Input("frac_cal_proxy_params_left_confirm", "n_clicks"),

 Input("frac_cal_proxy_hyper_params_button", "n_clicks")],

 [State("frac_cal_proxy_hyper_params_modal", "is_open")],

 config_prevent_initial_callbacks=True

)

def toggle_proxy_hyper_params_modal(n_proxy_params, n_proxy_params_button, is_open):

 if n_proxy_params or n_proxy_params_button:

 return not is_open

 else:

 return is_open

@callback(

 Output("frac_cal_train_proxy_modal", "is_open"),

 [Input("frac_cal_train_proxy", "n_clicks"),

 Input("frac_cal_train_proxy_button", "n_clicks")],

 [State("frac_cal_train_proxy_modal", "is_open")],

 config_prevent_initial_callbacks=True

)

def toggle_train_proxy_modal(n_train, n_train_button, is_open):

 if n_train or n_train_button:

 return not is_open

 else:

 return is_open

@callback(

 Output("frac_cal_proxy_exp_modal", "is_open"),

207

 [Input("frac_cal_proxy_exp_right_confirm", "n_clicks"),

 Input("frac_cal_proxy_exp_button", "n_clicks")],

 [State("frac_cal_proxy_exp_modal", "is_open")],

)

def toggle_proxy_expriment(n_exp, n_exp_button, is_open):

 if n_exp or n_exp_button:

 return not is_open

 else:

 return is_open

##

#############

################################ Page's storage callbacks

#################################

##

#############

@callback(

 Output("frac_cal_project_main_dir_store", "data"),

 Input("frac_cal_proxy_main_dir", "value"),

 config_prevent_initial_callbacks=True

)

def store_project_main_dir(main_dir):

 return main_dir

@callback(

208

 Output("frac_cal_frac_profile_res_store", "data"),

 Input("frac_cal_frac_profile_confirm", "n_clicks"),

 [State("min_hf_length_input", "value"),

 State("max_hf_length_input", "value"),

 State("resolution", "value")],

 config_prevent_initial_callbacks=True

)

def store_fracture_profile_resolution(n_clicks, min_hf, max_hf, res):

 if n_clicks:

 print(min_hf, max_hf, res)

 return {"min_hf": min_hf, "max_hf": max_hf, "res": res}

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_proxy_input_params_store", "data"),

 [Input("frac_cal_proxy_config_input_params_dropdown", "value"),

 Input("frac_cal_proxy_config_input_params_confirm", "n_clicks")],

 config_prevent_initial_callbacks=True

)

def store_proxy_input_params(input_params, n_clicks):

 if n_clicks:

 if experimental_mode:

 return experimental_doe_params

 else:

 return input_params

 else:

209

 raise PreventUpdate

@callback(

 Output("frac_cal_proxy_output_params_store", "data"),

 [Input("frac_cal_proxy_config_output_params_dropdown", "value"),

 Input("frac_cal_proxy_config_output_params_confirm", "n_clicks")],

 config_prevent_initial_callbacks=True

)

def store_proxy_output_params(output_params, n_clicks):

 if n_clicks:

 if experimental_mode:

 return experimental_response_params

 else:

 return output_params

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_data_sources_store", "data"),

 Input("frac_cal_proxy_config_left_sources_confirm", "n_clicks"),

 State("frac_cal_proxy_config_left_sources_dropdown", "value"),

 config_prevent_initial_callbacks=True

)

def store_proxy_data_sources(n_clicks, data_sources):

 if n_clicks:

 return data_sources

210

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_proxy_hyper_params_store", "data"),

 Input("frac_cal_proxy_params_left_confirm", "n_clicks"),

 State("frac_cal_proxy_params_left_dropdown", "value"),

 config_prevent_initial_callbacks=True

)

def store_proxy_hyper_params(n_clicks, hyper_params):

 if n_clicks:

 return hyper_params

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_proxy_hyper_params_dist_store", "data"),

 Input("frac_cal_proxy_hyper_params_confirm", "n_clicks"),

 [State("frac_cal_proxy_hyper_params_name", "value"),

 State("frac_cal_proxy_hyper_params_dist", "value"),

 State("frac_cal_proxy_hyper_params_dist_params", "value"),

 State("frac_cal_proxy_hyper_params_dist_store", "data")],

 config_prevent_initial_callbacks=True

)

def store_proxy_hyper_params_dist(n_clicks, param_name, param_dist, param_dist_params,

all_hyper_params_dists):

 if n_clicks:

211

 param_dist_params_ = param_dist_params.split(sep=",")

 print(param_dist_params_)

 if bool(all_hyper_params_dists) is False:

 all_hyper_params_dists_ = {'param_name': [param_name], 'param_dist': [param_dist],

 'param_dist_params': [param_dist_params_]}

 print("All proxy's hyper-parameters' distributions: ", all_hyper_params_dists_)

 return all_hyper_params_dists_

 else:

 all_hyper_params_dists_ = all_hyper_params_dists

 if param_name not in all_hyper_params_dists['param_name']:

 all_hyper_params_dists_['param_name'] = all_hyper_params_dists['param_name'] + \

 [param_name]

 all_hyper_params_dists_['param_dist'] = all_hyper_params_dists['param_dist'] + \

 [param_dist]

 all_hyper_params_dists['param_dist_params'].append(param_dist_params_)

 all_hyper_params_dists_['param_dist_params'] =

all_hyper_params_dists['param_dist_params']

 else:

 pass

 print("All proxy's hyper-parameters' distributions: ", all_hyper_params_dists_)

 return all_hyper_params_dists_

 else:

 raise PreventUpdate

##

#############

################################ Page's main UI callbacks

#################################

212

################################ Parameter selection

######################################

##

#############

@callback(

 Output("frac_cal_proxy_config_left_sources_dropdown", "options"),

 Input("frac_cal_project_main_dir_store", "data"),

 config_prevent_initial_callbacks=True

)

def extract_proxy_data_sources(main_dir):

 """

 :param main_dir:

 :return:

 """

 print('Main dir to extract: ', main_dir)

 workflows_dir = os.path.join(main_dir, "workflows")

 if os.path.exists(workflows_dir) is True:

 return [f for f in os.listdir(workflows_dir)]

 else:

 return dash.no_update

@callback(

 Output("frac_cal_data_main_dir_text", "children"),

 [Input("frac_cal_project_main_dir_store", "data"),

 Input("frac_cal_data_sources_store", "data")],

213

 config_prevent_initial_callbacks=True

)

def validate_proxy_data_sources(main_dir, data_sources):

 """

 Validate whether the provided data sources have data for the proxy

 :param main_dir:

 :param data_sources:

 :return:

 """

 print('Data sources to extract: ', data_sources)

 workflows_dir = os.path.join(main_dir, "workflows")

 validate_text = ""

 if main_dir is None or data_sources is None:

 raise PreventUpdate

 else:

 for (_, data_source) in enumerate(data_sources):

 data_source_valid = validate_res_frac_workflows_dir(workflows_dir, data_source)

 if data_source_valid:

 validate_text += data_source + " is valid. \n"

 else:

 validate_text += data_source + "is NOT valid. \n"

 return validate_text

@callback(

 Output("frac_cal_generate_data_text", "children"),

 [State("frac_cal_project_main_dir_store", "data"),

 State("frac_cal_frac_profile_res_store", "data"),

214

 State("frac_cal_proxy_input_params_store", "data"),

 State("frac_cal_proxy_output_params_store", "data"),

 State("frac_cal_data_sources_store", "data")],

 Input("frac_cal_generate_data", "n_clicks"),

 background=True,

 running=[(Output("frac_cal_generate_data", "disabled"), True, False),

 (Output("frac_cal_generate_data_button", "disabled"), True, False)

],

 config_prevent_initial_callbacks=True

)

def generate_proxy_datasets(main_dir, fracture_profile,

 doe_params, response_params, data_sources, n_clicks):

 generate_proxy_datasets_text = ""

 if callback_context.triggered_id == "frac_cal_generate_data" and n_clicks > 0:

 fracture_profile_resolution = [float(fracture_profile["min_hf"]),

float(fracture_profile["max_hf"]),

 int(fracture_profile["res"])]

 for (_, data_source) in enumerate(data_sources):

 proxy_data_file = data_source + "_data.csv"

 proxy_data_dir = os.path.join(main_dir, proxy_data_file)

 if os.path.exists(proxy_data_dir):

 proxy_df = pd.read_csv(proxy_data_dir, index_col=0, header=0)

 else:

 result_dir = os.path.join(main_dir, "workflows")

 result_dir = os.path.join(result_dir, data_source)

 result_dir = os.path.join(result_dir, "simulations")

 surrogate_manager = SurrogateDirectory(result_dir=result_dir)

 surrogate_manager.experimental_doe_params = doe_params

215

surrogate_manager.init_fracture_profile(fracture_profile_resolution=fracture_profile_resolution)

surrogate_manager.init_reservoir_response(reservoir_response_var_names=response_params)

 if experimental_mode:

 surrogate_manager.init_experimental_doe_data()

 proxy_df =

surrogate_manager.assemble_surrogate_directory(surrogate_dir=proxy_data_dir)

 generate_proxy_datasets_text_ = "Generate proxy data from source " + data_source + ", "

 generate_proxy_datasets_text_ += " containing " + str(proxy_df.shape[0]) + " rows and "

+ \

 str(proxy_df.shape[-1]) + " columns. "

 generate_proxy_datasets_text += generate_proxy_datasets_text_

 return generate_proxy_datasets_text

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_proxy_config_right_params_dropdown", "options"),

 [Input("frac_cal_proxy_input_params_store", "data"),

 Input("frac_cal_proxy_output_params_store", "data")],

 config_prevent_initial_callbacks=True

)

def retrieve_proxy_input_params(doe_params, response_params):

 if experimental_mode:

 return experimental_doe_params + experimental_response_params

 else:

 return doe_params + response_params

216

@callback(

 Output("frac_cal_proxy_config_right_sources_dropdown", "options"),

 Input("frac_cal_data_sources_store", "data"),

 config_prevent_initial_callbacks=True

)

def retrieve_proxy_data_sources(data_sources):

 if experimental_mode:

 return experimental_data_sources

 else:

 return data_sources

@callback(

 Output("frac_cal_datasets_store", "data"),

 [Input("frac_cal_data_sources_store", "data"),

 Input("frac_cal_project_main_dir_store", "data")],

 config_prevent_initial_callbacks=True

)

def retrieve_datasets(data_sources, main_dir):

 datasets = dict()

 for (_, data_source) in enumerate(data_sources):

 dataset_file = data_source + "_data.csv"

 dataset_dir = os.path.join(main_dir, dataset_file)

 if os.path.exists(dataset_dir):

 df = pd.read_csv(dataset_dir, index_col=0, header=0).to_dict("records")

 datasets[data_source] = df

 else:

217

 pass

 return datasets

@callback(

 Output("frac_cal_validate_doe_params_dropdown", "options"),

 Input("frac_cal_proxy_config_right_params_dropdown", "value"),

 config_prevent_initial_callbacks=True

)

def retrieve_validated_doe_params(params):

 if experimental_mode:

 doe_params_ = list()

 for p in params:

 if p not in experimental_response_params:

 doe_params_.append(p)

 return doe_params_

 else:

 return params

@callback(

 Output("frac_cal_validate_res_params_dropdown", "options"),

 Input("frac_cal_proxy_config_right_params_dropdown", "value"),

 config_prevent_initial_callbacks=True

)

def retrieve_validated_res_params(params):

 if experimental_mode:

 res_params_ = list()

218

 for p in params:

 if p not in experimental_doe_params:

 res_params_.append(p)

 return res_params_

 else:

 return params

@callback(

 Output("frac_cal_validate_case_dropdown", "options"),

 Input("frac_cal_proxy_config_right_sources_dropdown", "value"),

 State("frac_cal_datasets_store", "data"),

 config_prevent_initial_callbacks=True

)

def retrieve_cases(data_source, datasets):

 dataset = pd.DataFrame(data=datasets[data_source])

 cases = dataset['case'].to_numpy()

 cases = list(np.unique(cases))

 print('All cases: ', cases)

 return cases

@callback(

 Output("frac_cal_validate_doe_params_content", "children"),

 [Input("frac_cal_validate_doe_params_dropdown", "value"),

 Input("frac_cal_proxy_config_right_sources_dropdown", "value"),

 Input("frac_cal_validate_doe_params_radio_items", "value")],

 State("frac_cal_datasets_store", "data"),

219

 config_prevent_initial_callbacks=True

)

def visualize_doe_distributions(params, data_source, plot_type, datasets):

 if datasets is None:

 raise PreventUpdate

 else:

 print('DoE params: ', params)

 dataset = datasets[data_source]

 if plot_type == "Single parameter":

 fig = px.histogram(dataset, x=params[0])

 graph_id = params[0] + '_dist_plot'

 return dcc.Graph(figure=fig, id=graph_id)

 elif plot_type == "Two parameters":

 param_0 = params[0]

 param_1 = params[1]

 graph_id = params[0] + '_' + params[1] + '_joint_plot'

 fig = px.scatter(dataset, x=param_0, y=param_1, marginal_x="histogram",

 marginal_y="histogram")

 return dcc.Graph(figure=fig, id=graph_id)

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_validate_res_params_content", "children"),

 [Input("frac_cal_proxy_config_right_sources_dropdown", "value"),

 Input("frac_cal_validate_res_params_dropdown", "value"),

 Input("frac_cal_validate_case_dropdown", "value")],

220

 State("frac_cal_datasets_store", "data"),

 config_prevent_initial_callbacks=True

)

def visualize_res_distributions(data_source, params, case, datasets):

 dataset = pd.DataFrame(datasets[data_source])

 dataset = dataset[dataset['case'] == case]

 if len(params) != 1:

 raise PreventUpdate

 else:

 print('Response params: ', params)

 fig_title = 'Response variable plot, ' + params[0]

 graph_id = params[0] + '_res_plot'

 fig = go.Figure()

 fig.add_trace(go.Scatter(x=dataset.loc[:, 'surrogate_time'],

 y=dataset.loc[:, params[0]], mode='lines'))

 fig.add_trace(go.Scatter(x=dataset.loc[:, 'surrogate_time'],

 y=dataset.loc[:, params[0]], mode='markers'))

 fig.update_layout(title=fig_title)

 fig.update_xaxes(title_text='Surrogate time')

 fig.update_yaxes(title_text=params[0])

 return dcc.Graph(figure=fig, id=graph_id)

@callback(

 Output("frac_cal_validate_datasets_content", "children"),

 Input("frac_cal_proxy_config_right_sources_dropdown", "value"),

 [State("frac_cal_project_main_dir_store", "data"),

 State("frac_cal_datasets_store", "data")],

221

 config_prevent_initial_callbacks=True

)

def validate_datasets(data_source, main_dir, datasets):

 dataset = pd.DataFrame(datasets[data_source])

 validate_text = ""

 if dataset.isnull().values.any():

 num_na = dataset.isna().sum().sum()

 dataset_ = dataset.fillna(value=0, inplace=False)

 dataset_file_ = data_source + '_data_.csv'

 dataset_dir_ = os.path.join(main_dir, dataset_file_)

 dataset_.to_csv(dataset_dir_)

 validate_text += "Data source at " + data_source + " has " + str(num_na) + " nan values. " \

 "In-place correction is made."

 return validate_text

 else:

 dataset_ = dataset

 dataset_file_ = data_source + '_data_.csv'

 dataset_dir_ = os.path.join(main_dir, dataset_file_)

 dataset_.to_csv(dataset_dir_)

 raise PreventUpdate

##

#############

################################ Page's main UI callbacks

#################################

################################ Proxy configuration

######################################

##

#############

222

@callback(

 Output("frac_cal_proxy_params_left_dropdown", "options"),

 Input("frac_cal_proxy_model_confirm", "n_clicks"),

 State("frac_cal_proxy_model_left_dropdown", "value"),

 config_prevent_initial_callbacks=True

)

def retrieve_proxy_hyper_params(n_clicks, model_name):

 if n_clicks:

 if model_name == "GBM":

 return gbm_hyper_params

 elif model_name == "XGB":

 return xgb_hyper_params

 else:

 return default_hyper_params

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_proxy_hyper_params_name", "options"),

 Input("frac_cal_proxy_hyper_params_store", "data"),

 config_prevent_initial_callbacks=True

)

def update_proxy_hyper_params(hyper_params):

 return hyper_params

223

@callback(

 Output("frac_cal_proxy_hyper_params_content", "children"),

 Input("frac_cal_proxy_hyper_params_confirm", "n_clicks"),

 [State("frac_cal_proxy_hyper_params_name", "value"),

 State("frac_cal_proxy_hyper_params_dist", "value"),

 State("frac_cal_proxy_hyper_params_dist_params", "value")],

 config_prevent_initial_callbacks=True

)

def visualize_proxy_hyper_params_dist(n_clicks, param_name, param_dist, param_dist_params):

 if n_clicks:

 print("Dist for: ", param_name, param_dist)

 param_dist_params_ = param_dist_params.split(sep=",")

 param_dist_params_ = [float(_) for _ in param_dist_params_]

 if param_dist == "uniform":

 param_dist_generator = distributions.uniform(param_dist_params_[0],

param_dist_params_[-1])

 param_dist_data = param_dist_generator.rvs(1000)

 elif param_dist == "normal":

 param_dist_generator = distributions.norm(param_dist_params_[0],

param_dist_params_[-1])

 param_dist_data = param_dist_generator.rvs(1000)

 else:

 param_dist_generator = distributions.lognorm(param_dist_params_[0],

param_dist_params_[-1])

 param_dist_data = param_dist_generator.rvs(1000)

 param_dist_data = pd.DataFrame({param_name: param_dist_data})

 fig = px.histogram(data_frame=param_dist_data, x=param_name)

 graph_id = param_name + '_distribution'

 return dcc.Graph(figure=fig, id=graph_id)

224

 else:

 raise PreventUpdate

@callback(

 [Output("frac_cal_proxy_exp_inputs", "options"),

 Output("frac_cal_proxy_exp_outputs", "options")],

 Input("frac_cal_proxy_config_right_params_validate", "n_clicks"),

 State("frac_cal_proxy_config_right_params_dropdown", "value"),

 config_prevent_initial_callbacks=True

)

def retrieve_proxy_exp_params(n_clicks, proxy_params):

 if n_clicks:

 return proxy_params, proxy_params

 else:

 raise PreventUpdate

@callback(

 Output("frac_cal_proxy_exp_content", "children"),

 # Button to execute the proxy experiment run(s)

 Input("frac_cal_proxy_exp_exec", "n_clicks"),

 [# Type of proxy task

 State("task_to_use_proxy", "value"),

 # Type of proxy

 State("frac_cal_proxy_exp_proxy_type", "value"),

 # Fit or Optimize this experiment

 State("frac_cal_proxy_exp_right_dropdown", "value"),

225

 # Proxy's hyper-parameter distributions

 State("frac_cal_proxy_hyper_params_dist_store", "data"),

 # Define the experiment

 State("frac_cal_proxy_exp_dir", "value"),

 State("frac_cal_proxy_exp_name", "value"),

 State("frac_cal_proxy_exp_description", "value"),

 # Define the run

 State("frac_cal_proxy_exp_run_name", "value"),

 State("frac_cal_proxy_exp_model_folder", "value"),

 State("frac_cal_proxy_exp_artifact_folder", "value"),

 # Data sources, inputs and outputs

 State("frac_cal_proxy_exp_inputs", "value"),

 State("frac_cal_proxy_exp_outputs", "value"),

 State("frac_cal_data_sources_store", "data"),

 State("frac_cal_project_main_dir_store", "data")

], config_prevent_initial_callbacks=True

)

def run_proxy_exp(n_clicks, proxy_task, proxy_type,

 exp_mode, hyper_params_dists,

 exp_dir, exp_name, exp_description,

 run_name, model_folder, artifact_folder,

 input_variables, output_variables, data_source, main_dir):

 if n_clicks:

 # Create data object (XGBDataset)

 print('Create data object ...')

 dataset_file = data_source + '_data_.csv'

 dataset_dir = os.path.join(main_dir, dataset_file)

 df = pd.read_csv(dataset_dir, index_col=0, header=0)

226

 df_cols = list(df.columns)

 data_object = XGBDataset(df=df)

 fracture_profile_cols = list()

 for col in df_cols:

 if 'z_' in col:

 fracture_profile_cols.append(col)

 if proxy_task == "Fracture geometry calibration":

 data_object.x_cols = data_object.time_param + fracture_profile_cols

 else:

 data_object.x_cols = input_variables

 data_object.y_cols = output_variables

 # Create proxy object (QuantileXGBRegressor)

 print('Create proxy object ...')

 proxy_object = QuantileXGBRegressor(xgb_data=data_object)

 # Create MLFlowProxyWrapper

 print('Create proxy wrapper object ...')

 proxy_wrapper = MLFlowProxyWrapper(proxy=proxy_object)

 # Create hyper-parameter space

 print('Create space ...')

 space, proxy_exp_mode = create_proxy_hyper_params_space(hyper_params_dists,

proxy_type, exp_mode)

 # Create experiment object

 print('Create experiment object ...')

 experiment_object = ProxyExperiment(mlflow_proxy_wrapper=proxy_wrapper)

 experiment_object.experiment_dir = exp_dir

 experiment_object.experiment_name = exp_name

 experiment_object.experiment_description = exp_description

 experiment_object.experiment_mode = proxy_exp_mode

 print('Execute the experiment & run ...')

227

 # Execute experiment & corresponding run

 if proxy_exp_mode == 'fit':

 experiment_object.log_new_fit_experiment(run_name, model_folder, artifact_folder,

space)

 else:

 experiment_object.log_new_opt_experiment(run_name, model_folder, artifact_folder,

space)

 else:

 raise PreventUpdate

##

#############

################################ Page's main UI callbacks

#################################

################################## Proxy explanation

######################################

from base.base import *

def toggle_collapse(n, is_open):

 if n:

 return not is_open

 return is_open

def set_navitem_class(is_open):

 if is_open:

 return "open"

228

 return ""

def set_sidebar(app: dash.Dash):

 app.callback(

 Output("doe_sidebar_collapse", "is_open"),

 [Input("doe_sidebar", "n_clicks")],

 [State("doe_sidebar_collapse", "is_open")],

)(toggle_collapse)

 app.callback(

 Output("doe_sidebar", "className"),

 [Input("doe_sidebar_collapse", "is_open")],

)(set_navitem_class)

 app.callback(

 Output("frac_cal_sidebar_collapse", "is_open"),

 [Input("frac_cal_sidebar", "n_clicks")],

 [State("frac_cal_sidebar_collapse", "is_open")],

)(toggle_collapse)

 app.callback(

 Output("frac_cal_sidebar", "className"),

 [Input("frac_cal_sidebar_collapse", "is_open")],

)(set_navitem_class)

 app.callback(

 Output("proxy_deploy_sidebar_collapse", "is_open"),

229

 [Input("proxy_deploy_sidebar", "n_clicks")],

 [State("proxy_deploy_sidebar_collapse", "is_open")],

)(toggle_collapse)

 app.callback(

 Output("proxy_deploy_sidebar", "className"),

 [Input("proxy_deploy_sidebar_collapse", "is_open")],

)(set_navitem_class)

from DoE.doe.utils import *

from simulator.base.entry import *

"Connection" classes to create and write new ResFrac simulation files

Using the classes:

1. Entry: allow integrating with ResFrac entry system

2. ValueStruct: allow altering the data in a specific entry

class Distribution(object):

 # TODO: Set-up class to manage all DoE distributions (that alter value_struct

 # in a ResFrac's entry

 def __init__(self, entry: Entry):

 super(Distribution, self).__init__()

 self.entry = entry

 def verify_entry(self, expected_variable_name: str):

230

 try:

 assert self.entry.variable_name == expected_variable_name

 except AssertionError:

 warnings.warn('Incorrect entry.')

 sys.exit(1)

 def verify_value_struct(self, expected_value_struct):

 try:

 assert type(self.entry.value_struct.value_struct) == expected_value_struct

 except AssertionError:

 warnings.warn('Incorrect value struct.')

 sys.exit(1)

 def generate_sample(self, *args, **kwargs):

 pass

class SingleValueDistribution(Distribution):

 # Distribution class for an entry with single value

 def __init__(self, entry: Entry):

 super(Distribution, self).__init__()

 self.entry = entry

 self.value_type = None

 self.dist = None

 def set_value_type(self, value_type: str):

 self.value_type = value_type

231

 def set_dist(self, dist):

 self.dist = dist

 def generate_sample(self):

 sample_value = ' ' # TODO: ? Sampling a single value here

 new_value_struct = self.entry.value_struct.value_struct

 new_value_struct['Value(s):'] = sample_value

 self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct)

class MatrixValueDistribution(Distribution):

 # Distribution class for an entry with matrix value (e.g., facies list)

 def __init__(self, entry: Entry):

 super(Distribution, self).__init__()

 self.entry = entry

 self.value_type = None

 self.dist = None

 def set_value_type(self, value_type: str):

 self.value_type = value_type

 def set_dist(self, dist):

 self.dist = dist

 def generate_sample(self, *args, **kwargs):

 pass

232

class LayerValueDistribution(MatrixValueDistribution):

 """

 Distribution class for an entry with "matrix" value, as follows:

 - Rows: number of layers for a property (as a col)

 - Cols: number of properties (a col is a property)

 """

 def __init__(self, entry: Entry):

 super(MatrixValueDistribution, self).__init__()

 self.entry = entry

 # Additional parameters to indicates layers and property names

 self.value_type = None

 self.dist = None

 self.property_names = None

 self.layer_names = None

 def set_property_names(self, property_names: list):

 self.property_names = property_names

 def set_layer_names(self, layer_names: list):

 self.layer_names = layer_names

 def generate_sample(self, loc: dict):

 for layer_name, property_name in loc.items():

 try:

 assert layer_name in self.layer_names

 assert property_name in self.property_names

233

 except AssertionError:

 warnings.warn('Input layer name: ' + layer_name + ' is incorrect.')

 warnings.warn(' OR ')

 warnings.warn('Input property name: ' + property_name + ' is incorrect.')

 sys.exit(1)

 for layer_name, property_name in loc.items():

 property_idx = self.property_names.index(property_name)

 sample_value = ' ' # TODO: ? Distribution sampling here

 new_value_struct = self.entry.value_struct.value_struct

 new_value_struct[layer_name][property_idx] = sample_value

 self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct)

Distribution classes for fracture model calibration entries

class RelativeFracToughnessDistribution(SingleValueDistribution):

 def __init__(self, entry: Entry):

 super(SingleValueDistribution, self).__init__()

 self.entry = entry

 self.value_type = ' '

 self.dist = ' ' # TODO: ? Set-up uniform distribution here

class FracGradientDistribution(LayerValueDistribution):

 def __init__(self, entry: Entry):

234

 super(LayerValueDistribution, self).__init__()

 self.entry = entry

class VerticalKDistribution(LayerValueDistribution):

 def __init__(self, entry: Entry):

 super(LayerValueDistribution, self).__init__()

 self.entry = entry

class HorizontalKDistribution(LayerValueDistribution):

 def __init__(self, entry: Entry):

 super(LayerValueDistribution, self).__init__()

 self.entry = entry

class NWComplexityDistribution(LayerValueDistribution):

 def __init__(self, entry: Entry):

 super(LayerValueDistribution, self).__init__()

 self.entry = entry

 def generate_sample(self):

 pass

class VerticalPropHolUpDistribution(SingleValueDistribution):

 # Distribution class to manage vertical prop flow holdup factor

 def __init__(self, entry: Entry):

235

 super(SingleValueDistribution, self).__init__()

 self.entry = entry

class MaxImmobilePropMassDistribution(SingleValueDistribution):

 # Distribution class to manage maximum immobilized prop mass per area

 def __init__(self, entry: Entry):

 super(SingleValueDistribution, self).__init__()

 self.entry = entry

Distribution classes for production data HM entries

class GlobalPermMultiplierDistribution(SingleValueDistribution):

 def __init__(self, entry: Entry):

 super(SingleValueDistribution, self).__init__()

 self.entry = entry

 self.value_type = ' '

 self.dist = ' ' # TODO: ? Set-up uniform distribution here

class PorosityDistribution(LayerValueDistribution):

 def __init__(self, entry: Entry):

 super(LayerValueDistribution, self).__init__()

 self.entry = entry

236

 def generate_sample(self):

 self.verify_entry('facieslist')

class InitialSwDistribution(LayerValueDistribution):

 def __init__(self, entry: Entry):

 super(LayerValueDistribution, self).__init__()

 self.entry = entry

 def generate_sample(self):

 self.verify_entry('facieslist')

class RelPermCurveDistribution(Distribution):

 # Distribution class to manage rel perm curve (RelPermStruct)

 def __init__(self, entry: Entry):

 super(Distribution, self).__init__()

 self.entry = entry

 # Additional parameters for relative perm curves

 self.max_Sr = np.zeros(3) # S_wr, S_or, S_gr

 self.kr_multipliers = np.zeros(3) # k_rw, k_ro, k_rg

 self.Sr_dist = None

 self.kr_dist = None

 def set_saturation_dist(self, Sr_dist):

 self.Sr_dist = Sr_dist

237

 def set_kr_dist(self, kr_dist):

 self.kr_dist = kr_dist

 def generate_sample(self):

 self.verify_entry('matrixcurvesets')

 self.max_Sr = ' ' # TODO: ? Implement distribution sampling here

 self.kr_multipliers = ' ' # TODO: ? Implement distribution sampling here

 rel_perm_curve = np.zeros([3, 3])

 rel_perm_curve[:, 0] = self.Sr_dist

 rel_perm_curve[:, 1] = np.array([2, 2, 1.2])

 rel_perm_curve[:, -1] = self.kr_dist

 new_value_struct = self.entry.value_struct.value_struct

 new_value_struct['matrixrelperm'][-1] = rel_perm_curve

 self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct)

class PDPDistribution(Distribution):

 # Distribution class to manage Pressure Dependent Permeability (RelPermStruct)

 def __init__(self, entry: Entry):

 super(Distribution, self).__init__()

 self.entry = entry

 # Additional parameters for relative perm curves

 self.pressures = np.zeros(3) # S_wr, S_or, S_gr

 self.multipliers = np.zeros(3) # k_rw, k_ro, k_rg

 self.pressure_dist = None

 self.multiplier_dist = None

 def set_pressure_dist(self, pressure_dist):

238

 self.pressure_dist = pressure_dist

 def set_kr_dist(self, multiplier_dist):

 self.multiplier_dist = multiplier_dist

 def generate_sample(self):

 self.verify_entry('matrixcurvesets')

 self.pressures = ' ' # TODO: ? Implement distribution sampling here

 self.multipliers = ' ' # TODO: ? Implement distribution sampling here

 pdp_data = np.zeros([3, 2])

 pdp_data[:, 0] = self.pressures

 pdp_data[:, -1] = self.multipliers

 new_value_struct = self.entry.value_struct.value_struct

 new_value_struct[('pressuredependentpermeability', 'reversible')][0] = pdp_data

 self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct)

class StressAnisotropyDistribution(LayerValueDistribution):

 # Layers' Sh_max - Sh_min

 def __init__(self, entry: Entry):

 super(LayerValueDistribution, self).__init__()

 self.entry = entry

class NetToGrossDistribution(LayerValueDistribution):

 # Layers' net to gross ratios

 def __init__(self, entry: Entry):

 super(LayerValueDistribution, self).__init__()

239

 self.entry = entry

from DoE.doe.utils import *

from simulator.base.entry import *

from simulator.simulation import simulation_helpers, simulation_files

"Connection" classes to create and write new ResFrac simulation files

Using the classes:

1. Entry: allow integrating with ResFrac entry system

2. ValueStruct: allow altering the data in a specific entry

class Connector(object):

 def __init__(self, entry: Entry):

 """

 Base connector class, inherit this class to:

 1. Connect data from a DoE case to the correct entry's value struct

 2. Write data from a DoE case to the correct entry's value struct

 (depend on the type of the value struct)

 :param entry:

 """

 super(Connector, self).__init__()

 self.entry = entry # The entry the connector shall write data into

 """

 :param case_loc: type int, the case number in DoE data (2D np.ndarray)

 :param data_loc: type int, the DoE parameter location in the DoE data

240

 :param write_loc: denote as follows:

 1. For single value: -1

 2. For value(s) in a list/1D array: list(int)

 3. For values(s) in a list of list/2D array: list(list(int))

 4. For value(s) in layer: list(layer name, property index)

 5. For irregular value structs:

 5.1. Relative perm: list(list(int)) for relative perm curve(s) & curve location

 5.2. PDP curve: list(list(int)) for pressure dependent perm curve(s) & curve location

 """

 self.case_loc = None # The case number the DoE data shall locate

 self.data_loc = None # The location(s) of the data in the DoE data

 self.write_loc = None # The location(s) of the data in the entry's value struct

 def set_doe_loc(self, case_loc: int, data_loc):

 # Set the case location & data location in the DoE data

 self.case_loc = case_loc

 self.data_loc = data_loc

 def set_write_loc(self, write_loc):

 # Set the written location in the entry's value struct

 self.write_loc = write_loc

 def verify_entry(self, expected_variable_name: str):

 # Verify the correct entry the connector shall connect

 # If incorrect entry, exit

 try:

 assert self.entry.variable_name == expected_variable_name

 except AssertionError:

241

 warnings.warn('Incorrect entry.')

 sys.exit(1)

 def verify_value_struct(self, expected_value_struct):

 # Verify the correct value struct type the connector shall connect

 # If incorrect value struct type, exit

 try:

 assert type(self.entry.value_struct.value_struct) == expected_value_struct

 except AssertionError:

 warnings.warn('Incorrect value struct.')

 sys.exit(1)

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 # Write data from DoE (doe_data) to the entry's value_struct

 # Must override

 pass

class SingleValueConnector(Connector):

 def __init__(self, entry: Entry, data_type):

 """

 Connector class to connect DoE data of a single value (i.e., str, float, int)

 :param entry:

 """

 super(Connector, self).__init__()

 self.entry = entry

 self.write_loc = -1

 self.data_type = data_type

242

 def verify_data_type(self, value):

 if self.data_type in [int, float]:

 try:

 value_ = self.data_type(value)

 return True

 except ValueError:

 return False

 elif self.data_type == bool:

 try:

 assert value.lower() in ['true', 'false']

 return True

 except AssertionError:

 try:

 assert self.data_type == str

 return True

 except AssertionError:

 return False

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif not self.verify_data_type(doe_data[self.case_loc, self.data_loc]):

 warnings.warn('Incorrect data type for a single value.')

 sys.exit(1)

 else:

 new_value_struct = doe_data[self.case_loc, self.data_loc]

243

 self.entry.change_values(new_value_struct=self.data_type(new_value_struct))

class ListValueConnector(Connector):

 def __init__(self, entry: Entry):

 """

 Connector class to connect DoE data of a list value

 (i.e., str, float, int)

 :param entry:

 """

 super(Connector, self).__init__()

 self.entry = entry

 self.write_loc = None # Location(s) in the value struct the connector shall write into

 def set_write_loc(self, write_loc: List[int]):

 self.write_loc = write_loc

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 self.verify_value_struct(expected_value_struct=list)

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif self.write_loc is None:

 warnings.warn("Entry value' struct written location is required.")

 sys.exit(1)

 else:

 new_value_struct = self.entry.value_struct.value_struct

 assert len(self.write_loc) == len(self.data_loc)

244

 for (_, loc) in enumerate(self.write_loc):

 new_value_struct[self.write_loc[_]] = doe_data[self.case_loc, self.data_loc[_]]

 self.entry.change_values(new_value_struct=new_value_struct)

class ListOfListValueConnector(Connector):

 def __init__(self, entry: Entry):

 """

 Connector class to connect DoE data of a list of list value

 (i.e., str, float, int)

 :param entry:

 """

 super(Connector, self).__init__()

 self.entry = entry

 self.write_loc = None # Location(s) in the value struct the connector shall write into

 def set_write_loc(self, write_loc: List[List[int]]):

 self.write_loc = write_loc

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 self.verify_value_struct(expected_value_struct=list)

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif self.write_loc is None:

 warnings.warn("Entry value' struct written location is required.")

 sys.exit(1)

 else:

245

 assert type(self.write_loc) == list

 assert len(self.write_loc) == 2

 assert type(self.data_loc) == list

 assert len(self.write_loc[0]) == len(self.write_loc[-1])

 assert len(self.write_loc[0]) == len(self.data_loc)

 new_value_struct = self.entry.value_struct.value_struct

 for _ in range(len(self.write_loc[0])):

 new_value_struct[self.write_loc[0][_]][self.write_loc[-1][_]] = \

 doe_data[self.case_loc, self.data_loc[_]]

 self.entry.change_values(new_value_struct=new_value_struct)

class Array1DValueConnector(Connector):

 def __init__(self, entry: Entry):

 """

 Connector class to connect DoE data of a 1D numpy array value

 (i.e., str, float, int)

 :param entry:

 """

 super(Connector, self).__init__()

 self.entry = entry

 self.write_loc = None

 def set_write_loc(self, write_loc: List[int]):

 self.write_loc = write_loc # Location(s) in the value struct the connector shall write into

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 self.verify_value_struct(expected_value_struct=np.ndarray)

246

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif self.write_loc is None:

 warnings.warn("Entry value' struct written location is required.")

 sys.exit(1)

 else:

 new_value_struct = self.entry.value_struct.value_struct

 assert len(self.write_loc) == len(self.data_loc)

 for (_, loc) in enumerate(self.write_loc):

 new_value_struct[self.write_loc[_]] = doe_data[self.case_loc, self.data_loc[_]]

 self.entry.change_values(new_value_struct=new_value_struct)

class Array2DValueConnector(Connector):

 def __init__(self, entry: Entry):

 """

 Connector class to connect DoE data of a 2D numpy array value

 (i.e., str, float, int)

 :param entry:

 """

 super(Connector, self).__init__()

 self.entry = entry

 self.write_loc = None

 def set_write_loc(self, write_loc: Union[List[int], List[List[int]]]):

 self.write_loc = write_loc # Location(s) in the value struct the connector shall write into

247

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 self.verify_value_struct(expected_value_struct=np.ndarray)

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif self.write_loc is None:

 warnings.warn("Entry value' struct written location is required.")

 sys.exit(1)

 else:

 assert type(self.write_loc) == list

 assert len(self.write_loc) == 2

 assert type(self.data_loc) == list

 assert len(self.write_loc[0]) == len(self.write_loc[-1])

 assert len(self.write_loc[0]) == len(self.data_loc)

 new_value_struct = self.entry.value_struct.value_struct

 for _ in range(len(self.write_loc[0])):

 new_value_struct[self.write_loc[0][_], self.write_loc[-1][_]] = \

 doe_data[self.case_loc, self.data_loc[_]]

 self.entry.change_values(new_value_struct=new_value_struct)

class LayerValueConnector(ListOfListValueConnector):

 def __init__(self, entry: Entry, layer_names: List[str], prop_names: List[str]):

 """

 Connector class to connect DoE data of a "layer data" value struct

 (i.e., static data per layer, modulus properties, initial Sw per layer)

 :param entry:

 :param layer_names:

248

 :param prop_names:

 """

 super(ListOfListValueConnector, self).__init__(entry=entry)

 self.num_layers = None

 # Additional attributes to define layer & property names

 self.prop_names = prop_names

 self.layer_names = layer_names

 self.connected_prop_names = None

 self.connected_layer_names = None

 def set_number_of_layers(self, num_layers: int):

 self.num_layers = num_layers

 def set_connected_data(self, connected_prop_names: List[str],

 connected_layer_names: List[str]):

 self.connected_prop_names = connected_prop_names

 self.connected_layer_names = connected_layer_names

 def set_write_loc(self, write_loc=None):

 # Re-write this function to intake connected layer names & property names

 assert len(self.connected_layer_names) == len(self.connected_prop_names)

 write_loc_ = list()

 for (_, layer_name) in enumerate(self.connected_layer_names):

 prop_name = self.connected_prop_names[_]

 try:

 prop_idx = self.prop_names.index(prop_name)

 write_loc_.append([layer_name, prop_idx])

 except ValueError:

249

 warnings.warn('Provided property is not correct.')

 sys.exit(1)

 self.write_loc = write_loc_

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 self.verify_value_struct(expected_value_struct=dict)

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif self.write_loc is None:

 warnings.warn("Entry value' struct written location is required.")

 sys.exit(1)

 else:

 assert len(self.write_loc) == len(self.data_loc)

 new_value_struct = self.entry.value_struct.value_struct

 for (_, [layer_name, prop_idx]) in enumerate(self.write_loc):

 new_value_struct[layer_name][prop_idx] = doe_data[self.case_loc, self.data_loc[_]]

 self.entry.change_values(new_value_struct=new_value_struct)

def init_connector(entry: Entry, param_name: str):

 """

 # TODO: Return the correct connector class for an entry

 :param entry:

 :param param_name:

 :return: connector_object: the connector class object

 """

 try:

250

 assert entry.is_doe is True

 except AssertionError:

 warnings.warn('This is not a DoE entry.')

 sys.exit(1)

 if entry.length == 0:

 warnings.warn('An entry with 0 length can not be a DoE entry.')

 sys.exit(1)

 elif entry.length == 1:

 if type(entry.value_struct) is SingleValueStruct:

 connector_object = SingleValueConnector(entry=entry, data_type=None)

 elif type(entry.value_struct) is MatrixValueStruct:

 if type(entry.value_struct.value_struct) == np.ndarray:

 connector_object = Array1DValueConnector(entry=entry)

 else:

 connector_object = ListValueConnector(entry=entry)

 else:

 rel_perm_curve = -1

 if 'pdp' not in param_name:

 connector_object = RelPermCurveConnector(entry=entry,

rel_perm_curve=rel_perm_curve)

 else:

 connector_object = PDPConnector(entry=entry, rel_perm_curve=rel_perm_curve)

 else:

 if type(entry.value_struct) is FaciesListStruct:

 layer_names_ = ['']

 prop_names_ = ['']

 connector_object = LayerValueConnector(entry=entry, layer_names=layer_names_,

prop_names=prop_names_)

 else:

251

 if verify_1d_list(entry.value_struct.value_struct) is True:

 connector_object = ListValueConnector(entry=entry)

 elif verify_1d_array(entry.value_struct.value_struct) is True:

 connector_object = Array1DValueConnector(entry=entry)

 elif verify_1d_list(entry.value_struct.value_struct) is False:

 connector_object = ListOfListValueConnector(entry=entry)

 elif verify_1d_array(entry.value_struct.value_struct) is False:

 connector_object = Array2DValueConnector(entry=entry)

 else:

 warnings.warn('The entry value struct is not supported by any connectors. Set to base

connector.')

 connector_object = Connector(entry=entry)

 return connector_object

Distribution classes for production data HM entries

class RelPermCurveConnector(Connector):

 def __init__(self, entry: Entry, rel_perm_curve: int):

 """

 Connector class specified for rel perm curve (as np.ndarray)

 :param entry:

 """

 super(Connector, self).__init__()

 self.entry = entry

 self.rel_perm_curve = rel_perm_curve

252

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

 # This function to write rel perm curve at the correct location in 'matrixcurvesets' entry

 self.verify_entry(expected_variable_name='matrixcurvesets')

 new_value_struct = self.entry.value_struct.value_struct

 rel_perm_curve = new_value_struct[self.rel_perm_curve]['matrixrelperm'][-1]

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif self.write_loc is None:

 warnings.warn("Entry value' struct written location is required.")

 sys.exit(1)

 else:

 assert type(self.write_loc) == list

 assert type(self.data_loc) == list

 for _ in range(len(self.write_loc)):

 rel_perm_curve[self.write_loc[_][0], self.write_loc[_][-1]] = doe_data[self.case_loc,

self.data_loc[_]]

 new_value_struct[self.rel_perm_curve]['matrixrelperm'][-1] = rel_perm_curve

 self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct)

class PDPConnector(Connector):

 def __init__(self, entry: Entry, rel_perm_curve: int):

 super(Connector, self).__init__()

 self.entry = entry

 self.rel_perm_curve = rel_perm_curve

 def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs):

253

 # This function to write rel perm curve at the correct location in 'matrixcurvesets' entry

 self.verify_entry(expected_variable_name='matrixcurvesets')

 new_value_struct = self.entry.value_struct.value_struct

 pdp_curve = new_value_struct[self.rel_perm_curve][('pressuredependentpermeability',

'reversible')][0]

 if self.case_loc is None or self.data_loc is None:

 warnings.warn('Case location and data location are required.')

 sys.exit(1)

 elif self.write_loc is None:

 warnings.warn("Entry value' struct written location is required.")

 sys.exit(1)

 else:

 assert type(self.write_loc) == list

 assert len(self.write_loc) == 2

 assert type(self.data_loc) == list

 assert len(self.write_loc[0]) == len(self.write_loc[-1])

 assert len(self.write_loc[0]) == len(self.data_loc)

 for _ in range(len(self.write_loc[0])):

 pdp_curve[self.write_loc[0][_], self.write_loc[-1][_]] = \

 doe_data[self.case_loc, self.data_loc[_]]

 new_value_struct[self.rel_perm_curve][('pressuredependentpermeability', 'reversible')][0] =

pdp_curve

 self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct)

Design of Experiments classes/functions using pyDOE, scipy and numpy

254

class DesignOfExperiments(object):

 def __init__(self, design: str):

 # TODO: ? Design of Experiments class that is integrated to the connector classes above

 super(DesignOfExperiments, self).__init__()

 self.data_locs = None

 self.data = None

 self.design = design

 def verify_design(self, design: str):

 try:

 assert self.design == design

 except AssertionError:

 warnings.warn('Incorrect design.')

 sys.exit(1)

 def set_data_locs(self, data_locs: Dict[Tuple[str, str],

 Union[int, List[int], List[List[int]]]]):

 """

 Set up the correlation between DoE data and the connector classes

 :param data_locs: correlate the data location in DoE data to the DoE parameter name & entry

 (eventually correlate to the written location in the entry's value struct)

 :return: self.data_locs (type dict)

 self.data_locs.keys(): type tuple (property name, entry name)

 self.data_locs.values(): int (list/1D array), list(int) (list of list/2D array), -1 (single value)

 """

 self.data_locs = data_locs

255

 def generate(self, num_cases: int, *args, **kwargs):

 pass

class CCC(DesignOfExperiments):

 def __init__(self, design='ccc'):

 super(DesignOfExperiments, self).__init__()

 self.design = design

 def generate(self, num_cases=100, *args, **kwargs):

 pass

class LHS(DesignOfExperiments):

 def __init__(self, design='lhs'):

 super(DesignOfExperiments, self).__init__()

 self.dist = None

 self.design = design

 def set_distributions(self, dist: list):

 self.dist = dist

 def generate(self, num_cases=100, *args, **kwargs):

 props = list(self.data_locs.keys())

 try:

 assert self.dist is not None

 except AssertionError:

 warnings.warn('Distributions are required.')

256

 sys.exit(1)

 lhs_data = pyDOE.lhs(len(props), samples=num_cases, criterion='center')

 for _ in range(len(props)):

 # Customize the distributions here via scipy

 lhs_data[:, _] = self.dist[_].ppf(lhs_data[:, _])

 self.data = lhs_data

Interface classes to

1. Couple DesignOfExperiments class & Connector class

2. Record DesignOfExperiments in ResFrac files via comment lines

class DesignOfExperimentsAssembly(object):

 def __init__(self, base_entries: List[Entry]):

 super(DesignOfExperimentsAssembly, self).__init__()

 self.base_entries = base_entries

 self.doe_params = None # DoE parameter names

 self.doe_entry_var_names = None # DoE entry names

 self.doe_distributions = None # DoE distributions

 self.write_locs = None # Written locations inside the entries' value structs

 self.doe_data = None # DoE data

 #

 self.doe_batch = 0

 self.doe_dir = None

257

 def reset_all_entries(self):

 # Reset all entries to non-doe entries

 for (_, entry) in enumerate(self.base_entries):

 if entry.is_doe is True:

 self.base_entries[_].is_doe = False

 else:

 pass

 def set_main_dir(self, doe_dir):

 self.doe_dir = doe_dir

 def set_doe_params(self, doe_params: List[str]):

 self.doe_params = doe_params

 def set_doe_entry_var_names(self, doe_entry_var_names: List[str]):

 all_entry_var_names = [e.variable_name for e in self.base_entries]

 for (_, var_name) in enumerate(doe_entry_var_names):

 if var_name not in all_entry_var_names:

 warnings.warn('Incorrect entry variable name(s).')

 sys.exit(1)

 else:

 for e in self.base_entries:

 if e.variable_name == var_name:

 e.is_doe = True

 else:

 pass

 self.doe_entry_var_names = doe_entry_var_names

258

 def set_doe_distributions(self, doe_distributions: list):

 self.doe_distributions = doe_distributions

 def set_data_locs(self):

 data_locs = dict()

 for (_, param) in enumerate(self.doe_params):

 if param not in data_locs.keys():

 data_locs[(param, self.doe_entry_var_names[_])] = self.write_locs[_]

 else:

 pass

 return data_locs

 def set_write_locs(self, write_locs):

 self.write_locs = write_locs

 def verify_doe_interface(self):

 # Verify the number of doe parameters equal the number of entries (two parameters can

belong to one entry)

 try:

 assert self.doe_params is not None

 assert self.doe_entry_var_names is not None

 assert self.doe_distributions is not None

 assert self.write_locs is not None

 except AssertionError:

 warnings.warn('Design of Experiments interface is not defined.')

 sys.exit(1)

 try:

 assert len(self.doe_params) == len(self.doe_entry_var_names)

 assert len(self.doe_params) == len(self.write_locs)

259

 assert len(self.doe_params) == len(self.doe_distributions)

 except AssertionError:

 warnings.warn('Incorrect Design of Experiments interface.')

 sys.exit(1)

 def generate_doe_object(self, design: str, num_cases: int):

 self.verify_doe_interface()

 data_locs = self.set_data_locs()

 doe_object = LHS(design=design)

 doe_object.data_locs = data_locs

 doe_object.verify_design(design=design)

 doe_object.set_distributions(self.doe_distributions)

 doe_object.generate(num_cases=num_cases)

 return doe_object

 def write_doe_entries(self, doe_object: DesignOfExperiments, last_case: int):

 doe_data_ = doe_object.data

 # Loop through all doe cases to write settings/input files

 for case_loc in range(doe_data_.shape[0]):

 case_doe_entries = list()

 # Loop through all doe entries (using their variable names)

 for (_, (param_name, entry_var_name)) in enumerate(doe_object.data_locs):

 # Loop through all base entries to find the correct doe entries

 for entry in self.base_entries:

 if entry.variable_name == entry_var_name:

 # The doe entry, init connector & modify using entry's variable name & write loc

 entry_connector = init_connector(entry=entry, param_name=param_name)

 if type(entry.value_struct) == SingleValueStruct:

260

 # SingleValueConnector

 entry_connector.data_type = float # TODO: ? Fix me

 elif type(entry.value_struct) == RelPermStruct:

 # RelPermConnector or PDPConnector

 entry_connector.set_write_loc(write_loc=self.write_locs[_])

 entry_connector.rel_perm_curve = 0

 elif type(entry.value_struct) == FaciesListStruct:

 # LayerValueConnector

 num_layers = len(entry.value_struct.value_struct.keys())

 connected_layer_names = [i[0] for i in self.write_locs[_]]

 connected_prop_names = [i[-1] for i in self.write_locs[_]]

 entry_connector.layer_names = layer_names

 entry_connector.prop_names = layer_props

 entry_connector.set_number_of_layers(num_layers=num_layers)

entry_connector.set_connected_data(connected_layer_names=connected_layer_names,

 connected_prop_names=connected_prop_names)

 entry_connector.set_write_loc()

 else:

 # List/ListOfList/Array1D/Array2D-Connector

 entry_connector.set_write_loc(write_loc=self.write_locs[_])

 entry_connector.set_doe_loc(case_loc=case_loc, data_loc=[_])

 entry_connector.write_doe_data(doe_data=doe_data_)

 case_doe_entries.append(entry_connector.entry)

 else:

 # The non-doe entry, remain

 case_doe_entries.append(entry)

 #

 doe_settings_file_name = 'doe_settings_case_' + str(case_loc) + '.txt'

261

 doe_settings_file_dir = os.path.join(self.doe_dir, doe_settings_file_name)

 simulation_file = simulation_files.SimulationFile(entries=case_doe_entries,

 file_type='settings')

 simulation_file.write_file(file_name=doe_settings_file_dir)

 # Loop through all doe cases to write data for surrogate assembly

 doe_data_file_name = 'doe_data_' + str(self.doe_batch) + '.csv'

 doe_data_file_dir = os.path.join(self.doe_dir, doe_data_file_name)

 doe_data = list()

 for case_loc in range(doe_data_.shape[0]):

 case_data = dict()

 if 'case' not in case_data.keys():

 case_data['case'] = case_loc + last_case

 for _ in range(doe_data_.shape[-1]):

 if self.doe_params[_] not in case_data.keys():

 case_data[self.doe_params[_]] = doe_data_[case_loc, _]

 doe_data.append(case_data)

 doe_data = pd.DataFrame(data=doe_data)

 self.doe_data = doe_data

 doe_data.to_csv(doe_data_file_dir, header=True)

 return doe_data

from src.base.base_libs import *

Design of Experiments helper variables

262

layer_props = 'top bottom xperm yperm zperm curvesetname ' \

 'porositycompressibility referenceporosity ' \

 'stressdeviation dualporosity fractureporositycompressibility ' \

 'fracturereferenceporosity shapefactor matrixpermeability rockdensity ' \

 'rockheatcapacity thermalconductivity coefficientoflinearexpansion dphidT ' \

 'biotcoefficient Tstr horizontalfracturetoughness verticalfracturetoughness ' \

 'E0max sn90percentclosure Eresmax maximumflowingmolarmass ' \

 'optionalinitialwatersaturation langmuirpressure langmuirvolume' \

 'showinvisualizationtool proppant embedment'

layer_props = layer_props.split(sep=' ')

layer_names = ['Layer ' + str(_) for _ in range(60)]

Design of Experiments helper functions

def modify_layer_names(original_layer_names: List[str], locs: List[int],

 loc_layer_names: List[str]):

 mod_layer_names = deepcopy(original_layer_names)

 for (_, layer_name) in enumerate(layer_names):

 if _ in locs:

 mod_layer_names[_] = loc_layer_names[locs.index(_)]

 return mod_layer_names

def verify_single_value_type(data: Union[int, float, bool, str]):

263

 try:

 value = int(data)

 return int

 except AssertionError:

 try:

 value = float(data)

 return float

 except AssertionError:

 if data.lower() in ['true', 'false']:

 return bool

 else:

 return str

def verify_1d_list(data: list):

 assert type(data) == list

 assert len(data) > 0

 if type(data[0]) is not list:

 return True

 else:

 return False

def verify_1d_array(data: np.ndarray):

 assert type(data) == np.ndarray

 if type(data[0]) is not np.ndarray:

 return True

 else:

264

 return False

def layer_location(layer_name_: str, layer_names_: List[str]):

 try:

 assert layer_name_ in layer_names_

 except AssertionError:

 warnings.warn('Incorrect input layer name.')

 sys.exit(1)

 return layer_names_.index(layer_name_)

Design of Experiments helper variables (modified if necessary)

layer_names = modify_layer_names(original_layer_names=layer_names,

 from base.base import *

experimental_doe_params = ['S_wr', 'S_or', 'S_gr', 'relative_frac_toughness']

experimental_response_params = ['BHP', 'Oil prod rate']

experimental_data_sources = ['Proxy_cases']

experimental_mode = True locs=[41], loc_layer_names=['Target depth'])

from base.base import *

265

Helper variables to support validating Res-Frac file structure

res_frac_required_folders = ['Additional_Files', 'Input_Files', 'Settings_Files', 'Results']

res_frac_required_files = ['cpuinfo.txt', 'dmesg.txt', 'matrix_prop_names.txt',

 'misc_visualization_data.txt', 'static_matrix.bin',

 'static_wellfrac.bin', 'stderr.txt', 'stdout.txt', 'syslog.txt']

default_hyper_params = ['max_depth', 'gamma', 'reg_alpha', 'reg_lambda',

 'colsample_bytree', 'min_child_weight',

 'learning_rate', 'random_rate', 'max_bin']

gbm_hyper_params = ['max_depth', 'gamma', 'reg_alpha', 'reg_lambda',

 'colsample_bytree', 'min_child_weight', 'n_estimators'

 'learning_rate', 'random_rate', 'max_bin']

xgb_hyper_params = ['max_depth', 'gamma', 'reg_alpha', 'reg_lambda',

 'colsample_bytree', 'min_child_weight',

 'learning_rate', 'random_rate', 'max_bin']

int_hyper_params = ['max_depth', 'n_estimators', 'random_state', 'tree_method']

objective_hyper_params = ['objective']

quantile_hyper_params = ['quantile_alpha']

266

Helper functions for Dash callbacks and interfaces

def convert_numpy_to_data_table(arr: np.ndarray, columns):

 data = pd.DataFrame(columns=columns, data=arr)

 data_table = dash_table.DataTable(

 data=data.to_dict('records'),

 columns=[{"name": i, "id": i} for i in data.columns])

 return data_table

def convert_dict_to_data_table(arr: dict, columns):

 data = list()

 for _ in arr.values():

 data.append(_)

 data = np.array(data)

 if columns is not None:

 data = pd.DataFrame(columns=columns, data=data)

 else:

 columns_ = ['Column ' + str(_) for _ in range(data.shape[-1])]

 data = pd.DataFrame(columns=columns_, data=data)

 data_table = dash_table.DataTable(

 data=data.to_dict('records'),

 columns=[{"name": i, "id": i} for i in data.columns])

 return data_table

267

def validate_res_frac_workflows_dir(workflows_dir, simulations_dir):

 """

 Validate the provided folder simulations_dir follows Res-Frac file structure

 :param workflows_dir:

 :param simulations_dir:

 :return:

 """

 simulation_runs_dir = os.path.join(workflows_dir, simulations_dir)

 if os.path.exists(simulation_runs_dir) is False:

 return False

 else:

 simulation_runs_data = os.listdir(simulation_runs_dir)

 if 'simulations' not in simulation_runs_data or \

 'metadata.json' not in simulation_runs_data:

 return False

 else:

 simulation_runs = os.path.join(simulation_runs_dir, 'simulations')

 simulation_run_folders = os.listdir(simulation_runs)

 num_simulation_runs = len(simulation_run_folders)

 simulation_run_folder_valid = 0

 #

 for simulation_run_folder in simulation_run_folders:

 simulation_run_dir = os.path.join(simulation_runs, simulation_run_folder)

 simulation_run_files = os.listdir(simulation_run_dir)

 if all(_ in simulation_run_files for _ in res_frac_required_files) is True \

 and all(_ in simulation_run_files for _ in res_frac_required_folders) is True:

 simulation_run_folder_valid += 1

268

 if simulation_run_folder_valid == num_simulation_runs:

 return True

 else:

 return False

def create_distribution_object(param_name: str, param_dist: str,

 param_dist_params, object_wrapper='scipy'):

 if object_wrapper == 'scipy':

 if param_dist == 'uniform':

 dist_object = distributions.uniform(param_name, float(param_dist_params[0]),

 float(param_dist_params[-1]))

 elif param_dist == 'normal':

 dist_object = distributions.norm(param_name, float(param_dist_params[0]),

 float(param_dist_params[-1]))

 else:

 dist_object = distributions.lognorm(param_name, float(param_dist_params[0]),

 float(param_dist_params[-1]))

 return dist_object

 elif object_wrapper == 'hyperopt':

 if param_name in int_hyper_params:

 if param_dist == 'uniform':

 dist_object = scope.int(hp.uniform(param_name,

 float(param_dist_params[0]),

 float(param_dist_params[-1])))

 elif param_dist == 'normal':

 dist_object = scope.int(hp.normal(param_name,

 float(param_dist_params[0]),

269

 float(param_dist_params[-1])))

 else:

 dist_object = scope.int(hp.lognormal(param_name,

 float(param_dist_params[0]),

 float(param_dist_params[-1])))

 else:

 if param_dist == 'uniform':

 dist_object = hp.uniform(param_name,float(param_dist_params[0]),

 float(param_dist_params[-1]))

 elif param_dist == 'normal':

 dist_object = hp.normal(param_name, float(param_dist_params[0]),

 float(param_dist_params[-1]))

 else:

 dist_object = hp.lognormal(param_name, float(param_dist_params[0]),

 float(param_dist_params[-1]))

 return dist_object

 else:

 return None

def create_proxy_hyper_params_space(hyper_params_dists, proxy_type: str, exp_mode: str):

 hyper_params_space = {}

 hyper_param_names = hyper_params_dists['param_name']

 #

 if proxy_type == "Normal":

 pass

 else:

 hyper_params_space['objective'] = 'reg:quantileerror'

270

 hyper_params_space['quantile_alpha'] = np.array([0.05, 0.5, 0.95])

 #

 if exp_mode == "Fit":

 # Sample randomly a space

 for (_, name) in enumerate(hyper_param_names):

 dist = hyper_params_dists['param_dist'][_]

 dist_params = hyper_params_dists['param_dist_params'][_]

 dist_object = create_distribution_object(name, dist, dist_params)

 if name in int_hyper_params:

 val = np.round(dist_object.rvs(size=1)[0]).astype(int)

 else:

 val = dist_object.rvs(size=1)[0]

 if name not in hyper_params_space.keys():

 hyper_params_space[name] = val

 exp_mode_ = "fit"

 return hyper_params_space, exp_mode_

 elif exp_mode == "Optimize":

 # Create a optimization space

 for (_, name) in enumerate(hyper_param_names):

 dist = hyper_params_dists['param_dist'][_]

 dist_params = hyper_params_dists['param_dist_params'][_]

 dist_object = create_distribution_object(name, dist, dist_params,

 object_wrapper='hyperopt')

 if name not in hyper_params_space.keys():

 hyper_params_space[name] = dist_object

 exp_mode_ = "opt"

 return hyper_params_space, exp_mode_

 else:

271

 return None, None

from DoE.doe.doe_v1 import *

import dash

import dash_bootstrap_components as dbc

from dash import dcc

from dash import html

from dash import Input, Output, State

from dash import callback, callback_context

from dash.exceptions import PreventUpdate

from dash import callback_context as ctx

from dash import register_page

from dash_bootstrap_components import Tab, Table, InputGroup, Col, Row

from dash_bootstrap_components import Modal, ModalTitle, ModalBody, ModalHeader,

ModalFooter

from dash_bootstrap_components import Placeholder

import json, jsonschema

from proxy.proxy_data import *

class QuantileGBRegressor(object):

 def __init__(self, proxy_data: ProxyData):

 super(QuantileGBRegressor, self).__init__()

 self.proxy_data = proxy_data

 self.regressor_trait = GradientBoostingRegressor

272

 self.eval_metric = mean_pinball_loss

 self.eval_index = 1

 #

 self.response_param_index: int = 0

 self.test_size = 0.1

 #

 self.quantiles = [0.05, 0.5, 0.95]

 def validate(self):

 assert self.proxy_data.proxy_data.empty is False

 def set_evaluation_metric(self, eval_metric):

 self.eval_metric = eval_metric

 def split(self, response_param_index: int, test_size: float):

 x_cols = list()

 for col in list(self.proxy_data.proxy_data.columns):

 if col not in ['case'] and col not in self.proxy_data.reservoir_response_params:

 x_cols.append(col)

 y_cols = self.proxy_data.reservoir_response_params

 x = self.proxy_data[x_cols]

 y = self.proxy_data[y_cols[response_param_index]]

 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size,

 shuffle=True, random_state=0)

 return x_train, x_test, y_train, y_test

 def __fit__(self, params):

 x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size)

273

 quantile_models = {}

 eval_metrics = {}

 for quantile in self.quantiles:

 model = self.regressor_trait(loss='quantile', alpha=quantile,

 **params)

 if quantile not in quantile_models.keys():

 quantile_models[quantile] = model.fit(x_train, y_train)

 eval_metrics[quantile] = self.eval_metric(model.predict(x_test), y_test,

 alpha=quantile)

 return quantile_models, eval_metrics

 def __fit_cross_validation__(self, params, num_folds=5):

 x_cols = list()

 for col in list(self.proxy_data.proxy_data.columns):

 if col not in ['case'] and col not in self.proxy_data.reservoir_response_params:

 x_cols.append(col)

 y_cols = self.proxy_data.reservoir_response_params

 x = self.proxy_data.proxy_data[x_cols].to_numpy()

 y = self.proxy_data.proxy_data[y_cols[self.response_param_index]].to_numpy()

 #

 k_fold = KFold(n_splits=num_folds, shuffle=True, random_state=0)

 k_fold_metrics = []

 #

 model = self.regressor_trait(loss='quantile',

 alpha=self.quantiles[self.eval_index], **params)

 for train_index, test_index in k_fold.split(x):

 x_train, x_test = x[train_index], x[test_index]

 y_train, y_test = y[train_index], y[test_index]

274

 model.fit(x_train, y_train)

 y_pred = model.predict(x_test)

 k_fold_metric = self.eval_metric(y_test, y_pred,

 alpha=self.quantiles[self.eval_index])

 k_fold_metrics.append(k_fold_metric)

 return model, k_fold_metrics

 def __optimize__(self, opt_space: dict):

 model = self.regressor_trait(**opt_space, loss='quantile',

 alpha=self.quantiles[self.eval_index])

 x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size)

 #

 model.fit(x_train, y_train)

 y_pred = model.predict(x_test)

 test_metric = self.eval_metric(y_pred, y_test)

 return {'loss': test_metric, 'status': STATUS_OK, 'model': model}

 def __optimize_cross_validation__(self, opt_space: dict):

 model, k_fold_metrics = self.__fit_cross_validation__(opt_space)

 k_fold_metric = sum(k_fold_metrics) / len(k_fold_metrics)

 return {'loss': k_fold_metric, 'status': STATUS_OK, 'model': model}

from proxy.proxy_data import *

class NonQuantileRegressor(object):

 def __init__(self, proxy_data: ProxyData):

 super(NonQuantileRegressor, self).__init__()

 self.proxy_data = proxy_data

275

 self.regressor_trait = XGBRegressor

 self.eval_metric = mean_squared_error

 #

 self.response_param_index: int = 0

 self.test_size = 0.1

 def validate(self):

 assert self.proxy_data.proxy_data.empty is False

 def set_evaluation_metric(self, eval_metric):

 self.eval_metric = eval_metric

 def split(self, response_param_index: int, test_size: float):

 x_cols = list()

 for col in list(self.proxy_data.proxy_data.columns):

 if col not in ['case'] and col not in self.proxy_data.reservoir_response_params:

 x_cols.append(col)

 y_cols = self.proxy_data.reservoir_response_params

 x = self.proxy_data[x_cols]

 y = self.proxy_data[y_cols[response_param_index]]

 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size,

 shuffle=True, random_state=0)

 return x_train, x_test, y_train, y_test

 def __fit__(self, params):

 x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size)

 self.regressor_trait(**params).fit(x_train, y_train)

 return self.eval_metric(x_test, y_test)

276

 def __fit_cross_validation__(self, params, num_folds=5):

 x_cols = list()

 for col in list(self.proxy_data.proxy_data.columns):

 if col not in ['case'] and col not in self.proxy_data.reservoir_response_params:

 x_cols.append(col)

 y_cols = self.proxy_data.reservoir_response_params

 x = self.proxy_data.proxy_data[x_cols].to_numpy()

 y = self.proxy_data.proxy_data[y_cols[self.response_param_index]].to_numpy()

 #

 k_fold = KFold(n_splits=num_folds, shuffle=True, random_state=0)

 k_fold_metrics = {}

 if self.regressor_trait == XGBRegressor:

 model = self.regressor_trait(**params, eval_metric=self.eval_metric)

 else:

 model = self.regressor_trait(**params)

 #

 _ = 0

 for train_index, test_index in k_fold.split(x):

 x_train, x_test = x[train_index], x[test_index]

 y_train, y_test = y[train_index], y[test_index]

 model.fit(x_train, y_train)

 y_pred = model.predict(x_test)

 score = self.eval_metric(y_test, y_pred)

 if 'fold_' + str(_) not in k_fold_metrics.keys():

 k_fold_metrics['fold_' + str(_)] = score

 _ += 1

 return model, k_fold_metrics

277

 def __optimize__(self, opt_space: dict):

 model = self.regressor_trait(**opt_space)

 model.eval_metric = self.eval_metric

 x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size)

 #

 evaluation = [(x_train, y_train), (x_test, y_test)]

 model.fit(x_train, y_train, eval_set=evaluation, verbose=False)

 y_pred = model.predict(x_test)

 test_metric = self.eval_metric(y_pred, y_test)

 return {'loss': test_metric, 'status': STATUS_OK, 'model': model}

 def __optimize_cross_validation__(self, opt_space: dict):

 model, cross_val_metrics = self.__fit_cross_validation__(opt_space)

 cross_val_metric = sum(cross_val_metrics) / len(cross_val_metrics)

 return {'loss': cross_val_metric, 'status': STATUS_OK, 'model': model}

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

import os

import shutil

from typing import List, Deque, Union, Dict, Any

from tqdm import tqdm

import sklearn

from sklearn.utils.validation import check_is_fitted

278

from sklearn.model_selection import train_test_split, KFold

from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler

from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_pinball_loss

from sklearn.ensemble import GradientBoostingRegressor, HistGradientBoostingRegressor

import xgboost as xgb

from xgboost import XGBRegressor, QuantileDMatrix, DeviceQuantileDMatrix

from hyperopt.pyll.base import scope

from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval

import mlflow

import mlflow.sklearn

import mlflow.xgboost

from mlflow.models import infer_signature

from mlflow import log_metric, log_param, log_artifacts, log_input, log_text

from mlflow.tracking import MlflowClient

from mlflow import pyfunc

from mlflow.pyfunc import PythonModel, PythonModelContext, PyFuncModel, \

 PyFuncInput, PyFuncOutput

from mlflow.pyfunc import log_model, load_model

from proxy.proxy_base import *

from workflow.surrogate import *

class ProxyRawData(object):

279

 def __init__(self, project_dir: str, proxy_data_dir: str):

 super(ProxyRawData, self).__init__()

 self.project_dir = project_dir

 self.proxy_data_dir = proxy_data_dir

 self.proxy_data = pd.DataFrame()

 #

 self.num_doe_cases = None

 self.doe_assembler = None

 #

 self.fracture_profile_resolution = None

 self.doe_params = None

 self.reservoir_response_params = None

 #

 self.experimental_mode = True

 def init_data_properties(self, fracture_profile_resolution, doe_params,

 reservoir_response_params):

 self.fracture_profile_resolution = fracture_profile_resolution

 self.doe_params = doe_params

 self.reservoir_response_params = reservoir_response_params

 def write_proxy_raw_data(self, proxy_raw_data_dir):

 proxy_data_manager = SurrogateDirectory(result_dir=self.project_dir)

 proxy_data_manager.experimental_doe_params = self.doe_params

proxy_data_manager.init_reservoir_response(reservoir_response_var_names=self.reservoir_resp

onse_params)

proxy_data_manager.init_fracture_profile(fracture_profile_resolution=self.fracture_profile_resol

ution)

280

 #

 if self.experimental_mode:

 proxy_data_manager.init_experimental_doe_data()

 proxy_raw_data =

proxy_data_manager.assemble_surrogate_directory(surrogate_dir=self.proxy_data_dir)

 else:

 assert self.doe_assembler is not None

 proxy_raw_data =

proxy_data_manager.assemble_surrogate_directory(surrogate_dir=self.proxy_data_dir)

 self.proxy_data = proxy_raw_data

 proxy_raw_data.to_csv(proxy_raw_data_dir)

 return proxy_raw_data

class ProxyData(object):

 def __init__(self, proxy_raw_data: pd.DataFrame, proxy_raw_data_dir: str):

 super(ProxyData).__init__()

 self.proxy_raw_data = proxy_raw_data

 self.proxy_raw_data_dir = proxy_raw_data_dir

 self.proxy_data: pd.DataFrame = pd.DataFrame()

 #

 self.doe_params = None

 self.reservoir_response_params = None

 self.fracture_profile_params = None

 self.proxy_time = ['surrogate_time']

 #

 self.experimental_mode = True

 self.experimental_Swr = [0.2, 0.01]

 self.experimental_Sor = [0.2, 0.01]

281

 self.experimental_Sgr = [0.03, 0.001]

 self.experimental_K = [0., 0.5]

 def validate(self):

 assert self.proxy_raw_data_dir is not None or self.proxy_raw_data.empty is True

 def init_data_properties(self, doe_params, reservoir_response_params):

 self.doe_params = doe_params

 self.reservoir_response_params = reservoir_response_params

 #

 if self.proxy_raw_data.empty is False:

 proxy_raw_data_ = self.proxy_raw_data.fillna(value=0., inplace=False)

 else:

 proxy_raw_data_ = pd.read_csv(self.proxy_raw_data_dir, index_col=0, header=0)

 proxy_raw_data_ = proxy_raw_data_.fillna(value=0., inplace=False)

 #

 fracture_profile_params_ = list()

 for col in list(proxy_raw_data_.columns):

 if 'z_' in 'col':

 fracture_profile_params_.append(col)

 #

 self.fracture_profile_params = fracture_profile_params_

 self.proxy_raw_data = proxy_raw_data_

 def scale_proxy_time(self):

 scaled_proxy_time_ =

MinMaxScaler().fit_transform(self.proxy_raw_data[self.proxy_time])

 scaled_proxy_time = pd.DataFrame(data=scaled_proxy_time_, columns=self.proxy_time)

 return scaled_proxy_time

282

 def scale_fracture_profile(self):

 scaled_frac_profile_ = np.zeros([self.proxy_raw_data.shape[0],

 len(self.fracture_profile_params)])

 for (_, param) in enumerate(self.fracture_profile_params):

 scaled_fp = StandardScaler().fit_transform(self.proxy_raw_data[[param]])[:, 0]

 scaled_frac_profile_[:, _] = scaled_fp

 scaled_frac_profile = pd.DataFrame(data=scaled_frac_profile_,

columns=self.fracture_profile_params)

 return scaled_frac_profile

 def scale_reservoir_response_params(self):

 scaled_response_ = np.zeros([self.proxy_raw_data.shape[0],

 len(self.reservoir_response_params)])

 for (_, param) in enumerate(self.reservoir_response_params):

 scaled_rs = StandardScaler().fit_transform(self.proxy_raw_data[[param]])[:, 0]

 scaled_response_[:, _] = scaled_rs

 scaled_response = pd.DataFrame(data=scaled_response_,

columns=self.reservoir_response_params)

 return scaled_response

 def scale_doe_params(self):

 if self.experimental_mode:

 scaled_doe_ = np.zeros([self.proxy_raw_data.shape[0], len(self.doe_params)])

 scaled_doe_[:, 0] = (self.proxy_raw_data[['S_wr']].to_numpy()[:, 0] - 0.2) / 0.1

 scaled_doe_[:, 1] = (self.proxy_raw_data[['S_or']].to_numpy()[:, 0] - 0.2) / 0.1

 scaled_doe_[:, 2] = (self.proxy_raw_data[['S_gr']].to_numpy()[:, 0] - 0.03) / 0.001

 scaled_doe_[:, -1] = (self.proxy_raw_data[['relative_frac_toughness']].to_numpy()[:, 0] -

0.) / 0.5

283

 scaled_doe = pd.DataFrame(data=scaled_doe_, columns=self.doe_params)

 return scaled_doe

 else:

 return pd.DataFrame()

 def scale_proxy_raw_data(self, proxy_scaled_data_dir):

 scaled_time = self.scale_proxy_time()

 scaled_doe = self.scale_doe_params()

 scaled_frac_profile = self.scale_fracture_profile()

 scaled_response = self.scale_reservoir_response_params()

 proxy_scaled_data = pd.concat([scaled_time, scaled_doe,

 scaled_frac_profile, scaled_response], axis=1)

 proxy_scaled_data.insert(0, 'case', self.proxy_raw_data['case'].to_numpy(dtype=np.int8))

 self.proxy_data = proxy_scaled_data

 proxy_scaled_data.to_csv(proxy_scaled_data_dir)

 return proxy_scaled_data

from proxy.gb_proxy import *

from proxy.xgb_proxy import *

from proxy.proxy_opt import *

from proxy.proxy_utils import *

class MLFlowProxyWrapper(PythonModel):

 def __init__(self, proxy: QuantileXGBRegressor):

 super(MLFlowProxyWrapper, self).__init__()

 self.proxy = proxy

284

 def load_context(self, context):

 pass

 def predict(self, context: PythonModelContext,

 model_input: np.ndarray, params: Optional[dict[str, Any]]):

 return self.proxy.__predict__(model_input)

class ProxyExperiment(object):

 def __init__(self, mlflow_proxy_wrapper: MLFlowProxyWrapper,

 mlflow_client=mlflow.MlflowClient()):

 super(ProxyExperiment, self).__init__()

 self.mlflow_client = mlflow_client

 self.mlflow_proxy_wrapper = mlflow_proxy_wrapper

 #

 self.experiment_dir = None

 self.experiment_name = None

 self.experiment_description = None

 #

 self.proxy_name = type(self.mlflow_proxy_wrapper.proxy).__name__

 self.experiment_mode = 'fit'

 self.proxy_registry_name = self.experiment_mode + '_' + self.proxy_name

 def set_expriment_mode(self, experiment_mode):

 self.experiment_mode = experiment_mode

 def set_experiment(self, experiment_dir, experiment_name, experiment_description):

 self.experiment_name = experiment_name

285

 self.experiment_dir = experiment_dir

 self.experiment_description = experiment_description

 if mlflow.get_experiment_by_name(name=experiment_name) is None:

 mlflow.create_experiment(name=experiment_name, tags=experiment_description)

 else:

 mlflow.set_experiment(experiment_name=experiment_name)

 def log_new_fit_experiment(self, run_name, model_dir, artifact_dir, params):

 try:

 assert self.experiment_mode == 'fit'

 with mlflow.run(experiment_name=self.experiment_name, run_name=run_name):

 model, eval_metrics = self.mlflow_proxy_wrapper.proxy.__fit__(params)

 eval_metrics_ = read_xgb_eval_metrics(eval_metrics)

 mlflow.log_params(params=params)

 #

 mlflow.log_metrics(metrics=eval_metrics_)

 log_model(python_model=self.mlflow_proxy_wrapper,

 artifact_path=model_dir,

 registered_model_name=self.proxy_registry_name)

 artifact_file = os.path.join(artifact_dir, 'experiment_mode.txt')

 mlflow.log_text(text=self.experiment_mode, artifact_file=artifact_file)

 mlflow.end_run(status='FINISHED')

 except AssertionError:

 warnings.warn("Incorrect experiment mode. Fatal model error.")

 def log_new_opt_experiment(self, run_name, model_dir, artifact_dir, opt_space):

 try:

 assert self.experiment_mode == 'opt'

286

 with mlflow.run(experiment_name=self.experiment_name, run_name=run_name):

 proxy_optimizer =

ProxyOptimization(proxy_object=self.mlflow_proxy_wrapper.proxy)

 proxy_optimizer.init_optimizer(opt_space=opt_space)

 opt_instance =

proxy_optimizer.exec_optimizer(opt_func_attr="__optimize_cross_validation__")

 opt_params = proxy_optimizer.eval_optimizer(opt_instance=opt_instance)

 #

 model, eval_metrics = self.mlflow_proxy_wrapper.proxy.__fit__(opt_params)

 eval_metrics_ = read_xgb_eval_metrics(eval_metrics)

 #

 mlflow.log_params(params=opt_params)

 mlflow.log_metrics(metrics=eval_metrics_)

 log_model(python_model=self.mlflow_proxy_wrapper,

 artifact_path=model_dir,

 registered_model_name=self.proxy_registry_name)

 artifact_file = os.path.join(artifact_dir, 'experiment_mode.txt')

 mlflow.log_text(text=self.experiment_mode, artifact_file=artifact_file)

 mlflow.end_run(status='FINISHED')

 except AssertionError:

 warnings.warn("Incorrect experiment mode. Fatal model error.")

 def load_experiment(self, experiment_name: str):

 if experiment_name is not None:

 experiment_name_ = experiment_name

 else:

 experiment_name_ = self.experiment_name

 experiments = mlflow.search_experiments()

 experiment_dir = [exp.name for exp in experiments if

287

 experiment_name_ in exp.name][0]

 experiments = dict(mlflow.get_experiment_by_name(experiment_dir))

 experiment_id = experiments['experiment_id']

 experiment_runs = mlflow.search_runs(experiment_id)

 return experiment_runs

 def load_criteria_run(self, experiment_name: str, criteria: str):

 runs = self.load_experiment(experiment_name=experiment_name)

 criteria_cols = [col for col in runs.columns if col.startswith('params.') or

col.startswith('metrics.')]

 criteria_runs = runs[runs['status'] == 'FINISHED'][criteria_cols].dropna()

 runs_indices = criteria_runs.sort_values(f"metrics.{criteria}", ascending=False).index

 runs = runs.loc[runs_indices, :]

 best_run_id = runs['run_id'].tolist()[0]

 return best_run_id

 @staticmethod

 def load_criteria_model(run_id: str):

 return pyfunc.load_model(run_id)

from proxy.proxy_base import *

class ProxyOptimization(object):

 def __init__(self, proxy_object, trial=Trials()):

 super(ProxyOptimization, self).__init__()

 self.trials = trial

 #

 self.proxy_object = proxy_object

 self.opt_space = None

288

 self.opt_algo = tpe.suggest

 self.max_evals = 500

 def init_optimizer(self, opt_space):

 self.opt_space = opt_space

 def exec_optimizer(self, opt_func_attr):

 opt_func = getattr(self.proxy_object, opt_func_attr)

 opt_instance = fmin(fn=opt_func, space=self.opt_space,

 algo=self.opt_algo, max_evals=self.max_evals,

 trials=self.trials)

 return opt_instance

 def eval_optimizer(self, opt_instance):

 return space_eval(self.opt_space, opt_instance)

from proxy_base import *

mlflow.set_tracking_uri("sqlite:///mlruns.db")

mlflow.set_registry_uri("models")

from proxy.proxy_base import *

def read_xgb_eval_metrics(eval_metrics: dict):

 """

 Function to custom the mlflow log for eval_results in xgboost

 Structure of xgboost eval_results: dict("eval": dict(metric_name, metric_val))

 :param eval_metrics:

289

 :return:

 """

 eval_metrics_: dict = eval_metrics['eval']

 return eval_metrics_

from proxy.proxy_data import *

class XGBDataset(object):

 def __init__(self, df):

 super(XGBDataset, self).__init__()

 self.df = df

 self.time_param = ['surrogate_time']

 self.doe_params = [None]

 self.fracture_profile_params = [None]

 self.response_params = [None]

 #

 self.x_cols = [None]

 self.y_cols = [None]

 def set_up_params(self, doe_params_, fracture_profile_params_, response_params_):

 self.doe_params = doe_params_

 self.fracture_profile_params = fracture_profile_params_

 self.response_params = response_params_

 def set_up_columns(self, mode: str, response_index: int):

 if mode == 'default':

 self.x_cols = self.time_param + self.doe_params + self.fracture_profile_params

 elif mode == 'exclude_doe':

290

 self.x_cols = self.time_param + self.fracture_profile_params

 elif mode == 'exclude_time_doe':

 self.x_cols = self.fracture_profile_params

 self.y_cols = [self.response_params[response_index]]

 def split(self):

 x = self.df[self.x_cols]

 y = self.df[self.y_cols]

 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=0)

 x_train, x_test, y_train, y_test = x_train.to_numpy(), x_test.to_numpy(), y_train.to_numpy(),

y_test.to_numpy()

 xy_train = QuantileDMatrix(x_train, x_train)

 xy_test = QuantileDMatrix(x_test, y_test, ref=xy_train)

 return {'train_set': [xy_train, x_train, y_train], 'test_set': [xy_test, x_test, y_test]}

 def split_cross_validation(self, num_folds: int = 5):

 x = self.df[self.x_cols].to_numpy()

 y = self.df[self.y_cols].to_numpy()

 k_fold = KFold(n_splits=num_folds, shuffle=True, random_state=0)

 train_test = dict()

 i = 0

 for train_index, test_index in k_fold.split(x):

 x_train, x_test = x[train_index], x[test_index]

 y_train, y_test = y[train_index], y[test_index]

 key_train, key_test = 'train_set_' + str(i), 'test_set_' + str(i)

 xy_train = QuantileDMatrix(x_train, y_train)

 xy_test = QuantileDMatrix(x_test, y_test, ref=xy_train)

 if key_train not in train_test.keys():

 train_test[key_train] = [xy_train, x_train, y_train]

291

 if key_test not in train_test.keys():

 train_test[key_test] = [xy_test, x_test, y_test]

 i += 1

 return train_test

class QuantileXGBRegressor(object):

 def __init__(self, xgb_data: XGBDataset):

 super(QuantileXGBRegressor, self).__init__()

 self.xgb_data = xgb_data

 self.num_folds = 5

 #

 self.eval_metric = mean_squared_error

 self.eval_index: int = 1

 self.quantiles = np.array([0.05, 0.5, 0.95], dtype=np.float32)

 #

 self.model: xgb.Booster = None

 def __fit__(self, params: dict):

 train_test = self.xgb_data.split()

 eval_metrics: Dict[str, Dict] = {}

 params_ = params

 if 'quantile_alpha' not in params_.keys():

 params_['quantile_alpha'] = self.quantiles

 else:

 pass

 params_['objective'] = "reg:quantileerror"

 #

292

 model = xgb.train(params_, train_test['train_set'][0],

 num_boost_round=32,

 evals=[(train_test['train_set'][0], "train"),

 (train_test['test_set'][0], "test")],

 evals_result=eval_metrics, verbose_eval=False)

 self.model = model

 return model, eval_metrics

 def __fit_cross_validation__(self, params: dict):

 train_test = self.xgb_data.split_cross_validation(num_folds=self.num_folds)

 model = None

 mean_metrics = {}

 params_ = params

 if 'quantile_alpha' not in params_.keys():

 params_['quantile_alpha'] = self.quantiles

 else:

 pass

 params_['objective'] = "reg:quantileerror"

 #

 for _ in range(self.num_folds):

 eval_metrics: Dict[str, Dict] = {}

 xy_train, x_train, y_train = train_test['train_set_' + str(_)]

 xy_test, x_test, y_test = train_test['test_set_' + str(_)]

 model = xgb.train(params_, xy_train,

 num_boost_round=32,

 evals=[(xy_train, "train"),

 (xy_test, "test")],

 evals_result=eval_metrics, verbose_eval=False)

293

 y_pred = model.inplace_predict(x_test)

 mean_metric = self.eval_metric(y_pred[:, self.eval_index], y_test)

 if 'fold_' + str(_) not in mean_metrics.keys():

 mean_metrics['fold_' + str(_)] = mean_metric

 self.model = model

 return model, mean_metrics

 def __predict__(self, x: np.ndarray):

 try:

 assert self.model is not None

 return self.model.inplace_predict(x)

 except AssertionError:

 warnings.warn('Model instance is not set, may cause fatal prediction.')

 return None

 def __optimize_cross_validation__(self, opt_space: dict):

 model, mean_metrics = self.__fit_cross_validation__(opt_space)

 mean_metric = sum(mean_metrics.values()) / len(mean_metrics.keys())

 return {'loss': mean_metric, 'status': STATUS_OK, 'model': model}

from proxy_explainer_base import *

from proxy.proxy_data import *

from proxy.proxy import *

from proxy.gb_proxy import *

from proxy.xgb_proxy import *

class ProxyExplainer(object):

294

 def __init__(self, model, new_proxy_data: ProxyData):

 super(ProxyExplainer, self).__init__()

 self.model = model

 self.new_proxy_data = new_proxy_data

 #

 self.mode = 'tree'

 self.x_cols = None

 def validate(self):

 if check_is_fitted(self.model) is True and \

 self.new_proxy_data.proxy_data.empty is False:

 return True

 else:

 return False

 def init_explainer(self, mode, x_cols, sample=100):

 sampled_x = self.new_proxy_data.proxy_data[x_cols].sample(sample, random_state=0)

 if mode == 'default':

 return Explainer(self.model, sampled_x), sampled_x

 else:

 return TreeExplainer(self.model, sampled_x), sampled_x

 def plot_bee_swarm(self):

 fig = plt.figure()

 explainer, sampled_x = self.init_explainer(self.mode, self.x_cols)

 shap_values = explainer.shap_values(sampled_x)

 shap.summary_plot(shap_values, sampled_x)

 return fig

295

 def plot_bar(self):

 fig = plt.figure()

 explainer, sampled_x = self.init_explainer(self.mode, self.x_cols)

 shap_values = explainer.shap_values(sampled_x)

 shap.summary_plot(shap_values, sampled_x, plot_size='bar')

 return fig

 def plot_water_fall(self, instance_index: int, max_display=20):

 fig = plt.figure()

 explainer, sampled_x = self.init_explainer(self.mode, self.x_cols)

 shap_values = explainer.shap_values(sampled_x)

 shap.waterfall_plot(shap_values[instance_index], max_display=max_display)

 return fig

 def plot_scatter(self, instance: str):

 fig = plt.figure()

 explainer, sampled_x = self.init_explainer(self.mode, self.x_cols)

 shap_values = explainer.shap_values(sampled_x)

 shap.plots.scatter(shap_values[:, instance])

 return fig

 @staticmethod

 def display_to_gui(fig):

 return plotly_tools.mpl_to_plotly(fig)

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

296

import pandas as pd

import os

import shutil

from typing import List, Deque, Union, Dict

from tqdm import tqdm

import shap

from shap import Explainer, TreeExplainer, DeepExplainer

import plotly.tools as plotly_tools

from base.base import *

the style arguments for the sidebar. We use position:fixed and a fixed width

SIDEBAR_STYLE = {

 "position": "fixed",

 "top": 0,

 "left": 0,

 "bottom": 0,

 "width": "16rem",

 "padding": "2rem 1rem",

 "background-color": "#f8f9fa",

}

doe_sidebar = [

 html.Div(

297

 dbc.Row(

 [

 dbc.Col("Design of Experiments"),

 dbc.Col(

 html.I(className="fas fa-chevron-right me-3"),

 width="auto",

),

],

 className="doe_sidebar_row",

),

 style={"cursor": "pointer"},

 id="doe_sidebar",

),

 dbc.Collapse(

 [

 dbc.NavLink("ResFrac", href="/res_frac"),

],

 id="doe_sidebar_collapse",

),

]

frac_cal_sidebar = [

 html.Div(

 dbc.Row(

 [

 dbc.Col("Fracture Calibration"),

 dbc.Col(

 html.I(className="fas fa-chevron-right me-3"),

298

 width="auto",

),

],

 className="frac_cal_sidebar_row",

),

 style={"cursor": "pointer"},

 id="frac_cal_sidebar",

),

 dbc.Collapse(

 [

 dbc.NavLink("Fracture Calibration Proxy", href="/frac_cal_proxy"),

],

 id="frac_cal_sidebar_collapse",

),

]

proxy_deploy_sidebar = [

 html.Div(

 dbc.Row(

 [

 dbc.Col("Deploy the proxy"),

 dbc.Col(

 html.I(className="fas fa-chevron-right me-3"),

 width="auto",

),

],

 className="hist_match_sidebar_row",

),

299

 style={"cursor": "pointer"},

 id="proxy_deploy_sidebar",

),

 dbc.Collapse(

 [

 dbc.NavLink("Receive sensor & deploy", href="/deploy_proxy"),

],

 id="proxy_deploy_sidebar_collapse",

),

]

sidebar = html.Div(

 [

 html.H1("i-Geo Sensing", style={'textAlign': 'center'}),

 html.Hr(),

 html.P(

 "A sensor processing platform for fracture calibration", className="lead",

 style={'textAlign': 'center'}),

 dbc.Nav(doe_sidebar + frac_cal_sidebar + proxy_deploy_sidebar,

 vertical=True),

],

 style=SIDEBAR_STYLE,

 id="sidebar",

)

from simulator.simulation.simulation_helpers import *

from simulator.base.utils import *

300

Base Entry & ValueStructs in ResFrac

class ValueStruct(object):

 def __init__(self, value_struct: None):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 def change_value_struct(self, new_value_struct):

 if type(new_value_struct) != type(self.value_struct):

 warnings.warn('Change the value structure.')

 self.value_struct = new_value_struct

 else:

 self.value_struct = new_value_struct

 def write_value_struct(self, file):

 """

 TODO: ? Write the value structure into the opened file

 Support np.array (most ResFrac values) and dict (Rel Perm

 & Time PErm dependency values)

 :param file:

 :return:

 """

 pass

301

class SingleValueStruct(ValueStruct):

 def __init__(self, value_struct):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 def write_value_struct(self, file):

 if type(self.value_struct) != list:

 file.write(str(self.value_struct))

 file.write('\n')

 else:

 write_list_values(file, self.value_struct)

class MatrixValueStruct(ValueStruct):

 def __init__(self, value_struct, length):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 self.length = length

 def write_value_struct(self, file):

 if type(self.value_struct) == np.ndarray:

 write_matrix_values(file=file, array=self.value_struct)

 else:

 write_list_of_list_values(file, values=self.value_struct)

class Entry(object):

302

 def __init__(self, variable_name: str, length: int,

 value_struct: ValueStruct, is_doe: False):

 super(Entry, self).__init__()

 self.comments = None

 self.variable_name = variable_name

 self.length = length

 self.value_struct = value_struct

 self.is_doe = is_doe

 def add_comments(self, comments):

 self.comments = comments

 def change_variable_name(self, new_variable_name):

 if self.is_doe is True:

 self.variable_name = new_variable_name

 else:

 pass

 def change_length(self, new_length):

 if self.is_doe is True:

 self.length = new_length

 else:

 pass

 def change_values(self, new_value_struct):

 if self.is_doe is True:

 self.value_struct.change_value_struct(new_value_struct)

 else:

303

 warnings.warn('Not a DoE variable. Value structure is not altered.')

 pass

 def write_entry_values(self, file):

 """

 TODO: ? Implement method to write entry's data

 - Method is override by specific value structs (e.g., rel_perm)

 - Method is supplemented by another method to change specific data in the

 value struct (e.g, change rel perm kr in rel_perm)

 :return:

 """

 if self.is_doe is True:

 self.value_struct.write_value_struct(file=file)

 else:

 warnings.warn('Not a DoE variable. Value structure shall not be altered.')

 self.value_struct.write_value_struct(file=file)

ValueStruct & Entry belong to settings in ResFrac

class RelPermStruct(ValueStruct):

 def __init__(self, value_struct: List[dict]):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 self.rel_perm_scope = '***'

304

 def write_value_struct(self, file):

 """

 TODO: ? Fix this function to correlate with the parsing & regex templates

 :param file:

 :return:

 """

 for (_, rel_perm_curve) in enumerate(self.value_struct):

 for rel_perm_key, rel_perm_value in rel_perm_curve.items():

 if rel_perm_key == 'curvesetname':

 file.write(rel_perm_key)

 file.write('\n')

 file.write(rel_perm_value)

 file.write('\n')

 elif rel_perm_key == 'matrixrelperm':

 file.write(rel_perm_key)

 file.write('\n')

 file.write(rel_perm_value[0])

 file.write('\n')

 write_matrix_values(file=file, array=rel_perm_value[-1])

 file.write('\n')

 elif rel_perm_key == ('pressuredependentpermeability', 'reversible'):

 file.write(rel_perm_key[0])

 file.write('\n')

 file.write(rel_perm_key[-1])

 file.write('\n')

 write_matrix_values(file=file, array=rel_perm_value[0])

 file.write('\n')

305

 for _ in rel_perm_value[-1]:

 file.write(_) # _ is '---'

 file.write('\n')

 elif rel_perm_key == ('pressuredependentpermeability', 'irreversible'):

 file.write(rel_perm_key[0])

 file.write('\n')

 file.write(rel_perm_key[-1])

 file.write('\n')

 for _ in rel_perm_value:

 file.write(str(_)) # _ is '---'

 file.write('\n')

 else:

 file.write(rel_perm_key)

 file.write('\n')

 for _ in rel_perm_value:

 file.write(str(_)) # _ is '---'

 file.write('\n')

 file.write(self.rel_perm_scope)

 file.write('\n')

class FaciesListStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct).__init__()

 self.value_struct = value_struct

 def write_value_struct(self, file):

 """

306

 TODO: Write the facies list data into an opened file per line as follows:

 Layer + layer_number + row data of value_struct

 :param file:

 :return:

 """

 for (layer_name, layer_data) in self.value_struct.items():

 file.write(layer_name)

 file.write('\t')

 for data in layer_data:

 file.write(str(data))

 file.write('\t')

 file.write('\n')

 file.write('\n')

class BlackOilModelStruct(ValueStruct):

 def __init__(self, value_struct: tuple):

 super(ValueStruct).__init__()

 self.value_struct = value_struct

 self.size = 4

 def write_value_struct(self, file):

 """

 TODO: Write the black oil data into an opened file per line as follows:

 - Initial bubble/dew point, co, cw, muw, Bwatbubblepoint, oilspecificgravity,

gasspecificgravity, waterspecificgravity,

 'unsaturated properties' method

 - Number of rows in black oil property table

 - Black oil property table

307

 (There is no keys in the value_struct)

 :param file:

 :return:

 """

 write_list_values(file, self.value_struct[0])

 file.write(str(self.value_struct[1])) # Number of rows in black oil property table

 file.write('\n')

 write_matrix_values(file=file, array=self.value_struct[-1])

 file.write('\n')

class ClusterPerStageStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 self.scope_str = '***'

 def write_value_struct(self, file):

 """

 TODO: ? Write prop types into an opened file per line as follows:

 :param file:

 :return:

 """

 for (_, cluster_per_stage) in self.value_struct.items():

 file.write(self.scope_str)

 file.write('\n')

 for data in cluster_per_stage:

 file.write(str(data))

308

 file.write('\n')

 file.write('\n')

class WaterByLayerStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 self.scope_str = '***'

 def write_value_struct(self, file):

 """

 TODO: ? Write prop types into an opened file per line as follows:

 :param file:

 :return:

 """

 for (_, init_Sw) in self.value_struct.items():

 file.write(self.scope_str)

 file.write('\n')

 file.write(str(init_Sw))

 file.write('\n')

 file.write('\n')

class PropTypesStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

309

 def write_value_struct(self, file):

 """

 TODO: ? Write prop types into an opened file per line as follows:

 :param file:

 :return:

 """

 for (prop_name, prop_data) in self.value_struct.items():

 file.write(prop_name)

 file.write('\t')

 for data in prop_data:

 file.write(str(data))

 file.write('\t')

 file.write('\n')

 file.write('\n')

class PropMixtureStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 def write_value_struct(self, file):

 """

 TODO: ? Write prop mixtures into an opened file per line as follows:

 :param file:

 :return:

 """

310

 for (mix_name, mix_data) in self.value_struct.items():

 file.write(mix_name)

 file.write('\t')

 for data in mix_data:

 file.write(str(data))

 file.write('\t')

 file.write('\n')

 file.write('\n')

class PropPermModelStruct(ValueStruct):

 def __init__(self, value_struct: np.ndarray):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 def write_value_struct(self, file):

 """

 TODO: ? Write prop mixtures into an opened file per line as follows:

 :param file:

 :return:

 """

 write_matrix_values(file=file, array=self.value_struct)

class FracPermModelStruct(ValueStruct):

 def __init__(self, value_struct: np.ndarray):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

311

 def write_value_struct(self, file):

 """

 TODO: ? Write prop mixtures into an opened file per line as follows:

 :param file:

 :return:

 """

 write_matrix_values(file=file, array=self.value_struct)

class WaterSoluteStruct(ValueStruct):

 def __init__(self, value_struct: list):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 def write_value_struct(self, file):

 for water_solute_value in self.value_struct:

 file.write(str(water_solute_value))

 file.write('\t')

 file.write('\n')

class FluidMixtureStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 def write_value_struct(self, file):

312

 for (mix_name, mix_data) in self.value_struct.items():

 file.write(mix_name)

 file.write('\t')

 for data in mix_data:

 file.write(str(data))

 file.write('\t')

 file.write('\n')

 file.write('\n')

class WellSequenceStruct(ValueStruct):

 def __init__(self, value_struct: list, sequence_type: str):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 self.sequence_type = sequence_type

 # Data within 2 sequence_scope_str is written for a sequence of a well (example:

injection/production)

 self.sequence_scope_str = '***'

 def write_value_struct(self, file):

 if self.value_struct is None:

 pass

 else:

 # Write sequence_scope_str to start a sequence

 file.write(self.sequence_scope_str)

 file.write('\n')

 if self.sequence_type == 'Shut-in':

 file.write(self.value_struct[0])

 file.write('\n')

313

 write_list_values(file, self.value_struct[1:])

 elif self.sequence_type == 'Injection':

 for _ in self.value_struct[: -1]:

 file.write(str(_))

 file.write('\n')

 write_list_of_list_values(file, self.value_struct[-1])

 elif self.sequence_type == 'Production':

 file.write(self.value_struct[0])

 file.write('\n')

 file.write(self.value_struct[1])

 file.write('\n')

 write_list_values(file, self.value_struct[2: -1])

 file.write('\n')

 write_list_of_list_values(file, self.value_struct[-1])

 else:

 warnings.warn('Can not detect the sequence.')

 sys.exit(1)

 file.write('\n')

class WellBoundaryConditionStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 # Data within 2 well_scope_str is written for a well

 self.well_scope_str = '********'

 def write_value_struct(self, file):

314

 """

 TODO: Write the boundary condition control (for well(s)) into an opened file as follows:

 -

 :param file:

 :return:

 """

 for (well_name, well_sequences) in self.value_struct.items():

 # Write well_scope_str and well_name to start a well

 file.write(self.well_scope_str)

 file.write('\n')

 file.write(well_name)

 file.write('\n')

 # Write all sequences for a well

 shut_in_sequence = well_sequences['Shut-in']

 injection_sequence = well_sequences['Injection']

 production_sequence = well_sequences['Production']

 WellSequenceStruct(value_struct=shut_in_sequence, sequence_type='Shut-

in').write_value_struct(file)

 WellSequenceStruct(value_struct=injection_sequence,

sequence_type='Injection').write_value_struct(file)

 WellSequenceStruct(value_struct=production_sequence,

sequence_type='Production').write_value_struct(file)

 # Write well_scope_str to end

 file.write(self.well_scope_str)

 file.write('\n')

class WellTruncateSequenceStruct(ValueStruct):

 def __init__(self, value_struct: dict):

315

 super(ValueStruct, self).__init__()

 self.value_struct = value_struct

 self.begin_str = '***'

 def write_value_struct(self, file):

 for (_, truncate_data) in self.value_struct.items():

 file.write(self.begin_str)

 file.write('\n')

 for data in truncate_data:

 file.write(str(data))

 file.write('\n')

 file.write('\n')

ValueStruct & Entry belong to input in ResFrac

class WellVerticesStruct(ValueStruct):

 def __init__(self, value_struct: dict):

 super(ValueStruct).__init__()

 self.value_struct = value_struct

 self.begin_str = '***'

 def write_value_struct(self, file):

 for (_, well_vertices) in self.value_struct.items():

 file.write(self.begin_str)

316

 file.write('\n')

 for data in well_vertices:

 write_list_values(file=file, values=data)

 file.write('\n')

Irregular ValueStruct list

irregular_value_structs = [RelPermStruct, FaciesListStruct, BlackOilModelStruct,

 ClusterPerStageStruct, WaterByLayerStruct,

 PropTypesStruct, PropMixtureStruct,

 PropPermModelStruct, FracPermModelStruct,

 WaterSoluteStruct, FluidMixtureStruct,

 WellBoundaryConditionStruct, WellTruncateSequenceStruct,

WellVerticesStruct]

from simulator.simulation.simulation_helpers import *

from simulator.base.entry import *

from simulator.base.regex_templates import *

from simulator.base.utils import *

Method to parse entry data from ResFrac files

317

def parse_entry(entry: dict):

 """

 TODO: ? Parse the entry's value(s) using ResFrac embedded format to obtain:

 1.

 :param entry:

 :return:

 """

 # Create entry_ (being parsed from entry)

 value_struct_ = ValueStruct(value_struct=None)

 entry_ = Entry(variable_name=' ', length=0, value_struct=value_struct_, is_doe=True)

 # Extract the entry's variable name

 variable_name_ = entry['Variable name:'][0]

 variable_name_ = variable_name_.split(sep='\n')[0]

 # Extract the entry's length

 length_ = entry['Length:'][0]

 length_ = int(length_.split(sep='\n')[0])

 # Extract the entry's value struct

 raw_value_struct_ = entry['Value(s):']

 if length_ == 0:

 # Entry has no value

 entry_.change_values(None)

 elif length_ == 1 and len(raw_value_struct_) == 1:

 # Entry has one single value

 parsed_value = parse_value(raw_value_struct_=raw_value_struct_)

 entry_.value_struct = SingleValueStruct(value_struct=parsed_value)

 elif variable_name_ in irregular_variable_names:

 # Entry has irregular value

 variable_name_idx_ = irregular_variable_names.index(variable_name_)

318

 variable_regex_ =

irregular_regex_classes[variable_name_idx_](raw_str=raw_value_struct_)

 parsed_value = variable_regex_.extract()

 entry_.value_struct = irregular_value_structs[variable_name_idx_](value_struct=None)

 entry_.change_values(parsed_value)

 else:

 parsed_value = ListOfListRegex(raw_str=raw_value_struct_).extract()

 entry_.value_struct = MatrixValueStruct(value_struct=None, length=length_)

 entry_.change_values(parsed_value)

 # Complete the parsing

 entry_.change_variable_name(variable_name_)

 entry_.change_length(length_)

 return entry_

def search_entry(entries: List[Entry], entry_name: str):

 for (ie, entry) in enumerate(entries):

 if entry_name in entry.variable_name:

 return entry

 return None

def parse_value(raw_value_struct_):

 # TODO: ? Test robustness of this function for common value_struct

 # Common value struct has only 1 value (float, str, int, bool), no repeat.

 parsed_data_ = raw_value_struct_[0]

 if '\t' not in parsed_data_:

 parsed_data_ = remove_new_line_char(parsed_data_)

 return extract_primitive_data_type(parsed_data_)

319

 else:

 parsed_data_ = remove_new_line_char(parsed_data_)

 parsed_data_ = parsed_data_.split(sep='\t')

 return extract_list_data_type(parsed_data_)

import numpy as np

from src.base.base_libs import *

from simulator.base.utils import remove_new_line_char, remove_empty_in_block

Regular expression helpers to match data in ResFrac files

Regex existed in ResFrac

blank_regex = '[BLANK]'

default_regex = 'Default'

Pre-defined regexes to parse specific data (e.g, relative perm, well control)

nan_regex = 'nan'

sequence_scope_regex = '***'

well_scope_regex = '********'

split_regex = '---'

repetition_regex = 'REPEAT'

end_regex = 'END'

Pre-defined data types to parse specific data (i.e., relative perm, well control)

repeated_int = {repetition_regex: int}

repeated_float = {repetition_regex: float}

320

repeated_str = {repetition_regex: str}

repeated_split = {repetition_regex: split_regex}

repeated_list = {repetition_regex: list}

repeated_list_int = {repetition_regex: (list, int)}

repeated_list_float = {repetition_regex: (list, float)}

TODO: ? Use pair of keywords as tuple() if 2 keywords are required

brooks_corey_regex = ['curvesetname', 'matrixrelperm',

 ('pressuredependentpermeability', 'reversible'),

 ('pressuredependentpermeability', 'irreversible'),

 'tenxreversiblepermeabilitylossperpressureincrement',

 'tenxirreversiblepermeabilitylossperpressureincrement',

 'lowerpressurethresholdforreversiblepermeabilityincrease',

 'upperpressurethresholdforreversiblepermeabilityincrease',

 'permmultiplierforreversiblepermeabilityincrease',

 'lowerpressurethresholdforirreversiblepermeabilityincrease',

 'upperpressurethresholdforirreversiblepermeabilityincrease',

 'permmultiplierforirreversiblepermeabilityincrease',

 'permeabilitymultiplier',

 'waterbankthicknesstorelpermincreasescalingthickness',

 'waterbankthicknesstorelpermdecreasescalingthickness',

 'waterbankimmobilefraction', end_regex]

x_curve_regex = ['curvesetname', 'matrixrelperm',

 ('pressuredependentpermeability', 'reversible'),

 ('pressuredependentpermeability', 'irreversible'),

321

 'tenxreversiblepermeabilitylossperpressureincrement',

 'tenxirreversiblepermeabilitylossperpressureincrement',

 'lowerpressurethresholdforreversiblepermeabilityincrease',

 'upperpressurethresholdforreversiblepermeabilityincrease',

 'permmultiplierforreversiblepermeabilityincrease',

 'lowerpressurethresholdforirreversiblepermeabilityincrease',

 'upperpressurethresholdforirreversiblepermeabilityincrease',

 'permmultiplierforirreversiblepermeabilityincrease',

 'permeabilitymultiplier',

 'waterbankthicknesstorelpermincreasescalingthickness',

 'waterbankthicknesstorelpermdecreasescalingthickness',

 'waterbankimmobilefraction', end_regex]

brooks_corey_data = [str, (str, repeated_list_float),

 (repeated_list_float, repeated_split),

 repeated_str,

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str)]

322

x_curve_data = [str, (str, repeated_list_float),

 repeated_split,

 repeated_split,

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str),

 (float, str)]

injection_sequence_data_regex = [str, str, str, str, float, float, repeated_list]

production_sequence_data_regex = [str, str, list, repeated_list]

shut_in_sequence_data_regex = [str, list]

class RepeatedDataType(object):

 def __init__(self, data_type: dict):

 super(RepeatedDataType, self).__init__()

 try:

 assert type(data_type) == dict

 assert list(data_type.keys())[0] == repetition_regex

323

 self.data_type = data_type

 except AssertionError:

 warnings.warn('Incorrect repeated data type.')

 self.data_type = None

 def value_error(self, raw_data: str):

 data_type_ = self.data_type[repetition_regex]

 raw_data_ = remove_new_line_char(raw_data)

 if type(data_type_) != tuple:

 # Repeated int, float, str, list (1 single value or 1 list per line)

 if '\t' not in raw_data_:

 if data_type_ in [int, float]:

 try:

 value_ = data_type_(raw_data_)

 return False

 except ValueError:

 return True

 elif data_type_ in [split_regex]:

 return False

 else:

 return False

 else:

 return False

 else:

 # Repeated list of all ints/floats (1 list per line)

 try:

 assert '\t' in raw_data_

 assert len(data_type_) == 2

324

 assert data_type_[0] == list

 value_ = raw_data_.split(sep='\t')

 for i in value_:

 if data_type_[-1] in [int, float]:

 try:

 i_ = data_type_[-1](i)

 except ValueError:

 return True

 else:

 return False

 return False

 except AssertionError:

 return True

 def extract(self, raw_data: str):

 value_error = self.value_error(raw_data)

 if value_error is True:

 # Can not extract

 return None, True

 else:

 # Can extract

 data_type_ = self.data_type[repetition_regex]

 raw_data_ = remove_new_line_char(raw_data)

 if data_type_ != tuple:

 if '\t' not in raw_data_:

 if data_type_ in [int, float]:

 value_ = data_type_(raw_data_)

 else:

325

 value_ = raw_data_

 return value_, False

 else:

 value_ = raw_data_.split(sep='\t')

 value_ = extract_list_data_type(raw_data=value_)

 return value_, False

 else:

 assert '\t' in raw_data_

 assert data_type_[0] == list

 value_ = raw_data_.split(sep='\t')

 value_ = extract_list_data_type(raw_data=value_)

 return value_, False

def extract_between_keywords(current_keyword, next_keyword, raw_data):

 current_keyword_loc = 0

 next_keyword_loc = 0

 for (j, j_line) in enumerate(raw_data):

 if type(current_keyword) is not tuple:

 if current_keyword == j_line.split(sep='\n')[0]:

 current_keyword_loc = j + 1

 else:

 if (current_keyword[0] == raw_data[j].split(sep='\n')[0]) and \

 (current_keyword[-1] == raw_data[j + 1].split(sep='\n')[0]):

 current_keyword_loc = j + 2

 if type(next_keyword) is not tuple:

 if next_keyword == j_line.split(sep='\n')[0]:

 next_keyword_loc = j

326

 else:

 if (next_keyword[0] == raw_data[j].split(sep='\n')[0]) and \

 (next_keyword[-1] == raw_data[j + 1].split(sep='\n')[0]):

 next_keyword_loc = j

 if next_keyword is end_regex:

 raw_data_ = raw_data[current_keyword_loc:]

 else:

 raw_data_ = raw_data[current_keyword_loc: next_keyword_loc]

 for (_, data_) in enumerate(raw_data_):

 raw_data_[_] = remove_new_line_char(data_)

 return raw_data_

def extract_primitive_data_type(raw_data):

 # Extract for a single primitive data type (float, int, str)

 try:

 i = int(raw_data)

 return i

 except ValueError:

 try:

 i = float(raw_data)

 return i

 except ValueError:

 if raw_data.lower() == 'true':

 return True

 elif raw_data.lower == 'false':

 return False

 else:

327

 warnings.warn('Not a primitive data type or keyword string.')

 return raw_data

def extract_list_data_type(raw_data: List[str]):

 # Extract for a list of different primitive data types (float, int, str),

 data = [None] * len(raw_data)

 for (_, i) in enumerate(raw_data):

 i_ = remove_new_line_char(i)

 try:

 i_ = int(i_)

 data[_] = i_

 except ValueError:

 try:

 i_ = float(i_)

 data[_] = i_

 except ValueError:

 if i_.lower() == 'true':

 data[_] = True

 elif i_.lower == 'false':

 data[_] = False

 else:

 warnings.warn('Not a primitive data type or keyword string.')

 data[_] = i_

 data = remove_empty_in_block(data)

 return data

328

def extract_repeated_data_type(raw_data: List[str], data_type: dict, current_extract_loc: int):

 # Extract pre-defined data types, repeated >=2 lines

 value_error = False

 data = []

 while value_error is False and current_extract_loc < len(raw_data):

 repeated_data_type = RepeatedDataType(data_type=data_type)

 value, value_error = repeated_data_type.extract(raw_data=raw_data[current_extract_loc])

 # This if-else is to prevent adding None and stop counting current_extract_loc

 if value is None and value_error is True:

 pass

 else:

 data.append(value)

 current_extract_loc += 1

 if type(data_type[repetition_regex]) == tuple:

 if data_type[repetition_regex][-1] in [int, float]:

 data = np.array(data)

 else:

 pass

 else:

 pass

 return data, current_extract_loc

def extract_nested_data_type(raw_data: List[str], data_types: tuple, current_extract_loc: int):

 # Extract multiple primitive/pre-defined repeated datatypes nested in a tuple

 data = list()

 for data_type in data_types:

 if data_type in [int, float, str]:

329

 value = extract_primitive_data_type(raw_data[current_extract_loc])

 data += [value]

 current_extract_loc += 1

 elif data_type in [list]:

 value = raw_data[current_extract_loc].split(sep='\t')

 value = extract_list_data_type(value)

 data += value

 current_extract_loc += 1

 else:

 value, current_extract_loc = extract_repeated_data_type(raw_data, data_type,

current_extract_loc)

 data.append(value)

 return data, current_extract_loc

def extract_irregular_data_type(raw_data: List[str], data_types: list):

 data = list()

 current_extract_loc = 0

 for (_, data_type) in enumerate(data_types):

 if data_type in [int, float, str]:

 value = extract_primitive_data_type(raw_data[current_extract_loc])

 data += [value]

 current_extract_loc += 1

 elif data_type in [list]:

 value = raw_data[current_extract_loc].split(sep='\t')

 value = extract_list_data_type(value)

 data += value

 current_extract_loc += 1

 elif type(data_type) == dict:

330

 value, current_extract_loc = extract_repeated_data_type(raw_data, data_type,

current_extract_loc)

 data.append(value)

 else:

 value, current_extract_loc = extract_nested_data_type(raw_data, data_type,

current_extract_loc)

 data += value

 return data

import numpy as np

from src.base.base_libs import *

from simulator.base.regex_helpers import *

Regular expression templates to match data in ResFrac files

class BaseRegex(object):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex).__init__()

 self.raw_str = raw_str

 def extract(self, pattern):

 pass

TODO: ? Validate this class's robustness in extracting values from a list

331

class ListRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex).__init__()

 self.raw_str = raw_str

 def extract(self, pattern=None):

 """

 Extract data from list(list) of values separated by \t or from a single value

 (different primitive data types possible)

 :param pattern:

 :return: data:

 """

 data_ = remove_new_line_char(self.raw_str)

 if '\t' not in data_:

 data_ = extract_primitive_data_type(data_)

 else:

 data_ = data_.split(sep='\t')

 data_ = extract_list_data_type(data_)

 return data_

class ListOfListRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex).__init__()

 self.raw_str = raw_str

 def extract(self, pattern=None):

 """

332

 Extract data from list(list) of values separated by \t or from a single value

 (different primitive data types possible)

 :param pattern:

 :return: data:

 """

 data = [None] * len(self.raw_str)

 for (_, line) in enumerate(self.raw_str):

 data_ = remove_new_line_char(line)

 if '\t' not in data_:

 data_ = extract_primitive_data_type(data_)

 else:

 data_ = data_.split(sep='\t')

 data_ = extract_list_data_type(data_)

 data[_] = data_

 return data

class RelPermRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex).__init__()

 self.raw_str = raw_str

 self.rel_perm_regex = None

 self.rel_perm_data = None

 def set_rel_perm_model(self, raw_str):

 if 'BrooksCorey' in raw_str[3]:

 self.rel_perm_regex = brooks_corey_regex

 self.rel_perm_data = brooks_corey_data

333

 else:

 self.rel_perm_regex = x_curve_regex

 self.rel_perm_data = x_curve_data

 def extract(self, pattern=None):

 """

 Extract data for relative permeability in ResFrac, using:

 - rel_perm_keyword_regex: required keywords for relative permeability

 - rel_perm_data_regex: required data types corresponding to the keywords

 :param pattern:

 :return: data

 """

 pattern_separator = '***'

 separator_locs = list()

 separator_locs.append(0)

 # Determine start/end locations of rel perm curves

 for (_, line) in enumerate(self.raw_str):

 if pattern_separator in line:

 separator_locs.append(_)

 raw_data = [None] * (len(separator_locs) - 1)

 # Extract raw data for all rel perm curves

 for i_rel_perm in range(len(separator_locs) - 1):

 i_raw_data = self.raw_str[separator_locs[i_rel_perm]: separator_locs[i_rel_perm + 1]]

 self.set_rel_perm_model(raw_str=i_raw_data)

 assert len(self.rel_perm_regex) == len(self.rel_perm_data) + 1

 i = 0

 i_rel_perm_data = dict()

 while i < len(self.rel_perm_data):

334

 # Extract raw data between 2 keywords

 current_keyword = self.rel_perm_regex[i]

 next_keyword = self.rel_perm_regex[i + 1]

 current_keyword_data = extract_between_keywords(current_keyword, next_keyword,

 i_raw_data)

 i_rel_perm_data[current_keyword] = current_keyword_data

 i += 1

 raw_data[i_rel_perm] = i_rel_perm_data

 # Extract data for all rel perm curves from raw data

 data = [None] * (len(separator_locs) - 1)

 for i_rel_perm in range(len(separator_locs) - 1):

 i_rel_perm_raw_data = raw_data[i_rel_perm]

 i_rel_perm_data = dict()

 for (i_regex, i_data_regex) in enumerate(self.rel_perm_data):

 i_keyword_regex = self.rel_perm_regex[i_regex]

 i_data_regex = self.rel_perm_data[i_regex]

 i_data = i_rel_perm_raw_data[i_keyword_regex]

 current_extract_loc = 0

 while current_extract_loc < len(i_data):

 if i_data_regex in [int, float, str]:

 i_value = extract_primitive_data_type(i_data[current_extract_loc])

 current_extract_loc += 1

 elif i_data_regex in [list]:

 i_value = i_data[current_extract_loc].split(sep='\t')

 i_value = extract_list_data_type(i_value)

 current_extract_loc += 1

 elif type(i_data_regex) == dict:

 i_value, current_extract_loc = extract_repeated_data_type(i_data, i_data_regex,

335

 current_extract_loc)

 else:

 assert type(i_data_regex) == tuple

 i_value, current_extract_loc = extract_nested_data_type(i_data, i_data_regex,

 current_extract_loc)

 i_rel_perm_data[i_keyword_regex] = i_value

 data[i_rel_perm] = i_rel_perm_data

 return data

class WellRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex).__init__()

 self.raw_str = raw_str

 def extract(self, pattern=None):

 N = len(self.raw_str)

 well_scopes = list()

 well_sequences = dict()

 for n in range(N):

 if well_scope_regex in self.raw_str[n]:

 well_scopes.append(n)

 for iw in range(len(well_scopes) - 1):

 well_data = self.raw_str[well_scopes[iw] + 1: well_scopes[iw + 1] + 1]

 well_name = well_data[0].split(sep='\n')[0]

 sequence_scopes = list()

 for (iwd, well_line) in enumerate(well_data):

336

 if sequence_scope_regex in well_line:

 sequence_scopes.append(iwd)

 sequences_ = {'Shut-in': None, 'Injection': None, 'Production': None}

 for iq in range(len(sequence_scopes) - 1):

 sequence_data = well_data[sequence_scopes[iq] + 1: sequence_scopes[iq + 1]]

 sequence_data = [remove_new_line_char(data_) for data_ in sequence_data]

 sequence_regex = SequenceRegex(sequence_data)

 sequence_type = sequence_regex.get_sequence_type()

 if sequence_type == 'Injection':

 sequence_ = sequence_regex.extract(injection_sequence_data_regex)

 sequences_['Injection'] = sequence_

 elif sequence_type == 'Production':

 sequence_ = sequence_regex.extract(production_sequence_data_regex)

 sequences_['Production'] = sequence_

 else:

 sequence_ = sequence_regex.extract(shut_in_sequence_data_regex)

 sequences_['Shut-in'] = sequence_

 well_sequences[well_name] = sequences_

 return well_sequences

class SequenceRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex).__init__()

 self.raw_str = raw_str

 def get_sequence_type(self):

 # Sequence type is always located at 1st line

337

 sequence_type = remove_new_line_char(self.raw_str[0])

 if 'Injection' in sequence_type:

 return 'Injection'

 elif 'Production' in sequence_type:

 return 'Production'

 else:

 return 'Shut-in'

 def extract(self, pattern):

 # TODO: ? Re-write this function

 data = extract_irregular_data_type(self.raw_str, pattern)

 return data

class FaciesListRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex).__init__()

 self.raw_str = raw_str

 self.num_layers = None

 def get_number_of_layers(self):

 self.num_layers = len(self.raw_str)

 def extract(self, pattern='\t'):

 data = dict()

 self.get_number_of_layers()

 try:

 assert self.num_layers is not None

338

 except AssertionError:

 warnings.warn('Can not extract due to incorrect number of layers.')

 sys.exit(1)

 for i in range(self.num_layers):

 layer_data = remove_new_line_char(self.raw_str[i])

 layer_data = layer_data.split(sep=pattern)

 layer_name = layer_data[0]

 layer_data = layer_data[1:]

 layer_data = remove_empty_in_block(layer_data)

 layer_data = ListOfListRegex(raw_str=layer_data).extract()

 data[layer_name] = layer_data

 return data

class BlackOilRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 def extract(self, pattern=None):

 black_oil_props = remove_new_line_char(self.raw_str[0])

 black_oil_props = ListRegex(raw_str=black_oil_props).extract()

 prop_table_lines = remove_new_line_char(self.raw_str[1])

 prop_table_lines = int(prop_table_lines)

 prop_table = self.raw_str[2:]

 prop_table = ListOfListRegex(raw_str=prop_table).extract()

 return [black_oil_props, prop_table_lines, np.array(prop_table)]

339

class ClustersPerStageRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 def get_number_of_stages(self):

 num_of_stages = 0

 locs = list()

 for (_, line) in enumerate(self.raw_str):

 if '***' in line:

 num_of_stages += 1

 locs.append(_)

 locs.append(len(self.raw_str))

 return num_of_stages, locs

 def extract(self, pattern='\t'):

 data = dict()

 num_of_stages, locs = self.get_number_of_stages()

 for _ in range(num_of_stages):

 start_loc, end_loc = locs[_] + 1, locs[_ + 1]

 _data = self.raw_str[start_loc: end_loc]

 _data = ListOfListRegex(raw_str=_data).extract()

 data['Stage_' + str(_+1)] = _data

 return data

class WaterByLayer(BaseRegex):

340

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 self.num_of_layers = None

 def get_number_of_layers(self):

 num_of_layers = 0

 locs = list()

 for (_, line) in enumerate(self.raw_str):

 if '***' in line:

 num_of_layers += 1

 locs.append(_ + 1)

 locs.append(len(self.raw_str))

 return num_of_layers, locs

 def extract(self, pattern=None):

 data = dict()

 num_of_layers, locs = self.get_number_of_layers()

 for _ in range(num_of_layers):

 _data = remove_new_line_char(self.raw_str[locs[_]])

 data['Layer_' + str(_+1)] = float(_data)

 return data

class PropRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

341

 self.num_of_props = None

 def get_number_of_props(self):

 return len(self.raw_str)

 def extract(self, pattern='\t'):

 data = dict()

 for prop in self.raw_str:

 prop_data = remove_new_line_char(prop)

 prop_data = prop_data.split(sep=pattern)

 prop_name = prop_data[0]

 prop_data = prop_data[1:]

 prop_data = ListOfListRegex(raw_str=prop_data).extract()

 data[prop_name] = prop_data

 return data

class PropMixtureRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 self.num_of_mixtures = None

 def get_number_of_mixtures(self):

 return len(self.raw_str)

 def extract(self, pattern='\t'):

 data = dict()

342

 for mix in self.raw_str:

 mix_data = remove_new_line_char(mix)

 mix_data = mix_data.split(sep=pattern)

 mix_name = mix_data[0]

 mix_data = mix_data[1:]

 mix_data = ListOfListRegex(raw_str=mix_data).extract()

 data[mix_name] = mix_data

 return data

class WaterSoluteRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 self.num_of_mixtures = None

 def get_number_of_solutes(self):

 return len(self.raw_str)

 def extract(self, pattern=None):

 data = dict()

 for solute in self.raw_str:

 solute_data = solute.split(sep='\n')[0]

 solute_data = solute_data.split(sep=pattern)

 solute_name = solute_data[0]

 solute_data = solute_data[1:]

 solute_data = ListOfListRegex(raw_str=solute_data).extract()

 data[solute_name] = solute_data

343

 return data

class FluidMixtureRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 self.num_of_mixtures = None

 def get_number_of_mixtures(self):

 return len(self.raw_str)

 def extract(self, pattern=None):

 data = dict()

 for mix in self.raw_str:

 mix_data = mix.split(sep='\n')[0]

 mix_data = mix_data.split(sep=pattern)

 mix_name = mix_data[0]

 mix_data = mix_data[1:]

 mix_data = ListOfListRegex(raw_str=mix_data).extract()

 data[mix_name] = mix_data

 return data

class PropPermModelRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

344

 def extract(self, pattern=None):

 data = ListOfListRegex(raw_str=self.raw_str).extract()

 return np.array(data)

class FracPermModelRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 def extract(self, pattern=None):

 data = ListOfListRegex(raw_str=self.raw_str).extract()

 return np.array(data)

class DurationCutOffRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 def get_num_of_wells(self):

 num_of_wells = 0

 locs = list()

 for (_, line) in enumerate(self.raw_str):

 if '***' in line:

 num_of_wells += 1

 locs.append(_)

345

 locs.append(len(self.raw_str))

 return num_of_wells, locs

 def extract(self, pattern=None):

 data = dict()

 num_of_wells, locs = self.get_num_of_wells()

 for _ in range(num_of_wells):

 start_loc, end_loc = locs[_] + 1, locs[_ + 1]

 _data = self.raw_str[start_loc: end_loc]

 _data = ListOfListRegex(raw_str=_data).extract()

 data['Well_' + str(_+1)] = _data

 return data

class WellVerticesRegex(BaseRegex):

 def __init__(self, raw_str: List[str]):

 super(BaseRegex, self).__init__()

 self.raw_str = raw_str

 def get_num_of_wells(self):

 num_of_wells = 0

 locs = list()

 for (_, line) in enumerate(self.raw_str):

 if '***' in line:

 num_of_wells += 1

 locs.append(_ + 1)

 locs.append(len(self.raw_str))

 return num_of_wells, locs

346

 def extract(self, pattern=None):

 data = dict()

 num_of_wells, locs = self.get_num_of_wells()

 for _ in range(num_of_wells):

 start_loc, end_loc = locs[_], locs[_ + 1] - 1

 _data = self.raw_str[start_loc: end_loc]

 _data = ListOfListRegex(raw_str=_data).extract()

 data['Well_' + str(_+1)] = _data

 return data

irregular_regex_classes = [RelPermRegex, FaciesListRegex, BlackOilRegex,

 ClustersPerStageRegex, WaterByLayer,

 PropRegex, PropMixtureRegex,

 PropPermModelRegex, FracPermModelRegex,

 WaterSoluteRegex, FluidMixtureRegex,

 WellRegex, DurationCutOffRegex, WellVerticesRegex]

from src.base.base_libs import *

def write_matrix_values(file, array: np.ndarray):

 """

 The numpy array has dimensions (N, 1) or (N, 2)

 :param array:

 :param file:

 :return:

 """

347

 for row in array:

 if type(row) == np.ndarray:

 for _ in row:

 file.write(str(_))

 file.write('\t')

 file.write('\n')

 else:

 file.write(str(row))

 file.write('\n')

 file.write('\n')

def write_ndarray_values(file, array: np.ndarray, length: int):

 """

 The numpy array has dimensions (N, 1) or (N, 2)

 :param array:

 :param file:

 :param length:

 :return:

 """

 if length == 0:

 warnings.warn('Incorrect variable length for matrix values.')

 sys.exit(1)

 elif length == 1:

 for _ in array:

 file.write(str(_))

 file.write('\t')

 file.write('\n')

348

 else:

 for row in array:

 if type(row) == np.ndarray:

 for _ in row:

 file.write(str(_))

 file.write('\t')

 file.write('\n')

 else:

 file.write(str(row))

 file.write('\n')

 file.write('\n')

def write_list_values(file, values: list):

 """

 TODO: ? Write a numpy array dimensions to an opened file object

 values is a list of different data types

 :param values:

 :param file:

 """

 for value in values:

 file.write(str(value))

 file.write('\t')

 file.write('\n')

def write_list_of_list_values(file, values: List[List]):

 for value in values:

349

 if type(value) != list:

 file.write(str(value))

 file.write('\n')

 else:

 for value_ in value:

 file.write(str(value_))

 file.write('\t')

 file.write('\n')

 file.write('\n')

def parse_file(file_name):

 """

 TODO: ? Scan and extract simulation data from a ResFrac's settings/input file

 :param file_name:

 :return:

 """

 file = open(file=file_name, mode='r')

 file_lines = file.readlines()

 entry_begin_idx = list()

 entry_end_idx = list()

 file_entries = list()

 for (i, line) in enumerate(file_lines):

 if 'Begin entry' in line:

 # Begin entry comment

 entry_begin_idx.append(i)

 elif 'End entry' in line:

 # End entry comment

350

 entry_end_idx.append(i)

 else:

 # Entry comments or data

 pass

 try:

 assert len(entry_begin_idx) == len(entry_end_idx)

 except AssertionError:

 sys.exit(1)

 number_of_entries = len(entry_begin_idx)

 for ie in range(number_of_entries):

 entry = dict.fromkeys(['Comments:', 'Variable name:', 'Length:', 'Value(s):'])

 entry['Comments:'] = list()

 entry['Variable name:'] = list()

 entry['Length:'] = list()

 entry['Value(s):'] = list()

 entry_line_data = file_lines[entry_begin_idx[ie]:entry_end_idx[ie]+1]

 for (je, entry_line) in enumerate(entry_line_data):

 if entry_line.__contains__("//"):

 entry['Comments:'].append(entry_line)

 elif 'Variable name:' in entry_line:

 entry['Variable name:'].append(entry_line_data[je+1])

 elif 'Length:' in entry_line:

 entry['Length:'].append(entry_line_data[je+1])

 elif 'Value(s):' in entry_line:

 value_line_data = entry_line_data[je+1: -1]

 remove_comment_in_block(value_line_data)

 while '\n' in value_line_data:

 remove_new_line_char_in_block(value_line_data)

351

 for value_line in value_line_data:

 if value_line.__contains__("//"):

 pass

 else:

 entry['Value(s):'].append(value_line)

 else:

 pass

 file_entries.append(entry)

 file.close()

 return file_entries

def remove_new_line_char(line):

 if line == '\n':

 return None

 elif '\n' in line:

 return line.split(sep='\n')[0]

 else:

 return line

def remove_new_line_char_in_block(block: List[str]):

 for line in block:

 if line == '\n':

 block.remove(line)

def remove_comment_in_block(block: List[str]):

352

 for line in block:

 if line.__contains__("//"):

 block.remove(line)

def remove_empty_in_block(block: List[str]):

 block_ = block

 if '' in block_:

 block_.remove('')

 elif ' ' in block_:

 block_.remove(' ')

 else:

 pass

 return block_

def compare_two_txt_files(file_name_1, file_name_2, comp_file_1, comp_file_2):

 f1 = open(file_name_1, 'r')

 f2 = open(file_name_2, 'r')

 file_data_1 = f1.readlines()

 file_data_2 = f2.readlines()

 for (_, line) in enumerate(file_data_1):

 if '//' in line:

 file_data_1.remove(line)

 elif line in ['\n', '\r\n']:

 file_data_1.remove(line)

 else:

 pass

353

 for (_, line) in enumerate(file_data_2):

 if '//' in line:

 file_data_2.remove(line)

 elif line in ['\n', '\r\n']:

 file_data_2.remove(line)

 else:

 pass

 try:

 assert len(file_data_1) == len(file_data_2)

 except AssertionError:

 warnings.warn('Compared files do not hold equal data.')

 diff = 0

 for (_, line) in enumerate(file_data_2):

 if line not in file_data_1:

 print(line)

 diff += 1

 print('Total number of different lines is ' + str(diff))

 with open(comp_file_1, 'w+') as cf1:

 for line in file_data_1:

 cf1.write(line)

 with open(comp_file_2, 'w+') as cf2:

 for line in file_data_2:

 cf2.write(line)

 f1.close()

 f2.close()

 cf1.close()

 cf2.close()

"""

354

 TODO: ? Store ResFrac comments in the settings or input files

 - To support writing/reading ResFrac simulation files

 - Comment files start with // (not scanned by ResFrac)

"""

entry_begin = '// ------------------ Begin entry ------------------------- '

entry_end = '// ------------------ End entry ------------------------- '

entry_describe = '// Description: '

entry_name = '// Name in builder interface: '

entry_internal_variable_name = '// ResFrac internal variable name '

from simulator.base.entry import *

from simulator.simulation.simulation_headers import *

from simulator.simulation.simulation_comments import entry_begin, entry_end

class SimulationFile(object):

 def __init__(self, entries: List[Entry], file_type: str):

 super(SimulationFile, self).__init__()

 self.entries = entries

 self.file_type = file_type

 def add_entry(self, entry: Entry):

 self.entries.append(entry)

 def write_file(self, file_name):

 """

 TODO: ? Implement writing all entries to a .txt file

355

 :return:

 """

 with open(file_name, mode='w+') as f:

 if self.file_type == 'settings':

 for header in settings_headers:

 f.write(header)

 f.write('\n')

 elif self.file_type == 'input':

 for header in input_headers:

 f.write(header)

 f.write('\n')

 else:

 warnings.warn('Not a ResFrac file type.')

 sys.exit(1)

 for e in self.entries:

 # print('Write entry: ', e.variable_name)

 f.write(entry_begin)

 f.write("\n")

 f.write("Variable name:")

 f.write("\n")

 f.write(e.variable_name)

 f.write("\n")

 f.write("Length:")

 f.write("\n")

 f.write(str(e.length))

 f.write("\n")

 f.write("Value(s):")

 f.write("\n")

356

 e.write_entry_values(f)

 f.write("\n")

 f.write(entry_end)

 f.write("\n")

 f.write("\n")

 f.close()

"""

 ResFrac commands in settings/input files that does not belong to an entry

"""

settings_headers = ['validation passed', 'memory usage regular', 'using field units']

input_headers = ['using field units']

from src.base.base_libs import *

Helper variables to support parsing/writing ResFrac files

rel_perm_keys = ['curvesetname', 'matrixrelperm',

 ('pressuredependentpermeability', 'reversible'),

 ('pressuredependentpermeability', 'irreversible'),

 'tenxreversiblepermeabilitylossperpressureincrement',

 'tenxirreversiblepermeabilitylossperpressureincrement',

 'lowerpressurethresholdforreversiblepermeabilityincrease',

 'upperpressurethresholdforreversiblepermeabilityincrease',

 'permmultiplierforreversiblepermeabilityincrease',

 'lowerpressurethresholdforirreversiblepermeabilityincrease',

357

 'upperpressurethresholdforirreversiblepermeabilityincrease',

 'permmultiplierforirreversiblepermeabilityincrease',

 'permeabilitymultiplier',

 'waterbankthicknesstorelpermincreasescalingthickness',

 'waterbankthicknesstorelpermdecreasescalingthickness',

 'waterbankimmobilefraction']

irregular_variable_names = ['matrixcurvesets', 'facieslist', 'blackoil',

 'clustersperstage', 'initialwatersolutemassfractionsbylayer',

 'proppants', 'proppantmixtures',

 'proppantbedbrookscoreymodel', 'fracturebrookscoreymodel',

 'watersolutes', 'fluidmixtures',

 'nextgenboundaryconditioncontrols', 'durationcutoff', 'wellvertices']

import sys

import os

import shutil

import math

import csv

import warnings

from typing import Union, List, Optional, Tuple, Dict

from itertools import permutations, combinations, product

from copy import deepcopy

from enum import Enum

import regex

import re

358

import pickle

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import scipy

from scipy.stats import distributions

import pyDOE

import plotly

from plotly import graph_objects as go

from src.dir.dir import *

class OrientedBox(object):

 """

 TODO: Class that manages an oriented box, i.e., a box representing the 3D fracture element in

ResFrac

 Description:

 Functionality:

 """

 def __init__(self, central_coors: np.asarray, dimensions: np.ndarray, oriented_angle: float):

 super(OrientedBox, self).__init__()

 self.central_coors = central_coors

 self.dimensions = dimensions # dimensions = [element dimensions and element aperture]

 self.oriented_angle = oriented_angle

 #

359

 self.central_plane_coors = np.zeros(shape=[4, 3]) # Coordinates of 'central' plane's corners

 self.coors = np.zeros(shape=[8, 3]) # Coordinates of the oriented box's corners

 #

 self.normal = np.nan * np.ones((3,)) # Normal vector of the oriented box and the central

plane

 def compute_central_corners(self):

 # Compute the corners of the oriented box

 center_x = self.central_coors[0]

 center_y = self.central_coors[1]

 center_z = self.central_coors[-1]

 corners_x = [center_x + self.dimensions[0] / 2 * np.sin(self.oriented_angle),

 center_x - self.dimensions[0] / 2 * np.sin(self.oriented_angle)]

 corners_y = [center_y + self.dimensions[0] / 2 * np.cos(self.oriented_angle),

 center_y - self.dimensions[0] / 2 * np.cos(self.oriented_angle)]

 corners_z = [center_z + self.dimensions[1] / 2,

 center_z - self.dimensions[1] / 2]

 coors_xy = list()

 coors_z = corners_z

 coors_xy.append((corners_x[0], corners_y[0]))

 coors_xy.append((corners_x[-1], corners_y[-1]))

 coors = list(product(coors_xy, coors_z))

 for i in range(4):

 x = coors[i][0][0]

 y = coors[i][0][-1]

 z = coors[i][-1]

 self.central_plane_coors[i, :] = [x, y, z]

 def compute_corners(self):

360

 self.compute_central_corners()

 for i in range(4):

 central_x = self.central_plane_coors[i, 0]

 central_y = self.central_plane_coors[i, 1]

 central_z = self.central_plane_coors[i, -1]

 self.coors[2 * i, :] = [central_x - self.dimensions[-1]/2 * np.cos(self.oriented_angle),

 central_y + self.dimensions[-1]/2 * np.sin(self.oriented_angle), central_z]

 self.coors[2 * i + 1, :] = [central_x + self.dimensions[-1]/2 * np.cos(self.oriented_angle),

 central_y - self.dimensions[-1]/2 * np.sin(self.oriented_angle), central_z]

 def compute_normal(self):

 self.compute_central_corners()

 p1 = self.central_plane_coors[0, :]

 p2 = self.central_plane_coors[1, :]

 p3 = self.central_plane_coors[2, :]

 self.normal = np.cross(p2 - p1, p3 - p1)

 def sample(self):

 # Sample a random location inside the oriented box

 loc = [0., 0., 0.]

 min_x_coor, max_x_coor = self.coors[:, 0].min(), self.coors[:, 0].max()

 min_y_coor, max_y_coor = self.coors[:, 1].min(), self.coors[:, 1].max()

 min_z_coor, max_z_coor = self.coors[:, -1].min(), self.coors[:, -1].max()

 loc[0] = np.random.uniform(min_x_coor, max_x_coor)

 loc[1] = np.random.uniform(min_y_coor, max_y_coor)

 loc[-1] = np.random.uniform(min_z_coor, max_z_coor)

 return loc

361

class FractureElement(object):

 def __init__(self, elem_center: np.ndarray, elem_dimensions: np.ndarray,

 elem_aperture: float, elem_angle: float):

 super(FractureElement, self).__init__()

 self.elem_center = elem_center

 self.elem_dimensions = elem_dimensions

 self.elem_aperture = elem_aperture / 12 # Convert in to ft

 self.elem_angle = elem_angle / 180 * math.pi # Convert deg to rad

 # Attributes defining the element in 2D (central plane) and 3D (oriented box)

 self.elem_corners = None

 self.elem_coors = None

 self.elem_box = None

 def set_element_corners(self):

 """

 TODO: ? Compute element corners from its dimensions and center

 :return:

 """

 elem_center_x = self.elem_center[0]

 elem_center_y = self.elem_center[1]

 elem_center_z = self.elem_center[-1]

 elem_corners_x = [elem_center_x + self.elem_dimensions[0] / 2 * np.sin(self.elem_angle),

 elem_center_x - self.elem_dimensions[0] / 2 * np.sin(self.elem_angle)]

 elem_corners_y = [elem_center_y + self.elem_dimensions[0] / 2 * np.cos(self.elem_angle),

 elem_center_y - self.elem_dimensions[0] / 2 * np.cos(self.elem_angle)]

 elem_corners_z = [elem_center_z + self.elem_dimensions[-1] / 2,

 elem_center_z - self.elem_dimensions[-1] / 2]

362

 self.elem_corners = np.zeros([3, 2])

 self.elem_corners[0, :] = elem_corners_x

 self.elem_corners[1, :] = elem_corners_y

 self.elem_corners[-1, :] = elem_corners_z

 def set_element_coordinates(self):

 if self.elem_corners is None:

 pass

 else:

 # This mode computes coordinate of the element's central 'plane' (i.e.

 # not include aperture, replicate similar visual as in ResFrac)

 self.elem_coors = np.zeros([4, 3])

 elem_coors_xy = list()

 elem_coors_z = list(self.elem_corners[-1, :])

 elem_coors_xy.append((self.elem_corners[0, 0], self.elem_corners[1, 0]))

 elem_coors_xy.append((self.elem_corners[0, 1], self.elem_corners[1, 1]))

 elem_coors = list(product(elem_coors_xy, elem_coors_z))

 for i in range(4):

 x = elem_coors[i][0][0]

 y = elem_coors[i][0][-1]

 z = elem_coors[i][-1]

 self.elem_coors[i, :] = [x, y, z]

 def generate_elem_2d_grid(self):

 assert self.elem_coors.shape[0] == 4

 elem_grid = np.zeros([5, 3])

 elem_grid[0, :] = self.elem_coors[0, :]

 elem_grid[1, :] = self.elem_coors[1, :]

363

 elem_grid[2, :] = self.elem_coors[-1, :]

 elem_grid[3, :] = self.elem_coors[2, :]

 elem_grid[-1, :] = self.elem_coors[0, :]

 return elem_grid

 def set_oriented_box(self):

 elem_box_dimensions = np.zeros(shape=(3,), dtype=np.float32)

 elem_box_dimensions[:-1] = self.elem_dimensions

 elem_box_dimensions[-1] = self.elem_aperture

 self.elem_box = OrientedBox(central_coors=self.elem_center,

dimensions=elem_box_dimensions,

 oriented_angle=self.elem_angle)

 def generate_elem_3d_grid(self):

 pass

from src.utils.read_data import *

from src.data.properties.properties import *

from src.data.element.element import *

class FractureGeometry(SimulationProperty):

 def __init__(self, raw_result_dir: RawResultDirectory):

 super(SimulationProperty).__init__()

 self.property_names = ['Elm center x',

 'Elm center y',

 'Elm center z (depth)',

 'Angle', 'Aperture',

 'Element number',

 'Fracture element number',

364

 'Fracture number']

 self.property_dimensions = ['ft', 'ft', 'ft',

 'Degrees clockwise from positive y-axis direction',

 'in',

 'unitless', 'unitless', 'unitless']

 self.raw_result_dir = raw_result_dir

 self.time_step = None

 self.fracture_elements = None

 self.fracture_numbers = None

 self.fracture_surface = None

 self.element_dimensions = None

 self.element_numbers = None

 def set_raw_result_file(self, raw_result_file):

 self.raw_result_dir.set_new_result_dir(raw_result_file)

 raw_result_file_encoding = raw_result_file.split(sep="_")

 self.time_step = raw_result_file_encoding[-1]

 def set_fracture_geometry_data(self, file_data, file_data_format: DataFormat):

 self.set_property_data(file_data, file_data_format)

 if len(self.property_data) == 0:

 pass

 else:

 fracture_numbers_data = np.array([n for n in self.property_data[:, -1]])

 self.fracture_numbers = np.unique(fracture_numbers_data)

 self.element_dimensions = np.array(

365

 [file_data_format.data_header[-5], file_data_format.data_header[-2]]).astype(

 float)

 self.element_numbers = self.property_data.shape[0]

 self.fracture_elements = list()

 for elem_num in range(self.element_numbers):

 elem_center = np.array(self.property_data[elem_num, :3]).astype(float)

 elem_angle = float(self.property_data[elem_num, 3])

 elem_aperture = float(self.property_data[elem_num, 4])

 elem = FractureElement(elem_center=elem_center,

elem_dimensions=self.element_dimensions,

 elem_angle=elem_angle, elem_aperture=elem_aperture)

 elem.set_element_corners()

 elem.set_element_coordinates()

 self.fracture_elements.append(elem)

 def set_fracture_surface_data(self):

 if self.fracture_elements is None or self.element_numbers is None:

 pass

 else:

 self.fracture_surface = np.zeros(shape=[4 * self.element_numbers, 3])

 for elem_num in range(self.element_numbers):

 self.fracture_surface[4 * elem_num:4 * (elem_num + 1), :] =

self.fracture_elements[elem_num].elem_coors

 def plot_fracture(self, fracture_number: Union[str, int], fig_name: str):

 """

 TODO: ? Plot fracture as surface for the given fracture number in ResFrac

 TODO: ? Consider moving this function out

 :param fracture_number:

366

 :param fig_name:

 :return:

 """

 if fracture_number != -1:

 fracture_number_geometry = self.property_data[self.property_data[:, -1]

 == fracture_number]

 fracture_x = fracture_number_geometry[:, 0].astype(float)

 fracture_y = fracture_number_geometry[:, 1].astype(float)

 fracture_z = fracture_number_geometry[:, 2].astype(float)

 else:

 fracture_number_geometry = self.fracture_surface

 if fracture_number_geometry is not None:

 fracture_x = fracture_number_geometry[:, 0].astype(float)

 fracture_y = fracture_number_geometry[:, 1].astype(float)

 fracture_z = fracture_number_geometry[:, 2].astype(float)

 fig_data = list()

 if self.element_numbers is None:

 pass

 else:

 for elem_num in range(self.element_numbers):

 elem_grid = self.fracture_elements[elem_num].generate_elem_2d_grid()

 fig_data.append(go.Scatter3d(x=elem_grid[:, 0],

 y=elem_grid[:, 1],

 z=elem_grid[:, -1],

 mode='lines', marker=dict(color="black"),

 name=''))

 fig = go.Figure(data=fig_data)

 fig.update_layout(scene=dict(

367

 aspectmode='manual',

 aspectratio=dict(x=10, y=1, z=5)))

 fig_dir = os.path.join(self.raw_result_dir.data_main_dir, fig_name)

 fig.write_html(fig_dir)

from src.utils.read_data import *

from src.dir.dir import *

class SimulationProperty(object):

 def __init__(self):

 super(SimulationProperty, self).__init__()

 self.property_names = None

 self.property_dimensions = None

 self.property_units = None

 self.property_data = None

 def set_property_name(self, name):

 self.property_names = name

 def set_property_dimensions(self, dimensions):

 self.property_dimensions = dimensions

 def set_property_units(self, units):

 self.property_units = units

 def set_property_data(self, file_data, file_data_format):

 self.property_data = property_reader(file_data, file_data_format,

 self.property_names)

368

class SimulationTrackProperty(object):

 def __init__(self):

 super(SimulationTrackProperty, self).__init__()

 self.property_names = None

 self.property_dimensions = None

 self.property_units = None

 self.property_data = None

class DailyProductionProperty(object):

 def __init__(self):

 super(DailyProductionProperty, self).__init__()

 self.property_names = None

 self.property_dimensions = None

 self.property_units = None

 self.property_data = None

def property_reader(file_data, file_data_format: DataFormat, property_names):

 searched_idx = search_properties(file_data_format, property_names)

 property_data = list()

 for i, data in enumerate(file_data):

 property_data.append([data[idx] for idx in searched_idx])

 return np.array(property_data)

from src.utils.read_data import *

from src.data.properties.properties import *

369

from src.data.element.element import *

class PropVolFrac(SimulationProperty):

 def __init__(self, raw_result_dir: RawResultDirectory):

 super(SimulationProperty).__init__()

 self.property_names = ['Total proppant volume fraction']

 self.property_dimensions = ['unitless']

 self.raw_result_dir = raw_result_dir

 #

 self.time_step = None

 self.fracture_numbers = None

 self.element_dimensions = None

 self.element_numbers = None

 def set_raw_result_file(self, raw_result_file):

 self.raw_result_dir.set_new_result_dir(raw_result_file)

 raw_result_file_encoding = raw_result_file.split(sep="_")

 self.time_step = raw_result_file_encoding[-1]

 def set_vol_frac_data(self, file_data, file_data_format: DataFormat):

 self.set_property_data(file_data, file_data_format)

 if len(self.property_data) == 0:

 pass

 else:

 fracture_numbers_data = np.array([n for n in self.property_data[:, -1]])

 self.fracture_numbers = np.unique(fracture_numbers_data)

 self.element_dimensions = np.array([file_data_format.data_header[-5],

file_data_format.data_header[-2]]).astype(

370

 float)

 self.element_numbers = self.property_data.shape[0]

 def plot_vol_frac(self):

 pass

from src.utils.read_data import *

from src.data.properties.properties import *

from src.data.element.element import *

class Aperture(SimulationProperty):

 # TODO: ? Define class to analyze fracture aperture data

 def __init__(self, raw_result_dir: RawResultDirectory):

 super(SimulationProperty).__init__()

 self.property_names = ['Aperture']

 self.property_dimensions = ['in']

 self.raw_result_dir = raw_result_dir

 self.time_step = None

 self.fracture_numbers = None

 self.element_dimensions = None

 self.element_numbers = None

 def set_raw_result_file(self, raw_result_file):

 self.raw_result_dir.set_new_result_dir(raw_result_file)

 raw_result_file_encoding = raw_result_file.split(sep="_")

 self.time_step = raw_result_file_encoding[-1]

371

 def set_aperture_data(self, file_data, file_data_format: DataFormat):

 self.set_property_data(file_data, file_data_format)

 if len(self.property_data) == 0:

 pass

 else:

 fracture_numbers_data = np.array([n for n in self.property_data[:, -1]])

 self.fracture_numbers = np.unique(fracture_numbers_data)

 self.element_dimensions = np.array([file_data_format.data_header[-5],

 file_data_format.data_header[-2]]).astype(float)

 self.element_numbers = self.property_data.shape[0]

 def plot_aperture(self):

 pass

from src.dir.dir import *

from src.utils.read_data import *

class TimeProperty(object):

 def __init__(self, data_main_dir: str, data_type: str):

 super(TimeProperty, self).__init__()

 self.raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir)

 self.file_type = data_type

 def set_raw_result_file(self, raw_result_file: str):

 self.raw_result_dir.set_new_result_dir(raw_result_file)

 def get_raw_data(self, data_format: SimulationTrackDataFormat):

 data_reader = SimulationTrackDataReader(data_dir=self.raw_result_dir,

data_format=data_format)

372

 file_data, file_data_format = data_reader.read_data()

 return file_data, file_data_format

from src.base.base_libs import *

class DataDirectory(object):

 def __init__(self, data_main_dir):

 super(DataDirectory, self).__init__()

 self.data_main_dir = data_main_dir

 def set_new_directory(self, new_data_main_dir):

 self.data_main_dir = new_data_main_dir

 def access_directory(self, accessed_dir):

 return os.path.join(self.data_main_dir, accessed_dir)

 def search_file(self, accessed_dir, searched_file_name):

 searched_dir = self.access_directory(accessed_dir=accessed_dir)

 for file_name in os.listdir(searched_dir):

 if file_name == searched_file_name:

 return True

 return False

 def search_file_end_with(self, accessed_dir, searched_file_name, end_str):

 searched_dir = self.access_directory(accessed_dir=accessed_dir)

 for file_name in os.listdir(searched_dir):

 if file_name == searched_file_name:

 if file_name.endswith(end_str):

373

 return True

 else:

 pass

 else:

 pass

 return False

 def search_file_include(self, accessed_dir, searched_file_name, include_str):

 searched_dir = self.access_directory(accessed_dir=accessed_dir)

 for file_name in os.listdir(searched_dir):

 if file_name == searched_file_name:

 if include_str in file_name:

 return True

 else:

 pass

 else:

 pass

 return False

 def find_file_end_with(self, accessed_dir, end_str):

 searched_dir = self.access_directory(accessed_dir=accessed_dir)

 searched_file_names = list()

 for file_name in os.listdir(searched_dir):

 if file_name.endswith(end_str):

 searched_file_names.append(file_name)

 return searched_file_names

 def find_file_include(self, accessed_dir, include_str):

374

 searched_dir = self.access_directory(accessed_dir=accessed_dir)

 searched_file_names = list()

 for file_name in os.listdir(searched_dir):

 if include_str in file_name:

 searched_file_names.append(file_name)

 return searched_file_names

 def move(self, new_dir):

 shutil.move(self.data_main_dir, new_dir)

class InputDirectory(DataDirectory):

 def __init__(self, data_main_dir):

 super(DataDirectory, self).__init__(data_main_dir)

 self.input_dir = None

 def set_new_input_directory(self, new_input_dir):

 self.input_dir = self.access_directory(new_input_dir)

class SettingDirectory(DataDirectory):

 def __init__(self, data_main_dir):

 super(SettingDirectory, self).__init__()

 self.data_main_dir = data_main_dir

 self.setting_dir = None

 def set_new_setting_dir(self, new_setting_dir):

 self.setting_dir = self.access_directory(new_setting_dir)

375

class RawResultDirectory(DataDirectory):

 def __init__(self, data_main_dir):

 super(DataDirectory, self).__init__()

 self.data_main_dir = data_main_dir

 self.result_dir = None

 def set_new_result_dir(self, new_result_dir):

 self.result_dir = self.access_directory(accessed_dir=new_result_dir)

class ProcessedResultDirectory(DataDirectory):

 def __init__(self, data_main_dir):

 super(DataDirectory, self).__init__()

 self.data_main_dir = data_main_dir

 self.result_dir = None

 def set_new_result_dir(self, new_result_dir):

 self.result_dir = self.access_directory(new_result_dir)

from src.base.base_libs import *

##

"Experimental" classes/functions that are supposed not to be discarded in later fixes

##

376

class ExperimentalResFracFiles(object):

 def __init__(self, file_dir):

 super(ExperimentalResFracFiles, self).__init__()

 self.file_dir = file_dir

 @staticmethod

 def remove_new_line_char(line):

 if line == '\n':

 return None

 elif '\n' in line:

 return line.split(sep='\n')[0]

 else:

 return line

 def read(self):

 file_lines = list()

 with open(self.file_dir, mode='r') as f:

 file_lines = f.readlines()

 for (_, line) in enumerate(file_lines):

 if self.remove_new_line_char(line) == 'BrooksCorey':

 Swr_line = file_lines[_+2]

 Sor_line = file_lines[_+3]

 Sgr_line = file_lines[_+4]

 Swr_line = self.remove_new_line_char(Swr_line)

 Sor_line = self.remove_new_line_char(Sor_line)

 Sgr_line = self.remove_new_line_char(Sgr_line)

 Swr = float(Swr_line.split(sep='\t')[0])

 Sor = float(Sor_line.split(sep='\t')[0])

377

 Sgr = float(Sgr_line.split(sep='\t')[0])

 elif self.remove_new_line_char(line) ==

'relativefracturetoughnesspersqrtfracturelengthscale':

 Kic_line = self.remove_new_line_char(file_lines[_+6])

 Kic = float(Kic_line)

 else:

 pass

 return Swr, Sor, Sgr, Kic

from src.dir.dir import *

class DataFormat(object):

 def __init__(self):

 super(DataFormat, self).__init__()

 self.data_header = None

 self.property_names = None

 self.units = None

class SimulationTrackDataFormat(object):

 def __init__(self):

 super(SimulationTrackDataFormat, self).__init__()

 self.unit_type = None

 self.init_res_pres = None

 self.data_header = None

 self.track_locs = None

 self.property_names = None

 self.units = None

378

class DailyProductionDataFormat(object):

 def __init__(self):

 super(DailyProductionDataFormat, self).__init__()

 self.time_and_locations = None

 self.property_names = None

 self.units = None

class DataReader(object):

 def __init__(self, data_dir: RawResultDirectory, data_format: DataFormat):

 self.data_dir = data_dir

 self.data_format = data_format

 def read_data(self):

 data = list()

 with open(self.data_dir.result_dir, 'r') as file:

 file_header = csv.reader(file)

 for i, file_row in enumerate(file_header):

 if i == 0:

 self.data_format.data_header = file_row

 elif i == 1:

 self.data_format.property_names = file_row

 elif i == 2:

 self.data_format.units = file_row

 else:

 data.append(file_row)

 file.close()

379

 return data, self.data_format

class SimulationTrackDataReader(object):

 def __init__(self, data_dir: RawResultDirectory, data_format: SimulationTrackDataFormat):

 self.data_dir = data_dir

 self.data_format = data_format

 def read_data(self):

 data = list()

 with open(self.data_dir.result_dir, 'r') as file:

 file_header = csv.reader(file)

 for i, file_row in enumerate(file_header):

 if i == 0:

 self.data_format.unit_type = extract_unit_type(file_row)

 self.data_format.init_res_pres = extract_init_res_pres(file_row)

 elif i == 1:

 self.data_format.track_locs = file_row

 elif i == 2:

 self.data_format.property_names = file_row

 elif i == 3:

 self.data_format.units = file_row

 else:

 data.append(file_row)

 file.close()

 return data, self.data_format

380

class DailyProductionDataReader(object):

 def __init__(self, data_dir: RawResultDirectory, data_format: DailyProductionDataFormat):

 self.data_dir = data_dir

 self.data_format = data_format

 def read_data(self):

 data = list()

 with open(self.data_dir.result_dir, 'r') as file:

 file_header = csv.reader(file)

 for i, file_row in enumerate(file_header):

 if i == 0:

 self.data_format.time_and_locations = file_row

 elif i == 1:

 self.data_format.property_names = extract_property_names(file_row)

 self.data_format.units = extract_units(file_row)

 else:

 data.append(file_row)

 file.close()

 return data, self.data_format

class DataManagement(object):

 def __init__(self, simulation_dir):

 super(DataManagement, self).__init__()

 self.simulation_dir = simulation_dir

 def transfer_data(self):

 # TODO: ? Implement copy/move from the simulation directory to another preferable

directory

381

 pass

def search_properties(file_data_format: DataFormat, searched_property_names):

 searched_idx = list()

 for i, property_name in enumerate(file_data_format.property_names):

 if property_name in searched_property_names:

 searched_idx.append(i)

 if len(searched_idx) == 0:

 return None

 else:

 return searched_idx

def extract_unit_type(file_row):

 unit_type = file_row[0]

 return unit_type

def extract_init_res_pres(file_row):

 init_res_pres = float(file_row[-1])

 return init_res_pres

def extract_units(file_row):

 units = list()

 units.append(file_row[0])

 for (_, data_str) in enumerate(file_row[1:]):

382

 data = data_str.split(sep=' ')

 if data[0] in ['WHP', 'BHP']:

 units.append(data[-1])

 else:

 units.append(data[0])

 return units

def extract_property_names(file_row):

 property_names = list()

 property_names.append('Time elapsed')

 for (_, data_str) in enumerate(file_row[1:]):

 data = data_str.split(sep=' ')

 if data[0] in ['WHP', 'BHP']:

 property_names.append(data[-1])

 else:

 property_name = ''

 for __ in data[1:]:

 property_name += __

 property_name += '_'

 property_names.append(property_name)

 return property_names

def extract_time_step(file_name: str, prefix: str, suffix: str):

 time_step = file_name.split(sep=prefix)[-1]

 time_step = time_step.split(sep=suffix)[0]

 return int(time_step)

383

from src.base.base_libs import *

class Sample(object):

 def __init__(self, frac_geometry, frac_aperture, prop_vol_frac):

 super(Sample, self).__init__()

 self.fracture_geometry = frac_geometry

 self.fracture_aperture = frac_aperture

 self.proppant_volume_fraction = prop_vol_frac

 self.sampled_dimension = None

 def set_sampled_dimensions(self, sampled_dim: str):

 self.sampled_dimension = sampled_dim

 def validate_inputs(self):

 property_data = self.fracture_geometry.property_data

 if len(property_data) == 0:

 return False

 else:

 return True

 def sample(self):

 """

 Sample microchip signal data based on fracture aperture prop volume fraction

 Scheme to sample per fracture grid:

 1. Get the corresponding prop volume fraction from prop_vol_frac

 2. Larger prop volume fraction = more microchips (TODO: TBD about correlation)

 3. For one microchip, sample its location within the fracture grid

384

 using the fracture element's boundary coordinates in frac_geometry

 4. All microchips within a fracture grid reports similar fracture

 aperture using data from frac_aperture

 :return samples for all fracture grids

 """

 sample_data = list()

 if self.validate_inputs() is False:

 return np.array([], dtype=np.float32)

 else:

 for i in range(self.fracture_geometry.element_numbers):

 frac_elem = self.fracture_geometry.fracture_elements[i]

 frac_aperture = float(self.fracture_aperture.property_data[i, 0])

 prop_vol_frac_data = float(self.proppant_volume_fraction.property_data[i, 0])

 n = number_of_micro_chips(prop_vol_frac_data=prop_vol_frac_data)

 sample_data_i = list()

 for i_n in range(n):

 i_loc = random_location(frac_elem=frac_elem)

 i_frac_aperture = [frac_aperture]

 sample_data_i.append(i_loc+i_frac_aperture)

 sample_data += sample_data_i

 sample_data = np.array(sample_data)

 return sample_data

 def sample_inplace(self, sample_dir: str):

 """

 Similar functionality to self.sample and include saving the sample

 """

 sample_data = list()

385

 if self.validate_inputs() is False:

 return np.array([], dtype=np.float32)

 else:

 for i in range(self.fracture_geometry.element_numbers):

 frac_elem = self.fracture_geometry.fracture_elements[i]

 frac_aperture = float(self.fracture_aperture.property_data[i, 0])

 prop_vol_frac_data = float(self.proppant_volume_fraction.property_data[i, 0])

 n = number_of_micro_chips_inplace(prop_vol_frac_data=prop_vol_frac_data)

 sample_data_i = list()

 for i_n in range(n):

 frac_elem.set_oriented_box()

 frac_elem.elem_box.compute_corners()

 i_loc = frac_elem.elem_box.sample()

 i_frac_aperture = [frac_aperture]

 sample_data_i.append(i_loc+i_frac_aperture)

 sample_data += sample_data_i

 sample_data = np.array(sample_data)

 sample_data_file = open(sample_dir, 'wb')

 pickle.dump(sample_data, sample_data_file)

 return sample_data

 def sample_profile_along_height(self, height_resolution: np.ndarray):

 sample = self.sample()

 profile = np.zeros([height_resolution.shape[0]-1, 3])

 for i in range(profile.shape[0]):

 avg_aperture = list()

 lower_height = height_resolution[i]

 upper_height = height_resolution[i+1]

386

 if sample.size == 0:

 profile = np.ones([height_resolution.shape[0]-1, 3]) * np.nan

 else:

 for s in sample:

 if lower_height <= s[2] < upper_height:

 avg_aperture.append(s[-1])

 else:

 pass

 if len(avg_aperture) == 0:

 avg_aperture = 0.0

 else:

 avg_aperture = sum(avg_aperture)/len(avg_aperture)

 profile[i, 0] = lower_height

 profile[i, 1] = upper_height

 profile[i, 2] = avg_aperture

 return profile

 def sample_profile_along_half_length(self, half_length_resolution: np.ndarray):

 sample = self.sample()

 profile = np.zeros([half_length_resolution.shape[0]-1, 3])

 for i in range(profile.shape[0]):

 avg_aperture = list()

 lower_hf = half_length_resolution[i]

 upper_hf = half_length_resolution[i+1]

 if sample.size == 0:

 profile = np.ones([half_length_resolution.shape[0]-1, 3]) * np.nan

 else:

 for s in sample:

387

 if lower_hf <= s[0] < upper_hf:

 avg_aperture.append(s[-1])

 else:

 pass

 if len(avg_aperture) == 0:

 avg_aperture = 0.0

 else:

 avg_aperture = sum(avg_aperture)/len(avg_aperture)

 profile[i, 0] = lower_hf

 profile[i, 1] = upper_hf

 profile[i, 2] = avg_aperture

 return profile

def number_of_micro_chips(prop_vol_frac_data: float):

 # Sample number of microchips as constant (experimental)

 micro_chips = 5

 return micro_chips

def number_of_micro_chips_inplace(prop_vol_frac_data: float):

 # Sample number of microchips proportional to prop-pant volume fraction

 min_vol_frac = 0.

 max_vol_frac = 1.

 micro_chips = (prop_vol_frac_data - min_vol_frac) / (max_vol_frac - min_vol_frac) * 100

 return math.floor(micro_chips)

388

def random_location(frac_elem):

 loc = [0, 0, 0]

 loc[0] = np.random.uniform(frac_elem.elem_corners[0, 0], frac_elem.elem_corners[0, -1])

 loc[1] = np.random.uniform(frac_elem.elem_corners[1, 0], frac_elem.elem_corners[1, -1])

 loc[-1] = np.random.uniform(frac_elem.elem_corners[-1, 0], frac_elem.elem_corners[-1, -1])

 return loc

def plot_sample_profile(sample_profile: np.ndarray):

 plt.figure()

 for i_profile in sample_profile:

 plt.plot(i_profile[: -1], [i_profile[-1], i_profile[-1]], 'k')

 plt.show()

import sys

import os

import shutil

import math

import csv

import warnings

from typing import Union, List, Optional, Tuple, Dict

from itertools import permutations, combinations, product

from functools import partial, partialmethod

from copy import deepcopy

from enum import Enum

389

import numpy as np

import pandas as pd

import scipy

import pyDOE

import hyperopt

from hyperopt import fmin, hp, tpe, Trials, space_eval

from hyperopt import STATUS_OK, STATUS_NEW, STATUS_RUNNING, STATUS_FAIL

from hyperopt.pyll import scope as hyperopt_scope

from hyperopt.pyll.stochastic import sample as hyperopt_sample

from base import *

##

Components to perform fracture calibration and history match (Experimental)

##

class SurrogateWrapper(object):

 def __init__(self, surrogate, pred_time_steps: List[float]):

 """

 Wrapper to call surrogate

 :param surrogate:

 :param pred_time_steps:

 """

390

 super(SurrogateWrapper).__init__()

 self.surrogate = surrogate

 self.pred_time_steps = pred_time_steps

 self.observation_indexes = range(len(pred_time_steps))

 def compute(self, input_params: dict, fixed_params: dict):

 input_params_ = np.array([_ for _ in input_params.values()])

 fixed_params_ = np.array([_ for _ in fixed_params.values()])

 predictions = np.zeros([len(self.pred_time_steps),])

 for _ in self.observation_indexes:

 time_step_ = self.pred_time_steps[_]

 params_ = np.concatenate([time_step_, input_params_, fixed_params_])

 predictions[_] = self.surrogate(params_)

 return predictions

class SingleObjective(object):

 def __init__(self, surr_wrapper: SurrogateWrapper):

 """

 Objective value for a single response variable

 :param surr_func_wrapper: the wrapper that calls the surrogate function (i.e., proxy model)

 """

 super(SingleObjective, self).__init__()

 self.surr_wrapper = surr_wrapper

 def compute(self, input_params: dict, fixed_params: dict, observation_indexes: List[int]):

 surr_pred = np.zeros(shape=[len(observation_indexes),])

 surr_pred_raw = self.surr_wrapper.compute(input_params, fixed_params)

391

 for _ in range(len(observation_indexes)):

 surr_pred[_] = surr_pred_raw[observation_indexes[_]]

 return surr_pred

class MultiObjective(object):

 def __init__(self, objective_list: List[SingleObjective], num_objectives: int,

observation_indexes: List[int]):

 """

 Objective value for multiple response variables

 :param surr_func: List of SingleObjectiveSurrogate that calls all surrogate functions

corresponding to all

 response variables

 :param num_objectives: Total number of response variables

 :param num_observations: Total number of observation points for all response variables (i.e.,

each response

 variable has equal number of observation points)

 """

 super(MultiObjective, self).__init__()

 self.objective_list = objective_list

 self.num_objectives = num_objectives

 self.observation_indexes = observation_indexes

 def compute(self, input_params: dict, fixed_params: dict):

 pred = np.zeros(shape=[self.num_objectives, len(self.observation_indexes)])

 for i in range(self.num_objectives):

 surr_pred = self.objective_list[i].compute(input_params, fixed_params,

 observation_indexes=self.observation_indexes)

 pred[i, :] = surr_pred

392

 return pred

class ObjectiveFunction(object):

 def __init__(self, data: np.ndarray, pred: np.ndarray):

 """

 Objective function for single/multiple response variable(s)

 :param data:

 :param pred:

 """

 super(ObjectiveFunction, self).__init__()

 self.data = data

 self.pred = pred

 self.mean = None

 def set_mean(self, mean: np.ndarray):

 self.mean = mean

 def compute(self):

 objective = np.power((self.pred - self.data) / self.mean, 2)

 return np.sum(objective, axis=0)

def objective_function(input_params, fixed_params, num_objectives: int, observation_indexes:

List[int],

 objective_list: List[SingleObjective], data, mean):

 multi_object_surrogate = MultiObjective(objective_list=objective_list,

num_objectives=num_objectives,

 observation_indexes=observation_indexes)

393

 pred = multi_object_surrogate.compute(input_params=input_params,

fixed_params=fixed_params)

 objective_func = ObjectiveFunction(data=data, pred=pred)

 objective_func.set_mean(mean=mean)

 return objective_func.compute()

def partial_objective_function(fixed_params: dict, num_objectives: int, observation_indexes:

List[int],

 objective_list: List[SingleObjective], data, mean):

 return partial(objective_function, fixed_params=fixed_params,

num_objectives=num_objectives,

 observation_indexes=observation_indexes, objective_list=objective_list, data=data,

mean=mean)

from workflow.fracture_profile import *

if __name__ == "__main__":

 data_main_dir = r'C:\Users\v183p176\Desktop'

 raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir)

 height_resolution = [-600, 600, 51]

 simulation_dir = os.path.join(data_main_dir, 'doe_simulation_2 SOP')

 frac_profile_assembler = FractureProfileAssembly(resolution=height_resolution)

 frac_profile_assembler.set_root_directories(simulation_dir=simulation_dir)

 frac_profile_df =

frac_profile_assembler.asemble_fracture_profile(save_fracture_profile=True)

 frac_profile_df.to_csv('Fracture_profile.csv')

from src.dir.dir import *

394

if __name__ == "__main__":

 simulation_dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base

HM\simulations'

 new_dir = r'F:\PhD work (Fall 2024)'

 data_dir_obj = DataDirectory(data_main_dir=simulation_dir)

 data_dir_obj.move(new_dir=new_dir)

from workflow.reservoir_response import *

if __name__ == "__main__":

 data_main_dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base

HM\simulations'

 raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir)

 reservoir_response_assembler = ReservoirResponseAssembly()

 reservoir_response_assembler.set_root_directories(simulation_dir=data_main_dir,

 simulation_file_name='doe_simulation_2 SOP',

 sim_track_file_name='sim_track_doe_simulation_2 SOP.csv',

 response_var_names=['Oil prod rate'])

 res_response_df, time_steps_df =

reservoir_response_assembler.assemble_reservoir_response()

 res_response_df.to_csv('Reservoir_response.csv')

 time_steps_df.to_csv('Time_steps.csv')

from simulator.base import utils

from simulator.base import regex_templates

from simulator.base import parse

from DoE.doe.doe_v1 import *

395

class ResFracFileParseTest(object):

 def __init__(self):

 super(ResFracFileParseTest).__init__()

 simulation_dir = r'C:\Users\v183p176\Desktop'

 simulation_case_name = 'doe_simulation_2 SOP'

 settings_file_name = 'settings_' + simulation_case_name + '.txt'

 input_file_name = 'input_' + simulation_case_name + '.txt'

 simulation_case_dir = os.path.join(simulation_dir, simulation_case_name)

 self.settings_file_dir = os.path.join(simulation_case_dir, settings_file_name)

 self.input_file_dir = os.path.join(simulation_case_dir, input_file_name)

 def test_rel_perm_parse(self):

 all_entries = utils.parse_file(file_name=self.settings_file_dir)

 entry = all_entries[1]

 var_name = entry['Variable name:'][0]

 var_length = entry['Length:'][0]

 var_raw_data = entry['Value(s):']

 regex_temp = regex_templates.RelPermRegex(raw_str=var_raw_data)

 var_data = regex_temp.extract(pattern=None)

 return var_name, var_length, var_data

 def test_well_control_parse(self):

 all_entries = utils.parse_file(file_name=self.settings_file_dir)

 entry = all_entries[-1]

 var_name = entry['Variable name:'][0]

 var_length = entry['Length:'][0]

396

 var_raw_data = entry['Value(s):']

 regex_temp = regex_templates.WellRegex(raw_str=var_raw_data)

 var_data = regex_temp.extract(pattern=None)

 return var_name, var_length, var_data

 def test_settings_file_parse(self):

 all_entries = utils.parse_file(file_name=self.settings_file_dir)

 all_parsed_entries = list()

 for (_, entry) in enumerate(all_entries):

 parsed_entry = parse.parse_entry(entry=entry)

 all_parsed_entries.append(parsed_entry)

 for (_e, entry) in enumerate(all_parsed_entries):

 if entry.variable_name in simulation_helpers.irregular_variable_names:

 print('Entry: ', _e, ' with var_name: ', entry.variable_name,

 ' and length: ', entry.length)

 print(entry.value_struct.value_struct)

 return all_parsed_entries

 def test_input_file_parse(self):

 all_entries = utils.parse_file(file_name=self.input_file_dir)

 all_parsed_entries = list()

 for (_, entry) in enumerate(all_entries):

 parsed_entry = parse.parse_entry(entry=entry)

 all_parsed_entries.append(parsed_entry)

 for (_e, entry) in enumerate(all_parsed_entries):

 if entry.variable_name in simulation_helpers.irregular_variable_names:

 print('Entry: ', _e, ' with var_name: ', entry.variable_name,

 ' and length: ', entry.length)

397

 print(entry.value_struct.value_struct)

 return all_parsed_entries

 def test_doe_settings_file(self):

 doe_dir = r"E:\Vuong's ResFrac"

 num_cases, last_case = 100, 0

 base_entries = self.test_settings_file_parse()

 doe_params = ['S_wr', 'S_or', 'S_gr', 'relative_frac_toughness']

 doe_entry_var_names = ['matrixcurvesets',

 'matrixcurvesets',

 'matrixcurvesets',

 'relativefracturetoughnesspersqrtfracturelengthscale']

 doe_distributions = [distributions.norm(loc=0.2, scale=0.1),

 distributions.norm(loc=0.2, scale=0.1),

 distributions.norm(loc=0.03, scale=0.001),

 distributions.uniform(loc=0.0, scale=0.5)]

 write_locs = [[[0, 0]], [[1, 0]], [[2, 0]], -1]

 #

 doe_assembler = DesignOfExperimentsAssembly(base_entries=base_entries)

 doe_assembler.doe_batch = 0

 doe_assembler.doe_dir = doe_dir

 #

 doe_assembler.reset_all_entries()

 doe_assembler.set_doe_params(doe_params)

 doe_assembler.set_doe_entry_var_names(doe_entry_var_names)

 doe_assembler.set_doe_distributions(doe_distributions)

 doe_assembler.set_write_locs(write_locs)

 doe_object = doe_assembler.generate_doe_object(design='lhs', num_cases=num_cases)

398

 doe_df = doe_assembler.write_doe_entries(doe_object, last_case=last_case)

 return doe_df

if __name__ == '__main__':

 #

 all_settings_entries = ResFracFileParseTest().test_settings_file_parse()

 all_input_entries = ResFracFileParseTest().test_input_file_parse()

 doe_df = ResFracFileParseTest().test_doe_settings_file()

 #

 sim_file = simulation_files.SimulationFile(entries=all_settings_entries,

 file_type='settings')

 sim_file.write_file(file_name='../Proxy_cases/Input_files/settings.txt')

 sim_file = simulation_files.SimulationFile(entries=all_input_entries,

 file_type='input')

 sim_file.write_file(file_name='../Proxy_cases/Input_files/input.txt')

from workflow.surrogate import *

class SurrogateTest(object):

 def __init__(self):

 super(SurrogateTest).__init__()

 simulation_dir = r"E:\Vuong's

ResFrac\DoE_cases\workflows\Proxy_cases_batch_0\simulations"

 simulation_case_name = 'doe_case_0'

 settings_file_name = 'settings_' + simulation_case_name + '.txt'

 input_file_name = 'input_' + simulation_case_name + '.txt'

 self.simulation_dir = simulation_dir

399

 self.simulation_case_name = simulation_case_name

 simulation_case_dir = os.path.join(simulation_dir, simulation_case_name)

 self.settings_file_dir = os.path.join(simulation_case_dir, settings_file_name)

 self.input_file_dir = os.path.join(simulation_case_dir, input_file_name)

 def test_fracture_profile(self):

 raw_result_dir = RawResultDirectory(data_main_dir=self.simulation_dir)

 height_resolution = [-600, 600, 51]

 simulation_dir = os.path.join(self.simulation_dir, self.simulation_case_name)

 frac_profile_assembler = FractureProfileAssembly(resolution=height_resolution)

 frac_profile_assembler.set_root_directories(simulation_dir=simulation_dir)

 frac_profile_df = frac_profile_assembler.asemble_fracture_profile()

 frac_profile_df.to_csv('Fracture_profile.csv')

 return frac_profile_assembler

 def test_reservoir_response(self):

 raw_result_dir = RawResultDirectory(data_main_dir=self.simulation_dir)

 reservoir_response_assembler = ReservoirResponseAssembly()

 reservoir_response_assembler.set_root_directories(simulation_dir=self.simulation_dir,

 simulation_file_name=self.simulation_case_name,

 sim_track_file_name='sim_track_doe_case_0.csv',

 response_var_names=['BHP', 'Oil prod rate'])

 res_response_df, time_steps_df =

reservoir_response_assembler.assemble_reservoir_response()

 res_response_df.to_csv('Reservoir_response.csv')

 time_steps_df.to_csv('Time_steps.csv')

 return reservoir_response_assembler

400

 def test_surrogate(self):

 surrogate_dir_assembler = SurrogateDirectory(result_dir=self.simulation_dir)

 surrogate_dir_assembler.num_cases = 1

 surrogate_dir_assembler.init_fracture_profile(fracture_profile_resolution=[-600, 600, 51])

 surrogate_dir_assembler.init_reservoir_response(reservoir_response_var_names=['BHP',

'Oil prod rate'])

 surrogate_dir_assembler.experimental_doe_params = ['S_wr', 'S_or', 'S_gr',

'relative_frac_toughness']

 surrogate_dir_assembler.init_experimental_doe_data()

 surrogate_df =

surrogate_dir_assembler.assemble_surrogate_directory('Test_surrogate_0.csv')

 return surrogate_df

if __name__ == "__main__":

 test_surrogate_df = SurrogateTest().test_surrogate()

from workflow.surrogate import *

if __name__ == "__main__":

 result_dir = r"E:\Vuong's ResFrac\DoE_cases\workflows\Proxy_cases\simulations"

 surrogate_dir = r"E:\Vuong's ResFrac\surrogate_data.csv"

 fracture_profile_resolution = [-600, 600, 51]

 surrogate_manager = SurrogateDirectory(result_dir=result_dir)

 surrogate_manager.experimental_doe_params = ['S_wr', 'S_or', 'S_gr',

'relative_frac_toughness']

surrogate_manager.init_fracture_profile(fracture_profile_resolution=fracture_profile_resolution)

401

 surrogate_manager.init_reservoir_response(reservoir_response_var_names=['BHP', 'Oil prod

rate'])

 surrogate_manager.init_experimental_doe_data()

 surrogate_df = surrogate_manager.assemble_surrogate_directory(surrogate_dir=surrogate_dir)

from src.data.frac_geometry.frac_geometry import *

from src.data.properties.total_aperture import *

from src.data.properties.proppant_volume import *

from src.utils.sample_by_distribution import *

if __name__ == '__main__':

 data_main_dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base

HM\simulations\doe_simulation_2 SOP\Results'

 raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir)

 raw_result_file = r'Raw_Res' + '/frac_elms_512.csv'

 raw_result_dir.set_new_result_dir(raw_result_file)

 data_format = DataFormat()

 data_reader = DataReader(data_dir=raw_result_dir, data_format=data_format)

 file_data, file_data_format = data_reader.read_data()

 frac_geometry = FractureGeometry(raw_result_dir=raw_result_dir)

 frac_geometry.set_raw_result_file(raw_result_file=raw_result_file)

 frac_geometry.set_fracture_geometry_data(file_data=file_data,

 file_data_format=file_data_format)

 frac_geometry.set_fracture_surface_data()

402

 frac_aperture = Aperture(raw_result_dir=raw_result_dir)

 frac_aperture.set_raw_result_file(raw_result_file=raw_result_file)

 frac_aperture.set_aperture_data(file_data=file_data,

 file_data_format=file_data_format)

 prop_vol_frac = PropVolFrac(raw_result_dir=raw_result_dir)

 prop_vol_frac.set_raw_result_file(raw_result_file=raw_result_file)

 prop_vol_frac.set_vol_frac_data(file_data=file_data,

 file_data_format=file_data_format)

 sample_by_dist = Sample(frac_geometry=frac_geometry, frac_aperture=frac_aperture,

 prop_vol_frac=prop_vol_frac)

 height_resolution = np.linspace(-600, 600, 51)

 height_profile = sample_by_dist.sample_profile_along_half_length(height_resolution)

 plot_sample_profile(sample_profile=height_profile)

 raw_result_file = 'sim_track_doe_simulation_2 SOP.csv'

 raw_result_dir.set_new_result_dir(raw_result_file)

 data_format = SimulationTrackDataFormat()

 data_reader = SimulationTrackDataReader(data_dir=raw_result_dir, data_format=data_format)

 sim_track_file_data, sim_track_file_data_format = data_reader.read_data()

 raw_result_file = 'daily_prod_doe_simulation_2 SOP.csv'

 raw_result_dir.set_new_result_dir(raw_result_file)

 data_format = DailyProductionDataFormat()

 data_reader = DailyProductionDataReader(data_dir=raw_result_dir, data_format=data_format)

403

 daily_prod_file_data, daily_prod_file_data_format = data_reader.read_data()

from workflow.surrogate import *

from workflow.objective_function import *

from proxy.proxy import *

from proxy.gb_proxy import *

from proxy.xgb_proxy import *

from proxy.proxy_opt import *

##

Workflow to perform fracture calibration (TBD)

##

class FractureCalibrationAssembly(object):

 def __init__(self, proxy, non_cal_params: dict, objectives: dict):

 super(FractureCalibrationAssembly, self).__init__()

 self.proxy = proxy

 self.non_cal_params = non_cal_params

 self.objectives = objectives

 #

 self.proxy_pred_method: str = ""

 self.input_signature = None

 def set_proxy_prediction_method(self, proxy_pred_method: str):

404

 self.proxy_pred_method = proxy_pred_method

 def set_input_signature(self, input_signature):

 self.input_signature = input_signature

 def set_objective_function(self, cal_params: dict):

 inputs: dict = self.non_cal_params

 inputs.update(cal_params)

 obj_func = ObjectiveFunction(inputs=inputs, objectives=self.objectives,

 proxy=self.proxy)

 try:

 assert getattr(self.proxy, self.proxy_pred_method) is not None

 return obj_func.compute(proxy_pred_method=self.proxy_pred_method)

 except AssertionError:

 warnings.warn("Proxy prediction method is not found. Fatal proxy object.")

 return None

 def assemble_fracture_calibration(self, opt_space: dict):

 proxy_optimizer = ProxyOptimization(proxy_object=self.proxy)

 proxy_optimizer.init_optimizer(opt_space=opt_space)

 opt_instance = proxy_optimizer.exec_optimizer(

 opt_func_attr=self.proxy_pred_method)

 return space_eval(opt_instance)

from src.base.base_libs import *

from proxy.xgb_proxy import *

from proxy.proxy_opt import *

405

##

################

######################### Calibrate continually

################ Proxy re-training when sensor data is received continuously

#################

##

##############

class ContinualCalibration(object):

 def __init__(self, new_X, new_Y, trained_xgb_regressor: QuantileXGBRegressor):

 super(ContinualCalibration, self).__init__()

 self.trained_xgb_regressor = trained_xgb_regressor

 self.new_X = new_X

 self.new_Y = new_Y

 def fit(self, opt_quantile_hyperparams):

 quantile_xgb_model, _ =

self.trained_xgb_regressor.__fit__(params=opt_quantile_hyperparams)

 return quantile_xgb_model

 def train(self, opt_quantile_hyperparams):

 hyperparams_ = opt_quantile_hyperparams

 if 'quantile_alpha' not in hyperparams_.keys():

 hyperparams_['quantile_alpha'] = np.array([0.1, 0.5, 0.9])

 else:

 pass

 hyperparams_['objective'] = 'reg:quantileerror'

406

 hyperparams_['tree_method'] = 'hist'

 #

 quantile_xgb_model = self.fit(hyperparams_)

 #

 xgb_data = self.trained_xgb_regressor.xgb_data

 org_x = xgb_data.df[xgb_data.x_cols].to_numpy()

 org_y = xgb_data.df[xgb_data.y_cols].to_numpy()

 it = 0

 while it < self.new_X.shape[0]:

 new_x_ = self.new_X[it:it + 1, :]

 new_y_ = quantile_xgb_model.inplace_predict(new_x_)

 if mean_squared_error(new_y_[:, 1], self.new_Y[it:it + 1]) >= 0.01:

 err_str = 'MSE'

 thres = 0.01

 warnings.warn(

 'continual prediction at time interval {} exceeds threshold {} at {}.'.format(it, err_str,

thres))

 else:

 pass

 cont_x = self.new_X[:it + 1, :]

 cont_y = self.new_Y[:it + 1].reshape([it + 1, 1])

 new_x_train = np.concatenate((org_x, cont_x), axis=0)

 new_y_train = np.concatenate((org_y, cont_y), axis=0)

 #

 quantile_xgb_model: xgb.Booster = xgb.train(

 hyperparams_, xgb.QuantileDMatrix(new_x_train, new_y_train),

 num_boost_round=32)

 it += 1

 pred_new_y = quantile_xgb_model.inplace_predict(self.new_X)

407

 return pred_new_y

from src.base.base_libs import *

##

################################### Fracture geometry (Unsupervised algorithms)

##

class SensorDataProjection(object):

 """

 Class to determine planar surface for a set of sensor data via SVD decomposition

 """

 def __init__(self, sensor_data: np.ndarray):

 super(SensorDataProjection, self).__init__()

 self.sensor_data: np.ndarray = sensor_data

 def compute_centroid(self):

 return self.sensor_data.mean(axis=0)

 def compute_svd(self):

 centroid = self.sensor_data.mean(axis=0)

 U, S, Vh = np.linalg.svd(self.sensor_data - centroid)

 return U, S, Vh, centroid

408

 def project(self):

 _, _, Vh, centroid = self.compute_svd()

 A, B, C = Vh[-1] / np.linalg.norm(Vh[-1])

 D = -np.dot(Vh[-1] / np.linalg.norm(Vh[-1]), centroid)

 return A, B, C, D

 def compute_planar_dimensions(self):

 pass

 def plot(self, fig_dir):

 data_projection = np.zeros(shape=self.sensor_data.shape)

 data_aperture = np.zeros(shape=[self.sensor_data.shape[0], 1])

 A, B, C, D = self.project()

 normal = np.array([A, B, C])

 fixed_projection = np.array([0, 0, -D / C])

 for _ in range(self.sensor_data.shape[0]):

 projection_vector = self.sensor_data[_, :] - fixed_projection

 projection_vector = np.dot(projection_vector, normal) / np.dot(normal, normal) * normal

 data_projection[_, :] = self.sensor_data[_, :] - projection_vector

 #

 d = np.absolute(self.sensor_data[_, 0] * A + self.sensor_data[_, 1] * B + self.sensor_data[_,

-1] * C + D)

 d = d / np.linalg.norm(normal)

 data_aperture[_, 0] = d

 data_projection = pd.DataFrame(data=data_projection, columns=['x', 'y', 'z'])

 fig = px.scatter_3d(data_frame=data_projection, x='x', y='y', z='z')

 fig.add_scatter3d(x=self.sensor_data[:, 0], y=self.sensor_data[:, 1],

 z=self.sensor_data[:, -1], mode='markers')

 fig.update_layout(scene=dict(

409

 aspectmode='manual',

 aspectratio=dict(x=10, y=1, z=5)))

 fig.update_traces(marker_size=1)

 fig.write_html(fig_dir)

 return data_projection, data_aperture

from src.dir.dir import *

from src.utils import read_data, sample_by_distribution

from src.data.frac_geometry import frac_geometry

from src.data.properties import properties, proppant_volume, total_aperture

from src.data.time_steps import *

from simulator.base import utils

from simulator.base import regex_templates

from simulator.base import parse

from DoE.doe.doe_v1 import *

##

"Miscellaneous" workflows to assemble fracture profile (TBD)

##

class FractureProfileAssembly(object):

 def __init__(self, resolution: List):

 super(FractureProfileAssembly).__init__()

410

 self.resolution = resolution

 self.simulation_results_dir = None

 #

 self.settings_file_dir = None

 self.input_file_dir = None

 def set_root_directories(self, simulation_dir):

 simulation_results_dir = os.path.join(simulation_dir, 'Results')

 self.simulation_results_dir = RawResultDirectory(data_main_dir=simulation_results_dir)

 def wrap_fracture_profile(self, frac_elms_file_names, save_fracture_profile=False):

 fracture_profile = dict()

 fracture_profile_time = dict()

 for frac_elms_file_name in frac_elms_file_names:

 frac_elms_file_dir = r'Raw_Res' + '/' + frac_elms_file_name

 self.simulation_results_dir.set_new_result_dir(new_result_dir=frac_elms_file_dir)

 time_step = read_data.extract_time_step(file_name=frac_elms_file_name,

prefix='frac_elms_', suffix='.csv')

 # Read all raw data

 data_format = read_data.DataFormat()

 data_reader = read_data.DataReader(data_dir=self.simulation_results_dir,

data_format=data_format)

 file_data, file_data_format = data_reader.read_data()

 # Extract time from the file header (in hours)

 print('Process fracture profile time step ', time_step)

 time = float(file_data_format.data_header[1])

 # Extract the fracture geometry

 frac_geometry_obj =

frac_geometry.FractureGeometry(raw_result_dir=self.simulation_results_dir)

411

 frac_geometry_obj.set_raw_result_file(raw_result_file=frac_elms_file_dir)

 frac_geometry_obj.set_fracture_geometry_data(file_data=file_data,

 file_data_format=file_data_format)

 frac_geometry_obj.set_fracture_surface_data()

 frac_geometry_obj.plot_fracture(fracture_number=-1, fig_name='fracture_geometry_' +

 str(time_step) + '.html')

 # Extract the total aperture

 frac_aperture_obj = total_aperture.Aperture(raw_result_dir=self.simulation_results_dir)

 frac_aperture_obj.set_raw_result_file(raw_result_file=frac_elms_file_dir)

 frac_aperture_obj.set_aperture_data(file_data=file_data,

 file_data_format=file_data_format)

 # Extract the prop volume fraction

 prop_vol_frac_obj =

proppant_volume.PropVolFrac(raw_result_dir=self.simulation_results_dir)

 prop_vol_frac_obj.set_raw_result_file(raw_result_file=frac_elms_file_dir)

 prop_vol_frac_obj.set_vol_frac_data(file_data=file_data,

 file_data_format=file_data_format)

 # Perform the sampling to generate sensor data

 sample_by_dist = sample_by_distribution.Sample(frac_geometry=frac_geometry_obj,

 frac_aperture=frac_aperture_obj,

 prop_vol_frac=prop_vol_frac_obj)

 height_resolution = np.linspace(self.resolution[0], self.resolution[1], self.resolution[-1])

 height_profile = sample_by_dist.sample_profile_along_half_length(height_resolution)

 # Save the generated sensor data

 if save_fracture_profile:

 sample_dir = 'sensor_data_' + str(time_step) + '.pkl'

 sample_by_dist.sample_inplace(sample_dir=sample_dir)

 # Obtain the sampled sensor data per time step (x, y, z)

 if time_step not in fracture_profile.keys():

412

 fracture_profile[time_step] = height_profile

 if time_step not in fracture_profile_time.keys():

 fracture_profile_time[time_step] = time

 fracture_profile = {k: fracture_profile[k] for k in sorted(fracture_profile)}

 fracture_profile_time = {k: fracture_profile_time[k] for k in sorted(fracture_profile_time)}

 return fracture_profile, fracture_profile_time

 def asemble_fracture_profile(self, save_fracture_profile=False):

 """

 Assemble fracture profile for all recorded time steps as .csv

 1. Call self.wrap_fracture_profile()

 Per time step:

 2. Extract fracture profile data from fracture_profile

 3. Arrange fracture profile dimensions as follows:

 - Number of columns = 3 * fracture_profile.shape[0]

 - Columns are named 'x_1, x_2, x_fracture_profile.shape[0]+1' (similar for y & z)

 - Arrange the fracture profile data at ordered for x, y, z above

 :return: fracture_profile_df

 """

 frac_elms_file_names =

self.simulation_results_dir.find_file_include(accessed_dir='Raw_Res',

 include_str='frac_elms')

 fracture_profile, fracture_profile_time = \

 self.wrap_fracture_profile(frac_elms_file_names=frac_elms_file_names,

save_fracture_profile=

 save_fracture_profile)

 fracture_profile_df = list()

 time_steps = list(fracture_profile.keys())

 for time_step in time_steps:

413

 fracture_profile_samples = fracture_profile[time_step].shape[0]

 fracture_profile_data = dict()

 fracture_profile_data['fracture_profile_time'] = fracture_profile_time[time_step]

 for _ in range(fracture_profile_samples):

 key_x = 'x_' + str(_)

 key_y = 'y_' + str(_)

 key_z = 'z_' + str(_)

 if key_x not in fracture_profile_data.keys():

 fracture_profile_data[key_x] = fracture_profile[time_step][_, 0]

 if key_y not in fracture_profile_data.keys():

 fracture_profile_data[key_y] = fracture_profile[time_step][_, 1]

 if key_z not in fracture_profile_data.keys():

 fracture_profile_data[key_z] = fracture_profile[time_step][_, -1]

 fracture_profile_df.append(fracture_profile_data)

 fracture_profile_df = pd.DataFrame(data=fracture_profile_df)

 fracture_profile_df.index = time_steps

 return fracture_profile_df

from workflow.surrogate import *

from workflow.objective_function import *

from proxy.proxy import *

from proxy.gb_proxy import *

from proxy.xgb_proxy import *

from proxy.proxy_opt import *

##

414

Workflow to perform history matching

##

class HistoryMatchAssembly(object):

 def __init__(self, proxy, non_cal_params: dict, objectives: dict):

 super(HistoryMatchAssembly, self).__init__()

 self.proxy = proxy

 self.non_cal_params = non_cal_params

 self.objectives = objectives

 #

 self.proxy_pred_method: str = ""

 self.input_signature = None

 def set_proxy_prediction_method(self, proxy_pred_method: str):

 self.proxy_pred_method = proxy_pred_method

 def set_input_signature(self, input_signature):

 self.input_signature = input_signature

 def set_objective_function(self, cal_params: dict):

 inputs: dict = self.non_cal_params

 inputs.update(cal_params)

 obj_func = ObjectiveFunction(inputs=inputs, objectives=self.objectives,

 proxy=self.proxy)

 try:

 assert getattr(self.proxy, self.proxy_pred_method) is not None

 return obj_func.compute(proxy_pred_method=self.proxy_pred_method)

415

 except AssertionError:

 warnings.warn("Proxy prediction method is not found. Fatal proxy object.")

 return None

 def assemble_fracture_calibration(self, opt_space: dict):

 proxy_optimizer = ProxyOptimization(proxy_object=self.proxy)

 proxy_optimizer.init_optimizer(opt_space=opt_space)

 opt_instance = proxy_optimizer.exec_optimizer(

 opt_func_attr=self.proxy_pred_method)

 return space_eval(opt_instance)

from src.base.base_libs import *

##

################ Objective function for fracture calibration and history matching

######################################

Single-objective, multi-point objective

#######################################

############################# Refer to task.experimental for multi-objective function

##################################

##

class ObjectiveFunction(object):

 def __init__(self, inputs: dict, objectives: dict, proxy):

 """

 Objective function class for fracture calibration and history matching

 Class attributes

416

 inputs: inputs to compute the objective function, dict("name" : value)

 objectives: outputs to compute the objective function, dict("name", value)

 proxy: the proxy object to deploy the prediction, must have a prediction method (e.g,

QuantileXGBRegressor)

 input_signature: the order of the input values to comply with the proxy object

 weights: the weights for the objectives (optional, default 1.)

 Class method:

 compute:

 """

 super(ObjectiveFunction, self).__init__()

 self.inputs = inputs

 self.objectives = objectives

 self.proxy = proxy

 #

 self.input_signature = None

 self.weights = np.array([1. for _ in range(len(objectives))], dtype=np.float32)

 def set_input_signature(self, input_signature: str):

 self.input_signature = input_signature

 def set_weights(self, weights):

 self.weights = weights

 def compute(self, proxy_pred_method: str):

 inputs_ = {}

 for input_sig_ in self.input_signature:

 if input_sig_ not in inputs_.keys():

 inputs_[input_sig_] = self.inputs[input_sig_]

 inputs_ = np.array([_ for _ in inputs_.values()], dtype=np.float32)

417

 objectives_ = [_ for _ in self.objectives.values()]

 objectives_ = np.array(objectives_, dtype=np.float32)

 try:

 assert getattr(self.proxy, proxy_pred_method) is not None

 pred_objectives_ = getattr(self.proxy, proxy_pred_method)(inputs_)

 obj_f = np.power(objectives_ - pred_objectives_, 2) * self.weights

 return 1. / len(self.objectives) * obj_f.sum(axis=0)

 except AssertionError:

 warnings.warn("Proxy prediction method is not found. Fatal proxy object.")

 return None

import pandas as pd

from src.dir.dir import *

from src.utils import read_data, sample_by_distribution

from src.data.frac_geometry import frac_geometry

from src.data.properties import properties, proppant_volume, total_aperture

from src.data.time_steps import time_properties

from simulator.base import utils

from simulator.base import regex_templates

from simulator.base import parse

from DoE.doe.doe_v1 import *

##

418

"Miscellaneous" workflows to assemble reservoir response parameters (i.e, BHP, oil/gas rate)

(TBD)

##

class ReservoirResponseAssembly(object):

 def __init__(self):

 super(ReservoirResponseAssembly, self).__init__()

 self.simulation_results_dir = None

 self.sim_track_file_name = None

 self.response_var_names = None

 def set_root_directories(self, simulation_dir, simulation_file_name, sim_track_file_name,

response_var_names):

 simulation_results_dir = os.path.join(simulation_dir, simulation_file_name)

 simulation_results_dir = os.path.join(simulation_results_dir, 'Results')

 self.simulation_results_dir = RawResultDirectory(data_main_dir=simulation_results_dir)

 self.simulation_results_dir.set_new_result_dir(sim_track_file_name)

 self.response_var_names = response_var_names

 def wrap_reservoir_response(self):

 data_format = time_properties.SimulationTrackDataFormat()

 data_reader = time_properties.SimulationTrackDataReader(

 data_dir=self.simulation_results_dir, data_format=data_format)

 sim_track_file_data, sim_track_file_data_format = data_reader.read_data()

 return sim_track_file_data, sim_track_file_data_format

 def wrap_time_steps(self, time_steps_file_name='timesteps.csv'):

419

 time_steps_dir = os.path.join(self.simulation_results_dir.data_main_dir,

time_steps_file_name)

 time_steps_df = pd.read_csv(time_steps_dir, header=None)

 time_steps_df.columns = ['time_steps', 'time_steps_sec', 'time_steps_str']

 return time_steps_df

 def assemble_reservoir_response(self):

 """

 Assemble reservoir response for all time steps as .csv

 1. Call self.wrap_reservoir_response()

 Per time step:

 2. Extract sim_track data for all recorded properties from sim_track_file_data

 3. Find location of response_var_names in sim_track_file_data_format

 4. Arrange corresponding value of a response variable name

 :return: reservoir_data_df

 """

 sim_track_file_data, sim_track_file_data_format = self.wrap_reservoir_response()

 reservoir_response_df = list()

 time_steps = len(sim_track_file_data)

 property_names = sim_track_file_data_format.property_names

 for _ in range(time_steps):

 reservoir_response_data = dict()

 for response_var_name in self.response_var_names:

 try:

 assert response_var_name in property_names

 response_var_index = property_names.index(response_var_name)

 if 'reservoir_response_time' not in reservoir_response_data.keys():

 reservoir_response_data['reservoir_response_time'] = sim_track_file_data[_][0]

 if response_var_name not in reservoir_response_data.keys():

420

 reservoir_response_data[response_var_name] =

sim_track_file_data[_][response_var_index]

 except AssertionError:

 warnings.warn('Incorrect reservoir response variable name. Assemble NaN')

 if response_var_name not in reservoir_response_data.keys():

 reservoir_response_data[response_var_name] = np.nan

 reservoir_response_df.append(reservoir_response_data)

 reservoir_response_df = pd.DataFrame(data=reservoir_response_df)

 time_steps_df = self.wrap_time_steps()

 return reservoir_response_df, time_steps_df

def interpolate_reservoir_response(reservoir_response_df: pd.DataFrame, time: float):

 interp_reservoir_response = dict()

 reservoir_response_time = [float(_) for _ in reservoir_response_df['reservoir_response_time']]

 interp_lower_idx: int = -1

 interp_upper_idx: int = -1

 for _ in range(len(reservoir_response_time) - 1):

 if reservoir_response_time[_] <= time <= reservoir_response_time[_ + 1]:

 interp_lower_idx = _

 interp_upper_idx = _ + 1

 for reservoir_var_name in list(reservoir_response_df.keys()):

 reservoir_var_name_idx = list(reservoir_response_df.keys()).index(reservoir_var_name)

 if reservoir_var_name not in interp_reservoir_response.keys() and \

 reservoir_var_name != 'reservoir_response_time':

 lower_value = float(reservoir_response_df.iloc[interp_lower_idx,

reservoir_var_name_idx])

 lower_time = reservoir_response_time[interp_lower_idx]

421

 upper_value = float(reservoir_response_df.iloc[interp_upper_idx,

reservoir_var_name_idx])

 upper_time = reservoir_response_time[interp_upper_idx]

 interp_value = lower_value + (time - lower_time) * (upper_value - lower_value) /

(upper_time - lower_time)

 interp_reservoir_response[reservoir_var_name] = interp_value

 return interp_reservoir_response

from workflow.fracture_profile import *

from workflow.reservoir_response import *

from src.utils.experimental import ExperimentalResFracFiles

from smt import surrogate_models

##

"Miscellaneous" workflows to form surrogate function(s) (TBD)

##

class SurrogateDirectory(object):

 def __init__(self, result_dir):

 super(SurrogateDirectory, self).__init__()

 self.result_dir = result_dir

 self.surrogate_case_prefix = 'doe_case_'

 self.num_cases = 100

 self.doe_assembler: DesignOfExperimentsAssembly = None

 # Init the fracture profile

 self.fracture_profile_resolution = None

422

 # Init the reservoir response

 self.reservoir_response_prefix = None

 self.reservoir_response_var_names = [None]

 # Experimental, fix to remove in future

 self.experimental_doe_params = None

 self.experimental_doe_data: pd.DataFrame = pd.DataFrame()

 def init_fracture_profile(self, fracture_profile_resolution):

 self.fracture_profile_resolution = fracture_profile_resolution

 def init_reservoir_response(self, reservoir_response_var_names):

 self.reservoir_response_prefix = 'sim_track_'

 self.reservoir_response_var_names = reservoir_response_var_names

 def init_experimental_doe_data(self):

 # Experimental, fix to remove in future

 doe_df = list()

 for _ in range(self.num_cases):

 # Get the case name and its directory

 case_name = self.surrogate_case_prefix + str(_)

 case_dir = os.path.join(self.result_dir, case_name)

 settings_file_name = 'settings_' + case_name + '.txt'

 settings_file_dir = os.path.join(case_dir, settings_file_name)

 exp_resfrac_file = ExperimentalResFracFiles(file_dir=settings_file_dir)

 doe_values = exp_resfrac_file.read()

 doe_dict = dict()

 if 'case' not in doe_dict.keys():

 doe_dict['case'] = _

423

 for (_, doe_param) in enumerate(self.experimental_doe_params):

 doe_dict[doe_param] = doe_values[_]

 doe_df.append(doe_dict)

 doe_df = pd.DataFrame(data=doe_df)

 self.experimental_doe_data = doe_df

 def assemble_surrogate_directory(self, surrogate_dir):

 fracture_profile_assemblers = list()

 reservoir_response_assemblers = list()

 for _ in range(self.num_cases):

 # Get the case name and its directory

 case_name = self.surrogate_case_prefix + str(_)

 case_dir = os.path.join(self.result_dir, case_name)

 # Create the fracture profile assembler

 fracture_profile_assembler = FractureProfileAssembly(resolution=

 self.fracture_profile_resolution)

 fracture_profile_assembler.set_root_directories(simulation_dir=case_dir)

 fracture_profile_assemblers.append(fracture_profile_assembler)

 # Create the reservoir response assembler

 reservoir_response_file_name = self.reservoir_response_prefix + case_name + '.csv'

 reservoir_response_assembler = ReservoirResponseAssembly()

 reservoir_response_assembler.set_root_directories(simulation_dir=self.result_dir,

 simulation_file_name=case_name,

 sim_track_file_name=reservoir_response_file_name,

 response_var_names=self.reservoir_response_var_names)

 reservoir_response_assemblers.append(reservoir_response_assembler)

 # Create the surrogate assembler

 self.init_experimental_doe_data()

424

 if self.doe_assembler is None:

 surrogate_assembler =

SurrogateAssembly(frac_profile_assemblers=fracture_profile_assemblers,

 res_response_assemblers=reservoir_response_assemblers,

 doe_assembler=self.doe_assembler)

 surrogate_assembler.experimental_doe_data = self.experimental_doe_data

 else:

 surrogate_assembler =

SurrogateAssembly(frac_profile_assemblers=fracture_profile_assemblers,

 res_response_assemblers=reservoir_response_assemblers,

 doe_assembler=self.doe_assembler)

 surrogate_df = surrogate_assembler.assemble_surrogate()

 surrogate_df.to_csv(surrogate_dir)

 return surrogate_df

class SurrogateAssembly(object):

 def __init__(self, frac_profile_assemblers: List[FractureProfileAssembly],

 res_response_assemblers: List[ReservoirResponseAssembly],

 doe_assembler: DesignOfExperimentsAssembly):

 super(SurrogateAssembly, self).__init__()

 self.frac_profile_assemblers = frac_profile_assemblers

 self.res_response_assemblers = res_response_assemblers

 self.doe_assembler = doe_assembler

 self.surrogate_x_var_names = None

 self.surrogate_y_var_names = None

 # Experimental, fix to remove in future

 self.experimental_doe_data = pd.DataFrame()

425

 def assemble_surrogate(self):

 """

 Assemble surrogate data from FractureProfileAssembly, ReservoirResponseAssembly &

DesignOfExperimentsAssembly

 1. Call DesignOfExperimentsAssembly to generate settings/input files (ResFrac files) and the

DoE data (.csv)

 Per DoE case:

 2. Call FractureProfileAssembly to generate sensor data (fixed parameters in the surrogate)

 3. Call ReservoirResponseAssembly to generate surrogate data (.csv) & to train surrogate

 4. Arrange surrogate data as follows:

 - DoE data (from DesignOfExperimentsAssembly)

 - Sensor data (from FractureProfileAssembly)

 - Reservoir response data (from ReservoirResponseAssembly)

 5. Return the surrogate data (.csv) & surrogate wrapper (further used in

FractureCalibrationAssembly &

 HistoryMatchingAssembly)

 """

 try:

 if self.doe_assembler is None:

 assert self.experimental_doe_data.empty is False

 num_cases = self.experimental_doe_data.shape[0]

 doe_params = list(self.experimental_doe_data.columns)[1:]

 else:

 # assert self.doe_assembler.doe_data.shape[0] == len(self.frac_profile_assemblers)

 # assert self.doe_assembler.doe_data.shape[0] == len(self.res_response_assemblers)

 num_cases = self.doe_assembler.doe_data.shape[0]

 doe_params = self.doe_assembler.doe_params

 surrogate_data_df = list()

 # Loop through all DoE cases

426

 for _ in range(num_cases):

 print('Process case ', _)

 # Extract the corresponding assemblers fo the case

 frac_profile_assembler: FractureProfileAssembly = self.frac_profile_assemblers[_]

 res_response_assembler: ReservoirResponseAssembly =

self.res_response_assemblers[_]

 # Assemble the fracture profile and reservoir response

 fracture_profile_df = frac_profile_assembler.asemble_fracture_profile()

 reservoir_response_df, time_steps_df =

res_response_assembler.assemble_reservoir_response()

 # Extract the recorded time steps for the surrogate (always fracture profile time steps)

 fracture_profile_time_steps = list(fracture_profile_df.index)

 surrogate_time_steps = fracture_profile_time_steps

 # Loop through all similar recorded time steps

 for time_step in surrogate_time_steps:

 surrogate_data = dict()

 surrogate_time = fracture_profile_df.loc[time_step, 'fracture_profile_time']

 # Add DoE case number

 if 'case' not in surrogate_data.keys():

 surrogate_data['case'] = _

 # Add time step (in sec)

 if 'surrogate_time' not in surrogate_data.keys():

 surrogate_data['surrogate_time'] = surrogate_time

 # Loop through all DoE params

 for doe_param in doe_params:

 # Add DoE params

 if doe_param not in surrogate_data:

 if self.doe_assembler is not None:

 surrogate_data[doe_param] = self.doe_assembler.doe_data.loc[_, doe_param]

427

 else:

 # Experimental, fix to remove in future

 surrogate_data[doe_param] = self.experimental_doe_data.loc[_, doe_param]

 # Assemble the fracture profile and reservoir response per time step

 fracture_profile_time_step = fracture_profile_df.loc[time_step, :]

 # Need interpolation here

 reservoir_response_time_step =

interpolate_reservoir_response(reservoir_response_df,

 surrogate_time)

 # Loop through all fracture profile params

 for frac_profile_param in list(fracture_profile_time_step.index):

 # Add fracture profile params

 if frac_profile_param not in surrogate_data.keys() and \

 frac_profile_param != 'fracture_profile_time':

 surrogate_data[frac_profile_param] =

fracture_profile_time_step[frac_profile_param]

 # Loop through reservoir response params

 for res_response_param in reservoir_response_time_step:

 # Add reservoir response params

 if res_response_param not in surrogate_data.keys():

 surrogate_data[res_response_param] =

reservoir_response_time_step[res_response_param]

 # Assemble the surrogate data

 surrogate_data_df.append(surrogate_data)

 self.surrogate_x_var_names = \

 ['surrogate_time'] + doe_params + list(fracture_profile_time_step.index)

 self.surrogate_y_var_names = list(reservoir_response_time_step.keys())

 # Complete the assembly as pd.DataFrame

 surrogate_data_df = pd.DataFrame(data=surrogate_data_df)

428

 return surrogate_data_df

 except AssertionError:

 warnings.warn('Number of Design Of Experiment cases and number of fracture

profile/reservoir response'

 'do not match')

 return pd.DataFrame()

class Surrogate(object):

 def __init__(self, surrogate_assembler: SurrogateAssembly):

 super(Surrogate).__init__()

 self.surrogate_assembler = surrogate_assembler

 self.surrogate_backend = None

 def train(self, surrogate_y_var_name):

 # TODO: Implement method to train a surrogate

 surrogate_data = self.surrogate_assembler.assemble_surrogate()

 surr_backend = surrogate_models.KRG(theta0=[1e-2])

 surrogate_x_data = surrogate_data[self.surrogate_assembler.surrogate_x_var_names]

 try:

 assert surrogate_y_var_name in self.surrogate_assembler.surrogate_y_var_names

 surrogate_y_data = surrogate_data[surrogate_y_var_name]

 surr_backend.set_training_values(xt=surrogate_x_data.to_numpy(),

yt=surrogate_y_data.to_numpy())

 surr_backend.train()

 self.surrogate_backend = surr_backend

 except AssertionError:

 warnings.warn('Incorrect surrogate y variable name. Can not train.')

429

 def validate(self, surrogate_y_var_name):

 # TODO: Implement method to validate a surrogate

 surrogate_data = self.surrogate_assembler.assemble_surrogate()

 surr_backend = surrogate_models.KRG(theta0=[1e-2])

 surrogate_x_data = surrogate_data[self.surrogate_assembler.surrogate_x_var_names]

 try:

 assert surrogate_y_var_name in self.surrogate_assembler.surrogate_y_var_names

 surrogate_y_data = surrogate_data[surrogate_y_var_name]

 surr_backend.set_training_values(xt=surrogate_x_data.to_numpy(),

yt=surrogate_y_data.to_numpy())

 surr_backend.train()

 self.surrogate_backend = surr_backend

 except AssertionError:

 warnings.warn('Incorrect surrogate y variable name. Can not validate.')

 def __call__(self, params: np.array, *args, **kwargs):

 try:

 assert self.surrogate_backend is not None

 return self.surrogate_backend(params)

 except AssertionError:

 warnings.warn('No surrogate backend set. Return None')

 return None

from sidebar.main_sidebar import *

from callbacks.sidebar import *

from callbacks.doe_gui import *

from callbacks.frac_cal_gui import *

app = dash.Dash(__name__,

430

 external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.icons.FONT_AWESOME],

 background_callback_manager=background_callback_manager,

 use_pages=True)

app.layout = html.Div(children=[sidebar, dash.page_container], id='layout')

set_sidebar(app)

if __name__ == "__main__":

 app.run_server(port=5000, debug=True)

