A NOVEL ‘SMART MICROCHIP PROPPANTS’ TECHNOLOGY FOR PRECISION
DIAGNOSTICS OF HYDRAULIC FRACTURE NETWORKS

Final Report
(for the period October 1, 2019 — August 31, 2024)
Prepared for:

U.S. Department of Energy

National Energy Technology Laboratory
3610 Collins Ferry Road

Morgantown, WV 26505-2353, USA
Cooperative Agreement No. DE-FE0031784

Prepared by:

Amirmasoud Kalantari Dahaghi, University of Kansas (Lead institution)

Aydin Babakhani, University of California at Los Angeles (UCLA) (Subawardee)
John Lovell, MicroSilicon Inc. (Subawardee)

Larry Britt, NSF Fracturing (Contractor)

Sherilyn Williams-Stroud, Confractus Inc (Contractor)

“EOG Resources Inc: Cost share provider”

University of Kansas Center for Research, Inc.
2385 Irving Hill Road, Lawrence, KS 66045-7568
November 2024

DISCLAIMER

This research report was prepared by the above-referenced project team as an account of work
sponsored by the U.S. Department of Energy National Energy Technology Laboratory (DOE
NETL). To the best of the project teams’ knowledge and belief, this report is true, complete, and
accurate; however, because of the research nature of the work performed, neither the University
of Kansas Center for Research, Inc. nor the other participating entities, nor any of their directors,
officers, or employees makes any warranty, express or implied, or assumes any legal liability or
responsibility for the use of any information, apparatus, product, method, process, or similar item
disclosed or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement or recommendation by the
above-referenced project team.

ACKNOWLEDGMENT

This material is based upon work supported by DOE NETL under Award Number No. DE-
FE0031784

DOE DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ...t 14
2. INTRODUCTION. .. .ttt e e e 16
2.1 Current State-of-the-Art Technologies...........coovviiiiiiiiiiiiie e, 16
3. FIELD TESTING SITE SELECTION AND STATIC DATA COLLECTION.............. 17
3.1 EOG ASSCt SCIECMING. ... utinttetteiteitt et et e et et e e et et et et et ae et eneeaneenans 17

3.2 GEOMECHANICAL EVALUATION, UN-PROPPED CRACK TEST, FLUID
SENSITIVITY TEST, AND EMBEDMENT TEST OF THE PADDOCK FORMATION
(BOYD STATE #15H EDDY COUNTY, NEW MEXICO)ccccevviiiiiiiiinen 18

3.2, 1 INtrOAUCHION. ...ttt et et e et e e 19
3.2.2 DISCUSSION. ..t ttteet ettt et et et et e et et et e et et et e et e e e et e et e e eneenee e 22
4. SMART MICROCHIP PROPPANT: DESIGN, DEVELOPMENT, LAB TESTING,

AND VERIFICATION FORTHE FIELD TRIAL ...t 34
1101110 T o R 34
4.2 INtrOAUCHION. ...ttt et e e e e et e e e 34
4.3 Smart Microchips Proppants Technical Specifications and System Details............ 37
4.4 Laboratory Testing of Smart MicroChips for Fracture Mapping Under High Pressure
ANd HIg TEMPEIATUIE......o.eiieiiiiet ettt e bbb 45
4.4.1 Energy Harvesting Verification.............cooviiiiiiiiiiiiii e e, 45
4.4.2 Microchip Functionality VerifiCation. ... 46
4.4.3 Coherent Power Combining Verification...............ovviiiiiiiiiiiniiiiienieannnnn. 49
4.4.4 Fracture Mapping Verification..............ooeiiiiiiiiiiii i, 51
4.4.5 High-Temperature Verification..............oooeiiiiiiiiiiii e, 53
4.4.6 High-Pressure Verification...............ooouiiiiiiiiiiii i 55
4.5 Smart Microchip Proppants Manufacturing and Production for Field
TS 58
4.5.1 Resonance Frequency TUuNINg..........ooviiiiiiiiiii i ee e 59
4.5.2 Smart MicroChips Proppants PCB Mass Production...................ccooeviniinn 60
4.5.3 Additional Hardware and MicroChips Built During this Project...........ccccccovvvnnee. 60
4.5.3.1 Miniaturization of the localizer PCB used for mapping fractures 62
4.5.3.2 Design of TX coils for efficient wireless powering of the microchips 64

5. DOWNHOLE TOOL FOR TRANSMITTING POWER AND RECEIVING SIGNAL:
DESIGN, DEVELOPMENT, LAB TESTING, AND VERIFICATION FOR THE FIELD

T RI A L . .o e e e, 66
5.1 SUMMATY . .. e 66
5.2 Initial feasibility Study....... .o 66
5.3 CircUIt deVEIOPMENL.o 75
5.4 Final Antenna and Downhole Tool Construction for the Field Trial..................... 85

6. PHYSICS- INFORMED AND AI-EMPOWERED i-GEO SENSING FRACTURE
DIAGNOSTIC SOFTWARE PACKAGE DEVELOPMENT, AN OPEN-SOURCE

PYTHON-BASED PACKAGE.o 99
6.1. Overview of the 1-Geo SeNSING.........ouivtiiiiiiii e 99
6.2. Synthetic case deSCIIPLION.uiuuintit it 99
6.2.1. For the unsupervised ML workflow. ... 99
6.2.2. For the supervised ML workflow.............ccooiiii e 102

oo

10.

11.

12.

13.

14.

15.
16.

6.3. Intuition in understanding the sensor distribution inside the subsurface fracture

SR 1011 001S) 01 105
6.4. The unsupervised machine learning workflow.......................onL. 107
6.5. Sensor data profilingcoiiiiiiiiii e 109
6.6. Calibration of the fracture geometry and history matching from the unsupervised

machine learning Workflow..............oooiiiiiiiii i 111
6.7. Design of EXPeriment.oouiviiiiiii e 113
6.8. Synthetic data generation, wrangling, and tabulation processing...................... 117
6.9. Supervised machine learning workflow..................ooooiiiiiiiiiiiii 118
6.10. ML experimenting in the supervised workflowcooinii, 120
6.11. Probabilistic and continual-training capabilities of the supervised machine learning

010D 2 121
6.12. Refinement of the supervised proxy inside i-Geo Sensing.......................... 121
6.13. Supervised workflow explainabilityoooiiiiiii 124
SUCCESSFUL FINAL FIELD TESTING (PILOT) IN THE EOG RESOURCES
OPERATED WELL IN NEW MEXICO.......ciiiiiiiiiiiiii e 130
7.1 Pilot Testing Details.ooviurini i 130
7.2 Smart Microchip Signal Reception and Analysis.............ccooeiiiiiiiiiiiiiinnannn. 138
7.2.1 Successful Signal Reception from Smart Microchip Proppants in the Field........ 138
7.2.2 Interpreted Smart Microchips' Signal Results..................cooiiiiiiiiiii i, 139
7.3 Future Applications and Alignment with DOE Priorities...................c.ooevene.e. 144
CONCLUSTON . . et e e 145
REFERENCES ... e 146
APPENDIX A: EOG CORE SAMPLES AND LOGS FROM A PLUG-BACK
PO T . e 151
APPENDIX B: BOYD STATE #15H (PADDOCK FORMATION) QUALITY
ASSURANCE AND MINERALOGY ..ottt 154
APPENDIX C: SHEAR AND COMPRESSIONAL VELOCITY TESTING
PROCEDURES AND RESULTS. ..ottt 168
APPENDIX D: BOYD STATE #15H (PADDOCK FORMATION) UN-PROPPED
CRACK TESTING.....ctt ettt st bt 172
APPENDIX E: BOYD STATE #15H (PADDOCK FORMATION) FLUID
SENSITIVITY TESTING. .. .ottt 174

APPENDIX F: CONSTRUCTING MULTIPLE SYNTHETIC FRACTURE NETWORK
MODELS TO BUILD SYNTHETIC CORES USING 3D PRINTING TECHNOLOGY
TO TEST THE FUNCTIONALITY OF SMART MICROCHIPS FOR FRACTURE

MAPPING IN THE LAB. ... 180
APPENDIX G: I-GEO SENSING GRAPHICAL USER INTERFACE................... 183
APPENDIX H: I-GEO SENSING CODE EXCERPTS.....c..cooiiiiii 190

LIST OF FIGURES

Figure 1a: Smart Microchip Proppants technology: A closed-loop fracture diagnostic and modeling

) (o] 0T LS00 3 (P 15
Figure 1b: Received core and log data and the CT scan of the full slab core........................ 18
Figure 2: Ternary Diagram Of The Paddock Core Samples.............c.cooiiiiiiiiiiiiiiii 22
Figure 3: Anhydrite Nodule Within Dolomitic Paddock Formation Core Set 2 — Sample ID 9,
Depth 259740 00T, .. neit it 23
Figure 4: Paddock Core Sample Showing A Fissure or Flaw in The Sample Core Set 1 — Sample
ID 7, Depth 2500.75 f00L. . ..oniiie e e 25
Figure 5: Static Young Modulus from Dynamic To Static Correlation Britt Rock Mechanics
Laboratory, SPE 12552 e 27
Figure 6: Britt Rock Mechanics Laboratory Test Apparatus..........ooeveevieiiiiiiiieiniinneennn.n. 27
Figure 7: Test Cell Head with Piston and Inlet Ports...............coooiiiiiiiiii 28
Figure 8: Test Cell Head with Piston and Inlet Ports.............ccoooviiiiiiiiiiiii e, 28
Figure 9: The Effect of Stress on Wet Nitrogen Injection (2156.23 meters)ccevvevvennenn... 29
Figure 10: Schematic of @ Water-frac..........ooviiiiiiiii i 29
Figure 11: Fluid Sensitivity Testing w/ KC1 (CS-1, ID-7,2509.75feet)cccovvvvviniiiniinnnnnn. 31
Figure 12: Fines Migration and Embedment Testing Schematic.....................coooiiiiini, 32
Figure 13: Embedment Testing (Core Set 1, ID 7, Depth 2509.75ft) ...c.oovvviiiiiiiiii, 32
Figure 14: Conceptual representation of fracture mapping using WSNs............ooviiiiiinian... 36
Figure 15: Localizer image with size compared with anickel............................nll. 38
Figure 16: Simulated (a) re(Zi11), (b) inductance, and (c) quality factor of the localizer coil
.. 38
Figure 17: (a) TX coil and its measured (b) re(Z11), (c) inductance, and (d) quality

2217 10) Ot 39
Figure 18: (a) RX coil and its measured (b) re(Z11), (c) inductance, and (d) quality

22107 10) 40
Figure 19: Measured |S11| for matched (a) TX and (b) RX COIlS.........coiiiiiiiiiiiin, 41
Figure 20: Simulated path loss between TX coil and localizer coil at a separation of 6 cm.......... 41
Figure 21: Localizer architeCture.o.uu it 42
Figure 22: Rectifier schematic............oooiii i 44

Figure 23: Simulated (a) rectifier efficiency and (b) peak-to-peak divider output voltage versus
input power for one, two, three, and four-stage rectifiers. One-stage rectifier shows the best
1S 1 13 A8 1 44

Figure 24: Die miCTOZraph.ouuieii e 45

Figure 25: Measured rectifier voltage with respect to input rms voltage........................o.e. 46

Figure 26: Measurement setup used for chip functionality verification............................... 46
Figure 27: Received signal spectrum at the maximum operating range.................coceveeuennen. 47
Figure 28: Received 13.56 MHz signal power in dBm across different separations between the TX
coil and the localizer DL coil, and the RX coil and the localizer UL coil.............................. 48
Figure 29: Measurement setup used for obtaining the received power profile with respect to
different angular orientations of the TX and RX coils.............oooiiiiiiiiiiiiiii e, 49
Figure 30: Received 13.56 MHz signal power in dBm across different angular orientations of the
TX and RX COLLS ... 50
Figure 31: (a) Schematic and (b) picture of the coherent power combining measurement setup
.. 50
Figure 32: Received power from (a) one, (b) two, and (c) three localizers 51
Figure 33: Fracture mapping SEIUP.couuienttee ettt e ettt e e e et e e e e e eeeeaaeenneennans 52

Figure 34: 1-D fracture mapping results for the y-direction. The red box indicates the region that
was mapped by smart Microchips that are placed in the fractures (3D printed cores with
21 113 Pt 52

Figure 35: 1-D fracture mapping results for the x-direction. The red box indicates the region that
was mapped by smart Microchips that are placed in the fractures (3D printed cores with

21 1013 53
Figure 36: 2-D fracture mapping results by smart Microchips that are placed in the fractures (3D
printed cores With fraCtures)........c.oiiiie i e e, 53
Figure 37: (a) Schematic and (b) picture of the measurement setup for verification at high
1S3 000 010 11 54
Figure 38: Received signal power at temperatures from 20 °Cto 250°Cceeeeeeenennl55
Figure 39: Measurement setup for verification at high pressures. The entire setup is inside a
COMPIession SeNSING MACKINEo.uiiii i e e e e e ere e 56
Figure 40: (a) Second cube after it fractures at 24 MPa. (b) Received signal from the second
localizer when the second cube fractures ..o, 57
Figure 41: Two versions of PCBs developed for fracture mapping.............c.ccooeviiiiiiiian.n. 58
Figure 42: VNA measurements for the resonance of the PCB coils.................cooooiiiin. 59
Figure 43: Setup picture for sensing node validation................cooooiiiiiiiiiiiiiiiiiii 60
Figure 44: Mass-produced PCBS....... ..o 60
Figure 45: SMD-based antennas used in prior proppant Chips............cocviveiiiiiiiiniinennennn. 61
Figure 46: Measurement SELUD.uuientttt ettt e et et e e e et e 61
Figure 47: Top and bottom view of the miniaturized 4-layer PCB...................c.oc. 61
Figure 48: Received signal spectrum at the maximum operating range................cooeeeeuennen. 62

6

Figure 49: Top and bottom view of the new 4-layer PCB with only TX coil replaced by SMD
10316 110170 63

Figure 50: Top and bottom view of the new 2-layer PCB with both TX and RX coils replaced by

SMD INAUCLOTS. . . ettt ettt et 63
FAgure S1: Test SetUP vttt ittt e e e et et e e e et e 64
Figure 52: Coupling coefficient vs TX coil diameter and distance between TX coil and localizer
.. 65
Figure 53: 5em X 5 cm TX €Ot uuiniiii i 65
Figure 54: 10 cm X 10 cm TX COtl..nniiiii e e e, 65
Figure 55: System Context Diagram............cooiiiiiiiiiiiiii i 66
Figure 56: Antenna FiXtUring.........oouiiniiiiiiii e e e et eaeenn 67
Figure 57: Antenna frames mounted on the slider.................cooiiiiiiiii i 68
Figure 58: Receiver testing configuration............o.oviuiiiiiiiiiii i eeee s 68
Figure 59: Moku-Lab testing configuration...............ouiiiiiiiiiii i 69
Figure 60: Lock-In-Amplifier configuration................ooiiiiiiiiiiiii e, 69
Figure 61: Dramatic drop-off at a fixed distance, thisat 2W................oooiiiiiiiiii i, 71
Figure 62: The "baseline" chartat 1 cm moveout..........c.oovuiiiiiii e 73
Figure 63: Higher-order artifacts visible even as chip signal degrades with distance................. 73
Figure 64: A robust 13.56 filter was identified (and subsequently used in the downhole tool)
... 74
Figure 65: The structure of the near-field receiver.............coooiiiiiiiiiiiiii e, 76
Figure 66: The structure of the near-field receiver components- circuit schematic (1) 76
Figure 67: The structure of the near-field receiver components- circuit schematic (2) 77
Figure 68: The structure of the near-field receiver components- circuit schematic (3) 77
Figure 69: The structure of the near-field receiver components- circuit schematic (4) 78
Figure 70: The structure of the near-field receiver components- circuit schematic (5) 78
Figure 71: Structure of the transmitter.o.oii i 79
Figure 72: Structure of the near-field transmitter components- circuit schematic (1) 79
Figure 73: Structure of the near-field transmitter components- circuit schematic (2) 80
Figure 74: Flowchart for the transmitter................ooiiiiiii e 81
Figure 75: (a) Flowchart for the receiver & (b) The completed circuit board designs
.. 82
Figure 76: Fit the circuit boards in the prototype test configuration..................c..cooooiinit. 83
Figure 77: GUI to verify signal in desired FFT band ... 84

7

Figure 78: Final set of electrical components.ooeiuiiiiiiiiiiiiiiiiie e 84

Figure 79: Transmitter outputs a magnetic field ... 85
Figure 80: Schematic of the designed Coiloooiiiiiiiiiii e 85
Figure 81: Thread chart and specificationc.oouiiiiiiiiiii i, 86
Figure 82: The Kemlon's attached to the bulkhead...................ooooiiiiiii 86
Figure 83: The TX and RX loops are completed inside the pressure
1018 5710V PPN 87
Figure 84: The matching circuit idea testing and demonstration...................covviiiiinn... 88
Figure 85: 3D-Printed Capacitor Assembly for Shock and Vibration Resistance in Wellbore
APPIICALIONS . .ett ettt e e 88
Figure 86: The crossover is attached to the bulkhead and antennae89
Figure 87: Fiber-glass housing Assembly with RTV Filling for Vibration Protection and Antenna
DielectriC MatChing.......c.uiiii e e e e e e e 89
Figure 88: Internal View of the Crossover Assembly Showing Toroids, Capacitor Plate, and Tuning
MEChANISIN. .. e e 90
Figure 89: Impedance measurement of receiver coil using Spectrum Analyzer 90
Figure 90: Transmitter Impedance Measurement and VSWR Tolerance Analysis with MOSFET
G311 o4 15 10) o 91
Figure 91: MOSFET Heat Sink Assembly: MRFAN101 Mounted on Aluminum and Copper
Blocks for Thermal Managementcouiiriiiniiiitt et e et re e e eieeeaeenans 91
Figure 92: Copper Block Mounted to Metal Crossover for Enhanced Thermal Conductivity...... 92
Figure 93: Implementation of a Third Toroid to Mitigate Common Mode Interference in the
RECBIVET . . ot 92
Figure 94: Addition of a 13.56 MHz Bandpass Filter for Signal Optimization...................... 92
Figure 95: Receiver and Transmitter PCBs Mounted on Chassis and Secured to

Bulkhead. ... 93
Figure 96: Fully Assembled System Powered by a 30V, 29Ah Lithium Battery with On/Off
N0 o] o 94
Figure 97: Top-End USB Access for Data Retrieval Without Chassis Removal
.. 95
Figure 98: Integration of MDM Connector and Criterion Circuit for Battery Depassivation Before
DEPlOYMENL. . ..ot 95
Figure 99: Chassis Installation into the 3 5/87 Pipecoovuiiiiiiii i 96
Figure 100: Lower Crossover Secured with Spanner Wrenchesc.ocoiiiiin. 96

Figure 101: Top-End Subassembly with Threads and O-Rings for Final Pressure Seal and Rope
Socket Attachment. 97

Figure 102: Final downhole tool at the pilot testing site for deployment...................c......... 98

Figure 103: The raw 2D scanned core images used to design synthetic fracture networks........ 100

Figure 104: 2D projection of the synthetic fracture networks (complexity increases from left to

7 1) P 101
Figure 105: An overview of the test case for the supervised ML workflow 102
Figure 106: Variation of Young Modulus and Poisson Ratio over the model’s depth............. 103
Figure 107: Overview of the injection schedule for the model........................oc 103
Figure 108: Bottom Hole Pressure data for the model’s simulation lifecycle...................... 104
Figure 109: Oil production rate data for the model’s simulation lifecycle........................... 104

Figure 110: Total fracture aperture at early propagation (left) and late propagation (right)105

Figure 111: Total proppant volume fraction at early propagation (left) and late propagation (right)

... 105
Figure 112: Distribution of the Micro Chips subsurface (generated from the synthetic environment)
.. 106
Figure 113: The unsupervised ML Workflow ..o, 107
Figure 114: Processing of the geo-location data for the 1% synthetic fracture network 108

Figure 115: Effect of assisted affine transformation on the performance of UMAP in the 1%

synthetic fracture network (with transformation — left, without transformation — right) 109
Figure 116: The ground truth fracture geometry (reconstructed from ResFrac® software) 110
Figure 117: Sample sensor data profilingooooiiiiiiiii i e, 111
Figure 118: Sample sensor data profiles at two different time steps............ccoovvviiiiiiiniinnn. 111
Figure 119: Fracture calibration workflow in i-Geo Sensing..............c.ccovviiiiiiiiiiiiiinninn. 112
Figure 120: The Bayesian Optimizer engine used in the i-Geo Sensingccoeviie. 113
Figure 121: Design of Experiment generator in i-Ge0o SeNsingocovuvuiieiiininninnenenn.. 114
Figure 122: An illustration of the DoE for fracture geometry in i-Geo Sensing.....................114
Figure 123: Visual of the joint plot (DoE’s coverage) between distributions of two parameters “Sg,”
2 10 R T PP 115
Figure 124: In-place change of ResFrac’s “relativefracturetoughnesspersqrt

fracturelengthscale” entryo 116
Figure 125: The semi-coupling between ResFrac® and i-Geo Sensingc.cooevveniee. 117
Figure 126: Sample of a directory in which simulation results for realizations are stored....... 118
Figure 127: The supervised machine learning workflow ..., 119

9

Figure 128: Visual of a decision tree’s mechanismcooooiiiiiiiiiiiiniiiiiien. 119

Figure 129: Overview of ML model experimenting design in i-Geo Sensing 120
Figure 130: BHP proxy, first-round refinement..................oooiiiiiiiiiiiiiiiiiii e, 122
Figure 131: BHP proxy, second-round refinementccooiiiiiiiiiiiiiiiiiiinenn. 122
Figure 132: BHP proxy, final-round refinementoooiiiiiiiiiiii i, 123
Figure 133: Oil rate proxy, first-round refinement..................cooiviiiiiii i, 123
Figure 134: Oil rate proxy, second-round refinementcooiiiiiiiiiiiiiiininnnn.. 124
Figure 135: Oil rate proxy, final-round refinementcoooiiiiiiiiiiiiiiii s 124
Figure 136: Different levels of model explainability in i-Geo Sensing............................ 124
Figure 137a: Key Performance Indicators, the base BHP model........................co 125
Figure 137b: Key Performance Indicators, the final BHP modelo . 126
Figure 138a: Key Performance Indicators, the base oil rate modelo.. 126
Figure 138b: Key Performance Indicators, the final oil rate model 127
Figure 139a: SHAP’s bee-swarm plot for the BHPmodelooo, 128
Figure 139b: SHAP’s waterfall plot for the BHP modelooin i, 129
Figure 140a: SHAP’s bee-swarm plot for the oil rate modelol. 129
Figure 140b: SHAP’s waterfall plot for the oil rate modelooiiiiiia, 129
Figure 141: Satellite imagery of the pilot testing site (Capella BOP Fed #1)...................... 131

Figure 141: (a: left) and (b: right) - The wellbore diagram before and after deepening for the pilot
1773 238V 132

Figure 142: Smart Microchips ready for the injection (200 microchips were injected) (left), Shut-
in pressure of 3300 psi (the middle), and Recorded 3700 psi formation break-down pressure during
the hydraulic fracturing (right)..........c.ooiii i e e, 133

Figure 143: The chassis was loaded into the 3 5/8” pipe (left), and the lower cross-over was torqued
in place with spanner wrenches. (the middle), and at the top-end, we provided another small sub
with threads and o-rings that can be torqued in place and provide the final pressure seal. At the top
of that sub is a thread whose profile was provided by EOG for attachment to the rope socket on

slickline unit. (TIZIL). e 134
Figure 144: Downhole tool transportation to the wellsite ..o, 135
Figure 145: Downhole Tool Setup and Assembly Onsite.............cooeiiiiiiiiiiiiiiiiiiiniin.n. 135
Figure 146: Well deployment of the downhole toolooii 136
Figure 147: Well deployment of the downhole tool ..., 137
Figure 148: Downhole tool after operation complete..............cooiiiiiiiiiiiiiiiiias 138

10

Figure 149: Transition of Smart Microchips from Passive to Active State: Remote Power
Activation and Signal TranSmiSSIONc.eiuieniintiitt ettt enaeeeeeenass 139

Figure 150: The Most Exciting News: We Received Signals!!!. Three main clusters of signals
transmitted by the Smart Microchips were detected, indicating the presence of three primary

hydraulic fraCtUIES. ... et e 140
Figure 151: Initially filtered frequency versus depth data (y-axis: Frequency, x-axis: Depth)

0T @11 CIZIt SWEEPS ettt ettt e 140
Figure 152: Processed signals amplitude versus depth for all eight sweeps........................ 140
Figure 153: An example of raw and processed signals (Left and right) for one of the
] 1t 141
Figure 154: Base and updated models showing homogenous vs heterogeneous proppant
ISTIIDULIONS ...t e e e 143
Figure 155: Fracture geometry profiling diagnostic by dimensionless flow back type curves
.. 143
Figure A.1: 2507-2510 ftinterval..........ooiiiiiii i e 151

Figure A.2: 2507-2510 ftintervalc.ooiiiiiiii e 151

Figure A.3: 2507-2510 original core and logs in box IMG 5627.............cccoviiiiiiiiiiinn.. 152
Figure A.4: 2597-2600 ftintervalcoiiiiiiii e 153
Figure B.1:2507.50 feet (Top and Side VIEW)ooviiiiiii e, 155
Figure B.2: 2507.75 feet (Top and Side VIeW) ..o 156
Figure B.3:2508.25 feet (Top and Side VIEW).......ooiriiiiiii e, 157
Figure B.4: 2808.50 feet (Top and Side VIEW).......ooiviiiiiii i, 158
Figure B.5: 2808.75 feet (Top and Side VIEW)ovviiiiii e, 159
Figure B.6: 2809.50 feet (Top and Side VIEW)ovviiiiii e 160
Figure B.7:2509.00 feet (Top and Side VIEW)oviiiiiii e 161
Figure B.8: 2597.00 feet (Top and Side VIEW).......cooviiiiiiiiiiii i 162
Figure B.9: 2597.40 feet (Top and Side VIEW)ooiiiiiiiii e, 163
Figure B.10: 2597.90 feet (Top and Side VIEW)c.oiniiiiiiiiiii e, 164
Figure B.11: 2600.20 feet (Top and Side VIEW)........oouiiniiiiiiii e 165
Figure B.12: 2600.60 feet (Top and Side VIEW)c.oiuiiiiiiiiii e, 166
Figure B.13: 2600.90 feet (Top and Side VIEW)ooiieiiiiiiiii i 167
Figure C.1: Dynamic vs. Static Moduli ..o 171
Figure D.1: Un-Propped Crack Test: Paddock Core Set 2, ID-11, (2600.20°)cenven.... 172

Figure E.1: Fluid Sensitivity Test: Paddock Formation, Core Set 1, ID-7 (2509.75’)...............174

11

Figure E.2: Embedment Test: Paddock Formation, Core Set 1, ID-7 (2509.75%)........cceonvnnn.n 179

Figure F.1: Projected 2D overviews of the synthetic fracture networks.............................. 181
Figure F.2: 3D Synthetic Fracture Network from Core Sample 2., 182
Figure F.3: 3D Printed Synthetic Core with Complex Fracture Geometry for Microchips Testing
... 182
Figure G.1: Welcome interface in i-G€0 SenSing..........c.ouvvuiiiiiiiiiiiiiiiiiiiiieieene 183
Figure G.2: Reading report in -Geo Sensing for the base case...............coooeiiiiii.. 184
Figure G.4: Distribution section in the Design of Experiments module 185
Figure G.5: Pop-up window for distribution of a DoE parameter....................c.ocociiinen. 185
Figure G.6. The pop-up to execute a batch data generationcccovveiiiiiiiiininnnnnn... 186
Figure G.7. An example of generated files post DoE batch run execution.......................... 187
Figure G.8: The “Fracture Calibration Proxy” module. ..., 187
Figure G.9: A successful validation for the selected folder(s).............ccooviiiiiiiiiiin.n. 188
Figure G.10: Input pop-up window for the sensor data profile(s).............c.ooeiiiiiiiiiin. 189
Figure G.11: Completion notification for the proxy dataset generation 189
Figure G.12: An overview of the functional hidden in the “Validate parameter” tab............... 190

12

LIST OF TABLES

Table 1: Collected average resistivity values from multipole EOG reservoirs for pilot

1 (715 10 4 U 17
Table 2: Summary of the Core Tests Performed On The Paddock Formation....................... 19
Table 3: Summary of the Mineralogy Of The Paddock Formation.........................ocooeinen 21
Table 4: Summary of the Sonic Travel Times as a Function of the Confining Pressure............ 24
Table 5: Summary of the Dynamic Rock Properties For The Paddock Formation 25
Table 6: Initial Test ReSUlts. ..o e 71
Table 7: Evaluation results for the unsupervised ML workflow (synthetic environment) 108
Table 8: The test case’s DoE parameters’ distributionsccoiiiiiiiiiiiiiiiii i, 115
Table 9: A snapshot of 0ne DOE Case........c.oovniiiiiiiii e, 116
Table B.1: Mineralogy testing of the Paddock Formation..........................cooinee. 154
Table C.1: Compressional and Shear Wave Velocity Analysisccooiiiiiiiiiiiiinnnnnn. 169
Table D.1: Procedures: Paddock Formation, Core Set 2, ID-11 (2600.20

) P 173
Table D.2: Laboratory Data: Paddock Formation, Core Set 2, ID-11 (2600.20

) P 173
Table E.1: Procedures: Boyd State #15H (Paddock Formation) Core Set 1, ID-
7 175
Table E.2: Lab Data: Boyd State #15H (Paddock Formation) Core Set 1, ID-
72N 178
Table E.3: Procedures: Embedment Test: Core Set 1, ID-7

(2500, 757) ettt 179

13

1. EXECUTIVE SUMMARY

This project introduces innovative technology to improve subsurface characterization,
visualization, and diagnostics of unconventional reservoirs (fossil resources). Through a
collaborative effort involving the University of Kansas, UCLA, MicroSilicon Inc., and EOG
Resources, the project aims to deliver precision diagnostics for hydraulic fractures using novel
high-resolution imaging technology based on smart microchip proppants. Additionally, it seeks to
enhance the accuracy and predictability of integrated numerical, and machine-learning modeling
techniques for hydraulic fracture characterization and simulation.

This groundbreaking technology addresses significant gaps in understanding unconventional and
tight reservoir behavior and optimizing well-completion strategies, enabling more cost-efficient
recovery of unconventional resources. Figure 1 illustrates the proposed technology, showcasing
areas of innovation. It envisions a closed-loop fracture diagnostic and modeling architecture
designed to improve fracture design and optimize well spacing.

The project comprises both computational and experimental components. The computational
component involves real-time fracture mapping, hydraulic fracture diagnostics, and simulations
powered by physics-informed machine learning. The experimental component includes:

e Detailed geomechanical rock characterization.

e Laboratory testing of smart microchip sensors using 3D-printed synthetic and real core
samples.

e Development and lab testing of downhole tools to power the microchip proppants and
receive their signals.

e Field testing of the technology.

A key innovation is the battery-less, wireless, and fine-sized sensor technology, which offers real-
time, cost-efficient, high-resolution, and “direct” fracture mapping. By employing microchip sizes
tailored to various proppants, this technology provides better calibration and interpretation of other
indirect diagnostic tools currently used for fracture characterization. Once injected into the
formation, the MicroChip proppants generate real-time data, enabling a more accurate evaluation
of small-scale hydraulic fracturing performance.

This project supports the Department of Energy’s (DOE) objectives to enhance the economic and
energy security of the United States. By providing advanced technology, it aims to maximize the
recovery efficacy of unconventional resources while minimizing environmental impacts through
optimized well spacing and improved completion designs. Furthermore, it ensures the United
States maintains its technological leadership in advanced energy technologies for efficient and
environmentally responsible fossil fuel production.

During this project, the team successfully completed key tasks, conducted comprehensive
laboratory testing and measurements, and achieved successful testing outcomes. These
accomplishments include:

o Completion of rock characterization and geomechanical studies for the selected site.

14

Successful laboratory testing of Smart MicroChip proppants for functionality and
transport.

Verification of MicroChips' functionality at a high temperature of 250°C (482°F).
Verification of MicroChips' functionality under high pressure, achieving 3,490 psi (24.06
MPa) without epoxy protection embedded in cement under compressive forces, and up to
10,000 psi with epoxy-type protection.

Successful testing of the downhole tool in a lab environment, demonstrating its ability to
self-power the smaller MicroChips.

Development of the i-Geo Sensing web-based platform for physics-informed machine
learning to process Smart MicroChip data and other diagnostic tools for efficient fracture
mapping and simulation.

Successful field trial conducted in an EOG-operated well in New Mexico.

High Resolution
> 40.68 MHz
Smart (fo)
MicroChip
\ Proppants ’)
Static and Dynamic Calibrating the fracture
measurement of proppants geometries result from ‘
distribution and fracture indirect diagnostic tools RX
geometry A
Numerical and Machine learned
_ based high resolution fracture and
flow model calibration Se n SO r
N
Validate Optimize 13.56 VIHz
completion L] fracture & ¢ ‘ ‘ no d es
design well spacing

Figure 1a: Smart MicroChip Proppants technology: A closed-loop fracture diagnostic and modeling

architecture

The following report is a summary of the work conducted and refers to a series of appendixes that
contain more thorough and specific information about each section.

15

2. INTRODUCTION

Unconventional oil and gas reservoir development requires a detailed understanding of the
geometry and complexity of the generated hydraulic fractures. The current categories of fracture
diagnostic tools include a variety of methods for near-wellbore fracture diagnostics (e.g.,
production and temperature logs, tracers, and borehole imaging) as well as a variety of far-field
techniques (e.g., microseismic fracture mapping). These techniques provide indirect and
interpreted fracture geometry; therefore, none of these methods consistently provides a fully
detailed and accurate description of the character of created hydraulic fractures.

2.1 Current State-of-the-Art Technologies

Other methods of research and development studies that are currently underway to better
understand the complex interaction of the rock and fracture systems in unconventional plays may
provide important additional information but still without the precision required to fully
understand the near-well processes associated with a stimulation treatment. Fracture diagnostics
using electromagnetic induction have an accuracy of 30-50 feet, which is still far from what is
needed to understand the detailed complexity of the near-wellbore zone. An additional drawback
to electromagnetic induction methods is that large amounts of conductive proppants are needed,
which significantly increases the completion cost. Another method that has been used is deep sub-
surface resistivity imaging with or without conductive particles, but this method also suffers from
limited resolution (~50 ft). Microseismic (MS) emitters may provide additional location
information but are very expensive ($10-100 per proppant) and their interpretation is subjective.
Microseismic mapping suffers from a lack of correlation with fracture conductivity and geometry.

Capturing the complexity within the near wellbore region where induced fractures originate and
interact with the rock has proven to be one of the most elusive monitoring tasks. An important
observation from most hydraulic fracturing treatments is that because of the mode of failure in the
near-wellbore region, the microseismic signal may not be detected and as a result is not coincident
with the perforations. The interaction of the rock around the borehole with induced and existing
fractures requires a method of observation that is both high resolution (~1 ft) and cost-effective.
Therefore, finding innovative ways to directly characterize the height, length, and orientation of
hydraulic fractures will provide critical information to fill the gap between what can be determined
with current observational methods and the point where failure initiates. Optimizing hydraulic
fracture treatments is critically dependent on understanding the near-wellbore processes. The
technology proposed in this work, which focuses on collecting information in this zone, is based
on frequency-shifting electromagnetic smart proppants that solve multiple key issues:

1. Due to the frequency-shift nature of the proppants, the signal transmitted from the proppants
can be easily separated from the electromagnetic reflections from the reservoir. Consequently,
a very small amount of proppants (a few gallons) is needed to perform fracture mapping.
ii. This technology can achieve a resolution of better than 1{t, which is two orders of magnitude
better than the conventional methods.
iii. The electromagnetic frequency-shifting proppants are based on silicon technology, which can
be produced at almost no cost (a few cents per proppant) in large volumes.

16

iv. Precise near-wellbore fracture diagnostics using our proposed technology enables better
calibration and understating of fracture treatment applications.

3. FIELD TESTING SITE SELECTION AND STATIC DATA COLLECTION
3.1 EOG Asset Screening

EOG Resources assets are screened to identify multiple locations for the field pilot testing of Smart
MicroChip Proppants. One of the key design parameters of the Microchips is a suitable range of
formation resistivity. Table 1 summarizes the list of different plays and reservoirs that EOG
resources operate with their range of resistivity (Ohm-m). Based on our field screening, Woodford,
Paddock, and Blineberry reservoirs in Permian were selected as the top candidates for the pilot
test.

Table 1: Collected average resistivity values from multipole EOG reservoirs for pilot

selection
Formation Reservoir Average Formation Resistivity
(Ohm-m)
Permian Bone Spring 4 to 30
sands
Permian Wolfcamp <49
Permian Leonard <35
Permian Basm in New Paddock 430
Mexico
Permian Basm in New Blineberry 180
Mexico
Permian Bagm in New Basal Abo 400
Mexico
South Texas Lower Eagle <15
Ford
South Texas Upper Eagle Ford <30
South Texas Austin Chalk 60
Anadarko Woodford 440
Meramec
Anadarko (Mississippian) 105
Rockies Mowry <30
Rockies Niobrara <40
Rockies Bakken <40
Rockies Turner <30
Rockies Codell <10

Based on our final field screening, Permian Basin, Yeso Field Reservoir in New Mexico is
selected for the initial data collection and rock characterization and field trial. Accordingly, 6
ft of core and logs were obtained from the Boyd XState well that was used for geomechanical
laboratory testing.

17

Figure 1b: Received core and log data and the CT scan of the full slab core.

3.2 GEOMECHANICAL EVALUATION, UN-PROPPED CRACK TEST, FLUID
SENSITIVITY TEST, AND EMBEDMENT TEST OF THE PADDOCK FORMATION
(BOYD STATE #15H EDDY COUNTY, NEW MEXICO)

Summary:

A laboratory investigation was conducted on the core from the Boyd State #15H in the Paddock
Formation. Tests were conducted on mineralogy, grain density, and ultrasonic velocity to
determine the geomechanical properties of the Paddock Formation. Triaxial compression tests to
determine the static Young’s Modulus, although planned, couldn’t be performed due to the small
sample size of the available core plugs.

In addition to the geomechanical testing an un-propped crack test, fluid sensitivity test, and
embedment test were conducted to better understand and evaluate the fracturing characteristics
and the brittleness/fracability of the Paddock Formation. In addition, these tests were used to assess
the viability of various proppants (type, size, concentration) and fluids (treated water, linear gel,
or cross-linked polymers) for their use in hydraulic fracturing.

Findings:

e The Paddock samples were primarily made up of dolomite constituents (an average of 82%
dolomite).

e The Paddock samples tested had a range in dynamic Young’s Modulus of 11.92 to 17.96 x
10° psi and an average of 14.51 x 10° psi.

e The dynamic Poisson’s Ratio ranged from 0.18 to 0.33 and averaged 0.273 for the thirteen
samples tested.

e Using the dynamic to static Young’s Modulus correlation developed by
o Britt Rock Mechanics Laboratory (SPE 125525)

18

@) Estatic = 0.835><Edynamic — 0.424,

o The average static Young’s Modulus was estimated to be 11.69 x 10° psi,
Little shear anisotropy (< 5%) was identified in all but one of the samples tested and that
sample was visibly fissured,

Wet nitrogen could flow through an un-propped crack at 3000 psi confining pressure in the
shale samples and retain extraordinary permeability.

Little to no fluid sensitivity was noted in the Paddock Formation,
Little proppant embedment (0.068 Ibs/ft?) was noted in the Paddock Formation.

Field Implications and Recommendations:

The Paddock Formation has a high dynamic Young’s Modulus which translates into a high
static Young’s Modulus.

The Paddock Formation has little fluid sensitivity and proppant embedment making it a
good fracturing application for a variety of materials (fluids and proppants).

The Paddock Formation is a viable water frac candidate due to the ability to retain
permeability and flow wet nitrogen through an unpropped fracture at confining pressure.
All lab data indicates that the Paddock Formation is very brittle.

3.2.1 Introduction:

A laboratory investigation was conducted to evaluate the geomechanical rock properties of the
Paddock Formation. Tri-axial compression testing couldn’t be conducted as the core plug samples
were too small to determine the static Young’s Modulus. Ultrasonic velocity measurements were
made and the dynamic Young’s Modulus was estimated and evaluated with an established dynamic
to static Young’s Modulus correlation developed by Britt Rock Mechanics Laboratory (SPE
125525). In addition to the geomechanical testing, grain density, mineralogical, unpropped crack
test, fluid sensitivity test, and an embedment test were performed to assess the viability of this
formation for hydraulic fracturing. Table 2 summarizes the tests conducted on the core plugs from
these Paddock Formation samples.

Table 2: Summary of the Core Tests Performed on The Paddock Formation

Well ID | Depth, Grain |Ultrasonic |Crack Fluid Embedment
N Density | Velocit Test
ame (feet) | FTIR estly | veloetly © Sensitivity Test
Boyd 1 |2507.50| X X X
State #
15H
Boyd 2 [2507.75 | X X X
State #
15H

19

Boyd
State #
15H

2508.25

Boyd
State #
15H

2508.50

Boyd
State #
15H

2508.75

Boyd
State #
15H

2509.50

Boyd
State #
15H

2509.75

Boyd
State #
15H

2597.10

Boyd
State #
15H

2597.40

Boyd
State #
15H

10

2597.90

Boyd
State #
15H

11

2600.20

Boyd
State #
15H

12

2600.60

Boyd
State #
15H

13

2600.90

20

As shown, the core plugs were utilized for mineralogy, rock mechanics, unpropped cracks, fluid
sensitivity, and embedment tests. Thirteen ultrasonic velocity tests were conducted on the Paddock
core samples along with an un-propped crack test, a fluid sensitivity test, and an embedment test.

Table 3: Summary of the Mineralogy of The Paddock Formation
Well Core | Depth,
Set
Name | (feet) | Carbonate | Clay | Anhydrite | Feldspar | Quarts
Boyd State 1 1 |2507.50 94 0 2 4 0
#I15SH
Boyd State 2| 1 |2507.75 92 1 6 1 0
#I15SH
Boyd State 3| 1 |2508.25 95 0 4 1 0
#I15SH
Boyd State 4 | 1 |2508.50 94 2 3 1 0
#I15SH
Boyd State 5| 1 |2508.75 94 0 3 3 0
#I15H
Boyd State 6 | 1 |2509.50 92 0 6 2 0
#I15H
Boyd State 7|1 1 |2509.75 95 0 5 0 0
#I15H
Boyd State 8 | 2 |2597.10 68 12 17 2 2
#I15H
Boyd State 9 | 2 |2597.40 66 1 32 0 0
#I15H
Boyd State | 10 | 2 | 2597.90 90 4 3 2 0
#15H
Boyd State | 11 | 2 | 2600.20 66 6 27 0 0
#15H
Boyd State | 12 | 2 | 2600.60 85 6 7 2 0
#15SH
Boyd State | 13 | 2 | 2600.90 56 5 38 1 0
#15H

21

In addition, Fourier Transform Infrared Spectroscopy (FTIR) and grain density tests were
conducted on all of the samples to better assess the carbonate and clay mineralogy (Appendix B).

3.2.2 Discussion:

First, the mineralogy of the samples was investigated. Fourier Transform Infrared Spectroscopy
(FTIR) tests were conducted on all of the samples to assess the carbonate and clay mineralogy of
the Paddock Formation. Analysis of the samples showed that the Paddock has a significant amount
of dolomite with some anhydrite mineral constituents and some albeit little clay mineralogy. Table
2 summarizes the results of the core analysis of the Paddock Formation highlighting the mineral
constituents of significance such as Carbonates (dolomite and calcite), Clays, Anhydrite, Feldspars,
and Quartz.

Figure 2 : Ternary Diagram Of The Paddock Core Samples

Anhydrite

AVAVAVAVAVAVAVAVAS

Carbonates Clays

As shown, the core samples from the core set one (2507.50 to 2509.75 ft) are predominately
dolomite (> 89%) with small amounts of calcite (3-4%), anhydrite, feldspar, and clay. Samples
from the core set two (2597.10 to 2600.90 ft) have significantly fewer dolomite constituents (56%
to 90%) with no calcite and more anhydrite and clay. The sample from a depth of 2508.25 feet
(Core Set 1-Sample ID 3), for example, had ninety-one percent dolomite, four percent anhydrite,
and calcite, and only one percent feldspar and no clay constituents. Alternatively, the samples from
2600.20 feet (Core Set 2-Sample ID 11) were made up of sixty-six percent dolomite, twenty-seven
percent anhydrite, and six percent clay, respectively.

22

From a mineralogical perspective, these core samples appear to have some differences given the
variation in the primary mineral constituents of dolomite and anhydrite. Throughout the Permian
and Delaware Basins, the abundant amounts of sulfate from evaporated seawater combined with
the liberation of calcium during the dolomitization process resulted in significant amounts of
anhydrite being deposited in the Clearfork and Paddock Formations. Figure 3 shows a Paddock
sample from 2597.40 feet (Core Set 2 - Sample ID 9) which highlights an anhydrite nodule on the
upper edge of the core sample.

With respect to the clay constituents, all of the core samples had few clay constituents with the
samples having from 0 to 12 percent clays, respectively. These clays are primarily illite and
smectite; however, given the core small amounts (average of only 2%) no extraordinary efforts
should be utilized to minimize their effects in the completion and fracture stimulation process.
Appendix B summarizes the quality control measures taken and details the mineralogy of each of
the samples studied.

Figure 3: Anhydrite Nodule Within Dolomitic Paddock Formation
Core Set 2- Sample ID 9, Depth 2597.40 feet

Next, a series of ultrasonic measurements were made on each core plug. Each sample was
subjected to a sonic frequency of 300 to 500 KHz in the lab and the compressional and shear
velocities were measured. Table 4 summarizes the sonic (shear and compressional) travel times as
a function of confining pressure for each sample.

23

Table 4:

Summary of the Sonic Travel Times as a Function of the Confining
Pressure

Bulk 1,

1,000 psi Confinement

2,000 psi Confinement

3,000 psi Confinement

1D gm/cc

P,
ft/sec

S1,
ft/sec

S2,
ft/sec

P,
ft/sec

S1,
ft/sec

S2,
ft/sec

P,
ft/sec

S1,
ft/sec

S2,
ft/sec

[y

2.824

21201

12254

11512

22093

12648

11890

22513

12785

12070

2.842

21814

11772

12077

22730

11965

12316

22969

12270

12566

2.842

21430

11391

12248

22326

11578

12640

22441

11900

12781

2.803

21539

11368

12112

21850

11512

12325

21959

11693

12580

2.870

19642

10554

11443

20420

10919

11930

21486

11214

12014

2.848

22208

11998

12226

22818

12323

12603

23281

12477

12775

2.845

21352

11827

0

21919

12021

0

21988

12297

0

2.822

21133

13133

11808

21905

13409

11708

22170

13426

11910

o R X | | A W N

2.855

21168

10833

11119

21995

11064

11301

22069

11098

11745

[
(—]

2.813

21535

12138

12216

21996

12540

12869

22114

12568

12923

[
-

2.830

21845

12225

12720

21969

12479

12898

22015

12650

12926

[
[\®]

2.815

22050

12313

12512

22112

12578

12615

22305

12720

12949

[y
w

2.851

22224

13273

13170

22552

14135

14284

23405

14966

14965

It should be noted that two shear travel times (i.e., S1 and S2) are reported. The second shear travel
time is measured perpendicular to the first. Such a comparison of shear travel times is a measure
of shear anisotropy. Comparison of the shear velocities shows little evidence of significant

anisotropy in these samples.

Paddock samples as the shear anisotropy recorded were less than 5% on seven of the samples, less
than 10 percent on another five samples, and only one sample (Core Set-1, ID-7) showed

significant anisotropy and that was a sample with a visible crack. The average shear anisotropy of

the twelve unflawed samples was 4.83%.

Figure 4 shows the Paddock core sample from 2509.75 feet (Core Set 1-Sample ID 7) which
highlights a fissure that extends nearly throughout the sample. Such a flaw dramatically affects the

shear anisotropy.

24

Figure 4: Paddock Core Sample Showing A Fissure or. /Flaw In The Sample
Core Set1- Sample ID 7, Depth 2509.75 feet

Next, the shear and compressional velocities and the bulk density were then utilized to calculate
dynamic rock properties for the core samples. The dynamic rock properties calculated from these
laboratory measurements are summarized in Table 5. As shown, the Poisson’s Ratio varies from
0.18 to 0.33 and the dynamic Young’s Modulus varies from 11.92 to 17.96 x 10° psi at 2000 psi

confining pressure.

Table 5: Summary of the Dynamic Rock Properties For The Paddock Formation
ID 1,000 psi 2,000 psi Confinement 3,000 psi
Confinement Confinement
n | Edynamic, n | E _dynamic, | E static* | n | Edynamic,
MMpsi MMpsi MMpsi MMpsi
1 |0.25 14.20 0.26 15.21 12.3 0.26 15.61
2 1029 13.66 0.31 14.27 11.5 0.30 14.91
3 1030 12.88 0.32 13.44 10.8 0.30 14.07
4 | 031 12.69 0.31 13.02 10.4 0.30 13.37
5 (030 11.11 0.30 11.92 9.5 0.31 12.70
6 | 029 14.22 0.29 15.00 12.1 0.30 15.43

25

7 |0.28 13.64 - 1028 14.16 11.4 0.27 14.67 -
8 |0.19 15.46 - 1020 16.32 13.2 0.21 16.50 -
9 1032 11.88 0.33 12.46 10.0 0.33 12.54
10 | 0.27 14.07 0.26 14.93 12.0 0.26 15.02
11 | 0.27 14.42 0.26 14.90 12.0 0.25 15.21
12 | 0.27 14.57 0.26 15.05 12.1 0.26 15.37
13 | 0.22 16.46 0.18 17.96 14.6 0.15 19.75

Also shown for a 2000-psi confining pressure is the calculated static Young’s Modulus derived
from the Britt Rock Mechanics Laboratory Correlation first published in 2009. This correlation,
shown as Equation 1, has a correlation:

Estatic = 0.835%Edynamic - 0.424 (1)

coefficient, R?, of 0.714 and includes hundreds of samples of sands, shales, and carbonates from
around the world.

Figure 5 shows a plot comparing the Dynamic Young’s Modulus from the ultrasonic tests to the
Static Young’s Modulus derived from the above correlation at 2000 psi confining pressure for all
samples. Core Set 1 samples are in green and Core Set 2 samples are in red. As shown, the dynamic
Young’s Modulus and the correlated static Young’s Modulus are quite high; however, they are
consistent with other dolomites that have been tested in the Clearfork of the Permian Basin and
the Potosi and Bonne Terre Formation dolomites of Southwestern Missouri. Appendix C details
the testing procedures, ultrasonic velocity tests, and interpretation.

In addition to geomechanical testing, a series of tests were conducted to evaluate whether an
unpropped hydraulic fracture could retain conductivity in the Paddock Formation. Residual
fracture width has been observed both in the laboratory and in field experiments. Surface asperities
or roughness at the fracture face may account for this residual width. A laboratory study by
Schlumberger investigated this aspect of treated water fracture stimulations. Their results showed
that an un-propped induced fracture under effective confining pressure conditions in excess of
what is anticipated in the Paddock Formation could be expected to have some fracture
conductivity. Their work further showed that fracture displacement and surface asperities were
required to provide adequate fracture conductivity in the absence of proppants and suggested that
high-strength proppants and higher, more conventional, concentrations of proppant were required
to mitigate the need for the fracture displacement and surface asperities effect on fracture
conductivity.

26

Figure 5: Static Young’s Modulus From Dynamic To Static Correlation
Britt Rock Mechanics Laboratory, SPE 125525

20.000 - ® Clastics i}
© Prospective Shales
18.000 —] 4 1-Paddock Formation (Dynamic E)
A 2-Paddock Formation (Dynamic E)
SEden ——Linear (1-Paddock Formation (Dynamic E)) c /
(N J

= o°

14.000
S 12000
- [J
x «Q O
uf 10.000 @)
£ ® OO C
£ s.000 Ot
=
S‘ 6.000 - o Q

V@
4.000 -
b 4 "
2.000
0.000 ‘ t
0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000
Static E, x 10”6 psi

Figure 6: Britt Rock Mechanics Laboratory Test Apparatus

27

Figure 7: Test Cell Head with Piston and Inlet Ports

l l

Induced Crack
V. &

Sleeved Core
Holder

Sy

"\ Inlet Ports for

orts Fluid
I Gas Injection I Collection

Figure 8: Test Cell Head with Piston and Inlet Ports

One un-propped crack test (Core Set 2, ID 11-2600.20 feet) from the Paddock Formation was
conducted. To conduct this work, a core plug was cracked lengthwise with a masonry rock splitter
to emulate a hydraulically created fracture. Sample ID 11 was chosen for this test because it had a
nearly through-going natural fissure and split easily. Next, the cracked core plug was placed in
Britt Rock Mechanics Laboratory “built for purpose” laboratory equipment, and confining
pressure was applied. Figure 6 shows a picture of the equipment that was built and used in this
study. This equipment consists of a test cell that can handle confining pressures from 0 to 10,000

28

psi and temperatures up to 300°F. A piston head is used to apply confining pressure and includes
inlet electronic and flow ports. In the induced crack testing, the piston is actuated to apply
confining pressure and emulate flow and shut-in conditions. While confined at pressure and
temperature, flow is established through the inlet ports, and the permeability of the core and
induced crack is measured. Figure 7 displays the head of the test cell. Shown in this figure is the
piston head for applying confining pressure and inlet electronic and flow ports. During this study,
effective confining pressures up to 1250 psi were applied to emulate the likely possible field
conditions of the Formation.

Outlet flow ports exist both in the core direction perpendicular to the core as shown in Figure 8.
In this study, we attempted to measure the retained permeability of the core in the direction of the
induced crack as a function of confining pressure. A retained experiment was performed with the
core plug prepared as described in the previous paragraphs. The test was designed to determine
the retained permeability of the core while flowing wet nitrogen as the confining pressure was
increased to 1250 psi and maintained for a couple of days. Results of the testing (Figure 9) show
that the retained permeability measured at 100 psi (Step 1) was 62.1 md while the retained
permeability as the confining pressure was increased 1.89-fold while being confined at 1250 psi
for two days.

Procedure-Step
C

Permeabiity (md)
=

Procedure-Step

Figure 9: The Effect of Stress on Wet Nitrogen Injection (2156.23 meters)

Any formation can be a viable water frac target, but some lend themselves to the use of treated
water as a fracturing fluid better than others. Low permeability naturally fissured formations, for
example, make excellent water-frac candidates. This is because water-frac stimulations differ from
more conventional gelled fracture stimulations as water is a cleaner fluid than conventional gels
and does little damage to any natural fissures present and water is a poor fluid for transport of the
proppant within the fracture. This latter issue (poor transport fluid) is the basis for our water-frac
designs. The resulting fracture after a water-frac has two distinct components as shown in Figure
29. The first part of the fracture is the bottom of the fracture where all of the proppant settles during
the treatment. The second part of the fracture is the upper part which has little or no proppant as it
has all settled to the bottom of the fracture. Figure 10 shows a schematic of a water-frac where

29

forty percent of the fracture is filled with proppant and sixty percent of the fracture is unpropped.
Reservoir simulations of such a fracture provide the basis of design for a water-frac treatment.

Assumes Un-Propped kow!

40% of Zone Stimulated

Figure 10: Schematic of a water-frac

These simulations showed that a water-frac stimulation will perform as a fully propped fracture
provided the ratio of the un-propped conductivity of the fracture to the product of the reservoir
permeability and the height of the un-propped part of the fracture is in excess of 2. If this ratio is
less than a value of 2 it indicates that the retained conductivity of the un-propped part of the fracture
is too small for the reservoir permeability and un-propped fracture height. In this scenario, the only
thing that can be done to improve the situation is to reduce the un-propped fracture height by
pumping more proppant and filling up more of the fracture. Results of the crack testing indicate
that the un-propped conductivity of the fracture in the Paddock Formation is significant and that
the Paddock Formation can support tens of feet of un-propped fracture (assuming the reservoir
permeability is less than 0.10 md for leak-off considerations).

In addition to the geomechanical testing, a fluid sensitivity test was conducted to evaluate whether
fluid sensitivity or damage is important to the hydraulic fracturing of the Paddock Formation. The
test included conducting a KCl sensitivity test utilizing BRML’s built-for-purpose equipment. This
laboratory investigation consisted of loading a test cell with a core sample and then saturating the
core sample with 6% KCI, 4% KCl, and 2% KCI while measuring the permeability and the
cumulative fluid injected. The confining pressure of the cell during the testing was maintained at
1250 psi and the retained permeability was measured until stabilized for each KCI concentration.
The test consisted of using a fissured core sample from 2,509.75 feet injected and decreased to 7.3
md as the core was saturated with 6% KCI. The retained permeability for the 4% KCl and 2% KCI
saturated core decreased to 5.1 md and 4.4 md, respectively. Such a small reduction in permeability
is insignificant damage given the fluid dynamics of the test and the fact that the permeability was

30

being measured through a crack in the core. Appendix E details the testing procedures, raw data,
and interpretive plots.

In addition to the geomechanical testing, a test was conducted to evaluate whether embedment is
(Core Set 1, ID-7) to determine the potential for fluid damage in the Paddock Formation. Figure
11 shows a plot of the retained permeability as a function of KCI concentration for the core sample.
Analysis of this figure shows that the initial permeability was 39.1 md as 6% KCIl was important
to the hydraulic fracturing of the Paddock Formation.

Figure 11: Fluid Sensitivity Testing w/ KCL (CS-1, ID-7, 2,509.75 feet)

45 2500

40

Il + 2000

35 :
[
| |
30 :
'. // 1 1500
25 :
‘ \ A)—//'—
20 —
r/ 1 1000
| o

10
‘ / \ 1 s00
| \ P

LB b ol ot Bt ol i o o o ot P 1 it ot B - I PR 9 | 5 R P I ! B 1 B s P [1 | Ed Pt P B8

Permeability (md)

Cumulative Auid Volume - Brine Concentration(cc)

—=a— Permeability (md) —— Cumulative Fluid Volume - Brine Concentration (cc)

The test included conducting an embedment test utilizing BRML’s built-for-purpose equipment.
Figure 12 shows a schematic of the embedment testing procedure. This laboratory investigation
consisted of loading a test cell with the formation core cut in half and filled with a quarter inch of
40/70 mesh (d = 0.01462 inches) Carbo-Ceramic proppant. The confining pressure of the cell was
then increased incrementally from 100 to 3,000 psi with the confining pressure stabilized at each
pressure.

After each increase in confining pressure, the sample/cell dimensions were measured and
documented. These dimensions were then evaluated to establish a relationship between
embedment and proppant stress. The test consisted of using the sample from 2,509.75 meters (Core
Set 1, ID 7) to determine the potential for proppant embedment in this shale formation.

31

Figure 12: Fines Migration and Embedment Testing Schematic

\
Core Core \

Sleeved Core
||m/
Proppant/ /

Grain
«—Measure Deflection—

Figure 13: Embedment Testing (Core Set 1, ID 7, Depth 2,509.75 ft)

4000

Proppant Embedment of /
3500 1| 0.0680 Ibs/ft"2 at At 3,000 psi Closure
3,000 psi Closure Stress Stress 58.1% of a
Grain Diameter Was
3000 Lost to embedment

2500

2000

Closure Stress (psi)

1500

1000 40/70 Ceramic Proppant

Used In Testing ./
500 @

/
0®

0.000 0.002 0.004 0.006 0.008 0.010

Incremental Displacement(inches)

32

Figure 12 shows a plot of the embedment versus proppant stress data generated for the core sample
and the 40/70 mesh Carbo-Lite proppant. As shown, the embedment increased nearly linearly with
proppant stress from 1500 to 3000 psi at which point the test ended. Based on this analysis, an
estimate of the proppant embedment, 0.068 lbs/ft> (58.1% of a grain diameter) at 3000 psi was
determined. Further analysis of the data from Figure 32 shows a best-fit line through the data
resulting in a correlation coefficient, R?, of 0.9757. The correlation is shown in Equation 2:

y=10°x - 6741.4)

To determine the maximum stress on the proppant, utilize Equation 3.

n(POB — Pres) + Pres + T — Pf
1—n

Oproppants PS1 =

As shown, the stress the proppant sees depends on the overburden stress, Pog, the reservoir
pressure, Pr, the bottomhole pressure in the fracture, Py, the ability of the vertical stress to be
transmitted in the horizontal direction (related to Poisson’s Ratio, n), and the tectonic stress, T. A
few observations can be made by reviewing this equation.

First, as the reservoir pressure is depleted, the stress on the proppant decreases. Secondly, as the
well is drawn down, the stress on the proppant will increase. Finally, since the pressure in the
fracture increases away from the wellbore (i.e. assumes finite conductivity fracture), for
conventional fracturing the maximum stress on the proppant will be seen early in the well life at
the wellbore.

In fact, it can be shown that the maximum stress on the proppant will occur at hydrocarbon
breakthrough during the well cleanup unless the flowing bottom-hole pressure is rigorously
controlled.

However, proppant embedment is not an issue in the Paddock Formation as this dolomite only has
a total embedment at 3,000 psi which is only one-third that seen for the average formation
(approximately 0.200 lbs/ft?). Obviously, this formation is brittle enough to support hydraulic
fracturing with treated water.

33

4. SMART MICROCHIP PROPPANT: DESIGN, DEVELOPMENT, LAB TESTING,
AND VERIFICATION FOR THE FIELD TRIAL
4.1 Summary

Fracture mapping is essential in hydraulic fracturing and finds applications in the oil and gas
industry. Mapping of fractures using traditional radioactive or micro-seismic methods involves
contamination and is prone to being inaccurate, thereby reducing the yield in fracturing
applications. Therefore, wireless sensor networks (WSNs) with each sensing node having a small
form factor and low power consumption are currently being investigated for use in such
applications. This article presents a fully battery-less system of coherent sensing nodes using
wireless energy harvesting. These nodes are capable of mapping fractures reliably at temperatures
up to 250°C and pressures up to 24 MPa.

Each node comprises a microchip having dimensions of 1.1 mm x 0.56 mm, two coils of § mm
diameter each, and resonating capacitors. The microchip was fabricated in the Taiwan
Semiconductor Manufacturing Company (TSMC) 0.18 um process. The node receives a 40.68
MHz radio frequency (RF) signal in the industrial, scientific, and medical applications (ISM)
band and transmits back a locked subharmonic 13.56 MHz ISM band RF signal.

The subharmonic signal is generated on-chip using a digital divide-by-3 circuit, drastically
reducing the microchip power consumption compared with injection-locked oscillators or phase-
locked loops (PLLs). The sensor nodes used in the system have a form factor of 17 mm x 12 mm
x (0.2 mm and a minimum average power consumption of 1.5 uW.

Index Terms — Battery-less, coherent, complementary metal-oxide—semiconductor (CMOS),
energy harvesting, fracture mapping, high temperature, hydraulic fracturing, sensing nodes,
wireless, wireless sensor network (WSN).

4.2 Introduction

IRELESS sensor networks (WSNs) have become increasingly popular in recent years for use
in various applications [1], [2], [3]. These networks include many spatially scattered sensor
nodes, each of which senses some information from its environment, processes it, and
transmits the processed data back to another node or a base station. WSNs can be battery-
powered or wirelessly powered. Since wirelessly powered WSNs harvest energy from the
environment, they do not have to encounter issues regarding the replacement or recharging of
batteries.

Therefore, they provide significant advantages for sensing in regions that are remote or
inaccessible. In addition, WSNs have the advantage of scalability, which enables the convenient
addition or removal of nodes to/from the network. Since WSNs are mostly used in applications
where powering them is inconvenient, the major constraint affecting the design of these nodes is
low power consumption.

Among the many applications where WSNs can be used, hydraulic fracturing is essential for its
widespread use in the energy industry, especially the oil and gas industry. Hydraulic fracturing

34

has been used to increase the flow rate of oil and natural gas in oilfields [4]. Extensive knowledge
about the location and orientation of the fractures is required to increase production efficiency
inside these oilfields [5]. Traditionally, fractures have been mapped using techniques, such
as radionuclide monitoring, where radioactive tracers are injected into the fractures along with the
propellant fluid [6]. However, these techniques are prone to high contamination risks if
parameters, such as the amount, toxicity, and half-life of the tracers, are not strictly controlled.

More advanced applications use microseismic mapping, which includes monitoring the seismic
activities along the fractures and is similar to seismology [7], [8], [9]. However, there
is not enough understanding of the seismological processes inside the fractures. Moreover,
they suffer from coherent noise within the band of seismic recordings. These shortcomings prompt
us to look into wirelessly powered WSNs having a small form factor and low power consumption
as a cleaner, newer, and more power-efficient technique for fracture mapping.

Fig. 14 shows a conceptual representation of fracture mapping using WSNs. Advancements in
semiconductor technology have made it possible to reduce the size of microchips rapidly,
therefore reducing the size of these sensing nodes. Currently, the size of these nodes is
dominated by the size of the passive components, which include the off-chip resistors,
capacitors, and coils or antennas. In applications, such as fracture mapping in oil and gas fields,
the signals received and transmitted by the node should be able to penetrate the intervening
medium between the transmitter (TX) and the node.

The requirements for penetration depth restrict the frequencies of signals that can be used
below hundreds of megahertz. At these frequencies, reducing the form factor to a few
millimeters entails the usage of an electrically small antenna or inductive coupling between coils
in which the coil on the node is much smaller than the TX or receiver (RX) coil. These constraints
reduce the efficiency of wireless powering links and, therefore, the harvested power for the
microchip [10], [11], ultimately leading to a constraint on the power consumption of the
microchip while still using it for extremely complex sensing and wireless communication
applications.

Previous systems for fracture mapping have primarily focused on using nanoparticles
and their responses to electromagnetic or acoustic waves inside fractures. Aderibigbe et al. [12],
[13] use paramagnetic nanoparticles for the detection of fractures using susceptibility
measurements at different locations. Sun [14] used a nanofluid and the convection and diffusion
processes that affect it, while Liu et al. [15] measured the magnetic anomaly responses due to
the injection of magnetic proppant.

However, for small fractures, the changes in magnetic susceptibility and fields are weak in the
presence and absence of fractures, reducing the accuracy of fracture mapping. To the best of our
knowledge, Al-Shehri et al. [16], [17] are the only works in the literature to date that use WSNs
for fracture mapping through a technology called FracBots (Fracture Robots). These FracBots use
off-the-shelf components and near-field communication and are placed inside fractures to receive
and transmit signals. However, these nodes have a large size, large coils for the RX and TX, and
use milliwatt-level power.

35

Figure 14: Conceptual representation of fracture mapping using WSNS.

In recent years, hydraulic fracturing has been undertaken in high-temperature rock formations
for applications, such as obtaining natural gas from unconventional reservoirs [18].

These reservoirs are often located at large depths inside the surface at temperatures close to
250°C and pressures close to 7 MPa. Ensuring the functionality of the system at high
temperatures and pressures is, therefore, an essential part of using WSNs for fracture
mapping. Mobility variation, threshold voltage reduction, and junction leakage currents are the
major factors affecting the use of standard silicon complementary metal-oxide—semiconductor
(CMOS) processes at high temperatures.

Therefore, silicon carbide (SiC), silicon-on-insulator (SOI), and other I11-V semiconductors were
conventionally considered the materials of choice for designing microchips at such temperatures
[19], [20], [21]. Scaling of CMOS process nodes has resulted in an increase in doping
concentration, resulting in lower junction leakage current at high temperatures. However, scaling
also results in a lower value of threshold voltage, leading to more channel leakage. Since the
junction leakage dominates at high temperatures, standard silicon CMOS processes have been
recently used for high-temperature applications in fields, such as aerospace, automobile, and
deep-well drilling [22], [23], [24].

This work presents a wirelessly powered system of coherently transmitting sensor nodes having
a small form factor, low measurement latency, and ultralow power consumption. These nodes use
the received 40.68 MHz radio frequency (RF) signal to transmit back a subharmonic 13.56 MHz

36

RF signal, therefore aggressively minimizing power consumption in comparison with the
traditionally used transmitting techniques, such as oscillators or phase-locked loops (PLLS).

The amplitude of the received signal can be used to detect the location of the node. These nodes
are experimentally verified to transmit power coherently, enabling their use in WSNs. The nodes
were also used for fracture mapping applications using a prototype in both one and two
dimensions. Moreover, these nodes are verified to transmit back power at temperatures up to
250 °C and pressures up to 24 MPa. Therefore, they are viable to be used for fracture mapping
at high temperatures and pressures in oil and gas fields for applications, such as hydraulic
fracturing.

4.3 Smart Microchips Proppants Technical Specifications and System Details

The proposed system for fracture mapping includes several printed circuit boards (PCBs)
fabricated on FR4 or flexible polyimide substrates acting as nodes for receiving and transmitting
RF signals. These PCBs are hereafter referred to as localizers in the rest of this article. Fig.
15 illustrates the localizer and annotates its dimensions.

Each localizer consists of a microchip and two identical coils. The RF power transmitted by
the TX coil is received by the on-PCB downlink (DL) coil, while the RF power is transmitted
from the microchip using the on-PCB uplink (UL) coil, which is received by the RX coil.
Capacitors of values 16.8 and 160 pF are connected in parallel to the DL and UL coils,
respectively. This causes the DL and UL coils to resonate at 40.68 and 13.56 MHz, respectively,
improving the received and transmitted power at these desired frequencies.

The diameter of the DL and UL coils is limited to 8 mm to minimize the form factor of the
entire system. Since the inductance of coils of such dimensions is very low: 1) the trace widths of
these coils are minimized; 2) the number of turns is maximized; and 3) the thickness of the
substrate is reduced to obtain the maximum possible value of inductance. A larger inductance
improves the link efficiency for wireless power transfer (WPT) by increasing the mutual
inductance between two coils. Therefore, these coils are fabricated on a 0.2 mm-thick two-layer
FR4 substrate with six turns on each layer.

Since these coils have a small size, the parasitic inductance of connectors is comparable to
the coil inductance, making it unfeasible to measure their S-parameters or inductance using
commercially available equipment, such as a vector network analyzer (VNA) [25], [26].

Figure 16 (a) — (c) shows the simulated real part of Z11, inductance, and quality factor of these
coils using Ansys HFSS, respectively. It can be observed that these coils have a self-resonant
frequency (SRF) of 100.74 MHz, an inductance of 0.96 pH, and quality factors of 63.77 and
48.59 at our desired frequencies of 40.68 and 13.56 MHz, respectively. Since these coils are
connected to high-impedance nodes, they are not matched to 50 Q for maximum power transfer.

37

Figure 15: Localizer image with size compared with a nickel.

15000 Y —~ 4 T 15 v =
0.96 pH at 13.56
SRF: 100.74 MHz __10F " and 40.68 MHz
T
10000 = sf SRF: 100.74 MHz |
8
N 5 °
k7]
5000 2 5f
=
10}
0 1 : A5 i i l
0 50 100 150 200 0 50 100 150 200
Frequency (MHz) Frequency (MHz)
(a) (b)
80 T g T
63.77 at
A 40.68 MHz
S
S 40}
Q
&
> 20
- 48.59 at
& O 13.56 MHz
20F
-40 i i }
0 50 100 150 200
Frequency (MHz)
(c)

Figure 16: Simulated (a) re(Z11), (b) inductance, and (c) quality factor of the localizer coil.
38

The TX and RX coils are designed to be large enough to transmit and receive a sufficient
amount of power to and from the localizer, respectively. Therefore, the TX coil has a diameter
of 3.5 cm, while the RX coil has a diameter of 4.5 cm. Both these coils are fabricated on a 1.6
mm-thick two-layer FR4 substrate. The TX coil has three turns, while the RX coil has six turns on
each layer. The performance of these coils was measured using a Keysight N5230C PNA-L
Network Analyzer. Figs. 17 (a)—(c) and 18 (a)—(c) show the measured real part of Z11, inductance,

and quality factor of the TX and RX coils, respectively.

SRF: 59.08 MHz

20 40 60 80 100
Frequency (MHz)

(b)

56.83 at
40.68 MHz

15000
10000 f
N
2
5000
Arl:. W125608ASE10 Q
0
30 : . . - 200
1.91 pH at

_ 20 40.68 MHz SRF: 59.08 150 f
I S
= 10} MHz %
3 / 8 100
c OF -y
= =
'g § 50

10
E e

20F |

30 . 2 2 i _50

20 40 60 80 100
Frequency (MHz)

(c)

20 40 60 80 100
Frequency (MHz)

(d)

Figure 17: (a) TX coil and its measured (b) re(Z11), (c) inductance, and (d) quality factor.

39

%104

a8 SRF: 17.95 MHz

10 20 30 40 50
Frequency (MHz)

(b)

150 T T % T 200
12.5 pH at

100 13.56 MHz

B il SRF: 17.95 MHz 5

N o =3

3 8100

= ¥ 2

3 o} 5 o | 26.99 at

£ 13.56 MHz
100} or
-150 . : . . -50 - . - :

10 20 30 40 50 10 20 30 40 50
Frequency (MHz) Frequency (MHz)
(c) (d)

Figure 18: (a) RX coil and its measured (b) re(Z11), (c) inductance, and (d) quality factor.

It can be observed that the TX coil has an SRF of 59.08 MHz, an inductance of 1.91 puH, and
a quality factor of 56.83 at 40.68 MHz, while the RX coil has an SRF of 17.95 MHz, an
inductance of 12.5 puH, and a quality factor of 26.99 at 13.56 MHz. The TX and RX coils
are matched to 50 Q for maximum power transfer. Fig. 19 (a) and (b) show the measured
magnitude of Si1 for the matched TX and RX coils, respectively. Simulations were done in Ansys
HFSS to estimate the path loss between the TX and localizer coils. Fig. 20 shows a simulated
path loss of —43.765 dB at a separation of 6 cm.

40

— Or—m Y T T
24
S
— 20} -36.23 dB at -
720 40.68 MHz

_40 1l B B 1l

40 40.2 404 40.6 40.8 41
Frequency (MHz)

(a)

13 13.2 13.4 13.6 13.8 14
Frequency (MHz)

Figure 19: Measured |S11| for matched (a) TX and (b) RX coils.
-40 T .

-43.765 dB at
40.68 MHz

Path loss (dB)

20 40 60 80 100
Frequency (MHz)

Figure 20: Simulated path loss between TX coil and localizer coil at a separation of 6 cm.

41

The microchip includes a full-wave rectifier, a diode limiter, and a digital divide-by-3 circuit.
The block diagram of the localizer, including the microchip, is shown in Fig. 21.

Rectifier J_
1.8 nF

UL Coil | Buffers

Figure 21: Localizer architecture.

A passive one-stage cross-coupled topology is chosen for the rectifier, as shown in Fig. 22.

Ve
J'6pF

Figure 22: Rectifier schematic.
42

Cross-coupled rectifiers have been shown to have higher power conversion efficiency (PCE) than
other topologies [26], [27], [28], improving the link efficiency of the system. Coupling capacitors
of 6 pF are used for the rectifier to pass the differential input signal with less than 1%
attenuation. The transistors are sized to have maximum efficiency. A 1.8-nF on-chip storage
capacitor (Cp) is used to reduce the ripple at the output of the rectifier.

The diode limiter limits the output voltage of the rectifier to 3.8 V, providing over-voltage
protection to the microchip. The output voltage of the rectifier Vr works as a supply voltage for the
digital divide-by-3 circuit, which divides the frequency of the received RF power signal by 3. It
includes a mod-3 counter and D flip-flops with an asynchronous set—reset operation.

The divide-by-3 ensures subharmonic locking of the frequency of the received RF signal to that of
the transmitted signal. The divide-by-3 circuit has an extremely low power consumption of 1.5
MW for the lowest amplitude of the RF input signal, for which it generates a measurable output.

Since multiple localizers placed at different locations transmit signals back to the RX coil,
it is imperative to synchronize the frequency and phase of the signals received from different
localizers, so that they can constructively add up at the RX. Conventionally, this has been done
using oscillators in PLLs as TXs [29].

However, PLLs have the drawbacks of using an off-chip crystal oscillator for precise reference
frequency generation. Moreover, PLLs are extremely power-hungry and, therefore, unsuitable for
wireless powering applications. Another feasible way to do this is by using injection-locked power
oscillators such as TXs [30], [31], [32].

However, these oscillators consume static power and have a limited locking range, which
decreases with an increase in the quality factor of inductors, requiring a higher amplitude of
injection RF signal for certain applications. For our application, the phase differences between
different localizers can be neglected, since the operating range is lesser than the wavelength at the
operating frequency by at least an order of magnitude.

The divide-by-3 circuit does not consume static power and does not require the generation of an
injection RF signal. Moreover, the frequency of the transmitted signal is always locked to the
frequency of the received signal, enabling the use of the entire bandwidth allowed by the industrial,
scientific, and medical applications (ISM) band.

The PCE of the rectifier and the peak-to-peak values of the divider output are simulated.
Fig. 23 (@) and (b) show the PCE of the rectifier and peak-to-peak divider output voltage
versus input power for one, two, three, and four-stage rectifiers, respectively. Reducing the
sensitivity and increasing the transmitted power is paramount for increasing the operating range
of the system. The sensitivity of the system is determined by that of the rectifier and the divider.
The sensitivity of the rectifier is defined as the minimum input power for which it generates a
supply voltage that is large enough for the divider. The sensitivity of the divider, on the other
hand, is defined as the minimum input power for which it generates a detectable peak-to-peak
output. From Fig. 23, it is observed that reducing the number of stages in the rectifier increases
the sensitivity of both the rectifier and the divider. Increasing the number of stages generates a

43

larger supply voltage and, therefore, more transmitted power but reduces the sensitivity. Since a
much larger RF power is required to power the microchip than detect the transmitted power,
sensitivity dominates over transmitted power. Therefore, only one stage is used for the rectifier.

100 v v T v T

(o]
(=

o
o

Efficiency (%)
H
o

0 n n
-60 -50 -40 -30 -20 -10
Input power (dBm)
(a)
30.4 - . . .
=
<
(<5
2 0.3}
-
(3~
D
2
©® 02fF
=
—
-
©C01Ff
S
D
=
=
o O .
-30 -25 -20 -15 -10 -5

Input power (dBm)
(b)

Figure 23: Simulated (a) rectifier efficiency and (b) peak-to-peak divider output voltage versus
input power for one, two, three, and four-stage rectifiers. One-stage rectifier shows the best
sensitivity.

44

4.4 Laboratory Testing of Smart MicroChipsfor for Fracture Mapping Under High
Pressure and High Temperature

The annotated die micrograph of the microchip having the dimensions of 1.1 mm x 0.56 mm is
shown in Fig. 24. The microchip was fabricated using the Taiwan Semiconductor Manufacturing
Company (TSMC) 0.18 um process. A signal generator (HP 8340B) generates the RF signal used
for powering the microchips. The RF power of the signal was increased by connecting the
output of the signal generator to a power amplifier (PA) (Minicircuits ZHL-20W—13+) having
a small signal gain of 50 dB and a saturated output power of 20 W, increasing the operating
range of the system.

Divide-by-3
and buffers

0.56 mm

1.1 mm
Figure 24: Die micrograph.

A spectrum analyzer (Tektronix RSA 306B) is used to measure the magnitude of the received RF
signal. The following sections 4.4.1 to 4.4.6 report all the measurements performed in the lab
using the localizers.

4.4.1 Energy Harvesting Verification

For this measurement, the input terminals of the rectifier are wired to the RF signal generator to
generate an RF signal at 40.68 MHz, and the dc output of the rectifier is measured using an
oscilloscope. Fig. 25 shows the rectifier output voltages for different root mean square (rms) input
voltages. It is observed that the rectifier generates sufficient dc voltage to power the microchip at
input rms voltages above 0.8 V.

45

1.2

1
0.8
0.6

VRect (V)

0.4
0.2

0 i i i i i i
0.2 0.4 0.6 0.8 1 1.2 1.4

(V)

in_rms
Figure 25: Measured rectifier voltage with respect to input rms voltage.
4.4.2 Microchip Functionality Verification

The measurement setup used for verifying the functionality of the microchip is illustrated in Fig.
26. The maximum operating range of the system is determined using the largest amplitude of
RF signal available in the laboratory.

RF signal generator

40.68 MHz; -14 dBm

Oooo 0000 oo ooog
ooo oooo Oooo
ooo oooo U, oooo

50dB
?7 gain

36 dBm Pl

000 ppoo
8980000} Spectrum
ptvdiotn] O o020 analyzer

ogo 0OOD
]

Figure 26: Measurement setup used for chip functionality verification.
46

Using the RF signal generator, a 40.68 MHz RF signal with —14 dBm power is delivered
to the PA with a small signal gain of 50 dB. Therefore, an RF power of 36 dBm is delivered to
the TX coil. The RX coil is connected to the spectrum analyzer for detecting the received power
from the localizer. Keeping the RX coil very close to the localizer, the distance between the
localizer and the TX coil is increased until the received 13.56 MHz tone merges with the
noise floor of the spectrum analyzer. It is observed that the localizer can be wirelessly powered
at a maximum distance of 6 cm between the localizer and the TX coil with 36 dBm power.
Increasing the TX power would increase this maximum distance. Keeping the distance between
the localizer and the TX coil fixed at 6 cm, the distance between the localizer and the RX coil
is then increased until the received 13.56 MHz tone merges with the noise floor of the
spectrum analyzer. It is observed that the RF signal transmitted from the localizer can be
received by the RX coil at a maximum distance of 32.8 cm from it. While performing this
measurement, since the received signal frequency was locked to that of the transmitted signal,
the span and resolution bandwidth of the spectrum analyzer could be reduced, helping in
lowering its noise floor. Fig. 27 shows the received 13.56 MHz tone having —118.15 dBm power
at 6 and 32.8 cm distance between the localizer and TX and RX coil, respectively.

Video BW 1.0 Hz | Avg Type: Log-Pwr TRACE 3456
NFE PNO: Close (p0 Trig: Free Run TYPE| WAV
PREAMP IFGain:Auto Atten: 6 dB DET
5 dB/div Ref -111.50 dBm
Log <
9
A
Center 13.559980 MHz Span 800 Hz
#Res BW 10 Hz #VBW 1.0 Hz Sweep (FFT) ~914.9 ms (1001 pts)

Figure 27: Received signal spectrum at the maximum operating range.

Using the same setup, the received power is recorded for different separations between the
following: 1) the TX coil and the localizer DL coil and 2) the RX coil and the localizer UL coil.
For each separation distance between the TX coil and the localizer DL coil, the lowest TX power
required to power the microchip is used to maintain uniformity in the received power for different
distances. Fig. 28 illustrates the contour plot of the received power profiles across different
separations.

47

Received power (dBm)

O U Y
= N @

Distance between RX coil and localizer (cm)
o

1 2 3 a4 5 6
Distance between TX coil and localizer (cm)

Figure 28: Received 13.56 MHz signal power in dBm across different separations between the
TX coil and the localizer DL coil, and the RX coil and the localizer UL coil.

Two paper protractors are added around the TX and RX coils, as illustrated in Fig. 29, and the
TX and RX coils are rotated to measure the power profiles at different angular orientations to the
localizer. For the purpose of this experiment, a separation of 5.5 cm is used between the TX coil
and the localizer, while a separation of 12 cm is used between the RX coil and the localizer.

Localizer

Figure 29: Measurement setup used for obtaining the received power profile with respect to
different angular orientations of the TX and RX caoils.

48

Fig. 30 illustrates the contour plot of the received power profiles across different angular
orientations. It can be observed that the system is robust to angular misalignments of up to 60°
between the TX coil and the localizer and up to 80° between the RX coil and the localizer.

Received power (dBm)

o

‘S

g — -100

N

= 80

0 1105

o

©

C60f = = b = =k - =L {-110

© . l ,

0

; 0 115
4 o]

o

= -120

Q

%20 :

o 125

2

(o))

o

<

o

20 40 60 80
Angle between TX coil and localizer (°)

Figure 30: Received 13.56 MHz signal power in dBm across different angular orientations of
the TX and RX caoils.

As shown in Fig. 20, a path loss of —43.765 dB is expected between the TX coil and the
localizer coil at a distance of 6 cm. From Fig. 19, the TX and RX coils have an |S11| of less than
—20 dB at the desired frequencies. Therefore, the loss due to matching the TX and RX coils
can be considered negligible. For a TX power of 36 dBm, de-embedding the path loss gives us
a power of —7.765 dBm at the localizer coil. From the sensitivity simulations illustrated in
Fig. 23, a minimum power of around —20 dBm is required at the input of the rectifier to obtain
a measurable 13.56 MHz tone at the output. The rest of the losses can, therefore, be attributed
to the imperfect matching of the impedance of the localizer coil to the dynamic input impedance
of the rectifier.

4.4.3 Coherent Power Combining Verification

The measurement setup used for verifying the coherent power combining of RF signals
transmitted by different localizers is illustrated in Fig. 31. A 40.68 MHz TX power signal of

49

—14 dBm is amplified to 36 dBm using the PA as in the previous measurement. In three
different measurements, one, two, and three localizers are placed close to each other on a
surface, such that they can be wirelessly powered by the same TX coil. The TX and RX coils
are placed at a distance of 6 and 10 cm, respectively, from the localizers to transmit and
receive RF signals from them. A spectrum analyzer (Tektronix RSA 306B) is connected to
the RX coil to measure the power received from the localizers.

RF signal generator

(b)

Figure 31: (a) Schematic and (b) picture of the coherent power combining measurement setup.

50

MR: 1.0416 pW MR: 2.0184 pW MR 1
13.40003 MHz 13.40003 MHz f
f
MR 2.2 pW | 2.2 pW
100 Hz 1 100 Hz
> I > |
|
[l
(a) (b)
MR: 3.2864 pW MR 4

13.40003 MHz \‘

I 3.6 pW
100 Hz [
—

(c)

Figure 32: Received power from (a) one, (b) two, and (c) three localizers.

Fig. 32 (a)—(c) shows the power received at 13.56 MHz from one, two, and three localizers,
respectively. It is observed that the power received from two and three localizers (around 2
and 3 pW, respectively) is almost equal to twice and thrice that received from one localizer
(around 1 pW), which verifies the fact that the signals transmitted by the localizers add up
coherently.

4.4.4 Fracture Mapping Verification

The measurement setup for fracture mapping is illustrated in Fig. 33. For this study, a prototype
rock with fractures along its height was designed, and multiple prototypes were 3D-printed to
test the functionality of smart microchips for fracture mapping in the lab, simulating hydraulic
fractures typically found in oil and gas wells. The details of the design and generation of these
synthetic core samples with complex fractures are provided in Appendix F.

The localizers are coated with nonconductive epoxy and are placed inside the fractures that are
to be mapped. The distances of the TX and RX coils from the fractures are similar to the
previous measurements. Using motorized rails in the X— and Y -directions, the TX and RX
coils are moved over the entire region that is desired to be mapped. The presence or absence
of a fracture at a specific coordinate is determined by the presence or the absence of a 13.56
MHz tone in the received signal.

A spectrum analyzer is connected to the RX coil to record the spectrum at different coordinates,
which is, in turn, connected to a laptop for data processing using MATLAB. The fractures are

51

mapped in the X - and Y -directions separately with a resolution of 1 mm in both X - and Y -
directions.

FS o e Microchips
RX > placed inside

. fractures
TX coil .

generator |
+ PA

Figure 33: Fracture mapping setup.

Fig. 34 illustrates the fracture mapping results for the Y-Y-direction, while Fig. 35 illustrates
the same for the X -X-direction. Fig. 23 illustrates the 2-D fracture mapping results. It is
observed that the fractures are mapped with considerable accuracy using the localizers.

No fracture
detected

Fracture
detected

Figure 34: 1-D fracture mapping results for the y-direction. The red box indicates the region
that was mapped by smart Microchips that are placed in the fractures (3D printed cores with
fractures).

52

No fracture
detected

Fracture
detected

Figure 35: 1-D fracture mapping results for the x-direction. The red box indicates the region
that was mapped by smart Microchips that are placed in the fractures (3D printed cores with
fractures).

No fracture

detected Contour plot (dBm)

100 -75
-80
80 85
-90
E 60 95
; -100
40
-105
2 110
Fracture ias
detected 50 100 150

X(mm)

Figure 36: 2-D fracture mapping results by smart Microchips that are placed in the fractures
(3D printed cores with fractures).
4.4.5 High-Temperature Verification

The functionality of the localizers is also verified at high temperatures. The schematic and
picture of the measurement setup for the high-temperature measurements are shown in Fig. 37
(@ and (b), respectively. In this measurement, the localizer is placed inside a microwave

53

oven. The RF signal generator and PA are used to generate a 36 dBm 40.68 MHz power signal
as in the previous measurements. It is observed that at the previously measured maximum
distance of 6 cm between the TX coil and the localizer, the rectifier does not generate
enough dc voltage for the proper functioning of the microchip at higher temperatures. The
TX coil is, therefore, positioned at a distance of 2 cm from the localizer inside the oven, so
that the microchip can be powered at all temperatures in the range of our measurements. The
RX coil is connected to the spectrum analyzer and placed at a distance of 10 cm from the
localizer. The temperature inside the oven is increased using the knob on the oven. The oven
temperature is measured by an oven thermometer (Admetior Kitchen Oven Thermometer).

Localizer inside
the oven at high
temperature

()Verl ()ver|
thermometer

RF signal generator
ooo Oooopo oooo
ooo Oooo Oooo
ooo oooo o, oooo

OO0

TX coil

Spectrum] gon ooon,
ooo

analyzer ooo u]
| ooo j

oooo
coo DOODO

0 LA PUERTADELHORAC § ;‘ ’
&NVASDO\'@hmmNEC““Chhoﬂaﬁiér From RF S|gna|
\pLUG POWER CORD EL inside g8
thermometer generator + PA " 1-
} the oven : g

~

To spectrur
analyzer 4

(b)

Figure 37: (a) Schematic and (b) picture of the measurement setup for verification at high

54

temperatures.

Fig. 38 shows the received signal power from the localizer at temperatures from 20 °C to 250
C.

'90 L] L] L] Ll
& 95
B
3
3 -100
o
Q
g -105
2
o
S 110
14
_115 3 1 3 L

50 100 150 200 250

Temperature (°C)
Figure 38: Received signal power at temperatures from 20 °C to 250 °C.

4.4.6 High-Pressure Verification

The localizers are also verified to work under high-pressure conditions using a concrete
compression sensing machine. Wet cement is placed inside three different cube-shaped molds
and allowed to cure for 24 hrs.

While pouring the wet cement into the molds, one localizer is placed in each mold at a depth
of 1 cm from the bottom. Each cube with a localizer embedded in it is then placed in the
compression sensing machine, and a compressive force is applied using the cylindrical pistons
from the top and bottom. The high-pressure measurement setup is illustrated in Fig. 39.

The RF signal generator and the PA are used to generate a 36 dBm 40.68 MHz power
signal as in the previous measurements. Due to the metallic nature of the compression sensing
machine, the distance of the TX and RX coils from the localizer is reduced, such that the
localizer can be powered.

The applied compressive pressure is slowly increased until the cement cubes fracture. The three

cubes fracture at pressures of 8.53 MPa (1237 psi), 24.06 MPa (3490 psi), and 18.40 MPa (2669
psi), respectively.

55

Figure 39: Measurement setup for verification at high pressures. The entire setup is inside a
compression sensing machine.

Fig. 40 (a) shows the second cube after it fractures. The received 13.56-MHz tone from the
localizer is still observed even at the highest of these pressures (3490 psi). Fig. 40 (b) shows the
received signal from the second localizer when the second cube fractures at 24-MPa pressure.

56

arker 1 13.559979000 MHz .
NFE PNO: Close (0 1rig: FreeRun
IFGain:Auto Atten: 6 dB

E%gB!div Ref -58.00 dBm -84.26 dBm

ey e AP Al Al
\Vf” \\ \\(IV \’\AM V {HI M\V

Center 13.560000 MHz Span 1.000 kHz
Res BW 9.1 Hz VBW 9.1 Hz Sweep (FFT) ~200.9 ms (1001 pts)

(b)

Figure 40: (a) Second cube after it fractures at 24 MPa. (b) Received signal from the second
localizer when the second cube fractures.

—

J\vﬂl eV Y IR
|

57

Please note that the verification of MicroChips' functionality under high pressure was conducted
without epoxy protection. These tests were performed with chips embedded in cement under
compressive forces. With proper epoxy protection during field testing, the chips are expected to
withstand pressures of up to 10,000 psi.

In this series of lab testing and verification, a wirelessly powered Smart MicroChip proppants

sensing system of coherent sensing nodes has been presented and proposed for use in fracture
mapping applications at high temperatures. A power-efficient scheme using the RF power signal
and a digital divide-by-3 circuit has been used to generate a locked subharmonic signal to be
transmitted by the microchip. This enables an average power consumption of only 1.5 pW for the
system. The system has also been verified to work reliably at temperatures up to 250°C and
pressures up to 24 MPa, which are one of the highest using a standard CMOS process. The
system, having a small form factor and ultra-low power consumption, also finds use in other
sensing and localization applications using WSNSs.

4.5 Smart Microchip Proppants Manufacturing and Production for Field Testing

We successfully demonstrated the effectiveness of wireless localizers for fracture mapping in
laboratory conditions. The wireless nodes consist of a sensing chip wire-bonded onto a
miniaturized printed circuit board (PCB). The chip, fabricated using standard 180 nm technology,
receives power at 40.68 MHz (RX) and transmits signals back at 13.56 MHz (TX). Both frequency
bands are from the ISM bands. These nodes can reliably map fractures at temperatures up to 250°C
and pressures up to 24 MPa and have an average power consumption of 1.5uW [30].

For the field testing of Smart MicroChips proppant technology, we have developed several
different versions for this project. One of the versions utilizes two side-by-side coils with
dimensions of 17 mm x 12 mm x 0.2 mm. Another version has dimensions of 9 mm x 12 mm x
1.6 mm and features a surface for powering and a surface-mount device inductor (SMDL) for
transmitting signals (see Fig. 41). The second version offers orthogonal coupling directions for
two frequencies, while the first version supports only one direction for RX and TX.

Figure 41: Two versions of PCBs developed for fracture mapping

58

4.5.1 Resonance Frequency Tuning

For our application, accurate frequency tuning of the samples is essential. We used a wide-
band coil and a vector network analyzer (VNA) to detect the precise resonance frequencies of
our samples. Accurate and high-quality tuning is crucial for maximizing power transfer
efficiency and operational distance. The results of the frequency tuning and component values
for each sample are shown in Fig.42.

Matching Network Parameters
V1:Cr1,Cr2,C11,Cpy 10 pE, 3.9 pE, 150pF, 0.5pF

V2CR1,CT1,SMDL 22pF,1 8pF, 56HH

Measured S11 of coupled PCB
T

-0.01

-0.015

-0.02

13.56MHz

-0.025

S11 (dB)

-0.03 - _

-0.035

0.04 \ 40.68MHz

10 15 20 25 30 35 40 45
Frequency (MHz)

Figure 42: VNA measurements for the resonance of the PCB coils

4.5.2 Smart MicroChips Proppants PCB Mass Production

Both PCBs were measured to be operational at a distance of 4 cm using 20 dBm (100 mW)
of RF power. They can function with a misalignment of 45° and a distance of 3 cm. For
validation measurements, we used a single double-tuned coil (refer to [31]) for both
transferring 40.68 MHz power and reading back 13.56 MHz signals (see Fig. 43). Following
initial validation, we ordered 200 samples of each version for manufacturing. The assembly
is performed in-house. The mass-produced PCBs are shown in Fig.44.

59

Spectrum Analyzer

Double Tuned Coil

Figure 44: Mass-produced PCBs

4.5.2 Smart MicroChips Proppants PCB Packaging- Resin-protected

In the end, it is crucial to protect the sensing nodes from heat and pressure with proper
packaging. For the initial packaging, we are using UV-cured epoxy resin followed by a HPHT
epoxy.

The HPHT epoxy is resistant to acids, bases, and solvents. Once cured, it exhibits several
desirable physical properties, including high modulus and exceptional compressive strength.
It is a toughened system that can endure rigorous thermal cycling. The formulation includes
a quartz filler, which enhances its dimensional stability and abrasion resistance. Additionally,
the epoxy is a reliable electrical insulator and has a service temperature range from -60°F to
+450°F.

4.5.3 Additional Hardware and MicroChips Built During this Project

In addition to the final design reported in the previous sections, the team has performed a series of
experiments on a custom wirelessly powered chip with a new miniaturized antenna configuration.
The antenna uses an SMD inductor for receiving the wireless power at 40.68MHz ISM band and
transmitting back a signal at 1/3 of the received frequency (13.56GHz ISM band). Figure 45 shows
a picture of the pcb assembly. The chip dimensions are 5 mm X 15.5 mm X 1.6 mm, which is
suitable for use in fractures that are up to 5 mm wide. This chip was designed to be sensitive to a
magnetic field that is aligned to the longest dimension of the chip. This is suitable for fracs that

60

are orthogonal to the direction of the wellbore (and the downhole tool). Measurements were
performed with a powering coil having a 5-cm diameter and matched at 40.68 MHz.

J03npul
Buiyorew Xy

J03npul
Buiynegw x1

Figure 45: SMD-based antennas used in prior proppant chips

We achieved a wireless powering distance of 35 mm by using 1W of transmit power. Figure 46
shows the measurement setup.

Figure 46: Measurement setup.

Some other variations of the proppant chips were made as shown in Figures 7 and 8. The
functionality of previously fabricated miniaturized 4-layer PCBs in which the RX coil was
designed using the top two layers, and the TX coil was designed using the top two layers to reduce
the form factor (Fig. 47), was successfully verified.

RX matching
network
0 o =enig -

TOP-VIEW

TX matching
network

BOTTOM VIEW

13.847 mm

v5

TX coil

RX coil

9137 mm !

Figure 47: Top and bottom view of the miniaturized 4-layer PCB.
61

Since the RX and TX coils in this version have the same design as in the old version of the PCB,
significant changes in their operating range are not expected. Using this PCB, the microchip could
be wirelessly powered at a maximum distance of 5 cm between the localizer and the transmitter
(TX) coil with 36 dBm RF power at 40.68 MHz. The 13.56 MHz signal transmitted by the
microchip could be received at a maximum distance of around 30 cm by the receiver (RX) coil.
Fig. 48 depicts the 13.56 MHz tone having —118.15 dBm power obtained at the maximum
operating range possible for wireless powering and transmission. Another version of the PCB
having pre-assembled SMD capacitors for the RX and TX matching networks was also fabricated
for convenience.

Video BW 1.0 Hz | Avg Type: Log-Pwr TRACE[I 03456
NFE PNO: Close (5 1rig: Free Run Tvps WA
PREAMP IFGain:Auto Atten: 6 dB DE
Mkr1 13.559 980 0 MHz
5 dBidiv Ref -111.50 dBm -118.15 dB
Log -
%\

| Y [

Center 13.559980 MHz Span 800 Hz
#Res BW 10 Hz #VBW 1.0 Hz Sweep (FFT) ~914.9 ms (1001 pts)

Figure 48: Received signal spectrum at the maximum operating range.

Further miniaturization of the PCBs was investigated using SMD inductors for wireless powering
and transmission, which have a lower size than the planar on-PCB coil, as depicted in the next
section.

4.5.3.1 Miniaturization of the localizer PCB used for mapping fractures

SMD inductors are currently being investigated for use in place of wireless powering coils to
further reduce the form factor of the PCB. To determine the feasibility of the solution, two PCBs
have been fabricated. In one of the PCBs (as shown in Fig. 49), only the TX coil is replaced by an
SMD inductor. This is a 4-layer PCB in which the RX coil is fabricated using the top two layers.

62

This is an important intermediate step to study and de-embed the effect of the SMD inductor on
the effectiveness and the operating range of the reception of the 13.56 MHz signal transmitted
from the microchip.

TX matchingTX
network

RX matching 3
network
N I
s o —[ehid T

BOTTOM VIEW
TOP VIEW

13.847 mm

v5

.
SMD ini

RX coil
ISL

v
I 9.137 mm I

Figure 49: Top and bottom view of the new 4-layer PCB with only TX coil replaced by SMD
inductor.

In the second PCB (as shown in Fig. 50), both the RX and TX coils are replaced by SMD
inductors. This is now a 2-layer PCB since all the coils are replaced. This PCB demonstrates the
final objective, which is to use SMD inductors for both wireless powering and transmission. The
use of the SMD inductors also further reduces the form factor of the PCB to 8 mm X 10 mm X 1.6
mm which is lower than the previous version. The vertical dimension (10 mm) can be further
reduced by removing the pads (which are included only for the purposes of measurement), which
have a length of 3 mm.

X

network

i BN
-

BOTTOM VIEW

10 mm

Figure 50: Top and bottom view of the new 2-layer PCB with both TX and RX coils replaced
by SMD inductors.

For both PCBs, the largest SMD inductor footprint of 1812 (4532) was chosen as the first step to
verify the feasibility of this solution since the quality factors of these inductors at the desired
frequencies are comparable to the planar on-PCB coils that were used previously. In future
generations, the size of the SMD inductors will be gradually reduced. Both PCBs are currently in
fabrication. Once the PCBs are fabricated, future steps will involve the assembly of these SMD
inductors and the corresponding matching SMD capacitors for both RX and TX and the
measurement of these PCBs with different values and footprints of inductors to have an idea about
their effects on wireless powering and transmission.

In some of the fabricated PCB (as shown in Fig. 50), both the RX and TX coils are replaced by
SMD inductors having a footprint of 1812 (4532). A 1.8 pH SMD inductor having a typical Q-

63

factor of 35 at 10 MHz was used for wireless powering and receiving on the RX and TX side
respectively. Corresponding SMD capacitors of 8.5 pF and 76.5 pF are used to resonate with both
the inductors. Since the axis of the SMD inductors is parallel to the plane of the PCBs, it allows
for effective wireless powering of these PCBs inside fractures and does not require a TX coil
oriented parallel to the PCB. Using this PCB, the microchip could be wirelessly powered at a
maximum distance of 3 cm between the localizer and the transmitter (TX) coil with 36 dBm RF
power at 40.68 MHz. The wireless powering distance and orientation are depicted in Fig. 51. The
13.56 MHz signal transmitted by the microchip could be received at a maximum distance of around
20 cm by the receiver (RX) coil. A smaller inductor having a 0805 footprint was also used on the
TX side to determine the effects of the size of the SMD inductors. Using this inductor, the signal
transmitted by the microchip could be received at a maximum distance of around 3 cm by the RX
coil. The reason for the reduction in operating range is currently being investigated. It could
potentially be due to the coupling between the two SMD inductors, which have the same
orientation on two layers of the PCB.

Figure 51: Test setup.
4.5.3.2 Design of TX coils for efficient wireless powering of the microchips

It was observed that the range of operation of the localization system is limited by the maximum
separation between the coils for wireless powering. The link efficiency for wireless powering of
the microchips depends on the coupling coefficient between the TX coil and localizer coil and the
product of the quality factor of these two coils (n o« k2Q,Q,). Fig. 52 shows the coupling
coefficient vs TX coil diameter and the distance between TX coil and localizer for an 8 mm
diameter localizer coil. From Fig. 52, it can be observed that the coupling coefficient does not
increase significantly for TX coil diameters above 10 cm. Therefore, single-layer TX coil PCBs
having dimensions of 5 cm X 5 cm and 10 cm X 10 cm and having a high Q factor were designed
to improve the range of wireless powering of the microchips. The coils (shown in Figs. 53 and 54
respectively) were designed using the Webench coil designer tool. The smaller TX coil has 3 turns,
with a trace width of 2.54 mm and a 1.78 mm separation between the traces, whereas the larger
TX coil has 4 turns, with a trace width of 1.78 mm and a 7.62 mm separation between the traces.

64

Coupling coeeficient

-
o

7 8 9 10
Distance between TX coil and localizer (cm)

Figure 52: Coupling coefficient vs TX coil diameter and distance between TX coil and
localizer.

Figure 53: 5cm X 5 cm TX coil.

Figure 54:10 cm X 10 cm TX coil.

65

5. DOWNHOLE TOOL FOR TRANSMITTING POWER AND RECEIVING SIGNAL:
DESIGN, DEVELOPMENT, LAB TESTING, AND VERIFICATION FOR THE
FIELD TRIAL
5.1 Summary

By the end of the project, the construction and testing of a downhole tool for transmitting power
to the chips and receiving their signal were completed. The tool is rated to 100°C and 8000 psi and
has an OD of 3 5/8” making it applicable to a large market within the USA and beyond.

The design/construction was completed in three phases. The first phase was the overall concept
and included some mockups of the transmitter/receiver. The second phase included the
development of the downhole circuitry to convert incoming power to MHz and transmit that power
while simultaneously receiving chip response at a lower MZ value. The circuits were designed to
be largely independent of the ultimate antenna, meaning that the circuit manufacturing could be
launched concurrently with optimizing Smart Microchips. The third phase was the tool
construction for the field trial.

5.2 Initial feasibility study

The Near Field SAS was conceived to map 3-space in a downhole application using high frequency
(HF) radio technology and locally dispersed transceiver “chips” designed by UCLA. To determine
the feasibility of such an undertaking, it was necessary to 1) understand the capabilities of the
UCLA transceiver chips and 2) identify realizable RF technologies capable of extracting sub-100
mV signals in the receive signal chain.

To that end, MicroSilicon built a complete RF prototype system that exploited Liquid Instruments’
Moku: Lab instrumentation as a near-term stand-in for a custom design. The overall goals of this
phase included identifying likely typical moveout distances for transmission and reception; the
relationship between transmitter power and chips excitation; efficiency of the lock-in amplifier for
extracting low-level signals in the presence of noise.

UCLA
Transceiver chip

CW 40.68 MHz Power Amplifier
Moku:Lab /\/

(Liquid Instruments)

RF Signal Generation & Processing r
Lock-in Amplifier

12-bit ADC
Data Logger
CW 13.56 MHz

HighQ
<4————— Bandpass
Filter

Figure 55: System Context Diagram

66

The Moku:Lab is an off-the-shelf hardware platform configurable with various lab instruments.
The impetus for choosing this device was the integration of a lock-in amplifier (LIA), which is
known for its ability to extract signals below the noise floor. The Moku:Lab’s LIA contains an
adjustable input gain, 12-bit ADC, signal multiplier (mixer), low-pass filter, signal processing,
output gain, an auxiliary signal generator, and a data logger. The custom design will require each
of these subcomponents, with final implementation being a design-time consideration. The output
signal chain contained a generic power amplifier block. While the supplied antennas are not
designed for high power, a power stage will be required in the final product. Therefore, some low-
power tests were conducted to determine the effectiveness of the current antenna design. On the
input side, a high-Q bandpass filter was inserted in the signal chain. Since there is a 1:3 relationship
between the transmit and receive frequencies, and the transmitter is expected to be high power, it
was necessary to filter the RF input to 1) avoid damaging the receiver and 2) overwhelm the
receiver with noise or unwanted signals. The identified, and acquired, band-pass filter was not
tested in the circuit because the power levels did not warrant doing so. However, we conducted a
VNA test of the KR device to demonstrate that it operated as advertised, and that component was
subsequently used inside the downhole tool.

To accurately characterize the prototype system, and therefore extrapolate to a larger system, it
was important to isolate the individual capabilities of each system component, namely, the
transmitting system, the receiving system, and the signal processing system.

To isolate the transmitting and receiving systems, a simple fixture was constructed to ensure
repeatability. The fixture included transmitter antenna frames, receiving antenna frames, and a
DSLR (camera) slider instrumented with an adhesive tape measure.

13 MHz Frame

40 MHz Frame Target

Fixed Stanchion Movable Stanchion

Figure 56: Antenna Fixturing

There were two sides to the test fixture — transmit and receive. Each side was designed to
accommodate the specific antenna size (40 MHz or 13 MHz) and are interchangeable on the

67

stanchions. The stanchions were designed to fit on the DLSR slider and to hold the antenna fixtures
while ensuring that the “targets” are aligned regardless of fixture orientation. The fixed stanchion
was affixed to the slider frame, while the moving stanchion was affixed to the DSLR based on the
slider frame. The spacers provide a gap from the target area to the physical antenna face to optimize
the chip/antenna interface. Observations during testing indicated that a chip too close to the
receiving antenna severely degraded the received signal power. The frame dimensions were 6 x 6
cm for the individual antenna.

Figure 57: Antenna frames mounted on the slider

The chip on/off characterizing configuration consisted of the 40 MHz TX antenna in the fixed
stanchion, the 13.56 RX antenna in the movable stanchion, and the chip taped to the target interface
of the RX antenna. The slider was used to change the position of the chip relative to the transmitter
while monitoring the microchip's on/off state. The chip on/off state was inferred by the receiver
signal.

Figure 58: Receiver testing configuration

68

The receiver testing configuration had the 40 MHz TX antenna in the fixed stanchion, the 13.56
MHz RX antenna in the movable stanchion, and the chip taped to the target interface of the TX
antenna. The slider was used to change the position of the receiver relative to the chip while
monitoring the output of the lock-in-amplifier.

Lowpass fils

Local oscillator source

\
Internal ! External External (PLL)

Phase shift
Local oscillator
N\ Aux oscillator

Vv
out

Figure 59: Moku-Lab testing configuration

On the instrumentation side, the Moku:Lab’s was configured analogously to the expected custom
system design. The general LIA configuration involved using a local oscillator (synchronized to
the auxiliary oscillator) to mix with the input signal and the auxiliary oscillator that drove the
transmitter signal chain.

Lowpass filter « Rect

Y

Phase shift

Local oscillator Aux oscillator Amplitude
Output offset

"y Ny A+

Tap the probe points to monitor signals: { ®

Figure 60: Lock-In-Amplifier configuration
69

The key LIA configuration parameters were: Auxiliary Oscillator frequency: 40.68 MHz, Local
Oscillator (LO) frequency: 13.558 MHz Low-pass filter (LPF) corner frequency: 5 kHz Low-pass
filter slope: 6 dB/octave (first order filter) System “output”: Rectangular.

The LO frequency was set to 13.558 MHz, 2 kHz from the expected 13.56 MHz response. The
purpose was to demonstrate that the received signal can be “mixed-down” into the audio range (or
any range) whereby the final product can utilize high fidelity off-the-shelf ADCs in the order of
20 -24 bits. The LPF filters 1 order and higher-order byproducts of the mixing process.

The purpose of the receiver moveout test was to measure how far the receiving antenna can be
from the chip while the LIA continues to discriminate. For this test, the chip was taped to the
transmitter target interface on the fixed stanchion. The receiving antenna was affixed to the
movable stanchion.

At the minimum distance, the signal amplitude was 5.15 mV pp. At 6.8 cm the 2 kHz signal was
discernable on the scope around 67 uV pp and the frequency was locked. As the moveout
increased, the sinewave degraded into an increasingly noisy square wave until at approximately
26 cm, the 2 kHz signal was no longer detected. The signal floor appeared to be approximately 64

uV pp.

Using the Spectrum analyzer, a similar test was conducted to get a feel for the signal level. At 8
mm distance, the signal level from the chip is -37 dBm; at 7 cm, the signal level is -103 dBm and
at 33 cm, the signal level hits the noise floor of the SA at -103 dBm.

In an attempt to see the effect of two active chips, two chips were taped, one on top of the other,
to the target interface on the transmitter side. Unfortunately, the proximity of the two chips
prevented either chip from working.

Directionality tests were also conducted and the results demonstrated that the beam width of the
PCB planar antennas was very narrow. If the receiver or chips are misaligned, even as little as 1-2
cm, the system will not work.

The purpose of the transceiver reach test was to objectively determine how far the transceiver chip
can transmit once energized. There were three tests in this sequence. The first test was a 10-mW
transmission test, the second test a 2W test, and the third test a graduated power test.

The chip was affixed to the receiving antenna's target interface and progressively moved away
until the chip turned off. The 10 mW transmission power is an estimate of the RMS output of the
Moku:Lab Auxiliary oscillator into a nominal 50-ohm load. The ultimate tool design would enable
100W. At a 10mW power level, the chip would abruptly shut off at approximately 2 cm moveout
from the transmitter.

For the 2W test, the Akozon RF power amplifier was inserted into the transmit signal chain with

500 mV pp output. At this power level, the chip would abruptly turn off at about 5.4 cm
demonstrating that more transmission energy can improve the system performance.

70

Transceiver Turn-on Distance
2W Transmission

Figure 61: Dramatic drop-off at a fixed distance, this at 2W

The graduated power test was an attempt to extend the transmission reach by slowly increasing
the output power of a 100W transmitter, from near 0 W to 100 W.

To facilitate this test, an external signal generator was used. The MRFI01AN 100W reference
appliance was set up with a 2.5 V bias and the signal generator input was increased to achieve the
power gain. For this test, a VSWR/Power meter was inserted in the signal chain. The MRF101AN
device was then subsequently also chosen for the downhole tool.

Prior to beginning the system test, a 35 W 50-ohm dummy load was installed as the load to ensure
that the VSWR meter accurately measured VSWR. Regardless of the power level, the VSWR
reading was close to 1. The results of the test were somewhat disappointing, however, as the
performance of the prototype transmitting antenna degraded significantly as power increased.

Table 6: Initial Test Results

Signal Generator Power Meter (W) Moveout (cm) SWR Reading
Voltage (pp)
1 0.14 3 1.0
2 0.91 3.8 1.51
2.5 1.52 4.9 2.6
3 2.36 53 2.8
4 2.63 59 32
5 5.54 6.5 3.91
6 10.42 7.0 4.49
7 16.48 7.3 6.21
8 24 7.7 71.2

71

Technical discussions with Liquid Instruments (makers of Moku:Lab) revealed that the LIA could
discriminate signals below the noise floor of the ADC by adding white noise. Further investigation
by Liquid Instruments demonstrated this to be true. An explanation offered as the reasoning behind
the result is that white noise summed with the signal can bring the amplitude above the noise floor
thereby making it detectable. Taking this concept to its next logical step, a test was conducted
whereby white noise was injected into the signal chain via a Mini-Circuits combiner/splitter, model
Z99SC-62-S+.

For the white noise generator, a Moku:Go was configured as an arbitrary waveform generator
outputting a Gaussian waveform with an initial frequency range of 1 MHz. The results showed
that the signal was clearly noisier with reduced amplitude, likely due to the combiner.

Testing the moveout, the RX antenna could only be moved to about 21 cm before the LIA lost the
2 kHz IF signal. This is compared to about 26 cm when direct connections are used. Also, changing
the frequency of the white noise generator neither improved nor detracted from the results.

It appeared that adding white noise, at least in this rudimentary way, did not add any value and
was dropped from subsequent development.

We performed a Zero Hz IF test to learn whether using an identical LO/input signal frequency
would improve the performance of the LIA. The only setup change was to set the LIA local
oscillator to 13.56 MHz. Results showed that the DC level hits the minimum threshold around 62
uV DC. This minimum was reached at 7.5 cm moveout, nowhere near the capability when using
the low frequency IF.

We performed another of this test to learn how far the TX antenna transmits to another 40.68 MHz
antenna.

For this test, antennas in both fixtures were 40.68 MHz antennas. The Spectrum Analyzer was used
to record a few points along the slider path. As the moveout continued, the signal level dropped in
a somewhat linear fashion until about 33 cm out, where it was at a minimum value of -90 dBm.
From 33 cm to 67 cm, the signal level seemed to increase back up to -72 dBm, again in a linear
fashion.

A series of tests were conducted, and data was collected for moveout distances from 5 to 25 cm in
5 cm increments. Two additional points were added 1 cm and 26 cm to represent the closest and
farthest points in the test respectively.

The Moku:Lab Data Logger was configured for 10 k Sa/s and the LIA with a 5 kHz low pass filter
to minimize frequency foldback due to Nyquist frequency. The transmitter was set to a nominal 10
mW output. The data were imported into Excel and processed with 4096 sample FFT for each
moveout distance. The figure below shows the “baseline” chart at 1 cm moveout.

As expected, the 2 kHz IF frequency was well above the noise floor at approximately 5.4 mV
RMS. What was surprising, however, was the 2nd order mixer artifact of 4 kHz, shown below the

72

fundamental chart. Throughout the test, the 4 kHz signal continued to be above the noise until after
the 22 cm moveout, long after the 2 kHz signal was buried in the noise, between 18 and 19 cm.

2k Hz IF | 10k Sa/s | 5k Hz LC 6 dB/Octave
1 cm Moveout

-40 T T T T 1
2k Hz IF [-53 dE]
_ED -
o
D 80 r | 1
@ |
E [l 4k Hz 2nd Order Artifact [-95 dB]
£ -100 | A 1
< PN
120 w/(4
-140 : : - : '
0 1000 2000 3000 4000 5000
Freauency (Hz)
Figure 62: The “baseline” chart at 1 cm moveout.
2k Hz IF | 10k Sa/s | 5k Hz LC 6 dB/Octave
18 cm Moveout
-120 T - T y
4k Hz 2nd Order Artifact [{127 dB]
o 2k Hz IF [-140 dB]
)
O,
[
S -160
£
E
<
-180 i
-200 : : : :
0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 63: Higher-order artifacts are visible even as the original chip signal degrades with
distance

73

Those similar higher-order artifacts will be noted in the ultimate field data.

Various attempts to excite multiple transceivers were made. For example, taping one transceiver
on top of another, taping one transceiver to the transmitter target and the other to the receiver target,
and placing one transceiver within excitation distance on either side of the transmitter with another
receiving antenna on the same side. All attempts failed due to interference either from the
transceivers being too close together or having the additional receiving antenna too close to the
working transmitter/receiver pair.

Since the transmission power levels were well below that required to insert the bandpass filter into
the receiver signal chain, it was prudent to evaluate the filter for it’s potential in the implementation
project.

521 Gain (dB)
0

=)

<]

-10

-20

-50

-0
10.56M 12.06M 13,56M 15.06M 16.56M

Figure 64: A robust 13.56 filter was identified (and subsequently used in the downhole tool).

The upper and lower markers are at approximately 13.56H Hz +/- 1.28M/2 Hz and are -3 dB down
from the peak. The center marker is 13.56M Hz. The data shows that the filter appears to work as
advertised. These KR filters were ultimately used in the final product deployed.

Some other observations from this initial feasibility phase:

e On multiple occasions, a transceiver chip was damaged by being too close to the
transmitter. It appears that too much near-field energy can destroy a transceiver. This raises
the possibility that repeat passes of the downhole tool could end up electrically damaging
very close chips.

74

e The planar antennas have a narrow beam width in the orthogonal direction. Performance
quickly dropped for any device that deviated from the center of the beam. This is in
agreement with the theoretical radiation.

e The prototype transmitter planar antenna from UCLA was not designed for high power. In
one instance (2W), excessive exposure to the power burned the FR4 material and in
another, the antenna stopped working after being subjected to higher power. It is assumed
that one or more of the capacitors are damaged. Also, when applying higher power signals,
the antenna performance dropped off significantly.

e Because the transmitter antennas were not effective under higher power conditions and are
extremely directional, it is impossible to compare distance vs power for transceiver turn-
on tests.

e Setting the mixer local oscillator input to the transceiver frequency (resulting in a LIA DC
output) was not an effective recovery method compared to using a small offset, in this case,
2 kHz.

e The chip transceivers have a turn-on “wall,” a threshold where the chip abruptly transitions
from off to on. Once on, however, they perform consistently.

e The reach of the system is subject to two constraints: 1) turning on chips and 2) receiver
sensitivity. Turning on the chips requires effective transmitter and power, both are design-
in qualities. In the above experiments, the chips could “reach” tens of cm.

e While conducting the Receiver Moveout test, the graphic on the LIA output indicated that
it could discriminate the 2k Hz IF signal (frequency counter) up to 24- or 25 cm. However,
the 10k-point (1 s) FFT of anything over 18-19 cm showed the 2k Hz signal to be below
the noise floor (of the FFT). It is possible that a longer FFT could lower the noise floor
further, although there is a limit to this technique.

e These feasibility results were very repeatable and gave confidence in moving forward with
circuit construction.

The goal of the first phase of the project was to evaluate the feasibility of using the transceiver
chips to map 3-space and to take Smart Microchips prototype hardware and investigate what
improvements would be needed for a commercial downhole product. The results showed that such
a system is possible, however, limitations with the supplied antennas prevented a complete
characterization of transceiver chip performance. After reviewing these results, and in discussion
with the rest of the team, it was agreed to move to the next phase, that of circuit development.

5.3 Circuit development

The structure of the near field receiver is as shown below:

75

- .
Brertsa®ipoc R noc UostaltS Sorpoc Kok hinoc
SDOUT DS 5D SDIO_D7 7
Preamp_Our. { > Preamp_Out BCIE D2 CK SDIO_Dé Dé
FSYNC DSITWS. 5DIO_DS D5
SDIO_D4 D4
$DI0_D3 D3
SDIO D2 D
SDIO_D1 D1
5DIO DO Do
SDIO_CK [CE
SDI0_OvD oD
RST.N (> RSN
K] RCIE
U Power.
Paiver.SchDoc
Figure 65: The structure of the near-field receiver
v
1 '
: l l
. . o cn
48 VDC 2 p
. Tf.s;;-’ B Sl Tﬁ%
100v
1854620
o R12
s 100k
T u
+—H T rcooD |2 e
e e . .
o 1 i 13 lCM 1] vy :gg Zi
BERCATR i o 2o BN 2 i €16 c1r
L e e -t m T
o 2 lxc
GND § - N 10
= . o0
5] TG E0IEEDAR.
= RI2 =
GND LIE GND
R20
100k
1 -4
n =
1 Ry GND

o 12
o 1
L VOUT [—
12 L ViV VouT T
1 - g
SMBRICATR —Gar Ia’ & & >R1 lczn lcn icu
y il
16

100V 100V = o 33aF 130F 33F
- - e B 10E0 u BE 33
Hx
5 xe AGND
= —_ ek PGND
[=3] (=] TERC T HADAR.
= R =
=5 LR =52
==

Figure 66: The structure of the near-field receiver components- circuit schematic (1)

76

[P g freme Ot

e

[

Ve

veas

wir

Lo
s

ABWIARE

o}
fres

[
]

||CiT

o

ch\Eﬁ,’
o

ety
HICPLTIT-3 3026

Vv gour

W

juf}
L e wss (2
L 2 e e el
e v
Qe areq (2
5] vss avop |26 o
o 2 £ soout s (1 el
o 2 s || €56 B
o ETL. Hr ek oesa U
Qo
12eo T | e 1 rswne e cm
i o R
g U 9 wovon s |2 o
oo -
85 g t0 | yss o L
ot
cuof
- R31 R0
Lone - 1 Fo R RI0 e
- aRD
o] Rl
2k 20k
e
count
count
— @
o {Spour
B evs
e

Figure 67: The structure of the near-field receiver components- circuit schematic (2)

N

CET,

BOLE

a ra
Ad o EL NS
’“ A NE '\‘
2] s g
Elw 4
=l 15
3 B4 Ab T
s Ks
[10
B no o HU
P ~
=
il
jut]
SDINBDGE-GEA

Sandisk SGB Flash Mamory

oD

Figure 68: The structure of the near-field receiver components- circuit schematic (3)

77

1] USE Mini AB

soi0 07
Soio D5
oo
b T o)
5600 01
y Ty
T8 o
s o e P Shis
Py vel fa
2 P2
b res
i rs bl
el s ros b=
S e
] El7 10Ea el fact
= w o
S P run 1=
. —
B pred worz .
P Fo
s FoLOsC
A s PeIs00200T
2l 0 ron
= oo =
4 = =i -
S =] s sai-05C OUT
= all=
e
7
s
o
2 oo
iz
Fil
2]
ruis
STM2FHIRETS
3
5 sant 33
= T
3
h Z+
< s ok
N EVEZY Exd MPITOVTINETT 333 S MCROTIQETT
Header fxl = =
GND = 4
e

Py G

-
bain Flush Memary: DN L3 and 15
ot iy 14t 015
Enbolbicd SAM: | DNP RIS and RIS,

34

GXD :E T
1 snmrumEns

)
w3
(S (<" B 1< =1

w3 A 3U3A

Jo Lo ea
IM

@D (5] @D

Figure 69: The structure of the near-field receiver components- circuit schematic (4)

2
fou
KE\T[x
Mz | g
sg&rs 4
IET-I i
ERETIERT)

GND
"‘h.__l. Preamp {lul == Tra
L4
ADEFHARTZ-RT

Figure 70: The structure of the near-field receiver components- circuit schematic (5)

78

Figure 71 shows the structure of the transmitter.

U_Controllerd

T_Transmitter
Comtrollard. Sckloc Trazamitier. SckDloc
pating o+ XMIT
16dB 168
i id8
4B > 4dB
1B d8
1&B 1d8

Figure 71: The structure of the transmitter

do +a 4
e e %s‘som oo
v g
2 u) "
250vac [e = o !
: e +fes — . J_C: J_m Lu R 48VDC
: DB T e 7S e 000.00 Ohm 3 s |5 e - —
v frg

< s
ey Bridze Rectifier]2 v l 100w [1o T

Wice -
] as =] s
T A s 500000 Obma
w fe
R leaa

i

i
Bl

1 s
A 000 |12
v N
(=2 7
L1, 1 i D
2 0 o § N
SMERICATE s 2 o
—pwe
7 = 3 |
: 2xe
o <3 o0
L peaf a0
=3 T
R 1000
v
T w
o v rcoop |-
=
vour
1 | e T
Vv vour
SMBI33CA-TR . c3 2 2, 9
A - 3 e
P o B =
pre = owe sw
F1
= X 1
3 HHx oD
— @ Ix @D
= : = |
= ®s =
= 2480 @D
=3

Figure 72: The structure of the near-field transmitter components- circuit schematic (1)

79

Bi—d

T IE0E

15QHTE:
T

'8

h e

i

i

H

e
2

s

RIL
ED

31 dB step attenuator, 1 dB steps

(&1} m n
w T N
I 24 - 46 MHz Bandpass Filterr . REour |12 1
L i
L @D > e
= w ® loee Jd4 e o f...233% o
o I = e 55 SE8Ecd58 3 | svr2
2] = & or € g g g oo £=-:l=ls 3 |
o = L e e L 288
oo HN E =885 s Do
4 TN e RIS
5 i v oo -T —*J mJ - = N
e E P
&p Clock Tripler 40.6905 MHz I =
3 = D
> L
=
A——
e
==
[=—=
B4B i
1648 L6
3
TP1? TP13 TPl4 TFPIF TFl6 TFIT
= s = E =
RL2 Ve
L0En
ar
! L op RO fa3d 5E
@ 1 e Rt (o
I{ 1 Lol RALACSPCLE 3 —
H Ll B0 RC4 Fi 3 I8
VFRAMCLE/RAS RCS - 18
o] Rt 4
—f B vis
1300611121 TR0
@D

Figure 73: The structure of the near-field transmitter components- circuit schematic (2)

80

The flowchart for the transmitter is illustrated in Figure 74.

Activity Indicator
1Secnterrupt
flink Red 15D

Initiafize processor
docks and peripherals

Initialize watchdog to
2 second timeocat

Hlink Red LED 4 times at
250 my Intervals
= Transmitter attenuation
m / increments

The dwell time between

Main Loop

S

UART request from
Receiver Board

oAt
ONJOFF
eceived

r
[Turn ON Transmiltes] I Turn OFF Transmitter l

l«

Transmitter
OFF?

Increment Attenuator by 1 d@l
(s 1o O d9 if 2t 32 dB)

B

I Restart Dwell Times]

v

Notify the Receiver via UART of
new Attenuator setting

I

Figure 74: The flowchart for the transmitter

Figure 75 shows the flowchart for the receiver.

81

Main Loop

=

Initialipe peocessoe clocky,
perighorats snd UARTS

Intukze watchdog o
2 vecond timecot

Recall Contiguration Settings
from processor data Bash

Y
Initakze milisac time stamp,
and 1.ms, 1 sec ana 8 ki
Inter gt foutines

| itialier Frog Syntheszer I

Send UART command to
Transmitter b bern OFHF XMIT

Blink Red LED A timey at 250
ms nkervaks

l Clear Walchdog]

Sead Transmitter 3 conumand
10 by OFF Transmater
(I 0 cursently on)

Acthity InScator
1.Se¢ miesupt

Tame Stamg
1-ms Intertupt

| Increment Tieme stamn | |

Biknk Geven 11D |

Acguire Board
Temperstine

I B e rapt l

Send Trassmitter 3 Command
10 tuim ON Transm ittes
(1’5 curmenthy off)

Alow for

temperature hystecesis

Process flash Data
and Manage RAM
Ping-Pung Bulter

Acguine and buafler | o
132 b2 Values

1 94
of new attenuator di setting

Lag |, Q, tena [ens) sinee
power-on, transmitter on/oft
status, board temperature,
and attenuator d setting

Tax 0 OFF Transmitor

Figure 75: The flowchart for the receiver.

82

The completed circuit boards are illustrated in Figure 76.

Figure 75: The completed circuit boards designs

Once the circuit boards were built, the components could fit very well into the prototype test
configuration designed in the first feasibility phase:

9 hess
RS A e 1 A

Figure 76: Fit the circuit boards in the prototype test configuration

83

We also developed a rudimentary GUI to allow us to verify in real time that there was a signal in
the desired FFT band:

-1534

-729121,
1466686,
g13,

F o= 2081.8H: - 2033.08H:

Figure 77: GUI to allow us to verify in real-time that there was a signal in the desired FFT band:

Another decision made during construction was to allow the possibility of both DC and AC
power, with DC to be used for the first test (i.e. with batteries) and allowing for AC on
subsequent field tests (i.e. with surface power at 240V AC). This reduced the final set of
electrical components to the four shown below.

° HieroS:Ticen Tre.

Figure 78: final set of electrical components

84

5.4 Final Antenna and Downhole Tool Construction for the Field Trial

In close consultation with the team, the design of the antenna was finalized as a 40 MHz transmitter
and 13 MHz receiver with a configuration as shown below. In particular, the coupled TX/RX
system comprises two coils whose axes are aligned. The transmitter outputs a magnetic field
primarily in the direction of that axis, which is also the main sensitivity of the receiver. There is a
minimal field generated in the plane of the coil. It is believed that this directionality could prove
useful when the tool is deployed downhole: different orientations of the tool will excite different
azimuthal planes of the wellbore.

Figure 79: Transmitter outputs a magnetic field

The coils, shown below, are wound of thick, 10 AWG copper so provide minimal resistive losses
even at 20 Amps. The coils will be subject to hydrostatic pressure in the wellbore whereas the
remaining electronics are inside a pressure housing. This requires a bulkhead, also shown below,
to pass the electric field from the high pressure to the low.

)
/4l

L

I
f

I L

Figure 80: Schematic of the designed Coil

85

Each termination of the coil has been equipped with a Kemlon K-25 BMA connection, including
a rubber “boot” that provides a secondary barrier to pressure. The connectors are rated to 25 kPsi,
16Amps, and 6 kV. The max RF power from the tool is 100 watts.

THREAD CHART (UNF-UNC THREADS)

O UNF %0 00 Q047 K-25 BMA
1420 NG o 03% S K-25 BMA I 3
082 o

23 UNF » 0% am T

l

(O] UNG 8 o3 oz e 24T A 5 mex = ¥

1

51824 une . 15] ey - . .
-y~ 008 - L)

3510 UNC * 0TS o7 b !

£
¢
H
.-
>
E

: o

0 - ,'7 §
2 2 0ars = oty e '
! ! i RO X
7195-34 UNC “ 0438 0.300 L I |
"
L]

MOUNTING DETAIL

Description Number Construction |Max. Temp (Fjﬁax. Pressure (PSIG)Current (A . Volta
16-B-1748 polyether 450 20,000 18 3000
16-B-1537 |glass / polyether| 500 25,000 7 4000
K-25-BMA *16-B-389 glass/cer'amic 500 25,000 7 5000
16-B-1843 ceramic 500 25,000 6 6000
16-B-14457 |Kemthread/PEK 400 25,000 4 6000
*16-B-18865 |[Kemthread/PEK 400 25,000 18 6000

Figure 81: Thread chart and specification

The Kemlon’s attached to the bulkhead are shown below:

Figure 82: The Kemlon’s attached to the bulkhead

86

The TX and RX loops are completed inside the pressure housing by attaching to 6kV rated
tunable capacitors with a range from 5 pF to 120pF and Q > 500.

Figure 83: The TX and RX loops are completed inside the pressure housing

The antenna coils are highly inductive, but this reactance is canceled by appropriately tuning the
capacitors, so the subsequent electronics only see the real part of the antenna impedance, which is
less than 1.5 ohms. The transmitter and receiver PCB’s are designed around 50 ohm impedance,
which creates a requirement for a matching circuit. We investigated the idea of matching with a
combination of capacitors as had been done by UCLA on their TX/RX (see figure below)

87

Capacitors at base of coil provide
matching network to 50 ohms

Figure 84: The matching circuit idea testing and demonstration

We were concerned that downhole temperature would cause the capacitance to change, and our
analysis showed that even small changes in capacitance would significantly impair the impedance
match. So instead, we used a toroid configuration where the primary was the antenna loop and the
secondary would have N turns. The impedance scales as N2 so only a small number of turns will
be needed. One key difference between transformers at MHz vs low frequency is that the primary
and secondary wires must be wound together (termed “bifilar” winding). The transformer would
not work at all if, say, the primary was on the left and the secondary on the right.

The capacitors are toroids mounted on 3D printed “ASA” plastic so that they would be secured in
position despite any shock and vibration to the tool in the wellbore. That assembly was mounted
onto the bulkhead and then a metal crossover piece was bolted on.

Figure 85: 3D-Printed Capacitor Assembly for Shock and Vibration Resistance in Wellbore
Applications

88

This cross-over provides a crucial link between the inner and outer components of the tool. The
bulk of the tool consists of an ~8 ft long, 3 5/8” diameter pressure housing that holds the battery,
etc. At the base of the 3 5/8” pipe are threads that can engage with threads, and o-rings on the
crossover to provide pressure-tight connection. The interior of the crossover includes connection
points to allow attaching the rest of the chassis. The crossover is shown below attached to the
bulkhead and antennae.

Figure 86: The crossover is attached to the bulkhead and antennae.

The top of the crossover provides a mechanism to add a fiber-glass housing. That housing was
then (partially) filled with RTV. The RTV covered the copper. The purpose of the RTV was two-
fold: partly to protect against vibration and also to provide the antenna with a dielectric constant
more similar to what the tool will see downhole. That way the matching of the antenna would still
be valid downhole.

Figure 87: Fiber-glass housing Assembly with RTV Filling for Vibration Protection and Antenna
Dielectric Matching

89

Looking down at the inside of the crossover you can see the toroids and the plate holding the
capacitors. The capacitors are beneath the plate but their tuning screws are above the plate so the
antenna can be tuned after everything is in place. A long, electrically insulating tuning screwdriver
was used to avoid accidental contact with high voltage.

Figure 88: Internal View of the Crossover Assembly Showing Toroids, Capacitor Plate, and
Tuning Mechanism

The combination of coils, capacitors, and toroids should present an impedance with zero reactance
at the resonant frequency and close to 50 ohms real impedance. We got essentially perfect
agreement on the receiver coil (50.04+0.23j)

L L2
13.560000 MH. Trace : [l

: ce 2
50.040 + 233 28 ma | Type: \, vs \;

2.74nH Math- |

Figure 89: Impedance Measurement of the Receiver Coil at Resonant Frequency Using a
Spectrum Analyzer

90

And fair agreement on the transmitter 61.4 + 1.3j. This transmission impedance was very
acceptable because its next component, a MOSFET, could accept VSWR up to 65 and we had
plenty of safety margin on the voltage rating of the capacitors.

c?

40.670000 MHz Trace: [l 2 3 4
6140041300 | Type:w ww w

; 0.00 dBm Trig: Free Ry
510nH Math: 1G PWR: 0.00 dem cal‘;y,g,f:g(/;/j

5,000 "" LogMag Ref 0,000 dp

Figure 90: Transmitter Impedance Measurement and VSWR Tolerance Analysis with MOSFET
Integration

The MOSFET had a max power rating of 100W but required a heat sink. The MRFANI101 was
commercially available and already attached to an aluminum block. We then mounted that
aluminum onto a block of copper (using thermal paste in between)

Figure 91: MOSFET Heat Sink Assembly: MRFAN101 Mounted on Aluminum and Copper
Blocks for Thermal Management

91

And then that copper block was bolted to the metal crossover, which itself was going to be in good
thermal contact with the 3 5/8” pipe.

Figure 92: Copper Block Mounted to Metal Crossover for Enhanced Thermal Conductivity

The resulting bandwidth on the receiver was very sharp but when the transmitted was activated
measurement circuitry still detected 40MHz, which certainly could not have been coming through
the receiver antenna. It was determined to be a common mode, so we added a third toroid and

wound the coax around that toroid.

Figure 93: Implementation of a Third Toroid to Mitigate Common Mode Interference in the
Receiver

92

And then finally we added the dedicated bandpass filter that had been identified during the
feasibilty phase.

Figure 94: Addition of a 13.56 MHz Bandpass Filter for Signal Optimization

We have previously presented the receiver and transmitter PCB’s. These were mounted onto the
chassis and the chassis secured to the bulkhead with 1/8” roll pins.

Figure 95: Receiver and Transmitter PCBs Mounted on Chassis and Secured to Bulkhead

93

The system is powered by a 30V, 29Ah Lithium battery and we placed an on/off switch at the top
end of the battery.

Figure 96: Fully Assembled System Powered by a 30V, 29Ah Lithium Battery with On/Off
Switch

In addition to the on/off switch, we ran a long USB cable from the receiver PCB to the top of the
chassis so that we could download data without pulling the chassis from the 3 5/8” pipe.

94

Figure 97: Top-End USB Access for Data Retrieval Without Chassis Removal

Lastly, we added an MDM connector to allow communication to a Criterion circuit installed
inside the battery that allows us to depassivate the battery before deployment.

3N

PR UL

Figure 98: Integration of MDM Connector and Criterion Circuit for Battery Depassivation
Before Deployment

95

Finally, the chassis was loaded into the 3 5/8” pipe.

Figure 99: Chassis Installation into the 3 5/8” Pipe

The lower crossover was torqued in place with spanner wrenches.

Figure 100: Lower Crossover Secured with Spanner Wrenches

96

At the top end, we provide another small sub with threads and o-rings that can be torqued in place
and provide the final pressure seal. At the top of that sub is a thread whose profile was provided
by EOG for attachment to the rope socket on the slickline unit.

Figure 101: Top-End Subassembly with Threads and O-Rings for Final Pressure Seal and Rope
Socket Attachment

And success:

97

Figure 102: Final downhole tool at the pilot testing site for deployment

98

6. PHYSICS- INFORMED AND AI-EMPOWERED I-GEO SENSING FRACTURE
DIAGNOSTIC SOFTWARE PACKAGE DEVELOPMENT, AN OPEN-SOURCE
PYTHON-BASED PACKAGE

6.1. Overview of the i-Geo Sensing

The complete development of the i-Geo Sensing code holds the responsibility of processing the
geo-location data from the sensor in an end-to-end manner. This end-to-end manner is summarized
via the following statements.

- 1-Geo Sensing processes the sensor data or it requests a continuous stream of sensor data that
brings the geo-location of the sensors as a triplet (X, Y, Z) coordinate.

- 1-Geo Sensing conducts an initial suggestion of the fracture geometry (i.e., expected half-
length, fracture height, and average fracture aperture) via the code’s unsupervised machine
learning (ML) algorithm workflow. This initial suggestion purely relies on the geo-location
data provided by the sensors and does not rely on the properties of the formation(s) the sensors
are injected into.

- 1-Geo Sensing conducts possible corrections of the fracture geometry (i.e., the quantities from
the unsupervised ML workflow plus physical-fracture propagation properties) via the code’s
supervised ML workflow. This later correction relies on the properties of the formation(s) the
sensors are injected into.

- 1-Geo Sensing provides a secondary Graphical User Interface that connects the user interaction
with the research code that is briefly described above.

6.2. Synthetic case description

To comply with the illustrative purpose of demonstrating the ML workflows, two synthetic
environments are described in this report. The synthetic environment for the unsupervised ML
workflow has a core aim to validate the clustering and fracture planar diagnostic efficacy, and the
environment for the supervised ML workflow has a core aim to validate the calibration, history
matching, and explainability aspects.

6.2.1. For the unsupervised ML workflow

The efficacy of the unsupervised ML workflow is tested by three synthetic fracture networks.
These three synthetic fracture networks are designed based on the 2D scanned core images of
fracture networks subsurface at different measured depths in feet (9490-9493, 9560-9563, 9566-
9569) and different levels of geometry complexity (referred to Figure 103). Figure 103 provides
details of the raw 2D scanned core images (stored in JPEG format). To generate inputs for the
unsupervised ML workflow, the format of the input data is processed as Cartesian coordinates or
transformable to Cartesian coordinates (preferably TXT format). As a result, additional image
processing steps are conducted to achieve the desirable TXT input format.

Core samples’ images are initially imported and transformed into grayscale, which is further
capable of separating irrelevant pixels from fracture networks’ pixels (i.e. “fractured” pixels). In a
gray-sale image, pixels are scaled in their intensity values, which vary in a scale between 0-255.
Initial analysis for a gray-scale image typically starts with its histogram of pixel intensity. The
separation process is performed by Otsu image segmentation. Otsu algorithm chooses the optimal
value from an image’s histogram of pixel intensity and further detaches the image into two
fragments: the main fracture network (which has pixel intensity 255 - white) and irrelevant pixel

99

body (which has pixel intensity 0 - black). Albeit Otsu segmentation can extract the closest version
to the desired base fracture networks, additional algorithms are necessary to extract the desirable
and complete synthetic fracture networks. The supporting algorithms include pixel filling (i.e. fill
fractured pixels into desired voids), fragment separation (i.e. divide a fracture network into smaller
fragments to perform more effective pixel filling), and fractured pixel recovery (i.e. recover a
group of fractured pixels in a fracture’s network fragment).

Desirable fracture networks extracted from the scanned core images are maintained as 2D images
(stored in PVG format). Under the assumption that the propagation of a fracture network is uniform
along the remaining dimension, commercial 3D editing & printing software conducts extension of
the 2D imaging base fracture networks into 3D imaging fracture networks (stored in STL format).
The stored format of the 3D imaging fracture networks is processed and randomly sampled (reflect
the practical aspect of the fact that transmissible SMPs have no specific pattern inside the fracture
networks) to create synthetic input geo-location data from Smart Microchips as Cartesian
coordinates. Figure 104 provides the projected 2D overviews of synthetic 3D imaging fracture
networks used in this study (fracture propagation direction is perpendicular to the projected
images). For design purposes, the synthetic fracture networks in Figure 104 increase complexity
from left to right. The 1% synthetic network (Figure 104, left) is composed of 4 fractures with
almost uniformity in shape. The 2" synthetic network (Figure 104, middle) is composed of 3
fractures and one smaller network with moderate non-uniformity in shape and low complexity in
branching. The 3™ synthetic network (Figure 104, right) is composed of one fracture and two
smaller networks with non-uniformity in shape and high complexity in branching.

Figure 103: The raw 2D scanned core images used to design synthetic fracture networks

100

Figure 104: 2D projection of the synthetic fracture networks (complexity increases from left to
right)

The unsupervised ML workflow performance is evaluated based on the following criteria:

1. Prediction capability: this is qualitatively defined by the detection of the fracture propagation
direction, geometry complexity (i.e. the clustering’s efficacy to recognize the fractures in the
fracture network), and shape of the predicted geometry (when compared to the synthetic
fracture networks as “ground-truth”).

2. Robustness in execution: this is defined by similarity in prediction for different runs, under the
context of a specified number of transmissible Smart Microchips. This criterion is proposed to
test the stability of unsupervised ML workflow to control any stochasticity. The total
robustness of all transmissible Smart Microchips is defined as Equation (4).

1 <Neyp 0T R;
Total Robustness = .f’f" Zi=1J 4)
Nsmp TI= Ny

3. Consistency: this is defined by the remapping capability for the tested fracture network under
the context that not 100% of the Smart Microchips injected subsurface can transmit the geo-
location data back (because of the high temperature, high-pressure condition subsurface). To
evaluate this criterion, 9 separate consistency cases of the number of transmissible Smart
Microchips (between 50-90% of the total Smart Microchips injected, increment of 5%) are
used for each synthetic network. The weighted average of the consistency from the 9 scenarios
represents the overall consistency for each synthetic network. This weighted average is used
based on the convention that the lower percentage of the total injected SMPs incurs more
difficulty (since less data is available). Consistency score is defined as Equations (5) and (6).

yiease W, (5)

, 1
Consistency = Y

yease = 1 (6)

In Equation (4), R; denotes the similarity score between the result from the unsupervised ML
workflow (one run, one Smart Microchip) and the “ground-truth” result from the design of the
synthetic cases. A R; value of 0 means dissimilarity and a R;value of 1 means similarity. N, is the
number of runs from the unsupervised ML workflow. Ngyp is the total number of transmissible
Smart Microchips.

101

In Equation (5), C; is the consistency score between the consistency cases. A C; value of 0 means
inconsistency between the cases, and a C;value of 1 means consistency between the cases. W, is
the weighting factor for the consistency cases to determine the weighted average (which directly
explains the summation of 1 in Equation (6)).

6.2.2. For the supervised ML workflow

A compositional simulation case for a horizontal well, hydraulically fractured, serves as the
comprehensive test case for the supervised machine learning workflow. An overview of the
reservoir and the single horizontal well (visual provided in ResFrac® academic license) [65] is
provided in Figure 1. 59 geological layers in the reservoir vary between 7500 ft to 8958 ft. A single
well penetrates through the target depth at 8243 ft. Reservoir properties (e.g., minimum horizontal
stresses, porosity, permeability, relative permeability curves) are in the Static Model and Initial
Conditions, Geological Units. A plot of the Young Modulus and Poisson Ratio variation along the
model’s depth is presented in Figure 106. The academic license of ResFrac allows similar plots for
other geological properties in its plot interactive interface.

iy, Yl
iy

T
qu.,','r','m Illr'.‘mﬂ
)

Figure 105: An overview of the test case for the supervised ML workflow

102

Young Modulus and Poisson Ratio variation along modeled's depth

0.35
7e+64
F0.3
6e+6
= +0.25
L Se+64
- k=]
3 ®
Ei 0.2 -
& det+6q =
£ 2
0 o
2 sre Fo.15 8
3 ¢
2
2e+6- ro-1
le+6+4 r0.05
04

T T T T T T T T
7600 7800 8000 8200 8400 8600 8800 9000
Depth (ft)

Figure 106: Variation of Young Modulus and Poisson Ratio over the model’s depth

The single horizontal well is injected for a total of 238.07 minutes with an injection pressure of
20000 psi. The injection schedule is presented in Figure 107.

The model's injection schedule
904
801

704

H
N

60

T
_-

504

o
®

40

Injection rate (bpm)

o
an

Proppant concentration (ppg)

304

o
'S

20

o
[S]

104

o

T T T T T T
0 0.5 1 1.5 2 2.5 3
Time (hours)

Figure 107: Overview of the injection schedule for the model

After the injection schedule is performed, the well is shut down for an additional 120 minutes and
later is converted into the producer mode. The Bottom Hole Pressure (BHP) and the oil production
rate are presented in Figures 108 and 109, respectively. The data plot in Figure 108 indicates that
the Initial Shut-In Pressure (ISIP) is approximately 5800 psi at close to 20 days of simulation time.

103

70004

6000

5000

40004

BHP (psi)

30004

2000

10004

I I I I I 1 I I I
0 20 40 60 80 100 120 140 160 180

Simulation time (Days)
Figure 108: Bottom Hole Pressure data for the model’s simulation lifecycle

204

15—

10+

Oil prod rate (STB/day oil)

I I I I I I I I
0 20 40 60 80 100 120 140 160 180

Simulation time (Days)
Figure 109: Oil production rate data for the model’s simulation lifecycle

Since ResFrac® is a coupled fracture-propagation simulator and a reservoir flow simulator,
fracture propagation properties can be visualized along the model’s life cycle along with
conventional reservoir properties (as in Figures 108 and 109). Figure 110 provides the total fracture
aperture in inches at an early propagation time step (left) and a late propagation time step (right).
Figure 111 provides the total proppant volume fraction (dimensionless) at the two similar time
steps as Figure 110. In Figures 110 and 111, the color scale for the specific property (i.e., total
aperture or total proppant volume fraction) is similar across the simulation time in ResFrac, and
henceforth these Figures present the expected observations of proppant transport in the test case.
In the early time steps, the aperture is continuously opened along the wellbore’s perforation
direction, and the amount of injected proppant is not substantial. At the later time steps, the fracture
is gradually closed (i.e., a gradual decrease in fracture aperture), and a substantial amount of
proppant is settled inside the fracture. ResFrac uses a multi-opening fracture tip model to locate
the front of the propagating fracture (Multi-El Tip model), which more details can be found in
[65].

104

Figure 111: Total proppant volume fraction at early propagation (left) and late propagation
(right)

To test against the supervised ML workflow within the context of this test case, the synthetic Micro
Chips’ data is sampled along the model’s life cycle under the following assumptions:

1. A higher proppant volume fraction indicates a higher density of sensors located. This is
intuitive since the Micro Chips are injected along with the conventional proppants.

2. There is a random “dead rate” of sensors across fracture dynamically, and this dead rate is a
dependent variable on “ground-truth” fracture aperture and fracture pressure (which determine
the confinement stress to the conventional proppant, and intuitively the Micro Chips shall be
exposed to the similar confinement stress).

Besides the synthetic sensor data as the input to the supervised machine learning workflow, other
calibration data such as ISIP, BHPs (as specific time steps), and oil production rates (at specific
time steps) are provided to the supervised ML workflow. The calibration objective is to match the
ISIP, BHP, and oil production rates within an acceptable uncertainty. Further details are provided
in 6.5 and 6.7. From 6.3 and below, geo-location data is the abbreviation of the data from Micro
Chips.

6.3. Intuition in understanding the sensor distribution inside the subsurface fracture
environment

105

Throughout the i-Geo Sensing code, the sensor data is requested/processed in the form of three-
dimensional coordinates, or a normalization from three-dimensional coordinates. Under the
subsurface, the Micro Chips are supposed to be injected into the formation (the 1% assumption in
6.2) Consequently, except for recording geo-location data, the distribution of the Micro Chips
inside the fractures(s) shall have a similar look as Figure 112 for a single fracture (at any point of
time within the lifetime of the reservoir) [32].

4800
_5000
5200
_5a00
d3

_5600

_5800

6%
3 qaast
) a5V

5 a5

a
5
5

p %,
2.2 -3 %
%,
%,
S %
%,
%
%, d2
%
aT™ %
%

Figure 112: Distribution of the MicroChips subsurface (generated from the synthetic
environment)

Coupled with the nature of the proppant distribution inside the fractures, the following statements
can be appropriately declared.

1.

Sensors are more concentrated at the locations close to the injection point, and the “density”
of sensors during the lifetime of the reservoir shall follow the pattern of proppant existence
inside the reservoir [32].

Since the fractures are propagated with a substantially long half-length and fracture height
dimensions (in the degrees of ft) compared to the aperture (in the degrees of in), sensors are
expected to locate around a planar surface in which their projection of the geo-location data to
that planar surface reveals an approximation of the fracture aperture.

Although some Micro Chips are “dead” during the lifetime of the reservoir because of
subsurface environments, the amount of data transferred from the sensors is, naturally,
proportional to a quantity that correlates with the proppant distribution (e.g., proppant volume
fraction).

These 3 statements serve as essential foundations that lead to all further development
understanding and algorithmic thinking of the workflows that exist in the i-Geo Sensing. Each of
the sub-sections below 6.3 reflects one or more of them and is further explained in the sub-section
itself below.

6.4. The unsupervised machine learning workflow

106

The unsupervised ML workflow is a stand-alone module inside i-Geo Sensing that receives the
transmissible, 3D geolocation data. Its architecture is presented in Figure 113 [43, 60]. Reminded
of intuitions 1 and 4 from the previous section, the unsupervised module is designed to characterize
the fracture networks via fracture clusters. Three core algorithms contribute to this module include
Uniform Manifold Approximation and Projection (UMAP) [34, 44], Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) [35, 54], and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [35, 54, 56].

UMAP performs dimensional projection of the geo-location data from 3D into a 2D latent space
(or sub-space) for unsupervised clustering. The couple DBSCAN — HDBSCAN forms the
Ensemble Clustering and performs unsupervised clustering in the 2D latent space to identify the
prospective fractures in the fracture network as “fracture clusters”, including propagation
directions and branching complexity. During the unsupervised clustering by the Ensemble
Clustering, the Mixture Clustering Epsilon coefficient is facilitated to control the clustering’s
performance [54].

Sur! 1uu.

-
@ ® e .
(I). \ \ ‘I./ .
. - > \ S
o L \. .
- = UMAP R HDBESCAM Surface
% ! LS Reconstrucﬂon

Figure 113: The unsupervised ML workflow

An immediate challenge to control these hyperparameters in the unsupervised ML workflow is the
fact that hyperparameters in both UMAP and HDBSCAN are typically controlled manually and
empirically based on the specific nature of the input data [34, 44]. In the workflow, applying
geometrical assumptions based on the specific nature of fracture networks’ geo-location data leads
to the following hyperparameter estimations, referred to as Equations (7), (8), (9), and (10).

di1 0 0
A= [0 dy; 0] (7)
0 0 dss
dyn =005+5x% 1073 (8)
k=0.1N +100 9
Com =S =0.01N +n, (10)

In Equations (7) and (8), N is the number of functional Micro Chips (i.e. the Micro Chips that can
transmit signals). In Equation (10), n. is a positive integer, defined as the additional number of
samples to avoid the critical “tiny cluster” and “condensed tree failure” errors while executing
HDBSCAN. n, physically represents a control to avoid small clusters of Micro Chips can be

107

grouped as a fracture cluster (in fact they belong to another fracture cluster). Additionally, the
existence of n. contributes to minimizing the “noise” classification for the input in HDBSCAN,
since HDBSCAN naturally considers a certain amount of noise in its input data. However, noise
from the geo-location data is minor because almost all transmissible Micro Chips are useful. The
empirical process in this study indicates the value of n, ranging between 5 and 15. The evaluation
noise score metric (Sy) that is defined as Equation (11).
sy = ~hoise (11)

In Equation (11), N,,,ise 1s the number of noise data points classified by HDBSCAN. An optimal
hyperparameter set for a specific value of N is the set that minimizes sy, preferably a zero-
proximity value (to reflect the unavoidable presence of “minor clusters”). The value of N ranges
between 1000-5000 as a practical measure for the number of injected Micro Chips. The target
variable sy has a mixture of records between zero and non-zero values.

P bkt

Figure 114: Processing of the geo-location data for the 1% synthetic fracture network

Figure 4 provides the visualization of the unsupervised ML workflow for the 1% synthetic case in
this study, and all images in Figure 111 are 2D projections from the 3D realizations. From left to
right in Figure 114, the following sub-images are presented: the synthetic fracture network
transmissible data from the Micro Chips, the fracture network’s structure diagnostic, and one
realization of the fracture network exported from the unsupervised ML workflow that has the
closest visual compared to the original synthetic input.

Table 7: Evaluation results for the unsupervised ML workflow (synthetic environment)

Evaluation criterion
Fracture - _
network Predlc_t|_on Robustn(_ass in Consistency
capability execution
1 Highly satisfied 100% 100%
2 Satisfied 90% 100%
3 Fairly satisfied 85% 100%

108

Table 7 reveals valuable insights into the unsupervised ML workflow’s performance. The
consistency is achieved at 100% for all synthetic cases, indicating the workflow functionality is
independent of the amount of transmissible Micro Chips. The robustness is achieved at 100% and
90% for the 1 and 2™ synthetic cases, however, is capped at 85% for the 3™ synthetic case.
Therefore, the use of assisted affine transformation is less effective for the high geometry
complexity in the 3™ synthetic case. The rated prediction capability for the 3" synthetic case falls
behind the other 2 synthetic cases, which solidly prompts further reasoning for the impact of high
geometry complexity on the workflow’s performance.

Figure 115 compares the effect of the affine transformation [41] to the performance of UMAP, and
consequently HDBSCAN in the workflow. As aforementioned, the coupled algorithm is implied
as a matrix to scale the received geo-location data and alter the absolute distances between the
Micro Chips. Affine transformation inherently does not modify the internal structure of the fracture
network. Consequently, raw geo-location data processed by any affine transformations improves
the low-dimensional projection result from UMAP since UMAP is very sensitive to the absolute
distances between neighbors (i.e., the absolute distances between the Micro Chips). Figure 115
compares the effect of using affine transformation and not using affine transformation for the 1%
synthetic case. In figure 115 (left), UMAP with the coupled algorithm reflects the designed
structure of the 1% synthetic fracture network. The projected subspace has viewed 4 clusters
corresponding to the 4 fractures. In contrast, in Figure 115 (right), the standalone UMAP does not
reflect the designed structure of the 1% synthetic fracture network, as the projected subspace is
viewed as three clusters. The two fractures at the bottom of the 1% synthetic case have extreme
proximity, and UMAP is not capable of separating them in the projected subspace without using
affine transformation. A similar effect is observed in the 2nd and 3rd synthetic cases.

A b

f
|
{

Figure 115: Effect of assisted affine transformation on the performance of UMAP in the 1%
synthetic fracture network (with transformation — left, without transformation — right)

.
,{f%’
e
Pl
T o g ey

P4

W i

6.5. Sensor data profiling

According to the foundations from 6.2, the geo-location data is received as a three-dimensional
“point cloud” that has an arbitrary representative geometry. Although there exist processing
approaches from this three-dimensional point cloud that map the local and/or global spatial
characteristics of the points to the representation of the geometry, these approaches require
extensive computational power to be trained and deployed as scalable proxy models (details about
proxy modeling is later described in 6.9 and 6.10) [47, 48]. Additionally, these approaches are
aimed at developing geometries that are, unfortunately, not representative of fractures subsurface.

109

Therefore, we implement a processing technique in the i-Geo Sensing code to process the sensor
data that is robust and provides scalability for later proxy modeling in 6.9 and 6.10. This technique
is named sensor data profiling. To better understand the technique, it is more illustrative to present
the fracture geometry that comes from the ResFrac® software. This illustration is provided in
Figure 116.

777777 71T]]]

[T] 7777777

SN NENERREN

Figure 116: The ground truth fracture geometry (reconstructed from ResFrac® software [50])

One noticeable observation from Figure 116 is that the presented fracture geometry has some
degree of complexity in shapes as it is “curved” along the y-axis (the axis that has a contrast
between the minimum horizontal stresses). This complexity is caused by the non-drastic difference
between the horizontal stresses. Essentially, Figure 116 divides the ground-truth fracture geometry
into uniform regions (namely, fracture elements in ResFrac®), and in each of these elements, there
is a dynamic occupation of Micro Chips. Throughout the lifetime of the reservoir, it is not abnormal
to observe that some of these elements may not have an occupation of Micro Chips. Across the
dimensions of the fracture, the density of Micro Chips per element, or propagation length (i.e.,
half-length), mainly depends on the fracture pressure (which impacts the “dead rate” of the Micro
Chips) and fracture aperture (which determines the cumulation of Micro Chips within the fractures,
similar to conventional proppants). Consequently, i-Geo Sensing creates sensor data profiles that
summarize the fracture aperture (i.e., the y-dimension recording in Figure 116) along the half-
length propagation and the fracture height propagation at any time it receives geo-location data.

Within each time step that i-Geo Sensing receives the geo-location data, it deploys the
unsupervised machine learning workflow to recognize the fracture plane per cluster. Per the
fracture plane, i-Geo Sensing successively determines the smallest dimension in geolocation value
(after normalization to the centroid of the data). For example, Figure 116 indicates the smallest
dimension is the Y dimension, and consequently, X and Z are the larger dimensions. Reminded
that the fracture aperture is a fraction in value compared to the fracture half-length or fracture
height (a fraction of an inch versus hundreds of feet), the smallest dimension is the dimension
holding the fracture aperture information. Per the larger dimension, it is divided into uniform
intervals, and per interval, the average value of the smaller dimension of which the sensors’ larger

110

dimension falls into that interval is computed and averaged. Consequently, the larger dimension
provides a 1D array of values with size [N, 1], in which N is the number of divided intervals, or
namely, the resolution of the profile. There is a maximum of 2 sensor data profiles per time step.
Figure 117 presents a sensor data profile for the half-length dimension between -600 ft and 600 ft
(normalized in ResFrac® around the centroid which is at 0 ft), and with a resolution of 50 intervals.

Sensor data profile along half-length at temporal point 900

0.25

Q e o
= = N
5} w o

Sensor aperture data (in)

o
o
o

0.00 A

—600 —400 —200 0 200 400 600
Halflength (ft)

Figure 117: Sample sensor data profiling

To further illustrate the validity of the information the sensor data profiles provide to the i-Geo
Sensing, Figure 118 presents the sensor data profiling for one larger dimension at two different
time steps. Figure 118 clearly shows that the fracture propagation at the later time step (right) has
a growth on the two “tails” of the profile compared to the initial time step in which the two “tails”
of the profile remain flat (i.e., zero or significantly low value of aperture). Additionally, the later
time step presented in Figure 118 (right) indicates that the fracture is entering its closing phase
(since the profile is lower at the centroid and is higher expanding from the centroid). Sensor data
profiles contribute their usefulness at the proxy deployment phase, which is again, further
described in 6.8 and 6.9.

. Sensor data profile along half-length at temporal point 262 Sensor data profile along half-length at temporal point 700

It

0.6

o
o
L

g

e
w
L

o
ES
L

0.4

Sensor aperture data (in)

o
[N
L

o
w
Sensor aperture data (in)

0.24

I
=

o
o
L

0.04

T T T T T T T T T T T T T T
—600 —400 —=200] 200 400 600 —600 —400 —-200 0 200 400 600
Half-length (ft) Half-length (ft)

Figure 118: Sample sensor data profiles at two different time steps

6.6. Calibration of the fracture geometry and history matching from the unsupervised
machine learning workflow

111

As described in 6.3, the unsupervised ML workflow is responsible for suggesting an initial
diagnostic of the fracture geometry. This initial diagnostic is purely based on the geo-location data
and is not informed any further by the reservoir’s characteristics. Consequently, this initial
diagnosis needs to be corrected in realistic scenarios in which field data is available (besides the
geo-location data) [51].

In fracture model calibration, the conventional approach involves matching typical parameters
such as the Initial Shut-In Pressure (ISIP) and “early” after-shut-in pressure. After being calibrated,
the fracture geometry is coupled with a reservoir simulator (in terms of grid/mesh refinement) for
further history matching with the field production data. Under the addition of near-wellbore
fracture geometry data from the Smart Microchips, information about the initial fracture aperture
(wso) and initial fracture height (Hg,) is available. wy, and Hyg are estimated using Single Value
Decomposition (SVD). Consequently, fracture model calibration in the i-Geo Sensing additionally
includes the match for these parameters besides the match for typical parameters mentioned above
(which are conducted once).

LSMPYSMPs ZSMP

Unsupervised ——>» SVD

@

1600
Kic,leak_of f ’—):

Misfit(wo, Hy, ISIP, Py,;)

No

Tolerance

Yes

[w o, H po(calibrated)]

Figure 119: Fracture calibration workflow in i-Geo Sensing

In history matching, the conventional approach involves uncertain parameters (e.g., porosity,
permeability & relative permeability curves, and saturation profile), providing the one-time
calibration for the fracture model. Under the addition of sensor data profile(s) per simulation time
step, history matching in i-Geo Sensing uses the sensor data profiles to calibrate the uncertain
parameters. Since i-Geo Sensing facilitates proxy modeling techniques (i.e., estimation of the
response parameter(s) via a surrogate model in replacement of a local derivative estimation),
history matching in the i-Geo Sensing is performed using the global-space optimization algorithm
via Tree Parzen Estimator’s Bayesian Optimizer [63, 64, 66].

The objective function for history matching in i-Geo Sensing is defined as the BHP, flow-
back/production data misfit function(s) (for example, Mean Square Error). After the sensitivity

112

study for all uncertain parameters and initial manual tuning (if necessary), a global search space is
initialized. Per iteration of the optimization loop, the objective function’s metrics are compared
against the previous iteration, and the Tree Parzen Estimator (TPE) measures the Estimation of
Improvement (EI) between the subsequent iterations. The EI further determines the search
direction of all uncertain parameters within the initial search space, until a convergence in the EI
is satisfied. Schematic of the optimization loop is presented in Figure 120.

|'Update surrogate model
l Land validation error data

o -] [] [.] [- . Train model with
Distribution of . Compute objective Maximize acquisition .
[hb"perparameters Hyperparameters function function hvpesrzli;c;t?ndeters =1

¥

i+1 = max evaluations] No

Optimized
hyperparameters

Figure 120: The Bayesian Optimizer engine used in the i-Geo Sensing

Within the scope of history matching, traditionally simulations are required to run for the
uncertainty quantification metrics and the misfit evaluation. In i-Geo Sensing, this task is speeded
up by using the surrogate modeling inside the supervised ML workflow (quantile-loss Extreme
Gradient Boosting/Gradient Boosting Machine). Details about the proxy models and the
supervised ML workflow are in 6.8 and 6.9.

6.7. Design of Experiment

Through 6.2-6.6, proxy modeling is mentioned as an effective surrogate to estimate the response
parameters without running the specific simulation case at the time of performing fracture
calibration or history matching task. To fully leverage the proxy modeling in the i-Geo Sensing,
Design of Experiment (DoE, [67]) combined with ResFrac® is used. ResFrac® offers the multi-
physics Linear Elastic Fracture Model (LEFM) that is field-scalable, and it has a fracture
propagation simulator coupled with a reservoir flow simulator. Therefore, in this project,
ResFrac® is selected to serve as i-Geo Sensing backend simulators, in a semi-automated manner.
Figure 121 presents the scheme Design of Experiments embedded inside i-Geo Sensing.

The DoE code in the i-Geo Sensing exists as a standalone module, which is responsible for
processing base simulation files from ResFrac®. A ResFrac simulation run requires two simulation
files, named “settings” and “input” text files, both are human readable. ResFrac defines the
simulation model via a system of multiple “entry” variables (in both settings and input files). Each
entry variable holds the variable name, the variable length, and the variable data in this sequential
order. To generate DoE cases in batches and perform fracture model calibration/history matching
studies, i-Geo Sensing’s DoE module is capable of:

113

1. Parse the two simulation files in ResFrac per simulation run into encoded entries and their
corresponding data.

2. Diagnose the optimal variable data type per entry.

3. Connect a DoE case data to the correct entry variable (regardless of its location inside
settings or input files)

4. Re-write the settings and/or input files and batch-run the simulation after the re-written

process.
Flow | | Flowback &
Reservoir simulator production
properties

» Reduce
» Locate prop
« Expand_2D
« Relocate
Intit perm
Expand_3D

Various dimensions

Segmentation Classification
tensors tensors

Figure 121: Design of Experiment generator in i-Geo Sensing

1-Geo Sensing provides the DoE for ResFrac in a semi-automatic because of the limitation of the
ResFrac academic license, and users are still required to submit the simulation jobs to the
ResFrac® server. An illustration of the DoE outcome for fracture geometry realizations is
provided in Figure 122.

— Design of |-~
Experiments [+~

Base template

fracture network image
100%100 pixels

Figure 122: An illustration of the DoE for fracture geometry in i-Geo Sensing

The fracture calibration in i-Geo Sensing fully leverages the sensor data sensor data profiles at
(synthetically) recorded time steps. Consequently, the fracture calibration proxy processes the
sensor data profiles, additional fracture propagation properties (if requested by the users), and the
recorded time (converted to dimensionless) as proxy input variables, and a pressure quantity (e.g.,
BHP) as the output variable. The prediction of the pressure quantity is sequentially processed as

114

one of the inputs for the history-matching proxy. Table 8 provides selected parameters to be
facilitated for the test case’s fracture calibration and history matching.

Table 8: The test case’s DoE parameters’ distributions

Parameter Corresponding ResFrac entry Distribution
Residual water matrixcurvesets norm (0.2, 0.05)
saturation
Res1dua.l oil matrixcurvesets norm (0.2, 0.05)
saturation
Residual gas . norm (0.03,
. matrixcurvesets
saturation 0.005)
Relative fi relativefracturetoughnesspersqgrt .
elative fracture g P q uniform (0.5, 1)
toughness fracturelengthscale

0.034 A

0.033 A

0.032 A

0.031 A

’-C—nl 0.030 A

5

0.029 A

0.028 A

0.027 A

0.026

S wr

Figure 123: Visual of the joint plot (DoE’s coverage) between distributions of two parameters
G‘Sgr7’ and “SorD’

Figure 123 illustrates a functionality in i-Geo Sensing to visualize 2 distributions of users’ selected
variables simultaneously to determine the DoE efficacy in generating data. The example presented
in Figure 123 indicates that there needs to be further coverage for the two variables at the four
edges of the DoE experimental surface. Figure 124 demonstrates the in-place change of a ResFrac
settings text file(s) (inside the DoE simulation cases) for the ResFrac’s variable named
“relativefracturetoughnesspersqrtfracturelengthscale™ after processed through the i-Geo Sensing’s
DoE module.

115

Variable name:
relativefracturetoughnesspersqrtfracturelengthscale

Length:
1

Value(s):

0.75

Variable

name:

Base case

DoE case 0

relativefracturetoughnesspersgrtfracturelengthscale

Length:
1
Value(s)
0.875

fracturelengthscale” entry

Figure 124: In-place change of ResFrac’s “relativefracturetoughnesspersqrt

Using the DoE module in i-Geo Sensing and the trial parameters in Table 8, a total of 140
realization cases for the 4 conventional DoE parameters and the 50-interval-resolution sensor data
profile are generated to serve the training of the supervised machine learning model. 100
realization cases are selected as the initial data batch to train, and the remaining 40 realization
cases are maintained as the additional backup to Quality Control the training performance.

Table 9: A snapshot of one DoE case

index case surrogate_time S wr S or S gr relative_frac_toughness x 0 y 0 z 0 x1 y1 z1 x2 y2 z2
0 0 2.77778e-07 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 00 00 0.0 00 0.0 0.0 (] 00 0.0
1 0 2.77778e-07 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 0.0 00 0.0 00 0.0 0.0 0.0 0.0 0.0
2 0 1.38889e-06 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 00 00 0.0 00 0.0 0.0 (] 00 0.0
3 0 0.0837858 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 600.0 -576.0 0.0 -576.0 -552.0 0.0 -552.0 -528.0 0.0
4 0 0.12605 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 600.0 -576.0 0.0 -576.0 -552.0 0.0 -552.0 -528.0 0.0
5 0 0.189359 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 -600.0 -576.0 0.0 -576.0 -552.0 0.0 -552.0 -528.0 0.0
6 0 0.284639 0.1277520948071337 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 00 -576.0 -552.0 0.0 -552.0 -528.0 0.0
7 0 0.407052 0.1277520948071937 0.05758293035469 0.0291761063696614 04725 600.0 -576.0 016512175 -576.0 -552.0 0.11871356 -552.0 -528.0 0.1123032816181817
8 0 0.578723 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.2422317399999999 -576.0 -552.0 0229167125 -552.0 -528.0 0.264571375
9 0 0.716632 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 600.0 -576.0 0.2740111875 -576.0 -552.0 0.3239723888888889 -552.0 -528.0 0.2309700434782609
10 0 0.855784 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 -600.0 -576.0 0.3360523529411764 -576.0 -552.0 0.2837663473684211 -552.0 -528.0 0.315069652631579
1" 0 0.985582 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.3066376363636364 -576.0 -552.0 0.3475282941176471 -552.0 -528.0 0.3206631578947369
12 0 113129 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 600.0 -576.0 0.3339975 -576.0 -552.0 0.319221 -552.0 -528.0 0.3497909615384614
13 0 127499 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.3126728666666666 -576.0 -552.0 03666251428571428 -552.0 -528.0 0.3263827727272726
14 0 133822 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.3305455 -576.0 -562.0 03415690869565218 -552.0 -528.0 0.3651304545454545
15 0 157228 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 -600.0 -576.0 0.3910372857142857 -576.0 -552.0 0.430424625 -552.0 -528.0 0.3114350370370369
16 0 157838 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.3418610454545454 -576.0 -552.0 03658438750000001 -552.0 -528.0 0.3159668260869565
17 0 158927 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 600.0 -576.0 0.3231085199999999 -576.0 -552.0 0.3308139413793106 -552.0 -528.0 0.2969301684210526
18 0 166186 0.1277520948071937 0.05758293035489 (0.0291761063696614 04725 600.0 -576.0 0.30275142 -576.0 -552.0 0.3266580678571428 -552.0 -528.0 0.3351349035714286
19 0 181784 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.31876041875 -576.0 -552.0 0.3646670051282052 -5562.0 -528.0 0.3738109454545453
20 0 196784 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.3397989636363636 -576.0 -552.0 0359712792 -552.0 -528.0 0.3457833473684212
n 0 310227 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 -600.0 -576.0 0.3183576399999999 -576.0 -552.0 03142174702702703 -552.0 -528.0 0.3370922799999999
22 0 396784 0.1277520948071937 0.05758293035489 0.0291761063696614 0.4725 6000 -576.0 0.2825145310344828 -576.0 -552.0 03197312351351352 -552.0 -528.0 0.293255028
23 0 6.29275 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 600.0 -576.0 0.2383114454545454 576.0 -552.0 0.3043404763157897 -552.0 -528.0 0.2592015866666666
P2} 0 9.6538 0.1277520948071937 0.05758293035489 0.0291761063696614 04725 600.0 -576.0 0.2545000341463413 576.0 -552.0 0.2361227 -552.0 -528.0 0.2642221071428571

Table 9 provides an overview of a DoE case generated from the i-Geo Sensing, in terms of the
tabular data arrangement. Column-wise and from left to right, i-Geo Senning writes in the
following sequential order: the simulation time (unit is similar to ResFrac result files, typically in
hours), the DoE parameters, the dynamic sensor data profiles (in the X-Y-Z order per interval
resolution, described in Algorithm 1), and the response parameters. For illustration, Table 9 shows
a fraction of a DoE case, as a complete DoE case for the test in 6.2 shall have 150 X-Y-Z columns

116

for the sensor data profiles (a single sensor data profile is used for the test case in 6.2, and it has a
50-interval-resolution, henceforth 150 columns).

6.8. Synthetic data generation, wrangling, and tabulation processing

As a figurative description, the complete data generation and processing for the proxy modeling
using ResFrac® as the back-end simulator is outlined in Figure 125. Provided that the simulation
data stored in ResFrac® for the test case serves as the base case, i-Geo Sensing accesses the
corresponding ResFrac® folder, parses the simulation data files (i.e., settings text file and input
text file in Figure 125) and extracts the ResFrac® entries (i.e., ResFrac® components defining a
specific property in the simulation) that define the complete simulation.

i-Geo Sensing
Raw_Res — — — » PROXY
I
h 4
DoE_interface — — — — 4
ResFrac [|
a~ + *

ks

I I
Ii settings_file.txt - |
|
ResFrac_builder ResFrac folder b+ —— =
[!
input_file. txt - |
7y

| DoE case .
77777 DoE_Entries

Figure 125: The semi-coupling between ResFrac® and i-Geo Sensing

Per entry defining the simulation, i-Geo Sensing reads the name of the variable representing the
entry, its length, and its value (an example is presented in Figure 124). To create realizations via a
Design of Experiment study, i-Geo Sensing requests the distributions and written location from
the users, in case an entry does not hold a single value (e.g., relative permeability curves). Using
the distributions and write locations provided by the users, i-Geo Sensing creates and stores a
desirable number of simulation realizations locally. Typically, the entries that hold feasible “Design
of Experiment” properties (e.g., fracture propagation properties, fracture confinement properties,
layer-based properties, rock physics) are located in the settings text file and not the input text file.

Therefore, users are strongly discouraged from selecting the entries that belong to the input text
file.

As 1-Geo Sensing utilizes the academic license of ResFrac, users need to run simulations in
ResFrac® manually. Fortunately, i-Geo Sensing readily performs in-place changes for the Design
of Experiment properties, therefore users are not required to use the ResFrac® builder interface to
make necessary changes. Users are only required to use the ResFrac® builder interface to import,
save, and run/batch run the realizations created in i-Geo Sensing [63, 65].

After all realizations are finished in ResFrac®, users shall provide the directory in which all
simulations for the realizations are stored locally (similar to Figure 126). i-Geo Sensing accesses

117

all realizations and reads the data files that have fracture elements and flow back/production data.
By default, the fracture elements are stored in the “RawRes” folder, and the flowback/production
data is stored in the “Results” folder. As fracture elements in ResFrac® are recorded at all
simulation time steps, sensor data profile(s) are sampled from the fracture elements as described
in 6.5 and arranged as a 1D data array. Combined with the Design of Experiment data that is stored
previously, i-Geo Sensing generates tabular data that has the columns ordered sequentially as all
the DoE data in the order the users request, the sensor data profile(s), and the calibration/history
matching data. For test case 6.2, the final tabular data (main training source) has a total of 5572
rows and 57 columns.

doe_caze 11/4/2024 417 PM File folder
doe_caze_1 11/4/2024 417 PM File folder
doe_case_2 11/4/2024 4:18 PM File folder
doe_case_3 117472024 4:22 PM File folder
doe_caze_4 11/4/2024 4:22 PM File folder
doe_case 5 117472024 4:22 PM File folder
doe_caze_& 11/4/2024 4:22 PM File folder
doe_case_ 7 117472024 4:23 PM File folder
doe_caze_8 11/4/2024 4:23 PM File folder
doe_case 9 117472024 4:23 PM File folder

Figure 126: Sample of a directory in which simulation results for realizations are stored
6.9. Supervised machine learning workflow

Figure 127 presents the complete supervised ML workflow in i-Geo Sensing. In Figure 127, the
“PDFinput” component represents the outcomes from the DoE module, and the grey-shaded
components represent the intervention of the Bayes Optimizer engine (detailed in Figure 120 in
6.6). The remaining and central component of this workflow, “Quantile Boosted Trees”, is further
detailed in 6.9-6.13. As briefly mentioned in 6.2, 6.4, and 6.6, the “Quantile Boosted Trees”
component serves as the proxy modeling that backs the supervised ML workflow.

Recalled from 6.7 and 6.8, the proxy data generation process inside i-Geo Sensing returns tabulated
dataset(s). Consequently, the ML model that backs the supervised ML workflow in i-Geo Sensing
shall have the following characteristics.

Highly robustness to tabulated data learning and prediction.

Behave consistently in the existence of outliers and abnormality in data.

Being resistant to the different scales between input variables (i.e., scaling effect)
Highly visualizable and highly explainable.

e

Under the context that pre-processing for tabulated data is conducted appropriately, classical ML
models are proven to outperform DL models. Besides, several classical ML models have a trait to
be highly explainable to practitioners, in contrast to DL models which are both not highly efficient
and hardly explainable for tabular datasets. Among classical ML models, the model family that
satisfies all three criteria above is the Ensembled Boosted Trees algorithm family (e.g., Gradient
Boosting Machine, XG-Boost). In i-Geo Sensing, GBM and XGB are implemented as the ML
model to back the supervised proxy, and XGB is the default option [68, 69].

118

lm

Supervised

Manual_match?

QuantileBoostedTrees T

w g0, H so(calibrated)

Props,.,
P /\
[Pios0,00 I"iSfit{Qmﬂ)]}

No No

PSO itery, [——— Tolerance
Yes l\"es
[BO wy, Hy, Props,.,

{

Figure 127: The supervised machine learning workflow

f4<-0.320506662

no, missing

leaf=-0.0236790888

f4<-1.73852777
leaf=-0.0185238831 f4<-0.852971137
f1<2.32634783 leaf=0.1204267

no, missing
leaf=0.0575028323 1leaf=0.00144712988

Figure 128: Visual of a decision tree’s mechanism

1o, missing

GBM and XGB are both foundational from decision tree models, and an example of a decision
tree is presented in Figure 128. Essentially, a decision tree determines internal criteria formed by
the input variable(s) (“f1” and “f4” notations in Figure 128) to split toward the predive traits of the
output variable(s), until no further split is achievable (i.e., a leaf in Figure 128). Decision tree
models are highly interpretable however are prone to unstable behaviors in predictive capabilities.
To mitigate the unstable behaviors from decision trees, ensemble tree models are found, e.g.,
Random Forest (RF), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGB).
These ensemble tree models have a higher level of robustness and are proven to extract meaningful
traits from tabular datasets. In practice, an ensemble tree model may contain hundreds of sub-trees

119

and subsequent learning enhancements to perform a better overall learning outcome (i.e.,
bagging/voting algorithms, as implemented in RF), or to improve the learning outcome from initial
“weak” sub-trees (i.e., boosting algorithms, as implemented in GBM/XGB).

Although GBM and XGB have multiple hyperparameters that control their learning performance,
i-Geo Senning preserves specific hyperparameter controls internally to avoid the “over-boosting
effect” [68]. They include the number of estimators, fraction of sub-samples, learning rate, and the
number of boosting rounds (specific to XGB). Except for the restriction above, the i-Geo Sensing
code provides both a default hyperparameter selection and a customizable approach for
hyperparameter selection from the users.

6.10. ML experimenting in the supervised workflow

Regardless of the ML models that are deployed for prediction, it is never guaranteed that a single
training and validation for a model will lead to deployment. To adopt this philosophy, 1-Geo
Sensing implements ML experimenting in joint with the supervised ML workflow, using the
MLflow API [72]. ML experimenting, which is a different concept than DoE mentioned in sub-
section 6, refers to the practice of creating, registering, storing, and deploying ML models through
the versioning control that is similar to code versioning control. A high overview of the ML
experimenting in 1-Geo Sensing is provided in Figure 129.

Supervised_M L_wor fklow

PROXY

Y

store
e EXPERIMENT MLRuns

2

RUN

A4 Y
FIT OPTIMIZE

: repeat ?
B RRREEEE, BestModel

Y

DeployedModel

Figure 129: Overview of ML model experimenting design in i-Geo Sensing

In i-Geo Sensing, the code relies on the selected model(s), the provided hyperparameter inputs (if
any), and the number of experiments required to run. Since all ML models in i-Geo Sensing are
regressors, i-Geo Sensing automatically manages all experiments within a local directory named
“mlruns”, and default reloads and deploys the ML model with the optimal evaluation metric(s).
For example, provided that a proxy in i-Geo Sensing is served for history matching purposes, i-

120

Geo Sensing reloads the ML model that has its correct serving purpose and the lowest Mean Square
Error (MSE).

6.11. Probabilistic and continual-training capabilities of the supervised machine learning
proxy

Several ML proxy modeling workflows predict deterministic outputs (i.e., a single output per
input). In i-Geo Sensing, all the ML models that are deployed from the supervised ML workflow
predict probabilistic values based on the predictive distribution of the output variable(s).
Embedded in both GBM and XGB as the i-Geo Sensing central proxy modeling backends, the
supervised ML workflow always predicts a lower bound output (the 5% quantile), a mean output
(the 50% quantile), and a higher bound output (the 95% quantile). This scheme of predictive ability
1s possible via the optimization of Pinball Loss, which is formulated as Equation 12 as a conditional
loss function [71].

Ly= (d=flaifdzfle= (f-dA-a)ifd<f (12)

Besides the probabilistic predictive ability as mentioned above, i-Geo Sensing leverages the geo-
location data at the received time via a technique named continual training (which occurs during
the deployment phase of the supervised ML workflow). The synthetic environment is designed to
reflect the reality that geo-location data, once received, becomes ground-truth data that can be used
as training data. Therefore, i-Geo Sensing leverages this benefit to perform the following during
the deployment phase of the supervised ML workflow.

1. As soon as the geo-location data is received, the ML model(s) inside the supervised ML
workflow is deployed for prediction.

2. An immediate computation of the evaluation metric between the prediction and ground-truth
response data is performed.

3. In case the evaluation metric exceeds a tolerance, the incident is reported to i-Geo Sensing.

4. The geolocation data and ground-truth response data are joined with previously trained data,
and the ML model(s) are re-trained and registered for the upcoming time steps.

Typically, continual training is performed at the early time steps, since the deployed ML model(s)
are expected to encounter data drift in reality. As enhancement in continual training progresses,
the re-trained ML model(s) shall adapt to reality and improve their dynamic performance at the
later time steps. Consequently, the number of incident reports to i-Geo Sensing decreases over the
lifetime of deployment.

6.12. Refinement of the supervised proxy inside i-Geo Sensing

In i-Geo Sensing, both fracture calibration and history matching proxies that back the supervised
ML workflow are sequentially refined to optimize their prediction validity. The refinement
progresses through three stages: the initial deterministic model (first round), the optimized quantile
model (second round), and the optimized & continual-trained quantile model (final round).
Provided the test environment for the supervised ML workflow in 6.2, Figures 130, 131, and 132
present the refinement for the fracture calibration proxy which predicts the BHP as an output
variable from the following input variables: geo-location data received time and the sensor data
profiles. Recalled from 6.7, the total number of input variables is 51.

121

BHP proxy, first optimization round

10 ‘ . True
. H —-- prediction
L
@ 057 | tee . . . e
A= e,
;; I T -~
1 —————,
E oo4 | T
] i AN
E 1 SN
5] ! ——
= -0.5 !
[
N 9
5 i
E 104 |
£ i R
& i
I 151 '
-2.0 i
-
T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150

Time (normalized, dimensionless)

Figure 130: BHP proxy, first-round refinement

BHP proxy, second optimization round

1o '] s True
. 3 —-- Prediction (5% quantile)
—-= Prediction (50% quantile)

o 057 S e . - . —-- Prediction (95% quantile)
3
=
28
] 0.0 q
Q
E
h-l
) —0.5 1
Q
N
™
E -1oq
2 .
T
= =1.5

204

-
T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150

Time (normalized, dimensionless)

Figure 131: BHP proxy, second-round refinement

BHP proxy, final optimization round

1.0 !
*
e
% 0.5 t .
8 __-=___:'_T==;:::::::::-:;-_:-""
= ~ _____,,-’/ ===,
2 - # \
@ 004 / i
5 / (1IN -
E . g W e
5 s e - 1 =
v i ==
3 R
N N TN
E -1.01 T
g T =
o o True
I -1.5 X . .
z L5 —-- Initial prediction (50% quantile)
=== Final prediction (5% quantile)
2.0 === Final prediction (50% quantile)
. === Final prediction (95% quantile)
T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150

Time {(normalized, dimensionless)

Figure 132: BHP proxy, final-round refinement

In Figures 130-132, the x-axis presents the time (dimensionless), and the y-axis presents the BHP
(dimensionless). i-Geo Sensing automatically pre-processes all input and output variables before

122

training any ML models, commonly via standardization/normalization/scaling methods,
Henceforth, it explains the notation “normalized” and the y-axis scale provided in Figures 130-
133. Figures 130-133 validate that the supervised ML workflow progressively improves to follow
the physical behavior of the output variable. Compared to Figure 130, Figure 131 demonstrates
that the quantile-loss ML model in i-Geo Sensing (specifically in this test, XGB) narrows the
differences between the ground-truth output data and the prediction confidence (the 95%
confidence in Figure 131 at the early time). Compared to Figures 130 and 131, Figure 132
demonstrates that continual training brings benefits later in which there is a drastic drop in the
output variable (the 5% confidence in Figure 132).

The evaluation metric, MSE, is progressively reduced through the optimization rounds from
0.0221 to 0.01382 and eventually to 0.0052 for the first, second, and final rounds, respectively.

Figures 133, 134, and 135 present the refinement for the history matching proxy which predicts
the oil production rate as an output variable from the following input variables: BHP (predicted
from the fracture calibration proxy) and the DoE parameters. Recalled from 6.7, the total number
of input variables is 5.

In Figures 133-135, axes have similar representations as Figures 130-132, and similar observations
are deducted from them compared to Figures 130-132. Compared to Figure 133, Figure 134
demonstrates that the quantile-loss ML model in i-Geo Sensing (specifically in this test, XGB)
narrows the differences between the ground-truth output data and the prediction confidence (the
95% confidence in Figure 134 at the early time). Compared to Figures 130 and 131, Figure 132
demonstrates that continual training brings benefits later in which there is a drastic increase in the
output variable (the 95% confidence in Figure 135 at the later time). The 95% confidence is greatly
improved in the final round refinement, and this improvement covers the failure to predict the oil
rate at the later times (compared to the previous refinement rounds).

The evaluation metric, MSE, is progressively reduced through the optimization rounds from
0.16609 to 0.17814 and eventually to 0.01 for the first, second, and final rounds, respectively.

Oil rate proxy, first optimization round

3.0 7 . e True
—-= Prediction

2.5 A
2.0 4
15
1.0+

R

0.5 1

Oil rate (normalized, dimensionless)

0.04

T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150
Time (normalized, dimensionless)

Figure 133: Oil rate proxy, first-round refinement

123

Oil rate proxy, second optimization round

3.0 ¢ e True
—-= Prediction (5% quantile)
— 254 —-= Prediction (50% quantile)
ﬁ —-=- Prediction (95% quantile)
= .
2 2014
o
L)
E
5 159 . .
o
o
(] - .
£ e —___._.—-_
2 | ot ——
u 05 [}
< L] R
S oo ===
Iy
05 emese e . . O
T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150

Time (normalized, dimensionless)

Figure 134: Oil rate proxy, second-round refinement

Oil rate proxy, final optimization round

307 e True .
—-~- Initial prediction (50% quantile}

_ 254 77" Final prediction (5% quantile)
ﬁ === Final prediction (50% quantile)
= === Final prediction (95% quantile) *
=]
2 201
= e T
o 1
£ o
T 15 [A
o i =
b :
] 4
£ 10 : >
2 i cmrmmmTmERT
S o051 i
8 i
5 ;
© oo | /

i

§

—0.5- @me s s o . . " sesescees
T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150

Time (normalized, dimensionless)

Figure 135: Oil rate proxy, final-round refinement
6.13. Supervised workflow explainability

As mentioned in 6.9, GBM and XGB are implemented as the backbone of the supervised module
in i-Geo Sensing. To exceed the explainable capability of these models in i-Geo Sensing, Shapley
Additive Explanation (referred to as SHAP [70]) is embedded as the additional criteria. In i-Geo
Sensing, there are two levels of mode explainability, as outlined in Figure 136.

Supervised_ML_wor fklow

PROXY
A 4
— fit -
training- inference-
based based
y y
Featurelmportance DegreeO fImpact

Figure 136: Different levels of model explainability in i-Geo Sensing
124

The first level of explainability is the training-based level [70]. Since GBM and XGB are used in
i-Geo Sensing, this level of explainability is directly extracted via the ranking plot for Key
Performance Indicators (presented in Figures 137a and 137b for the fracture calibration task). In
Figures 137a and 137b, the x-axis presents the absolute value of an input variable’s weight to the
decision by the boosted trees, and the y-axis presents the names of all input variables. Both Figures
137a and 137b indicate that time is a dominant factor, however, this phenomenon is observable in
case the sensor data profile(s) are not used.

Henceforth, the interest in the model’s explainability comes from the other input variables, i.e., the
variables forming the data sensor profile(s). The input variables for the data sensor profiles in i-
Geo Sensing are encoded in the format of the dimension name followed by the resolution interval
number. In Figures 137a and 137b, the encoding means that the z-dimension data is used (and as
described in 6.3, this dimension discloses information about the fracture aperture). Although there
is not a clear pattern for the base model (Figure 137a), the pattern in Figure 137b is insightful. The
top-ranked profile variables are zo and zi, indicating that the most-left edge of the fracture
contributes the highest impact to the BHP. The second-top-ranked profile variables are zx, 717,
Z16, 223, 221, 731, and z3s. These profile variables are located approximately in the middle of the
propagated fracture, indicating that the central area of the fracture contributes the second-highest
impact to the BHP.

Albeit different refinements (as in 6.9) may change the order of the resolution interval indexes
slightly, this observation complies with the fracture propagation physics. At the beginning of
propagation, the edges of the fractures tend to open because of an increase in BHP. During the
middle-late propagation, the central area of the fractures, in which the proppant is primarily settled,
holds the fracture pressure and eventually the BHP.

Key Performance Indicators, base BHP proxy

z 31 EEE Feature importance score, base BHP proxy

surrogate_time

Figure 137a: Key Performance Indicators, the base BHP model

125

surrogate_time

Key Performance Indicators, final BHP proxy

z9 W Feature importance score, final BHP proxy

z15
z31
z21
z23
216
z17
.20

z1

20

F T T T
o 100 200 300 400 500 600

Figure 137b: Key Performance Indicators, the final BHP model

Figures 138a and 138b present the Key Performance Indicators for the model that is responsible
for the history-matching task). The axes and their representations in Figures 138a and 138b are
similar to Figures 137a and 137b. For the history-matching task, the model still complies with the
physics during the well production phase, however, the explanation is more straightforward
compared to the fracture-calibration task. BHP plays a major role in controlling the oil rate after
the proppant injection is finished and the well is no longer an injector. Furthermore, the relative
permeability variables contribute more than the fracture propagation variable during production.
Therefore, the ranking for the variable “relative fracture toughness” is lower compared to the
relative permeability variables, and this observation is reflected better in the final model (Figure

138b, in which relative fracture toughness ranked the least important).

W feature importance score. base oil proxy mode

Figure 138a: Key Performance Indicators, the base oil rate model

126

Key Performance Indicators, final oil rate proxy

W Feature importance score, final oil rate proxy

Figure 138b: Key Performance Indicators, the final oil rate model

The second level of explainability is the inference-based level [70]. Different from the training-
base level which extracts the feature importance after the model is trained, the inference-based
level extracts the influence direction that a variable embeds into the model when the model is
deployed for a blind test or a new input sample. The influence direction in the context of i-Geo
Sensing includes both the direction and the magnitude.

1-Geo Sensing provides the interpretation for the second-level explainability through two types of
plots: the bee-swarm plot (Figures 139a and 140a) and the waterfall plot (Figures 139b and 140b).
Figures 139a and 139b present the second-level explainability for the fracture calibration proxy.
Per the definition of the second-level explainability, both the fracture calibration and history-
matching proxies are readily trained using the datasets in 6.7 and are now deployed for the
simulation data in the synthetic environment defined in 6.2.

In Figure 139a, the x-axis presents the mean SHAP impact value, and the input variable contributes
to the model’s predictive decision of the output variable (in this case, BHP and oil production rate).
A similar dominance of the time variable is observed in Figure 139a, as this is readily observed in
Figures 137a and 137b. A closer look at the “Feature value” color map, the direction of impact for
the time variable is explained as follows. When the time value is small (blue dots), it positively
influences the BHP, and the magnitude of the influence is moderate. When the time value is high
(magenta dots), it negatively influences the BHP, and the magnitude of influence is lower. A
reflection of the reservoir dynamics in the synthetic environment discloses a similar description.
Within the synthetic environment, at the early times, a change in time value determines a moderate
change in the BHP (since proppant injection and fracture propagation occur at the early times). At
later times when the well enters the producer mode, a smaller or larger change in time value
fluctuates the BHP slightly. Figure 139a, henceforth, highly correlates with Figure 108 in which
the BHP plot from ResFrac® simulator is presented.

127

High
surrogate_time ' e IE RS
z 29 o
z 18
z 16
z 22
z 14
z 15
z 35

z 17

-
B

z 24

z 38

Feature value

z 21
z 11
z 23
z41
z 20
z 19

z 0

z 26

EEr e W aEFy e A <l amEe wil eRw®

Low

20 -15 -10 -05 00 05 10
SHAP value (impact on model output)

Figure 139a: — SHAP’s bee-swarm plot for the BHP model

Figure 139b provides a quantitative model inference for the fracture calibration task. The gist
of Figure 139b reveals the contribution of each input variable to the expectation shift of the
model’s prediction from its baseline prediction (reflected by the expected value “E(x)” in the
x-axis). Figure 139b emphasizes the importance of the fracture central area (i.e., the input
variables 79, z14, and zi¢), as this area almost balances the expectation shift of the model’s
prediction from its baseline to the expectation shift caused by time.

Similar interpretations can be deducted from Figures 140a and 140b, which present the second-
level explainability for the history-matching proxy. An additional insight from Figures 140a
and 140b is that, under the synthetic environment, the DoE parameters play an almost
insignificant role in the predictive behavior of any models. Henceforth it is strongly suggested
that, in the case a user requests these DoE parameters to the i-Geo Sensing, he/she may need
to re-consider a better selection to interpret the dynamics of the studied reservoir.

128

fix) =0.187

0.071 = surrogate_time “
~0.597 = 229
~0.381 -~z 14
~0.483 ~ 7.16
~0.429 - 7 18 [LK
—0.377 ~ 215 oo
~0.337 =222 | RLK

~0.414 =2.35 P oo
~0.389 =217 P oo
“0423 =241 P oo
~0.569 — z 24 [!
~0.523 =221 . +0
~0.453 =711 P
~0.413 =238 P
~0.272=223 p o
~0.402 = z.20 p-o
“0193=22 p +o0
~0.227=2.0 } o
~0.433 -~ 719 } 0

32 other features

0100 0125 0150 0175 0200 0225 0250 0.275
EIfX)] =0.101

Figure 139b: SHAP’s waterfall plot for the BHP model

High
BHP t vme .
relative_frac_toughness g
g
S gr v
£
S or ha
S wr
T T T T Low

0 2 4 6 8
SHAP value (impact on model output)

Figure 140a: SHAP’s bee-swarm plot for the oil rate model

flx) = —0.439
0=5_wr +0
0=5_or ‘ +0
0=5_gr ‘ +0
0.5 = relative_frac_toughness ‘ +0
0.4 0.2 0.0 02 |
EIfX)] =0.276

Figure 140b: SHAP’s waterfall plot for the oil rate model
129

7. SUCCESSFUL FINAL FIELD TESTING (PILOT) IN THE EOG RESOURCES
OPERATED WELL IN NEW MEXICO

Summary

This section of the report details the successful field testing of a novel "Smart Microchip
Proppants” technology for high-precision diagnostics of hydraulic fracture networks. Developed
under Department of Energy award DE-FE0031784, the project was led by the University of
Kansas in partnership with UCLA, MicroSilicon Inc., and field trial operator and cost share
provider EOG Resources Inc.

The pilot test, conducted in August 2024 in Lea County, New Mexico, validated the ability of the
Smart Microchip technology to provide unprecedented high-resolution insights into proppant
placement and fracture mapping. The success of this field trial marks a major milestone in the
development of next-generation direct fracture diagnostic techniques and opens transformative
possibilities for characterizing and managing subsurface systems.

7.1 Pilot Testing Details

The "Smart Microchip Proppants” technology leverages Smart Microchips that are injected during

a small-scale hydraulic fracturing. These engineered Microchips are designed to withstand the
harsh downhole environment. The built specialized downhole tool is later deployed to remotely
power the embedded microchips and receive their transmitted signals. This enables detailed
mapping of proppant placement and fracture geometry at a resolution of one foot, an unparalleled
level of detail compared to conventional fracture diagnostic methods.

Field Testing Methodology The field trial was executed in the Capella BOP Fed #1 well operated
by EOG Resources in Lea County, New Mexico. Fig.141 is the satellite imagery of the pilot testing
site.

The testing process involved the following key steps:

1. Site Preparation: The well was deepened via a workover rig to the target stimulation
interval of 8765'-8800" in preparation for hydraulic fracturing and Smart Microchip
injection.

The workover rig was deployed on August 13, 2024, to prepare the well for the trial. EOG's
operation team performed several crucial steps, including pulling tubing, deepening the well by
drilling out the shoe, and running a packer and work string. The open hole was drilled with a 4.75"
bit, targeting the interval from 8765' to 8800" for hydraulic fracturing and smart Microchip
injection.

Figure 141(a) and (b) illustrate the wellbore diagram before and after deepening for the pilot
testing.

130

o

I Plaimview

Cedar HIl_
API14: 30025395280000
Operator Company Name: EOG RESOURCES | ” o
Well Name: CAPELLA BOP FEDERAL A
' 4 oras ¢ Well Number: 001
iy Drill Type: V K
SACRAMENTO MOUNTRI NS sme.'-yz:u faAcano Libbock
i . + CountylParish: LEA (NM) E°
‘| 2 |
New:Mexico | Producton ype: oL mo
S | Well Status: ACTIVE
Moscaloro Spud Date: 10-14-2009 E
s Y Completion Date: 12-25-2009 promik bt
oo Measured Depth (TD): 4355 a Girsdod
Alam 0901 Related Links: pr g
541" Ancoin View Operator Profie
O A Natonai View Well Card
Forest puhPsa Swyder
Texas
ey Otefon
R
ﬂ. a
R L P [8.] 24,
ft
Fort Blise ‘. .. n a'smmv S i
& ~
3 o
- ol L -
$is AR m“ & 25021
273
875 1t % "
: 90 M |
)
e R .
R
L AR
& a . San Angelo
~
A%
20R & L

Figure 141: satellite imagery of the pilot testing site (Capella BOP Fed #1)

131

: Capella BOP Fed #1
Do Svectaartn 330 FSL & 330 FWL Sec. 00-21532E
Location: 330 FSL & 330 FWL Sec. 0921532 'eog resources
icounty: Lea County, NM leog resources unty, N § g
Lavlong: 32466908, 1036672177 32 486808, -103.6872177
lai &: 30-025-30528 30-025-38528
ISpud Date: 10/14/09.
icompl. Date: 12726100
Current Wellbore Diagram: Eormation Tops Eormation Tops
xe:
L3
Ruster 1104
ke el o oviars pr=
Bone o 8559 Bone Sorin B553)
335 a88 @ 1230
195051
117 Hole

B 328 @ 4,355
Cmé w1300 8x feire)

Y

The wellbore diagram
“after” deepening for
the pilot testing.

OV Tool @ 4,385

7.7 Hole

Detaware Perts: 6702.8715

PR —
The wellbore diagram Deoare ot 11807207
“before” deepening for

the pilot testing.

Dalawar Perts: 7150-7202

TAC @ 8225
2778 TBG @ 8355

Detaware Ports: 84008546
S 15,58 178 @ 8765

1z 1558 17
5121558 Cmtwi 1200 sx. TOC @ surtace

' @ 8765
Cnt w1200 sx; TOC @ surface

U/ MRS N R AN RR

New TD@8800 ft
after deepening

Figure 141: (a: left) and (b: right) - the wellbore diagram before and after deepening for the pilot
testing.

2. Small-scale hydraulic fracturing and Smart Microchip Injection:

Hydraulic fracturing was conducted on August 19, 2024. Over 200 lab-verified Smart Microchip
samples were injected during the stimulation, which involved pumping 56 barrels of fluid at rates
up to 2.2 barrels per minute. Breakdown pressure was approximately 3700 psi, and the well was
shut in at 3300 psi.

To increase robustness against misalignment during deployment, two types of Printed Circuit
Boards (PCBs) were utilized:

1. First Version: Designed and injected for general alignment robustness.
2. Second Version: Featured an upgraded Surface-Mount Device (SMD) inductor serving as
the coil.

The resonance frequencies of the microchips, specifically at 13.56 MHz and 40.68 MHz, were

verified using a Vector Network Analyzer (VNA). Prior to deployment, all samples were validated
using a spectrum analyzer and signal source to ensure optimal performance and reliability.

132

The epoxy encapsulating the microchips was custom ordered to withstand high temperatures and
high pressure, ensuring durability under the well conditions. Over 100 samples of each Smart
Micochips PCBs version were injected into the formation.

Injection Process Details:

e The injection rate was gradually increased to 2.2 barrels per minute (bpm).

e A total of 56 barrels (bbl) of fluid was pumped, which included 5 bbl more than the
calculated well displacement.

e The injection pressure was carefully controlled, avoiding a maximum surface pressure of
4,000 psi to ensure that the bottom hole pressure remained below 9,000 psi.

The details of the HF job and operation are illustrated in Figure 142.

.Srpan.Microchip - ready for the Shut-in pressure of 3300 psi Recorded 3700 psi formation break-
mjection (2,0 0 microchips were down pressure during the hydraulic
jesiec) fracturing

Figure 142: Smart Microchips ready for the injection (200 microchips were injected) (left), Shut-
in pressure of 3300 psi (the middle), and Recorded 3700 psi formation break-down pressure
during the hydraulic fracturing (right)

3. Extended Shut-In Period: To rigorously test microchip resilience, the well was left shut-in
for ten days before initiating chip activation and data collection on August 28, 2024.

On August 19, 2024, the hydraulic fracturing operation was successfully completed, and Smart
Microchips were injected into the formation. Following this, a ten-day silence period was
implemented to allow the well and the system to stabilize fully before proceeding with the
activation of Smart Microchips. This silence period was a deliberate measure to ensure that the

133

microchips were exposed to the harsh downhole environment for a sufficient duration, providing
an opportunity to validate their functionality and durability.

The decision to delay the activation of the Smart Microchips was made to address potential
concerns regarding their long-term survivability. Activating the microchips immediately after
injection would not have provided a complete demonstration of their ability to withstand extreme
conditions over time. By scheduling the activation for August 28, 2024, the team ensured that the
microchips endured realistic downhole conditions, which allowed for a more robust evaluation of
their performance and resilience.

4. Downhole Tool Deployment: A custom-designed downhole tool, encased in 3-5/8" tubing,
was deployed on slickline to TD at 8800 ft. The tool was raised and lowered in three 50 ft
sweeps to activate and collect data from the Smart Microchips.

4.1 Preparation Phase

The preparation for the deployment involved assembling and configuring key components to
ensure a smooth operation. The chassis was securely loaded into a 3 5/8” pipe, a critical step in
preparing the downhole tool for deployment. The lower crossover was torqued into place using
spanner wrenches, providing a firm and reliable connection. At the top end of the assembly, a
small sub equipped with threads and O-rings was installed, ensuring a final pressure seal. This sub
also featured a thread profile supplied by EOG, designed for easy attachment to the rope socket on
the slickline unit.

Figure 143 illustrates the details of the downhole tool preparation for the field deployment.

Figure 143: The chassis was loaded into the 3 5/8” pipe (left), and the lower cross-over was
torqued in place with spanner wrenches. (the middle), and at the top-end, we provided another
small sub with threads and o-rings that can be torqued in place and provide the final pressure
seal. At the top of that sub is a thread whose profile was provided by EOG for attachment to the
rope socket on slickline unit. (right)

134

4.2 Transportation to the Site

The well site was located approximately 30 miles east of Carlsbad, New Mexico, accessible only
by a dirt road. The journey to the site was challenging due to the poor condition of the road, which
caused several vehicles to become stuck and require towing on two separate occasions. Despite
these difficulties, the team successfully reached the wellhead and began the setup process
(Fig.144).

Figure 144: Downhole tool transportation to the wellsite

4.3 Setup and Assembly

Upon arrival, the slickline crew initiated their preparations by verifying the rope socket thread and
mating components on the MicroSilicon tool, ensuring all connections were secure and properly
aligned. The downhole tool was successfully activated during this phase.

However, a minor challenge arose when it was discovered that the lubricator on-site was designed
for a 2 7/8” tool, whereas the deployed tool had a diameter of 3 5/8”. After consulting with the
EOG operations team, it was determined that the well could remain open for a brief period without
risk, allowing the lubricator to be adjusted for proper fit. The lubricator was then carefully placed
above the tool, which was lowered into the well and securely fastened (Fig.145).

Figure 145: Downhole Tool Setup and Assembly Onsite
135

4.4 Well Deployment

The deployment process began with the tool being lowered into the well using the lubricator. As
the lubricator was opened, the wellhead emitted a noticeable "hiss," indicating air was being drawn
into the well. This sound confirmed the safety of proceeding with the deployment.

Once the tool was running, the crew monitored the wire and periodically checked the pressure
gauge to ensure there was no buildup of internal pressure. The descent slowed as the tool
approached the total depth (TD) of 8,800 feet, with the weight on the wire signaling that the tool
had reached the bottom (Figures 146 and 147).

Figure 146: Well deployment of the downhole tool

136

Figure 147: Well deployment of the downhole tool
4.5 Activation of Smart Microchips and Signal Reception

The Smart Microchips were activated successfully during the deployment process. The tool was
maneuvered in the well with sweeps of 50 feet up and down, each lasting approximately 12
minutes. After completing three such sweeps, the crew pulled the tool out of the well and
disconnected it. Upon inspection, the tool's bottom was found to have some mud, but the fiberglass
antenna housing remained completely undamaged, confirming the structural integrity of the tool
(Figure 148).

LY -
Well mud- No
indication of lost
Microchips at the
bottom of the well

Downbhole tool
antenna survived

Downloading the Signals detected
data

Tool opened

Figure 148: Downhole tool after the operation is complete.
137

Further analysis revealed no Smart Microchips present in the mud, suggesting that all the
microchips had successfully entered the fractures as intended. When the rope-socket joint was
opened, a page of memory was successfully read, demonstrating that signals had been recorded
during the deployment. Data was downloaded from the tool, and the signal reception was verified,
confirming the effectiveness of the operation.

On the activation date, August 28, 2024, the Smart Microchips transitioned from a zero-energy,
inactive state to a fully powered and operational state (Figure 149). During this activation process,
the microchips were remotely powered and began transmitting signals as designed. This transition
marked a significant milestone, as it demonstrated the microchips' ability to function effectively
in challenging environments while maintaining their structural integrity and operational
capabilities. The ten-day silence period and the subsequent activation of the Smart Microchips
successfully validated their robustness and reliability. This methodical approach ensured that the
microchips could perform as intended under demanding conditions, addressing any potential
concerns about their functionality and long-term durability.

Transition of Smart microchips from zero
energy (dark) to full energy (brightly lit and
active), once they remotely powered,
activated and started transmitting signals

L~

Injection Date: August 19, 2024 Activation Date: August 28, 2024

Figure 149: Transition of Smart Microchips from Passive to Active State: Remote Power
Activation and Signal Transmission

7.2 Smart Microchip Signal Reception and Analysis
7.2.1 Successful Signal Reception from Smart Microchip Proppants in the Field

The activation of Smart Microchips in the field yielded significant results, confirming their
successful placement in the created hydraulic fractures. Signals were detected during multiple
sweeps of the downhole tool, validating the robust performance of the microchips under field
conditions. Notably, the microchips were observed at the same location during some sweeps but
not consistently in every sweep. This variation was attributed to the antenna's directional
limitations and potential tool rotation during operation.

A spectrogram analysis revealed three main clusters of signals corresponding to three primary

hydraulic fractures. The y-axis represented frequency, while the x-axis denoted time, highlighting
the distribution and strength of the detected signals (Figure 150).

138

Three main clusters of signals transmitted
by the Smart Microchips were detected,
indicating the presence of three primary

hydraulic fractures.

Raw data-
Initial Signals

-100 A

1e6 8760 8770 8780 8790 8800

Figure 150: The Most Exciting News: We Received Signals!!!. Three main clusters of signals
transmitted by the Smart Microchips were detected, indicating the presence of three primary
hydraulic fractures.

7.2.2 Interpreted Smart Microchips’ Signal Results

The initially filtered signals from the Smart Microchips demonstrated strong correlations across
eight sweeps. Each sweep corresponded to a different angular position of the downhole tool,
enabling comprehensive 360-degree data capture (Figure 151).

This thorough coverage confirmed the successful placement of the microchips within the hydraulic

fractures. The signal strength, indicative of a high concentration of microchips, provided further
evidence of their distribution within the fractures.

139

0
8760 770 8780 8790 8800 8760 a70 8780 8790 8800 8760 770 87180 879 8800 8760 &770 8780 8790 800
4 5 6 7
100
100 100 150
100
50 ° %
0
[} [} 0 0
-50
-50 -50 -50
-100
100 100 100 150
8760 o770 8780 8190 00 8760 770 180 8% 8800 8760 a0 8780 8790 8500 8760 70 5780 790 00

Figure 151: Initially filtered frequency versus depth data (y-axis: Frequency, x-axis: Depth)
for all eight sweeps.

The processed signals from Smart Microchips highlight their amplitude versus depth for all eight
sweeps (Figure 152). This data demonstrates strong correlations and consistency, confirming the
successful activation and functionality of the microchips. The consistent patterns reveal hydraulic
fractures with high precision, achieving detailed characterization with an accuracy of just a few
feet. This level of detail signifies a breakthrough in high-resolution hydraulic fracture

characterization.

Chip Signal Sweepd Chip Signal Sweep1 Chip Signal Sweep2 Chip Signal Sweep3
s . %

2
ki i 2
o
o Bl 14
.

8l
af]
2t | 2r I
Y o " el L V|
o 3 o i
§7% w70 wes 70 7S G780 47as w0 655 GA0) se0S §7% G0 wes @70 75 e80 478s W0 E%S GA0) se0s E1% o0 W65 G0 6175 G0 s WM €195 S0 BG0S B15 &80 4785 770 775 87M0 4785 W70 6195 6400 6605
Depth (ft) Depth (ft) Depth () Depth (ft)
Chip Signat Sweeps . Chip Signal Sweeps s Chip Signal Sweeps Chip Signal Sweep?
" =
w
.
"
s 4 "
3 5 E St
‘ =
E g 5 14
ngl a T 3
8° 5) 5 8
a 3 5 3
o 2
2t Bl
il
i 1
[‘ T FUPPVON A1) O N PR
b
775 ST80 3785 8790 EIU5 8300 6605 8756 8760 4785 8770 8775 6780 8735 4790 €795 8300 8606 8770 8173 8780 8785 03 8756 70 8775 8780 87 o5 BE0E
Dopth (ft) Degpth ift) Degth (ft) Depth ift)

Figure 152: Processed signals amplitude versus depth for all eight sweeps

140

The processed signals analyzed through the iGeoSensing platform identify key hydraulic fractures.
Using Chebyshev Type | low-pass filters, bandwidth frequency analysis, and adaptive depth
filtering, three main signal clusters were detected at depths of 8,766 ft, 8,780 ft, and 8,788 ft. These

clusters correspond to the primary hydraulic fractures,

with the strongest amplitude observed in

the third interval, indicating a higher concentration of microchips (Figure 153).

|
o & 5
n
o o o tt o -
A A A A A ’Elg
3
o 1 £
&)
&
o 3
~ }
o
o
i
3 i
0 1 &
o)
3
m
-~
0
o
g
8]
Qo
g

0828
T

ocee

Signal Ampliuda
w + o

= - N < - w
I I [

= Three primary Smart

- == Microchip signals -

demonstrating their
cement within the

three main fractures

! ! ! !

Figure 153: An example of raw and processed signals (Left and right) for one of the sweeps

These fractures are typically represented as homogeneous and simple in most fracture diagnostic
tools and models, especially for a few feet stimulated intervals.

These insights are typically difficult for operators to achieve, as indirect fracture measurements

often fail to provide this level of high-resolution detail.

141

Such details could not have been observed or diagnosed previously without obtaining core samples
from the hydraulically fractured well which is very unlikely to be obtained in normal operations.
However, this is now possible to get this valuable information at less than 1 ft resolutions with our
Smart Microchips technology.

To demonstrate the importance of the data generated by Smart Microchips, a "base" high-
resolution fracture and numerical simulation model was developed. This model was created using
the ResFrac Simulator, seamlessly integrated with iGeoSensing as its backend.

The models were built using a fine-scale grid size of 1x1x1 foot, enabling simulations of a
100x100x100-foot reservoir volume, amounting to one million grid blocks. The fluid model
applied to the reservoir was a saturated black oil model, ensuring realistic fluid behavior. The
open-hole hydraulic fracture spanned depths between 8,765 feet and 8,800 feet.

The pumping schedule was designed to align with field data, functioning as a mini-fracture
operation. This schedule involved injecting a total slurry volume of up to 55 barrels at a rate of 2.2
barrels per minute to deploy the microchips. The hydraulic fracture properties included a fracture
half-length (Xf) of 10 feet, fracture conductivity (FC) ranging between 8,236 and 8,312 millidarcy-
feet, and fracture height (Hf) of 35 feet.

The simulation accounted for various operational phases, including the mini-fracture, a shut-in
period, and field-informed flow-back stages. Critical fracture geometry parameters, such as
fracture toughness (K), were made adjustable through iGeoSensing’s advanced back-end module,
allowing for fine-tuning and precise modeling.

The base model indicated a homogeneous distribution of the stimulated rock volume across the
entire treated interval. This is typically the standard output reported by simulation engineers for
hydraulic fracturing jobs. However, such models may not fully or accurately capture the
complexity of actual hydraulic fractures, potentially leading to significant overestimations or
underestimations of the predicted flow behavior.

However, the Smart Microchips signals indicate that fracture growth is primarily restricted to the
active and detected depth intervals where hydraulic fractures are generated, with signals detected
at approximately 8766 ft, 8780 ft, and 8788 ft. This suggests non-uniform fracture propagation
across the entire stimulated interval. A similar phenomenon was observed in another project, where
core samples from a hydraulically fractured well revealed heterogeneous fracture initiation. This
included both bi-wing and complex fracture networks within a few feet intervals, which typically
cannot be characterized using conventional fracture diagnostic tools and are often treated as
homogeneous in hydraulic fracturing simulations.

The updated model (Figure 154) leveraged Smart Microchip data to showcase heterogeneous
proppant distributions, replacing the simplified homogeneous assumptions of the base model. The
transmitted signals from microchips allowed adjustments to the fracture model, creating a more
realistic depiction of stimulated intervals. This advanced modeling demonstrates the value of
integrating Smart Microchip data for accurate fracture mapping.

142

Base model:
Stimulated interval
profile without
knowing the Smart
Microchips signals
shows homogenous
distributions of
proppants

8800”

8765’ T_T

4 B | Limit frac growth via
K, at ‘active’ depth
mntervals

T

Simulated]
heterogeneous

proppant
distributions in the
updated model as Y‘x‘
observed from the n
Smart Microchips
transmitted signals

8780°

\y

\ Updated fracture geometry based on the Smart
-)2 MicroChips Signals (Left) and fracture toughness
(Right) for the high-resolution updated model

8788°
8800°

Figure 154: Base model: Stimulated interval profile without knowing the Smart Microchips
signals shows homogenous distributions of proppants (left), Simulated heterogeneous proppant
distributions in the updated model, as observed from the Smart Microchips, transmitted signals

(right), and fracture toughness (right) for the high-resolution updated model

New diagnostic plots generated from the iGeoSensing platform highlighted the differences
between the base model (without Smart Microchip input) and the updated model. Dimensionless
flowback type curves demonstrated how microchip-derived data significantly impacted fracture
characterization. The plots showed that higher initial fracture toughness influenced flowback
behavior, with its effect diminishing over time. This diagnostic approach underscores the
importance of incorporating advanced data analytics into hydraulic fracture modeling.

Dimensionless type curves, flow back rate versus time

Dimensionless flow back rate (gD)

0.0

Dimensionless time (tD)

—\Updated model ——Basemodel —»Low K ic —High_K_ic

Figure 155: Fracture geometry profiling diagnostic by dimensionless flow back type curves

143

In summary, the field trial achieved a critical milestone: the successful transmission and reception
of data signals from the downhole Smart Microchips. The key outcomes were:

1.

Smart MicoChips Signal Detection: Raw signal data revealed three distinct clusters of
microchip transmissions, indicating the presence and location of hydraulic fractures at
specific depth intervals. The consistent signal detection across multiple tool sweeps at
various orientations confirmed the effective placement and survivability of the microchips.
Smart MicoChips Data Processing and Modeling: The raw microchip data was processed
and integrated into a physics-informed Al modeling platform called iGeoSensing. Detailed
analysis of signal amplitudes enabled the resolution of proppant distribution and fracture
geometry at each depth interval at a scale of 1ft which revealed significant vertical
heterogeneity in the proppant distribution, a level of detail previously obtainable only
through extensive coring which is very unlikely to obtain during normal operation.
Conventional fracture diagnostics typically lack the resolution to capture such fine-scale
variability.

Diagnostic plots based on Smart MicoChips data: The Smart Microchip data was used to
develop new diagnostic tools, including fracture geometry profiles and dimensionless
flowback curves. These powerful visualizations illustrate the transformative impact of
integrating high-resolution proppant distribution Smart Microchips data into fracture
modeling and simulation.

7.3 Future Applications and Alignment with DOE Priorities

The successful field validation of the Smart Microchip Proppants technology has opened up a wide
horizon of potential applications that align with the strategic priorities of the Department of
Energy's Office of Fossil Energy and Carbon Management:

1.

2.

Near wellbore Fracture mapping: Enhance characterization by enabling Smart Microchips
to communicate with each other, amplifying power and signal strength.

CCUS (Carbon Capture, Utilization, and Storage): Upgrade Smart Microchips with
chemical sensing capabilities to detect low concentrations of CO2 in monitoring wells. This
early detection of leakage minimizes contamination of underground sources of drinking
water (USDWs) and supports compliance with DOE and EPA Class VI permit
requirements.

Hydrogen, CO», and Natural Gas Transmission Leak Monitoring and Surveillance:
Enhance monitoring and surveillance capabilities for detecting leaks and emissions in
hydrogen, CO, and natural gas transmission systems with Al-powered unmanned aerial
surveillance equipped with Smart Microchip chemical sensors.

Natural Hydrogen Production and Underground Storage Integrity: The next generation of
Smart Microchips, equipped with chemical sensing capabilities, can detect gases such as
CH4, CO», and H2 in the wellbore. These microchips can be integrated with downhole
membranes for efficient bottom-hole separation of H, from impurities.

Critical Mineral Characterization: Integrating Smart Microchips with advanced EPR,
hyperspectral, and THz spectroscopy could revolutionize in-situ mineral characterization
for optimized critical mineral recovery.

144

8. CONCLUSION

The resoundingly successful field trial of the Smart Microchip Proppants technology represents a
major leap forward in our ability to understand and characterize subsurface fracture systems and
proppant distribution. By enabling proppant mapping and fracture diagnostics at the scale of
individual feet, this novel technology has unlocked an unprecedented level of reservoir insight.

The results of this field test strongly validate Smart Microchips' ability to withstand harsh
downhole conditions while successfully transmitting valuable data to the surface as a novel direct
fracture mapping technology. By integrating this granular data into the open-source, physics-
informed, Al-empowered iGeoSensing modeling platform, comprehensive signal processing was
achieved. These signals were seamlessly converted into meaningful fracture characterization and
flow simulation outcomes through its backend simulators. This approach uncovered previously
unresolvable heterogeneity in hydraulic fracture geometry and proppant placement, providing
unprecedented insights into the complexity of hydraulic fracturing.

The foundational capabilities demonstrated in this field trial will serve as a launch pad for the
development of next-generation subsurface diagnostic technologies aligned with the United States
evolving energy and resource priorities.

With further refinement and adaptation, Smart Microchip technology is poised to play a
transformative role. This includes enhancing near-wellbore fracture mapping, improving wellbore
integrity, and ensuring the security of geologic carbon storage. Additionally, their role in
optimizing the recovery of critical minerals, pipeline integrity, and hydrogen production, storage,
and transport integrity is expected to be game-changing.

This comprehensive capability underscores the versatility and transformative impact of Smart
Microchips, making them an indispensable technology for addressing modern energy challenges.

145

References:

[1]D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of wireless sensor
networks: An up-to-date survey,” Appl. Syst. Innov., vol. 3, no. 1, pp. 1-24, Mar. 2020.

[2]H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo, and F. Muralter, “A review
of IoT sensing applications and challenges using RFID and wireless sensor networks,”
Sensors, vol. 20, no. 9, p. 2495, Apr. 2020.

[3]1. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A
survey,” Comput. Netw., vol. 38, no. 4, pp. 393-422, 2002, doi: 10.1016/S1389-
1286(01)00302-4.

[4]P. A. Charlez, Rock Mechanics: Petroleum Applications. Paris, France: Editions Technip,
1997, p. 239.

[S]Modern Shale Gas Development in the United States: A Primer, Ground Water Protection
Council (U.S.), ALL Consulting (Firm), Department of Energy, Office of Fossil Energy, and
National Energy Technology Laboratory, Washington, DC, USA, 2009.

[6]J. C. Reis, Environmental Control in Petroleum Engineering. Houston, TX, USA: Gulf,
1976.

[7]]. H. Le Calvez, R. C. Klem, L. Bennett, A. Erwemi, M. Craven, and J. C. Palacio, “Real-
time microseismic monitoring of hydraulic fracture treatment: A tool to improve completion
and reservoir management,” in Proc. SPE Hydraulic Fracturing Technol. Conf., Jan. 2007.

[8]M. C. Fehler, “Stress control of seismicity patterns observed during hydraulic fracturing
experiments at the Fenton Hill hot dry rock geothermal energy site, New Mexico,” Int. J.
Rock Mech. Mining Sci. Geomech. Abstr., vol. 26, nos. 3—4, pp. 211-219, Jul. 1989.

[9]IN. Yekeen, E. Padmanabhan, A. K. Idris, and P. S. Chauhan, “Nanoparticles applications for
hydraulic fracturing of unconventional reservoirs: A comprehensive review of recent
advances and prospects,” J. Petroleum Sci. Eng., vol. 178, pp. 41-73, Jul. 2019.

[10] G. L. Barbruni, P. M. Ros, D. Demarchi, S. Carrara, and D. Ghezzi, “Miniaturised wireless
power transfer systems for neurostimulation: A review,” [EEE Trans. Biomed. Circuits
Syst., vol. 14, no. 6, pp. 1160-1178, Dec. 2020, doi: 10.1109/TBCAS.2020.3038599.

[11] A. Costanzo and D. Masotti, “Energizing 5G: Near- and far-field wireless energy and data
trantransfer as an enabling technology for the 5G 10T,” IEEE Microw. Mag., vol. 18, no. 3,
pp. 125136, May 2017, doi: 10.1109/MMM.2017.2664001.

[12] A. Aderibigbe, K. Cheng, Z. Heidari, J. Killough, T. Fuss, and W. T. Stephens,
“Detection of propping agents in fractures using mag- netic susceptibility measurements
enhanced by magnetic nanoparticles,” in Proc. SPE Annu. Tech. Conf. Exhib., Oct. 2014, doi:
10.2118/170818- MS.

[13] A. Aderibigbe, K. Cheng, Z. Heidari, J. Killough, and T. Fuss-Dezelic, “Application of
magnetic nanoparticles mixed with propping agents in enhancing near-wellbore fracture
detection,” J. Petroleum Sci. Eng., vol. 141, pp. 133—-143, May 2016.

[14] T. Sun, “Study on preparation and performance of nano-ferrofluids used in diagnostic of
hydraulic fracture,” M.S. thesis, Dept. Oil Natural Gas Eng., China Univ. Petroleum, Beijing,
China, 2016.

[15] J.Liu, S. Cao, X. Wu, and J. Yao, “Detecting the propped fracture by injection of magnetic
proppant during fracturing,” Geophysics, vol. 84, no. 3, pp. IM1-IM14, May 2019.

[16] A.A. Al-Shehri, L. F. Akyildiz, J. M. Servin, and H. K. Schmidt, “FracBot technology for
mapping hydraulic fractures,” in Proc. SPE Annu. Tech. Conf. Exhib., Oct. 2017, doi:

146

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1109/TBCAS.2020.3038599
http://dx.doi.org/10.1109/MMM.2017.2664001
http://dx.doi.org/10.2118/170818-MS
http://dx.doi.org/10.2118/170818-MS

10.2118/187196-MS.

[17] A. A. Alshehri, C. H. Martins, S.-C. Lin, I. F. Akyildiz, and H. K. Schmidt,
“FracBot technology for mapping hydraulic fractures,” SPE J., vol. 26, no. 2, pp. 610-626,
Apr. 2021.

[18] W. G. P. Kumari et al., “Hydraulic fracturing under high temperature and pressure
conditions with micro-CT applications: Geothermal energy from hot dry rocks,” Fuel, vol.
230, pp. 138-154, Oct. 2018.

[19] P. L. Dreike, D. M. Fleetwood, D. B. King, D. C. Sprauer, and T. E. Zipperian, “An
overview of high-temperature electronic device technologies and potential applications,”
IEEE Trans. Compon., Packag., Manuf. Technol., A, vol. 17, no. 4, pp. 594-609, Dec. 1994,
doi: 10.1109/95.335047.

[20] D. M. Fleetwood, F. V. Thome, S. S. Tsao, P. V. Dressendorfer, J. Dandini, and J. R.
Schwank, “High-temperature silicon-on- insulator electronics for space nuclear power
systems: Requirements and feasibility,” IEEE Trans. Nucl. Sci., vol. NS-35, no. 5, pp. 1099—
1112, Oct. 1988, doi: 10.1109/23.7506.

[21] P. G. Neudeck, R. S. Okojie, and L.-Y. Chen, “High-temperature electronics—A role for
wide bandgap semiconductors?” Proc. IEEE, vol. 90, no. 6, pp. 1065-1076, Jun. 2002, doi:
10.1109/JPROC.2002.1021571.

[22] T.-H. Chen, L. T. Clark, and K. E. Holbert, “Memory design for high-temperature
radiation environments,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2008, pp. 107-114, doi:
10.1109/RELPHY.2008.4558870.

[23] N. Sadeghi, A. Sharif-Bakhtiar, and S. Mirabbasi, “A 0.007-mm2 108- ppm/°C 1-MHz

relaxation oscillator for high-temperature applications up to 180 °C in 0.13 um CMOS,”
IEEE Trans. Circuits Syst.I, Reg. Papers, vol. 60, no. 7, pp. 1692—1701, Jul. 2013,
doi: 10.1109/TCSI1.2012.2226500.

[24] C. Davis and 1. Finvers, “A 14-bit high-temperature £ modulator in standard CMOS,”
IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 976-986, Jun. 2003, doi:
10.1109/JSSC.2003.811973.

[25] . Habibagahi et al., “Vagus nerve stimulation using a miniaturized wirelessly powered
stimulator in pigs,” Sci. Rep., vol. 12, no. 1, p. 8184, May 2022, doi: 10.1038/s41598-022-
11850-0.

[26] A. Ray, I. Habibagahi, and A. Babakhani, “Fully wireless and batteryless localization and
physiological motion detection system for point-of-care biomedical applications,” in Proc.
IEEFE Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2022, pp. 26-30.

[27] J. Jang, I. Habibagahi, H. Rahmani, and A. Babakhani, “Wire- lessly powered,
batteryless closed-loop biopotential recording IC for implantable leadless cardiac monitoring
applications,” in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2021, pp. 1-4, doi:
10.1109/BIOCAS49922.2021.9644988.

[28] U. Guler and M. Ghovanloo, “Power management in wireless power-sipping devices: A
survey,” IEEE Circuits Syst. Mag., vol. 17, no. 4, pp. 64-82, 4th Quart., 2017, doi:
10.1109/MCAS.2017.2757090.

[29] B. Razavi, “The role of PLLs in future wireline transmitters,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 56, no. 8, pp. 17861793, Aug. 2009.

[30] Ray, Arkaprova, and Aydin Babakhani. "A Wirelessly Powered System of Coherent
Sensing Nodes for Fracture Mapping Applications at Temperatures up to 250° C and Pressures
up to 24 MPa." IEEE Sensors Journal 23.10 (2023): 10605-10615.

147

http://dx.doi.org/10.2118/187196-MS
http://dx.doi.org/10.1109/95.335047
http://dx.doi.org/10.1109/23.7506
http://dx.doi.org/10.1109/JPROC.2002.1021571
http://dx.doi.org/10.1109/RELPHY.2008.4558870
http://dx.doi.org/10.1109/TCSI.2012.2226500
http://dx.doi.org/10.1109/JSSC.2003.811973
http://dx.doi.org/10.1038/s41598-022-11850-0
http://dx.doi.org/10.1038/s41598-022-11850-0
http://dx.doi.org/10.1109/BIOCAS49922.2021.9644988

[31] I. Habibagahi, R. P. Mathews, A. Ray and A. Babakhani, "Design and Implementation of
Multisite Stimulation System Using a Double-Tuned Transmitter Coil and Miniaturized
Implants," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 3, pp. 351-354,
March 2023, doi: 10.1109/LMWC.2022.3217519.

[32] Andreas Wuestefeld, Thedor 1. Urbancic, Adam Baig, Marc Prince. A decade monitoring
Shale Gas plays using microseismicity: advances in the understanding of Hydraulic
Fracturing. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8-
10 October 2012

[33] Alexander Katashov et.al. Using markers for Production Logging in horizontal gas wells
with multistage hydraulic fracturing. SPE-201624-MS, SPE Annual Technical Conference &
Exhibition, Denver, Colorado, USA, 5 — 7 October 2020.

[34] Becht, E. et al, 2019. Dimensionality reduction for visualizing single-cell data using
UMAP

[35] Claudia Malzer and Marcus Baum. A hybrid approach To Hierarchical Density-based
Cluster Selection. 2020 IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems (MFI), Virtual Conference, Sept. 14-16, 2020.

[36] Gustavo A. Ugueto et.al. Application of Integrated Advanced Diagnostics and Modeling to
Improve Hydraulic Fracture Stimulation Analysis and Optimization. SPE-168603, SPE
Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, USA, 4-6
February 2014.

[37] King G.E. Thirsty Years of Gas Shale Fracturing: What Have We Learned? SPE 133456,
SPE Annual Technical Conference and Exhibition, Florence, Italy, Sep 19-22, 2010.

[38] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research 9, p2579-2605., 2008.

[39] Marian Morys, Sergei Knizhnik, Andrew R Duncan, Brady E. Tingey. Advances in
Borehole Imaging in Unconventional Reservoirs. Unconventional Resources Technology
Conference (URTeC), Houston, Texas, USA, 23-25 July 2018.

[40] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Reconstruction.
Eurographics Symposium on Geometry Processing, 2006.

[41] S. C. Shrivastava. A Review on Affine Transformation. International Advanced Research
Journal in Science, Engineering and Technology, Vol3, Issue 8, August 2016.

[42] Soumyadeep Ghosh et.al. Insights into fracture fluid distribution and fracture geometry in
hydraulically fractured horizontal wells through thermal simulations and fiber optics
distributed temperature sensing (FO - DTS) measurements. DOI 10.15530/urtec-2020-3028,
Unconventional Resources Technology Conference, Austin, Texas, USA, 20- 22 July 2020.

[43] Vuong Van Pham et.al. i-GeoSensing Fracture Diagnostic (i-GSFD) For Fast Processing
Of The Smart Microchip Proppants Data. Annual Technical Conference and Exhibition
(ATCE) 2021, Dubai, UAE, 9/21-9/23, 2021.

[44] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding
How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE,
UMAP, TriMAP, and PaCMAP for Data Visualization. Journal of Machine Learning Research
22 (1-73), 7/21/2021.

[45] Andreas Wuestefeld, Thedor 1. Urbancic, Adam Baig, Marc Prince. A decade monitoring
Shale Gas plays using micro-seismicity: advances in the understanding of Hydraulic
Fracturing. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8-
10 October 2012

148

[46] Alexander Katashov et.al. Using markers for Production Logging in horizontal gas wells
with multistage hydraulic fracturing. SPE-201624-MS, SPE Annual Technical Conference &
Exhibition, Denver, Colorado, USA, 5 — 7 October 2020.

[47] Biggs, Norman (1993), Algebraic Graph Theory, Cambridge Mathematical Library
(2nd ed.), Cambridge University Press, Definition 2.1, p. 7.

[48] Charles R. Qi* et.al, Point Net: Deep Learning on Point Sets for 3D Classification and
Segmentation. arXiv:1612.00593v2. April 10%, 2017.

[49] Claudia Malzer and Marcus Baum. A hybrid approach To Hierarchical Density-based
Cluster Selection. 2020 IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems (MFI), Virtual Conference, Sept. 14-16, 2020.

[50] Gidley, J.L., Holditch, S.A., Nierode, D.E. et al. Three-Dimensional Fracture-Propagation
Models. In Recent Advances in Hydraulic Fracturing, 12. Chap. 5, 95. SPE, 1989.

[51] Gustavo A. Ugueto et.al. Application of Integrated Advanced Diagnostics and Modeling to
Improve Hydraulic Fracture Stimulation Analysis and Optimization. SPE-168603, SPE
Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, USA, 4-6
February 2014.

[52] John Lawson. Design and Analysis of Experiments with R. CRC Press, Taylor & Francis
Group, 2017.

[53] King G.E. Thirsty Years of Gas Shale Fracturing: What Have We Learned? SPE 133456,
SPE Annual Technical Conference and Exhibition, Florence, Italy, Sep 19-22, 2010.

[54] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research 9, p2579-2605., 2008.

[55] Marian Morys, Sergei Knizhnik, Andrew R Duncan, Brady E. Tingey. Advances in
Borehole Imaging in Unconventional Reservoirs. Unconventional Resources Technology
Conference (URTeC), Houston, Texas, USA, 23-25 July 2018.

[56] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu. A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. 2nd International Conference
on Knowledge Discovery and Data Mining (KDD-96)

[57] Meng Tang, Yimin Liu, and Louis J. Durlofsky, Stanford University. History Matching
Complex 3D Systems Using Deep-Learning-Based Surrogate Flow Modeling and CNN-PCA
Geological Parameterization. SPE Reservoir Simulation Conference, 19 October 2021. SPE-
203924-MS

[58] Michael J. Economides et.al, 2002. Unified Fracture Design: bridging the Gap between
Theory and Practice. Nolte, K.G. and Smith, M.G. Interpretation of Fracturing Pressures. J Pet
Technol 33 (9): 1767-1775, 1981. SPE-8297-PA.

[59] Paul Webster*, Barbara Cox, Mathieu Molenaar, Shell Canada. Developments in
Diagnostic Tools for Hydraulic Fracture Geometry Analysis. Unconventional Resources
Technology Conference (URTeC). Denver, Colorado, USA, 12-14 August 2013.

[60] Vuong Van Pham et.al. 1-GeoSensing Fracture Diagnostic (i-GSFD) For Fast Processing of
The Smart Microchip Proppants Data. Annual Technical Conference and Exhibition (ATCE)
2021, Dubai, UAE, 9/21-9/23, 2021.

[61] Sergey Stolyarov, Eduardo Cazeneuve, Karim Sabaa, David Katz, and Junjei Yang, BHGE.
A Novel Technology for Hydraulic Fracture Diagnostics in the Vicinity and Beyond the
Wellbore. SPE Hydraulic Fracturing Technology Conference and Exhibition. Woodlands,
Texas, USA, 5-7 February 2019. SPE-194373-MS

149

[62] James Bergstra, Remi Bardenet, Yoshua Bengio, Balazs Kegl. Algorithms for Hyper-
Parameter Optimization. Advances in Neural Information Processing Systems 24 (NIPS
2011)
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc63
5690-Paper.pdf

[63] Charles A. Kang, Mark W. McClure, Somasekhar Reddy. Description of ResFrac
automated history matching and optimization workflow. Submitted 25" November 2021.

[64] Garrido-Merchan and D. Hernandez-Lobato. Dealing with categorical and integer-valued
variables in Bayesian Optimization with Gaussian processes. Neurocomputing 380 (2020)
20-35.

[65] Mark McClure, Charles Kang, Soma Medam, Chris Hewson, Egor Dontsov, Ankush Singh,
Carlo Peruzzo, Elizaveta Gordeliy. ResFrac technical write-up.
https:/arxiv.org/abs/1804.02092. Submitted 6™ April 2018, last revised 22" April 2024.

[66] Hyper-opt documentation. https://hyperopt.github.io/hyperopt/

[67] Sacks, J. and Schiller, S. B., and Welch, W. J. Designs for computer experiments,
Technometrics 31 (1) (1989) 41-47.

[68] Tianqi Chen, Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.

arXiv:1603.02754.

[69] Friedman, Jerome H. Greedy Function Approximation: A Gradient Boosting Machine.
Annals of Statistics (2001): 1189-1232.

[70] Scott M. Lundberg, Su-In Lee. 4 Unified Approach to Interpreting Model Predictions.
Advances in Neural Information Processing Systems 30 (NIPS 2017)

[71] Tilmann GNEITING and Adrian E. RAFTERY. Strictly Proper Scoring Rules, Prediction,
and Estimation. Journal of the American Statistical Association March 2007, Vol. 102, No.
477, Review Article DOI 10.1198/016214506000001437

[72] MLflow documentation. https://github.com/mlflow/mlflow

150

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://arxiv.org/abs/1804.02092
https://hyperopt.github.io/hyperopt/
https://github.com/mlflow/mlflow

APPENDIX A: EOG CORE SAMPLES AND LOGS FROM A PLUG-BACK PILOT
BOYD X STATE X STATE #15H — API 30-015-42223-00-00, PADDOCK FORMATION.

Figure A.2.2507-2510 ft interval

151

Figure A.3 2507-2510 original core and logs in box IMG 5627

W) &) d &4 &4 4

EOG_Boyd_X_STATE_ EOG_BOYD_X_STATE BOYD-X-STATE-COMBOYD-X-STATE-COMBOYD-X-STATE-COMBOYD-X-STATE-COM
COM_15H_XMAC_RU_COM_15H_XMAC_RL-15H_ZDL-CN-DSL-HI-15H_MREX-FLEX-DSI-15H_IMAGE_1370-45-15H_HDIL-XMAC-GR

) &) d &4 &4 4

30015422230000_Boy8_BOYDXCOM_RUN28_BOYDXCOM_RUN2 8_BOYDXCOM_MRE 8_BOYDXCOM_MRE EOG_Boyd_X_STATE_
d 15H_pilot.las _HIRES.las las X_FLEX_RUN2.las X_BW_REPEAT_RUN2COM_15H_XMAC_RU

152

Figure A.4 2597-2600

153

APPENDIX B

BOYD STATE #15H (PADDOCK FORMATION)

QUALITY ASSURANCE AND MINERALOGY

Table B.1: Mineralogy testing of the Paddock Formation

Mineralogy of the Paddock Formation

Orthoclase | Oglioclase | Mixed Grain

D Depth Quartz | Calcite | Dol lllite [S i Chlorite| Pyrite| Feldspar | Feldspar | Clays |Albite|Anhydrite|Siderite| Apatite |Aragonite| Density
@[(m) (%) | (%) () | (%)]| (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%) (%) (g/ce)
1| 250750 |1 o 4 90 0 0 0 0 0 0 2 0 2 2 0 0 0 2.824
2 [2507.75 1] o 3 89 0 0 0 0 0 0 1 1 0 6 0 0 0 2.842
3 [2508.25 1] o 4 91 0 0 0 0 0 0 0 0 1 4 0 0 0 2.842
4 | 250850 |1| © 4 90 ;) 0 0 0 0 0 7] 1 0 3 0 0 0 2.803
5 | 2508.75 |1 o 2 92 0 0 0 0 0 0 1 0 2 3 0 0 0 2.870
6 | 2509.50 [1| o 1 91 0 0 0 0 0 0 2 0 0 6 0 0 0 2.848
7 [2509.75 1] o 3 92 0 0 0 0 0 0 0 0 0 5 0 0 0 2.845
8 | 259710 [2] 2 1 67 8 2 0 2 0 0 0 0 2 17 0 0 0 2.822
9 | 259740 |2] o 0 66 1 0 0 0 0 0 0 0 0 32 0 0 0 2.855
10 [2597.90 [2| o 0 90 4 0 0 0 0 2 0 0 0 3 0 0 0 2.813
11 260020 [2] o 0 66 4 2 0 0 0 0 0 0 0 27 0 0 0 2.830
12 [2600.60 [2| o 0 85 6 0 0 0 0 0 0 0 2 7 0 0 0 2.815
13 [260090 [2] o 0 56 4 1 0 0 0 1 0 0 0 38 0 0 0 2.851

[Average [1] 00 [30 9.7 Jo1] o0 00 [00 Joo] oo [10 03 J o7 [a1 [oo 00 [oo [2839 |

| Average [2[03 [o1 718 [a6][os 00 [03 [o00] o4 [o0 00 [o07 [208 [o0 01 [oo [283 |

| Average [| 01 [17 820 [22| o4 00 | o1 [oo] 02 0.5 02 | o7 | 1us 0.0 0.1 00 | 2835 |

154

Figure B.1 2507.50 feet (Top and Side View)

155

2507.75 feet (Top and Side Yiew

HES 1‘ 2
| b b b

2! |
:|||| VAL 0 o o B o

NCHES 1
|||ﬁ||s|1|

Figure B.2 2507.50 feet (Top and Side View)

156

2508.25feet (Top and Side View

Figure B.3. 2508.25 feet (Top and Side View)

157

feet (Top and Side View)

Figure B.4. 2808.50 feet (Top and Side View)

158

2808.75 feet (Top and Side View

Figure B.5. 2808.75 feet (Top and Side View)

159

2809.50 feet (Top and Side)View

Figure B.6. 2809.50 feet (Top and Side View)

160

2509.75 feet (Top and Side)View

Figure B.7. 2509 feet (Top and Side View)

161

2597.10 feet (Top and Side View

Figure B.8. 2597 feet (Top and Side View)
162

2597.40 feet (Top and Side View

1 2

Figure B.9. 2597.4 feet (Top and Side View)

163

2597.90 feet (Top and Side View

Figure B.10. 2597.9 feet (Top and Side View)
164

2600.20 feet(Top and Side View

Figure B.11. 2600.2 feet (Top and Side View)
165

2600.60 feet (Top and Side View

Figure B.12. 2600.6 feet (Top and Side View)

166

2600.90 feet (Top and Side View

Figure B.13. 2600.9 feet (Top and Side View)

167

APPENDIX C

SHEAR AND COMPRESSIONAL VELOCITY
TESTING PROCEDURES AND RESULTS

BOYD STATE #15H (PADDOCK FORMATION)

Dynamic moduli can be derived from sonic measurement. In this approach, compressional
velocity, Vj, and shear velocity, Vs, are measured with a Pulse Transmission technique with
nominal velocities of 300-500 KHz. The bulk density of each core sample is measured and the
Young’s Modulus, E, Shear Modulus, and Poisson’s Ratio, n, are calculated from the following
equations.

» 13.400,000,000

S tmamic = P o e B-1

(057, —2*7,7]

¥ . =
dyramic [, 2 2
h | R
v -V,

— % * | .
Ea:rﬁamic - = Saﬁ‘na‘m.r'r “ +1 dymamic

The procedures for conducting laboratory shear and compressional velocity tests are, for the most
part, relatively standardized. The assembled sample and instrumentation fixtures are installed in a
pressure vessel. After this, typical procedures might include the following steps:

e The core plugs are cleaned, evacuated, and allowed to come to thermal and vapor equilibrium
with the atmosphere.

e The sample is then saturated with 25,000 ppm NaCl brine under a pressure of 1,000 psi for 12
hours.

e The samples are then placed in a pressure vessel, confining pressure and pore pressure
increased to 250 psi for five minutes and then released.

e Velocities are measured using the Pulse Transmission technique. The nominal frequency of
the measurements is 500 KHz for the compressional wave velocity and 350 KHz for the shear
wave velocity.

168

Table C.1. Compressional and Shear Wave Velocity Analysis

Compressional and Shear Wave Velocity Analysis

169

Compressional Travel Times
Confining Pressure, psi Confining Pressure, psi
Depth 1,000 2,000 3,000 Blk Den 1,000 2,000 3,000
1D m ft/sec ft/sec ft/sec g/cc us/t us/ft us/t
Y 2507.50 | 21201 22093 22513 2.824 47.16759 | 45.26321 | 44.41878
2 2507.75 | 21814 22730 22969 2.842 45.84212 | 43.99472 | 43.53694
3 2508.25 | 21430 22326 22441 2.842 46.66356 | 44.79083 | 44.56129
4 2508.50 | 21539 21850 21959 2.803 46.42741 | 45.76659 | 45.53941
5 2508.75 | 19642 20420 21486 2.870 50.91131 | 48.9716 | 46.54193
6 2509.50 | 22208 22818 23281 2.848 45.02882 | 43.82505 | 42.95348
7 2509.75 | 21352 21919 21988 2.845 46.83402 | 45.62252 | 45.47935
8 2597.10 | 21133 21905 22170 2.822 47.31936 | 45.65168 | 45.106
9 2597.40 | 21168 21995 22069 2.855 47.24112 | 45.46488 | 45.31243
10 2597.90 | 21535 21996 22114 2.813 46.43603 | 45.46281 | 45.22022
1 2600.20 | 21845 21969 22015 2.830 45.77707 | 45.51869 | 45.42357
12 2600.60 | 22050 22112 22305 2.815 45.35147 | 45.22431| 44.833
13 2600.90 | 22224 22552 23405 2.851 44.9964 | 44.34197 | 42.72591
Shear Travel Times
Confining Pressure, psi Confining Pressure, psi
Depth 1,000 2,000 3,000 1,000 2,000 3,000
1D m ft/sec ft/sec ft/sec wus/ft s/t s/t
1 2507.50 | 12254 12648 12785 81.6060 | 79.0639 | 78.2167
2 2507.75 | 11772 11965 12270 84.9473 | 83.5771 | 81.4996
3 2508.25 | 11391 11578 11900 87.7886 | 86.3707 | 84.0336
4 2508.50 | 11368 11512 11693 87.9662 | 86.8659 | 85.5213
5 2508.75 | 10554 10919 11214 94.7508 | 91.5835 | 89.1742
6 2509.50 | 11998 12323 12477 83.3472 | 81.1491 | 80.1475
7 2509.75 | 11827 12021 12297 84.5523 | 83.1878 | 81.3206
8 2597.10 | 13133 13409 13426 76.1441 | 74.5768 | 74.4823
9 2597.40 | 10833 11064 11098 92.3105 | 90.3832 | 90.1063
10 2597.90 | 12138 12540 12568 82.3859 | 79.7448 | 79.5672
1 2600.20 | 12225 12479 12650 81.7996 | 80.1346 | 79.0514
12 2600.60 | 12313 12578 12720 81.2150 | 79.5039 | 78.6164
13 2600.90 | 13273 14135 14966 75.3409 | 70.7464 | 66.8181
Shear Wave Travel Times
Confining Pressure, psi
Depth 1,000 2,000 3,000
1D m ft/sec ftisec ft/sec
1 2507.50 | 11512 11890 12070
2 2507.75 | 12077 12316 12566
3 2508.25 | 12248 12640 12781
4 2508.50 | 12112 12325 12580
5 2508.75 | 11443 11930 12014
6 2509.50 | 12226 12603 12775
7 2509.75 0 0 0
8 2597.10 | 11808 11708 11910
9 2597.40 | 11119 11301 11745
10 2597.90 | 12216 12869 12923
11 2600.20 | 12720 12898 12926
12 2600.60 | 12512 12615 12949
13 2600.90 | 13170 14284 14965

Compressional and Shear Wave Velocity Analysis

Poisson's Ratio

Dynamic Shear

Dynamic Young's Modulus

Confining Pressure, psi Confining Pressure, psi Confining Pressure, psi
Depth 1,000 2,000 3,000 1,000 2,000 3,000 1,000 2,000 3,000

1D m psi psi psi psi psi psi psi psi psi

1 2507.50 0.25 0.26 0.26 5682314 | 6053593 | 6185445 | 14196302 | 15209483 | 15611922
2 2507.75 0.29 0.31 0.30 5277514 | 5451980 | 5733476 | 13664082 | 14266170 | 14910929
3 2508.25 0.30 0.32 0.30 4941429 | 5105003 | 5392905 | 12878327 | 13437056 | 14069010
4 2508.50 0.31 0.31 0.30 4853958 | 4977708 | 5135465 | 12687690 | 13020445 | 13373947
5 2508.75 0.30 0.30 0.31 4283718 | 4585138 | 4836239 | 11112403 | 11919452 | 12698103
6 2509.50 0.29 0.29 0.30 5493669 | 5795323 | 5941076 | 14216612 | 14999731 | 15429210
7 2509.75 0.28 0.28 0.27 5332566 | 5508943 | 5764816 | 13637453 | 14157146 | 14670766
8 2597.10 0.19 0.20 0.21 6522134 | 6799149 | 6816400 | 15462809 | 16322839 | 16501566
9 2597.40 0.32 0.33 0.33 4489608 | 4683120 | 4711947 | 11875764 | 12462969 | 12540925
10 2597.90 0.27 0.26 0.26 5553526 | 5927473 | 5953973 | 14074795 | 14928215 | 15021296
11 2600.20 0.27 0.26 0.25 5667467 | 5905420 | 6068373 | 14418120 | 14903193 | 15213858
12 2600.60 0.27 0.26 0.26 5718880 | 5967692 | 6103197 | 14565310 | 15048443 | 15368143
13 2600.90 0.22 0.18 0.15 6730390 | 7632972 | 8556842 | 16459396 | 17960179 | 19751763

Shear Wave Anisotropy Dynamic Young's Modulus
Confining Pressure, psi Confining Pressure, psi
Depth 1,000 2,000 3,000 Depth 1,000 2,000 3,000

1D m fraction fraction | fraction 1D m Mmpsi Mmpsi Mmpsi
1 2507.50 0.06 0.06 0.06 1 2507.50 14.20 15.21 15.61
2 2507.75 -0.03 -0.03 -0.02 2 2507.75 13.66 14.27 14.91

3 2508.25 -0.08 -0.09 -0.07 3 2508.25 12.88 13.44 14.07

4 2508.50 -0.07 -0.07 -0.08 4 2508.50 12.69 13.02 13.37

5 2508.75 -0.08 -0.09 -0.07 5 2508.75 11.11 11.92 12.70
6 2509.50 -0.02 -0.02 -0.02 6 2509.50 14.22 15.00 15.43

7 2509.75 1.00 1.00 1.00 7 2509.75 13.64 14.16 14.67
8 2597.10 0.10 0.13 0.11 8 2597.10 15.46 16.32 16.50
9 2597.40 -0.03 -0.02 -0.06 9 2597.40 11.88 12.46 12.54
10 2597.90 -0.01 -0.03 -0.03 10 2597.90 14.07 14.93 15.02
11 2600.20 -0.04 -0.03 -0.02 11 2600.20 14.42 14.90 15.21
12 2600.60 -0.02 0.00 -0.02 12 2600.60 14.57 15.05 15.37
13 2600.90 0.01 -0.01 0.00 13 2600.90 16.46 17.96 19.75

170

Dynamic E, x 1076 psi

20.000 ® Clastics
O Prospective Shales
18.000 A 1-Paddock Formation (Dynamic E)
A 2-Paddock Formation (Dynamic E)
16.000 ——Linear (1-Paddock Formation (Dynamic E)) ‘/
L
(d
14.000 ‘
12.000
2 O
10.000 Q &
® OO o
8.000 @-
6.000 O O
| @
4.000 —go
5 .
2.000
0.000 ‘
0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000

Static E, x 1076 psi

Figure C.1: Dynamic E vs Static E

171

16.000

APPENDIX D
BOYD STATE #15H (PADDOCK FORMATION)

UN-PROPPED CRACK TESTING

100
5 L
® |
PS @
=)
E
2 Procedure-Step
s 10 Closure Stress
4 Step 1. 100 psi
£ Step 2. 1250 psi
F Step 3. 1250 psi
a Step 4. 1250 psi
Step 5. 1250 psi
Step 6. 1250 psi
1 T T T T T
0 1 2 3 4 5
Procedure-Step
Well Name: Boyd State #15H Province/County: Eddy
Field: Country/State: New Mexico
Formation: Paddock Sample Length (inches): .9155
Temperature (degrees F): 69 Sample Diameter (inches): .9775
Note: Horizontal, Naturally Fractured Sample Depth (feet) - Id.: 2600.20 - 11, Core Set 2

Figure D.1: Un-Propped Crack Test: Paddock Core Set 2, ID-11, (2600.20)

172

Table D.1: Procedures: Paddock Formation, Core Set 2, ID-11 (2600.20 ft)

4% KCL water. (Monday AM)
Comment: Good test

Procedure-Step 1. Naturally fractured core sample, closure stress 100 psi, 68 degrees F, record permeability using

(Monday PM)
Comment: Good test

Procedure-Step 2. Ramp closure stress to 1250 psi, 68 degrees F, record permeability using 4% KCL water.

(Tuesday AM)
Comment: Good test

Procedure-Step 3. Hold closure stress at 1250 psi, 68 degrees F, record permeability using 4% KCL water.

(Tuesday PM)
Comment: Good Test

Procedure-Step 4. Hold closure stress at 1250 psi, 68 degrees F, record permeability using 4% KCL water.

(Wednesday AM)
Comment: Good Test

Procedure-Step 5. Hold closure stress at 1250 psi, 63 degrees F, record permeability using 4% KCL water.

(Wednesday PM)
Comment: Good Test

Procedure-Step 6. Hold closure stress at 1250 psi, 68 degrees F, record permeability using 4% KCL water.

Table D.2: Laboratory Data: Paddock Formation, Core Set 2, ID-11 (2600.20 ft)

Core
test Conditions Closure
perm temp volume deltat prodrate Tempviscosity length diameter P1 P2 deltaP Stress
(md) _(deg F) M1 (cc) M2 (cc] cc] minutes _seconds _ (sec) (cc/min| C| in in Sil Si units - autoconversion (psi) Procedure-Step
Procedure-Step 1. Closure Stress 100 psi, 4% KCL Water, Monday 04/12/2021 9:00 AM
621908 68 0 430 430 0 300 300 0.8600 1.0020 09155 09775 163 0 163 23254 24829 01109 100 1
60.0082 68 0 4.20 420 0 300 300 0.8400 1.0020 09155 09775 1.65 0 165 23254 24829 0.1123
624870 68 0 440 440 0 300 300 0.8800 1.0020 09155 09775 166 0 166 23254 24829 0.1130
621129 68 0 4.40 4.40 0 300 300 0.8800 1.0020 09155 09775 167 0 167 23254 24829 0.1136
Procedure-Step 2. Ramp Closure Stress to 1250 psi, 4% KCL Water, Monday 04/12/2021 2:30 PM
50.6745 68 0 460 460 0 300 300 0.9200 1.0020 09155 09775 214 0 214 23254 24829 01456 1250 2
495729 68 0 450 450 0 300 300 0.9000 1.0020 09155 09775 214 0 | 214 23254 24829 0.1456
498056 68 0 450 450 0 300 300 0.9000 1.0020 09155 09775 213 0 213 23254 24829 0.1449
498056 68 0 450 450 0 300 300 0.9000 1.0020 09155 09775 213 0 | 213 23254 24829 01449
Procedure-Step 3. Hold Closure Stress at 1250 psi, 4% KCL Water, Tuesday 04/13/2021 9:00 AM
542007 68 0 515 515 0 300 300 1.0300 1.0020 09155 09775 224 0 | 224 23254 24829 01524 1250 3
53.9151 68 0 5.10 510 0 300 300 1.0200 1.0020 09155 09775 223 0 223 23254 24829 0.1517
562818 68 0 530 530 0 300 300 1.0600 1.0020 09155 09775 222 0 | 222 23254 24829 0.1511
552199 68 0 520 520 0 300 300 1.0400 1.0020 09155 09775 222 0 222 23254 24829 0.1511
Procedure-Step 4. Hold Closure Stress at 1250 psi, 4% KCL Water, Tuesday 04/13/2020 2:30 PM
496309 68 0 440 440 0 300 300 0.8800 1.0020 09155 09775 2.09 0 209 23254 24829 01422 1250 4
555364 68 0 490 490 0 300 300 0.9800 1.0020 0.9155 09775 2.08 0 | 208 23254 24829 01415
59.2214 68 0 520 520 0 300 300 1.0400 1.0020 09155 09775 2.07 0 207 23254 24829 0.1409
60.3602 68 0 530 530 0 300 300 1.0600 1.0020 09155 09775 207 0 | 207 23254 24829 0.1409
Procedure-Step 5. Hold Closure Stress at 1250 psi, 4% KCL Water, Wednesday 04/14/2021 9:00 AM
76.4583 68 0 6.00 6.00 0 300 300 1.2000 1.0020 09155 09775 185 0 185 23254 24829 01259 1250 5
755926 68 0 590 590 0 300 300 1.1800 1.0020 09155 09775 184 0 184 23254 24829 0.1252
76.0057 68 0 590 590 0 300 300 1.1800 1.0020 09155 09775 183 0 183 23254 24829 01245
721410 68 0 5.60 560 0 300 300 1.1200 1.0020 09155 09775 1.83 0 183 23254 24829 0.1245
Procedure-Step 6. Hold Closure Stress at 1250 psi, 4% KCL Water, Wednesday 04/14/2021 2:30 PM
853316 68 0 5.90 590 0 300 300 1.1800 1.0020 09155 09775 163 0 163 23254 24829 01109 1250 6
887688 68 0 6.10 6.10 0 300 300 1.2200 1.0020 09155 09775 162 0 162 23254 24829 0.1102
89.4964 68 0 6.15 615 0 300 300 1.2300 1.0020 09155 09775 162 0 162 23254 24829 0.1102
942986 68 0 6.40 640 0 300 300 12800 1.0020 09155 09775 160 0 160 23254 24829 0.1089

173

4% KCL
Water
(md)

61.6997

49.9646

54.9044

56.1872

75.0494

89.4738

Permeability (md)

45

40

20

15

10

Appendix E Boyd State #15H (Paddock Formation)

Fluid Sensitivity Testing

' 1 | - e

B i B b B Kol e Bl Fad b e e e Bl b ot B) O I 75 I 5 T s P s I [O 7 e S 75 o) I

—=— Permeability (md) —— Cumulative F luid Volume - Brine Concentration (cc)

+ 2000

T 1500

+ 1000

-+ 500

Figure E.1: Fluid Sensitivity Test: Paddock Formation, Core Set 1, ID-7 (2509.75”)

174

Cumulative Auid Volume - Brine Concentration(cc)

Table E.1 Procedures: Boyd State #15H (Paddock Formation) Core Set 1, ID-7

Step 1 Closure Stress 1250 psi, 69 degrees F, Permeability With 2% KCL Water (Tuesday PM)
Comments: Total injected volume 14.15cc. Good test. Cumulative volume 185cc.

Closure Stress 1250 psi, 69 degrees F, Permeability With 6% KCL Water Wednesday AM)
Comments: Total injected volume 12.65cc. Good test. Cumulative volume 812.65cc.

Closure Stress 1250 psi, 69 degrees F, Permeability With 6% KCL Water (Wednesday AM)
Comments: Total injected volume 12.2cc. Good test. Cumulative volume 32.4cc.

4 Closure Stress 1250 psi, 69 degrees F, Permeability With 6% KCL Water (Wednesday AM)
Comments: Total injected volume 10.60cc. Good test. Cumulative volume 30.60cc.

Sten o Closure Stress 1250 psi, 69 degrees F, Permeability With 6% KCL Water (Wednesday AM)
Comments: Total injected volume 10.8cc. Good test. Cumulative volume 30.90cc.

: Closure Stress 1250 psi, 69 degrees F, Permeability With 6% KCL Water (Wednesday AM)
Comments: Total injected volume 10.95cc. Good test. Cumulative volume 31.05cc.

: Closure Stress 1250 psi, 69 degrees F, Permeability With 6% KCL Water (Wednesday AM)
Comments: Total injected volume 7.4cc. Good test. Cumulative volume 17.85cc.

175

Step 1. Closure Stress 1250 psi, 69 degrees F, Permeability With 4% KCL Water (Wednesday PM)
Comments: Total injected volume .85cc. Good test. Cumulative volume 3.85cc.

Step 2. Closure Stress 1250 psi, 69 degrees F. Permeability With 4% KCL Water (Thursday AM)
Comments: Total injected volume 7.30cc. Good test. Cumulative volume 207.30cc.

Step 3. Closure Stress 1250 psi, 69 degrees F, Permeability With 4% KCL Water (Thursday AM)
Comments: Total injected volume 7.8cc. Good test. Cumulative volume 22.30cc.

Step 4. Closure Stress 1250 psi, 69 degrees F, Permeability With 4% KCL Water (Thursday AM)
Comments: Total injected volume 8.4cc. Good test. Cumulative volume 18.80cc.

Step 5. Closure Stress 1250 psi, 69 degrees F, Permeability With 4% KCL Water (Thursday AM)
Comments: Total injected volume 9.10cc. Good test. Cumulative volume 24.10cc.

Step 6. Closure Stress 1250 psi, 69 degrees F, Permeability With 4% KCL Water (Thursday AM)
Comments: Total injected volume 9.10cc. Good test. Cumulative volume 19.60cc.

Step 7. Closure Stress 1250 psi, 69 degrees F, Permeability With 4% KCL Water (Thursday AM)
Comments: Total injected volume 8.95cc. Good test. Cumulative volume 23 45cc.

176

Step 1 Closure Stress 1250 psi, 69 degrees F, Permeability With 2% KCL Water (Thursday PM)
Comments: Total injected volume 6.05cc. Good test. Cumulative volume 36.25cc.

itep 2 Closure Stress 1250 psi, 69 degrees F, Permeability With 2% KCL Water (Frisday AM)
Comments: Total injected volume 8.90cc. Good test. Cumulative volume 348.90cc.

Step o Closure Stress 1250 psi, 69 degrees F, Permeability With 2% KCL Water (Friday AM)
Comments: Total injected volume 8.95cc. Good test. Cumulative volume 23.95cc.

Step 4. Closure Stress 1250 psi, 69 degrees F. Permeability With 2% KCL Water (Friday AM)
Comments: Total injected volume 9.05cc. Good test. Cumulative volume 24.05cc.

Step 50 Closure Stress 1250 psi, 69 degrees F, Permeability With 2% KCL Water (Friday AM)
Comments: Total injected volume 8.85cc. Good test. Cumulative volume 22.85cc.

: Closure Stress 1250 psi, 69 degrees F, Permeability With 2% KCL Water (FridayAM)
Comments: Total injected volume 9.20cc. Good test. Cumulative volume 24 2cc.

Step 7 Closure Stress 1250 psi, 69 degrees F, Permeability With 2% KCL Water (Friday AM)
Comments: Total injected volume 9.20cc. Good test. Cumulative volume 24 20cc.

177

Table E.2: Lab Data: Boyd State #15H (Paddock Formation) Core Set 1, ID-7

STEF 1. Closure Stress 1250 psi, Pe ty With 6% KCL Wa 0/2021 2:00 PM)

43.4088 69 0 3.60 0 300 1.0020 09680 09840 2.04 0 24587 24994 0.1388
37.4076 69 0 330 0 300 10020 09680 09840 217 0 24587 24994 01477
37.7606 69 0 350 0 300 10020 09680 09840 228 0 24587 24994 01551
39.0863 69 0 375 0 300 10020 09680 09840 236 0 24587 24994 0.1606
STEP 2. Closure Stress 1250 psi, Pel ty With 6% KCL Wa 3/31/2021 7:00 AM)
129775 69 0 220 0 300 1.0020 09680 09840 417 0 24587 24994 0.2838
14.0228 69 0 240 0 300 10020 09680 09840 421 0 24587 24994 02865
245983 69 0 420 0 300 10020 09680 09840 420 0 24587 24994 02858
224949 69 0 385 0 300 10020 09680 09840 421 0 24587 24994 02865
STEF 3. Closure Stress 1250 psi, Pel ty With 6% KCL Wa 3/31/2021 8:00 AM)
133264 69 0 240 0 300 1.0020 09680 09840 443 0 24587 24994 03014
16.6205 69 0 3.00 0 300 10020 09680 09840 444 0 24587 24994 03021
19.8552 69 0 360 0 300 10020 09680 09840 446 0 24587 24994 03035
17.5702 69 0 320 0 300 09840 448 0 24587 24994 03048
STEP 4. Closure Stress 1250 psi, Pel ty With 6% KCL Wa
13.6950 69 0 260 0 300 09840 4.67 0 24587 24994 03178
125342 69 0 240 0 300 X . 09840 471 0 24587 24994 03205
14.0413 69 0 270 0 300 10020 09680 09840 473 0 24587 24994 03219
14.9864 69 0 290 0 300 10020 09680 09840 476 0 24587 24994 03239
STEP 5. Closure Stress 1250 psi, Pel ty With 6% KCL Wa 3/31/2021 10:00 AM)
12.3486 69 0 250 0 300 10020 09680 09840 4.98 0 24587 24994 03389
142670 69 0 290 0 300 10020 09680 09840 5.00 0 24587 24994 03402
137202 69 0 2380 0 300 10020 09680 09840 5.02 0 24587 24994 03416
126645 69 0 260 0 300 10020 09680 09840 5.05 0 24587 24994 03436
STEF 6. Closure Stress 1250 psi, Pel ty With 6% KCL Wa 3/31/2021 11:00 AM)
145803 69 0 310 0 300 10020 09680 09840 523 0 24587 24994 0.3559
121589 69 0 260 0 300 10020 09680 09840 526 0 24587 24994 03579
120899 69 0 260 0 300 10020 09680 09840 529 0 24587 24994 0.3600
122529 69 0 265 0 300 10020 09680 09840 532 0 24587 24994 03620
STEP 7. Closure Stress 1250 psi, Pel ty With 6% KCL Wa 3/31/2021 12:00 AM)
9.2409 69 0 210 0 300 10020 09680 09840 559 0 24587 24994 03804
8.3014 69 0 1.90 0 300 10020 09680 09840 5.63 0 24587 24994 03831
7.3622 69 0 170 0 300 10020 09680 09840 568 0 24587 24994 0.3865
72979 69 0 1.70 10020 09680 09840 573 0 24587 24994 0.3899
STEP 1. Closure Stress 1250 psi, Pe i a 3/31/2021 3:00 PM)
4.0325 69 0 020 10020 09680 09840 122 0 24587 24994 0.0830
4.6588 69 0 0.25 10020 09680 09840 132 0 24587 24994 0.0898
3.4646 69 0 020 10020 09680 09840 142 0 24587 24994 0.0966
3.2581 69 0 0.20 10020 09680 09840 151 0 24587 24994 01027
STEP 2. Closure Stress 1250 psi, Pe ty Wi a 01/2021 7:00 AM)
47352 69 0 1.90 10020 09680 09840 9.87 0 24587 24994 06716
4414 69 0 1.80 10020 09680 09840 9.90 0 24587 24994 06737
44589 69 0 180 10020 09680 09840 9.93 0 24587 24994 06757
4.4455 69 0 1.80 1.0020 09680 09840 9.96 0 24587 24994 06777
STEP 3. Closure Stress 1250 psi, Pe! 01/2021 8:00 AM)
4.8470 69 0 200 10020 09680 09840 1015 0 24587 24994 06907
45910 69 0 1.90 10020 09680 09840 1018 0 24587 24994 06927
45776 69 0 190 10020 09680 09840 1021 0 24587 24994 06947
4.8044 69 0 200 10020 09680 09840 1024 0 24587 24994 06968
STEP 4. Closure Stress 1250 psi, Pe i a 172021 9:00 AM)
47214 69 0 200 10020 09680 09840 1042 0 24587 24994 0.7090
49432 69 0 210 10020 09680 09840 1045 0 24587 24994 07111
49291 69 0 210 10020 09680 09840 1048 0 24587 24994 07131
51539 69 0 220 10020 09680 09840 1050 0 24587 24994 0.7145
STEP 5. Closure Stress 1250 psi, Pe 01/2021 10:00 AM)
5.0766 69 0 220 10020 09680 09840 1066 0 24587 24994 07254
52974 69 0 230 10020 09680 09840 1068 0 24587 24994 0.7267
52826 69 0 230 10020 09680 09840 1071 0 24587 24994 07288
52121 69 0 230 10020 09680 09840 1073 0 24587 24994 07301
STEP 6. Closure Stress 1250 psi, Pel 01/2021 11:00 AM)
52000 69 0 230 10020 09680 09840 1088 0 24587 24994 07403
51905 69 0 230 10020 09680 09840 1090 0 24587 24994 07417
49512 69 0 220 10020 09680 09840 1093 0 24587 24994 0.7437
51715 69 0 230 10020 09680 09840 1094 0 24587 24994 07444
STEP 7. Closure Stress 1250 psi, Pel 01/2021 12:00 AM)
48710 69 0 220 10020 09680 09840 1111 0 24587 24994 0.7560
4.8666 69 0 220 10020 09680 09840 1112 0 24587 24994 07567
4.9638 69 0 225 10020 09680 09840 1115 0 24587 24994 07587
5.0650 69 0 230 1.0020 09840 1117 0 24587 24994 07601
STEP 1. Closure Stress 1250 psi, Pel ty With 2% KCL Wate 01/2021
47566 69 0 140 0 300 1.0020 09840 724 0 24587 24994 04927
5.0545 69 0 150 0 300 1.0020 09840 730 0 24587 24994 04967
51874 69 0 156 0 300 10020 09680 09840 735 0 24587 24994 05001
53114 69 0 1.60 0 300 10020 09680 09840 741 0 24587 24994 05042
STEP 2. Closure Stress 1250 psi, Pel ty With 2% KCL Wa 021 7:00 AM)
46083 69 0 225 0 300 1.0020 09680 09840 1201 0 24587 24994 08172
44984 69 0 220 0 300 10020 09680 09840 1203 0 24587 24994 0.8186
44910 69 0 220 0 300 10020 09680 09840 1205 0 24587 24994 0.8200
45854 69 0 225 0 300 10020 09680 09840 1207 0 24587 24994 0.8213
STEP 3. Closure Stress 1250 psi, Pel ty With 2% KCL Wa 021 8:00 AM)
44321 69 0 220 0 300 1.0020 09680 09840 1221 0 24587 24994 0.8308
44249 69 0 220 0 300 1.0020 09680 09840 1223 0 24587 24994 08322
46185 69 0 230 0 300 10020 09680 09840 1225 0 24587 24994 08336
45107 69 0 225 0 300 10020 09680 09840 1227 0 24587 24994 08349
STEP 4. Closure Stress 1250 psi, Pel ty With 2% KCL Wa 021 9:00 AM)
44634 69 0 225 0 300 10020 09680 09840 1240 0 24587 24994 08438
44562 69 0 225 0 300 1.0020 09680 09840 1242 0 24587 24994 0.8451
45479 69 0 230 0 300 10020 09680 09840 1244 0 24587 24994 0.8465
44419 69 0 225 0 300 10020 09680 09840 1246 0 24587 24994 0.8479
STEP 5. Closure Stress 1250 psi, Pel ty With 2% KCL Wa 021 10:00 AM)
43926 69 0 225 0 300 10020 09680 09840 1260 0 24587 24994 08574
42881 69 0 220 0 300 1.0020 09680 09840 1262 0 24587 24994 0.8587
42847 69 0 220 0 300 10020 09680 09840 1263 0 24587 24994 0.8594
42780 69 0 220 0 300 10020 09680 09840 1265 0 24587 24994 0.8608
STEP 6. Closure Stress 1250 psi, Pel ty With 2% KCL Wa 021 11:00 AM)
44339 69 0 230 0 300 10020 09680 09840 1276 0 24587 24994 0.8683
44269 69 0 230 0 300 1.0020 09680 09840 1278 0 24587 24994 0.86%6
4.4200 69 0 230 0 300 10020 09680 09840 1280 0 24587 24994 08710
44131 69 0 230 0 300 10020 09680 09840 1282 0 24587 24994 08723
STEP 7. Closure Stress 1250 psi, Pel ty With 2% KCL Wa 021 12:00 AM)
43756 69 0 230 0 300 10020 09680 09840 1293 0 24587 24994 0.8798
437122 69 0 230 0 300 10020 09680 09840 1294 0 24587 24994 0.8805
43654 69 0 230 0 300 1.0020 09680 09840 1296 0 24587 24994 08819
43621 69 0 230 0 300 10020 09680 09840 1297 0 24587 24994 08826

178

Closure Stress (psi)

4000

3500 +—

Proppant Embedment of
0.0680 Ibs/ft"2 at
3,000 psi Closure Stress

3000

2500

At 3,000 psi Closure
Stress 58.1% of a
Grain Diameter Was
Lost to embedment

2000

1500

1000

500

40/70 Ceramic Proppant
Used In Testing

/

T

0.000

0.002

0.004

0.006

Incremental Displacement(inches)

0.008

Figure E.2: Embedment Test: Paddock Formation, Core Set 1, ID-7 (2509.75”)

Table E.3: Procedures: Embedment Test: Core Set 1, ID-7 (2509.75”)

Thursday 04/22/2021
o

Friday 04/23/2021
D

Incremental Fracture Closure Cumulative Fracture — Results Results
Width Change Stress Width Change

inches psi inches inches Ibs/ftr2

0 100 0.2500 0.0000 0.0000
0.0047 500 0.2453 0.0047 0.0376
0.0063 1000 0.2437 0.0063 0.0504
0.0072 1500 0.2428 0.0072 0.0576
0.0078 2000 0.2422 0.0078 0.0624
0.0082 2500 0.2418 0.0082 0.0656
0.0085 3000 0.2322 0.0085 0.0680
0.0240 8000 0.2260 0.0240 0.1920
0.0515 10000 0.1985 0.0515 0.4120
0.0451 1000 0.2049 0.0451 0.3608
0.0551 10000 0.1949 0.0551 0.4408
0.0490 1000 0.2010 0.0490 0.3920
0.0180 10000 0.2320 0.0180 0.1440

Grain Diameter Basis: 0.01462 inches

Cumulative Fracture Width Retained at Ultimate Stress: 9288 percent

8:00 am - .0000 inch *
9:00 am - 0044 inch
10:00 am - .0045 inch
11:00 am - .0045 inch
12:00 pm - .0045 inch
1:00 pm - .0045 inch
2:00 pm - .0045 inch
3:00 pm - .0045 inch
4:00 pm - .0045 inch

Thursday 04/29/2021
Di

8:00 am - 0047 inch *
9:00 am - .0060 inch
10:00 am - .0060 inch
11:00 am - .0061 inch
12:00 pm - .0061 inch
1:00 pm - .0060 inch
2:00 pm - .0060 inch
3:00 pm - .0060 inch
4:00 pm - .0060 inch

Friday 04/30/2021
D

8:00 am - 0082 inch "
9:00 am - 0084 inch
10:00 am - .0084 inch
11:00 am - .0084 inch
12:00 pm - .0084 inch
1:00 pm - .0084 inch
2:00 pm - .0084 inch
3:00 pm - .0083 inch
4:00 pm - .0084 inch

Monday 5/18/09
Di

8:00 am - 0085 inch
9:00 am - .0163 inch
10:00 am - .0164 inch
11:00 am - .0165 inch
12:00 pm - .0165 inch
1:00 pm - .0165 inch
2:00 pm - .0165 inch
3:00 pm - .0165 inch
4:00 pm - .0165 inch

Tuesday 5/19/09
D

8:00 am - 0515 inch "
9:00 am - Ramp
10:00 am - Ramp
11:00 am - Ramp
12:00 pm - Ramp

1:00 pm - .0454 inch

2:00 pm - .0453 inch

3:00 pm - .0453 inch

4:00 pm - .0453 inch

8:00 am - .0451 inch
9:00 am - Ramp
10:00 am - Ramp
11:00 am - Ramp
12:00 pm - Ramp

1:00 pm - 0541 inch

2:00 pm - .0544 inch

3:00 pm - .0545 inch

4:00 pm - .0546 inch

Monday 04/26/2021
D

Tuesday 04/27/2021
o

Wednesday 04/28/2021
=

8:00 am - .0063 inch ™
9:00 am - .0072 inch
10:00 am - .0072 inch
11:00 am - .0072 inch
12:00 pm - .0072 inch
1:00 pm - .0072 inch
2:00 pm - .0071 inch
3:00 pm - .0071 inch
4:00 pm - 0071 inch

Tuesday 5/12/09
D

8:00 am - .0072 inch ™
9:00 am - .0077 inch
10:00 am - .0077 inch
11:00 am - .0077 inch
12:00 pm -.0077 inch
1:00 pm - .0077 inch
2:00 pm - .0077 inch
3:00 pm - .0077 inch
4:00 pm - 0077 inch

Wednesday 5/13/09
D

8:00 am - 0078 inch
9:00 am - 0081 inch
10:00 am - .0081 inch
11:00 am - .0081 inch
12:00 pm - .0081 inch
1:00 pm - .0081 inch
2:00 pm - 0081 inch
3:00 pm - .0081 inch
4:00 pm - .0081 inch

Thursday 5/14/09
Di

8:00 am - 0166 inch ™
9:00 am - .0180 inch
10:00 am - .0182 inch
11:00 am - 0183 inch
12:00 pm - .0184 inch
1:00 pm - .0184 inch
2:00 pm - .0184 inch
3:00 pm - .0184 inch
4:00 pm - .0184 inch

Wednesday 5/20/09
D

8:00 am - 0186 inch ™
9:00 am - .0225 inch
10:00 am - .0230 inch
11:00 am - .0232 inch
12:00 pm - .0233 inch
1:00 pm - .0235 inch
2:00 pm - .0235 inch
3:00 pm - .0236 inch
4:00 pm - .0236 inch

Thursday 5/21/09
D

8:00 am - 0240 inch
9:00 am - 0432 inch
10:00 am - .0442 inch
11:00 am - 0448 inch
12:00 pm - 0453 inch
1:00 pm - .0455 inch
2:00 pm - .0457 inch
3:00 pm - 0458 inch
4:00 pm - .0458 inch

Tuesday 5/26/09
=

8:00 am - 0551 inch ™
9:00 am - Ramp
10:00 am - Ramp
11:00 am - Ramp
12:00 pm - Ramp

1:00 pm - 0492 inch

2:00 pm - .0491 inch

3:00 pm - .0491 inch

4:00 pm - .0491 inch

8:00 am - 0490 inch ™
9:00 am - Ramp
10:00 am - Ramp
11:00 am - Ramp

12:00 pm - .0560 inch

1:00 pm - .0563 inch

2:00 pm - 0564 inch

3:00 pm - .0566 inch

4:00 pm - .0566 inch

8:00 am - .0573 inch
9:00 am - .0180 inch
10:00 am - .0182 inch
11:00 am - .0183 inch
12:00 pm - .0184 inch
1:00 pm - .0184 inch
2:00 pm - .0184 inch
3:00 pm - .0184 inch
4:00 pm - .0184 inch

179

APPENDIX F:

CONSTRUCTING MULTIPLE SYNTHETIC FRACTURE NETWORK MODELS TO

BUILD SYNTHETIC CORES USING 3D PRINTING TECHNOLOGY TO TEST THE

FUNCTIONALITY OF SMART MICROCHIPS FOR FRACTURE MAPPING IN THE
LAB

Synthetic fracture networks are designed based on the 2D scanned core images (JPG format) of
fracture networks subsurface at different measured depths (9490-9493 ft, 9560-9563 ft, 9566-9569
ft) and different levels of geometry complexity. To generate inputs for the i-Geo Sensing, the
format of the input data is required to be Cartesian coordinates or transformable to Cartesian
coordinates (preferably TXT format). As a result, additional image processing steps are further
conducted to achieve the desirable TXT input format.

Core samples’ images are imported and transformed into grayscale, which is further capable of
separating irrelevant pixels from fracture networks’ pixels (i.e. “fractured” pixels). In a gray-sale
image, pixels are scaled in their intensity values, which vary in a scale between 0-255. Initial
analysis for a gray-scale image typically starts with its histogram of pixel intensity. The separation
process is performed by Otsu image segmentation. Otsu algorithm chooses the optimal value from
an image’s histogram of pixel intensity and further detaches the image into two fragments: the
main fracture network (which has pixel intensity 255 - white) and irrelevant pixel body (which has
pixel intensity O - black). Albeit Otsu segmentation can extract the closest version to the desired
base fracture networks, supporting algorithms are necessary to extract the desirable and complete
synthetic fracture networks. The supporting algorithms include pixel filling (i.e. filling fractured
pixels into desired voids), pixel sampling (i.e. dividing a fracture network into smaller fragments
to perform more effective pixel filling), and pixel tracking (i.e. recovering a group of fractured
pixels in a fracture’s network fragment).

Desirable base fracture networks extracted from the scanned core images are maintained as 2D
images (PVG format). Under the assumption that the propagation of a fracture network is uniform
along the remaining dimension, commercial 3D editing & printing software as Blender® conducts
extension of the 2D imaging base fracture networks into 3D imaging fracture networks (STL
format).

The stored format of 3D imaging fracture networks is capable of being seamlessly processed from
Blender® and randomly sampled to create synthetic input geo-sensor data from Smart Microchip
Proppants as Cartesian coordinates. Figure 4 provides the projected 2D overviews of synthetic 3D
imaging fracture networks used in this study. For design purposes, the synthetic fracture networks
in Figure F.2 increase complexity from left to right. The 1% synthetic network (left) is composed
of 4 fractures with almost uniformity in shape. The 2" synthetic network (middle) is composed of
3 fractures and one smaller network with moderate non-uniformity in shape and low complexity
in branching. The 3™ synthetic network (right) is composed of 1 fracture and two smaller networks
with non-uniformity in shape and high complexity in branching.

180

Figure F.1: Projected 2D overviews of the synthetic fracture networks

Figure F.2: 3D synthetic fracture network from core sample 2

The following final setup of the complex fracture geometry is 3D printed using the high-
temperature material and will be used for the next level laboratory testing of MicroChips with
varying sizes. The 3D-printed synthetic core dimensions are 0.115 m x 0.115 m x 0.15 m (4.5 inch
x 4.5 inch % 5.9 inch).

181

Figure F.3 — 3D printed Synthetic Core with the complex fracture geometry for the Microchips
Testing

182

APPENDIX G:
I-GEO SENSING GRAPHICAL USER INTERFACE

As described throughout in section 6 of this report, i-Geo Sensing contributes two major
algorithmic workflows and one supportive Design of Experiments module. i-Geo Sensing,
additionally, comes with a Graphical User Interface (GUI) that allows users to interact and
analyzes the technical aspects of the embedded workflows. This Appendix G provides a walk-
through of the GUI in i-Geo Sensing.

Inside the code package includes a README.txt file that reads the instructions to install the
appropriate environment (preferably Anaconda 3) to run i-Geo Sensing. As i-Geo Sensing is
written in Python 3.10 and has a web-based interactive interface, the initial launch of the i-Geo
Sensing brings a user a similar capture as in Figure G.1.

i-Geo Design of Experiments
Sensing Read Res-Frac base file and support a DoE study

Identifiable parameters from the base files

Explain the functionality

Deploy the proxy >

B depioy Setting file npi Setting file

Entries in the settings file Distributions

Input write locations Select distribution

Coverage

Explain the functionality

&

Figure G.1: Welcome interface in i-Geo Sensing

The welcome interface in i-Geo Sensing loads the Design of Experiments module by default
(corresponds to 6.7 and 6.8). As seen in the left-sided task bar, users may find the two other
modules: “Fracture Calibration Proxy” and “Receive Sensor & deploy”. The module “Fracture
Calibration Proxy” corresponds to 6.9, 6.10 and 6.11. The module “Fracture Calibration Proxy”
loads the processing of the Micro Chips’ geo-location data in the synthetic environment (presented
as local directory with necessary data as the geo-location data).

Within the “Design of Experiments” module, users are required to input the module’ project main
directory and the directory which contains the simulation files in ResFrac® (and is considered as
the location of the base case in this module). A base case is provided in the code package for
convenience, named “doe_simulation_2 SOP”. This folder contains all simulation results that are
downloadable from ResFrac® server for the synthetic environment described in 6.2. Users now
may click “Import base file” to allow i-Geo Sensing the access ability to the base case’s folder and

183

click “Read base file” to allow i-Geo Sensing parsing the settings and input text files that define
the base case. (referred to 6.7). The following notification shall pop-up:

Base file reading report X

Total of 512 entries are parsed.
Total of 10 entries are parsed.

Figure G.2: Reading report in -Geo Sensing for the base case

Users are notified, similarly to Figure G.2, that i-Geo Sensing parses the text files successfully and
recognizes the entries encoded in them (referred to 6.7 about the definition of an entry in
ResFrac®). At this point, users may move to the “Identifiable parameters from the base files”
section in the module. In the “Setting file” tab on the left, users now can select the entries that are
preferable to conduct a Design of Experiments study/data generation for the supervised ML
workflow in i-Geo Sensing. For example, selecting the entry “maxtrixcurvesets” brings the users
to Figure G.3.

Write locations for settings entries X

Select a settings entry

matrixcurvesets

Input the lacation to write in the entry

Input the Design of Experim

S_p_full_max exponen k_r multiplier
©.2192660233203784

0.1177573186524264

0.03518216694746895 1.

Confirm write location

Figure G.3: An example pop-up window to request the entry’s necessary inputs for data generation

In this pop-up, users are allowed to select an entry (in case more than one entry is selected for data
generation, users are required to select all entries in any order) and select the location that writes
the changes to create new Design of Experiments case. In most of the entries, the location to write
is -1, however some specific entries have multiple locations to write. i-Geo Sensing supports
displaying certain specific entries’ written locations for the users’ convenience (referred to Figure
G.3). In this pop-up, user may see an input named “Input the Design of Experiment parameters”.

184

Users may enter the names of the parameters that are later read by i-Geo Sensing as the parameters
to be used in the supervised ML workflow. For example, in case the users need to study the water
saturation, they may enter “S_wr” in the input box named above. Users shall click “Confirm write
location” per entry to enable the recording of the written locations to i-Geo Sensing. After
completing, users may close this pop-up.

Now users shall move to the “Setting file” tab on the right (Figure G.4) and select the entries one
more time. Note that, under this selection, users shall see the entry list that is selected previously
on the “Setting file” tab on the left, as now i-Geo Sensing limits the selection options to the entries
that users request as being further used for data generation (referred to 6.7). After clicking on
“Select distribution”, a pop-up window as Figure G.5 appears.

Setting file Input file

Select distribution

Figure G.4: Distribution section in the Design of Experiments module

Distributions

The list of supported distributions (e.g., normal, log-normal, gamma, beta) are provided as
dropdown in the pop-up window as Figure G.5. As a reminder, an entry may come with multiple
DoE parameters, therefore users shall pay attention in choosing the correct entry and its DoE
parameters, one at a time. In the input box “Input parameters for the distribution”, users have to
provide all required parameters that define the distribution of interest. For example, a normal
distribution must require an input of 2 numbers, i.e., mean and standard deviation, separated by a
comma between the numbers. [-Geo Sensing shall parse the numbers for the users appropriately.

After providing all necessary inputs to define a distribution for a specific DoE parameter, users
shall click “Confirm distribution” to complete the process (per entry, per DoE parameter).

Distribution for settings entries X

usefieldunits

S wr

Input parameters for the distribution

Confirm distribution

Figure G.5: Pop-up window for distribution of a DoE parameter
185

At this time, i-Geo Sensing receives all required inputs to deploy a batch data generation for a
DoE. Users shall proceed to click on “Generate cases” in the module to open the pop-up for the
DoE execution. This pop-up is similar to Figure G.6. The information displayed in Figure G.6 shall
be straight-forward enough for the users to follow. In Figure G. 6, the input boxes for “Amount”
refers to the amount of DoE cases to be generated in a single batch. The input boxes for “Last
case” and “Batch number” receive any non-negative number, although users are recommended to
input them in a sequential manner when referenced to the previous batch run. For example, in case
a DoE batch run was previously executed to generate 100 cases indexed from 0-100 (batch 0), the
next batch run is expected to generate an additional 100 cases indexed from 101 to 200 (batch 1).
Therefore, users shall input 0 in the box “Ast case” and 1 in the box “Batch number” (provided
that the batch 0 was run previously). After entering all inputs in this pop-up window, users click
“Generate” and expect a wait time for the batch run to finish. After a batch run is executed, users
may find inside the directory provided to save the DoE files, a similar look as Figure G.7.

As described in 6.7, the support of i-Geo Sensing to ResFrac® is semi-automatic, and therefore
users are required to import all generated settings/input files into ResFrac® GUI and batch run the
corresponding simulations to ResFrac® server. Users have to save changes in ResFrac® GUI prior
to submitting the files to the server, otherwise simulations may not be completed properly.

Generate Design Of Experiments X

Directory to store the settings/input files

Directory to save DoE files

MNumber of cases and last case number generated

Amount Last case Batch number

Generate

Figure G.6. The pop-up to execute a batch data generation

After all simulations are completed and downloaded from the ResFrac® server, users shall find
simulation results for all generated cases from the current batch run in i-Geo Sensing, under the
folders having naming conventions that are similar to Figure 126. Users may keep those folders
in-place or move to another directory of interest, however users have to provide i-Geo Sensing the
directory of which the folders are located/moved into later in the “Fracture Calibration” module.

186

|j doe_settings_case_O.bxt 1172972024 410 PM Text Document 733 KB

|j doe_settings_case 1.txt 11/26/2024 4:10 PM Text Document 753 KB
|j doe_settings_case 2.t 1172972024 4:10 PM Text Document 753 KB
|j doe_settings_case 3.txt 1172972024 410 PM Text Document 733 KB
|j doe_settings_case_d.txt 11/29/2024 4:10 PM Text Document 753 KB
|j doe_settings_case_S.bxt 1172972024 410 PM Text Document T33 KB
|j doe_settings_case B.txt 11/26/2024 4:10 PM Text Document T33 KB
|j doe_settings_case 7.t 1172972024 4:10 PM Text Document 753 KB
|j doe_settings_case_S.bxt 1172972024 410 PM Text Document 733 KB
|j doe_settings_case O.txt 11/26/2024 4:10 PM Text Document 753 KB
|j doe_settings_case_10.txt 1172972024 4:10 PM Text Document 733 KB

Figure G.7. An example of generated files post DoE batch run execution

At the bottom of the Design of Experiments module, users find the “Coverage” section. In this
section, users may input the DoE parameters that were previously inputted to generate the recent
batch run, and generate the coverage plot (i.e., a “joint” plot as in Figure 123). This section is
designed to provide users an overview of the current batch run’s efficacy in covering the expected
DoE area for the parameters of study.

Below the “Design of Experiments” module is the “Fracture Calibration Proxy” module (Figure
G.8). This module is essentially central to the supervised ML workflow. Similar to the “design of
Experiments” module, users require to input the project main directory in which all proxy models
are stored and re-loaded, if necessary, and select the task that the supervised ML workflow shall
be trained and deployed for (e.g., fracture calibration or history-matching, referred to 6.9). The
look of the “Fracture Calibration Proxy” module is practically similar to the “Design of
Experiments” module. Therefore, users have a better view of the module’s functionality at this
point.

i-Geo Fracture Calibration Proxy
Sensing Fracture Geometry Calibration Proxy

Validate dataset directory Fracture profile resolution Generate proxy datasel Train proxy Explainer

Parameter selection
Explain the functionality

Select parameter elect dataset validate parameter Validate dataset

Select parameters for the proxy Validate parameters for the proxy

| | [m—

Proxy configuration
Explain the functionality
Proxy model Proxy parameter Proxy experiment

Select model for the proxy Open the proxy experiment support

Open proxy experiment support

Proxy explanation

Explain the functionality &

Figure G.8: The “Fracture Calibration Proxy” module
187

As recalled in the “Design of Experiments” module, users input certain DoE parameters to execute
a batch run. Since the “Fracture Calibration Proxy” module uses the information from the “Design
of Experiments” module, it receives those DoE parameters. Therefore, users shall see them in the
“Select parameter” tab. Next to the “Select parameter” tab is the “Select dataset” tab, in which
users may find all folders that are within the provided project main directory above. Users may
select any of those folders and click “Confirm selection” to request to i-Geo Sensing that the
selected folder(s) shall be used as training and/or validation data.

To ensure that the selected folder(s) mentioned above do have the ResFrac® simulation results
needed to the module, users may click “Validate dataset directory” to confirm. In case the folder
contains necessary data, the pop-up as Figure G.9 appears.

Data source directory validation report X

Proxy_cases is valid.

Figure G.9: A successful validation for the selected folder(s)

Recalled in 6.5 regarding the sensor data profiles, the Fracture Calibration Proxy” module provides
a button named “Fracture profile resolution” for the users to click and input the necessary
parameters that define a sensor data profile. They include the minimum & maximum values of the
larger dimensions, and the resolution interval. As common sense in i-Geo Sensing, users shall click
to confirm the inputs prior to existing the pop-up window. At this point, i-Geo Sensing receives
enough information to generate the complete dataset to train and validate the proxy. Users need to
click “Generate proxy dataset” and prompt to wait for a while before this process is complete.

Fracture profile resolution X

Minimum HF ler Maximum HF lel Resolution

Confirm fracture profile resolution

Figure G.10: Input pop-up window for the sensor data profile(s)

After the proxy dataset is generated, users may visualize the properties of the dataset via the
“Validate parameter” and “Validate dataset” tabs. Under the “Validate parameter” tab users may
open a pop-up window to visualize distributions of the DoE parameters, and time series data for
the response parameters (e.g., BHP, production rate). An example is provided in Figure G.12. The
“Validate dataset” is used to provide the users with any abnormality in the generated dataset. In

188

case the dataset has missing values, i-Geo Senning automatically in-place imputes those missing
values.

Generate proxy dataset

Generate proxy data from source Proxy_cases, containing 5573 rows and 155 columns.

Figure G.11: Completion notification for the proxy dataset generation

Validate proxy parameters

Dof parameters Response parameters

Figure G.12: An overview of the functional hidden in the “Validate parameter” tab

The “Proxy configuration” and “Proxy explanation” sections all refer to 6.9-6.11. Users have the
option to select either the GBM or XGB to back the supervised ML workflow. As mentioned in
6.9, 1-Geo Sensing limits certain hyperparameters to be tuned by the users, and consequently users
may only see a subset of the model’s hyperparameters compared to the official model’s
documentation (for example, referred to XGB: https://xgboost.readthedocs.io/en/stable/). For the
ML experimenting functionality (found in “Proxy experiment” and “Proxy visual” tab, users may
select either the “Fit” mode or the “Optimize” mode. The “Fit” mode essentially does not optimize
the hyperparameters via a optimization space, in contrast the “Optimize” mode performs the
optimization for the hyperparameters via an optimization space. Users may expect to access the
model’s explainability in the “Proxy explanation” section, in which plots similar to Figures 137-
140 are provided.

The module “Receive sensor & deploy proxy” module shall automatically process outputs from
both the “Design of Experiments” and the “Fracture Calibration Proxy” modules. Users only need
to provide this module with the directory in which the synthetic Micro Chips’ geo-location data is
stored, and the module shall update periodically. The final proxy performance may look similar to
Figures 133 and 135.

189

https://xgboost.readthedocs.io/en/stable/

APPENDIX H:
I-GEO SENSING CODE EXCERPTS
.fa-chevron-right {

transition: transform 0.2s ease-in-out 0s;

}

/* rotate the chevron when the open class is applied */
li.open .fa-chevron-right {

transform: rotate(90deg);

}

nav i {
font-size: 18px;

}

.sidebar .nav-link {
width: 100%;
max-width: 100%;
overflow: hidden;
white-space: nowrap;
display: flex;
padding-right:1rem;
padding-left: 1rem;
padding-top: Irem;

}

import dash

import dash_bootstrap components as dbc

190

from dash import dcc

from dash import html, dash_table

from dash import Input, Output, State

from dash import callback, callback context

from dash import DiskcacheManager

from dash.exceptions import PreventUpdate
from dash import callback context as ctx

from dash import register page

from dash_bootstrap components import Tab, Table, InputGroup, Col, Row

from dash bootstrap components import Modal, ModalTitle, ModalBody, ModalHeader,
ModalFooter

from dash_bootstrap components import Placeholder

import diskcache

import os, shutil, time, timeit
import pickle, joblib, jsonpickle
import numpy as np

import pandas as pd

import scipy

from scipy.stats import distributions

from matplotlib import pyplot as plt
import seaborn as sns

import plotly

from plotly import express as px

from plotly import graph _objects as go
191

import hyperopt
from hyperopt import hp, space eval

from hyperopt.pyll.base import scope

cache = diskcache.Cache("./cache")
background callback manager = DiskcacheManager(cache)
from base.base import *

from gui_utils.utils import *

from simulator.base import utils
from simulator.base import regex_templates
from simulator.base import parse

from simulator.simulation.simulation_helpers import *

from DoE.doe.doe vI import *

HHHHHEHHHHH
HHHHEHIHHHHH

HHHHEHEHHHHHEHEHHHHAHEHHH Page's main Ul callbacks
HHHHEHIHHHHHEHIHHH

HHHHEHHHH
HHHHEHIHHHHH

@callback(
[Output("doe main_dir placeholder", "data")],

non

[Input("doe main_dir gui", "value"),

192

Input("doe import base file", "n_clicks")],
prevent initial call=True)
def get doe main_directory(main_dir, n_clicks):
if n_clicks > 0:
print("Main dir: ", main_dir)
return [main_dir]
else:

raise PreventUpdate

@callback(
[Output("doe base file placeholder", "data")],
[Input("doe base file gui", "value"),
Input("doe _import base file", "n_clicks")],
prevent initial call=True)
def get doe main_directory(base file, n_clicks):
ifn_clicks > 0:
print("Base file: ", base file)
return [base file]

else:

raise PreventUpdate

@callback(
[Output("doe_settings_entry placeholder", "data"),
Output("doe_input_entry placeholder", "data"),
Output("doe_settings_var names", "data"),

Output("doe_input_var names", "data")],

193

[Input("doe main_dir placeholder", "data"),
Input("doe base file placeholder", "data"),
Input("doe read base file", "n_clicks")],
prevent initial call=True)
def read base file(main_dir, base file, n_clicks: int):
if n_clicks > 0:
settings file name = 'settings ' + base file + ".txt'
input_file name = "input '+ base file +".txt'
base file dir = os.path.join(main_dir, base_file)
settings_file dir = os.path.join(base file dir, settings file name)
input_file dir = os.path.join(base file dir, input file name)
all settings_entries = utils.parse_file(file_name=settings file dir)
all input_entries = utils.parse_file(file_ name=input file dir)
#
parsed_settings entries = list()
parsed _input_entries = list()
for (_, setting_entry) in enumerate(all_settings_entries):
parsed = parse.parse_entry(setting_entry)
parsed_settings entries.append(parsed)
for (_, input_entry) in enumerate(all _input_entries):
parsed = parse.parse entry(input_entry)
parsed_input_entries.append(parsed)
i
settings_file size = len(all settings entries)
input_file size = len(all input entries)
#
settings var _names = [parse.parse_entry(all settings_entries[]).variable name for _in

range(settings_file size)]

194

input var names = [parse.parse entry(all input entries[]).variable name

range(input_file size)]
return jsonpickle.encode(value=parsed settings entries), jsonpickle.encode(
value=parsed_input_entries), settings var names, input_var_names
else:

raise PreventUpdate

@callback(
Output("doe_settings entry input", "options"),
Input("doe_settings var names", "data"),
config prevent initial callbacks=True
)
def parse all settings entries(settings var names):
if settings var names is not None:
return settings var_names
else:

raise PreventUpdate

@callback(
Output("doe_input_entry_input", "options"),
Input("doe_input var names", "data"),
config prevent initial callbacks=True

)

def parse_all settings entries(input_var names):
if input_var names is not None:

return input_var_names

else:
195

for

in

raise PreventUpdate

@callback(
[Output("doe notify settings", "children"),
Output("doe notify input", "children")],
[Input("doe_settings var names", "data"),
Input("doe _input var names", "data")],
State("doe read base file", "n_clicks"),
config prevent initial callbacks=True
)
def write _doe read base file report(settings var names, input_var names, n_clicks):
ifn_clicks == 0:
raise PreventUpdate
else:
setting_report = "Total of " + str(len(settings var names)) + " entries are parsed."
input_report = "Total of " + str(len(input_var names)) + " entries are parsed."

return setting_report, input_report

@callback(
Output("doe_settings write loc_placeholder", "data"),
Input("doe_settings _entry input", "value"),
config prevent initial callbacks=True

)

def update settings write loc_placeholder(settings var names):
if settings_var names is not None:

return settings var_names

196

else:

raise PreventUpdate

@callback(
Output("doe settings write loc_dropdown", "options"),
Input("doe_settings write loc placeholder", "data"),
config prevent initial callbacks=True
)
def update_settings write loc_dropdown(settings var names):
if settings var names is not None:
return settings var_names

else:

raise PreventUpdate

@callback(
Output("doe settings write loc_entry", "children"),
[Input("doe settings write loc dropdown", "value"),
Input("doe_settings entry placeholder", "data")],
config prevent initial callbacks=True
)
def display_settings write loc_entry(settings var name, settings_entries):
if settings var name is not None:
settings_entry = None
settings_entries = jsonpickle.decode(settings_entries)

for (_, settings_entry) in enumerate(settings_entries_):

if settings_entry .variable name == settings_var name:

197

settings_entry = settings_entry
if settings_var name == 'matrixcurvesets"
matrix_rel perm = settings entry.value struct.value struct[0]['matrixrelperm'][-1]
return convert_numpy_to_data table(matrix_rel perm, columns=['S p_full max',
'exponent', 'k _r multiplier'])
elif settings var name == 'facieslist'":
facies list = settings entry.value struct.value struct
return convert dict to data table(facies list, columns=None)
elif settings var name not in irregular_variable names:
return str(settings_entry.value struct.value struct)
else:
TODO: Complete this to display correct data
return dash.no_update
else:

raise PreventUpdate

@callback(
Output("doe params_dist placeholder", "data"),
[Input("doe_settings dist confirm", "n_clicks"),

nmn

Input("doe_settings dist_entry dropdown", "value"),
Input("doe_settings dist params_dropdown", "value"),
Input("doe_settings dist_dropdown", "value")],
State("doe params dist placeholder”, "data"),
config_prevent initial callbacks=True

)

def update all distributions(n_clicks, entry name, param_name, dist name, all_dists):

print("All distributions: ', all _dists)

198

if callback context.triggered id == "doe settings dist confirm" and n_clicks:

if bool(all dists) is False:

all dist = {'entry name" [entry name], 'param name': [param name], 'dist name"
[dist name]}

return all_dist
else:
all dists = all dists
if 'entry name' in all_dists .keys():
all dists ['entry name'] = all_dists['entry name'] + [entry name]
if 'param_name' in all_dists_.keys():
all dists ['param_name'] = all_dists['param_name'] + [param_name]
if 'dist name' in all_dists _.keys():
all dists ['dist name'] = all_dists['dist name'] + [dist name]
return all dists_
else:

raise PreventUpdate

@callback(

Output("doe params write locs placeholder", "data"),
[Input("doe settings write loc confirm", "n_clicks"),

Input("doe_settings write loc_dropdown", "value"),
Input("doe_settings write loc_input", "value"),
Input("doe_settings params", "value")],
State("doe params write locs placeholder”, "data"),
config_prevent initial callbacks=True

)

def update all write locations(n_clicks, entry name, write loc, param_names, all_write locs):

print("All write locations: ', all write locs)
199

if callback context.triggered id == "doe settings write loc_confirm" and n_clicks:
param_names = param_names.split(sep=",")
if bool(all_write locs) is False:

return {'entry name': [entry name], ‘'write loc': [write loc], ‘'param names"
[param_names]}

else:
all write locs =all write locs
if 'entry name' in all_write locs_.keys():
all write locs ['entry name'] = all write locs['entry name'] + [entry name]
if 'param_name' in all_write locs .keys():
all write locs ['write loc'] =all write locs['write loc'] + [write loc]
if 'dist name' in all_write locs .keys():
all write locs ['param_names'] = all write locs['param names'] + [param_names_]
return all_write locs
else:

raise PreventUpdate

HHHHHEHHHHHHH A
HHHHEHIHHHHH

HHHHEHEHHHHHEHEHHHHAHEH Page's modal callbacks
HHHHEHEHHHHHEHEHHHH A

HHHHEHHHH
HHHHEHIHHHHIH

@callback(

Output("doe_settings write _loc_modal", "is_open"),

[Input("doe_settings entry write loc", "n_clicks"),

Input("doe_settings_write loc_button", "n_clicks")],
200

[State("doe_settings write loc_modal", "is_open")],
)
def toggle doe settings write loc modal(n_write loc, n_write loc_modal,
is_open):
if n_write_loc or n_write loc _modal:
return not is_open
else:

return is_open

@callback(
Output("doe notify read base file modal", "is_open"),
[Input("doe read base file", "n clicks"),
Input("doe notify read base file button", "n clicks")],
[State("doe notify read base file modal", "is open")],
)
def toggle doe notify read base file modal(n read base file, n read base file modal,
is_open):
ifn_read base file or n read base file modal:

return not is_open

return is_open

@callback(
Output("doe_settings_dist_modal”, "is_open"),
[Input("doe_settings_entry dist", "n_clicks"),
Input("doe_settings_dist_button", "n_clicks")],

State("doe_settings_dist modal", "is_open"),

201

)
def toggle doe settings dist modal(n_dist, n_dist modal,
is_open):
if n_dist or n_dist modal:
return not is_open
else:

return is_open

@callback(
Output("doe case generator modal", "is_open"),
[Input("doe generate cases", "n_clicks"),
Input("doe case generator button", "n_clicks")],
State("doe case generator modal", "is_open"),
)
def toggle doe case generator modal(n case, n _case modal,
i1s_open):
if n_case or n_case modal:
return not is_open
else:
return is_open
from base.base import *
from gui_utils.utils import *

from gui_utils.experimental import *

from workflow.surrogate import *
from workflow.objective function import *

from workflow.calibrate fracture import *

202

from workflow.history match import *

from proxy.proxy_experiment import *

HHHEH
HFHIHIHIHHHH

HHHHHHHHH R Page's modal callbacks
HHHIHHHHHIHHEHHHHH

R
HFHIHIHIHHHH

@callback(
Output("frac_cal frac profile modal", "is_open"),
[Input("frac cal profile res", "n clicks"),
Input("frac_cal frac profile button", "n_clicks")],
[State("frac_cal frac profile modal", "is open")],
config prevent initial callbacks=True
)
def toggle fracture profile modal(n profile res, n_profile button, is open):
if n_profile res or n_profile button:
return not is_open

else:

return is_open

@callback(

Output("frac_cal val data dir modal", "is_open"),

203

"nn

[Input("frac cal validate data dir", "n_clicks"),
Input("frac_cal val data dir button", "n_clicks")],
[State("frac_cal val data dir modal", "is_open")],
config_prevent initial callbacks=True

)

def toggle validate data dir modal(n val dir, n val dir button, is open):
ifn_val dir orn_val dir button:

return not is_open

else:

return is_open

@callback(
Output("frac_cal generate data modal", "is_open"),
[Input("frac cal generate data", "n clicks"),
Input("frac_cal generate data button", "n_clicks")],
[State("frac_cal generate data modal", "is_open")],
config prevent initial callbacks=True

)

def toggle generate proxy data modal(n gen data, n gen data button, is_open):
ifn_gen data orn_gen data button:

return not is_open

else:

return is_open

(@callback(

Output("frac_cal validate params modal", "is_open"),

204

nn

[Input("frac_cal proxy config right params_ validate", "n_clicks"),
Input("frac_cal validate params_button", "n_clicks")],
[State("frac cal validate params modal", "is_open")],
config_prevent initial callbacks=True
)
def toggle validate proxy params modal(n_val params, n val params_button, is_open):
ifn_val params orn_val params_button:
return not is_open
else:

return is_open

@callback(
Output("frac cal validate datasets modal", "is open"),
[Input("frac cal proxy config right sources validate", "n clicks"),
Input("frac_cal validate datasets button", "n_clicks")],
[State("frac _cal validate datasets modal", "is_open")],
config prevent initial callbacks=True

)

def toggle validate proxy datasets modal(n val data, n val data button, is open):
ifn_val data orn val data button:

return not is_open

else:

return is_open

(@callback(

Output("frac_cal proxy hyper params modal", "is_open"),

205

nmn

[Input("frac cal proxy params_left confirm", "n clicks"),
Input("frac_cal proxy hyper params button", "n_clicks")],
[State("frac_cal proxy hyper params modal", "is open")],
config prevent initial callbacks=True
)
def toggle proxy hyper params modal(n_proxy params, n_proxy params_button, is open):
if n_proxy params or n_proxy params_button:
return not is_open
else:

return is_open

@callback(
Output("frac cal train_proxy modal", "is_open"),
[Input("frac cal train_proxy", "n_clicks"),
Input("frac_cal train proxy button", "n_clicks")],
[State("frac_cal train proxy modal", "is open")],
config prevent initial callbacks=True

)

def toggle train proxy modal(n_train, n_train_button, is open):
if n_train or n_train_button:

return not is_open

else:

return is_open

(@callback(

Output("frac_cal proxy exp modal", "is_open"),

206

nn

[Input("frac_cal proxy exp right confirm", "n clicks"),
Input("frac_cal proxy exp_ button", "n_clicks")],
[State("frac_cal proxy exp modal", "is_open")],

)

def toggle proxy expriment(n_exp, n_exp button, is_open):
if n_exp or n_exp button:

return not is_open

else:

return is_open

R
HIHIHIHIHHRH

HHHHHHIH A A Page's storage callbacks
HHHHHEHHHHHHHEHE R

HHHHHH
HEHHHEHIHHHHEH

@callback(
Output("frac cal project main_dir store", "data"),
Input("frac_cal proxy main dir", "value"),
config prevent initial callbacks=True

)

def store_project main_dir(main_dir):

return main_dir

@callback(

207

Output("frac_cal frac profile res store", "data"),
Input("frac_cal frac profile confirm", "n_clicks"),
[State("min_hf length input", "value"),
State("max_hf length input", "value"),
State("resolution", "value")],
config_prevent initial callbacks=True
)
def store fracture profile resolution(n_clicks, min_hf, max_hf, res):
if n_clicks:
print(min_hf, max_hf, res)
return {"min_hf": min_hf, "max_hf": max_hf, "res": res}
else:

raise PreventUpdate

@callback(
Output("frac_cal proxy input params store", "data"),
[Input("frac cal proxy config input params dropdown", "value"),
Input("frac_cal proxy config input params confirm", "n_clicks")],
config prevent initial callbacks=True
)
def store_proxy input params(input_params, n_clicks):
if n_clicks:
if experimental _mode:
return experimental doe params
else:

return input_params

else:

208

raise PreventUpdate

@callback(
Output("frac_cal proxy output params_store", "data"),
[Input("frac cal proxy config output params dropdown", "value"),
Input("frac_cal proxy config output params confirm", "n_clicks")],
config prevent initial callbacks=True
)
def store_proxy output params(output params, n_clicks):
if n_clicks:
if experimental mode:
return experimental response params
else:
return output_params
else:

raise PreventUpdate

@callback(
Output("frac cal data sources store", "data"),
Input("frac_cal proxy config left sources confirm", "n_clicks"),
State("frac_cal proxy config left sources dropdown", "value"),
config prevent initial callbacks=True

)

def store_proxy data sources(n_clicks, data_sources):
if n_clicks:

return data_sources

209

else:

raise PreventUpdate

@callback(
Output("frac_cal proxy hyper params_store", "data"),

"n.n

Input("frac_cal proxy params left confirm", "n_clicks"),
State("frac cal proxy params left dropdown", "value"),
config prevent initial callbacks=True
)
def store proxy hyper params(n_clicks, hyper params):
ifn_clicks:
return hyper_params

else:

raise PreventUpdate

@callback(
Output("frac cal proxy hyper params dist store", "data"),
Input("frac_cal proxy hyper params confirm", "n clicks"),
[State("frac _cal proxy hyper params name", "value"),
State("frac_cal proxy hyper params_dist", "value"),
State("frac_cal proxy hyper params dist params", "value"),
State("frac_cal proxy hyper params dist store", "data")],
config_prevent initial callbacks=True

)

def store proxy hyper params_dist(n clicks, param name, param dist, param_dist params,
all hyper params dists):

if n_clicks:
210

param_dist params = param_dist params.split(sep=",")
print(param_dist params)
if bool(all hyper params_dists) is False:
all hyper params dists = {'param_ name': [param_name], 'param_dist'": [param_dist],
'param_dist params': [param_dist params]}
print("All proxy's hyper-parameters' distributions: ", all hyper params_dists)
return all_hyper params dists
else:
all hyper params dists = all hyper params dists
if param_name not in all hyper params_dists['param name']:
all_hyper params_dists ['param_name'] = all _hyper params_dists['param_name'] +\
[param_name]
all_hyper params_dists ['param_dist'] = all hyper params_dists['param_dist'] +\
[param_dist]
all hyper params dists['param_dist params'].append(param _dist params)

all hyper params dists ['‘param_dist params'] =
all hyper params dists['param_dist params']

else:
pass
print("All proxy's hyper-parameters' distributions: ", all hyper params_dists)
return all hyper params dists
else:

raise PreventUpdate

HHHHHHHHHHHH
HHHHHHHHHHHHE

HHHHHHHHHHHHHEHHHH Page's main Ul callbacks
HHHHHHHHHHHHEH

21

HHHHEHHHHHHIHEHEHHR Parameter selection
HHHHEHHHHHIH I

HHHEHHHHHH
HHFHIHIHEHHHH

@callback(
Output("frac_cal proxy config left sources dropdown", "options"),
Input("frac_cal project main dir store", "data"),
config prevent initial callbacks=True

)

def extract proxy data sources(main_dir):

nmnn

:param main_dir:
:return:
print('Main dir to extract: ', main_dir)
workflows_dir = os.path.join(main_dir, "workflows")
if os.path.exists(workflows_dir) is True:
return [f for fin os.listdir(workflows dir)]
else:

return dash.no_update

@callback(
Output("frac_cal data main dir text", "children"),
[Input("frac_cal project main_dir store", "data"),
Input("frac_cal data_sources_store", "data")],

212

config_prevent initial callbacks=True

)
def validate proxy data sources(main_dir, data sources):

nmn

Validate whether the provided data sources have data for the proxy
:param main_dir:

:param data_sources:

:return:

o
print('Data sources to extract: ', data_sources)
workflows_dir = os.path.join(main_dir, "workflows")
validate text=""
if main_dir is None or data_sources is None:

raise PreventUpdate

else:
for (_, data_source) in enumerate(data sources):

data source valid = validate res frac workflows dir(workflows dir, data source)

if data_source valid:

validate text += data source + " is valid. \n"

else:

validate text += data source + "is NOT valid. \n"

return validate text

(@callback(

Output("frac_cal generate data text", "children"),
[State("frac_cal project main dir_store", "data"),

State("frac_cal frac profile res store", "data"),

213

State("frac_cal proxy input params_store", "data"),

State("frac_cal proxy output params store", "data"),

State("frac_cal data sources_store", "data")],

Input("frac_cal generate data", "n_clicks"),

background=True,

running=[(Output("frac_cal generate data", "disabled"), True, False),
(Output("frac_cal generate data button", "disabled"), True, False)
I

config prevent initial callbacks=True
)
def generate proxy datasets(main_dir, fracture profile,
doe params, response params, data_sources, n_clicks):
generate proxy datasets text=""
if callback context.triggered id == "frac cal generate data" and n_clicks > 0:

fracture profile resolution = [float(fracture profile["min_hf"]),
float(fracture profile["max_hf"]),

int(fracture profile["res"])]
for (_, data source) in enumerate(data sources):
proxy data file = data source +" data.csv"
proxy data dir = os.path.join(main_dir, proxy data file)
if os.path.exists(proxy data dir):
proxy df =pd.read csv(proxy data dir, index_ col=0, header=0)
else:
result_dir = os.path.join(main_dir, "workflows")
result_dir = os.path.join(result_dir, data_source)
result_dir = os.path.join(result dir, "simulations")
surrogate_manager = SurrogateDirectory(result_dir=result_dir)

surrogate_manager.experimental_doe params = doe params

214

surrogate manager.init_fracture profile(fracture profile resolution=fracture profile resolution)

surrogate_manager.init_reservoir_response(reservoir_response_var_names=response_params)
if experimental mode:
surrogate manager.init_experimental doe data()

proxy_df =
surrogate _manager.assemble surrogate directory(surrogate dir=proxy data_dir)

generate proxy datasets text = "Generate proxy data from source " + data_source + ", "

generate proxy datasets text +=" containing " + str(proxy_df.shape[0]) + " rows and "
+\

str(proxy_df.shape[-1]) +" columns. "
generate proxy_datasets_text += generate proxy datasets_text
return generate proxy_datasets_text
else:

raise PreventUpdate

@callback(
Output("frac cal proxy config right params dropdown", "options"),
[Input("frac cal proxy input params store", "data"),
Input("frac_cal proxy output params_store", "data")],
config prevent initial callbacks=True
)
def retrieve proxy_input params(doe params, response_params):
if experimental _mode:
return experimental_doe params + experimental response params

else:

return doe_params + response_params

215

@callback(
Output("frac_cal proxy config_right sources dropdown", "options"),
Input("frac cal data sources store", "data"),
config_prevent initial callbacks=True
)
def retrieve proxy data sources(data sources):
if experimental _mode:
return experimental data sources

else:

return data_sources

@callback(
Output("frac_cal datasets store", "data"),
[Input("frac cal data sources store", "data"),
Input("frac_cal project main dir store", "data")],
config prevent initial callbacks=True
)
def retrieve datasets(data sources, main_dir):
datasets = dict()
for (_, data_source) in enumerate(data_sources):
dataset_file = data_source +" data.csv"
dataset_dir = os.path.join(main_dir, dataset _file)
if os.path.exists(dataset_dir):
df = pd.read_csv(dataset dir, index_col=0, header=0).to_dict("records")
datasets[data_source] = df

else:

216

pass

return datasets

@callback(

nn

Output("frac_cal validate doe params_dropdown", "options"),
Input("frac_cal proxy config right params dropdown", "value"),
config prevent initial callbacks=True
)
def retrieve validated doe params(params):
if experimental _mode:
doe params_ = list()
for p in params:
if p not in experimental response params:
doe params_.append(p)
return doe params_

else:

return params

@callback(

nmn

Output("frac_cal validate res params dropdown", "options"),
Input("frac_cal proxy config right params dropdown", "value"),
config prevent initial callbacks=True

)

def retrieve validated res params(params):

if experimental mode:

res_params_ = list()

217

for p in params:
if p not in experimental doe params:
res_params_.append(p)
return res_params_
else:

return params

@callback(

nn

Output("frac_cal validate case dropdown", "options"),
Input("frac_cal proxy config right sources dropdown", "value"),
State("frac cal datasets store", "data"),
config prevent initial callbacks=True
)
def retrieve cases(data_source, datasets):
dataset = pd.DataFrame(data=datasets[data source])
cases = dataset['case'].to_numpy()
cases = list(np.unique(cases))
print('All cases: ', cases)

return cases

@callback(

Output("frac_cal validate doe params content", "children"),

nn

[Input("frac_cal validate doe params dropdown", "value"),

nn

Input("frac_cal proxy config right sources dropdown", "value"),

Input("frac_cal validate doe params radio items", "value")],

State("frac_cal datasets store", "data"),

218

config prevent initial callbacks=True
)
def visualize doe distributions(params, data source, plot_type, datasets):
if datasets is None:
raise PreventUpdate
else:
print('DoE params: ', params)
dataset = datasets[data_source]
if plot_type == "Single parameter":
fig = px.histogram(dataset, x=params[0])
graph_id = params[0] +' dist_plot'
return dcc.Graph(figure=fig, id=graph id)
elif plot_type == "Two parameters":
param_0 = params[0]
param_1 = params[1]
graph_id = params[0] +' '+ params[1] +' joint plot'
fig = px.scatter(dataset, x=param_0, y=param_1, marginal x="histogram",
marginal y="histogram")
return dcc.Graph(figure=fig, id=graph id)
else:

raise PreventUpdate

@callback(
Output("frac_cal validate res params content", "children"),

[Input("frac_cal proxy config right sources dropdown", "value"),

b

Input("frac_cal validate res params dropdown", "value"),

b

Input("frac_cal validate case dropdown", "value")],

5

219

State("frac_cal datasets store", "data"),
config prevent initial callbacks=True
)
def visualize res distributions(data source, params, case, datasets):

dataset = pd.DataFrame(datasets[data_source])

dataset = dataset[dataset['case'] == case]

if len(params) != 1:
raise PreventUpdate

else:
print('Response params: ', params)
fig_title = 'Response variable plot, ' + params[0]
graph_id = params[0] +' res_plot'
fig = go.Figure()
fig.add trace(go.Scatter(x=dataset.loc[:, 'surrogate time'],

y=dataset.loc[:, params[0]], mode='lines"))
fig.add trace(go.Scatter(x=dataset.loc[:, 'surrogate time'],
y=dataset.loc[:, params[0]], mode="markers'))

fig.update layout(title=fig_title)
fig.update xaxes(title text='"Surrogate time')
fig.update yaxes(title text=params[0])

return dcc.Graph(figure=fig, id=graph id)

@callback(
Output("frac_cal validate datasets content”, "children"),
Input("frac_cal proxy config right sources dropdown", "value"),
[State("frac_cal project main dir_store", "data"),

State("frac_cal datasets_store", "data")],

220

config prevent initial callbacks=True
)
def validate datasets(data source, main_dir, datasets):
dataset = pd.DataFrame(datasets[data_source])
validate text=""
if dataset.isnull().values.any():
num_na = dataset.isna().sum().sum()
dataset = dataset.fillna(value=0, inplace=False)
dataset file =data source +' data .csv'
dataset dir = os.path.join(main_dir, dataset file)
dataset .to csv(dataset dir)
validate text += "Data source at " + data_source + " has " + str(num_na) + " nan values. " \
"In-place correction is made."
return validate text
else:
dataset = dataset
dataset file =data source +' data .csv'
dataset dir = os.path.join(main_dir, dataset file)
dataset .to csv(dataset dir)

raise PreventUpdate

HHHHEHHHH
HHHHEHIHHHHIH

HHHEHIHH R AR Page's main Ul callbacks
HHHHHHHHHHHIHH
HHHHHHHHHHHHHEHHHH Proxy configuration

HHHHHHHHHH

HHHHHHHHHH
HHFHIHHHHHHE

221

@callback(

"nn

Output("frac_cal proxy params_left dropdown", "options"),

"nn

Input("frac_cal proxy model confirm", "n_clicks"),
State("frac cal proxy model left dropdown", "value"),
config prevent initial callbacks=True
)
def retrieve proxy hyper params(n_clicks, model name):
if n_clicks:
if model name =="GBM":
return gbm_hyper params
elif model name =="XGB":
return xgb_hyper params
else:
return default hyper params

else:

raise PreventUpdate

@callback(
Output("frac cal proxy hyper params name", "options"),
Input("frac_cal proxy hyper params_store", "data"),
config prevent initial callbacks=True

)

def update proxy hyper params(hyper params):

return hyper params

222

@callback(
Output("frac_cal proxy hyper params content", "children"),
Input("frac_cal proxy hyper params_confirm", "n_clicks"),
[State("frac_cal proxy hyper params name", "value"),
State("frac_cal proxy hyper params_dist", "value"),
State("frac_cal proxy hyper params_dist params", "value")],
config prevent initial callbacks=True
)
def'visualize proxy hyper params_dist(n clicks, param name, param_dist, param_dist params):
ifn_clicks:
print("Dist for: ", param_name, param_dist)
param_dist params_ = param_dist params.split(sep=",")
param_dist params = [float() for in param_dist params |
if param_dist == "uniform":

param_dist generator = distributions.uniform(param_dist params [0],
param_dist params [-1])

param_dist data = param_dist generator.rvs(1000)
elif param_dist == "normal":

param_dist generator = distributions.norm(param_dist params_[0],
param_dist params [-1])

param_dist data = param_dist generator.rvs(1000)

else:

param_dist_generator = distributions.lognorm(param_dist params_[0],
param_dist_params_[-1])

param_dist_data = param_dist_generator.rvs(1000)
param_dist_data = pd.DataFrame({param_name: param_dist data})
fig = px.histogram(data_frame=param_dist data, x=param_name)
graph_id = param_name +' distribution’

return dcc.Graph(figure=fig, id=graph _id)

223

else:

raise PreventUpdate

@callback(

"nn

[Output("frac_cal proxy exp inputs", "options"),
Output("frac_cal proxy exp_ outputs", "options")],
Input("frac_cal proxy config right params validate", "n_clicks"),
State("frac_cal proxy config right params dropdown", "value"),
config prevent initial callbacks=True

)

def retrieve proxy exp params(n_clicks, proxy params):
if n_clicks:

return proxy_params, proxy_params

else:

raise PreventUpdate

@callback(
Output("frac cal proxy exp content", "children"),
Button to execute the proxy experiment run(s)
Input("frac_cal proxy exp_ exec", "n_clicks"),
[# Type of proxy task
State("task to use proxy", "value"),
Type of proxy
State("frac_cal proxy exp proxy type", "value"),
Fit or Optimize this experiment

nn

State("frac_cal proxy exp right dropdown", "value"),

224

Proxy's hyper-parameter distributions
State("frac_cal proxy hyper params_dist store", "data"),
Define the experiment

"nn

State("frac cal proxy exp dir", "value"),

nn

State("frac_cal proxy exp name", "value"),
State("frac_cal proxy exp description", "value"),
Define the run

nn

State("frac cal proxy exp run name", "value"),

"non

State("frac cal proxy exp model folder", "value"),
State("frac cal proxy exp artifact folder", "value"),
Data sources, inputs and outputs

nmn

State("frac_cal proxy exp inputs", "value"),
State("frac cal proxy exp outputs", "value"),
State("frac cal data sources store", "data"),
State("frac cal project main_ dir store", "data")
], config_prevent initial callbacks=True
)
defrun_proxy exp(n_clicks, proxy task, proxy type,
exp_mode, hyper params_dists,
exp_dir, exp name, exp description,
run_name, model folder, artifact folder,
input_variables, output_variables, data_source, main_dir):
if n_clicks:
Create data object (XGBDataset)
print('Create data object ...")
dataset file = data source +' data .csv'
dataset dir = os.path.join(main_dir, dataset file)

df = pd.read _csv(dataset_dir, index_col=0, header=0)

225

df cols = list(df.columns)
data_object = XGBDataset(df=df)
fracture profile cols = list()
for col in df cols:
if 'z 'in col:
fracture profile cols.append(col)
if proxy_task == "Fracture geometry calibration":
data_object.x_cols = data_object.time_param + fracture profile cols
else:
data_object.x_cols = input_variables
data_object.y cols = output_variables
Create proxy object (QuantileXGBRegressor)
print('Create proxy object ...")
proxy_object = QuantileXGBRegressor(xgb data=data object)
Create MLFlowProxyWrapper
print('Create proxy wrapper object ...")
proxy wrapper = MLFlowProxyWrapper(proxy=proxy_object)
Create hyper-parameter space
print('Create space ...")

space, proxy exp mode = create proxy hyper params space(hyper params_dists,
proxy_type, exp _mode)

Create experiment object

print('Create experiment object ...")

experiment_object = ProxyExperiment(mlflow proxy wrapper=proxy_ wrapper)
experiment_object.experiment dir = exp_dir

experiment object.experiment name = exp_name

experiment object.experiment_description = exp_description
experiment_object.experiment mode = proxy_exp_mode

print('Execute the experiment & run ...")
226

Execute experiment & corresponding run
if proxy exp mode == 'fit":

experiment object.log new fit experiment(run name, model folder, artifact folder,
space)

else:

experiment object.log new opt experiment(run_name, model folder, artifact folder,
space)

else:

raise PreventUpdate

R
HIHIHIHIHHRH

HIHIHIHHHHHHIHHHHHIH Page's main Ul callbacks
HIHHIHHHHHHHIHHHHH

HHHHEHEHHHHH Proxy explanation
HHHHEHEHHHHHEH A

from base.base import *

def toggle collapse(n, is_open):
if n:
return not is_open

return is_open

def set_navitem_class(is_open):
if is_open:

return "open"”
227

return ""

def set_sidebar(app: dash.Dash):

app.callback(

nn

Output("doe sidebar collapse", "is_open"),
[Input("doe_sidebar", "n_clicks")],

[State("doe_sidebar collapse", "is_open")],

)(toggle collapse)

app.callback(
Output("doe_sidebar", "className"),

[Input("doe sidebar collapse", "is_open")],

)(set_navitem_class)

app.callback(
Output("frac_cal sidebar collapse", "is_open"),
[Input("frac cal sidebar", "n_clicks")],

[State("frac cal sidebar collapse", "is open")],

)(toggle collapse)

app.callback(
Output("frac_cal_sidebar", "className"),

[Input("frac_cal sidebar collapse", "is_open")],

)(set_navitem_class)

app.callback(

nn

Output("proxy_deploy sidebar collapse", "is_open"),

228

[Input("proxy deploy sidebar", "n_clicks")],

[State("proxy deploy sidebar collapse", "is_open")],
)(toggle collapse)

app.callback(

n"nn

Output("proxy_deploy sidebar", "className"),
[Input("proxy deploy_sidebar collapse", "is_open")],
)(set_navitem_class)
from DoE.doe.utils import *

from simulator.base.entry import *

T R R R R R R R R R R
"Connection" classes to create and write new ResFrac simulation files

Using the classes:

1. Entry: allow integrating with ResFrac entry system

2. ValueStruct: allow altering the data in a specific entry

HHHHEHHHHH

class Distribution(object):
TODO: Set-up class to manage all DoE distributions (that alter value struct
in a ResFrac's entry
def init_ (self, entry: Entry):
super(Distribution, self). _init ()

self.entry = entry

def verify entry(self, expected variable name: str):

229

try:

assert self.entry.variable name == expected variable name
except AssertionError:

warnings.warn('Incorrect entry.")

sys.exit(1)

def verify value_struct(self, expected value struct):
try:
assert type(self.entry.value struct.value struct) == expected value struct
except AssertionError:
warnings.warn('Incorrect value struct.")

sys.exit(1)

def generate sample(self, *args, **kwargs):

pass

class SingleValueDistribution(Distribution):
Distribution class for an entry with single value
def init_ (self, entry: Entry):
super(Distribution, self). init ()

self.entry = entry

self.value type = None

self.dist = None

def set value type(self, value type: str):

self.value type = value type

230

def set_dist(self, dist):

self.dist = dist

def generate sample(self):
sample value ='' # TODO: ? Sampling a single value here
new_value struct = self.entry.value struct.value struct
new_value struct['Value(s):'] = sample_ value

self.entry.value struct.change value struct(new_ value struct=new_value struct)

class MatrixValueDistribution(Distribution):
Distribution class for an entry with matrix value (e.g., facies list)
def init_ (self, entry: Entry):
super(Distribution, self). init ()

self.entry = entry

self.value type = None

self.dist = None

def set value type(self, value type: str):

self.value type = value type

def set_dist(self, dist):

self.dist = dist

def generate_sample(self, *args, **kwargs):

pass

231

class LayerValueDistribution(Matrix ValueDistribution):
Distribution class for an entry with "matrix" value, as follows:
- Rows: number of layers for a property (as a col)
- Cols: number of properties (a col is a property)
def init_ (self, entry: Entry):
super(Matrix ValueDistribution, self). init ()
self.entry = entry
Additional parameters to indicates layers and property names
self.value type = None
self.dist = None
self.property names = None

self.layer names = None

def set property names(self, property names: list):

self.property names = property names

def set layer names(self, layer names: list):

self.layer names = layer names

def generate sample(self, loc: dict):
for layer name, property name in loc.items():
try:
assert layer name in self.layer names

assert property name in self.property names

232

except AssertionError:
warnings.warn('Input layer name: ' + layer name + ' is incorrect.")
warnings.warn(' OR ")
warnings.warn('Input property name: ' + property name + ' is incorrect.")
sys.exit(1)

for layer name, property name in loc.items():

property idx = self.property names.index(property name)

sample value ="' # TODO: ? Distribution sampling here

new_value struct = self.entry.value struct.value struct

new_value struct[layer name][property idx] = sample value

self.entry.value_struct.change value struct(new value struct=new_value struct)

HHHHH
Distribution classes for fracture model calibration entries

HHHHEHHHH

class RelativeFracToughnessDistribution(SingleValueDistribution):
def init_ (self, entry: Entry):
super(SingleValueDistribution, self). init_ ()
self.entry = entry
self.value type=""

self.dist=""# TODO: ? Set-up uniform distribution here

class FracGradientDistribution(LayerValueDistribution):

def init (self, entry: Entry):

233

super(LayerValueDistribution, self). init ()

self.entry = entry

class VerticalKDistribution(LayerValueDistribution):
def init (self, entry: Entry):
super(LayerValueDistribution, self). init ()

self.entry = entry

class HorizontalK Distribution(LayerValueDistribution):
def init_ (self, entry: Entry):
super(LayerValueDistribution, self). init ()

self.entry = entry

class NWComplexityDistribution(LayerValueDistribution):
def init_ (self, entry: Entry):
super(LayerValueDistribution, self). init ()

self.entry = entry

def generate _sample(self):

pass

class VerticalPropHolUpDistribution(SingleValueDistribution):
Distribution class to manage vertical prop flow holdup factor

def init (self, entry: Entry):

234

super(SingleValueDistribution, self). init ()

self.entry = entry

class MaxImmobilePropMassDistribution(SingleValueDistribution):
Distribution class to manage maximum immobilized prop mass per area
def init_ (self, entry: Entry):
super(SingleValueDistribution, self). init_ ()

self.entry = entry

R
Distribution classes for production data HM entries

HHHHEHHHHHEH

class GlobalPermMultiplierDistribution(Single ValueDistribution):
def init_ (self, entry: Entry):
super(Single ValueDistribution, self). init_ ()
self.entry = entry
self.value type=""

self.dist=""# TODO: ? Set-up uniform distribution here

class PorosityDistribution(LayerValueDistribution):
def init (self, entry: Entry):
super(LayerValueDistribution, self). _init ()

self.entry = entry

235

def generate sample(self):

self.verify entry('facieslist')

class InitialSwDistribution(LayerValueDistribution):
def init_ (self, entry: Entry):
super(LayerValueDistribution, self). init ()

self.entry = entry

def generate sample(self):

self.verify entry('facieslist’)

class RelPermCurveDistribution(Distribution):

Distribution class to manage rel perm curve (RelPermStruct)

def init_ (self, entry: Entry):
super(Distribution, self). init ()
self.entry = entry
Additional parameters for relative perm curves
self.max_Sr=np.zeros(3) #S wr, S or, S gr
self.kr multipliers = np.zeros(3) #k rw, k ro, k rg
self.Sr_dist = None

self.kr_dist = None

def set_saturation_dist(self, Sr_dist):

self.Sr_dist = Sr_dist

236

def'set kr dist(self, kr_dist):
self.kr dist =kr dist

def generate sample(self):
self.verify entry("matrixcurvesets')
self.max Sr="'"' #TODO: ? Implement distribution sampling here
self.kr multipliers ="" # TODO: ? Implement distribution sampling here
rel perm curve = np.zeros([3, 3])
rel perm curvel:, 0] = self.Sr_dist
rel perm curvel[:, 1] =np.array([2, 2, 1.2])
rel perm_curve[:, -1] =self.kr_dist
new_value struct = self.entry.value struct.value struct
new_value struct['matrixrelperm'][-1] =rel perm curve

self.entry.value struct.change value struct(new value struct=new value struct)

class PDPDistribution(Distribution):
Distribution class to manage Pressure Dependent Permeability (RelPermStruct)
def init_ (self, entry: Entry):
super(Distribution, self). init ()
self.entry = entry
Additional parameters for relative perm curves
self.pressures = np.zeros(3) # S wr, S or, S gr
self. multipliers = np.zeros(3) #k rw, k ro, k rg
self.pressure dist = None

self.multiplier dist = None

def set pressure dist(self, pressure_dist):

237

self.pressure dist = pressure dist

defset kr dist(self, multiplier dist):

self.multiplier dist = multiplier dist

def generate sample(self):
self.verify entry("matrixcurvesets')
self.pressures ="' # TODO: ? Implement distribution sampling here
self.multipliers ='"' # TODO: ? Implement distribution sampling here
pdp_data = np.zeros([3, 2])
pdp_data[:, 0] = self.pressures
pdp_data[:, -1] = self.multipliers
new_value struct = self.entry.value struct.value struct
new_ value struct[('pressuredependentpermeability’, reversible')][0] = pdp_data

self.entry.value struct.change value struct(new value struct=new value struct)

class StressAnisotropyDistribution(LayerValueDistribution):
Layers' Sh_ max - Sh_ min
def init_ (self, entry: Entry):
super(LayerValueDistribution, self). init ()

self.entry = entry

class NetToGrossDistribution(LayerValueDistribution):
Layers' net to gross ratios
def init (self, entry: Entry):

super(LayerValueDistribution, self). init ()

238

self.entry = entry
from DoE.doe.utils import *
from simulator.base.entry import *

from simulator.simulation import simulation_helpers, simulation_files

R R R R R R R R
"Connection" classes to create and write new ResFrac simulation files

Using the classes:

1. Entry: allow integrating with ResFrac entry system

2. ValueStruct: allow altering the data in a specific entry

T

class Connector(object):
def init_ (self, entry: Entry):

Base connector class, inherit this class to:
1. Connect data from a DoE case to the correct entry's value struct
2. Write data from a DoE case to the correct entry's value struct
(depend on the type of the value struct)
‘param entry:
super(Connector, self). _init ()
self.entry = entry # The entry the connector shall write data into
:param case _loc: type int, the case number in DoE data (2D np.ndarray)

:param data_loc: type int, the DoE parameter location in the DoE data

239

:param write loc: denote as follows:
1. For single value: -1
2. For value(s) in a list/1D array: list(int)
3. For values(s) in a list of list/2D array: list(list(int))
4. For value(s) in layer: list(layer name, property index)
5. For irregular value structs:
5.1. Relative perm: list(list(int)) for relative perm curve(s) & curve location
5.2. PDP curve: list(list(int)) for pressure dependent perm curve(s) & curve location
self.case_loc = None # The case number the DoE data shall locate
self.data_loc = None # The location(s) of the data in the DoE data

self.write loc = None # The location(s) of the data in the entry's value struct

def'set _doe loc(self, case loc: int, data loc):
Set the case location & data location in the DoE data
self.case loc = case loc

self.data loc = data loc

def set write loc(self, write loc):
Set the written location in the entry's value struct

self.write loc = write loc

def verify entry(self, expected variable name: str):
Verify the correct entry the connector shall connect
If incorrect entry, exit
try:
assert self.entry.variable name == expected variable name

except AssertionError:

240

warnings.warn('Incorrect entry.")

sys.exit(1)

def verify value struct(self, expected value_struct):
Verify the correct value struct type the connector shall connect
If incorrect value struct type, exit
try:
assert type(self.entry.value struct.value struct) == expected value struct
except AssertionError:
warnings.warn('Incorrect value struct.’)

sys.exit(1)

def write_doe data(self, doe data: np.ndarray, *args, **kwargs):
Write data from DoE (doe data) to the entry's value struct
Must override

pass

class SingleValueConnector(Connector):
def init_ (self, entry: Entry, data_type):
Connector class to connect DoE data of a single value (i.e., str, float, int)
‘param entry:
super(Connector, self). _init ()
self.entry = entry
self.write loc =-1

self.data_type = data_type

241

def verify data_type(self, value):
if self.data_type in [int, float]:
try:
value = self.data_type(value)
return True
except ValueError:
return False
elif self.data_type == bool:
try:
assert value.lower() in ['true’, 'false']
return True
except AssertionError:
try:
assert self.data_type == str
return True
except AssertionError:

return False

def write_doe data(self, doe data: np.ndarray, *args, **kwargs):

if self.case loc is None or self.data loc is None:
warnings.warn('Case location and data location are required.")
sys.exit(1)

elif not self.verify data type(doe data[self.case loc, self.data loc]):
warnings.warn('Incorrect data type for a single value.")
sys.exit(1)

else:

new_value struct = doe_data[self.case loc, self.data loc]

242

self.entry.change values(new_ value struct=self.data type(new value struct))

class ListValueConnector(Connector):
def init (self, entry: Entry):
nmn
Connector class to connect DoE data of a list value
(i.e., str, float, int)
:param entry:
nmn
super(Connector, self). init ()
self.entry = entry

self.write loc = None # Location(s) in the value struct the connector shall write into

def set write loc(self, write loc: List[int]):

self.write loc = write loc

def write_doe data(self, doe data: np.ndarray, *args, **kwargs):

self.verify value struct(expected value struct=list)

if self.case loc is None or self.data loc is None:
warnings.warn('Case location and data location are required.")
sys.exit(1)

elif self.write loc is None:
warnings.warn("Entry value' struct written location is required.")
sys.exit(1)

else:
new_value struct = self.entry.value_ struct.value_ struct

assert len(self.write_loc) == len(self.data loc)

243

for (_, loc) in enumerate(self.write loc):
new_value struct[self.write loc[]] = doe data[self.case loc, self.data loc[]]

self.entry.change values(new_ value struct=new value struct)

class ListOfListValueConnector(Connector):
def init_ (self, entry: Entry):
nmnn
Connector class to connect DoE data of a list of list value
(i.e., str, float, int)
:param entry:
super(Connector, self). init ()
self.entry = entry

self.write loc = None # Location(s) in the value struct the connector shall write into

def set _write loc(self, write loc: List[List[int]]):

self.write loc = write loc

def write_doe data(self, doe data: np.ndarray, *args, **kwargs):

self.verify value struct(expected value struct=list)

if self.case loc is None or self.data_loc is None:
warnings.warn('Case location and data location are required.")
sys.exit(1)

elif self.write loc is None:
warnings.warn("Entry value' struct written location is required.")
sys.exit(1)

else:

244

assert type(self.write loc) == list
assert len(self.write loc) ==
assert type(self.data loc) == list
assert len(self.write loc[0]) == len(self.write loc[-1])
assert len(self.write loc[0]) == len(self.data loc)
new_value struct = self.entry.value struct.value struct
for _in range(len(self.write loc[0])):
new_value struct[self.write loc[0][]][self.write loc[-1][]] =\
doe dataf[self.case loc, self.data loc[]]

self.entry.change values(new value struct=new value struct)

class Array1DValueConnector(Connector):
def init_ (self, entry: Entry):
Connector class to connect DoE data of a 1D numpy array value
(i.e., str, float, int)
‘param entry:
super(Connector, self). _init ()
self.entry = entry

self.write_loc = None

def set write loc(self, write loc: List[int]):

self.write loc = write loc # Location(s) in the value struct the connector shall write into

def write_doe data(self, doe data: np.ndarray, *args, **kwargs):

self.verify value_struct(expected value struct=np.ndarray)

245

if self.case loc is None or self.data_loc is None:
warnings.warn('Case location and data location are required.")
sys.exit(1)
elif self.write loc is None:
warnings.warn("Entry value' struct written location is required.")
sys.exit(1)
else:
new_value struct = self.entry.value struct.value struct
assert len(self.write loc) == len(self.data_loc)
for (_, loc) in enumerate(self.write loc):
new_value struct[self.write loc[]] = doe data[self.case loc, self.data loc[]]

self.entry.change values(new value struct=new value_struct)

class Array2DValueConnector(Connector):
def init_ (self, entry: Entry):
Connector class to connect DoE data of a 2D numpy array value
(i.e., str, float, int)
‘param entry:
super(Connector, self). _init ()
self.entry = entry

self.write_loc = None

def set write loc(self, write_loc: Union[List[int], List[List[int]]]):

self.write loc = write loc # Location(s) in the value struct the connector shall write into

246

def write _doe data(self, doe data: np.ndarray, *args, **kwargs):
self.verify value struct(expected value struct=np.ndarray)
if self.case loc is None or self.data_loc is None:
warnings.warn('Case location and data location are required.")
sys.exit(1)
elif self.write loc is None:
warnings.warn("Entry value' struct written location is required.")
sys.exit(1)
else:
assert type(self.write loc) == list
assert len(self.write loc) ==
assert type(self.data loc) == list
assert len(self.write loc[0]) == len(self.write loc[-1])
assert len(self.write loc[0]) == len(self.data_loc)
new_value struct = self.entry.value struct.value struct
for _in range(len(self.write loc[0])):
new value struct[self.write loc[0][], self.write loc[-1][]] =\
doe dataf[self.case loc, self.data loc[]]

self.entry.change values(new value struct=new value struct)

class LayerValueConnector(ListOfListValueConnector):
def init_ (self, entry: Entry, layer names: List[str], prop_names: List[str]):
Connector class to connect DoE data of a "layer data" value struct
(i.e., static data per layer, modulus properties, initial Sw per layer)
‘param entry:

:param layer names:

247

:param prop_names:

super(ListOfListValueConnector, self). init (entry=entry)
self.num_layers = None

Additional attributes to define layer & property names
self.prop_names = prop_names

self.layer names = layer names

self.connected prop names = None

self.connected layer names = None

def set number of layers(self, num_layers: int):

self.num_layers = num_layers

def set connected data(self, connected prop names: List[str],
connected layer names: List[str]):
self.connected prop names = connected prop names

self.connected layer names = connected layer names

def set write loc(self, write loc=None):
Re-write this function to intake connected layer names & property names
assert len(self.connected layer names) == len(self.connected prop names)
write loc_ = list()
for (_, layer name) in enumerate(self.connected layer names):
prop_name = self.connected prop names|]
try:
prop_idx = self.prop names.index(prop_name)
write_loc_.append([layer name, prop_idx])

except ValueError:

248

warnings.warn('Provided property is not correct.')
sys.exit(1)

self.write loc = write loc

def write _doe data(self, doe data: np.ndarray, *args, **kwargs):

self.verify value_struct(expected value struct=dict)

if self.case loc is None or self.data_loc is None:
warnings.warn('Case location and data location are required.’)
sys.exit(1)

elif self.write loc is None:
warnings.warn("Entry value' struct written location is required.")
sys.exit(1)

else:
assert len(self.write loc) == len(self.data_loc)
new_value struct = self.entry.value struct.value struct
for (_, [layer name, prop_idx]) in enumerate(self.write loc):

new_ value struct[layer name][prop idx] = doe data[self.case loc, self.data loc[]]

self.entry.change values(new value struct=new value struct)

def init_connector(entry: Entry, param name: str):
TODO: Return the correct connector class for an entry
‘param entry:
:param param_name:
:return: connector object: the connector class object

try:

249

assert entry.is_doe is True
except AssertionError:
warnings.warn('This is not a DoE entry.")
sys.exit(1)
if entry.length == 0:
warnings.warn('An entry with 0 length can not be a DoE entry.")
sys.exit(1)
elif entry.length == 1:
if type(entry.value_struct) is SingleValueStruct:
connector_object = SingleValueConnector(entry=entry, data_type=None)
elif type(entry.value_struct) is MatrixValueStruct:
if type(entry.value_struct.value struct) == np.ndarray:
connector_object = Array1DValueConnector(entry=entry)
else:
connector object = ListValueConnector(entry=entry)
else:
rel perm curve =-1
if 'pdp' not in param_name:

connector object = RelPermCurveConnector(entry=entry,
rel perm curve=rel perm curve)

else:
connector_object = PDPConnector(entry=entry, rel perm_curve=rel perm curve)
else:
if type(entry.value_struct) is FaciesListStruct:
layer names =["]
prop_names_ = ["]

connector_object = LayerValueConnector(entry=entry, layer names=layer names |,
prop_names=prop_names_)

else:

250

if verify 1d list(entry.value struct.value struct) is True:
connector_object = ListValueConnector(entry=entry)

elif verify 1d_array(entry.value struct.value struct) is True:
connector_object = Array 1D ValueConnector(entry=entry)

elif verify 1d_list(entry.value struct.value struct) is False:
connector_object = ListOfListValueConnector(entry=entry)

elif verify 1d_array(entry.value_struct.value struct) is False:
connector object = Array2DValueConnector(entry=entry)

else:

warnings.warn("The entry value struct is not supported by any connectors. Set to base
connector.")

connector_object = Connector(entry=entry)

return connector _object

R
Distribution classes for production data HM entries

HHHHEHHHHHH

class RelPermCurveConnector(Connector):
def init_ (self, entry: Entry, rel perm_curve: int):
Connector class specified for rel perm curve (as np.ndarray)
‘param entry:
super(Connector, self). _init ()
self.entry = entry

self.rel perm_curve =rel perm curve
251

def write _doe data(self, doe data: np.ndarray, *args, **kwargs):
This function to write rel perm curve at the correct location in 'matrixcurvesets' entry
self.verify entry(expected variable name='matrixcurvesets')
new_value struct = self.entry.value struct.value struct
rel perm_curve = new_value_struct[self.rel perm curve]['matrixrelperm'][-1]
if self.case loc is None or self.data_loc is None:
warnings.warn('Case location and data location are required.")
sys.exit(1)
elif self.write loc is None:
warnings.warn("Entry value' struct written location is required.")
sys.exit(1)
else:
assert type(self.write loc) == list
assert type(self.data loc) == list
for _in range(len(self.write loc)):

rel perm_curve[self.write loc[][0], self.write loc[][-1]] = doe data[self.case loc,
self.data loc[]]

new value struct[self.rel perm curve]['matrixrelperm'][-1] =rel perm curve

self.entry.value struct.change value struct(new value struct=new value struct)

class PDPConnector(Connector):
def init_ (self, entry: Entry, rel perm_curve: int):
super(Connector, self). _init ()
self.entry = entry

self.rel perm curve =rel perm_curve

def write _doe data(self, doe data: np.ndarray, *args, **kwargs):
252

This function to write rel perm curve at the correct location in 'matrixcurvesets' entry
self.verify entry(expected variable name="matrixcurvesets')
new_value struct = self.entry.value struct.value struct

pdp curve = new value struct[self.rel perm curve][('pressuredependentpermeability’,
'reversible")][0]

if self.case loc is None or self.data_loc is None:
warnings.warn('Case location and data location are required.’)
sys.exit(1)
elif self.write loc is None:
warnings.warn("Entry value' struct written location is required.")
sys.exit(1)
else:
assert type(self.write loc) == list
assert len(self.write loc) ==2
assert type(self.data loc) == list
assert len(self.write loc[0]) == len(self.write loc[-1])
assert len(self.write loc[0]) == len(self.data_loc)
for _in range(len(self.write loc[0])):
pdp_curve[self.write loc[0][], self.write loc[-1][]] =\
doe dataf[self.case loc, self.data loc[]]

new value struct[self.rel perm curve][('pressuredependentpermeability’, 'reversible')][0] =
pdp_curve

self.entry.value_struct.change value struct(new_value struct=new_value_struct)

R
Design of Experiments classes/functions using pyDOE, scipy and numpy

HHHHHHHHHHHH

253

class DesignOfExperiments(object):
def init (self, design: str):
TODO: ? Design of Experiments class that is integrated to the connector classes above
super(DesignOfExperiments, self). init ()
self.data locs = None
self.data = None

self.design = design

def verify design(self, design: str):
try:
assert self.design == design
except AssertionError:
warnings.warn('Incorrect design.")

sys.exit(1)

def'set data locs(self, data locs: Dict[Tuple[str, str],
Union[int, List[int], List[List[int]]]]):
Set up the correlation between DoE data and the connector classes
:param data locs: correlate the data location in DoE data to the DoE parameter name & entry
(eventually correlate to the written location in the entry's value struct)
:return: self.data_locs (type dict)
self.data locs.keys(): type tuple (property name, entry name)
self.data_locs.values(): int (list/1D array), list(int) (list of list/2D array), -1 (single value)

nmn

self.data_locs = data_locs

254

def generate(self, num_cases: int, *args, **kwargs):

pass

class CCC(DesignOfExperiments):
def init_ (self, design='ccc'):
super(DesignOfExperiments, self). init_ ()

self.design = design

def generate(self, num_cases=100, *args, **kwargs):

pass

class LHS(DesignOfExperiments):
def init_ (self, design="lhs"):
super(DesignOfExperiments, self). init ()
self.dist = None

self.design = design

def set_distributions(self, dist: list):

self.dist = dist

def generate(self, num_cases=100, *args, **kwargs):
props = list(self.data_locs.keys())
try:
assert self.dist is not None
except AssertionError:

warnings.warn('Distributions are required.")

255

sys.exit(1)
lhs_data = pyDOE.lhs(len(props), samples=num_cases, criterion='center')
for _in range(len(props)):

Customize the distributions here via scipy

lhs data[:,]=self.dist[].ppf(lhs data[:,])

self.data = lhs_data

R R R R R R R R R
Interface classes to
1. Couple DesignOfExperiments class & Connector class

2. Record DesignOfExperiments in ResFrac files via comment lines

R

class DesignOfExperimentsAssembly(object):
def init (self, base entries: List[Entry]):

super(DesignOfExperimentsAssembly, self). init ()
self.base entries = base entries
self.doe params = None # DoE parameter names
self.doe entry var names = None # DoE entry names
self.doe_distributions = None # DoE distributions
self.write locs = None # Written locations inside the entries' value structs
self.doe_data = None # DoE data
#
self.doe_batch =0

self.doe_dir = None

256

defreset_all entries(self):
Reset all entries to non-doe entries
for (_, entry) in enumerate(self.base_entries):
if entry.is_doe is True:
self.base entries[].is doe = False
else:

pass

def set main_dir(self, doe dir):

self.doe_dir = doe_dir

def set doe params(self, doe params: List[str]):

self.doe_params = doe params

def'set doe entry var names(self, doe entry var names: List[str]):
all entry var names = [e.variable name for e in self.base entries]
for (_, var name) in enumerate(doe entry var names):
if var name not in all entry var names:
warnings.warn('Incorrect entry variable name(s).")
sys.exit(1)
else:
for e in self.base_entries:
if e.variable name == var_name:
e.is_doe = True
else:
pass

self.doe_entry var names = doe entry var names

257

def set_doe_distributions(self, doe_distributions: list):

self.doe_distributions = doe_distributions

def'set data locs(self):
data_locs = dict()
for (_, param) in enumerate(self.doe_params):
if param not in data_locs.keys():
data_locs[(param, self.doe _entry var names[])] = self.write locs[]
else:
pass

return data_locs

def set_write locs(self, write_locs):

self.write locs = write locs

def verify doe interface(self):

Verify the number of doe parameters equal the number of entries (two parameters can
belong to one entry)

try:
assert self.doe params is not None
assert self.doe entry var names is not None
assert self.doe_distributions is not None
assert self.write_locs is not None
except AssertionError:
warnings.warn('Design of Experiments interface is not defined.")
sys.exit(1)
try:
assert len(self.doe _params) == len(self.doe_entry var names)

assert len(self.doe params) == len(self.write locs)
258

assert len(self.doe params) == len(self.doe_distributions)
except AssertionError:
warnings.warn('Incorrect Design of Experiments interface.")

sys.exit(1)

def generate_doe object(self, design: str, num_cases: int):
self.verify doe interface()
data locs = self.set_data locs()
doe object = LHS(design=design)
doe object.data locs = data locs
doe object.verify design(design=design)
doe object.set distributions(self.doe_distributions)
doe object.generate(num_cases=num_cases)

return doe object

def write_doe_entries(self, doe object: DesignOfExperiments, last case: int):
doe data = doe object.data
Loop through all doe cases to write settings/input files
for case loc in range(doe data .shape[0]):
case doe entries = list()
Loop through all doe entries (using their variable names)
for (_, (param_name, entry_var name)) in enumerate(doe_object.data_locs):
Loop through all base entries to find the correct doe entries
for entry in self.base entries:
if entry.variable name == entry var name:
The doe entry, init connector & modify using entry's variable name & write loc
entry _connector = init_connector(entry=entry, param _name=param_name)

if type(entry.value_struct) == SingleValueStruct:

259

Single ValueConnector
entry connector.data_type = float # TODO: ? Fix me
elif type(entry.value_struct) == RelPermStruct:
RelPermConnector or PDPConnector
entry connector.set write loc(write loc=self.write locs[])
entry _connector.rel perm_curve =0
elif type(entry.value_struct) == FaciesListStruct:
LayerValueConnector
num_layers = len(entry.value_struct.value_struct.keys())
connected layer names = [i[0] for i in self.write locs[]]
connected prop names = [i[-1] for 1 in self.write locs[]]
entry _connector.layer names = layer names
entry _connector.prop _names = layer_props

entry connector.set number of layers(num_layers=num_layers)

entry connector.set connected data(connected layer names=connected layer names,
connected prop names=connected prop names)

entry connector.set write loc()

else:
List/ListOfList/Array 1 D/Array2D-Connector
entry connector.set write loc(write loc=self.write locs[])

entry_connector.set_doe loc(case loc=case loc, data_loc=[])

entry _connector.write_doe data(doe data=doe data)

case_doe_entries.append(entry connector.entry)

else:
The non-doe entry, remain
case_doe_entries.append(entry)
#

doe settings file name = 'doe_settings case '+ str(case loc) + ".txt'
260

doe settings file dir = os.path.join(self.doe_dir, doe settings file name)
simulation_file = simulation_files.SimulationFile(entries=case doe_entries,
file type='settings')
simulation_file.write file(file name=doe_settings file dir)
Loop through all doe cases to write data for surrogate assembly
doe data file name ='doe data '+ str(self.doe batch) + '.csv'
doe data file dir = os.path.join(self.doe dir, doe data file name)
doe data = list()
for case loc in range(doe data .shape[0]):
case data = dict()
if 'case' not in case data.keys():
case data['case'] = case loc + last case
for _in range(doe data .shape[-1]):
if self.doe params[] not in case data.keys():
case data[self.doe params|]] =doe data [case loc,]
doe data.append(case data)
doe data = pd.DataFrame(data=doe data)
self.doe data =doe data
doe data.to csv(doe data file dir, header=True)
return doe data

from src.base.base libs import *

S S e e B S e S L S P S A R S L B R B i DR R
Design of Experiments helper variables

HHHHHHHHHHHH

261

layer props = 'top bottom xperm yperm zperm curvesetname ' \
'porositycompressibility referenceporosity '\
'stressdeviation dualporosity fractureporositycompressibility ' \
'fracturereferenceporosity shapefactor matrixpermeability rockdensity ' \
'rockheatcapacity thermalconductivity coefficientoflinearexpansion dphidT '\
'biotcoefficient Tstr horizontalfracturetoughness verticalfracturetoughness ' \
'EOmax sn90percentclosure Eresmax maximumflowingmolarmass ' \
'optionalinitialwatersaturation langmuirpressure langmuirvolume' \
'showinvisualizationtool proppant embedment'

layer props = layer props.split(sep="")

layer names = ['Layer ' + str(_) for _ in range(60)]

R
Design of Experiments helper functions

HHHHEHHHH

def modify layer names(original layer names: List[str], locs: List[int],
loc layer names: List[str]):
mod layer names = deepcopy(original layer names)
for (_, layer name) in enumerate(layer names):
if _in locs:
mod layer names|[]=loc layer names[locs.index()]

return mod_layer names

def verify_single value type(data: Union[int, float, bool, str]):

262

try:
value = int(data)
return int
except AssertionError:
try:
value = float(data)
return float
except AssertionError:
if data.lower() in ['true', 'false']:
return bool
else:

return str

def verify 1d_list(data: list):
assert type(data) == list
assert len(data) > 0
if type(data[0]) is not list:
return True
else:

return False

def verify 1d_array(data: np.ndarray):
assert type(data) == np.ndarray
if type(data[0]) is not np.ndarray:
return True

else:

263

return False

def layer location(layer name : str, layer names_: List[str]):
try:
assert layer name in layer names
except AssertionError:
warnings.warn('Incorrect input layer name.")
sys.exit(1)

return layer names .index(layer name)

R
Design of Experiments helper variables (modified if necessary)

HHHHEHHHH

layer names = modify layer names(original layer names=layer names,

from base.base import *

experimental doe params =['S wr','S or','S gr', relative frac toughness']
experimental response params = ['BHP', 'Oil prod rate']

experimental data sources = ['Proxy_cases']

experimental mode = True locs=[41], loc_layer names=['Target depth'])

from base.base import *

264

S R R R R
Helper variables to support validating Res-Frac file structure

S S R
res_frac required folders = ['Additional Files', 'Input Files', 'Settings Files', 'Results']
res_frac required files = ['cpuinfo.txt', 'dmesg.txt', 'matrix_prop names.txt',
'misc_visualization data.txt', 'static_matrix.bin',
'static_wellfrac.bin', 'stderr.txt', 'stdout.txt', 'syslog.txt']
default hyper params = ['max_depth', 'gamma’, 'reg_alpha', 'reg lambda',
'colsample bytree', 'min_child weight',
'learning_rate', 'random_rate', 'max_bin'|
gbm hyper params = ['max_depth', 'gamma', 'reg_alpha', 'reg_lambda’,
'colsample bytree', 'min_child weight', 'n_estimators'
'learning_rate', 'random_rate', 'max_bin']
xgb hyper params = ['max_depth', 'gamma', 'reg_alpha', 'reg lambda’,
'colsample bytree', 'min_child weight',
'learning_rate', 'random _rate', 'max_bin']
int_hyper params = ['max_depth', 'n_estimators', 'random_state', 'tree_method']

objective_hyper params = ['objective']

quantile hyper params = ['quantile alpha']

265

S R R R R
Helper functions for Dash callbacks and interfaces

HHHHHH

def convert numpy to data table(arr: np.ndarray, columns):
data = pd.DataFrame(columns=columns, data=arr)
data_table = dash_table.DataTable(
data=data.to_dict('records'),
columns=[{"name": i, "id": 1} for i1 in data.columns])

return data_table

def convert dict to data table(arr: dict, columns):
data = list()
for in arr.values():
data.append()
data = np.array(data)
if columns is not None:
data = pd.DataFrame(columns=columns, data=data)
else:
columns = ['Column '+ str(_) for _in range(data.shape[-1])]
data = pd.DataFrame(columns=columns_, data=data)
data_table = dash_table.DataTable(
data=data.to_dict('records'),
columns=[{"name": 1, "id": 1} for 1 in data.columns])

return data_table

266

def validate res frac workflows dir(workflows_dir, simulations_dir):
o
Validate the provided folder simulations _dir follows Res-Frac file structure
:param workflows_dir:
:param simulations_dir:
return:
o
simulation_runs_dir = os.path.join(workflows_dir, simulations_dir)
if os.path.exists(simulation_runs_dir) is False:
return False
else:
simulation_runs_data = os.listdir(simulation_runs_dir)
if 'simulations' not in simulation_runs_data or \
'metadata.json' not in simulation runs data:
return False
else:
simulation_runs = os.path.join(simulation runs_dir, 'simulations')
simulation_run_folders = os.listdir(simulation runs)
num_simulation runs = len(simulation run_folders)
simulation_run_folder valid =0
i
for simulation_run_folder in simulation run_folders:
simulation_run_dir = os.path.join(simulation_runs, simulation_run_folder)
simulation_run_files = os.listdir(simulation_run_dir)
if all(_ in simulation_run_files for _inres frac required files) is True \
and all(_ in simulation_run_files for _inres frac required folders) is True:

simulation_run_folder valid +=1

267

if simulation_run_folder valid ==num_simulation_runs:
return True
else:

return False

def create distribution_object(param_name: str, param_dist: str,
param_dist_params, object wrapper='scipy'):
if object wrapper == 'scipy":
if param_dist == "uniform"
dist_object = distributions.uniform(param_name, float(param_dist params[0]),
float(param_dist _params[-1]))
elif param_dist == 'normal':
dist_object = distributions.norm(param_name, float(param_dist params[0]),
float(param_dist params[-1]))
else:
dist_object = distributions.lognorm(param_name, float(param_dist params[0]),
float(param_dist params[-1]))
return dist_object
elif object wrapper == 'hyperopt":
if param name in int_hyper params:
if param_dist == "uniform"
dist_object = scope.int(hp.uniform(param_name,
float(param_dist params[0]),
float(param_dist params[-1])))
elif param_dist == 'normal":
dist_object = scope.int(hp.normal(param_name,

float(param_dist params[0]),

268

float(param_dist params[-1])))
else:
dist_object = scope.int(hp.lognormal(param name,
float(param_dist params[0]),
float(param_dist params[-1])))
else:
if param_dist == "uniform"
dist_object = hp.uniform(param_name,float(param_dist params[0]),
float(param_dist _params[-1]))
elif param_dist == 'normal":
dist_object = hp.normal(param_name, float(param_dist params[0]),
float(param_dist params[-1]))
else:
dist object = hp.lognormal(param_ name, float(param_dist params[0]),
float(param_dist params[-1]))
return dist_object
else:

return None

def create proxy hyper params space(hyper params_dists, proxy type: str, exp mode: str):
hyper params_space = {}
hyper param names = hyper params_dists['param_name']
&
if proxy type == "Normal":
pass
else:

hyper params_space['objective'] = 'reg:quantileerror’

269

hyper params_space['quantile alpha'] = np.array([0.05, 0.5, 0.95])
#
if exp_mode == "Fit":
Sample randomly a space
for (_, name) in enumerate(hyper param_names):
dist = hyper params_dists['param_dist'][]
dist params = hyper params_dists['param_dist params'][]
dist object = create_distribution_object(name, dist, dist_params)
if name in int_hyper params:
val = np.round(dist_object.rvs(size=1)[0]).astype(int)
else:
val = dist_object.rvs(size=1)[0]
if name not in hyper params_space.keys():
hyper params space[name] = val
exp_mode ="fit"
return hyper params_space, exp mode
elif exp_mode == "Optimize":
Create a optimization space
for (_, name) in enumerate(hyper param_ names):
dist = hyper params_dists['param_dist'][]
dist params = hyper params_dists['param_dist params'][]
dist_object = create distribution_object(name, dist, dist params,
object wrapper="hyperopt')
if name not in hyper params_space.keys():
hyper params_space[name] = dist_object
exp_mode = "opt"
return hyper params_space, exp_mode

else:

270

return None, None

from DoE.doe.doe v1 import *

import dash

import dash_bootstrap components as dbc

from dash import dcc
from dash import html
from dash import Input, Output, State

from dash import callback, callback context

from dash.exceptions import PreventUpdate
from dash import callback context as ctx

from dash import register page

from dash_bootstrap components import Tab, Table, InputGroup, Col, Row

from dash bootstrap components import Modal, ModalTitle, ModalBody, ModalHeader,
ModalFooter

from dash bootstrap components import Placeholder

import json, jsonschema

from proxy.proxy_data import *

class QuantileGBRegressor(object):
def init (self, proxy data: ProxyData):
super(QuantileGBRegressor, self). _init_ ()
self.proxy data = proxy data

self.regressor_trait = GradientBoostingRegressor
271

self.eval metric = mean_pinball loss
self.eval index = 1

i

self.response param_index: int = 0
self.test size = 0.1

i

self.quantiles = [0.05, 0.5, 0.95]

def validate(self):

assert self.proxy data.proxy data.empty is False

def set_evaluation_metric(self, eval metric):

self.eval metric = eval metric

def split(self, response param_index: int, test_size: float):
x_cols = list()
for col in list(self.proxy data.proxy data.columns):
if col not in ['case'] and col not in self.proxy data.reservoir response params:
x_cols.append(col)
y_cols = self.proxy data.reservoir response params
x = self.proxy data[x cols]
y = self.proxy data[y cols[response param_index]]
X_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test size,
shuffle=True, random_state=0)

return X_train, X_test, y train, y test

def fit (self, params):

X_train, X _test, y train, y_test = self.split(self.response param_index, self.test size)

272

quantile_models = {}
eval metrics = {}
for quantile in self.quantiles:
model = self.regressor_trait(loss='quantile', alpha=quantile,
**params)
if quantile not in quantile models.keys():
quantile_models[quantile] = model.fit(x_train, y_train)
eval metrics[quantile] = self.eval metric(model.predict(x_test), y test,
alpha=quantile)

return quantile models, eval metrics

def fit cross validation (self, params, num_folds=5):
x_cols = list()
for col in list(self.proxy data.proxy data.columns):
if col not in ['case'] and col not in self.proxy data.reservoir response params:
x_cols.append(col)
y_cols = self.proxy data.reservoir_response params
x = self.proxy data.proxy data[x cols].to numpy()
y = self.proxy data.proxy data[y cols[self.response param_index]].to_numpy()
#
k fold = KFold(n splits=num_folds, shuffle=True, random_state=0)
k fold metrics =[]
i
model = self.regressor_trait(loss='quantile’,
alpha=self.quantiles[self.eval index], **params)
for train_index, test_index in k_fold.split(x):
X_train, x_test = X[train_index], x[test index]

y_train, y test = y[train_index], y[test index]

273

model.fit(x_train, y train)

y_pred = model.predict(x_test)

k fold metric = self.eval metric(y_test, y pred,
alpha=self.quantiles[self.eval index])

k fold metrics.append(k fold metric)

return model, k fold metrics

def optimize (self, opt space: dict):
model = self.regressor_trait(**opt_space, loss='quantile',
alpha=self.quantiles[self.eval index])
X_train, X_test, y train, y_test = self.split(self.response param index, self.test size)
#
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
test metric = self.eval metric(y pred, y test)

return {'loss": test_metric, 'status': STATUS OK, 'model': model}

def optimize cross validation (self, opt_space: dict):
model, k fold metrics = self. _fit cross_validation _(opt_space)
k fold metric = sum(k fold metrics) / len(k fold metrics)
return {'loss": k fold metric, 'status': STATUS OK, 'model': model}

from proxy.proxy_data import *

class NonQuantileRegressor(object):
def init (self, proxy data: ProxyData):
super(NonQuantileRegressor, self). init_ ()

self.proxy data = proxy data

274

self.regressor_trait = XGBRegressor
self.eval metric = mean_squared _error
i

self.response param_index: int = 0

self.test size = 0.1

def validate(self):

assert self.proxy data.proxy data.empty is False

def set_evaluation metric(self, eval metric):

self.eval metric = eval metric

def split(self, response_param_index: int, test_size: float):
x_cols = list()
for col in list(self.proxy data.proxy data.columns):
if col not in ['case'] and col not in self.proxy data.reservoir response params:
x_cols.append(col)
y_cols = self.proxy data.reservoir response params
x = self.proxy data[x cols]
y = self.proxy datal[y cols[response param index]]
X_train, X_test, y train, y test = train test split(x, y, test size=test size,
shuffle=True, random_state=0)

return x_train, x_test, y train, y_test

def fit (self, params):
X_train, x_test, y train, y_test = self.split(self.response param_index, self.test size)
self.regressor_trait(**params).fit(x_train, y_train)

return self.eval metric(x_test, y_test)

275

def fit cross validation (self, params, num_folds=5):
x_cols = list()
for col in list(self.proxy data.proxy data.columns):
if col not in ['case'] and col not in self.proxy data.reservoir response params:
x_cols.append(col)
y_cols = self.proxy data.reservoir_response params
x = self.proxy data.proxy data[x cols].to_ numpy()
y = self.proxy data.proxy data[y cols[self.response param index]].to_numpy()
&
k fold = KFold(n_splits=num_folds, shuffle=True, random_state=0)
k fold metrics = {}
if self.regressor_trait == XGBRegressor:
model = self.regressor _trait(**params, eval metric=self.eval metric)
else:
model = self.regressor trait(**params)
#
=0
for train_index, test index in k_fold.split(x):
X_train, X_test = x[train_index], x[test index]
y train, y_test = y[train index], y[test index]
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
score = self.eval metric(y_test, y pred)
if 'fold '+ str(_) not in k_fold metrics.keys():
k fold metrics['fold '+ str(_)] = score
=1

return model, k_fold metrics

276

def optimize (self, opt space: dict):
model = self.regressor_trait(**opt_space)
model.eval metric = self.eval metric
X_train, X_test, y_train, y_test = self.split(self.response param_index, self.test size)
i
evaluation = [(x_train, y_train), (x_test, y_test)]
model.fit(x_train, y_train, eval set=evaluation, verbose=False)
y_pred = model.predict(x_test)
test_metric = self.eval metric(y pred, y test)

return {'loss": test_metric, 'status': STATUS OK, 'model': model}

def optimize cross validation (self, opt space: dict):
model, cross val metrics = self. fit cross validation (opt space)
cross_val metric = sum(cross_val metrics) / len(cross_val metrics)
return {'loss": cross val metric, 'status': STATUS OK, 'model': model}
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

import os
import shutil
from typing import List, Deque, Union, Dict, Any

from tqdm import tqdm

import sklearn

from sklearn.utils.validation import check is_fitted

277

from sklearn.model selection import train_test_split, KFold
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler
from sklearn.metrics import mean_squared _error, mean_absolute error, mean_ pinball loss

from sklearn.ensemble import GradientBoostingRegressor, HistGradientBoostingRegressor

import xgboost as xgb

from xgboost import XGBRegressor, QuantileDMatrix, DeviceQuantileDMatrix

from hyperopt.pyll.base import scope

from hyperopt import fmin, tpe, hp, STATUS OK, Trials, space_eval

import mlflow
import mlflow.sklearn

import mlflow.xgboost

from mlflow.models import infer signature
from mlflow import log metric, log_param, log_artifacts, log_input, log text

from mlflow.tracking import MlflowClient

from mlflow import pyfunc

from mlflow.pyfunc import PythonModel, PythonModelContext, PyFuncModel, \
PyFunclnput, PyFuncOutput

from mlflow.pyfunc import log_model, load model

from proxy.proxy_base import *

from workflow.surrogate import *

class ProxyRawData(object):

278

def init (self, project dir: str, proxy data dir: str):
super(ProxyRawData, self). init ()
self.project dir = project_dir
self.proxy data dir = proxy data_dir
self.proxy data = pd.DataFrame()
i
self.num_doe cases = None
self.doe_assembler = None
&
self.fracture profile resolution = None
self.doe params = None
self.reservoir_response params = None
#

self.experimental mode = True

def'init data properties(self, fracture profile resolution, doe params,
reservoir_response params):
self.fracture profile resolution = fracture profile resolution
self.doe params = doe params

self.reservoir_response params = reservoir_response params

def write proxy raw_data(self, proxy raw_data_dir):
proxy data _manager = SurrogateDirectory(result dir=self.project dir)

proxy data_manager.experimental doe params = self.doe params

proxy data _manager.init reservoir_response(reservoir_response var names=self.reservoir_resp
onse_params)

proxy data _manager.init fracture profile(fracture profile resolution=self.fracture profile resol
ution)
279

i
if self.experimental _mode:
proxy data_manager.init_experimental doe data()

proxy raw_data
proxy data manager.assemble surrogate directory(surrogate dir=self.proxy data dir)

else:
assert self.doe assembler is not None

proxy raw_data
proxy data manager.assemble surrogate directory(surrogate dir=self.proxy data dir)

self.proxy data = proxy raw_data
proxy raw_data.to_csv(proxy raw_data_ dir)

return proxy raw_data

class ProxyData(object):
def init (self, proxy raw data: pd.DataFrame, proxy raw data dir: str):

super(ProxyData). init ()
self.proxy raw data = proxy raw_data
self.proxy raw data dir = proxy raw data dir
self.proxy data: pd.DataFrame = pd.DataFrame()
#
self.doe_params = None
self.reservoir_response params = None
self.fracture profile params = None
self.proxy time = ['surrogate time']
#
self.experimental mode = True
self.experimental Swr =[0.2, 0.01]
self.experimental Sor =[0.2, 0.01]

280

self.experimental Sgr =1[0.03, 0.001]
self.experimental K =[0., 0.5]

def validate(self):

assert self.proxy raw_data dir is not None or self.proxy raw data.empty is True

def'init_data properties(self, doe params, reservoir_response params):
self.doe_params = doe params
self.reservoir_response params = reservoir_response params
&
if self.proxy raw_data.empty is False:
proxy raw_data = self.proxy raw_data.fillna(value=0., inplace=False)
else:
proxy raw data = pd.read csv(self.proxy raw data dir, index col=0, header=0)
proxy raw_data = proxy raw_data .fillna(value=0., inplace=False)
#
fracture profile params = list()
for col in list(proxy raw data .columns):
if'z "in 'col"
fracture profile params .append(col)
#
self.fracture profile params = fracture profile params

self.proxy raw_data = proxy raw_data_

def scale proxy_time(self):

scaled proxy time
MinMaxScaler().fit_transform(self.proxy raw_data[self.proxy_time])

scaled proxy time = pd.DataFrame(data=scaled proxy time , columns=self.proxy time)

return scaled proxy time
281

def scale fracture profile(self):
scaled frac profile = np.zeros([self.proxy raw data.shape[0],
len(self.fracture profile params)])
for (_, param) in enumerate(self.fracture profile params):
scaled fp = StandardScaler().fit_transform(self.proxy raw_data[[param]])[:, 0]
scaled frac profile [:,]=scaled fp

scaled frac profile = pd.DataFrame(data=scaled frac profile ,
columns=self.fracture profile params)

return scaled frac profile

def scale reservoir response params(self):
scaled response = np.zeros([self.proxy raw_data.shape[0],
len(self.reservoir response params)])
for (_, param) in enumerate(self.reservoir response params):
scaled rs = StandardScaler().fit_transform(self.proxy raw data[[param]])[:, 0]
scaled response [:,]=scaled rs

scaled response = pd.DataFrame(data=scaled response ,
columns=self.reservoir response params)

return scaled response

def scale _doe params(self):
if self.experimental mode:

scaled doe = np.zeros([self.proxy raw_data.shape[0], len(self.doe params)])
scaled doe [:, 0] = (self.proxy raw_data[['S wr']].to_numpy()[:, 0] - 0.2) / 0.1

scaled doe [:, 1] = (self.proxy raw_data[['S_or']].to_numpy()[:, 0] - 0.2) / 0.1
scaled doe [:, 2] = (self.proxy raw_data[['S_gr']].to_numpy()[:, 0] - 0.03) / 0.001
scaled doe [:, -1] = (self.proxy raw_data[['relative frac toughness']].to_numpy()[:, 0] -

0.)/0.5

282

scaled doe = pd.DataFrame(data=scaled doe , columns=self.doe params)
return scaled doe
else:

return pd.DataFrame()

def scale proxy raw_data(self, proxy scaled data dir):
scaled time = self.scale proxy time()
scaled doe = self.scale _doe params()
scaled frac profile = self.scale fracture profile()
scaled response = self.scale reservoir response params()
proxy scaled data = pd.concat([scaled time, scaled doe,
scaled frac profile, scaled response], axis=1)

proxy scaled data.insert(0, 'case', self.proxy raw_data['case'].to_numpy(dtype=np.int8))
self.proxy data = proxy scaled data
proxy scaled data.to csv(proxy scaled data dir)
return proxy_ scaled data

from proxy.gb proxy import *

from proxy.xgb proxy import *

from proxy.proxy opt import *

from proxy.proxy utils import *

class MLFlowProxyWrapper(PythonModel):
def init (self, proxy: QuantileXGBRegressor):
super(MLFlowProxyWrapper, self). init ()
self.proxy = proxy

283

def load_context(self, context):

pass

def predict(self, context: PythonModelContext,
model input: np.ndarray, params: Optional[dict[str, Any]]):

return self.proxy. predict (model input)

class ProxyExperiment(object):
def init_ (self, mlflow proxy wrapper: MLFlowProxyWrapper,
mlflow_client=mlflow.MlflowClient()):
super(ProxyExperiment, self). init ()
self.mlflow_client = mlflow_client
self.mlflow proxy wrapper = mlflow proxy wrapper
#
self.experiment_dir = None
self.experiment name = None
self.experiment_description = None
#
self.proxy name = type(self.mlflow proxy wrapper.proxy). name
self.experiment mode = 'fit'

self.proxy registry name = self.experiment mode +' ' + self.proxy name

def set_expriment mode(self, experiment mode):

self.experiment mode = experiment_mode

def set_experiment(self, experiment dir, experiment name, experiment description):

self.experiment name = experiment name

284

self.experiment dir = experiment_dir

self.experiment description = experiment_description

if mlflow.get experiment by name(name=experiment name) is None:
mlflow.create_experiment(name=experiment name, tags=experiment_description)

else:

mlflow.set_experiment(experiment name=experiment name)

deflog new fit experiment(self, run_name, model dir, artifact dir, params):
try:
assert self.experiment_mode == "fit'
with mlflow.run(experiment name=self.experiment name, run_name=run_name):
model, eval metrics = self.mlflow proxy wrapper.proxy. fit (params)
eval metrics =read xgb eval metrics(eval metrics)
mlflow.log_params(params=params)
#
mlflow.log_metrics(metrics=eval metrics)
log_model(python_model=self.mlflow proxy wrapper,
artifact path=model dir,
registered model name=self.proxy registry name)
artifact file = os.path.join(artifact dir, 'experiment mode.txt')
mlflow.log_text(text=self.experiment mode, artifact file=artifact file)
mlflow.end_run(status="FINISHED")
except AssertionError:

warnings.warn("Incorrect experiment mode. Fatal model error.")

deflog new opt experiment(self, run_name, model dir, artifact dir, opt_space):
try:

assert self.experiment mode == 'opt'

285

with mlflow.run(experiment name=self.experiment name, run_name=run_name):

proxy_optimizer
ProxyOptimization(proxy object=self.mlflow proxy wrapper.proxy)

proxy_optimizer.init_optimizer(opt_space=opt_space)

opt_instance
proxy_optimizer.exec optimizer(opt func attr=" _optimize cross_validation ")

opt params = proxy_optimizer.eval optimizer(opt instance=opt instance)
&
model, eval metrics = self.mlflow proxy wrapper.proxy. fit (opt params)
eval metrics =read xgb eval metrics(eval metrics)
#
mlflow.log_params(params=opt_params)
mlflow.log_metrics(metrics=eval metrics)
log_model(python_model=self.mlflow proxy wrapper,

artifact path=model dir,

registered model name=self.proxy registry name)
artifact file = os.path.join(artifact dir, 'experiment mode.txt')
mlflow.log_text(text=self.experiment mode, artifact file=artifact file)
mlflow.end run(status='"FINISHED")

except AssertionError:

warnings.warn("Incorrect experiment mode. Fatal model error.")

defload experiment(self, experiment name: str):
if experiment_name is not None:
experiment name = experiment name
else:
experiment name = self.experiment name
experiments = mlflow.search_experiments()
experiment dir = [exp.name for exp in experiments if

286

experiment name in exp.name][0]
experiments = dict(mlflow.get experiment by name(experiment dir))
experiment id = experiments['experiment_id']
experiment runs = mlflow.search _runs(experiment id)

return experiment_runs

defload criteria_run(self, experiment name: str, criteria: str):
runs = self.load _experiment(experiment name=experiment name)

criteria cols = [col for col in runs.columns if col.startswith('params.’) or
col.startswith('metrics.")]

criteria_runs = runs[runs|'status'] == 'FINISHED'][criteria_cols].dropna()
runs_indices = criteria_runs.sort_values(f'metrics. {criteria}", ascending=False).index
runs = runs.loc[runs_indices, :]

best run_id = runs['run_id'].tolist()[0]

return best run_id

(@staticmethod
def'load criteria_model(run_id: str):
return pyfunc.load model(run_id)

from proxy.proxy base import *

class ProxyOptimization(object):
def init (self, proxy object, trial=Trials()):
super(ProxyOptimization, self). init ()
self.trials = trial
#
self.proxy object = proxy_object

self.opt_space = None
287

self.opt_algo = tpe.suggest

self.max_evals = 500

def init_optimizer(self, opt space):

self.opt_space = opt_space

def exec_optimizer(self, opt func attr):
opt_func = getattr(self.proxy_object, opt func attr)
opt_instance = fmin(fn=opt_func, space=self.opt_space,
algo=self.opt_algo, max_evals=self.max_evals,
trials=self.trials)

return opt_instance

def eval optimizer(self, opt instance):
return space eval(self.opt space, opt_instance)

from proxy base import *

mlflow.set tracking uri("sqlite:///mlruns.db")
mlflow.set registry uri("models")

from proxy.proxy base import *

defread xgb eval metrics(eval metrics: dict):

nmn

Function to custom the mlflow log for eval results in xgboost
Structure of xgboost eval_results: dict("eval": dict(metric_name, metric_val))

:param eval_metrics:

288

return:

mnmn

eval metrics_: dict = eval metrics['eval']
return eval metrics

from proxy.proxy data import *

class XGBDataset(object):
def init_ (self, df):

super(XGBDataset, self). init ()
self.df = df
self.time param = ['surrogate time']
self.doe_params = [None]
self.fracture profile params = [None]
self.response params = [None]
#
self.x_cols = [None]

self.y cols = [None]

def'set up params(self, doe params , fracture profile params , response params):
self.doe params = doe params
self.fracture profile params = fracture profile params

self.response params = response_params_

def'set up columns(self, mode: str, response_index: int):
if mode == 'default":
self.x_cols = self.time param + self.doe_params + self.fracture profile params

elif mode == "exclude doe'":

289

self.x_cols = self.time param + self.fracture profile params
elif mode == 'exclude time doe":
self.x_cols = self.fracture profile params

self.y cols = [self.response params[response index]]

def split(self):
x = self.df[self.x_cols]
y = self.df[self.y cols]
X_train, X_test, y train, y test = train_test split(x, y, test_size=0.1, random_state=0)

X_train, X_test, y train,y test=x train.to numpy(), x_test.to numpy(), y_train.to_numpy(),
y_test.to numpy()

xy_train = QuantileDMatrix(x_train, x_train)
xy_test = QuantileDMatrix(x_test, y_test, ref=xy_train)

return {'train_set': [Xy train, X train, y_train], 'test set": [xy test, X _test, y test]}

def split_cross_validation(self, num_folds: int = 5):
x = self.df[self.x_cols].to numpy()
y = self.df[self.y cols].to numpy()
k fold = KFold(n splits=num_folds, shuffle=True, random_state=0)
train_test = dict()
i=0
for train_index, test_index in k_fold.split(x):
X_train, x_test = x[train_index], x[test index]
y_train, y_test = y[train_index], y[test index]
key train, key test ='train_set '+ str(i), 'test_set '+ str(i)
Xy _train = QuantileDMatrix(x_train, y_train)
xy_test = QuantileDMatrix(x_test, y_test, ref=xy_train)
if key train not in train_test.keys():

train_test[key train] =[xy train, X_train, y_train]
290

if key test not in train_test.keys():
train_test[key test] =[xy test, X _test, y_test]
it=1

return train_test

class QuantileXGBRegressor(object):

def init_ (self, xgb data: XGBDataset):
super(QuantileXGBRegressor, self). init_ ()
self.xgb data = xgb data
self.num_folds =5
#
self.eval metric = mean_squared error
self.eval index: int =1
self.quantiles = np.array([0.05, 0.5, 0.95], dtype=np.float32)
#

self.model: xgb.Booster = None

def fit (self, params: dict):

train_test = self.xgb data.split()

eval metrics: Dict[str, Dict] = {}

params_ = params

if 'quantile alpha' not in params_.keys():
params_|['quantile alpha'] = self.quantiles

else:
pass

params_|['objective'] = "reg:quantileerror”

#

291

model = xgb.train(params _, train_test['train_set'][0],
num_boost round=32,
evals=[(train_test['train_set'][0], "train"),
(train_test['test set'][0], "test")],
evals_result=eval metrics, verbose eval=False)
self.model = model

return model, eval metrics

def fit cross validation (self, params: dict):
train_test = self.xgb _data.split cross validation(num_folds=self.num_folds)
model = None
mean_metrics = {}
params_ = params
if 'quantile alpha' not in params_.keys():
params_['quantile alpha'] = self.quantiles
else:
pass
params_['objective'] = "reg:quantileerror"
#
for in range(self.num_folds):
eval metrics: Dict[str, Dict] = {}
Xy _train, X_train, y train = train_test['train_set ' + str(_)]
Xy test, X test, y test =train_test['test set '+ str()]
model = xgb.train(params_, xy_train,
num_boost_round=32,
evals=[(xy_train, "train"),
(xy_test, "test")],

evals result=eval metrics, verbose eval=False)

292

y_pred = model.inplace predict(x_test)
mean_metric = self.eval metric(y pred[:, self.eval index], y test)
if 'fold '+ str(_) not in mean_metrics.keys():
mean_metrics['fold '+ str(_)] = mean_metric
self.model = model

return model, mean metrics

def predict (self, x: np.ndarray):
try:
assert self.model is not None
return self.model.inplace predict(x)
except AssertionError:
warnings.warn('Model instance is not set, may cause fatal prediction.")

return None

def optimize cross validation (self, opt space: dict):
model, mean metrics = self. fit cross validation (opt space)
mean_metric = sum(mean_metrics.values()) / len(mean metrics.keys())

return {'loss": mean_ metric, 'status': STATUS OK, 'model': model}

from proxy explainer base import *

from proxy.proxy data import *

from proxy.proxy import *

from proxy.gb_proxy import *

from proxy.xgb proxy import *

class ProxyExplainer(object):

293

def init (self, model, new proxy data: ProxyData):
super(ProxyExplainer, self). init ()
self.model = model
self.new proxy data=new proxy data
i
self.mode = 'tree'

self.x_cols = None

def validate(self):
if check i1s _fitted(self.model) is True and \
self.new proxy data.proxy data.empty is False:
return True
else:

return False

def init_explainer(self, mode, x_cols, sample=100):
sampled x = self.new proxy data.proxy data[x cols].sample(sample, random_state=0)
if mode == 'default":
return Explainer(self.model, sampled x), sampled x
else:

return TreeExplainer(self.model, sampled x), sampled x

def plot bee swarm(self):
fig = plt.figure()
explainer, sampled x = self.init_explainer(self.mode, self.x_cols)
shap values = explainer.shap values(sampled x)
shap.summary plot(shap values, sampled x)

return fig

294

def plot_bar(self):
fig = plt.figure()
explainer, sampled x = self.init_explainer(self.mode, self.x_cols)
shap values = explainer.shap values(sampled x)
shap.summary plot(shap values, sampled x, plot size='bar")

return fig

def plot water fall(self, instance index: int, max display=20):
fig = plt.figure()
explainer, sampled x = self.init_explainer(self.mode, self.x_cols)
shap values = explainer.shap values(sampled x)
shap.waterfall plot(shap values[instance index], max_display=max_display)

return fig

def plot_scatter(self, instance: str):
fig = plt.figure()
explainer, sampled x = self.init_explainer(self.mode, self.x_cols)
shap values = explainer.shap values(sampled x)
shap.plots.scatter(shap values[:, instance])

return fig

(@staticmethod
def display to gui(fig):
return plotly tools.mpl to plotly(fig)
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

295

import pandas as pd

import os
import shutil
from typing import List, Deque, Union, Dict

from tqdm import tqdm

import shap

from shap import Explainer, TreeExplainer, DeepExplainer

import plotly.tools as plotly tools

from base.base import *

the style arguments for the sidebar. We use position:fixed and a fixed width
SIDEBAR STYLE = {

"position": "fixed",

"top": 0,

"left": 0,

"bottom": 0,

"width": "16rem",

"padding": "2rem lrem",

"background-color": "#{8{9fa",

doe_sidebar = [

html.Div(

296

dbc.Row(
[
dbc.Col("Design of Experiments"),
dbc.Col(
html.I(className="fas fa-chevron-right me-3"),

width="auto",

1,

className="doe_sidebar row",
),
style={"cursor": "pointer"},
1id="doe sidebar",
),
dbc.Collapse(

[
dbc.NavLink("ResFrac", href="/res_frac"),

1,

id="doe sidebar collapse",

frac_cal sidebar = [
html.Div(
dbc.Row(
[
dbc.Col("Fracture Calibration"),
dbc.Col(

html.I(className="fas fa-chevron-right me-3"),

297

width="auto",

1,

className="frac cal sidebar row",
),
style={"cursor": "pointer"},
id="frac_cal sidebar",

),
dbc.Collapse(

[
dbc.NavLink("Fracture Calibration Proxy", href="/frac_cal proxy"),

1,

id="frac_cal_sidebar_collapse",

proxy deploy sidebar = [
html.Div(
dbc.Row(
[
dbc.Col("Deploy the proxy"),
dbce.Col(
html.I(className="fas fa-chevron-right me-3"),

width="auto",

1,

className="hist match_sidebar row",

298

n.n

style={"cursor": "pointer"},
id="proxy deploy sidebar",
),
dbc.Collapse(

[
dbc.NavLink("Receive sensor & deploy", href="/deploy proxy"),

I,
1d="proxy deploy sidebar collapse",

sidebar = html.Div(
[
html.H1("i-Geo Sensing", style={"textAlign': 'center'}),
html.Hr(),
html.P(
"A sensor processing platform for fracture calibration", className="lead",
style={"textAlign': 'center'}),
dbc.Nav(doe sidebar + frac cal sidebar + proxy deploy sidebar,
vertical=True),
I,
style=SIDEBAR_STYLE,
1d="sidebar",
)
from simulator.simulation.simulation_helpers import *

from simulator.base.utils import *

299

SR R R R R R B R R R
Base Entry & ValueStructs in ResFrac
S S B I i

class ValueStruct(object):
def init_ (self, value struct: None):
super(ValueStruct, self). init ()

self.value_struct = value struct

def change value struct(self, new_value struct):
if type(new_value_struct) != type(self.value struct):
warnings.warn('Change the value structure.')
self.value struct =new value struct
else:

self.value struct =new value struct

def write value_struct(self, file):

nmn

TODO: ? Write the value structure into the opened file
Support np.array (most ResFrac values) and dict (Rel Perm
& Time PErm dependency values)

:param file:

return:

nmn

pass

300

class SingleValueStruct(ValueStruct):
def init (self, value struct):
super(ValueStruct, self). init ()

self.value struct = value_struct

def write value_struct(self, file):
if type(self.value_struct) !=list:
file.write(str(self.value_struct))
file.write("\n')
else:

write list values(file, self.value_struct)

class MatrixValueStruct(ValueStruct):
def init (self, value struct, length):
super(ValueStruct, self). init ()
self.value_struct = value struct

self.length = length

def write value_struct(self, file):
if type(self.value struct) == np.ndarray:
write_matrix_values(file=file, array=self.value struct)
else:

write list of list values(file, values=self.value_struct)

class Entry(object):

301

def init (self, variable name: str, length: int,
value_struct: ValueStruct, is_doe: False):
super(Entry, self). init ()
self.comments = None
self.variable name = variable name
self.length = length
self.value_struct = value struct

self.is_doe =1s_doe

defadd comments(self, comments):

self.comments = comments

def change variable name(self, new variable name):
if self.is_doe is True:
self.variable name = new variable name
else:

pass

def change length(self, new length):
if self.is_doe is True:
self.length = new length
else:

pass

def change values(self, new_value_struct):
if self.is_doe is True:
self.value_struct.change value struct(new_value_struct)

else:

302

warnings.warn('Not a DoE variable. Value structure is not altered.")

pass

def write_entry values(self, file):
TODO: ? Implement method to write entry's data
- Method is override by specific value structs (e.g., rel perm)
- Method is supplemented by another method to change specific data in the
value struct (e.g, change rel perm kr in rel perm)
return:
if self.is_doe is True:
self.value_struct.write value struct(file=file)
else:
warnings.warn('Not a DoE variable. Value structure shall not be altered.")

self.value_struct.write value struct(file=file)

HHHHHHHHHHE
ValueStruct & Entry belong to settings in ResFrac
R

class RelPermStruct(ValueStruct):
def init_ (self, value struct: List[dict]):
super(ValueStruct, self). _init ()
self.value_struct = value_struct

self.rel perm_scope = "***'

303

def write value_struct(self, file):
TODO: ? Fix this function to correlate with the parsing & regex templates
:param file:
return:
for (_, rel perm_curve) in enumerate(self.value_struct):
for rel perm key, rel perm value in rel perm_curve.items():
ifrel perm_key == 'curvesetname':
file.write(rel_perm_key)
file.write("\n")
file.write(rel _perm_value)
file.write("\n')
elif rel perm_key == 'matrixrelperm":
file.write(rel_perm_key)
file.write("\n')
file.write(rel perm_value[0])
file.write("\n")
write_matrix_values(file=file, array=rel perm_value[-1])
file.write("\n")
elifrel perm key == ("pressuredependentpermeability’, 'reversible'):
file.write(rel_perm_key[0])
file.write("\n")
file.write(rel _perm_key[-1])
file.write("\n")
write_matrix_values(file=file, array=rel perm_value[0])

file.write("\n")

304

for inrel perm value[-1]:
file.write() # is'---'
file.write("\n")
elifrel perm key == ('pressuredependentpermeability’, 'irreversible'):
file.write(rel_perm_key[0])
file.write("\n")
file.write(rel_perm_ key[-1])
file.write("\n')
for inrel perm_ value:
file.write(str()) # 1is'---'
file.write("\n")
else:
file.write(rel_perm_key)
file.write("\n')
for inrel perm value:
file.write(str()) # 1is'---'
file.write("\n')
file.write(self.rel perm_scope)

file.write("\n")

class FaciesListStruct(ValueStruct):
def init_ (self, value struct: dict):
super(ValueStruct). init_ ()

self.value_struct = value_struct

def write value_struct(self, file):

nmn

305

TODO: Write the facies list data into an opened file per line as follows:
Layer + layer number + row data of value_struct
:param file:
return:
for (layer_name, layer data) in self.value_struct.items():
file.write(layer name)
file.write("\t')
for data in layer data:
file.write(str(data))
file.write("\t'")
file.write("\n")

file.write("\n")

class BlackOilModelStruct(ValueStruct):
def init_ (self, value struct: tuple):
super(ValueStruct). init_ ()
self.value_struct = value struct

self.size = 4

def write_value_struct(self, file):
TODO: Write the black oil data into an opened file per line as follows:

- Initial bubble/dew point, co, cw, muw, Bwatbubblepoint,
gasspecificgravity, waterspecificgravity,

'unsaturated properties' method
- Number of rows in black oil property table

- Black oil property table
306

oilspecificgravity,

(There is no keys in the value_struct)

:param file:

return:

write list values(file, self.value struct[0])

file.write(str(self.value struct[1])) # Number of rows in black oil property table
file.write("\n')

write_matrix_values(file=file, array=self.value struct[-1])

file.write("\n')

class ClusterPerStageStruct(ValueStruct):
def init_ (self, value struct: dict):
super(ValueStruct, self). init ()
self.value_struct = value struct

self.scope_str = "***'

def write value_struct(self, file):

TODO: ? Write prop types into an opened file per line as follows:

:param file:

return:

for (_, cluster per stage) in self.value_struct.items():
file.write(self.scope_str)
file.write("\n")
for data in cluster per_stage:

file.write(str(data))

307

file.write("\n")

file.write("\n")

class WaterByLayerStruct(ValueStruct):
def init_ (self, value struct: dict):
super(ValueStruct, self). init ()
self.value_struct = value struct

self.scope_str = "***'

def write value_struct(self, file):
TODO: ? Write prop types into an opened file per line as follows:
:param file:
:return:
for (_, init Sw) in self.value struct.items():
file.write(self.scope_str)
file.write("\n")
file.write(str(init Sw))
file.write("\n")

file.write("\n")

class PropTypesStruct(ValueStruct):
def init (self, value struct: dict):
super(ValueStruct, self). _init ()

self.value_struct = value_struct

308

def write value_struct(self, file):
TODO: ? Write prop types into an opened file per line as follows:
:param file:
return:
for (prop_name, prop_data) in self.value struct.items():
file.write(prop_name)
file.write("\t')
for data in prop_data:
file.write(str(data))
file.write("\t'")
file.write("\n')

file.write("\n")

class PropMixtureStruct(ValueStruct):
def init_ (self, value struct: dict):
super(ValueStruct, self). _init ()

self.value_struct = value struct

def write_value_struct(self, file):
TODO: ? Write prop mixtures into an opened file per line as follows:
:param file:

:return:

nmn

309

for (mix_name, mix_data) in self.value_struct.items():
file.write(mix_name)
file.write("\t')
for data in mix_data:
file.write(str(data))
file.write("\t')
file.write("\n')

file.write("\n')

class PropPermModelStruct(ValueStruct):
def init_ (self, value struct: np.ndarray):
super(ValueStruct, self). init ()

self.value_struct = value struct

def write value_struct(self, file):
TODO: ? Write prop mixtures into an opened file per line as follows:
:param file:
return:

nmn

write_matrix_values(file=file, array=self.value_struct)

class FracPermModelStruct(ValueStruct):
def init (self, value struct: np.ndarray):
super(ValueStruct, self). _init ()

self.value_struct = value_struct

310

def write value_struct(self, file):
TODO: ? Write prop mixtures into an opened file per line as follows:
:param file:
return:

nmn

write_matrix_values(file=file, array=self.value_struct)

class WaterSoluteStruct(ValueStruct):
def init (self, value struct: list):
super(ValueStruct, self). init ()

self.value_struct = value struct

def write value_struct(self, file):
for water solute value in self.value struct:
file.write(str(water solute value))
file.write("\t')

file.write("\n")

class FluidMixtureStruct(ValueStruct):
def init_ (self, value struct: dict):
super(ValueStruct, self). _init ()

self.value_struct = value_struct

def write value_struct(self, file):

311

for (mix_name, mix_data) in self.value_struct.items():
file.write(mix_name)
file.write("\t')
for data in mix_data:
file.write(str(data))
file.write("\t')
file.write("\n')

file.write("\n')

class WellSequenceStruct(ValueStruct):
def init_ (self, value struct: list, sequence type: str):
super(ValueStruct, self). init ()
self.value_struct = value struct
self.sequence type = sequence type

Data within 2 sequence scope str is written for a sequence of a well (example:
injection/production)

self.sequence scope_str = "***!

def write value_struct(self, file):

if self.value_struct is None:
pass

else:
Write sequence_scope_str to start a sequence
file.write(self.sequence scope_str)
file.write("\n")
if self.sequence type == 'Shut-in":

file.write(self.value _struct[0])

file.write("\n")
312

write list values(file, self.value struct[1:])
elif self.sequence type == 'Injection':
for _in self.value struct[: -1]:
file.write(str(_))
file.write("\n")
write list of list values(file, self.value struct[-1])
elif self.sequence type == 'Production":
file.write(self.value_struct[0])
file.write("\n')
file.write(self.value_struct[1])
file.write("\n")
write_list values(file, self.value struct[2: -1])
file.write("\n")
write list of list values(file, self.value struct[-1])
else:
warnings.warn('Can not detect the sequence.")
sys.exit(1)

file.write("\n")

class WellBoundaryConditionStruct(ValueStruct):
def init_ (self, value struct: dict):
super(ValueStruct, self). _init ()
self.value_struct = value_struct
Data within 2 well scope_str is written for a well

self.well scope_str = "k

def write value_struct(self, file):

313

nmn

TODO: Write the boundary condition control (for well(s)) into an opened file as follows:
:param file:
return:
for (well name, well sequences) in self.value_struct.items():
Write well scope_str and well name to start a well
file.write(self.well _scope_str)
file.write("\n')
file.write(well name)
file.write("\n")
Write all sequences for a well
shut_in sequence = well sequences['Shut-in']
injection_sequence = well sequences|'Injection']
production_sequence = well sequences['Production']

WellSequenceStruct(value struct=shut in_sequence, sequence_type='Shut-
in").write value struct(file)

WellSequenceStruct(value struct=injection sequence,
sequence type='Injection’).write value struct(file)

WellSequenceStruct(value struct=production sequence,
sequence type='Production').write value_struct(file)

Write well scope_str to end
file.write(self.well_scope_str)

file.write("\n")

class WellTruncateSequenceStruct(ValueStruct):

def init (self, value struct: dict):

314

super(ValueStruct, self). init ()
self.value_struct = value_struct

self.begin_str = "***'

def write_value struct(self, file):
for (_, truncate data) in self.value struct.items():
file.write(self.begin_str)
file.write("\n")
for data in truncate data:
file.write(str(data))
file.write("\n")

file.write("\n")

R
ValueStruct & Entry belong to input in ResFrac
I

class Well VerticesStruct(ValueStruct):
def init_ (self, value struct: dict):
super(ValueStruct). init_ ()
self.value_struct = value_struct

self.begin_str = "***'

def write value_struct(self, file):
for (_, well _vertices) in self.value_struct.items():

file.write(self.begin_str)

315

file.write("\n")
for data in well vertices:
write_list values(file=file, values=data)

file.write("\n")

T R R R R R R R
Irregular ValueStruct list
R R R R R R R R

irregular_value_structs = [RelPermStruct, FaciesListStruct, BlackOilModelStruct,
ClusterPerStageStruct, WaterByLayerStruct,
PropTypesStruct, PropMixtureStruct,
PropPermModelStruct, FracPermModelStruct,
WaterSoluteStruct, FluidMixtureStruct,

WellBoundaryConditionStruct, WellTruncateSequenceStruct,
Well VerticesStruct]

from simulator.simulation.simulation_helpers import *
from simulator.base.entry import *
from simulator.base.regex templates import *

from simulator.base.utils import *

T T R e R R s e
Method to parse entry data from ResFrac files
AR

316

def parse_entry(entry: dict):
TODO: ? Parse the entry's value(s) using ResFrac embedded format to obtain:
1.
:param entry:
return:
Create entry (being parsed from entry)
value struct = ValueStruct(value struct=None)
entry = Entry(variable name='", length=0, value_ struct=value struct , is doe=True)
Extract the entry's variable name
variable name = entry['Variable name:'][0]
variable name = variable name .split(sep="\n"')[0]
Extract the entry's length
length = entry['Length:'][0]
length = int(length_.split(sep="\n")[0])
Extract the entry's value struct
raw_value struct = entry['Value(s):']
if length ==
Entry has no value
entry .change values(None)
eliflength ==1 and len(raw_value_struct) ==1:
Entry has one single value
parsed_value = parse value(raw_value struct =raw_value struct)
entry .value struct = SingleValueStruct(value_ struct=parsed value)
elif variable name in irregular variable names:
Entry has irregular value

variable name idx_=irregular variable names.index(variable name)

317

variable regex
irregular regex_classes[variable name idx](raw_str=raw_value struct)

parsed value = variable regex .extract()
entry .value struct = irregular value structs[variable name idx](value struct=None)
entry .change values(parsed value)
else:
parsed value = ListOfListRegex(raw_str=raw_value struct).extract()
entry .value struct = MatrixValueStruct(value struct=None, length=length)
entry .change values(parsed value)
Complete the parsing
entry .change variable name(variable name)
entry .change length(length)

return entry

def search entry(entries: List[Entry], entry name: str):
for (ie, entry) in enumerate(entries):
if entry name in entry.variable name:
return entry

return None

def parse_value(raw_value struct):
TODO: ? Test robustness of this function for common value_struct
Common value struct has only 1 value (float, str, int, bool), no repeat.
parsed data =raw_value struct [0]
if \t' not in parsed data :
parsed data =remove new_line char(parsed data)

return extract primitive data_type(parsed data)
318

else:
parsed data =remove new line char(parsed data)
parsed data = parsed data .split(sep="\t")
return extract list data type(parsed data)

import numpy as np

from src.base.base libs import *

from simulator.base.utils import remove new_line char, remove empty in block

R R R R R R R R
Regular expression helpers to match data in ResFrac files

TR

Regex existed in ResFrac
blank regex ='[BLANK]'

default regex = 'Default'

Pre-defined regexes to parse specific data (e.g, relative perm, well control)
nan_regex = 'nan'

sequence scope regex = '***!

well_scope regex = "¥¥¥ ikt

split_regex ='---'

repetition_regex = 'REPEAT'
end regex ='END'

Pre-defined data types to parse specific data (i.e., relative perm, well control)
repeated int = {repetition regex: int}

repeated float = {repetition_regex: float}

319

repeated_str = {repetition_regex: str}

repeated_split = {repetition regex: split regex}

repeated_list = {repetition regex: list}
repeated _list_int = {repetition regex: (list, int)}

repeated list float = {repetition regex: (list, float)}

TODO: ? Use pair of keywords as tuple() if 2 keywords are required

brooks corey regex = ['curvesetname', 'matrixrelperm’,
('pressuredependentpermeability’, 'reversible'),
('pressuredependentpermeability’, 'irreversible'),
'tenxreversiblepermeabilitylossperpressureincrement’,
'tenxirreversiblepermeabilitylossperpressureincrement’,
'lowerpressurethresholdforreversiblepermeabilityincrease',
"'upperpressurethresholdforreversiblepermeabilityincrease',
‘permmultiplierforreversiblepermeabilityincrease’,
'lowerpressurethresholdforirreversiblepermeabilityincrease’,
'upperpressurethresholdforirreversiblepermeabilityincrease’,
'‘permmultiplierforirreversiblepermeabilityincrease’,
'permeabilitymultiplier’,
'waterbankthicknesstorelpermincreasescalingthickness',
'waterbankthicknesstorelpermdecreasescalingthickness',

'waterbankimmobilefraction', end regex]

X_curve regex = ['curvesetname', 'matrixrelperm’,
(‘pressuredependentpermeability’, 'reversible'),

(‘pressuredependentpermeability’, 'irreversible'),

320

'tenxreversiblepermeabilitylossperpressureincrement’,
'tenxirreversiblepermeabilitylossperpressureincrement’,
'lowerpressurethresholdforreversiblepermeabilityincrease’,
'upperpressurethresholdforreversiblepermeabilityincrease’,
'‘permmultiplierforreversiblepermeabilityincrease’,
'lowerpressurethresholdforirreversiblepermeabilityincrease',
'upperpressurethresholdforirreversiblepermeabilityincrease',
‘permmultiplierforirreversiblepermeabilityincrease’,
'‘permeabilitymultiplier’,
'waterbankthicknesstorelpermincreasescalingthickness',
'waterbankthicknesstorelpermdecreasescalingthickness',

'waterbankimmobilefraction’, end regex]

brooks corey data = [str, (str, repeated_list float),

(repeated list float, repeated split),
repeated_str,

(float, str),

(float, str),

(float, str),

(float, str),

(float, str),

(float, str),

(float, str),

(float, str),

(float, str),

(float, str),

(float, str),

(float, str)]

321

x_curve data = [str, (str, repeated list float),
repeated_split,
repeated_split,
(float, str),
(float, str),
(float, str),
(float, str),
(float, str),
(float, str),
(float, str),
(float, str),
(float, str),
(float, str),
(float, str),

(float, str)]

injection_sequence data regex = [str, str, str, str, float, float, repeated list]
production_sequence data regex = [str, str, list, repeated list]

shut in sequence data regex = [str, list]

class RepeatedDataType(object):
def init (self, data_type: dict):
super(RepeatedDataType, self). init ()
try:
assert type(data_type) == dict

assert list(data_type.keys())[0] == repetition_regex

322

self.data type = data_type
except AssertionError:
warnings.warn('Incorrect repeated data type.")

self.data_type = None

def value error(self, raw_data: str):
data type = self.data_type[repetition regex]
raw_data =remove new line char(raw_data)
if type(data_type) != tuple:
Repeated int, float, str, list (1 single value or 1 list per line)
if \t' not in raw_data :
if data_type in [int, float]:
try:
value = data type (raw_data)
return False
except ValueError:
return True
elif data type in [split regex]:
return False
else:
return False
else:
return False
else:
Repeated list of all ints/floats (1 list per line)
try:
assert '\t' in raw_data

assert len(data_type)==2

323

assert data_type [0] == list
value =raw data .split(sep="\t")
for iin value :
if data_type [-1] in [int, float]:
try:
i_=data _type [-1](1)
except ValueError:
return True
else:
return False
return False
except AssertionError:

return True

def extract(self, raw_data: str):
value error = self.value error(raw_data)
if value error is True:
Can not extract
return None, True
else:
Can extract
data_type =self.data_type[repetition regex]
raw_data =remove new line char(raw_data)
if data_type !=tuple:
if \t' not in raw_data :
if data_type in [int, float]:
value =data type (raw_data)

else:

324

value =raw data
return value , False
else:
value =raw data .split(sep="\t")
value = extract list data type(raw_ data=value)
return value , False
else:
assert '\t' in raw_data_
assert data_type [0] == list
value =raw data .split(sep="\t")
value = extract list data type(raw_data=value)

return value , False

def extract between keywords(current keyword, next keyword, raw_data):
current_keyword loc =0
next_keyword loc =0
for (j, j_line) in enumerate(raw_data):
if type(current keyword) is not tuple:
if current_keyword == j_line.split(sep="\n")[0]:
current keyword loc=j+ 1
else:
if (current_keyword[0] ==raw_data[j].split(sep="\n")[0]) and \
(current_keyword[-1] ==raw_data[j + 1].split(sep="\n")[0]):
current_keyword loc=j+2
if type(next_keyword) is not tuple:
if next keyword ==j_line.split(sep="\n")[0]:

next_keyword loc =j

325

else:
if (next_keyword[0] == raw_data[j].split(sep="\n")[0]) and \
(next_keyword[-1] == raw_data[j + 1].split(sep="\n")[0]):
next keyword loc =]

if next _keyword is end_regex:

raw_data =raw_data[current keyword loc:]
else:

raw_data =raw_data[current keyword loc: next keyword loc]
for (_, data) in enumerate(raw_data):

raw_data [] =remove new line char(data)

return raw_data_

def extract primitive data type(raw_data):
Extract for a single primitive data type (float, int, str)
try:
1=int(raw_data)
return i
except ValueError:
try:
1= float(raw_data)
return i
except ValueError:
if raw_data.lower() == "true":
return True
elif raw_data.lower == 'false":
return False

else:

326

warnings.warn('Not a primitive data type or keyword string.")

return raw_data

def extract list data type(raw_data: List[str]):
Extract for a list of different primitive data types (float, int, str),
data = [None] * len(raw_data)
for (_, 1) in enumerate(raw_data):

1_=remove new line char(i)

try:
i =int(i)
data[]=1_

except ValueError:

try:
1_=float(i)
data[]=1_

except ValueError:

ifi_.lower() == 'true":
data]]=True

elifi_.lower == 'false":
data[] = False

else:
warnings.warn('Not a primitive data type or keyword string.")
data|]=1_

data =remove empty in block(data)

return data

327

def extract repeated data type(raw_data: List[str], data type: dict, current extract loc: int):
Extract pre-defined data types, repeated >=2 lines
value_error = False
data =]
while value error is False and current_extract loc < len(raw_data):
repeated data_type = RepeatedDataType(data_type=data type)
value, value error = repeated data type.extract(raw_data=raw_data[current extract loc])
This if-else is to prevent adding None and stop counting current extract loc
if value 1s None and value_error is True:
pass
else:
data.append(value)
current_extract loc += 1
if type(data_type[repetition regex]) == tuple:
if data_type[repetition regex][-1] in [int, float]:
data = np.array(data)
else:
pass
else:
pass

return data, current_extract loc

def extract nested data type(raw_data: List[str], data_types: tuple, current extract loc: int):
Extract multiple primitive/pre-defined repeated datatypes nested in a tuple
data = list()
for data_type in data_types:

if data_type in [int, float, str]:

328

value = extract primitive data type(raw_data[current extract loc])
data += [value]
current_extract loc += 1
elif data type in [list]:
value = raw_data[current_extract loc].split(sep="\t")
value = extract list data type(value)
data += value
current_extract loc += 1
else:

value, current extract loc = extract repeated data type(raw_data, data type,
current_extract _loc)

data.append(value)

return data, current_extract loc

def extract irregular data type(raw data: List[str], data_types: list):
data = list()
current_extract loc =0
for (_, data_type) in enumerate(data_types):
if data_type in [int, float, str]:
value = extract primitive data type(raw data[current extract loc])
data += [value]
current_extract loc += 1
elif data_type in [list]:
value =raw_data[current_extract _loc].split(sep="\t")
value = extract _list data_type(value)
data += value
current_extract loc += 1

elif type(data_type) == dict:
329

value, current extract loc = extract repeated data type(raw data, data type,
current_extract loc)

data.append(value)
else:

value, current extract loc = extract nested data type(raw data, data type,
current_extract loc)

data += value
return data

import numpy as np

from src.base.base libs import *

from simulator.base.regex_helpers import *

R
Regular expression templates to match data in ResFrac files

HHHHHEHHHHHHH

class BaseRegex(object):
def init (self, raw_str: List[str]):
super(BaseRegex). init_ ()

self.raw_str =raw_str

def extract(self, pattern):

pass

TODO: ? Validate this class's robustness in extracting values from a list

330

class ListRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex). init ()

self.raw_str = raw_str

def extract(self, pattern=None):

Extract data from list(list) of values separated by \t or from a single value
(different primitive data types possible)
:param pattern:
:return: data:
data_=remove new line char(self.raw_str)
if \t' not in data_:

data = extract primitive data type(data)
else:

data = data .split(sep="\t")

data = extract list data type(data)

return data

class ListOfListRegex(BaseRegex):
def init_ (self, raw_str: List[str]):
super(BaseRegex). init_ ()

self.raw_str =raw_str

def extract(self, pattern=None):

nmn

331

Extract data from list(list) of values separated by \t or from a single value
(different primitive data types possible)
:param pattern:
:return: data:
data = [None] * len(self.raw_str)
for (_, line) in enumerate(self.raw_str):
data =remove new line char(line)
if \t' not in data_:
data = extract primitive data type(data)
else:
data = data .split(sep="\t")
data = extract list data type(data)
data]]=data

return data

class RelPermRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex). init ()
self.raw_str =raw_str
self.rel perm regex = None

self.rel perm_data = None

def set_rel perm_model(self, raw_str):
if 'BrooksCorey' in raw_str[3]:
self.rel perm_regex = brooks corey regex

self.rel perm_data = brooks corey data

332

else:
self.rel perm regex =x curve regex

self.rel perm_data =x_curve data

def extract(self, pattern=None):
Extract data for relative permeability in ResFrac, using:
-rel perm_keyword regex: required keywords for relative permeability
-rel perm_data regex: required data types corresponding to the keywords
:param pattern:
:return: data
pattern_separator = "#**!
separator_locs = list()
separator locs.append(0)
Determine start/end locations of rel perm curves
for (_, line) in enumerate(self.raw_str):
if pattern_separator in line:
separator locs.append()
raw_data = [None] * (len(separator locs) - 1)
Extract raw data for all rel perm curves
for i_rel perm in range(len(separator locs) - 1):
i_raw_data = self.raw_str[separator locs[i rel perm]: separator locs[i rel perm + 1]]
self.set_rel perm model(raw_str=i raw_data)
assert len(self.rel perm regex) == len(self.rel perm data) + 1
i=0
i rel perm_data = dict()

while i < len(self.rel perm_data):

333

Extract raw data between 2 keywords
current_keyword = self.rel perm_regex[i]
next _keyword = self.rel perm regex[i+ 1]
current_keyword data = extract between keywords(current keyword, next keyword,
i raw_data)
i rel perm_data[current keyword] = current keyword data
it=1
raw_data[i_rel perm] =1 rel perm data
Extract data for all rel perm curves from raw data
data = [None] * (len(separator locs) - 1)
for i_rel perm in range(len(separator locs) - 1):
1 rel perm raw data =raw_data[i rel perm]
1 _rel perm_data = dict()
for (i_regex, i_data regex) in enumerate(self.rel perm_data):
1_keyword regex = self.rel perm regex[i regex]
1 _data regex = self.rel perm data[i regex]
1 data=1 rel perm raw data[i keyword regex]
current_extract loc =0
while current extract loc <len(i_data):
ifi_data regex in [int, float, str]:
1 value = extract primitive data type(i_data[current extract loc])
current_extract loc += 1
elifi_data regex in [list]:
1 _value =1 _data[current_extract loc].split(sep="\t")
i _value = extract_list data type(i_value)
current_extract loc += 1
elif type(i_data regex) == dict:

i_value, current_extract loc = extract repeated data type(i_data, i data regex,

334

current_extract loc)

else:

assert type(i_data regex) == tuple

i_value, current_extract loc = extract nested data type(i_data, i data regex,
current_extract loc)
1 rel perm data[i keyword regex] =1 value
data[i_rel perm] =1 rel perm data

return data

class WellRegex(BaseRegex):
def init_ (self, raw_str: List[str]):
super(BaseRegex). init ()

self.raw_str =raw_str

def extract(self, pattern=None):

N =len(self.raw_str)

well scopes = list()

well _sequences = dict()

for n in range(N):
if well_scope regex in self.raw_str[n]:

well scopes.append(n)

for iw in range(len(well_scopes) - 1):
well data = self.raw_str[well_scopes[iw] + 1: well scopes[iw + 1] + 1]
well name = well_data[0].split(sep="\n")[0]
sequence_scopes = list()

for (iwd, well_line) in enumerate(well data):

335

if sequence scope regex in well line:
sequence_scopes.append(iwd)
sequences = {'Shut-in": None, 'Injection': None, 'Production’: None}
for iq in range(len(sequence_scopes) - 1):
sequence data = well data[sequence scopes[iq] + 1: sequence scopes[iq + 1]]
sequence data = [remove new line char(data) for data in sequence data]
sequence regex = SequenceRegex(sequence data)
sequence_type = sequence _regex.get sequence_type()
if sequence type == 'Injection":
sequence = sequence regex.extract(injection sequence data regex)
sequences_|['Injection'] = sequence
elif sequence type == "Production":
sequence = sequence regex.extract(production sequence data regex)
sequences ['Production'] = sequence
else:
sequence = sequence regex.extract(shut in sequence data regex)
sequences_['Shut-in'] = sequence
well sequences[well name] = sequences

return well sequences

class SequenceRegex(BaseRegex):
def init_ (self, raw_str: List[str]):
super(BaseRegex). init_ ()

self.raw_str =raw_str

def get_sequence_type(self):

Sequence type is always located at Ist line

336

sequence type =remove new line char(self.raw_str[0])
if 'Injection’ in sequence_type:
return 'Injection’
elif 'Production' in sequence_type:
return 'Production’
else:

return 'Shut-in'

def extract(self, pattern):
TODO: ? Re-write this function
data = extract_irregular data type(self.raw_str, pattern)

return data

class FaciesListRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex). init ()
self.raw_str =raw_str

self.num_layers = None

def get number of layers(self):

self.num_layers = len(self.raw_str)

def extract(self, pattern="\t"):
data = dict()
self.get number of layers()
try:

assert self.num_layers is not None

337

except AssertionError:
warnings.warn('Can not extract due to incorrect number of layers.")
sys.exit(1)
for i in range(self.num_layers):
layer data =remove new line char(self.raw_str[i])
layer data = layer data.split(sep=pattern)
layer name = layer data[0]
layer data = layer data[l:]
layer data =remove empty in_block(layer data)
layer data = ListOfListRegex(raw_str=layer data).extract()
data[layer name] = layer data

return data

class BlackOilRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex, self). init ()

self.raw_str =raw_str

def extract(self, pattern=None):
black oil props =remove new line char(self.raw_str[0])
black oil props = ListRegex(raw_str=black oil props).extract()
prop_table lines =remove new line char(self.raw_str[1])
prop_table lines = int(prop_table lines)
prop_table = self.raw_str[2:]
prop_table = ListOfListRegex(raw_str=prop_table).extract()

return [black oil props, prop table lines, np.array(prop_table)]

338

class ClustersPerStageRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex, self). init ()

self.raw_str = raw_str

def get number of stages(self):

num_of stages =0

locs = list()

for (_, line) in enumerate(self.raw_str):

if "***" in line:

num_of stages +=1
locs.append()

locs.append(len(self.raw_str))

return num_of stages, locs

def extract(self, pattern="\t"):
data = dict()
num_of stages, locs = self.get number of stages()
for in range(num of stages):
start loc, end loc =locs[]+ 1, locs[+ 1]
_data = self.raw_str[start loc: end loc]
_data = ListOfListRegex(raw_str=_data).extract()
data['Stage '+ str(_+1)] = data

return data

class WaterByLayer(BaseRegex):

339

def init (self, raw_str: List[str]):
super(BaseRegex, self). init ()
self.raw_str = raw_str

self.num_of layers = None

def get number of layers(self):

num_of layers =0

locs = list()

for (_, line) in enumerate(self.raw_str):

if "***" in line:

num_of layers +=1
locs.append(_ + 1)

locs.append(len(self.raw_str))

return num_of layers, locs

def extract(self, pattern=None):
data = dict()
num_of layers, locs = self.get number of layers()
for in range(num of layers):
_data =remove new line char(self.raw_str[locs[]])
data['Layer '+ str(_+1)] = float(_data)

return data

class PropRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex, self). init ()

self.raw_str =raw_str

340

self.num_of props = None

def get number of props(self):

return len(self.raw_str)

def extract(self, pattern="\t"):

data = dict()

for prop in self.raw_str:
prop data =remove new line char(prop)
prop_data = prop_data.split(sep=pattern)
prop_name = prop_data[0]
prop_data = prop_data[1:]
prop_data = ListOfListRegex(raw_str=prop data).extract()
data[prop_name] = prop data

return data

class PropMixtureRegex(BaseRegex):

def init (self, raw_str: List[str]):

super(BaseRegex, self). init ()
self.raw_str =raw_str

self.num_of mixtures = None

def get number of mixtures(self):

return len(self.raw_str)

def extract(self, pattern="\t"):
data = dict()

341

for mix in self.raw_str:
mix_data = remove new_line char(mix)
mix_data = mix_data.split(sep=pattern)
mix_name = mix_data[0]
mix_data = mix_data[1:]
mix_data = ListOfListRegex(raw_str=mix_data).extract()
data|mix name] = mix_data

return data

class WaterSoluteRegex(BaseRegex):
def init_ (self, raw_str: List[str]):
super(BaseRegex, self). init ()
self.raw_str =raw_str

self.num_of mixtures = None

def get number of solutes(self):

return len(self.raw_str)

def extract(self, pattern=None):

data = dict()

for solute in self.raw_str:
solute data = solute.split(sep="\n")[0]
solute data = solute_ data.split(sep=pattern)
solute_ name = solute data[0]
solute data = solute_data[1:]
solute data = ListOfListRegex(raw_str=solute data).extract()

data[solute _name] = solute data

342

return data

class FluidMixtureRegex(BaseRegex):

def init (self, raw_str: List[str]):

super(BaseRegex, self). init ()
self.raw_str =raw_str

self.num_of mixtures = None

def get number of mixtures(self):

return len(self.raw_str)

def extract(self, pattern=None):

data = dict()

for mix in self.raw_str:
mix_data = mix.split(sep="\n")[0]
mix_data = mix_data.split(sep=pattern)
mix_name = mix_data[0]
mix_data = mix_data[1:]
mix_data = ListOfListRegex(raw_str=mix_data).extract()
data|mix name] = mix_data

return data

class PropPermModelRegex(BaseRegex):
def init_ (self, raw_str: List[str]):
super(BaseRegex, self). init ()

self.raw_str =raw_str

343

def extract(self, pattern=None):
data = ListOfListRegex(raw_str=self.raw_str).extract()

return np.array(data)

class FracPermModelRegex(BaseRegex):
def init_ (self, raw_str: List[str]):
super(BaseRegex, self). init ()

self.raw_str =raw_str

def extract(self, pattern=None):
data = ListOfListRegex(raw_str=self.raw_str).extract()

return np.array(data)

class DurationCutOffRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex, self). init ()

self.raw_str =raw_str

def get num_of wells(self):
num_of wells =0
locs = list()
for (_, line) in enumerate(self.raw_str):
if "***' in line:
num_of wells +=1

locs.append()

344

locs.append(len(self.raw_str))

return num_of wells, locs

def extract(self, pattern=None):

data = dict()

num_of wells, locs = self.get num_of wells()

for in range(num_of wells):
start loc, end loc =locs[|+ 1,locs[+ 1]
_data = self.raw_str[start loc: end loc]
_data = ListOfListRegex(raw_str=_data).extract()
data['Well '+ str(_+1)] = data

return data

class Well VerticesRegex(BaseRegex):
def init (self, raw_str: List[str]):
super(BaseRegex, self). init ()

self.raw_str =raw_str

def get num_of wells(self):

num_of wells =0

locs = list()

for (_, line) in enumerate(self.raw_str):

if "***" in line:

num_of wells +=1
locs.append(_ + 1)

locs.append(len(self.raw_str))

return num_of wells, locs

345

def extract(self, pattern=None):

data = dict()

num_of wells, locs = self.get num_of wells()

for _inrange(num_of wells):
start loc, end loc =locs[], locs[+1]-1
_data = self.raw_str[start loc: end loc]
_data = ListOfListRegex(raw_str=_data).extract()
data['Well '+ str(_+1)] = data

return data

irregular_regex_classes = [RelPermRegex, FaciesListRegex, BlackOilRegex,
ClustersPerStageRegex, WaterByLayer,
PropRegex, PropMixtureRegex,
PropPermModelRegex, FracPermModelRegex,
WaterSoluteRegex, FluidMixtureRegex,
WellRegex, DurationCutOffRegex, Well VerticesRegex|

from src.base.base libs import *

def write_matrix_values(file, array: np.ndarray):
The numpy array has dimensions (N, 1) or (N, 2)
:param array:
:param file:

:return:

nmn

346

for row in array:
if type(row) == np.ndarray:
for _inrow:
file.write(str(_))
file.write("\t')
file.write("\n")
else:
file.write(str(row))
file.write("\n')

file.write("\n')

def write ndarray values(file, array: np.ndarray, length: int):
The numpy array has dimensions (N, 1) or (N, 2)
:param array:
:param file:
:param length:
return:
if length == 0:
warnings.warn('Incorrect variable length for matrix values.")
sys.exit(1)
elif length == 1:
for _in array:
file.write(str(_))
file.write("\t'")

file.write("\n")

347

else:
for row in array:
if type(row) == np.ndarray:
for _inrow:
file.write(str(_))
file.write("\t')
file.write("\n')
else:
file.write(str(row))
file.write("\n')

file.write("\n')

def write list values(file, values: list):
TODO: ? Write a numpy array dimensions to an opened file object
values is a list of different data types
:param values:
:param file:
for value in values:
file.write(str(value))
file.write("\t')

file.write("\n")

def write list of list values(file, values: List[List]):

for value in values:

348

if type(value) != list:
file.write(str(value))
file.write("\n")
else:
for value in value:
file.write(str(value))
file.write("\t')
file.write("\n")

file.write("\n')

def parse_file(file name):
TODO: ? Scan and extract simulation data from a ResFrac's settings/input file
:param file name:
:return:
file = open(file=file name, mode="r')
file lines = file.readlines()
entry begin idx = list()
entry end idx = list()
file_entries = list()
for (i, line) in enumerate(file lines):
if 'Begin entry' in line:
Begin entry comment
entry_begin_idx.append(i)
elif 'End entry' in line:

End entry comment

349

entry _end_idx.append(i)
else:
Entry comments or data
pass
try:
assert len(entry begin_idx) == len(entry _end idx)
except AssertionError:
sys.exit(1)
number _of entries = len(entry_begin_idx)
for ie in range(number of entries):
entry = dict.fromkeys(['Comments:', 'Variable name:', 'Length:', "Value(s):"])
entry['Comments:'] = list()
entry["Variable name:'] = list()
entry['Length:'] = list()
entry["Value(s):"] = list()
entry line data = file lines[entry begin idx[ie]:entry end idx[ie]+1]
for (je, entry line) in enumerate(entry line data):
ifentry line. contains _ ("//"):
entry['Comments:'].append(entry line)
elif "Variable name:' in entry line:
entry["Variable name:'].append(entry line data[je+1])
elif 'Length:' in entry_line:
entry['Length:"|.append(entry line data[je+1])
elif 'Value(s):' in entry_line:
value line data = entry line data[je+1: -1]
remove _comment in_block(value line data)
while \n' in value line data:

remove new_line char in block(value line data)

350

for value line in value line data:
if value line. contains__ ("//"):
pass
else:
entry['Value(s):'].append(value line)
else:
pass
file entries.append(entry)
file.close()

return file entries

def remove new line char(line):
if line =="\n"
return None
elif "\n' in line:
return line.split(sep="\n")[0]
else:

return line

def remove new line char in_block(block: List[str]):
for line in block:
if line == "\n":

block.remove(line)

def remove comment in_block(block: List[str]):

351

for line in block:
if line. contains_ ("//"):

block.remove(line)

def remove empty in block(block: List[str]):
block = block
if " in block :
block .remove(")
elif' ' in block :
block .remove('")
else:
pass

return block

def compare two txt files(file name 1, file name 2, comp file 1, comp file 2):
fl = open(file name 1, 'r")
f2 = open(file name 2, 'r")
file data 1 = fl.readlines()
file data 2 = f2.readlines()
for (_, line) in enumerate(file_data_1):
if '//" in line:
file data_1.remove(line)
elif line in ["\n', "\r\n"]:
file data 1.remove(line)
else:

pass

352

for (_, line) in enumerate(file data 2):
if '//" in line:
file_data 2.remove(line)
elif line in [\n', \r\n"]:
file_data 2.remove(line)
else:
pass
try:
assert len(file data 1) == len(file data 2)
except AssertionError:
warnings.warn('Compared files do not hold equal data.")
diff=0
for (_, line) in enumerate(file data 2):
if line not in file data 1:
print(line)
diff +=1
print('Total number of different lines is ' + str(diff))
with open(comp file 1, 'w+') as cfl:
for line in file data 1:
cfl.write(line)
with open(comp file 2, 'w+') as cf2:
for line in file data 2:
cf2.write(line)
fl.close()
f2.close()
cfl.close()
cf2.close()

nmn

353

TODO: ? Store ResFrac comments in the settings or input files
- To support writing/reading ResFrac simulation files

- Comment files start with // (not scanned by ResFrac)

nmn

entry_begin ="// -----=-mmmmmmm- Begin entry --
entry end ="/ -—=-=mmmmmmmmmm- End entry ---

entry describe ="'/ Description: '

entry_name = '// Name in builder interface: '

entry internal variable name ='// ResFrac internal variable name '
from simulator.base.entry import *

from simulator.simulation.simulation_headers import *

from simulator.simulation.simulation comments import entry begin, entry end

class SimulationFile(object):
def init_ (self, entries: List[Entry], file type: str):
super(SimulationFile, self). init ()
self.entries = entries

self .file type = file type

def add_entry(self, entry: Entry):

self.entries.append(entry)

def write_file(self, file name):

nmn

TODO: ? Implement writing all entries to a .txt file

354

‘return:
with open(file name, mode='w+') as f:
if self file _type == 'settings":
for header in settings headers:
f.write(header)
f.write("\n')
elif self.file type == "input"
for header in input_headers:
f.write(header)
f.write("\n')
else:
warnings.warn('"Not a ResFrac file type.")
sys.exit(1)
for e in self.entries:
print("Write entry: ', e.variable name)
f.write(entry begin)
f.write("\n")
f.write(""Variable name:")
f.write("\n")
f.write(e.variable name)
f.write("\n")
f.write("Length:")
f.write("\n")
f.write(str(e.length))
f.write("\n")
f.write("Value(s):")

f.write("\n")

355

e.write_entry values(f)
f.write("\n")
f.write(entry _end)
f.write("\n")
f.write("\n")

f.close()

nmn

ResFrac commands in settings/input files that does not belong to an entry

nmn

settings headers = ['validation passed', 'memory usage regular', 'using field units']
input_headers = ['using field units']

from src.base.base libs import *

HHHHHEHHHHHHE
Helper variables to support parsing/writing ResFrac files

HHHHEHHHH

rel perm keys = ['curvesetname', 'matrixrelperm’,
('pressuredependentpermeability’, 'reversible'),
('pressuredependentpermeability’, 'irreversible'),
'tenxreversiblepermeabilitylossperpressureincrement!,
'tenxirreversiblepermeabilitylossperpressureincrement’,
'lowerpressurethresholdforreversiblepermeabilityincrease',
'upperpressurethresholdforreversiblepermeabilityincrease’,
'permmultiplierforreversiblepermeabilityincrease’,

'lowerpressurethresholdforirreversiblepermeabilityincrease',

356

'upperpressurethresholdforirreversiblepermeabilityincrease',
'permmultiplierforirreversiblepermeabilityincrease’,
'permeabilitymultiplier’,
'waterbankthicknesstorelpermincreasescalingthickness',
'waterbankthicknesstorelpermdecreasescalingthickness',

'waterbankimmobilefraction']

irregular_variable names = ['matrixcurvesets', 'facieslist', 'blackoil’,
'clustersperstage', 'initialwatersolutemassfractionsbylayer',
'‘proppants', 'proppantmixtures’,
"‘proppantbedbrookscoreymodel', 'fracturebrookscoreymodel’,
'watersolutes', 'fluidmixtures',
'nextgenboundaryconditioncontrols', 'durationcutoff’, 'wellvertices']
import sys
import os

import shutil

import math
import csv

import warnings

from typing import Union, List, Optional, Tuple, Dict
from itertools import permutations, combinations, product
from copy import deepcopy

from enum import Enum

import regex

import re

357

import pickle

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import seaborn as sns

import scipy
from scipy.stats import distributions

import pyDOE

import plotly
from plotly import graph _objects as go

from src.dir.dir import *

class OrientedBox(object):

TODO: Class that manages an oriented box, i.e., a box representing the 3D fracture element in
ResFrac

Description:

Functionality:

def init_ (self, central coors: np.asarray, dimensions: np.ndarray, oriented angle: float):
super(OrientedBox, self). init ()
self.central coors = central coors
self.dimensions = dimensions # dimensions = [element dimensions and element aperture]
self.oriented angle = oriented angle

#
358

self.central plane coors = np.zeros(shape=[4, 3]) # Coordinates of 'central' plane's corners
self.coors = np.zeros(shape=[8, 3]) # Coordinates of the oriented box's corners
-

self.normal = np.nan * np.ones((3,)) # Normal vector of the oriented box and the central
plane

def compute central corners(self):
Compute the corners of the oriented box
center_x = self.central coors[0]
center_y = self.central coors[1]
center z = self.central coors[-1]
corners X = [center x + self.dimensions[0] / 2 * np.sin(self.oriented angle),
center x - self.dimensions[0] / 2 * np.sin(self.oriented angle)]
corners y = [center y + self.dimensions[0] / 2 * np.cos(self.oriented angle),
center y - self.dimensions[0] / 2 * np.cos(self.oriented angle)]
corners z = [center z + self.dimensions[1] /2,
center z - self.dimensions[1]/ 2]
coors_xy = list()
COOIS_Z = corners_z
coors_xy.append((corners x[0], corners_y[0]))
coors_xy.append((corners x[-1], corners_y[-1]))
coors = list(product(coors_xy, coors_z))
for 1 in range(4):
x = coors[1][0][0]
y = coors[i][0][-1]
z = coors[i][-1]

self.central plane coors|[i, :] =[x, y, z]

def compute corners(self):
359

self.compute central corners()
for i in range(4):
central x = self.central plane coors[i, 0]
central y = self.central plane coors[i, 1]
central z = self.central plane coors[i, -1]
self.coors[2 * i, :] = [central x - self.dimensions[-1]/2 * np.cos(self.oriented angle),
central y + self.dimensions[-1]/2 * np.sin(self.oriented angle), central z]
self.coors[2 * 1+ 1, :] = [central x + self.dimensions[-1]/2 * np.cos(self.oriented angle),

central y - self.dimensions[-1]/2 * np.sin(self.oriented angle), central z]

def compute normal(self):
self.compute central corners()
pl = self.central plane coors][O0, :]
p2 = self.central plane coors[1, :]
p3 = self.central plane coors[2, :]

self.normal = np.cross(p2 - pl, p3 - pl)

def sample(self):
Sample a random location inside the oriented box
loc =[0., 0., 0.]
min_Xx coor, max_x_coor = self.coors[:, 0].min(), self.coors[:, 0].max()
min_y coor, max_y_coor = self.coors[:, 1].min(), self.coors[:, 1].max()
min_z_coor, max_z_coor = self.coors|[:, -1].min(), self.coors[:, -1].max()
loc[0] = np.random.uniform(min_x_coor, max_X coor)
loc[1] = np.random.uniform(min_y coor, max_y coor)
loc[-1] = np.random.uniform(min_z_coor, max z coor)

return loc

360

class FractureElement(object):
def init (self, elem_ center: np.ndarray, elem dimensions: np.ndarray,
elem_aperture: float, elem_angle: float):

super(FractureElement, self). init ()
self.elem_center = elem_center
self.elem dimensions = elem dimensions
self.elem aperture = elem_aperture / 12 # Convert in to ft
self.elem_angle = elem angle / 180 * math.pi # Convert deg to rad
Attributes defining the element in 2D (central plane) and 3D (oriented box)
self.elem corners = None
self.elem coors = None

self.elem box = None

def set_element corners(self):

TODO: ? Compute element corners from its dimensions and center

return:

elem center x = self.elem center[0]

elem center y = self.elem center[1]

elem_center z = self.elem_center|[-1]

elem_corners_x = [elem_center x + self.elem dimensions[0] / 2 * np.sin(self.elem_angle),
elem_center x - self.elem_dimensions[0] / 2 * np.sin(self.elem_angle)]

elem_corners_y = [elem center y + self.elem dimensions[0] / 2 * np.cos(self.elem_angle),
elem_center y - self.elem_dimensions[0] / 2 * np.cos(self.elem_angle)]

elem_corners_z = [elem_center z + self.elem dimensions[-1]/ 2,

elem_center z - self.elem_dimensions[-1] /2]

361

self.elem_corners = np.zeros([3, 2])
self.elem_corners[0, :] =elem_corners_x
self.elem_corners[1, :] =elem_corners_y

self.elem_corners[-1, :] = elem_corners_z

def set element coordinates(self):
if self.elem_corners is None:
pass
else:
This mode computes coordinate of the element's central 'plane’ (i.e.
not include aperture, replicate similar visual as in ResFrac)
self.elem coors = np.zeros([4, 3])
elem_coors_xy = list()
elem coors z = list(self.elem_corners|-1, :])
elem coors xy.append((self.elem_corners[0, 0], self.elem corners[1, 0]))
elem coors xy.append((self.elem_corners[0, 1], self.elem corners[1, 1]))
elem_coors = list(product(elem coors Xy, elem_coors_z))
for 1 in range(4):
x =elem_coors[i][0][0]
y =elem_coors[i][0][-1]
z = elem_coors[i][-1]

self.elem_coors[i, :] =[x, y, z]

def generate_elem 2d_grid(self):
assert self.elem_coors.shape[0] ==
elem_grid = np.zeros([5, 3])
elem_grid[0, :] = self.elem_coors[0, :]

elem_grid[1, :] = self.elem_coors[1, :]

362

elem_grid[2, :] = self.elem coors[-1, :]
elem_grid[3, :] = self.elem coors[2, :]
elem_grid[-1, :] = self.elem_coors|[O0, :]

return elem grid

def set oriented box(self):
elem box_dimensions = np.zeros(shape=(3,), dtype=np.float32)
elem box_ dimensions[:-1] = self.elem_ dimensions
elem box_dimensions[-1] = self.elem aperture

self.elem_box = OrientedBox(central coors=self.elem_center,
dimensions=elem_ box dimensions,

oriented_angle=self.elem_angle)

def generate _elem 3d grid(self):
pass
from src.utils.read data import *
from src.data.properties.properties import *

from src.data.element.element import *

class FractureGeometry(SimulationProperty):
def init (self, raw_result dir: RawResultDirectory):

super(SimulationProperty). _init ()

self.property names = ['Elm center x/,
'Elm center y',
'Elm center z (depth)',
'Angle', 'Aperture’,
'Element number’',

'Fracture element number’,
363

'Fracture number']
self.property dimensions = ['ft', 'ft', 'ft,
'Degrees clockwise from positive y-axis direction’,
VinV
'unitless', 'unitless', 'unitless']

self.raw_result dir =raw_result dir

self.time step = None

self.fracture elements = None
self.fracture numbers = None

self.fracture surface = None

self.element dimensions = None

self.element numbers = None

def'set raw result file(self, raw_result file):
self.raw_result dir.set new result dir(raw _result file)
raw_result file encoding =raw result file.split(sep="_")

self.time step =raw result file encoding[-1]

def set fracture geometry data(self, file data, file data format: DataFormat):
self.set_property data(file data, file data format)
if len(self.property data) == 0:
pass
else:
fracture_numbers_data = np.array([n for n in self.property data[:, -1]])
self.fracture_numbers = np.unique(fracture_numbers_data)

self.element_dimensions = np.array(

364

[file data format.data header[-5], file data format.data header[-2]]).astype(
float)

self.element numbers = self.property data.shape[0]

self.fracture elements = list()

for elem_num in range(self.element numbers):
elem_center = np.array(self.property data[elem num, :3]).astype(float)
elem_angle = float(self.property data[elem num, 3])
elem_aperture = float(self.property data[elem num, 4])

elem = FractureElement(elem center=elem_center,
elem_dimensions=self.element dimensions,

elem angle=elem angle, elem aperture=elem _aperture)
elem.set_element corners()
elem.set element coordinates()

self.fracture elements.append(elem)

def set fracture surface data(self):
if self.fracture elements is None or self.element numbers is None:
pass
else:
self.fracture surface = np.zeros(shape=[4 * self.element numbers, 3])
for elem num in range(self.element numbers):

self.fracture surface[4 * elem num:4 * (elem num + 1), :] =
self.fracture elements[elem num].elem_coors

def plot_fracture(self, fracture number: Union[str, int], fig name: str):
TODO: ? Plot fracture as surface for the given fracture number in ResFrac
TODO: ? Consider moving this function out
:param fracture number:

365

:param fig_name:
return:
if fracture_number != -1:
fracture number geometry = self.property data[self.property data[:, -1]
== fracture number]
fracture x = fracture number geometry|[:, 0].astype(float)
fracture y = fracture number geometry|[:, 1].astype(float)
fracture z = fracture number geometry[:, 2].astype(float)
else:
fracture_number geometry = self.fracture surface
if fracture_ number geometry is not None:
fracture x = fracture number geometryl[:, 0].astype(float)
fracture y = fracture number geometry|[:, 1].astype(float)
fracture z = fracture number geometry[:, 2].astype(float)
fig_data = list()
if self.element numbers is None:
pass
else:
for elem num in range(self.element numbers):
elem grid = self.fracture elements[elem num].generate elem 2d grid()
fig_data.append(go.Scatter3d(x=elem_grid[:, 0],
y=elem_grid[:, 1],
z=elem_grid[:, -1],
mode="lines', marker=dict(color="black"),
name="))
fig = go.Figure(data=fig_data)

fig.update layout(scene=dict(

366

aspectmode="manual’,
aspectratio=dict(x=10, y=1, z=5)))
fig_dir = os.path.join(self.raw_result dir.data main_dir, fig_name)
fig.write_html(fig_dir)
from src.utils.read data import *

from src.dir.dir import *

class SimulationProperty(object):
def init (self):
super(SimulationProperty, self). init ()
self.property names = None
self.property dimensions = None
self.property units = None

self.property data = None

def set_property name(self, name):

self.property names = name

def set property dimensions(self, dimensions):

self.property dimensions = dimensions

def set property units(self, units):

self.property units = units

def set_property data(self, file data, file data format):
self.property data = property reader(file data, file data format,

self.property names)

367

class SimulationTrackProperty(object):
def init (self):
super(SimulationTrackProperty, self). init ()
self.property names = None
self.property dimensions = None
self.property units = None

self.property data = None

class DailyProductionProperty(object):
def init_ (self):
super(DailyProductionProperty, self). init ()
self.property names = None
self.property dimensions = None
self.property units = None

self.property data = None

def property reader(file data, file data format: DataFormat, property names):
searched idx = search_properties(file data format, property names)
property data = list()
for 1, data in enumerate(file data):
property data.append([data[idx] for idx in searched idx])
return np.array(property data)
from src.utils.read_data import *

from src.data.properties.properties import *

368

from src.data.element.element import *

class PropVolFrac(SimulationProperty):
def init (self, raw_result dir: RawResultDirectory):
super(SimulationProperty). init ()
self.property names = ['Total proppant volume fraction']
self.property dimensions = ['unitless']
self.raw_result dir =raw_result dir
&
self.time step = None
self.fracture_numbers = None
self.element dimensions = None

self.element numbers = None

def'set raw result file(self, raw_result file):
self.raw_result dir.set new result dir(raw _result file)
raw_result file encoding =raw result file.split(sep="_")

self.time step =raw result file encoding[-1]

def'set vol frac data(self, file data, file data format: DataFormat):
self.set_property data(file data, file data format)
if len(self.property data) == 0:
pass
else:
fracture_numbers_data = np.array([n for n in self.property data[:, -1]])
self.fracture_numbers = np.unique(fracture_numbers_data)

self.element_dimensions = np.array([file data format.data header[-5],
file data format.data_header[-2]]).astype(
369

float)

self.element numbers = self.property data.shape[0]

def plot _vol frac(self):
pass
from src.utils.read data import *
from src.data.properties.properties import *

from src.data.element.element import *

class Aperture(SimulationProperty):
TODO: ? Define class to analyze fracture aperture data
def init (self, raw_result dir: RawResultDirectory):
super(SimulationProperty). init ()
self.property names = ['Aperture']
self.property dimensions = ['in']

self.raw_result dir =raw_result dir

self.time step = None
self.fracture numbers = None
self.element dimensions = None

self.element numbers = None

def set raw_result file(self, raw_result file):
self.raw_result dir.set new_result dir(raw_result file)
raw_result file encoding =raw_result file.split(sep="_")

self.time_step =raw_result file encoding[-1]

370

def set aperture data(self, file data, file data format: DataFormat):

self.set_property data(file data, file data format)

if len(self.property data) == 0:
pass

else:
fracture_numbers data = np.array([n for n in self.property data[:, -1]])
self.fracture numbers = np.unique(fracture numbers_data)
self.element dimensions = np.array([file data format.data header[-5],

file data format.data header[-2]]).astype(float)

self.element numbers = self.property data.shape[0]

def plot_aperture(self):
pass
from src.dir.dir import *

from src.utils.read data import *

class TimeProperty(object):
def init (self, data_main_dir: str, data_type: str):
super(TimeProperty, self). _init ()
self.raw_result dir = RawResultDirectory(data main_dir=data main_dir)

self file_type = data_type

def set raw result file(self, raw_result file: str):

self.raw_result dir.set new_result dir(raw_result file)

def get raw_data(self, data_format: SimulationTrackDataFormat):

data reader = SimulationTrackDataReader(data_dir=self.raw_result dir,
data format=data format)

371

file data, file data format = data reader.read data()
return file data, file data format

from src.base.base libs import *

class DataDirectory(object):
def init_ (self, data main dir):
super(DataDirectory, self). init ()

self.data_main_dir = data_main_dir

def' set new_directory(self, new data main_dir):

self.data_main_dir = new_data main_dir

def access_directory(self, accessed dir):

return os.path.join(self.data_main_dir, accessed dir)

def search_file(self, accessed dir, searched file name):
searched dir = self.access directory(accessed dir=accessed dir)
for file name in os.listdir(searched dir):
if file_ name == searched file name:
return True

return False

def search file end with(self, accessed dir, searched file name, end_str):
searched_dir = self.access_directory(accessed_dir=accessed_dir)
for file_name in os.listdir(searched dir):
if file_ name == searched_file name:

if file_name.endswith(end_str):

372

return True
else:
pass
else:
pass

return False

def search file include(self, accessed dir, searched file name, include str):
searched dir = self.access directory(accessed dir=accessed dir)
for file name in os.listdir(searched dir):
if file_name == searched file name:
if include_str in file_name:
return True
else:
pass
else:
pass

return False

def find file end with(self, accessed dir, end str):
searched dir = self.access directory(accessed dir=accessed dir)
searched file names = list()
for file_name in os.listdir(searched_dir):
if file name.endswith(end_str):
searched file names.append(file name)

return searched file names

def find_file include(self, accessed dir, include_str):

373

searched dir = self.access_directory(accessed dir=accessed dir)
searched file names = list()
for file_name in os.listdir(searched dir):
if include_str in file name:
searched file names.append(file name)

return searched file names

def move(self, new_dir):

shutil.move(self.data_main_dir, new_dir)

class InputDirectory(DataDirectory):
def init_ (self, data main_ dir):
super(DataDirectory, self). init (data main_dir)

self.input_dir = None

def set new input directory(self, new input dir):

self.input dir = self.access directory(new input dir)

class SettingDirectory(DataDirectory):
def init (self, data_main_dir):
super(SettingDirectory, self). init_ ()
self.data_main_dir = data_main_dir

self.setting_dir = None

def set new_setting_dir(self, new_setting_dir):

self.setting_dir = self.access_directory(new_setting_dir)

374

class RawResultDirectory(DataDirectory):
def init (self, data main_dir):
super(DataDirectory, self). init ()
self.data_main_dir = data_main_dir

self.result dir = None

def set new result dir(self, new result dir):

self.result_dir = self.access_directory(accessed dir=new result dir)

class ProcessedResultDirectory(DataDirectory):
def init (self, data main dir):
super(DataDirectory, self). init ()
self.data_ main dir = data main_dir

self.result dir = None

def set new result dir(self, new result dir):
self.result dir = self.access directory(new result dir)

from src.base.base libs import *

HHHHEHHHH
HHHHEHIHHHHHEH

"Experimental" classes/functions that are supposed not to be discarded in later fixes

HHHHHHHHHHHH
HHHHHHHHHHIHEHHHHHHH

375

class ExperimentalResFracFiles(object):
def init (self, file dir):
super(ExperimentalResFracFiles, self). init ()

self.file_dir = file dir

(@staticmethod
defremove new line char(line):
if line =="\n":
return None
elif \n' in line:
return line.split(sep="\n")[0]
else:

return line

def read(self):
file lines = list()
with open(self.file dir, mode="r") as f:
file lines = f.readlines()
for (_, line) in enumerate(file lines):
if self.remove new line char(line) == 'BrooksCorey":
Swr_line = file lines[+2]
Sor_line = file lines[+3]
Sgr line = file lines[+4]
Swr_line = self.remove new line char(Swr_line)
Sor_line = self.remove new line char(Sor_line)
Sgr line = self.remove new line char(Sgr_line)
Swr = float(Swr_line.split(sep="\t")[0])
Sor = float(Sor_line.split(sep="\t")[0])

376

Sgr = float(Sgr_line.split(sep="\t")[0])

elif self.remove new line char(line)
'relativefracturetoughnesspersqrtfracturelengthscale':

Kic line = self.remove new line char(file lines[+6])
Kic = float(Kic_line)
else:
pass
return Swr, Sor, Sgr, Kic

from src.dir.dir import *

class DataFormat(object):
def init_ (self):
super(DataFormat, self). init ()
self.data_header = None
self.property names = None

self.units = None

class SimulationTrackDataFormat(object):
def init (self):

super(SimulationTrackDataFormat, self). init ()
self.unit_type = None
self.init_res pres = None
self.data_header = None
self.track locs = None
self.property names = None

self.units = None

377

class DailyProductionDataFormat(object):
def init (self):
super(DailyProductionDataFormat, self). init ()
self.time and locations = None
self.property names = None

self.units = None

class DataReader(object):
def init (self, data_dir: RawResultDirectory, data format: DataFormat):
self.data_dir = data dir

self.data_format = data format

def read data(self):
data = list()
with open(self.data_dir.result dir, 't') as file:
file header = csv.reader(file)
for 1, file row in enumerate(file header):
ifi==0:
self.data format.data header = file row
elifi==1:
self.data_format.property names = file_row
elifi==2:
self.data_format.units = file row
else:
data.append(file_row)
file.close()

378

return data, self.data_format

class SimulationTrackDataReader(object):
def init (self, data dir: RawResultDirectory, data format: SimulationTrackDataFormat):
self.data_dir = data_dir

self.data_format = data format

def read data(self):
data = list()
with open(self.data dir.result dir, 'r') as file:
file_header = csv.reader(file)
for 1, file_row in enumerate(file header):
ifi=—=0:
self.data format.unit type = extract unit type(file row)
self.data format.init res pres = extract init res pres(file row)
elifi==1:
self.data format.track locs = file row
elifi==2:
self.data format.property names = file row
elifi==3:
self.data_format.units = file_row
else:
data.append(file_row)
file.close()

return data, self.data_format

379

class DailyProductionDataReader(object):
def init (self, data dir: RawResultDirectory, data format: DailyProductionDataFormat):
self.data_dir = data_dir

self.data_format = data_format

defread data(self):
data = list()
with open(self.data_dir.result dir, 't') as file:
file header = csv.reader(file)
for 1, file_row in enumerate(file header):
ifi==0:
self.data_format.time and locations = file row
elifi==1:
self.data_format.property names = extract property names(file row)
self.data_format.units = extract units(file row)
else:
data.append(file row)
file.close()

return data, self.data format

class DataManagement(object):
def init_ (self, simulation dir):
super(DataManagement, self). init ()

self.simulation_dir = simulation_dir

def transfer data(self):

TODO: ? Implement copy/move from the simulation directory to another preferable
directory
380

pass

def search_properties(file data format: DataFormat, searched property names):

searched idx = list()
for i, property name in enumerate(file data format.property names):

if property name in searched property names:

searched idx.append(i)

if len(searched idx) == 0:

return None
else:

return searched idx

def extract unit type(file row):
unit_type = file row[0]

return unit_type

def extract init res pres(file row):
init res_pres = float(file row[-1])

return init_res_pres

def extract _units(file row):
units = list()
units.append(file_row[0])

for (_, data_str) in enumerate(file_row[1:]):

381

data = data_str.split(sep="")
if data[0] in ["WHP', 'BHP']:
units.append(data[-1])
else:
units.append(data[0])

return units

def extract property names(file row):
property names = list()
property names.append('Time elapsed')
for (_, data_str) in enumerate(file row[1:]):
data = data_str.split(sep="'")
if data[0] in ["WHP"', 'BHP']:
property names.append(data[-1])
else:
property name ="
for _ in data[l:]:
property name +=
property name +=""
property names.append(property name)

return property names

def extract time step(file_name: str, prefix: str, suffix: str):
time_step = file_name.split(sep=prefix)[-1]
time_step = time_step.split(sep=suffix)[0]

return int(time_step)

382

from src.base.base libs import *

class Sample(object):
def init (self, frac_geometry, frac_aperture, prop vol frac):
super(Sample, self). init ()
self.fracture geometry = frac_geometry
self.fracture aperture = frac_aperture
self.proppant_volume fraction = prop vol frac

self.sampled dimension = None

def set_sampled dimensions(self, sampled dim: str):

self.sampled _dimension = sampled dim

def validate inputs(self):
property data = self.fracture geometry.property data
if len(property data) == 0:
return False
else:

return True

def sample(self):
Sample microchip signal data based on fracture aperture prop volume fraction
Scheme to sample per fracture grid:
1. Get the corresponding prop volume fraction from prop vol frac
2. Larger prop volume fraction = more microchips (TODO: TBD about correlation)

3. For one microchip, sample its location within the fracture grid

383

using the fracture element's boundary coordinates in frac_geometry
4. All microchips within a fracture grid reports similar fracture
aperture using data from frac_aperture
:return samples for all fracture grids
sample data = list()
if self.validate inputs() is False:
return np.array([], dtype=np.float32)
else:
for 1 in range(self.fracture geometry.element numbers):
frac_elem = self.fracture geometry.fracture elements|i]
frac_aperture = float(self.fracture aperture.property data[i, 0])
prop_vol frac data = float(self.proppant volume fraction.property data[i, 0])
n =number_of micro_chips(prop vol frac data=prop vol frac data)
sample data 1= list()
for i_n in range(n):
1_loc =random_location(frac_elem=frac elem)
1 _frac aperture = [frac_aperture]
sample data i.append(i loc+i frac aperture)
sample data += sample data i
sample data = np.array(sample data)

return sample data

def sample inplace(self, sample_dir: str):

nmn

Similar functionality to self.sample and include saving the sample

sample data = list()

384

if self.validate inputs() is False:
return np.array([], dtype=np.float32)
else:
for 1 in range(self.fracture geometry.element numbers):
frac_elem = self.fracture geometry.fracture elements]i]
frac_aperture = float(self.fracture aperture.property datali, 0])
prop_vol frac data = float(self.proppant volume fraction.property data[i, 0])
n =number of micro_chips_inplace(prop vol frac data=prop vol frac data)
sample data 1= list()
for i_n in range(n):
frac_elem.set oriented box()
frac_elem.elem box.compute corners()
1 _loc = frac_elem.elem_box.sample()
1_frac aperture = [frac_aperture]
sample data i.append(i_loc+i_frac aperture)
sample data += sample data i
sample data = np.array(sample data)
sample data file = open(sample dir, 'wb')
pickle.dump(sample data, sample data file)

return sample data

def sample profile along height(self, height resolution: np.ndarray):
sample = self.sample()
profile = np.zeros([height resolution.shape[0]-1, 3])
for 1 in range(profile.shape[0]):
avg_aperture = list()
lower height = height resolution][i]

upper_height = height_resolution[i+1]

385

if sample.size == 0:
profile = np.ones([height resolution.shape[0]-1, 3]) * np.nan
else:
for s in sample:
if lower height <= s[2] <upper_height:
avg_aperture.append(s[-1])
else:
pass
if len(avg_aperture) == 0:
avg_aperture = 0.0
else:
avg_aperture = sum(avg_aperture)/len(avg_aperture)
profile[i, 0] = lower height
profile[i, 1] = upper height
profile[i, 2] = avg_aperture

return profile

def sample profile along half length(self, half length resolution: np.ndarray):
sample = self.sample()
profile = np.zeros([half length resolution.shape[0]-1, 3])
for 1 in range(profile.shape[0]):
avg_aperture = list()
lower hf = half length resolution][i]
upper_hf = half length resolution[i+1]
if sample.size == 0:
profile = np.ones([half length resolution.shape[0]-1, 3]) * np.nan
else:

for s in sample:

386

if lower hf <=s[0] <upper_hf:
avg_aperture.append(s[-1])
else:
pass
if len(avg_aperture) == 0:
avg_aperture = 0.0
else:
avg_aperture = sum(avg_aperture)/len(avg_aperture)
profile[i, 0] = lower hf
profile[i, 1] = upper_hf
profile[i, 2] = avg_aperture

return profile

def number of micro chips(prop vol frac data: float):
Sample number of microchips as constant (experimental)
micro_chips =5

return micro_chips

def number of micro chips_inplace(prop vol frac data: float):
Sample number of microchips proportional to prop-pant volume fraction
min_vol frac =0.
max_vol frac = 1.
micro_chips = (prop_vol frac data - min_vol frac) / (max_vol frac - min_vol frac) * 100

return math.floor(micro_chips)

387

def random_location(frac_elem):
loc =0, 0, 0]
loc[0] = np.random.uniform(frac_elem.elem_corners[0, 0], frac_elem.elem_corners[0, -1])
loc[1] = np.random.uniform(frac_elem.elem_corners[1, 0], frac_elem.elem_ corners[1, -1])
loc[-1] = np.random.uniform(frac_elem.elem_corners[-1, 0], frac_elem.elem_corners[-1, -1])

return loc

def plot_sample profile(sample profile: np.ndarray):
plt.figure()
for i_profile in sample profile:
plt.plot(i_profile[: -1], [1_profile[-1], i_profile[-1]], 'k")
plt.show()
import sys
import os

import shutil

import math
import csv

import warnings
from typing import Union, List, Optional, Tuple, Dict
from itertools import permutations, combinations, product

from functools import partial, partialmethod

from copy import deepcopy

from enum import Enum

388

import numpy as np

import pandas as pd

import scipy

import pyDOE

import hyperopt
from hyperopt import fmin, hp, tpe, Trials, space eval

from hyperopt import STATUS OK, STATUS NEW, STATUS RUNNING, STATUS FAIL

from hyperopt.pyll import scope as hyperopt _scope
from hyperopt.pyll.stochastic import sample as hyperopt sample

from base import *

HHHHHHHHHHHEH
HHHHEHEHHHHHEHEHHH

Components to perform fracture calibration and history match (Experimental)

HHHHHEHHHHHHH A
HHHHEHHHHHHEHHHH

class SurrogateWrapper(object):
def init (self, surrogate, pred time steps: List[float]):
Wrapper to call surrogate
:param surrogate:
:param pred_time_steps:

nmn

389

super(SurrogateWrapper). _init_ ()
self.surrogate = surrogate
self.pred time steps = pred time steps

self.observation_indexes = range(len(pred time steps))

def compute(self, input _params: dict, fixed params: dict):

input_ params_ = np.array([for in input params.values()])

fixed params =np.array([for in fixed params.values()])

predictions = np.zeros([len(self.pred time_steps),])

for in self.observation indexes:
time step = self.pred time steps|]
params_ = np.concatenate([time_step , input params , fixed params_])
predictions|] = self.surrogate(params_)

return predictions

class SingleObjective(object):
def init (self, surr_wrapper: SurrogateWrapper):
Objective value for a single response variable
:param surr_func wrapper: the wrapper that calls the surrogate function (i.e., proxy model)
super(SingleObjective, self). init ()

self.surr_wrapper = surr_wrapper

def compute(self, input_params: dict, fixed params: dict, observation_indexes: List[int]):
surr_pred = np.zeros(shape=[len(observation_indexes),])

surr_pred_raw = self.surr_wrapper.compute(input_params, fixed params)

390

for _in range(len(observation indexes)):
surr_pred[]=surr pred raw[observation indexes|]]

return surr_pred

class MultiObjective(object):

def init_ (self, objective list: List[SingleObjective], num_objectives: int,
observation_indexes: List[int]):

nmn
Objective value for multiple response variables

:param surr_func: List of SingleObjectiveSurrogate that calls all surrogate functions
corresponding to all

response variables
:param num_objectives: Total number of response variables

:param num_observations: Total number of observation points for all response variables (i.e.,
each response

variable has equal number of observation points)
super(MultiObjective, self). init ()
self.objective list = objective list
self.num_objectives = num_objectives

self.observation indexes = observation indexes

def compute(self, input_params: dict, fixed params: dict):
pred = np.zeros(shape=[self.num_objectives, len(self.observation_indexes)])
for 1 in range(self.num_objectives):
surr_pred = self.objective_list[i].compute(input_params, fixed params,
observation_indexes=self.observation_indexes)

pred[i, :] = surr_pred

391

return pred

class ObjectiveFunction(object):
def init (self, data: np.ndarray, pred: np.ndarray):

Objective function for single/multiple response variable(s)
:param data:
:param pred:
super(ObjectiveFunction, self). init ()
self.data = data
self.pred = pred

self.mean = None

def set_ mean(self, mean: np.ndarray):

self.mean = mean

def compute(self):
objective = np.power((self.pred - self.data) / self.mean, 2)

return np.sum(objective, axis=0)

def objective function(input_params, fixed params, num_objectives: int, observation indexes:
List[int],

objective_list: List[SingleObjective], data, mean):

multi_object surrogate = MultiObjective(objective list=objective list,
num_objectives=num_objectives,

observation_indexes=observation_indexes)

392

pred = multi_object surrogate.compute(input_params=input params,
fixed params=fixed params)

objective func = ObjectiveFunction(data=data, pred=pred)
objective func.set mean(mean=mean)

return objective func.compute()

def partial objective function(fixed params: dict, num_objectives: int, observation indexes:
List[int],

objective _list: List[SingleObjective], data, mean):

return partial(objective function, fixed params=fixed params,
num_objectives=num_objectives,

observation_indexes=observation indexes, objective list=objective list, data=data,
mean=mean)

from workflow.fracture profile import *

n

if name ==" main "
data main dir = r'C:\Users\v183p176\Desktop'
raw_result dir = RawResultDirectory(data main dir=data main_dir)

height resolution = [-600, 600, 51]

simulation_dir = os.path.join(data_main_dir, 'doe_simulation_2 SOP")
frac_profile assembler = FractureProfileAssembly(resolution=height resolution)
frac_profile assembler.set root directories(simulation dir=simulation dir)

frac_profile df =
frac_profile assembler.asemble fracture profile(save fracture profile=True)

frac_profile df.to csv('Fracture profile.csv')

from src.dir.dir import *

393

if name ==" main "

simulation dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base
HM\simulations'

new_dir = r'F:\PhD work (Fall 2024)'
data_dir obj = DataDirectory(data_main_dir=simulation_dir)
data_dir obj.move(new_dir=new_dir)

from workflow.reservoir_response import *

n

if name ==" main ":

data main dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base
HM\simulations'

raw_result dir = RawResultDirectory(data main_dir=data_main_dir)

reservoir_response assembler = ReservoirResponseAssembly()

reservoir_response assembler.set root directories(simulation dir=data main_dir,
simulation_file name='doe simulation 2 SOP',
sim _track file name='sim track doe simulation 2 SOP.csv',
response var names=['Oil prod rate'])

res_response df, time steps df =
reservoir_response_assembler.assemble reservoir response()

res_response_df.to csv('Reservoir_response.csv')
time steps_df.to_csv("Time steps.csv')

from simulator.base import utils

from simulator.base import regex templates

from simulator.base import parse

from DoE.doe.doe_v1 import *

394

class ResFracFileParseTest(object):
def init (self):
super(ResFracFileParseTest). init ()
simulation_dir = r'C:\Users\v183p176\Desktop’
simulation_case name = 'doe simulation_2 SOP'
settings file name = 'settings ' + simulation_case name + ".txt'
input_file name ='input '+ simulation case name + ".txt'
simulation_case dir = os.path.join(simulation_dir, simulation_case name)
self.settings_file dir = os.path.join(simulation_case dir, settings file name)

self.input_file dir = os.path.join(simulation _case dir, input_file name)

deftest rel perm_parse(self):
all entries = utils.parse file(file name=self.settings file dir)
entry = all_entries[1]
var_name = entry['Variable name:'][0]
var_length = entry['Length:"][0]
var raw_data = entry['Value(s):']
regex temp = regex_templates.RelPermRegex(raw_str=var raw data)
var data =regex temp.extract(pattern=None)

return var_name, var_length, var_data

deftest well control parse(self):
all_entries = utils.parse_file(file_name=self.settings file dir)
entry = all_entries[-1]
var_name = entry['Variable name:'][0]

var_length = entry['Length:'][0]

395

var_raw_data = entry["Value(s):']
regex_temp = regex_templates. WellRegex(raw_str=var raw_data)
var_data = regex_temp.extract(pattern=None)

return var_name, var_length, var data

def test settings file parse(self):
all_entries = utils.parse_file(file name=self.settings file dir)
all parsed_entries = list()
for (_, entry) in enumerate(all_entries):
parsed_entry = parse.parse_entry(entry=entry)
all parsed entries.append(parsed entry)
for (_e, entry) in enumerate(all_parsed_entries):
if entry.variable_name in simulation_helpers.irregular variable names:
print('Entry: ', e, 'with var name: ', entry.variable name,
"and length: ', entry.length)
print(entry.value_struct.value_struct)

return all parsed entries

def test_input_file parse(self):
all entries = utils.parse file(file name=self.input file dir)
all parsed entries = list()
for (_, entry) in enumerate(all _entries):
parsed_entry = parse.parse_entry(entry=entry)
all parsed_entries.append(parsed entry)
for (_e, entry) in enumerate(all_parsed_entries):
if entry.variable name in simulation_helpers.irregular variable names:
print('Entry: ', e, ' with var name: ', entry.variable name,

"and length: ', entry.length)

396

print(entry.value struct.value struct)

return all_parsed_entries

deftest doe settings file(self):
doe dir =r"E:\Vuong's ResFrac"
num_cases, last _case = 100, 0
base entries = self.test settings file parse()
doe params =['S wr','S or','S gr', 'relative frac toughness']
doe entry var names = ['matrixcurvesets',
'matrixcurvesets',
'matrixcurvesets',
'relativefracturetoughnesspersqrtfracturelengthscale']
doe_distributions = [distributions.norm(loc=0.2, scale=0.1),
distributions.norm(loc=0.2, scale=0.1),
distributions.norm(loc=0.03, scale=0.001),
distributions.uniform(loc=0.0, scale=0.5)]
write_locs = [[[0, 0]], [[1, O]1, [[2, O], -1]
#
doe assembler = DesignOfExperimentsAssembly(base entries=base entries)
doe assembler.doe batch =0
doe assembler.doe dir = doe dir
i
doe assembler.reset_all entries()
doe assembler.set doe params(doe params)
doe assembler.set_doe entry var names(doe entry var names)
doe assembler.set doe distributions(doe_distributions)
doe assembler.set write locs(write_locs)

doe object = doe_assembler.generate doe object(design='lhs', num_cases=num_cases)

397

doe df =doe assembler.write _doe entries(doe object, last case=last case)

return doe_df

' '

if name ==' main_ "

i

all settings entries = ResFracFileParseTest().test settings file parse()

all input entries = ResFracFileParseTest().test input file parse()

doe df = ResFracFileParseTest().test doe settings file()

&

sim_file = simulation_files.SimulationFile(entries=all settings entries,
file type='settings')

sim_file.write file(file name="../Proxy_cases/Input_files/settings.txt")

sim_file = simulation_files.SimulationFile(entries=all input entries,
file type='input’)

sim_file.write file(file_ name="../Proxy cases/Input_files/input.txt’)

from workflow.surrogate import *

class SurrogateTest(object):
def init (self):
super(SurrogateTest). init ()

simulation_dir =
ResFrac\DoE cases\workflows\Proxy cases batch O\simulations"

simulation_case name = 'doe_case 0'
settings_file name = 'settings ' + simulation _case name + ".txt'

input_file name ='input '+ simulation_case name + ".txt'

self.simulation_dir = simulation_dir
398

r"E:\Vuong's

self.simulation_case name = simulation_case name

simulation_case_dir = os.path.join(simulation_dir, simulation_case _name)
self.settings_file dir = os.path.join(simulation_case dir, settings file name)

self.input_file dir = os.path.join(simulation_case dir, input_file name)

def test_fracture profile(self):

raw_result dir = RawResultDirectory(data main_dir=self.simulation_dir)

height resolution = [-600, 600, 51]

simulation_dir = os.path.join(self.simulation_dir, self.simulation case name)
frac_profile assembler = FractureProfileAssembly(resolution=height resolution)
frac_profile assembler.set root directories(simulation dir=simulation_dir)
frac_profile df = frac profile assembler.asemble fracture profile()
frac_profile df.to csv('Fracture profile.csv')

return frac_profile assembler

def test_reservoir response(self):

raw_result dir = RawResultDirectory(data main_dir=self.simulation_dir)

reservoir_response assembler = ReservoirResponseAssembly()

reservoir_response assembler.set root directories(simulation dir=self.simulation_dir,
simulation_file name=self.simulation_case name,
sim_track file name='sim_track doe case 0.csv',
response_var_names=['BHP', 'Oil prod rate'])

res_response_df, time steps_df

reservoir_response_assembler.assemble reservoir response()

res_response df.to_csv('Reservoir_response.csv')
time steps_df.to_csv('"Time_steps.csv')

return reservoir_response _assembler
399

def test surrogate(self):
surrogate dir assembler = SurrogateDirectory(result_dir=self.simulation_dir)
surrogate dir assembler.num_cases = 1
surrogate dir assembler.init fracture profile(fracture profile resolution=[-600, 600, 51])

surrogate dir assembler.init_reservoir response(reservoir_response_var names=['BHP',
'Oil prod rate'])

surrogate dir assembler.experimental doe params = ['S wr', 'S or', 'S gr',
'relative frac toughness']

surrogate dir assembler.init _experimental doe data()

surrogate df =
surrogate dir assembler.assemble surrogate directory('Test surrogate 0.csv')

return surrogate df

n

if name ==" main "
test_surrogate df = SurrogateTest().test surrogate()

from workflow.surrogate import *

n

if name ==" main ":
result dir = r"E:\Vuong's ResFrac\DoE cases\workflows\Proxy cases\simulations"
surrogate dir = r"E:\Vuong's ResFrac\surrogate data.csv"
fracture profile resolution = [-600, 600, 51]
surrogate_manager = SurrogateDirectory(result dir=result dir)

surrogate_manager.experimental doe params = ['S_wr, 'S or, 'S gr!
'relative_frac toughness']

surrogate_manager.init_fracture profile(fracture profile resolution=fracture profile resolution)

400

surrogate manager.init_reservoir_response(reservoir_response var names=['BHP', 'Oil prod
rate'])

surrogate_manager.init_experimental doe data()

surrogate df = surrogate manager.assemble surrogate directory(surrogate dir=surrogate dir)
from src.data.frac_geometry.frac_geometry import *
from src.data.properties.total aperture import *
from src.data.properties.proppant_volume import *

from src.utils.sample by distribution import *

'

if name ==' main_ "

data main dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base
HM\simulations\doe simulation 2 SOP\Results'

raw_result dir = RawResultDirectory(data main dir=data_main_dir)

raw_result file =r'Raw_Res' + '/frac_elms 512.csv'

raw_result dir.set new result dir(raw result file)

data format = DataFormat()
data reader = DataReader(data dir=raw result dir, data format=data format)

file data, file data format = data reader.read data()

frac_geometry = FractureGeometry(raw_result dir=raw_result dir)

frac_geometry.set raw result file(raw result file=raw_result file)
frac_geometry.set fracture geometry data(file data=file data,
file data format=file data format)

frac_geometry.set fracture surface data()

401

frac_aperture = Aperture(raw_result dir=raw_result dir)

frac aperture.set raw result file(raw result file=raw result file)

frac_aperture.set aperture data(file data=file data,

file data format=file data format)

prop_vol frac = PropVolFrac(raw result dir=raw result dir)

prop_vol frac.set raw_result file(raw_result file=raw result file)

prop_vol frac.set vol frac data(file data=file data,

file data format=file data format)

sample by dist = Sample(frac_geometry=frac_geometry, frac aperture=frac_aperture,
prop_vol frac=prop vol frac)

height resolution = np.linspace(-600, 600, 51)

height profile = sample by dist.sample profile along half length(height resolution)

plot sample profile(sample profile=height profile)

raw_result file ='sim track doe simulation 2 SOP.csv'

raw_result dir.set new result dir(raw result file)

data format = SimulationTrackDataFormat()

data reader = SimulationTrackDataReader(data dir=raw_result dir, data format=data format)

sim_track file data, sim_track file data format = data reader.read data()

raw_result file ='daily prod doe simulation 2 SOP.csv'
raw_result dir.set new result dir(raw_result file)
data_format = DailyProductionDataFormat()

data reader = DailyProductionDataReader(data dir=raw_result dir, data_format=data format)

402

daily prod file data, daily prod file data format = data reader.read data()
from workflow.surrogate import *

from workflow.objective function import *

from proxy.proxy import *
from proxy.gb_proxy import *

from proxy.xgb_proxy import *

from proxy.proxy_opt import *

R
HHIHHIHHHHHH

Workflow to perform fracture calibration (TBD)

HHHHHHHHHHHHEH
HHHHEHHHHHHEH

class FractureCalibrationAssembly(object):
def init_ (self, proxy, non_cal params: dict, objectives: dict):
super(FractureCalibrationAssembly, self). it ()
self.proxy = proxy
self.non_cal params =non_cal params

self.objectives = objectives

#

self.proxy pred method: str

self.input_signature = None

def set proxy prediction _method(self, proxy pred method: str):

403

self.proxy pred method = proxy pred method

def set input_signature(self, input_signature):

self.input_signature = input_signature

def set objective function(self, cal params: dict):
inputs: dict = self.non_cal params
inputs.update(cal_params)
obj_func = ObjectiveFunction(inputs=inputs, objectives=self.objectives,
proxy=self.proxy)
try:
assert getattr(self.proxy, self.proxy pred method) is not None
return obj_func.compute(proxy pred method=self.proxy pred method)
except AssertionError:
warnings.warn("Proxy prediction method is not found. Fatal proxy object.")

return None

def assemble fracture calibration(self, opt space: dict):

proxy_optimizer = ProxyOptimization(proxy object=self.proxy)

proxy optimizer.init optimizer(opt space=opt space)

opt_instance = proxy_optimizer.exec_optimizer(
opt_func_attr=self.proxy pred method)

return space_eval(opt_instance)

from src.base.base libs import *

from proxy.xgb proxy import *

from proxy.proxy_opt import *

404

HHHEHHHHHH
HHHHEHHHHHHIHI?

HHHHEHHHHHIHEHEHHR Calibrate continually
HHHEHHHHHHHH R

Wi Proxy re-training when sensor data is received continuously
e

#
R
HHIHIHHHHHIH?

class ContinualCalibration(object):
def init_ (self, new X, new Y, trained xgb regressor: QuantileXGBRegressor):
super(ContinualCalibration, self). _init ()
self.trained xgb regressor = trained _xgb_regressor
selfnew X =new X

selfnew Y =new Y

def fit(self, opt_quantile hyperparams):

quantile xgb model, B =
self.trained xgb regressor. fit (params=opt quantile hyperparams)

return quantile xgb model

def train(self, opt_quantile hyperparams):
hyperparams_ = opt_quantile hyperparams
if 'quantile alpha' not in hyperparams_.keys():
hyperparams_|['quantile alpha'] = np.array([0.1, 0.5, 0.9])
else:
pass

hyperparams_['objective'] = 'reg:quantileerror’

405

hyperparams_['tree_method'] = 'hist’
i
quantile xgb model = self.fit(hyperparams)
i
xgb data = self.trained xgb regressor.xgb data
org x = xgb data.df[xgb data.x cols].to_numpy()
org y=xgb data.df[xgb data.y cols].to numpy()
it=0
while it < self.new_X.shape[0]:
new_x_ =selfnew X[it:it+ 1, :]
new y = quantile xgb model.inplace predict(new x)
if mean_squared_error(new_y [:, 1], self.new Y[it:it + 1]) >=0.01:
err_str = "'MSE'
thres = 0.01
warnings.warn(

'continual prediction at time interval {} exceeds threshold {} at {}.".format(it, err_str,
thres))

else:
pass
cont x =self.new X[:it+ 1, :]
cont y =self.new Y[:it + 1].reshape([it+ 1, 1])
new_Xx_train = np.concatenate((org_x, cont_x), axis=0)
new_y_train = np.concatenate((org_y, cont_y), axis=0)
i
quantile xgb model: xgb.Booster = xgb.train(
hyperparams_, xgb.QuantileDMatrix(new_x_train, new_y train),
num_boost_round=32)
it+=1

pred new_y = quantile xgb model.inplace predict(self.new_X)
406

return pred new y

from src.base.base libs import *

HHHH
HHHEHHHHHHH

HHHHHHEHHIHHIHHI I . Fracture geometry (Unsupervised — algorithms)
B

R
HHHIHIHHHHHHHHHHH

class SensorDataProjection(object):

nmnn

Class to determine planar surface for a set of sensor data via SVD decomposition

def init (self, sensor data: np.ndarray):
super(SensorDataProjection, self). init ()

self.sensor data: np.ndarray = sensor data

def compute centroid(self):

return self.sensor data.mean(axis=0)

def compute svd(self):
centroid = self.sensor data.mean(axis=0)
U, S, Vh =np.linalg.svd(self.sensor_data - centroid)

return U, S, Vh, centroid

407

def project(self):
_, _, Vh, centroid = self.compute svd()
A, B, C =Vh[-1]/ np.linalg.norm(Vh[-1])
D = -np.dot(Vh[-1] / np.linalg.norm(Vh[-1]), centroid)
return A, B, C, D

def compute planar dimensions(self):

pass

def plot(self, fig_dir):

data_projection = np.zeros(shape=self.sensor data.shape)

data_aperture = np.zeros(shape=[self.sensor data.shape[0], 1])

A, B, C, D =self.project()

normal = np.array([A, B, C])

fixed projection = np.array([0, 0, -D / C])

for in range(self.sensor data.shape[0]):
projection_vector = self.sensor data[, :] - fixed projection
projection_vector = np.dot(projection_vector, normal) / np.dot(normal, normal) * normal
data projection| , :] = self.sensor data[, :] - projection_vector
#

d =np.absolute(self.sensor data[, 0] * A +self.sensor data] , 1] * B +self.sensor data[,
-11*C+D)

d = d / np.linalg.norm(normal)

data_aperture[, 0] =d

data_projection = pd.DataFrame(data=data_projection, columns=['x', 'y', 'z'])

fig = px.scatter 3d(data_frame=data projection, x='x', y="y', z='2")

fig.add_scatter3d(x=self.sensor_data[:, 0], y=self.sensor_data[:, 1],
z=self.sensor data[:, -1], mode="markers')

fig.update layout(scene=dict(
408

aspectmode="manual’,
aspectratio=dict(x=10, y=1, z=5)))
fig.update traces(marker size=1)
fig.write_html(fig_dir)
return data projection, data_aperture
from src.dir.dir import *

from src.utils import read data, sample by _distribution

from src.data.frac_geometry import frac_geometry
from src.data.properties import properties, proppant_volume, total aperture

from src.data.time_steps import *

from simulator.base import utils
from simulator.base import regex templates

from simulator.base import parse

from DoE.doe.doe v1 import *

HHHHHEHHHHH
HHHHEHHHHHHEHHHH

"Miscellaneous" workflows to assemble fracture profile (TBD)

HHHHEHHHH
HHHHEHIHHHHHEH

class FractureProfileAssembly(object):
def init (self, resolution: List):
super(FractureProfileAssembly). init ()

409

self.resolution = resolution
self.simulation_results_dir = None
-

self.settings file dir = None

self.input_file dir = None

def set_root directories(self, simulation_dir):
simulation_results_dir = os.path.join(simulation_dir, 'Results')

self.simulation results dir = RawResultDirectory(data_main_dir=simulation_results dir)

def wrap fracture profile(self, frac_elms_file names, save fracture profile=False):
fracture profile = dict()
fracture profile time = dict()
for frac_elms_file name in frac_elms_file names:
frac_elms file dir =r'Raw Res' +'/' + frac_elms file name
self.simulation_results dir.set new result dir(new result dir=frac_elms_file dir)

time_step = read data.extract time_step(file name=frac elms file name,
prefix="frac_elms ', suffix=".csv')

Read all raw data
data format =read data.DataFormat()

data reader = read data.DataReader(data dir=self.simulation results dir,
data_format=data_format)

file data, file data format = data_reader.read data()

Extract time from the file header (in hours)

print('"Process fracture profile time step ', time_step)

time = float(file_data_format.data header[1])

Extract the fracture geometry

frac_geometry obj =

frac_geometry.FractureGeometry(raw_result dir=self.simulation_results dir)

410

frac_geometry obj.set raw result file(raw_result file=frac elms file dir)
frac_geometry obj.set fracture geometry data(file data=file data,
file data format=file data format)
frac _geometry obj.set fracture surface data()
frac _geometry obj.plot fracture(fracture number=-1, fig name='fracture geometry '+
str(time_step) + ".html')
Extract the total aperture
frac_aperture obj = total aperture. Aperture(raw_result dir=self.simulation results dir)
frac_aperture obj.set raw result file(raw_result file=frac elms file dir)
frac_aperture obj.set aperture data(file data=file data,
file data format=file data format)
Extract the prop volume fraction

prop_vol frac obj
proppant_volume.PropVolFrac(raw_result dir=self.simulation_results dir)

prop vol frac obj.set raw result file(raw result file=frac elms file dir)
prop_vol frac obj.set vol frac data(file data=file data,
file data format=file data format)
Perform the sampling to generate sensor data
sample by dist =sample by distribution.Sample(frac geometry=frac geometry obj,
frac_aperture=frac aperture obj,
prop_vol frac=prop vol frac obj)
height resolution = np.linspace(self.resolution[0], self.resolution[1], self.resolution[-1])
height profile = sample by dist.sample profile along half length(height resolution)
Save the generated sensor data
if save fracture profile:
sample dir ='sensor data '+ str(time_step) + '.pkl’
sample by dist.sample inplace(sample dir=sample dir)
Obtain the sampled sensor data per time step (X, y, z)

if time_step not in fracture profile.keys():
411

fracture profile[time step] = height profile
if time_step not in fracture profile time.keys():
fracture profile time[time step] = time
fracture profile = {k: fracture profile[k] for k in sorted(fracture profile)}
fracture profile time = {k: fracture profile time[k] for k in sorted(fracture profile time)}

return fracture profile, fracture profile time

def asemble fracture profile(self, save fracture profile=False):

Assemble fracture profile for all recorded time steps as .csv

1. Call self.wrap fracture profile()

Per time step:
2. Extract fracture profile data from fracture profile
3. Arrange fracture profile dimensions as follows:
- Number of columns = 3 * fracture profile.shape[0]
- Columns are named 'x_1, x 2, x_fracture profile.shape[0]+1' (similar for y & z)
- Arrange the fracture profile data at ordered for x, y, z above

:return: fracture profile df

nmn

frac_elms file names
self.simulation results dir.find file include(accessed dir='Raw_ Res',

include_str='frac_elms')
fracture profile, fracture profile time =\

self.wrap_fracture profile(frac_elms file names=frac_elms file names,
save fracture profile=

save fracture profile)
fracture profile df = list()
time_steps = list(fracture profile.keys())
for time_step in time_steps:

412

fracture profile samples = fracture profile[time step].shape[0]
fracture profile data = dict()
fracture profile data['fracture profile time'] = fracture profile time[time step]
for _in range(fracture profile samples):
key x="x_"+str()
key y="y "+ str()
key z="z "+ str()
if key x not in fracture profile data.keys():
fracture profile data[key x] = fracture profile[time_step][, 0]
if key y not in fracture profile data.keys():
fracture profile data[key y] = fracture profile[time_step][, 1]
if key z not in fracture profile data.keys():
fracture profile data[key z] = fracture profile[time step][, -1]
fracture profile df.append(fracture profile data)
fracture profile df =pd.DataFrame(data=fracture profile df)
fracture profile df.index = time steps
return fracture profile df
from workflow.surrogate import *

from workflow.objective function import *

from proxy.proxy import *
from proxy.gb_proxy import *

from proxy.xgb _proxy import *

from proxy.proxy_opt import *

HHHHHHHHHH
HHHHHHHHHH

413

Workflow to perform history matching

HHHEHHHHHH
HHHHHHHHHHIHEHH

class HistoryMatchAssembly(object):
def init_ (self, proxy, non_cal params: dict, objectives: dict):
super(HistoryMatchAssembly, self). init ()
self.proxy = proxy
self.non_cal params =non_cal params
self.objectives = objectives
#
self.proxy pred method: str =""

self.input_signature = None

def set proxy prediction method(self, proxy pred method: str):
self.proxy pred method = proxy pred method

def set_input_signature(self, input_signature):

self.input signature = input_signature

def set objective function(self, cal params: dict):
inputs: dict = self.non_cal params
inputs.update(cal params)
obj_func = ObjectiveFunction(inputs=inputs, objectives=self.objectives,
proxy=self.proxy)
try:
assert getattr(self.proxy, self.proxy pred method) is not None

return obj_func.compute(proxy pred method=self.proxy pred method)
414

except AssertionError:
warnings.warn(""Proxy prediction method is not found. Fatal proxy object.")

return None

def assemble fracture calibration(self, opt space: dict):
proxy_optimizer = ProxyOptimization(proxy_object=self.proxy)
proxy_optimizer.init optimizer(opt space=opt_space)
opt_instance = proxy_optimizer.exec_optimizer(
opt_func attr=self.proxy pred method)
return space eval(opt_instance)

from src.base.base libs import *

HHHHEHHHHHHEH
HHHHEHEHHHHHEH

HHHHHHAH#H#H# Objective function for fracture calibration and history matching
HHHHHHEHHHHHHHH R

HHHHEHHHHAHIHEHEHHRHAHHEHEHA AR Single-objective, multi-point objective
HHHHEHHHHHHEHHHH

HHHHHIHHIHHIHHIHHI IR Refer to task.experimental for multi-objective function
HHHHHHHHHHEH

HHHHHEHHHHH
HHHHEHIHHHHHEH

class ObjectiveFunction(object):
def init_ (self, inputs: dict, objectives: dict, proxy):
Objective function class for fracture calibration and history matching

Class attributes

415

inputs: inputs to compute the objective function, dict("name" : value)
objectives: outputs to compute the objective function, dict("name", value)

proxy: the proxy object to deploy the prediction, must have a prediction method (e.g,
QuantileXGBRegressor)

input_signature: the order of the input values to comply with the proxy object
weights: the weights for the objectives (optional, default 1.)

Class method:
compute:

super(ObjectiveFunction, self). init ()

self.inputs = inputs

self.objectives = objectives

self.proxy = proxy

#

self.input_signature = None

self.weights = np.array([1. for _in range(len(objectives))], dtype=np.float32)

def set_input signature(self, input_signature: str):

self.input signature = input_signature

def set weights(self, weights):

self.weights = weights

def compute(self, proxy pred method: str):
inputs_ = {}
for input_sig in self.input_signature:
if input_sig not in inputs_.keys():
inputs_[input_sig] = self.inputs[input_sig_]

inputs =np.array([_for _ininputs .values()], dtype=np.float32)
416

objectives =[_ for in self.objectives.values()]

objectives = np.array(objectives_, dtype=np.float32)

try:
assert getattr(self.proxy, proxy pred method) is not None
pred_objectives = getattr(self.proxy, proxy pred method)(inputs)
obj_f=np.power(objectives - pred objectives , 2) * self.weights
return 1. / len(self.objectives) * obj_f.sum(axis=0)

except AssertionError:
warnings.warn(""Proxy prediction method is not found. Fatal proxy object.")
return None

import pandas as pd

from src.dir.dir import *

from src.utils import read data, sample by distribution

from src.data.frac_geometry import frac geometry
from src.data.properties import properties, proppant_volume, total aperture

from src.data.time_steps import time_properties

from simulator.base import utils
from simulator.base import regex templates

from simulator.base import parse

from DoE.doe.doe_v1 import *

HHHHHHHHHHHH
HHHHHHHHHHHEHHHHHHEH

417

"Miscellaneous" workflows to assemble reservoir response parameters (i.e, BHP, oil/gas rate)
(TBD)

HHHEHHHHHH
HHHEHHHHHHH

class ReservoirResponseAssembly(object):
def init (self):
super(ReservoirResponseAssembly, self). it ()
self.simulation_results_dir = None
self.sim_track file name = None

self.response var names = None

def set root directories(self, simulation dir, simulation file name, sim_track file name,
response_var_names):

simulation_results dir = os.path.join(simulation dir, simulation_file name)
simulation_results_dir = os.path.join(simulation results_dir, 'Results')
self.simulation_results dir = RawResultDirectory(data_main_dir=simulation_results dir)
self.simulation results dir.set new result dir(sim_track file name)

self.response var names = response var names

def wrap reservoir response(self):
data_format = time properties.SimulationTrackDataFormat()
data reader = time properties.SimulationTrackDataReader(
data_dir=self.simulation_results_dir, data_format=data format)
sim_track file data, sim_track file data format = data reader.read data()

return sim_track file data, sim_track file data format

def wrap_time_steps(self, time_steps_file name="timesteps.csv'):

418

time steps_dir = os.path.join(self.simulation_results_dir.data_main_dir,
time steps_file name)

time steps df = pd.read csv(time steps_dir, header=None)
time steps_df.columns = ['time_steps', 'time_steps_sec', 'time_steps_str']

return time_steps_df

def assemble reservoir_response(self):
o
Assemble reservoir response for all time steps as .csv
1. Call self.wrap reservoir_response()
Per time step:
2. Extract sim_track data for all recorded properties from sim_track file data
3. Find location of response _var names in sim_track file data format
4. Arrange corresponding value of a response variable name
:return: reservoir_data df
sim_track file data, sim track file data format = self.wrap reservoir response()
reservoir_response df = list()
time_steps = len(sim_track file data)
property names = sim_track file data format.property names
for in range(time steps):
reservoir_response_data = dict()
for response var name in self.response _var names:
try:
assert response_var_name in property _names
response var_index = property names.index(response_var name)
if 'reservoir_response time' not in reservoir_response_data.keys():
reservoir_response data['reservoir_response time']l = sim_track file data[][0]

if response _var name not in reservoir_response data.keys():
419

reservoir_response data[response var name] =
sim_track file data[][response var index]

except AssertionError:
warnings.warn('Incorrect reservoir response variable name. Assemble NaN')
if response var name not in reservoir_response data.keys():
reservoir_response_data[response_var name] = np.nan
reservoir_response df.append(reservoir response data)
reservoir_response df = pd.DataFrame(data=reservoir response df)
time_steps_df = self.wrap time steps()

return reservoir_response df, time_steps_df

def interpolate reservoir_response(reservoir_response df: pd.DataFrame, time: float):
interp_reservoir_response = dict()
reservoir_response time = [float() for _in reservoir response df'reservoir response time']]
interp_lower idx: int =-1
interp_upper _idx: int =-1
for _in range(len(reservoir response time) - 1):
if reservoir_response time[] <= time <= reservoir _response time[+ 1]:
interp lower idx =
interp_upper idx=_+1
for reservoir_var_name in list(reservoir_response_df.keys()):
reservoir_var name_idx = list(reservoir_response_df.keys()).index(reservoir _var name)
if reservoir_var name not in interp_reservoir_response.keys() and \
reservoir_var name != 'reservoir_response_time':

lower value = float(reservoir_response_df.iloc[interp lower idx,
reservoir_var name_idx])

lower time = reservoir_response_time[interp lower idx]

420

upper_value float(reservoir_response_df.iloc[interp upper idx,

reservoir_var name_idx])
upper_time = reservoir_response_time[interp upper idx]

interp_value = lower value + (time - lower time) * (upper value - lower value) /
(upper_time - lower_time)

interp_reservoir_response[reservoir_var _name] = interp_value
return interp_reservoir_response
from workflow.fracture profile import *

from workflow.reservoir_response import *

from src.utils.experimental import ExperimentalResFracFiles

from smt import surrogate models

HHHHEHH
HHHHEHEHHHHHEHEHHH

"Miscellaneous" workflows to form surrogate function(s) (TBD)

HHHHEHHHHHHEH
HHHHEHHHHHHEHHHH

class SurrogateDirectory(object):
def init (self, result dir):
super(SurrogateDirectory, self). init ()
self.result dir = result_dir
self.surrogate case prefix ='doe case '
self.num_cases = 100
self.doe assembler: DesignOfExperimentsAssembly = None

Init the fracture profile

self.fracture profile resolution = None
421

Init the reservoir response
self.reservoir_response prefix = None
self.reservoir response var names = [None]
Experimental, fix to remove in future
self.experimental doe params = None

self.experimental doe data: pd.DataFrame = pd.DataFrame()

definit_fracture profile(self, fracture profile resolution):

self.fracture profile resolution = fracture profile resolution

def init_reservoir response(self, reservoir _response var names):
self.reservoir_response prefix = 'sim_track '

self.reservoir_response var names = reservoir_response var names

def'init_experimental doe data(self):

Experimental, fix to remove in future

doe df = list()

for in range(self.num_cases):
Get the case name and its directory
case name = self.surrogate case prefix + str()
case dir = os.path.join(self.result dir, case name)
settings_file name = 'settings '+ case_name + '.txt'
settings_file dir = os.path.join(case dir, settings file name)
exp_resfrac_file = ExperimentalResFracFiles(file dir=settings file dir)
doe values = exp_resfrac_file.read()
doe dict = dict()
if 'case’ not in doe_dict.keys():

doe dict['case'] = _

422

for (_, doe param) in enumerate(self.experimental doe params):
doe dict[doe param] = doe values|]
doe df.append(doe_dict)
doe df = pd.DataFrame(data=doe df)

self.experimental doe data =doe df

def assemble surrogate directory(self, surrogate dir):
fracture profile assemblers = list()
reservoir_response assemblers = list()
for _in range(self.num_cases):
Get the case name and its directory
case_name = self.surrogate case prefix + str()
case dir = os.path.join(self.result dir, case name)
Create the fracture profile assembler
fracture profile assembler = FractureProfileAssembly(resolution=
self.fracture profile resolution)
fracture profile assembler.set root directories(simulation dir=case dir)
fracture profile assemblers.append(fracture profile assembler)
Create the reservoir response assembler
reservoir_response_file name = self.reservoir_response prefix + case name + '.csv'
reservoir_response assembler = ReservoirResponseAssembly()
reservoir_response_assembler.set root directories(simulation dir=self.result_dir,
simulation_file name=case name,
sim_track file name=reservoir response file name,
response_var_names=self.reservoir_response var names)
reservoir_response_assemblers.append(reservoir_response_assembler)
Create the surrogate assembler

self.init_experimental doe data()

423

if self.doe_assembler is None:

surrogate assembler
SurrogateAssembly(frac profile assemblers=fracture profile assemblers,

res_response_assemblers=reservoir_response assemblers,
doe assembler=self.doe assembler)
surrogate assembler.experimental doe data = self.experimental doe data
else:

surrogate assembler
SurrogateAssembly(frac_profile assemblers=fracture profile assemblers,

res_response_assemblers=reservoir response assemblers,
doe assembler=self.doe assembler)

surrogate df = surrogate assembler.assemble surrogate()

surrogate df.to_csv(surrogate dir)

return surrogate df

class Surrogate Assembly(object):
def init_ (self, frac profile assemblers: List[FractureProfileAssembly],

res_response assemblers: List[ReservoirResponseAssembly],
doe assembler: DesignOfExperimentsAssembly):

super(SurrogateAssembly, self). init ()

self.frac_profile assemblers = frac_profile assemblers

self.res_response assemblers = res_response assemblers

self.doe_assembler = doe_assembler

self.surrogate x var names = None

self.surrogate y var names = None

Experimental, fix to remove in future

self.experimental doe data = pd.DataFrame()

424

def assemble surrogate(self):

nmn

Assemble surrogate data from FractureProfileAssembly, ReservoirResponseAssembly &
DesignOfExperimentsAssembly

1. Call DesignOfExperimentsAssembly to generate settings/input files (ResFrac files) and the
DoE data (.csv)

Per DoE case:
2. Call FractureProfileAssembly to generate sensor data (fixed parameters in the surrogate)
3. Call ReservoirResponseAssembly to generate surrogate data (.csv) & to train surrogate
4. Arrange surrogate data as follows:
- DoE data (from DesignOfExperimentsAssembly)
- Sensor data (from FractureProfileAssembly)
- Reservoir response data (from ReservoirResponseAssembly)

5. Return the surrogate data (.csv) & surrogate wrapper (further used in
FractureCalibrationAssembly &

HistoryMatchingAssembly)

nmn

try:

if self.doe assembler is None:
assert self.experimental doe data.empty is False
num_cases = self.experimental doe data.shape[0]
doe params = list(self.experimental doe data.columns)[1:]

else:
assert self.doe_assembler.doe data.shape[0] == len(self.frac_profile assemblers)
assert self.doe assembler.doe data.shape[0] == len(self.res_response assemblers)
num_cases = self.doe_assembler.doe_data.shape[0]
doe params = self.doe_assembler.doe params

surrogate data df = list()

Loop through all DoE cases

425

for _in range(num_cases):
print('"Process case ',)
Extract the corresponding assemblers fo the case
frac profile assembler: FractureProfileAssembly = self.frac_profile assemblers|]

res_response assembler: ReservoirResponseAssembly =
self.res response assemblers| |

Assemble the fracture profile and reservoir response
fracture profile df = frac profile assembler.asemble fracture profile()

reservoir_response_df, time steps df =
res_response assembler.assemble reservoir response()

Extract the recorded time steps for the surrogate (always fracture profile time steps)
fracture profile time steps = list(fracture profile df.index)
surrogate time_steps = fracture profile time steps
Loop through all similar recorded time steps
for time_step in surrogate time steps:
surrogate data = dict()
surrogate time = fracture profile df.loc[time step, 'fracture profile time']
Add DoE case number
if 'case' not in surrogate data.keys():
surrogate data['case'] =
Add time step (in sec)
if 'surrogate _time' not in surrogate data.keys():
surrogate data['surrogate time'] = surrogate time
Loop through all DoE params
for doe param in doe params:
Add DoE params
if doe param not in surrogate data:
if self.doe_assembler is not None:
surrogate data[doe param] = self.doe assembler.doe data.loc[, doe param]

426

else:
Experimental, fix to remove in future
surrogate data[doe param] = self.experimental doe data.loc[, doe param]
Assemble the fracture profile and reservoir response per time step
fracture profile time step = fracture profile df.loc[time_step, :]
Need interpolation here

reservoir_response time step =
interpolate reservoir response(reservoir_response _df,

surrogate time)
Loop through all fracture profile params
for frac_profile param in list(fracture profile time step.index):
Add fracture profile params
if frac_profile param not in surrogate data.keys() and \
frac profile param !='fracture profile time'":

surrogate data[frac_profile param] =
fracture profile time step[frac profile param]

Loop through reservoir response params

for res_response param in reservoir_response time_step:
Add reservoir response params
if res_response param not in surrogate data.keys():

surrogate data[res response param]| =
reservoir_response time_step[res response param |

Assemble the surrogate data
surrogate data df.append(surrogate data)
self.surrogate x var names =\
['surrogate time'] + doe params + list(fracture profile time step.index)
self.surrogate y var names = list(reservoir_response time_step.keys())
Complete the assembly as pd.DataFrame

surrogate _data df = pd.DataFrame(data=surrogate data df)

427

return surrogate data df

except AssertionError:

warnings.warn('Number of Design Of Experiment cases and number of fracture
profile/reservoir response’

'do not match')

return pd.DataFrame()

class Surrogate(object):
def init_ (self, surrogate assembler: SurrogateAssembly):
super(Surrogate). init ()
self.surrogate assembler = surrogate assembler

self.surrogate backend = None

def train(self, surrogate y var name):

TODO: Implement method to train a surrogate

surrogate data = self.surrogate assembler.assemble surrogate()

surr_backend = surrogate models. KRG(thetaO=[1e-2])

surrogate x data = surrogate data[self.surrogate assembler.surrogate X var names]

try:
assert surrogate y var name in self.surrogate assembler.surrogate y var names
surrogate y data = surrogate data[surrogate y var name]

surr_backend.set training_values(xt=surrogate x_data.to_numpy/(),
yt=surrogate y data.to_numpy())

surr_backend.train()
self.surrogate backend = surr_backend

except AssertionError:

warnings.warn('Incorrect surrogate y variable name. Can not train.")

428

def validate(self, surrogate y var name):

TODO: Implement method to validate a surrogate

surrogate data = self.surrogate assembler.assemble surrogate()

surr_backend = surrogate models. KRG(thetaO=[1e-2])

surrogate x data = surrogate data[self.surrogate assembler.surrogate x var names]

try:
assert surrogate y var name in self.surrogate assembler.surrogate y var names
surrogate y data = surrogate data[surrogate y var name]

surr_backend.set training values(xt=surrogate x data.to numpy(),
yt=surrogate y data.to_numpy())

surr_backend.train()
self.surrogate backend = surr_backend
except AssertionError:

warnings.warn('Incorrect surrogate y variable name. Can not validate.")

def call (self, params: np.array, *args, **kwargs):

try:
assert self.surrogate backend is not None
return self.surrogate backend(params)

except AssertionError:
warnings.warn('No surrogate backend set. Return None')
return None

from sidebar.main_sidebar import *

from callbacks.sidebar import *

from callbacks.doe gui import *

from callbacks.frac_cal gui import *

app = dash.Dash(__name ,
429

external_stylesheets=[dbc.themes. BOOTSTRAP, dbc.icons. FONT AWESOME],
background callback manager=background callback manager,

use pages=True)

app.layout = html.Div(children=[sidebar, dash.page container], id="layout')

set_sidebar(app)

if name ==" main_ ":

app.run_server(port=5000, debug=True)

430

