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1. EXECUTIVE SUMMARY 

This project introduces innovative technology to improve subsurface characterization, 

visualization, and diagnostics of unconventional reservoirs (fossil resources). Through a 

collaborative effort involving the University of Kansas, UCLA, MicroSilicon Inc., and EOG 

Resources, the project aims to deliver precision diagnostics for hydraulic fractures using novel 

high-resolution imaging technology based on smart microchip proppants. Additionally, it seeks to 

enhance the accuracy and predictability of integrated numerical, and machine-learning modeling 

techniques for hydraulic fracture characterization and simulation. 

This groundbreaking technology addresses significant gaps in understanding unconventional and 

tight reservoir behavior and optimizing well-completion strategies, enabling more cost-efficient 

recovery of unconventional resources. Figure 1 illustrates the proposed technology, showcasing 

areas of innovation. It envisions a closed-loop fracture diagnostic and modeling architecture 

designed to improve fracture design and optimize well spacing. 

The project comprises both computational and experimental components. The computational 

component involves real-time fracture mapping, hydraulic fracture diagnostics, and simulations 

powered by physics-informed machine learning. The experimental component includes: 

• Detailed geomechanical rock characterization. 

• Laboratory testing of smart microchip sensors using 3D-printed synthetic and real core 

samples. 

• Development and lab testing of downhole tools to power the microchip proppants and 

receive their signals. 

• Field testing of the technology. 

A key innovation is the battery-less, wireless, and fine-sized sensor technology, which offers real-

time, cost-efficient, high-resolution, and “direct” fracture mapping. By employing microchip sizes 

tailored to various proppants, this technology provides better calibration and interpretation of other 

indirect diagnostic tools currently used for fracture characterization. Once injected into the 

formation, the MicroChip proppants generate real-time data, enabling a more accurate evaluation 

of small-scale hydraulic fracturing performance. 

This project supports the Department of Energy’s (DOE) objectives to enhance the economic and 

energy security of the United States. By providing advanced technology, it aims to maximize the 

recovery efficacy of unconventional resources while minimizing environmental impacts through 

optimized well spacing and improved completion designs. Furthermore, it ensures the United 

States maintains its technological leadership in advanced energy technologies for efficient and 

environmentally responsible fossil fuel production. 

During this project, the team successfully completed key tasks, conducted comprehensive 

laboratory testing and measurements, and achieved successful testing outcomes. These 

accomplishments include: 

• Completion of rock characterization and geomechanical studies for the selected site. 



 

15 
 

• Successful laboratory testing of Smart MicroChip proppants for functionality and 

transport. 

• Verification of MicroChips' functionality at a high temperature of 250℃ (482℉). 

• Verification of MicroChips' functionality under high pressure, achieving 3,490 psi (24.06 

MPa) without epoxy protection embedded in cement under compressive forces, and up to 

10,000 psi with epoxy-type protection. 

• Successful testing of the downhole tool in a lab environment, demonstrating its ability to 

self-power the smaller MicroChips. 

• Development of the i-Geo Sensing web-based platform for physics-informed machine 

learning to process Smart MicroChip data and other diagnostic tools for efficient fracture 

mapping and simulation. 

• Successful field trial conducted in an EOG-operated well in New Mexico. 

  

 

Figure 1a: Smart MicroChip Proppants technology: A closed-loop fracture diagnostic and modeling 

architecture 

The following report is a summary of the work conducted and refers to a series of appendixes that 

contain more thorough and specific information about each section. 
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2. INTRODUCTION  

Unconventional oil and gas reservoir development requires a detailed understanding of the 

geometry and complexity of the generated hydraulic fractures. The current categories of fracture 

diagnostic tools include a variety of methods for near-wellbore fracture diagnostics (e.g., 

production and temperature logs, tracers, and borehole imaging) as well as a variety of far-field 

techniques (e.g., microseismic fracture mapping). These techniques provide indirect and 

interpreted fracture geometry; therefore, none of these methods consistently provides a fully 

detailed and accurate description of the character of created hydraulic fractures. 

2.1 Current State-of-the-Art Technologies 

Other methods of research and development studies that are currently underway to better 

understand the complex interaction of the rock and fracture systems in unconventional plays may 

provide important additional information but still without the precision required to fully 

understand the near-well processes associated with a stimulation treatment. Fracture diagnostics 

using electromagnetic induction have an accuracy of 30-50 feet, which is still far from what is 

needed to understand the detailed complexity of the near-wellbore zone. An additional drawback 

to electromagnetic induction methods is that large amounts of conductive proppants are needed, 

which significantly increases the completion cost.  Another method that has been used is deep sub-

surface resistivity imaging with or without conductive particles, but this method also suffers from 

limited resolution (~50 ft). Microseismic (MS) emitters may provide additional location 

information but are very expensive ($10-100 per proppant) and their interpretation is subjective. 

Microseismic mapping suffers from a lack of correlation with fracture conductivity and geometry.  

Capturing the complexity within the near wellbore region where induced fractures originate and 

interact with the rock has proven to be one of the most elusive monitoring tasks. An important 

observation from most hydraulic fracturing treatments is that because of the mode of failure in the 

near-wellbore region, the microseismic signal may not be detected and as a result is not coincident 

with the perforations. The interaction of the rock around the borehole with induced and existing 

fractures requires a method of observation that is both high resolution (~1 ft) and cost-effective. 

Therefore, finding innovative ways to directly characterize the height, length, and orientation of 

hydraulic fractures will provide critical information to fill the gap between what can be determined 

with current observational methods and the point where failure initiates. Optimizing hydraulic 

fracture treatments is critically dependent on understanding the near-wellbore processes. The 

technology proposed in this work, which focuses on collecting information in this zone, is based 

on frequency-shifting electromagnetic smart proppants that solve multiple key issues: 

i. Due to the frequency-shift nature of the proppants, the signal transmitted from the proppants 

can be easily separated from the electromagnetic reflections from the reservoir. Consequently, 

a very small amount of proppants (a few gallons) is needed to perform fracture mapping. 

ii. This technology can achieve a resolution of better than 1ft, which is two orders of magnitude 

better than the conventional methods. 

iii. The electromagnetic frequency-shifting proppants are based on silicon technology, which can 

be produced at almost no cost (a few cents per proppant) in large volumes. 
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iv. Precise near-wellbore fracture diagnostics using our proposed technology enables better 

calibration and understating of fracture treatment applications. 

3. FIELD TESTING SITE SELECTION AND STATIC DATA COLLECTION 

3.1 EOG Asset Screening   

EOG Resources assets are screened to identify multiple locations for the field pilot testing of Smart 

MicroChip Proppants. One of the key design parameters of the Microchips is a suitable range of 

formation resistivity. Table 1 summarizes the list of different plays and reservoirs that EOG 

resources operate with their range of resistivity (Ohm-m). Based on our field screening, Woodford, 

Paddock, and Blineberry reservoirs in Permian were selected as the top candidates for the pilot 

test. 

Table 1: Collected average resistivity values from multipole EOG reservoirs for pilot 

selection 

Formation Reservoir 
Average Formation Resistivity 

(Ohm-m) 

Permian 
Bone Spring 

sands 
4 to 30 

Permian Wolfcamp < 49 

Permian Leonard <35 

Permian Basin in New 

Mexico  
Paddock 430 

Permian Basin in New 

Mexico  
Blineberry 180 

Permian Basin in New 

Mexico  
Basal Abo 400 

South Texas 
Lower Eagle 

Ford 
<15 

South Texas Upper Eagle Ford <30 

South Texas Austin Chalk 60 

Anadarko Woodford 440 

Anadarko 
Meramec 

(Mississippian) 
105 

Rockies Mowry <30 

Rockies Niobrara <40 

Rockies Bakken < 40 

Rockies Turner < 30 

Rockies Codell <10 

Based on our final field screening, Permian Basin, Yeso Field Reservoir in New Mexico is 

selected for the initial data collection and rock characterization and field trial. Accordingly, 6 

ft of core and logs were obtained from the Boyd XState well that was used for geomechanical 

laboratory testing.  
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Figure 1b: Received core and log data and the CT scan of the full slab core. 

3.2 GEOMECHANICAL EVALUATION, UN-PROPPED CRACK TEST, FLUID 

SENSITIVITY TEST, AND EMBEDMENT TEST OF THE PADDOCK FORMATION 

(BOYD STATE #15H EDDY COUNTY, NEW MEXICO) 

Summary: 

A laboratory investigation was conducted on the core from the Boyd State #15H in the Paddock 

Formation. Tests were conducted on mineralogy, grain density, and ultrasonic velocity to 

determine the geomechanical properties of the Paddock Formation. Triaxial compression tests to 

determine the static Young’s Modulus, although planned, couldn’t be performed due to the small 

sample size of the available core plugs. 

In addition to the geomechanical testing an un-propped crack test, fluid sensitivity test, and 

embedment test were conducted to better understand and evaluate the fracturing characteristics 

and the brittleness/fracability of the Paddock Formation. In addition, these tests were used to assess 

the viability of various proppants (type, size, concentration) and fluids (treated water, linear gel, 

or cross-linked polymers) for their use in hydraulic fracturing. 

Findings: 

• The Paddock samples were primarily made up of dolomite constituents (an average of 82% 

dolomite). 

• The Paddock samples tested had a range in dynamic Young’s Modulus of 11.92 to 17.96 x 

106 psi and an average of 14.51 x 106 psi. 

• The dynamic Poisson’s Ratio ranged from 0.18 to 0.33 and averaged 0.273 for the thirteen 

samples tested. 

• Using the dynamic to static Young’s Modulus correlation developed by 

o Britt Rock Mechanics Laboratory (SPE 125525) 
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o Estatic = 0.835×Edynamic – 0.424, 

o The average static Young’s Modulus was estimated to be 11.69 x 106 psi, 

• Little shear anisotropy (< 5%) was identified in all but one of the samples tested and that 

sample was visibly fissured, 

• Wet nitrogen could flow through an un-propped crack at 3000 psi confining pressure in the 

shale samples and retain extraordinary permeability. 

• Little to no fluid sensitivity was noted in the Paddock Formation, 

• Little proppant embedment (0.068 lbs/ft2) was noted in the Paddock Formation. 

 

Field Implications and Recommendations: 

• The Paddock Formation has a high dynamic Young’s Modulus which translates into a high 

static Young’s Modulus. 

• The Paddock Formation has little fluid sensitivity and proppant embedment making it a 

good fracturing application for a variety of materials (fluids and proppants). 

• The Paddock Formation is a viable water frac candidate due to the ability to retain 

permeability and flow wet nitrogen through an unpropped fracture at confining pressure. 

All lab data indicates that the Paddock Formation is very brittle. 

3.2.1 Introduction: 

A laboratory investigation was conducted to evaluate the geomechanical rock properties of the 

Paddock Formation. Tri-axial compression testing couldn’t be conducted as the core plug samples 

were too small to determine the static Young’s Modulus. Ultrasonic velocity measurements were 

made and the dynamic Young’s Modulus was estimated and evaluated with an established dynamic 

to static Young’s Modulus correlation developed by Britt Rock Mechanics Laboratory (SPE 

125525).  In addition to the geomechanical testing, grain density, mineralogical, unpropped crack 

test, fluid sensitivity test, and an embedment test were performed to assess the viability of this 

formation for hydraulic fracturing. Table 2 summarizes the tests conducted on the core plugs from 

these Paddock Formation samples. 

Table 2: Summary of the Core Tests Performed on The Paddock Formation 

Well 

Name 

ID Depth, 

(feet) FTIR 

Grain 

Density 

Ultrasonic 

Velocity 

Crack 

Test 

Fluid 

Sensitivity 

Embedment 

Test 

Boyd 

State # 

15H  

1  2507.50  X X X  

  

Boyd 

State # 

15H 

2  2507.75  X X X    
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Boyd 

State # 

15H 

3  2508.25  X X X    

Boyd 

State # 

15H 

4  2508.50  X X X    

Boyd 

State # 

15H 

5  2508.75  X X X    

Boyd 

State # 

15H 

6  2509.50  X X X    

Boyd 

State # 

15H 

7  2509.75  X X X  X X 

Boyd 

State # 

15H 

8  2597.10  X X X    

Boyd 

State # 

15H 

9  2597.40  X X X    

Boyd 

State # 

15H 

10  2597.90  X X X    

Boyd 

State # 

15H 

11  2600.20  X X X X   

Boyd 

State # 

15H 

12  2600.60  X X X    

Boyd 

State # 

15H 

13  2600.90  X X X    
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As shown, the core plugs were utilized for mineralogy, rock mechanics, unpropped cracks, fluid 

sensitivity, and embedment tests.  Thirteen ultrasonic velocity tests were conducted on the Paddock 

core samples along with an un-propped crack test, a fluid sensitivity test, and an embedment test. 

Table 3: Summary of the Mineralogy of The Paddock Formation 

Well 

Name ID 

Core 

Set 

Depth, 

(feet) Carbonate Clay Anhydrite Feldspar Quarts 

Boyd State 

#15H 

1  1  2507.50 94 0 2 4 0 

Boyd State 

#15H 

2  1  2507.75 92 1 6 1 0 

Boyd State 

#15H 

3  1  2508.25 95 0 4 1 0 

Boyd State 

#15H 

4  1  2508.50 94 2 3 1 0 

Boyd State 

#15H 

5  1  2508.75 94 0 3 3 0 

Boyd State 

#15H 

6  1  2509.50 92 0 6 2 0 

Boyd State 

#15H 

7  1  2509.75 95 0 5 0 0 

Boyd State 

#15H 

8  2  2597.10 68 12 17 2 2 

Boyd State 

#15H 

9  2  2597.40 66 1 32 0 0 

Boyd State 

#15H 

10  2  2597.90 90 4 3 2 0 

Boyd State 

#15H 

11  2  2600.20 66 6 27 0 0 

Boyd State 

#15H 

12  2  2600.60 85 6 7 2 0 

Boyd State 

#15H 

13  2  2600.90 56 5 38 1 0 
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In addition, Fourier Transform Infrared Spectroscopy (FTIR) and grain density tests were 

conducted on all of the samples to better assess the carbonate and clay mineralogy (Appendix B).  

3.2.2 Discussion: 

First, the mineralogy of the samples was investigated. Fourier Transform Infrared Spectroscopy 

(FTIR) tests were conducted on all of the samples to assess the carbonate and clay mineralogy of 

the Paddock Formation. Analysis of the samples showed that the Paddock has a significant amount 

of dolomite with some anhydrite mineral constituents and some albeit little clay mineralogy. Table 

2 summarizes the results of the core analysis of the Paddock Formation highlighting the mineral 

constituents of significance such as Carbonates (dolomite and calcite), Clays, Anhydrite, Feldspars, 

and Quartz. 

 

As shown, the core samples from the core set one (2507.50 to 2509.75 ft) are predominately 

dolomite (> 89%) with small amounts of calcite (3-4%), anhydrite, feldspar, and clay. Samples 

from the core set two (2597.10 to 2600.90 ft) have significantly fewer dolomite constituents (56% 

to 90%) with no calcite and more anhydrite and clay. The sample from a depth of 2508.25 feet 

(Core Set 1-Sample ID 3), for example, had ninety-one percent dolomite, four percent anhydrite, 

and calcite, and only one percent feldspar and no clay constituents. Alternatively, the samples from 

2600.20 feet (Core Set 2-Sample ID 11) were made up of sixty-six percent dolomite, twenty-seven 

percent anhydrite, and six percent clay, respectively. 
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From a mineralogical perspective, these core samples appear to have some differences given the 

variation in the primary mineral constituents of dolomite and anhydrite. Throughout the Permian 

and Delaware Basins, the abundant amounts of sulfate from evaporated seawater combined with 

the liberation of calcium during the dolomitization process resulted in significant amounts of 

anhydrite being deposited in the Clearfork and Paddock Formations. Figure 3 shows a Paddock 

sample from 2597.40 feet (Core Set 2 - Sample ID 9) which highlights an anhydrite nodule on the 

upper edge of the core sample. 

With respect to the clay constituents, all of the core samples had few clay constituents with the 

samples having from 0 to 12 percent clays, respectively. These clays are primarily illite and 

smectite; however, given the core small amounts (average of only 2%) no extraordinary efforts 

should be utilized to minimize their effects in the completion and fracture stimulation process. 

Appendix B summarizes the quality control measures taken and details the mineralogy of each of 

the samples studied. 

 

Next, a series of ultrasonic measurements were made on each core plug. Each sample was 

subjected to a sonic frequency of 300 to 500 KHz in the lab and the compressional and shear 

velocities were measured. Table 4 summarizes the sonic (shear and compressional) travel times as 

a function of confining pressure for each sample. 
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Table 4: Summary of the Sonic Travel Times as a Function of the Confining 

Pressure 

ID 

Bulk r, 

gm/cc 

1,000 psi Confinement  2,000 psi Confinement  3,000 psi Confinement 

P, 

ft/sec 

S1, 

ft/sec 

S2, 

ft/sec 

P, 

ft/sec 

S1, 

ft/sec 

S2, 

ft/sec 

P, 

ft/sec 

S1, 

ft/sec 

S2, 

ft/sec 

1 2.824 21201  12254  11512  22093  12648  11890  22513  12785  12070 

2 2.842 21814  11772  12077  22730  11965  12316  22969  12270  12566 

3 2.842 21430  11391  12248  22326  11578  12640  22441  11900  12781 

4 2.803 21539  11368  12112  21850  11512  12325  21959  11693  12580 

5 2.870 19642  10554  11443  20420  10919  11930  21486  11214  12014 

6 2.848 22208  11998  12226  22818  12323  12603  23281  12477  12775 

7 2.845  21352 11827 0 21919 12021 0 21988 12297 0 

8 2.822  21133  13133  11808  21905  13409  11708  22170  13426  11910 

9 2.855  21168  10833  11119  21995  11064  11301  22069  11098  11745 

10 2.813  21535  12138  12216  21996  12540  12869  22114  12568  12923 

11 2.830  21845  12225  12720  21969  12479  12898  22015  12650  12926 

12 2.815  22050  12313  12512  22112  12578  12615  22305  12720  12949 

13 2.851  22224  13273  13170  22552  14135  14284  23405  14966  14965 

 

It should be noted that two shear travel times (i.e., S1 and S2) are reported. The second shear travel 

time is measured perpendicular to the first. Such a comparison of shear travel times is a measure 

of shear anisotropy. Comparison of the shear velocities shows little evidence of significant 

anisotropy in these samples. 

Paddock samples as the shear anisotropy recorded were less than 5% on seven of the samples, less 

than 10 percent on another five samples, and only one sample (Core Set-1, ID-7) showed 

significant anisotropy and that was a sample with a visible crack. The average shear anisotropy of 

the twelve unflawed samples was 4.83%. 

Figure 4 shows the Paddock core sample from 2509.75 feet (Core Set 1-Sample ID 7) which 

highlights a fissure that extends nearly throughout the sample. Such a flaw dramatically affects the 

shear anisotropy. 
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Next, the shear and compressional velocities and the bulk density were then utilized to calculate 

dynamic rock properties for the core samples. The dynamic rock properties calculated from these 

laboratory measurements are summarized in Table 5. As shown, the Poisson’s Ratio varies from 

0.18 to 0.33 and the dynamic Young’s Modulus varies from 11.92 to 17.96 x 106 psi at 2000 psi 

confining pressure. 

Table 5: Summary of the Dynamic Rock Properties For The Paddock Formation 

ID 1,000 psi 

Confinement 

2,000 psi Confinement 3,000 psi 

Confinement 

n  Edynamic, 

MMpsi 

 n  E_dynamic, 

MMpsi 

E_static* 

MMpsi 

n  Edynamic, 

MMpsi 

 

1 0.25 14.20 - 0.26 15.21 12.3 0.26 15.61 - 

2 0.29 13.66 - 0.31 14.27 11.5 0.30 14.91 - 

3 0.30 12.88 - 0.32 13.44 10.8 0.30 14.07 - 

4 0.31 12.69 - 0.31 13.02 10.4 0.30 13.37 - 

5 0.30 11.11 - 0.30 11.92 9.5 0.31 12.70 - 

6 0.29 14.22 - 0.29 15.00 12.1 0.30 15.43 - 
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7 0.28 13.64 - 0.28 14.16 11.4 0.27 14.67 - 

8 0.19 15.46 - 0.20 16.32 13.2 0.21 16.50 - 

9 0.32 11.88  0.33 12.46 10.0 0.33 12.54  

10 0.27 14.07  0.26 14.93 12.0 0.26 15.02  

11 0.27 14.42  0.26 14.90 12.0 0.25 15.21  

12 0.27 14.57  0.26 15.05 12.1 0.26 15.37  

13 0.22 16.46  0.18 17.96 14.6 0.15 19.75  

Also shown for a 2000-psi confining pressure is the calculated static Young’s Modulus derived 

from the Britt Rock Mechanics Laboratory Correlation first published in 2009. This correlation, 

shown as Equation 1, has a correlation: 

Estatic = 0.835×Edynamic - 0.424                   (1) 

coefficient, R2, of 0.714 and includes hundreds of samples of sands, shales, and carbonates from 

around the world. 

Figure 5 shows a plot comparing the Dynamic Young’s Modulus from the ultrasonic tests to the 

Static Young’s Modulus derived from the above correlation at 2000 psi confining pressure for all 

samples. Core Set 1 samples are in green and Core Set 2 samples are in red. As shown, the dynamic 

Young’s Modulus and the correlated static Young’s Modulus are quite high; however, they are 

consistent with other dolomites that have been tested in the Clearfork of the Permian Basin and 

the Potosi and Bonne Terre Formation dolomites of Southwestern Missouri. Appendix C details 

the testing procedures, ultrasonic velocity tests, and interpretation. 

In addition to geomechanical testing, a series of tests were conducted to evaluate whether an 

unpropped hydraulic fracture could retain conductivity in the Paddock Formation. Residual 

fracture width has been observed both in the laboratory and in field experiments. Surface asperities 

or roughness at the fracture face may account for this residual width. A laboratory study by 

Schlumberger investigated this aspect of treated water fracture stimulations. Their results showed 

that an un-propped induced fracture under effective confining pressure conditions in excess of 

what is anticipated in the Paddock Formation could be expected to have some fracture 

conductivity. Their work further showed that fracture displacement and surface asperities were 

required to provide adequate fracture conductivity in the absence of proppants and suggested that 

high-strength proppants and higher, more conventional, concentrations of proppant were required 

to mitigate the need for the fracture displacement and surface asperities effect on fracture 

conductivity. 
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Figure 6: Britt Rock Mechanics Laboratory Test Apparatus 
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Figure 7: Test Cell Head with Piston and Inlet Ports

 

Figure 8: Test Cell Head with Piston and Inlet Ports 

One un-propped crack test (Core Set 2, ID 11-2600.20 feet) from the Paddock Formation was 

conducted. To conduct this work, a core plug was cracked lengthwise with a masonry rock splitter 

to emulate a hydraulically created fracture. Sample ID 11 was chosen for this test because it had a 

nearly through-going natural fissure and split easily. Next, the cracked core plug was placed in 

Britt Rock Mechanics Laboratory “built for purpose” laboratory equipment, and confining 

pressure was applied. Figure 6 shows a picture of the equipment that was built and used in this 

study. This equipment consists of a test cell that can handle confining pressures from 0 to 10,000 
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psi and temperatures up to 300oF. A piston head is used to apply confining pressure and includes 

inlet electronic and flow ports. In the induced crack testing, the piston is actuated to apply 

confining pressure and emulate flow and shut-in conditions. While confined at pressure and 

temperature, flow is established through the inlet ports, and the permeability of the core and 

induced crack is measured. Figure 7 displays the head of the test cell. Shown in this figure is the 

piston head for applying confining pressure and inlet electronic and flow ports. During this study, 

effective confining pressures up to 1250 psi were applied to emulate the likely possible field 

conditions of the Formation. 

Outlet flow ports exist both in the core direction perpendicular to the core as shown in Figure 8. 

In this study, we attempted to measure the retained permeability of the core in the direction of the 

induced crack as a function of confining pressure. A retained experiment was performed with the 

core plug prepared as described in the previous paragraphs. The test was designed to determine 

the retained permeability of the core while flowing wet nitrogen as the confining pressure was 

increased to 1250 psi and maintained for a couple of days. Results of the testing (Figure 9) show 

that the retained permeability measured at 100 psi (Step 1) was 62.1 md while the retained 

permeability as the confining pressure was increased 1.89-fold while being confined at 1250 psi 

for two days.  

 

Figure 9: The Effect of Stress on Wet Nitrogen Injection (2156.23 meters) 

Any formation can be a viable water frac target, but some lend themselves to the use of treated 

water as a fracturing fluid better than others. Low permeability naturally fissured formations, for 

example, make excellent water-frac candidates. This is because water-frac stimulations differ from 

more conventional gelled fracture stimulations as water is a cleaner fluid than conventional gels 

and does little damage to any natural fissures present and water is a poor fluid for transport of the 

proppant within the fracture. This latter issue (poor transport fluid) is the basis for our water-frac 

designs. The resulting fracture after a water-frac has two distinct components as shown in Figure 

29. The first part of the fracture is the bottom of the fracture where all of the proppant settles during 

the treatment. The second part of the fracture is the upper part which has little or no proppant as it 

has all settled to the bottom of the fracture. Figure 10 shows a schematic of a water-frac where 
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forty percent of the fracture is filled with proppant and sixty percent of the fracture is unpropped. 

Reservoir simulations of such a fracture provide the basis of design for a water-frac treatment. 

 

Figure 10: Schematic of a water-frac 

These simulations showed that a water-frac stimulation will perform as a fully propped fracture 

provided the ratio of the un-propped conductivity of the fracture to the product of the reservoir 

permeability and the height of the un-propped part of the fracture is in excess of 2. If this ratio is 

less than a value of 2 it indicates that the retained conductivity of the un-propped part of the fracture 

is too small for the reservoir permeability and un-propped fracture height. In this scenario, the only 

thing that can be done to improve the situation is to reduce the un-propped fracture height by 

pumping more proppant and filling up more of the fracture. Results of the crack testing indicate 

that the un-propped conductivity of the fracture in the Paddock Formation is significant and that 

the Paddock Formation can support tens of feet of un-propped fracture (assuming the reservoir 

permeability is less than 0.10 md for leak-off considerations).  

In addition to the geomechanical testing, a fluid sensitivity test was conducted to evaluate whether 

fluid sensitivity or damage is important to the hydraulic fracturing of the Paddock Formation. The 

test included conducting a KCl sensitivity test utilizing BRML’s built-for-purpose equipment. This 

laboratory investigation consisted of loading a test cell with a core sample and then saturating the 

core sample with 6% KCl, 4% KCl, and 2% KCl while measuring the permeability and the 

cumulative fluid injected.  The confining pressure of the cell during the testing was maintained at 

1250 psi and the retained permeability was measured until stabilized for each KCl concentration. 

The test consisted of using a fissured core sample from 2,509.75 feet injected and decreased to 7.3 

md as the core was saturated with 6% KCl. The retained permeability for the 4% KCl and 2% KCl 

saturated core decreased to 5.1 md and 4.4 md, respectively. Such a small reduction in permeability 

is insignificant damage given the fluid dynamics of the test and the fact that the permeability was 
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being measured through a crack in the core. Appendix E details the testing procedures, raw data, 

and interpretive plots. 

In addition to the geomechanical testing, a test was conducted to evaluate whether embedment is 

(Core Set 1, ID-7) to determine the potential for fluid damage in the Paddock Formation. Figure 

11 shows a plot of the retained permeability as a function of KCl concentration for the core sample. 

Analysis of this figure shows that the initial permeability was 39.1 md as 6% KCl was important 

to the hydraulic fracturing of the Paddock Formation. 

 

The test included conducting an embedment test utilizing BRML’s built-for-purpose equipment. 

Figure 12 shows a schematic of the embedment testing procedure. This laboratory investigation 

consisted of loading a test cell with the formation core cut in half and filled with a quarter inch of 

40/70 mesh (d = 0.01462 inches) Carbo-Ceramic proppant. The confining pressure of the cell was 

then increased incrementally from 100 to 3,000 psi with the confining pressure stabilized at each 

pressure.  

After each increase in confining pressure, the sample/cell dimensions were measured and 

documented. These dimensions were then evaluated to establish a relationship between 

embedment and proppant stress. The test consisted of using the sample from 2,509.75 meters (Core 

Set 1, ID 7) to determine the potential for proppant embedment in this shale formation. 
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Figure 12 shows a plot of the embedment versus proppant stress data generated for the core sample 

and the 40/70 mesh Carbo-Lite proppant. As shown, the embedment increased nearly linearly with 

proppant stress from 1500 to 3000 psi at which point the test ended. Based on this analysis, an 

estimate of the proppant embedment, 0.068 lbs/ft² (58.1% of a grain diameter) at 3000 psi was 

determined. Further analysis of the data from Figure 32 shows a best-fit line through the data 

resulting in a correlation coefficient, R², of 0.9757. The correlation is shown in Equation 2: 

y = 106 x - 6741.4                (2) 

 

To determine the maximum stress on the proppant, utilize Equation 3. 

 

As shown, the stress the proppant sees depends on the overburden stress, POB, the reservoir 

pressure, Pres, the bottomhole pressure in the fracture, Pf, the ability of the vertical stress to be 

transmitted in the horizontal direction (related to Poisson’s Ratio, n), and the tectonic stress, T. A 

few observations can be made by reviewing this equation.  

First, as the reservoir pressure is depleted, the stress on the proppant decreases. Secondly, as the 

well is drawn down, the stress on the proppant will increase. Finally, since the pressure in the 

fracture increases away from the wellbore (i.e. assumes finite conductivity fracture), for 

conventional fracturing the maximum stress on the proppant will be seen early in the well life at 

the wellbore. 

 In fact, it can be shown that the maximum stress on the proppant will occur at hydrocarbon 

breakthrough during the well cleanup unless the flowing bottom-hole pressure is rigorously 

controlled. 

However, proppant embedment is not an issue in the Paddock Formation as this dolomite only has 

a total embedment at 3,000 psi which is only one-third that seen for the average formation 

(approximately 0.200 lbs/ft2). Obviously, this formation is brittle enough to support hydraulic 

fracturing with treated water. 
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4. SMART MICROCHIP PROPPANT: DESIGN, DEVELOPMENT, LAB TESTING, 

AND VERIFICATION FOR THE FIELD TRIAL 

4.1  Summary 

Fracture mapping is essential in hydraulic fracturing and finds applications in the oil and gas 

industry. Mapping of fractures using traditional radioactive or micro-seismic methods involves 

contamination and is prone to being inaccurate, thereby reducing the yield in fracturing 

applications. Therefore, wireless sensor networks (WSNs) with each sensing node having a small 

form factor and low power consumption are currently being investigated for use in such 

applications. This article presents a fully battery-less system of coherent sensing nodes using 

wireless energy harvesting. These nodes are capable of mapping fractures reliably at temperatures 

up to 250oC and pressures up to 24 MPa.   

Each node comprises a microchip having dimensions of 1.1 mm × 0.56 mm, two coils of 8 mm 

diameter each, and resonating capacitors. The microchip was fabricated in the Taiwan 

Semiconductor Manufacturing Company (TSMC) 0.18 µm process. The node receives a 40.68 

MHz radio frequency (RF) signal in the industrial, scientific, and medical applications (ISM) 

band and transmits back a locked subharmonic 13.56 MHz ISM band RF signal. 

The subharmonic signal is generated on-chip using a digital divide-by-3 circuit, drastically 

reducing the microchip power consumption compared with injection-locked oscillators or phase-

locked loops (PLLs). The sensor nodes used in the system have a form factor of 17 mm × 12 mm 

× 0.2 mm and a minimum average power consumption of 1.5 µW. 

Index Terms – Battery-less, coherent, complementary metal–oxide–semiconductor (CMOS), 

energy harvesting, fracture mapping, high temperature, hydraulic fracturing, sensing nodes, 

wireless, wireless sensor network (WSN). 

4.2  Introduction 

IRELESS sensor networks (WSNs) have become increasingly popular in recent years for use 

in various applications [1], [2], [3]. These networks include many spatially scattered sensor 

nodes, each of which senses some information from its environment, processes it, and 

transmits the processed data back to another node or a base station. WSNs can be battery-

powered or wirelessly powered. Since wirelessly powered WSNs harvest energy from the 

environment, they do not have to encounter issues regarding the replacement or recharging of 

batteries.  

Therefore, they provide significant advantages for sensing in regions that are remote or 

inaccessible. In addition, WSNs have the advantage of scalability, which enables the convenient 

addition or removal of nodes to/from the network. Since WSNs are mostly used in applications 

where powering them is inconvenient, the major constraint affecting the design of these nodes is 

low power consumption. 

Among the many applications where WSNs can be used, hydraulic fracturing is essential for its 

widespread use in the energy industry, especially the oil and gas industry. Hydraulic fracturing 
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has been used to increase the flow rate of oil and natural gas in oilfields [4]. Extensive knowledge 

about the location and orientation of the fractures is required to increase production efficiency 

inside these oilfields [5]. Traditionally, fractures have been mapped using techniques, such 

as radionuclide monitoring, where radioactive tracers are injected into the fractures along with the 

propellant fluid [6]. However, these techniques are prone to high contamination risks if 

parameters, such as the amount, toxicity, and half-life of the tracers, are not strictly controlled.  

More advanced applications use microseismic mapping, which includes monitoring the seismic 

activities along the fractures and is similar to seismology [7], [8], [9]. However, there 

is not enough understanding of the seismological processes inside the fractures. Moreover, 

they suffer from coherent noise within the band of seismic recordings. These shortcomings prompt 

us to look into wirelessly powered WSNs having a small form factor and low power consumption 

as a cleaner, newer, and more power-efficient technique for fracture mapping.  

Fig. 14 shows a conceptual representation of fracture mapping using WSNs. Advancements in 

semiconductor technology have made it possible to reduce the size of microchips rapidly, 

therefore reducing the size of these sensing nodes. Currently, the size of these nodes is 

dominated by the size of the passive components, which include the off-chip resistors, 

capacitors, and coils or antennas. In applications, such as fracture mapping in oil and gas fields, 

the signals received and transmitted by the node should be able to penetrate the intervening 

medium between the transmitter (TX) and the node.  

The requirements for penetration depth restrict the frequencies of signals that can be used 

below hundreds of megahertz. At these frequencies, reducing the form factor to a few 

millimeters entails the usage of an electrically small antenna or inductive coupling between coils 

in which the coil on the node is much smaller than the TX or receiver (RX) coil. These constraints 

reduce the efficiency of wireless powering links and, therefore, the harvested power for the 

microchip [10], [11], ultimately leading to a constraint on the power consumption of the 

microchip while still using it for extremely complex sensing and wireless communication 

applications. 

Previous systems for fracture mapping have primarily focused on using nanoparticles 

and their responses to electromagnetic or acoustic waves inside fractures. Aderibigbe et al. [12], 

[13] use paramagnetic nanoparticles for the detection of fractures using susceptibility 

measurements at different locations. Sun [14] used a nanofluid and the convection and diffusion 

processes that affect it, while Liu et al. [15] measured the magnetic anomaly responses due to 

the injection of magnetic proppant.  

However, for small fractures, the changes in magnetic susceptibility and fields are weak in the 

presence and absence of fractures, reducing the accuracy of fracture mapping. To the best of our 

knowledge, Al-Shehri et al. [16], [17] are the only works in the literature to date that use WSNs 

for fracture mapping through a technology called FracBots (Fracture Robots). These FracBots use 

off-the-shelf components and near-field communication and are placed inside fractures to receive 

and transmit signals. However, these nodes have a large size, large coils for the RX and TX, and 

use milliwatt-level power. 
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Figure 14: Conceptual representation of fracture mapping using WSNs. 

In recent years, hydraulic fracturing has been undertaken in high-temperature rock formations 

for applications, such as obtaining natural gas from unconventional reservoirs [18]. 

These reservoirs are often located at large depths inside the surface at temperatures close to 

250oC and pressures close to 7 MPa. Ensuring the functionality of the system at high 

temperatures and pressures is, therefore, an essential part of using WSNs for fracture 

mapping. Mobility variation, threshold voltage reduction, and junction leakage currents are the 

major factors affecting the use of standard silicon complementary metal–oxide–semiconductor 

(CMOS) processes at high temperatures.  

Therefore, silicon carbide (SiC), silicon-on-insulator (SOI), and other III–V semiconductors were 

conventionally considered the materials of choice for designing microchips at such temperatures 

[19], [20], [21]. Scaling of CMOS process nodes has resulted in an increase in doping 

concentration, resulting in lower junction leakage current at high temperatures. However, scaling 

also results in a lower value of threshold voltage, leading to more channel leakage. Since the 

junction leakage dominates at high temperatures, standard silicon CMOS processes have been 

recently used for high-temperature applications in fields, such as aerospace, automobile, and 

deep-well drilling [22], [23], [24]. 

This work presents a wirelessly powered system of coherently transmitting sensor nodes having 

a small form factor, low measurement latency, and ultralow power consumption. These nodes use 

the received 40.68 MHz radio frequency (RF) signal to transmit back a subharmonic 13.56 MHz 
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RF signal, therefore aggressively minimizing power consumption in comparison with the 

traditionally used transmitting techniques, such as oscillators or phase-locked loops (PLLs).  

The amplitude of the received signal can be used to detect the location of the node. These nodes 

are experimentally verified to transmit power coherently, enabling their use in WSNs. The nodes 

were also used for fracture mapping applications using a prototype in both one and two 

dimensions. Moreover, these nodes are verified to transmit back power at temperatures up to 

250 ◦C and pressures up to 24 MPa. Therefore, they are viable to be used for fracture mapping 

at high temperatures and pressures in oil and gas fields for applications, such as hydraulic 

fracturing. 

4.3 Smart Microchips Proppants Technical Specifications and System Details 

The proposed system for fracture mapping includes several printed circuit boards (PCBs) 

fabricated on FR4 or flexible polyimide substrates acting as nodes for receiving and transmitting 

RF signals. These PCBs are hereafter referred to as localizers in the rest of this article. Fig. 

15 illustrates the localizer and annotates its dimensions.  

 

Each localizer consists of a microchip and two identical coils. The RF power transmitted by 

the TX coil is received by the on-PCB downlink (DL) coil, while the RF power is transmitted 

from the microchip using the on-PCB uplink (UL) coil, which is received by the RX coil. 

Capacitors of values 16.8 and 160 pF are connected in parallel to the DL and UL coils, 

respectively. This causes the DL and UL coils to resonate at 40.68 and 13.56 MHz, respectively, 

improving the received and transmitted power at these desired frequencies. 

 

The diameter of the DL and UL coils is limited to 8 mm to minimize the form factor of the 

entire system. Since the inductance of coils of such dimensions is very low: 1) the trace widths of 

these coils are minimized; 2) the number of turns is maximized; and 3) the thickness of the 

substrate is reduced to obtain the maximum possible value of inductance. A larger inductance 

improves the link efficiency for wireless power transfer (WPT) by increasing the mutual 

inductance between two coils. Therefore, these coils are fabricated on a 0.2 mm-thick two-layer 

FR4 substrate with six turns on each layer.  

 

Since these coils have a small size, the parasitic inductance of connectors is comparable to 

the coil inductance, making it unfeasible to measure their S-parameters or inductance using 

commercially available equipment, such as a vector network analyzer (VNA) [25], [26].  

 

Figure 16 (a) – (c) shows the simulated real part of Z11, inductance, and quality factor of these 

coils using Ansys HFSS, respectively. It can be observed that these coils have a self-resonant 

frequency (SRF) of 100.74 MHz, an inductance of 0.96 µH, and quality factors of 63.77 and 

48.59 at our desired frequencies of 40.68 and 13.56 MHz, respectively. Since these coils are 

connected to high-impedance nodes, they are not matched to 50 Q for maximum power transfer. 
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Figure 15: Localizer image with size compared with a nickel. 

 

Figure 16:  Simulated (a) re(Z11), (b) inductance, and (c) quality factor of the localizer coil. 
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The TX and RX coils are designed to be large enough to transmit and receive a sufficient 

amount of power to and from the localizer, respectively. Therefore, the TX coil has a diameter 

of 3.5 cm, while the RX coil has a diameter of 4.5 cm. Both these coils are fabricated on a 1.6 

mm-thick two-layer FR4 substrate. The TX coil has three turns, while the RX coil has six turns on 

each layer. The performance of these coils was measured using a Keysight N5230C PNA-L 

Network Analyzer. Figs. 17 (a)–(c) and 18 (a)–(c) show the measured real part of Z11, inductance, 

and quality factor of the TX and RX coils, respectively.  

 

Figure 17: (a) TX coil and its measured (b) re(Z11), (c) inductance, and (d) quality factor. 
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Figure 18: (a) RX coil and its measured (b) re(Z11), (c) inductance, and (d) quality factor. 

It can be observed that the TX coil has an SRF of 59.08 MHz, an inductance of 1.91 µH, and 

a quality factor of 56.83 at 40.68 MHz, while the RX coil has an SRF of 17.95 MHz, an 

inductance of 12.5 µH, and a quality factor of 26.99 at 13.56 MHz. The TX and RX coils 

are matched to 50 Q for maximum power transfer. Fig. 19 (a) and (b) show the measured 

magnitude of S11 for the matched TX and RX coils, respectively. Simulations were done in Ansys 

HFSS to estimate the path loss between the TX and localizer coils. Fig. 20 shows a simulated 

path loss of −43.765 dB at a separation of 6 cm. 
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Figure 19: Measured |S11| for matched (a) TX and (b) RX coils. 

 

Figure 20: Simulated path loss between TX coil and localizer coil at a separation of 6 cm. 
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The microchip includes a full-wave rectifier, a diode limiter, and a digital divide-by-3 circuit. 

The block diagram of the localizer, including the microchip, is shown in Fig. 21.  

 

Figure 21: Localizer architecture. 

A passive one-stage cross-coupled topology is chosen for the rectifier, as shown in Fig. 22.  

 

Figure 22: Rectifier schematic. 
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Cross-coupled rectifiers have been shown to have higher power conversion efficiency (PCE) than 

other topologies [26], [27], [28], improving the link efficiency of the system. Coupling capacitors 

of 6 pF are used for the rectifier to pass the differential input signal with less than 1% 

attenuation. The transistors are sized to have maximum efficiency. A 1.8-nF on-chip storage 

capacitor (Cp) is used to reduce the ripple at the output of the rectifier.  

The diode limiter limits the output voltage of the rectifier to 3.8 V, providing over-voltage 

protection to the microchip. The output voltage of the rectifier VR works as a supply voltage for the 

digital divide-by-3 circuit, which divides the frequency of the received RF power signal by 3. It 

includes a mod-3 counter and D flip-flops with an asynchronous set–reset operation.  

The divide-by-3 ensures subharmonic locking of the frequency of the received RF signal to that of 

the transmitted signal. The divide-by-3 circuit has an extremely low power consumption of 1.5 

µW for the lowest amplitude of the RF input signal, for which it generates a measurable output. 

Since multiple localizers placed at different locations transmit signals back to the RX coil, 

it is imperative to synchronize the frequency and phase of the signals received from different 

localizers, so that they can constructively add up at the RX. Conventionally, this has been done 

using oscillators in PLLs as TXs [29].  

However, PLLs have the drawbacks of using an off-chip crystal oscillator for precise reference 

frequency generation. Moreover, PLLs are extremely power-hungry and, therefore, unsuitable for 

wireless powering applications. Another feasible way to do this is by using injection-locked power 

oscillators such as TXs [30], [31], [32].  

However, these oscillators consume static power and have a limited locking range, which 

decreases with an increase in the quality factor of inductors, requiring a higher amplitude of 

injection RF signal for certain applications. For our application, the phase differences between 

different localizers can be neglected, since the operating range is lesser than the wavelength at the 

operating frequency by at least an order of magnitude.  

The divide-by-3 circuit does not consume static power and does not require the generation of an 

injection RF signal. Moreover, the frequency of the transmitted signal is always locked to the 

frequency of the received signal, enabling the use of the entire bandwidth allowed by the industrial, 

scientific, and medical applications (ISM) band. 

The PCE of the rectifier and the peak-to-peak values of the divider output are simulated. 

Fig. 23 (a) and (b) show the PCE of the rectifier and peak-to-peak divider output voltage 

versus input power for one, two, three, and four-stage rectifiers, respectively. Reducing the 

sensitivity and increasing the transmitted power is paramount for increasing the operating range 

of the system. The sensitivity of the system is determined by that of the rectifier and the divider. 

The sensitivity of the rectifier is defined as the minimum input power for which it generates a 

supply voltage that is large enough for the divider. The sensitivity of the divider, on the other 

hand, is defined as the minimum input power for which it generates a detectable peak-to-peak 

output. From Fig. 23, it is observed that reducing the number of stages in the rectifier increases 

the sensitivity of both the rectifier and the divider. Increasing the number of stages generates a 
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larger supply voltage and, therefore, more transmitted power but reduces the sensitivity. Since a 

much larger RF power is required to power the microchip than detect the transmitted power, 

sensitivity dominates over transmitted power. Therefore, only one stage is used for the rectifier. 

 

Figure 23: Simulated (a) rectifier efficiency and (b) peak-to-peak divider output voltage versus 

input power for one, two, three, and four-stage rectifiers. One-stage rectifier shows the best 

sensitivity. 
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4.4 Laboratory Testing of Smart MicroChipsfor for Fracture Mapping Under High 

Pressure and High Temperature  

The annotated die micrograph of the microchip having the dimensions of 1.1 mm × 0.56 mm is 

shown in Fig. 24. The microchip was fabricated using the Taiwan Semiconductor Manufacturing 

Company (TSMC) 0.18 µm process. A signal generator (HP 8340B) generates the RF signal used 

for powering the microchips. The RF power of the signal was increased by connecting the 

output of the signal generator to a power amplifier (PA) (Minicircuits ZHL−20W−13+) having 

a small signal gain of 50 dB and a saturated output power of 20 W, increasing the operating 

range of the system. 

 

Figure 24: Die micrograph. 

A spectrum analyzer (Tektronix RSA 306B) is used to measure the magnitude of the received RF 

signal. The following sections 4.4.1 to 4.4.6 report all the measurements performed in the lab 

using the localizers. 

4.4.1 Energy Harvesting Verification 

For this measurement, the input terminals of the rectifier are wired to the RF signal generator to 

generate an RF signal at 40.68 MHz, and the dc output of the rectifier is measured using an 

oscilloscope. Fig. 25 shows the rectifier output voltages for different root mean square (rms) input 

voltages. It is observed that the rectifier generates sufficient dc voltage to power the microchip at 

input rms voltages above 0.8 V. 
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Figure 25: Measured rectifier voltage with respect to input rms voltage. 

4.4.2 Microchip Functionality Verification 

The measurement setup used for verifying the functionality of the microchip is illustrated in Fig. 

26. The maximum operating range of the system is determined using the largest amplitude of 

RF signal available in the laboratory.  

 

Figure 26: Measurement setup used for chip functionality verification. 



 

47 
 

Using the RF signal generator, a 40.68 MHz RF signal with −14 dBm power is delivered 

to the PA with a small signal gain of 50 dB. Therefore, an RF power of 36 dBm is delivered to 

the TX coil. The RX coil is connected to the spectrum analyzer for detecting the received power 

from the localizer. Keeping the RX coil very close to the localizer, the distance between the 

localizer and the TX coil is increased until the received 13.56 MHz tone merges with the 

noise floor of the spectrum analyzer. It is observed that the localizer can be wirelessly powered 

at a maximum distance of 6 cm between the localizer and the TX coil with 36 dBm power. 

Increasing the TX power would increase this maximum distance. Keeping the distance between 

the localizer and the TX coil fixed at 6 cm, the distance between the localizer and the RX coil 

is then increased until the received 13.56 MHz tone merges with the noise floor of the 

spectrum analyzer. It is observed that the RF signal transmitted from the localizer can be 

received by the RX coil at a maximum distance of 32.8 cm from it. While performing this 

measurement, since the received signal frequency was locked to that of the transmitted signal, 

the span and resolution bandwidth of the spectrum analyzer could be reduced, helping in 

lowering its noise floor. Fig. 27 shows the received 13.56 MHz tone having −118.15 dBm power 

at 6 and 32.8 cm distance between the localizer and TX and RX coil, respectively. 

 

Figure 27: Received signal spectrum at the maximum operating range. 

Using the same setup, the received power is recorded for different separations between the 

following: 1) the TX coil and the localizer DL coil and 2) the RX coil and the localizer UL coil. 

For each separation distance between the TX coil and the localizer DL coil, the lowest TX power 

required to power the microchip is used to maintain uniformity in the received power for different 

distances. Fig. 28 illustrates the contour plot of the received power profiles across different 

separations. 
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Figure 28: Received 13.56 MHz signal power in dBm across different separations between the 

TX coil and the localizer DL coil, and the RX coil and the localizer UL coil. 

 Two paper protractors are added around the TX and RX coils, as illustrated in Fig. 29, and the 

TX and RX coils are rotated to measure the power profiles at different angular orientations to the 

localizer. For the purpose of this experiment, a separation of 5.5 cm is used between the TX coil 

and the localizer, while a separation of 12 cm is used between the RX coil and the localizer.  

 

 

 

Figure 29: Measurement setup used for obtaining the received power profile with respect to 

different angular orientations of the TX and RX coils. 
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Fig. 30 illustrates the contour plot of the received power profiles across different angular 

orientations. It can be observed that the system is robust to angular misalignments of up to 60o 

between the TX coil and the localizer and up to 80o between the RX coil and the localizer. 
 
 

 

Figure 30: Received 13.56 MHz signal power in dBm across different angular orientations of 

the TX and RX coils. 

As shown in Fig. 20, a path loss of −43.765 dB is expected between the TX coil and the 

localizer coil at a distance of 6 cm. From Fig. 19, the TX and RX coils have an |S11| of less than 

−20 dB at the desired frequencies. Therefore, the loss due to matching the TX and RX coils 

can be considered negligible. For a TX power of 36 dBm, de-embedding the path loss gives us 

a power of −7.765 dBm at the localizer coil. From the sensitivity simulations illustrated in 

Fig. 23, a minimum power of around −20 dBm is required at the input of the rectifier to obtain 

a measurable 13.56 MHz tone at the output. The rest of the losses can, therefore, be attributed 

to the imperfect matching of the impedance of the localizer coil to the dynamic input impedance 

of the rectifier. 

4.4.3 Coherent Power Combining Verification 

The measurement setup used for verifying the coherent power combining of RF signals 

transmitted by different localizers is illustrated in Fig. 31. A 40.68 MHz TX power signal of 
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−14 dBm is amplified to 36 dBm using the PA as in the previous measurement. In three 

different measurements, one, two, and three localizers are placed close to each other on a 

surface, such that they can be wirelessly powered by the same TX coil. The TX and RX coils 

are placed at a distance of 6 and 10 cm, respectively, from the localizers to transmit and 

receive RF signals from them. A spectrum analyzer (Tektronix RSA 306B) is connected to 

the RX coil to measure the power received from the localizers.  

 

 
Figure 31: (a) Schematic and (b) picture of the coherent power combining measurement setup. 
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Figure 32: Received power from (a) one, (b) two, and (c) three localizers. 

Fig. 32 (a)–(c) shows the power received at 13.56 MHz from one, two, and three localizers, 

respectively. It is observed that the power received from two and three localizers (around 2 

and 3 pW, respectively) is almost equal to twice and thrice that received from one localizer 

(around 1 pW), which verifies the fact that the signals transmitted by the localizers add up 

coherently. 

4.4.4 Fracture Mapping Verification 

The measurement setup for fracture mapping is illustrated in Fig. 33. For this study, a prototype 

rock with fractures along its height was designed, and multiple prototypes were 3D-printed to 

test the functionality of smart microchips for fracture mapping in the lab, simulating hydraulic 

fractures typically found in oil and gas wells. The details of the design and generation of these 

synthetic core samples with complex fractures are provided in Appendix F. 

 

The localizers are coated with nonconductive epoxy and are placed inside the fractures that are 

to be mapped. The distances of the TX and RX coils from the fractures are similar to the 

previous measurements. Using motorized rails in the X – and Y -directions, the TX and RX 

coils are moved over the entire region that is desired to be mapped. The presence or absence 

of a fracture at a specific coordinate is determined by the presence or the absence of a 13.56 

MHz tone in the received signal. 

 

A spectrum analyzer is connected to the RX coil to record the spectrum at different coordinates, 

which is, in turn, connected to a laptop for data processing using MATLAB. The fractures are 



 

52 
 

mapped in the X - and Y -directions separately with a resolution of 1 mm in both X - and Y -

directions.  

 

 
Figure 33: Fracture mapping setup. 

 

Fig. 34 illustrates the fracture mapping results for the Y-Y-direction, while Fig. 35 illustrates 

the same for the X -X-direction. Fig. 23 illustrates the 2-D fracture mapping results. It is 

observed that the fractures are mapped with considerable accuracy using the localizers. 

 
Figure 34: 1-D fracture mapping results for the y-direction. The red box indicates the region 

that was mapped by smart Microchips that are placed in the fractures (3D printed cores with 

fractures). 
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Figure 35: 1-D fracture mapping results for the x-direction. The red box indicates the region 

that was mapped by smart Microchips that are placed in the fractures (3D printed cores with 

fractures). 

 

 

Figure 36: 2-D fracture mapping results by smart Microchips that are placed in the fractures 

(3D printed cores with fractures). 

4.4.5 High-Temperature Verification 

The functionality of the localizers is also verified at high temperatures. The schematic and 

picture of the measurement setup for the high-temperature measurements are shown in Fig. 37 

(a) and (b), respectively. In this measurement, the localizer is placed inside a microwave 
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oven. The RF signal generator and PA are used to generate a 36 dBm 40.68 MHz power signal 

as in the previous measurements. It is observed that at the previously measured maximum 

distance of 6 cm between the TX coil and the localizer, the rectifier does not generate 

enough dc voltage for the proper functioning of the microchip at higher temperatures. The 

TX coil is, therefore, positioned at a distance of 2 cm from the localizer inside the oven, so 

that the microchip can be powered at all temperatures in the range of our measurements. The 

RX coil is connected to the spectrum analyzer and placed at a distance of 10 cm from the 

localizer. The temperature inside the oven is increased using the knob on the oven. The oven 

temperature is measured by an oven thermometer (Admetior Kitchen Oven Thermometer). 

 

 

Figure 37: (a) Schematic and (b) picture of the measurement setup for verification at high 
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temperatures. 

Fig. 38 shows the received signal power from the localizer at temperatures from 20 ◦C to 250 
◦C. 

 
Figure 38: Received signal power at temperatures from 20 °C to 250 °C. 

 

4.4.6 High-Pressure Verification 

The localizers are also verified to work under high-pressure conditions using a concrete 

compression sensing machine. Wet cement is placed inside three different cube-shaped molds 

and allowed to cure for 24 hrs.  

While pouring the wet cement into the molds, one localizer is placed in each mold at a depth 

of 1 cm from the bottom. Each cube with a localizer embedded in it is then placed in the 

compression sensing machine, and a compressive force is applied using the cylindrical pistons 

from the top and bottom. The high-pressure measurement setup is illustrated in Fig. 39.  

The RF signal generator and the PA are used to generate a 36 dBm 40.68 MHz power 

signal as in the previous measurements. Due to the metallic nature of the compression sensing 

machine, the distance of the TX and RX coils from the localizer is reduced, such that the 

localizer can be powered.  

The applied compressive pressure is slowly increased until the cement cubes fracture. The three 

cubes fracture at pressures of 8.53 MPa (1237 psi), 24.06 MPa (3490 psi), and 18.40 MPa (2669 

psi), respectively. 



 

56 
 

 
Figure 39: Measurement setup for verification at high pressures. The entire setup is inside a 

compression sensing machine. 

 

Fig. 40 (a) shows the second cube after it fractures. The received 13.56-MHz tone from the 

localizer is still observed even at the highest of these pressures (3490 psi). Fig. 40 (b) shows the 

received signal from the second localizer when the second cube fractures at 24-MPa pressure. 
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Figure 40: (a) Second cube after it fractures at 24 MPa. (b) Received signal from the second 

localizer when the second cube fractures. 
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Please note that the verification of MicroChips' functionality under high pressure was conducted 

without epoxy protection. These tests were performed with chips embedded in cement under 

compressive forces. With proper epoxy protection during field testing, the chips are expected to 

withstand pressures of up to 10,000 psi. 

 In this series of lab testing and verification, a wirelessly powered Smart MicroChip proppants 

sensing system of coherent sensing nodes has been presented and proposed for use in fracture 

mapping applications at high temperatures. A power-efficient scheme using the RF power signal 

and a digital divide-by-3 circuit has been used to generate a locked subharmonic signal to be 

transmitted by the microchip. This enables an average power consumption of only 1.5 µW for the 

system. The system has also been verified to work reliably at temperatures up to 250oC and 

pressures up to 24 MPa, which are one of the highest using a standard CMOS process. The 

system, having a small form factor and ultra-low power consumption, also finds use in other 

sensing and localization applications using WSNs. 

4.5  Smart Microchip Proppants Manufacturing and Production for Field Testing 

We successfully demonstrated the effectiveness of wireless localizers for fracture mapping in 

laboratory conditions. The wireless nodes consist of a sensing chip wire-bonded onto a 

miniaturized printed circuit board (PCB). The chip, fabricated using standard 180 nm technology, 

receives power at 40.68 MHz (RX) and transmits signals back at 13.56 MHz (TX). Both frequency 

bands are from the ISM bands. These nodes can reliably map fractures at temperatures up to 250°C 

and pressures up to 24 MPa and have an average power consumption of 1.5µW [30]. 

For the field testing of Smart MicroChips proppant technology, we have developed several 

different versions for this project. One of the versions utilizes two side-by-side coils with 

dimensions of 17 mm x 12 mm x 0.2 mm. Another version has dimensions of 9 mm x 12 mm x 

1.6 mm and features a surface for powering and a surface-mount device inductor (SMDL) for 

transmitting signals (see Fig. 41). The second version offers orthogonal coupling directions for 

two frequencies, while the first version supports only one direction for RX and TX. 

 

Figure 41: Two versions of PCBs developed for fracture mapping 
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4.5.1 Resonance Frequency Tuning 

For our application, accurate frequency tuning of the samples is essential. We used a wide-

band coil and a vector network analyzer (VNA) to detect the precise resonance frequencies of 

our samples. Accurate and high-quality tuning is crucial for maximizing power transfer 

efficiency and operational distance. The results of the frequency tuning and component values 

for each sample are shown in Fig.42. 

 

Figure 42: VNA measurements for the resonance of the PCB coils 

4.5.2 Smart MicroChips Proppants PCB Mass Production 

Both PCBs were measured to be operational at a distance of 4 cm using 20 dBm (100 mW) 

of RF power. They can function with a misalignment of 45° and a distance of 3 cm. For 

validation measurements, we used a single double-tuned coil (refer to [31]) for both 

transferring 40.68 MHz power and reading back 13.56 MHz signals (see Fig. 43). Following 

initial validation, we ordered 200 samples of each version for manufacturing. The assembly 

is performed in-house. The mass-produced PCBs are shown in Fig.44. 



 

60 
 

 

Figure 43: Setup picture for sensing node validation 

 

Figure 44: Mass-produced PCBs 

4.5.2 Smart MicroChips Proppants PCB Packaging- Resin-protected 

In the end, it is crucial to protect the sensing nodes from heat and pressure with proper 

packaging. For the initial packaging, we are using UV-cured epoxy resin followed by a HPHT 

epoxy. 

The HPHT epoxy is resistant to acids, bases, and solvents. Once cured, it exhibits several 

desirable physical properties, including high modulus and exceptional compressive strength. 

It is a toughened system that can endure rigorous thermal cycling. The formulation includes 

a quartz filler, which enhances its dimensional stability and abrasion resistance. Additionally, 

the epoxy is a reliable electrical insulator and has a service temperature range from -60°F to 

+450°F. 

4.5.3 Additional Hardware and MicroChips Built During this Project  

In addition to the final design reported in the previous sections, the team has performed a series of 

experiments on a custom wirelessly powered chip with a new miniaturized antenna configuration. 

The antenna uses an SMD inductor for receiving the wireless power at 40.68MHz ISM band and 

transmitting back a signal at 1/3 of the received frequency (13.56GHz ISM band).  Figure 45 shows 

a picture of the pcb assembly. The chip dimensions are 5 mm X 15.5 mm X 1.6 mm, which is 

suitable for use in fractures that are up to 5 mm wide. This chip was designed to be sensitive to a 

magnetic field that is aligned to the longest dimension of the chip. This is suitable for fracs that 
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are orthogonal to the direction of the wellbore (and the downhole tool). Measurements were 

performed with a powering coil having a 5-cm diameter and matched at 40.68 MHz. 

 

Figure 45: SMD-based antennas used in prior proppant chips 

 We achieved a wireless powering distance of 35 mm by using 1W of transmit power. Figure 46 

shows the measurement setup.  

 

Figure 46: Measurement setup.  

Some other variations of the proppant chips were made as shown in Figures 7 and 8. The 

functionality of previously fabricated miniaturized 4-layer PCBs in which the RX coil was 

designed using the top two layers, and the TX coil was designed using the top two layers to reduce 

the form factor (Fig. 47), was successfully verified.  

 

Figure 47: Top and bottom view of the miniaturized 4-layer PCB. 
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Since the RX and TX coils in this version have the same design as in the old version of the PCB, 

significant changes in their operating range are not expected. Using this PCB, the microchip could 

be wirelessly powered at a maximum distance of 5 cm between the localizer and the transmitter 

(TX) coil with 36 dBm RF power at 40.68 MHz. The 13.56 MHz signal transmitted by the 

microchip could be received at a maximum distance of around 30 cm by the receiver (RX) coil. 

Fig. 48 depicts the 13.56 MHz tone having −118.15 dBm power obtained at the maximum 

operating range possible for wireless powering and transmission. Another version of the PCB 

having pre-assembled SMD capacitors for the RX and TX matching networks was also fabricated 

for convenience.  

 

Figure 48: Received signal spectrum at the maximum operating range. 

Further miniaturization of the PCBs was investigated using SMD inductors for wireless powering 

and transmission, which have a lower size than the planar on-PCB coil, as depicted in the next 

section. 

4.5.3.1 Miniaturization of the localizer PCB used for mapping fractures 

SMD inductors are currently being investigated for use in place of wireless powering coils to 

further reduce the form factor of the PCB. To determine the feasibility of the solution, two PCBs 

have been fabricated. In one of the PCBs (as shown in Fig. 49), only the TX coil is replaced by an 

SMD inductor. This is a 4-layer PCB in which the RX coil is fabricated using the top two layers. 
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This is an important intermediate step to study and de-embed the effect of the SMD inductor on 

the effectiveness and the operating range of the reception of the 13.56 MHz signal transmitted 

from the microchip. 

 

Figure 49: Top and bottom view of the new 4-layer PCB with only TX coil replaced by SMD 

inductor. 

 In the second PCB (as shown in Fig. 50), both the RX and TX coils are replaced by SMD 

inductors. This is now a 2-layer PCB since all the coils are replaced. This PCB demonstrates the 

final objective, which is to use SMD inductors for both wireless powering and transmission. The 

use of the SMD inductors also further reduces the form factor of the PCB to 8 mm X 10 mm X 1.6 

mm which is lower than the previous version. The vertical dimension (10 mm) can be further 

reduced by removing the pads (which are included only for the purposes of measurement), which 

have a length of 3 mm.  

 

Figure 50: Top and bottom view of the new 2-layer PCB with both TX and RX coils replaced 

by SMD inductors. 

For both PCBs, the largest SMD inductor footprint of 1812 (4532) was chosen as the first step to 

verify the feasibility of this solution since the quality factors of these inductors at the desired 

frequencies are comparable to the planar on-PCB coils that were used previously. In future 

generations, the size of the SMD inductors will be gradually reduced. Both PCBs are currently in 

fabrication. Once the PCBs are fabricated, future steps will involve the assembly of these SMD 

inductors and the corresponding matching SMD capacitors for both RX and TX and the 

measurement of these PCBs with different values and footprints of inductors to have an idea about 

their effects on wireless powering and transmission. 

In some of the fabricated PCB (as shown in Fig. 50), both the RX and TX coils are replaced by 

SMD inductors having a footprint of 1812 (4532). A 1.8 µH SMD inductor having a typical Q-
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factor of 35 at 10 MHz was used for wireless powering and receiving on the RX and TX side 

respectively. Corresponding SMD capacitors of 8.5 pF and 76.5 pF are used to resonate with both 

the inductors.  Since the axis of the SMD inductors is parallel to the plane of the PCBs, it allows 

for effective wireless powering of these PCBs inside fractures and does not require a TX coil 

oriented parallel to the PCB. Using this PCB, the microchip could be wirelessly powered at a 

maximum distance of 3 cm between the localizer and the transmitter (TX) coil with 36 dBm RF 

power at 40.68 MHz. The wireless powering distance and orientation are depicted in Fig. 51. The 

13.56 MHz signal transmitted by the microchip could be received at a maximum distance of around 

20 cm by the receiver (RX) coil. A smaller inductor having a 0805 footprint was also used on the 

TX side to determine the effects of the size of the SMD inductors. Using this inductor, the signal 

transmitted by the microchip could be received at a maximum distance of around 3 cm by the RX 

coil. The reason for the reduction in operating range is currently being investigated. It could 

potentially be due to the coupling between the two SMD inductors, which have the same 

orientation on two layers of the PCB. 

 

Figure 51: Test setup. 

4.5.3.2 Design of TX coils for efficient wireless powering of the microchips 

 It was observed that the range of operation of the localization system is limited by the maximum 

separation between the coils for wireless powering. The link efficiency for wireless powering of 

the microchips depends on the coupling coefficient between the TX coil and localizer coil and the 

product of the quality factor of these two coils (𝜂 ∝ 𝑘2𝑄1𝑄2). Fig. 52 shows the coupling 

coefficient vs TX coil diameter and the distance between TX coil and localizer for an 8 mm 

diameter localizer coil.  From Fig. 52, it can be observed that the coupling coefficient does not 

increase significantly for TX coil diameters above 10 cm. Therefore, single-layer TX coil PCBs 

having dimensions of 5 cm X 5 cm and 10 cm X 10 cm and having a high Q factor were designed 

to improve the range of wireless powering of the microchips. The coils (shown in Figs. 53 and 54 

respectively) were designed using the Webench coil designer tool. The smaller TX coil has 3 turns, 

with a trace width of 2.54 mm and a 1.78 mm separation between the traces, whereas the larger 

TX coil has 4 turns, with a trace width of 1.78 mm and a 7.62 mm separation between the traces. 
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Figure 52: Coupling coefficient vs TX coil diameter and distance between TX coil and 

localizer. 

 

Figure 53: 5 cm X 5 cm TX coil. 

 

Figure 54:10 cm X 10 cm TX coil. 
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5. DOWNHOLE TOOL FOR TRANSMITTING POWER AND RECEIVING SIGNAL: 

DESIGN, DEVELOPMENT, LAB TESTING, AND VERIFICATION FOR THE 

FIELD TRIAL 

5.1  Summary 

By the end of the project, the construction and testing of a downhole tool for transmitting power 

to the chips and receiving their signal were completed. The tool is rated to 100oC and 8000 psi and 

has an OD of 3 5/8” making it applicable to a large market within the USA and beyond.  

The design/construction was completed in three phases. The first phase was the overall concept 

and included some mockups of the transmitter/receiver. The second phase included the 

development of the downhole circuitry to convert incoming power to MHz and transmit that power 

while simultaneously receiving chip response at a lower MZ value.  The circuits were designed to 

be largely independent of the ultimate antenna, meaning that the circuit manufacturing could be 

launched concurrently with optimizing Smart Microchips. The third phase was the tool 

construction for the field trial. 

5.2 Initial feasibility study 

The Near Field SAS was conceived to map 3-space in a downhole application using high frequency 

(HF) radio technology and locally dispersed transceiver “chips” designed by UCLA. To determine 

the feasibility of such an undertaking, it was necessary to 1) understand the capabilities of the 

UCLA transceiver chips and 2) identify realizable RF technologies capable of extracting sub-100 

mV signals in the receive signal chain. 

To that end, MicroSilicon built a complete RF prototype system that exploited Liquid Instruments’ 

Moku: Lab instrumentation as a near-term stand-in for a custom design. The overall goals of this 

phase included identifying likely typical moveout distances for transmission and reception; the 

relationship between transmitter power and chips excitation; efficiency of the lock-in amplifier for 

extracting low-level signals in the presence of noise. 

 

Figure 55: System Context Diagram 



 

67 
 

The Moku:Lab is an off-the-shelf hardware platform configurable with various lab instruments. 

The impetus for choosing this device was the integration of a lock-in amplifier (LIA), which is 

known for its ability to extract signals below the noise floor. The Moku:Lab’s LIA contains an 

adjustable input gain, 12-bit ADC, signal multiplier (mixer), low-pass filter, signal processing, 

output gain, an auxiliary signal generator, and a data logger. The custom design will require each 

of these subcomponents, with final implementation being a design-time consideration. The output 

signal chain contained a generic power amplifier block. While the supplied antennas are not 

designed for high power, a power stage will be required in the final product. Therefore, some low-

power tests were conducted to determine the effectiveness of the current antenna design. On the 

input side, a high-Q bandpass filter was inserted in the signal chain. Since there is a 1:3 relationship 

between the transmit and receive frequencies, and the transmitter is expected to be high power, it 

was necessary to filter the RF input to 1) avoid damaging the receiver and 2) overwhelm the 

receiver with noise or unwanted signals. The identified, and acquired, band-pass filter was not 

tested in the circuit because the power levels did not warrant doing so. However, we conducted a 

VNA test of the KR device to demonstrate that it operated as advertised, and that component was 

subsequently used inside the downhole tool. 

To accurately characterize the prototype system, and therefore extrapolate to a larger system, it 

was important to isolate the individual capabilities of each system component, namely, the 

transmitting system, the receiving system, and the signal processing system. 

To isolate the transmitting and receiving systems, a simple fixture was constructed to ensure 

repeatability. The fixture included transmitter antenna frames, receiving antenna frames, and a 

DSLR (camera) slider instrumented with an adhesive tape measure. 

 

Figure 56: Antenna Fixturing 

There were two sides to the test fixture – transmit and receive. Each side was designed to 

accommodate the specific antenna size (40 MHz or 13 MHz) and are interchangeable on the 
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stanchions. The stanchions were designed to fit on the DLSR slider and to hold the antenna fixtures 

while ensuring that the “targets” are aligned regardless of fixture orientation. The fixed stanchion 

was affixed to the slider frame, while the moving stanchion was affixed to the DSLR based on the 

slider frame. The spacers provide a gap from the target area to the physical antenna face to optimize 

the chip/antenna interface. Observations during testing indicated that a chip too close to the 

receiving antenna severely degraded the received signal power. The frame dimensions were 6 x 6 

cm for the individual antenna. 

 

Figure 57: Antenna frames mounted on the slider 

The chip on/off characterizing configuration consisted of the 40 MHz TX antenna in the fixed 

stanchion, the 13.56 RX antenna in the movable stanchion, and the chip taped to the target interface 

of the RX antenna. The slider was used to change the position of the chip relative to the transmitter 

while monitoring the microchip's on/off state. The chip on/off state was inferred by the receiver 

signal.  

 

Figure 58: Receiver testing configuration 
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The receiver testing configuration had the 40 MHz TX antenna in the fixed stanchion, the 13.56 

MHz RX antenna in the movable stanchion, and the chip taped to the target interface of the TX 

antenna. The slider was used to change the position of the receiver relative to the chip while 

monitoring the output of the lock-in-amplifier. 

 

Figure 59: Moku-Lab testing configuration 

On the instrumentation side, the Moku:Lab’s was configured analogously to the expected custom 

system design. The general LIA configuration involved using a local oscillator (synchronized to 

the auxiliary oscillator) to mix with the input signal and the auxiliary oscillator that drove the 

transmitter signal chain. 

 

Figure 60: Lock-In-Amplifier configuration 
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The key LIA configuration parameters were: Auxiliary Oscillator frequency: 40.68 MHz, Local 

Oscillator (LO) frequency: 13.558 MHz Low-pass filter (LPF) corner frequency: 5 kHz Low-pass 

filter slope: 6 dB/octave (first order filter) System “output”: Rectangular. 

The LO frequency was set to 13.558 MHz, 2 kHz from the expected 13.56 MHz response. The 

purpose was to demonstrate that the received signal can be “mixed-down” into the audio range (or 

any range) whereby the final product can utilize high fidelity off-the-shelf ADCs in the order of 

20 -24 bits. The LPF filters 1 order and higher-order byproducts of the mixing process. 

The purpose of the receiver moveout test was to measure how far the receiving antenna can be 

from the chip while the LIA continues to discriminate. For this test, the chip was taped to the 

transmitter target interface on the fixed stanchion. The receiving antenna was affixed to the 

movable stanchion. 

At the minimum distance, the signal amplitude was 5.15 mV pp. At 6.8 cm the 2 kHz signal was 

discernable on the scope around 67 µV pp and the frequency was locked. As the moveout 

increased, the sinewave degraded into an increasingly noisy square wave until at approximately 

26 cm, the 2 kHz signal was no longer detected. The signal floor appeared to be approximately 64 

µV pp.  

Using the Spectrum analyzer, a similar test was conducted to get a feel for the signal level. At 8 

mm distance, the signal level from the chip is -37 dBm; at 7 cm, the signal level is -103 dBm and 

at 33 cm, the signal level hits the noise floor of the SA at -103 dBm. 

In an attempt to see the effect of two active chips, two chips were taped, one on top of the other, 

to the target interface on the transmitter side. Unfortunately, the proximity of the two chips 

prevented either chip from working. 

Directionality tests were also conducted and the results demonstrated that the beam width of the 

PCB planar antennas was very narrow. If the receiver or chips are misaligned, even as little as 1-2 

cm, the system will not work. 

The purpose of the transceiver reach test was to objectively determine how far the transceiver chip 

can transmit once energized. There were three tests in this sequence. The first test was a 10-mW 

transmission test, the second test a 2W test, and the third test a graduated power test. 

The chip was affixed to the receiving antenna's target interface and progressively moved away 

until the chip turned off. The 10 mW transmission power is an estimate of the RMS output of the 

Moku:Lab Auxiliary oscillator into a nominal 50-ohm load. The ultimate tool design would enable 

100W. At a 10mW power level, the chip would abruptly shut off at approximately 2 cm moveout 

from the transmitter. 

For the 2W test, the Akozon RF power amplifier was inserted into the transmit signal chain with 

500 mV pp output. At this power level, the chip would abruptly turn off at about 5.4 cm 

demonstrating that more transmission energy can improve the system performance. 
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Figure 61: Dramatic drop-off at a fixed distance, this at 2W 

The graduated power test was an attempt to extend the transmission reach by slowly increasing 

the output power of a 100W transmitter, from near 0 W to 100 W. 

To facilitate this test, an external signal generator was used. The MRF101AN 100W reference 

appliance was set up with a 2.5 V bias and the signal generator input was increased to achieve the 

power gain. For this test, a VSWR/Power meter was inserted in the signal chain. The MRF101AN 

device was then subsequently also chosen for the downhole tool. 

Prior to beginning the system test, a 35 W 50-ohm dummy load was installed as the load to ensure 

that the VSWR meter accurately measured VSWR. Regardless of the power level, the VSWR 

reading was close to 1.  The results of the test were somewhat disappointing, however, as the 

performance of the prototype transmitting antenna degraded significantly as power increased.  

Table 6: Initial Test Results 
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Technical discussions with Liquid Instruments (makers of Moku:Lab) revealed that the LIA could 

discriminate signals below the noise floor of the ADC by adding white noise. Further investigation 

by Liquid Instruments demonstrated this to be true. An explanation offered as the reasoning behind 

the result is that white noise summed with the signal can bring the amplitude above the noise floor 

thereby making it detectable. Taking this concept to its next logical step, a test was conducted 

whereby white noise was injected into the signal chain via a Mini-Circuits combiner/splitter, model 

Z99SC-62-S+. 

For the white noise generator, a Moku:Go was configured as an arbitrary waveform generator 

outputting a Gaussian waveform with an initial frequency range of 1 MHz. The results showed 

that the signal was clearly noisier with reduced amplitude, likely due to the combiner. 

Testing the moveout, the RX antenna could only be moved to about 21 cm before the LIA lost the 

2 kHz IF signal. This is compared to about 26 cm when direct connections are used. Also, changing 

the frequency of the white noise generator neither improved nor detracted from the results. 

It appeared that adding white noise, at least in this rudimentary way, did not add any value and 

was dropped from subsequent development. 

We performed a Zero Hz IF test to learn whether using an identical LO/input signal frequency 

would improve the performance of the LIA. The only setup change was to set the LIA local 

oscillator to 13.56 MHz. Results showed that the DC level hits the minimum threshold around 62 

uV DC. This minimum was reached at 7.5 cm moveout, nowhere near the capability when using 

the low frequency IF.  

We performed another of this test to learn how far the TX antenna transmits to another 40.68 MHz 

antenna.  

For this test, antennas in both fixtures were 40.68 MHz antennas. The Spectrum Analyzer was used 

to record a few points along the slider path. As the moveout continued, the signal level dropped in 

a somewhat linear fashion until about 33 cm out, where it was at a minimum value of -90 dBm. 

From 33 cm to 67 cm, the signal level seemed to increase back up to -72 dBm, again in a linear 

fashion.  

A series of tests were conducted, and data was collected for moveout distances from 5 to 25 cm in 

5 cm increments. Two additional points were added 1 cm and 26 cm to represent the closest and 

farthest points in the test respectively. 

The Moku:Lab Data Logger was configured for 10 k Sa/s and the LIA with a 5 kHz low pass filter 

to minimize frequency foldback due to Nyquist frequency. The transmitter was set to a nominal 10 

mW output. The data were imported into Excel and processed with 4096 sample FFT for each 

moveout distance. The figure below shows the “baseline” chart at 1 cm moveout. 

As expected, the 2 kHz IF frequency was well above the noise floor at approximately 5.4 mV 

RMS. What was surprising, however, was the 2nd order mixer artifact of 4 kHz, shown below the 
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fundamental chart. Throughout the test, the 4 kHz signal continued to be above the noise until after 

the 22 cm moveout, long after the 2 kHz signal was buried in the noise, between 18 and 19 cm.  

 

Figure 62: The “baseline” chart at 1 cm moveout. 

 

Figure 63: Higher-order artifacts are visible even as the original chip signal degrades with 

distance 
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Those similar higher-order artifacts will be noted in the ultimate field data. 

Various attempts to excite multiple transceivers were made. For example, taping one transceiver 

on top of another, taping one transceiver to the transmitter target and the other to the receiver target, 

and placing one transceiver within excitation distance on either side of the transmitter with another 

receiving antenna on the same side. All attempts failed due to interference either from the 

transceivers being too close together or having the additional receiving antenna too close to the 

working transmitter/receiver pair.  

Since the transmission power levels were well below that required to insert the bandpass filter into 

the receiver signal chain, it was prudent to evaluate the filter for it’s potential in the implementation 

project.  

 

Figure 64: A robust 13.56 filter was identified (and subsequently used in the downhole tool). 

The upper and lower markers are at approximately 13.56H Hz +/- 1.28M/2 Hz and are -3 dB down 

from the peak. The center marker is 13.56M Hz. The data shows that the filter appears to work as 

advertised. These KR filters were ultimately used in the final product deployed. 

Some other observations from this initial feasibility phase: 

• On multiple occasions, a transceiver chip was damaged by being too close to the 

transmitter. It appears that too much near-field energy can destroy a transceiver. This raises 

the possibility that repeat passes of the downhole tool could end up electrically damaging 

very close chips.  
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• The planar antennas have a narrow beam width in the orthogonal direction. Performance 

quickly dropped for any device that deviated from the center of the beam. This is in 

agreement with the theoretical radiation. 

• The prototype transmitter planar antenna from UCLA was not designed for high power. In 

one instance (2W), excessive exposure to the power burned the FR4 material and in 

another, the antenna stopped working after being subjected to higher power. It is assumed 

that one or more of the capacitors are damaged. Also, when applying higher power signals, 

the antenna performance dropped off significantly. 

•  Because the transmitter antennas were not effective under higher power conditions and are 

extremely directional, it is impossible to compare distance vs power for transceiver turn-

on tests. 

• Setting the mixer local oscillator input to the transceiver frequency (resulting in a LIA DC 

output) was not an effective recovery method compared to using a small offset, in this case, 

2 kHz. 

• The chip transceivers have a turn-on “wall,” a threshold where the chip abruptly transitions 

from off to on. Once on, however, they perform consistently. 

• The reach of the system is subject to two constraints: 1) turning on chips and 2) receiver 

sensitivity. Turning on the chips requires effective transmitter and power, both are design-

in qualities. In the above experiments, the chips could “reach” tens of cm.  

• While conducting the Receiver Moveout test, the graphic on the LIA output indicated that 

it could discriminate the 2k Hz IF signal (frequency counter) up to 24- or 25 cm. However, 

the 10k-point (1 s) FFT of anything over 18-19 cm showed the 2k Hz signal to be below 

the noise floor (of the FFT). It is possible that a longer FFT could lower the noise floor 

further, although there is a limit to this technique. 

• These feasibility results were very repeatable and gave confidence in moving forward with 

circuit construction. 

The goal of the first phase of the project was to evaluate the feasibility of using the transceiver 

chips to map 3-space and to take Smart Microchips prototype hardware and investigate what 

improvements would be needed for a commercial downhole product. The results showed that such 

a system is possible, however, limitations with the supplied antennas prevented a complete 

characterization of transceiver chip performance. After reviewing these results, and in discussion 

with the rest of the team, it was agreed to move to the next phase, that of circuit development.  

5.3 Circuit development 

The structure of the near field receiver is as shown below: 
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Figure 65: The structure of the near-field receiver 

 

Figure 66: The structure of the near-field receiver components- circuit schematic (1) 
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Figure 67: The structure of the near-field receiver components- circuit schematic (2) 

 

Figure 68: The structure of the near-field receiver components- circuit schematic (3) 
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Figure 69: The structure of the near-field receiver components- circuit schematic (4) 

 

Figure 70: The structure of the near-field receiver components- circuit schematic (5) 
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Figure 71 shows the structure of the transmitter. 

 

Figure 71: The structure of the transmitter  

 

Figure 72: The structure of the near-field transmitter components- circuit schematic (1) 
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Figure 73: The structure of the near-field transmitter components- circuit schematic (2) 
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The flowchart for the transmitter is illustrated in Figure 74. 

 

Figure 74: The flowchart for the transmitter 

 

Figure 75 shows the flowchart for the receiver. 
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Figure 75: The flowchart for the receiver. 
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The completed circuit boards are illustrated in Figure 76. 

 

 

 

Figure 75: The completed circuit boards designs 

Once the circuit boards were built, the components could fit very well into the prototype test 

configuration designed in the first feasibility phase: 

      

Figure 76: Fit the circuit boards in the prototype test configuration 



 

84 
 

We also developed a rudimentary GUI to allow us to verify in real time that there was a signal in 

the desired FFT band: 

 

Figure 77: GUI to allow us to verify in real-time that there was a signal in the desired FFT band: 

Another decision made during construction was to allow the possibility of both DC and AC 

power, with DC to be used for the first test (i.e. with batteries) and allowing for AC on 

subsequent field tests (i.e. with surface power at 240V AC). This reduced the final set of 

electrical components to the four shown below. 

 

Figure 78: final set of electrical components 
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5.4 Final Antenna and Downhole Tool Construction for the Field Trial 

In close consultation with the team, the design of the antenna was finalized as a 40 MHz transmitter 

and 13 MHz receiver with a configuration as shown below. In particular, the coupled TX/RX 

system comprises two coils whose axes are aligned. The transmitter outputs a magnetic field 

primarily in the direction of that axis, which is also the main sensitivity of the receiver. There is a 

minimal field generated in the plane of the coil. It is believed that this directionality could prove 

useful when the tool is deployed downhole: different orientations of the tool will excite different 

azimuthal planes of the wellbore. 

 

Figure 79: Transmitter outputs a magnetic field 

The coils, shown below, are wound of thick, 10 AWG copper so provide minimal resistive losses 

even at 20 Amps.  The coils will be subject to hydrostatic pressure in the wellbore whereas the 

remaining electronics are inside a pressure housing. This requires a bulkhead, also shown below, 

to pass the electric field from the high pressure to the low. 

 

Figure 80: Schematic of the designed Coil  
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Each termination of the coil has been equipped with a Kemlon K-25 BMA connection, including 

a rubber “boot” that provides a secondary barrier to pressure. The connectors are rated to 25 kPsi, 

16Amps, and 6 kV. The max RF power from the tool is 100 watts. 

 

Figure 81: Thread chart and specification 

The Kemlon’s attached to the bulkhead are shown below: 

 

Figure 82: The Kemlon’s attached to the bulkhead 
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The TX and RX loops are completed inside the pressure housing by attaching to 6kV rated 

tunable capacitors with a range from 5 pF to 120pF and Q > 500. 

 

Figure 83: The TX and RX loops are completed inside the pressure housing 

The antenna coils are highly inductive, but this reactance is canceled by appropriately tuning the 

capacitors, so the subsequent electronics only see the real part of the antenna impedance, which is 

less than 1.5 ohms. The transmitter and receiver PCB’s are designed around 50 ohm impedance, 

which creates a requirement for a matching circuit. We investigated the idea of matching with a 

combination of capacitors as had been done by UCLA on their TX/RX (see figure below) 
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Figure 84: The matching circuit idea testing and demonstration 

We were concerned that downhole temperature would cause the capacitance to change, and our 

analysis showed that even small changes in capacitance would significantly impair the impedance 

match. So instead, we used a toroid configuration where the primary was the antenna loop and the 

secondary would have N turns. The impedance scales as N^2 so only a small number of turns will 

be needed. One key difference between transformers at MHz vs low frequency is that the primary 

and secondary wires must be wound together (termed “bifilar” winding). The transformer would 

not work at all if, say, the primary was on the left and the secondary on the right. 

The capacitors are toroids mounted on 3D printed “ASA” plastic so that they would be secured in 

position despite any shock and vibration to the tool in the wellbore. That assembly was mounted 

onto the bulkhead and then a metal crossover piece was bolted on. 

 

Figure 85: 3D-Printed Capacitor Assembly for Shock and Vibration Resistance in Wellbore 

Applications 
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This cross-over provides a crucial link between the inner and outer components of the tool. The 

bulk of the tool consists of an ~8 ft long, 3 5/8” diameter pressure housing that holds the battery, 

etc. At the base of the 3 5/8” pipe are threads that can engage with threads, and o-rings on the 

crossover to provide pressure-tight connection. The interior of the crossover includes connection 

points to allow attaching the rest of the chassis. The crossover is shown below attached to the 

bulkhead and antennae. 

 

Figure 86: The crossover is attached to the bulkhead and antennae. 

The top of the crossover provides a mechanism to add a fiber-glass housing. That housing was 

then (partially) filled with RTV. The RTV covered the copper. The purpose of the RTV was two-

fold: partly to protect against vibration and also to provide the antenna with a dielectric constant 

more similar to what the tool will see downhole. That way the matching of the antenna would still 

be valid downhole. 

 

Figure 87: Fiber-glass housing Assembly with RTV Filling for Vibration Protection and Antenna 

Dielectric Matching 
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Looking down at the inside of the crossover you can see the toroids and the plate holding the 

capacitors. The capacitors are beneath the plate but their tuning screws are above the plate so the 

antenna can be tuned after everything is in place. A long, electrically insulating tuning screwdriver 

was used to avoid accidental contact with high voltage.  

 

Figure 88: Internal View of the Crossover Assembly Showing Toroids, Capacitor Plate, and 

Tuning Mechanism 

The combination of coils, capacitors, and toroids should present an impedance with zero reactance 

at the resonant frequency and close to 50 ohms real impedance. We got essentially perfect 

agreement on the receiver coil (50.04+0.23j) 

 

Figure 89: Impedance Measurement of the Receiver Coil at Resonant Frequency Using a 

Spectrum Analyzer 
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And fair agreement on the transmitter 61.4 + 1.3j. This transmission impedance was very 

acceptable because its next component, a MOSFET, could accept VSWR up to 65 and we had 

plenty of safety margin on the voltage rating of the capacitors. 

 

Figure 90: Transmitter Impedance Measurement and VSWR Tolerance Analysis with MOSFET 

Integration 

The MOSFET had a max power rating of 100W but required a heat sink. The MRFAN101 was 

commercially available and already attached to an aluminum block. We then mounted that 

aluminum onto a block of copper (using thermal paste in between) 

 

Figure 91: MOSFET Heat Sink Assembly: MRFAN101 Mounted on Aluminum and Copper 

Blocks for Thermal Management 
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And then that copper block was bolted to the metal crossover, which itself was going to be in good 

thermal contact with the 3 5/8” pipe. 

 

Figure 92: Copper Block Mounted to Metal Crossover for Enhanced Thermal Conductivity 

The resulting bandwidth on the receiver was very sharp but when the transmitted was activated 

measurement circuitry still detected 40MHz, which certainly could not have been coming through 

the receiver antenna. It was determined to be a common mode, so we added a third toroid and 

wound the coax around that toroid. 

 

Figure 93: Implementation of a Third Toroid to Mitigate Common Mode Interference in the 

Receiver 
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And then finally we added the dedicated bandpass filter that had been identified during the 

feasibilty phase. 

 

Figure 94: Addition of a 13.56 MHz Bandpass Filter for Signal Optimization 

We have previously presented the receiver and transmitter PCB’s. These were mounted onto the 

chassis and the chassis secured to the bulkhead with 1/8” roll pins. 

 

Figure 95: Receiver and Transmitter PCBs Mounted on Chassis and Secured to Bulkhead 
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The system is powered by a 30V, 29Ah Lithium battery and we placed an on/off switch at the top 

end of the battery. 

 

Figure 96: Fully Assembled System Powered by a 30V, 29Ah Lithium Battery with On/Off 

Switch 

In addition to the on/off switch, we ran a long USB cable from the receiver PCB to the top of the 

chassis so that we could download data without pulling the chassis from the 3 5/8” pipe.  
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Figure 97: Top-End USB Access for Data Retrieval Without Chassis Removal 

Lastly, we added an MDM connector to allow communication to a  Criterion circuit installed 

inside the battery that allows us to depassivate the battery before deployment. 

 

 

Figure 98: Integration of MDM Connector and Criterion Circuit for Battery Depassivation 

Before Deployment 
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Finally, the chassis was loaded into the 3 5/8” pipe. 

 

Figure 99: Chassis Installation into the 3 5/8” Pipe 

The lower crossover was torqued in place with spanner wrenches. 

 

Figure 100: Lower Crossover Secured with Spanner Wrenches 
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At the top end, we provide another small sub with threads and o-rings that can be torqued in place 

and provide the final pressure seal. At the top of that sub is a thread whose profile was provided 

by EOG for attachment to the rope socket on the slickline unit. 

 

Figure 101: Top-End Subassembly with Threads and O-Rings for Final Pressure Seal and Rope 

Socket Attachment 

 

And success: 
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Figure 102:  Final downhole tool at the pilot testing site for deployment 
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6. PHYSICS- INFORMED AND AI-EMPOWERED I-GEO SENSING FRACTURE 

DIAGNOSTIC SOFTWARE PACKAGE DEVELOPMENT, AN OPEN-SOURCE 

PYTHON-BASED PACKAGE 

6.1. Overview of the i-Geo Sensing 

The complete development of the i-Geo Sensing code holds the responsibility of processing the 

geo-location data from the sensor in an end-to-end manner. This end-to-end manner is summarized 

via the following statements.  

- i-Geo Sensing processes the sensor data or it requests a continuous stream of sensor data that 

brings the geo-location of the sensors as a triplet (X, Y, Z) coordinate. 

- i-Geo Sensing conducts an initial suggestion of the fracture geometry (i.e., expected half-

length, fracture height, and average fracture aperture) via the code’s unsupervised machine 

learning (ML) algorithm workflow. This initial suggestion purely relies on the geo-location 

data provided by the sensors and does not rely on the properties of the formation(s) the sensors 

are injected into. 

- i-Geo Sensing conducts possible corrections of the fracture geometry (i.e., the quantities from 

the unsupervised ML workflow plus physical-fracture propagation properties) via the code’s 

supervised ML workflow. This later correction relies on the properties of the formation(s) the 

sensors are injected into. 

- i-Geo Sensing provides a secondary Graphical User Interface that connects the user interaction 

with the research code that is briefly described above.  

6.2. Synthetic case description 

To comply with the illustrative purpose of demonstrating the ML workflows, two synthetic 

environments are described in this report. The synthetic environment for the unsupervised ML 

workflow has a core aim to validate the clustering and fracture planar diagnostic efficacy, and the 

environment for the supervised ML workflow has a core aim to validate the calibration, history 

matching, and explainability aspects.  

6.2.1. For the unsupervised ML workflow 

The efficacy of the unsupervised ML workflow is tested by three synthetic fracture networks. 

These three synthetic fracture networks are designed based on the 2D scanned core images of 

fracture networks subsurface at different measured depths in feet (9490-9493, 9560-9563, 9566-

9569) and different levels of geometry complexity (referred to Figure 103). Figure 103 provides 

details of the raw 2D scanned core images (stored in JPEG format). To generate inputs for the 

unsupervised ML workflow, the format of the input data is processed as Cartesian coordinates or 

transformable to Cartesian coordinates (preferably TXT format). As a result, additional image 

processing steps are conducted to achieve the desirable TXT input format. 

Core samples’ images are initially imported and transformed into grayscale, which is further 

capable of separating irrelevant pixels from fracture networks’ pixels (i.e. “fractured” pixels). In a 

gray-sale image, pixels are scaled in their intensity values, which vary in a scale between 0-255. 

Initial analysis for a gray-scale image typically starts with its histogram of pixel intensity. The 

separation process is performed by Otsu image segmentation. Otsu algorithm chooses the optimal 

value from an image’s histogram of pixel intensity and further detaches the image into two 

fragments: the main fracture network (which has pixel intensity 255 - white) and irrelevant pixel 
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body (which has pixel intensity 0 - black). Albeit Otsu segmentation can extract the closest version 

to the desired base fracture networks, additional algorithms are necessary to extract the desirable 

and complete synthetic fracture networks. The supporting algorithms include pixel filling (i.e. fill 

fractured pixels into desired voids), fragment separation (i.e. divide a fracture network into smaller 

fragments to perform more effective pixel filling), and fractured pixel recovery (i.e. recover a 

group of fractured pixels in a fracture’s network fragment).  

Desirable fracture networks extracted from the scanned core images are maintained as 2D images 

(stored in PVG format). Under the assumption that the propagation of a fracture network is uniform 

along the remaining dimension, commercial 3D editing & printing software conducts extension of 

the 2D imaging base fracture networks into 3D imaging fracture networks (stored in STL format). 

The stored format of the 3D imaging fracture networks is processed and randomly sampled (reflect 

the practical aspect of the fact that transmissible SMPs have no specific pattern inside the fracture 

networks) to create synthetic input geo-location data from Smart Microchips as Cartesian 

coordinates. Figure 104 provides the projected 2D overviews of synthetic 3D imaging fracture 

networks used in this study (fracture propagation direction is perpendicular to the projected 

images). For design purposes, the synthetic fracture networks in Figure 104 increase complexity 

from left to right. The 1st synthetic network (Figure 104, left) is composed of 4 fractures with 

almost uniformity in shape. The 2nd synthetic network (Figure 104, middle) is composed of 3 

fractures and one smaller network with moderate non-uniformity in shape and low complexity in 

branching. The 3rd synthetic network (Figure 104, right) is composed of one fracture and two 

smaller networks with non-uniformity in shape and high complexity in branching.  

    

Figure 103: The raw 2D scanned core images used to design synthetic fracture networks 
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Figure 104: 2D projection of the synthetic fracture networks (complexity increases from left to 

right) 

The unsupervised ML workflow performance is evaluated based on the following criteria:  

1. Prediction capability: this is qualitatively defined by the detection of the fracture propagation 

direction, geometry complexity (i.e. the clustering’s efficacy to recognize the fractures in the 

fracture network), and shape of the predicted geometry (when compared to the synthetic 

fracture networks as “ground-truth”). 

2. Robustness in execution: this is defined by similarity in prediction for different runs, under the 

context of a specified number of transmissible Smart Microchips. This criterion is proposed to 

test the stability of unsupervised ML workflow to control any stochasticity. The total 

robustness of all transmissible Smart Microchips is defined as Equation (4). 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
1

𝑁𝑆𝑀𝑃
∑

∑ 𝑅𝑗
𝑁𝑟
𝑖=1

𝑁𝑟

𝑁𝑆𝑀𝑃
𝑗=1        (4) 

3. Consistency: this is defined by the remapping capability for the tested fracture network under 

the context that not 100% of the Smart Microchips injected subsurface can transmit the geo-

location data back (because of the high temperature, high-pressure condition subsurface). To 

evaluate this criterion, 9 separate consistency cases of the number of transmissible Smart 

Microchips (between 50-90% of the total Smart Microchips injected, increment of 5%) are 

used for each synthetic network. The weighted average of the consistency from the 9 scenarios 

represents the overall consistency for each synthetic network. This weighted average is used 

based on the convention that the lower percentage of the total injected SMPs incurs more 

difficulty (since less data is available). Consistency score is defined as Equations (5) and (6). 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
1

𝑁𝑐𝑎𝑠𝑒
∑ 𝑊𝑖 𝐶𝑖

𝑁𝑐𝑎𝑠𝑒
𝑖=1         (5) 

∑ 𝑊𝑖
𝑁𝑐𝑎𝑠𝑒
𝑖=1 = 1           (6) 

In Equation (4), 𝑅𝑗 denotes the similarity score between the result from the unsupervised ML 

workflow (one run, one Smart Microchip) and the “ground-truth” result from the design of the 

synthetic cases. A 𝑅𝑗 value of 0 means dissimilarity and a 𝑅𝑗value of 1 means similarity. 𝑁𝑟  is the 

number of runs from the unsupervised ML workflow. 𝑁𝑆𝑀𝑃 is the total number of transmissible 

Smart Microchips.         
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In Equation (5), 𝐶𝑖 is the consistency score between the consistency cases. A 𝐶𝑖 value of 0 means 

inconsistency between the cases, and a 𝐶𝑖value of 1 means consistency between the cases. 𝑊𝑖  is 

the weighting factor for the consistency cases to determine the weighted average (which directly 

explains the summation of 1 in Equation (6)).    

6.2.2. For the supervised ML workflow 

A compositional simulation case for a horizontal well, hydraulically fractured, serves as the 

comprehensive test case for the supervised machine learning workflow. An overview of the 

reservoir and the single horizontal well (visual provided in ResFrac® academic license) [65] is 

provided in Figure 1. 59 geological layers in the reservoir vary between 7500 ft to 8958 ft. A single 

well penetrates through the target depth at 8243 ft. Reservoir properties (e.g., minimum horizontal 

stresses, porosity, permeability, relative permeability curves) are in the Static Model and Initial 

Conditions, Geological Units. A plot of the Young Modulus and Poisson Ratio variation along the 

model’s depth is presented in Figure 106. The academic license of ResFrac allows similar plots for 

other geological properties in its plot interactive interface. 

 

 

Figure 105: An overview of the test case for the supervised ML workflow 
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Figure 106: Variation of Young Modulus and Poisson Ratio over the model’s depth 

The single horizontal well is injected for a total of 238.07 minutes with an injection pressure of 

20000 psi. The injection schedule is presented in Figure 107.  

 

Figure 107: Overview of the injection schedule for the model 

After the injection schedule is performed, the well is shut down for an additional 120 minutes and 

later is converted into the producer mode. The Bottom Hole Pressure (BHP) and the oil production 

rate are presented in Figures 108 and 109, respectively. The data plot in Figure 108 indicates that 

the Initial Shut-In Pressure (ISIP) is approximately 5800 psi at close to 20 days of simulation time. 
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Figure 108: Bottom Hole Pressure data for the model’s simulation lifecycle 

 

Figure 109: Oil production rate data for the model’s simulation lifecycle 

Since ResFrac® is a coupled fracture-propagation simulator and a reservoir flow simulator, 

fracture propagation properties can be visualized along the model’s life cycle along with 

conventional reservoir properties (as in Figures 108 and 109). Figure 110 provides the total fracture 

aperture in inches at an early propagation time step (left) and a late propagation time step (right). 

Figure 111 provides the total proppant volume fraction (dimensionless) at the two similar time 

steps as Figure 110. In Figures 110 and 111, the color scale for the specific property (i.e., total 

aperture or total proppant volume fraction) is similar across the simulation time in ResFrac, and 

henceforth these Figures present the expected observations of proppant transport in the test case. 

In the early time steps, the aperture is continuously opened along the wellbore’s perforation 

direction, and the amount of injected proppant is not substantial. At the later time steps, the fracture 

is gradually closed (i.e., a gradual decrease in fracture aperture), and a substantial amount of 

proppant is settled inside the fracture. ResFrac uses a multi-opening fracture tip model to locate 

the front of the propagating fracture (Multi-El Tip model), which more details can be found in 

[65].   
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Figure 110: Total fracture aperture at early propagation (left) and late propagation (right) 

 

Figure 111: Total proppant volume fraction at early propagation (left) and late propagation 

(right) 

To test against the supervised ML workflow within the context of this test case, the synthetic Micro 

Chips’ data is sampled along the model’s life cycle under the following assumptions: 

1. A higher proppant volume fraction indicates a higher density of sensors located. This is 

intuitive since the Micro Chips are injected along with the conventional proppants. 

2. There is a random “dead rate” of sensors across fracture dynamically, and this dead rate is a 

dependent variable on “ground-truth” fracture aperture and fracture pressure (which determine 

the confinement stress to the conventional proppant, and intuitively the Micro Chips shall be 

exposed to the similar confinement stress). 

Besides the synthetic sensor data as the input to the supervised machine learning workflow, other 

calibration data such as ISIP, BHPs (as specific time steps), and oil production rates (at specific 

time steps) are provided to the supervised ML workflow. The calibration objective is to match the 

ISIP, BHP, and oil production rates within an acceptable uncertainty. Further details are provided 

in 6.5 and 6.7.  From 6.3 and below, geo-location data is the abbreviation of the data from Micro 

Chips.  

6.3. Intuition in understanding the sensor distribution inside the subsurface fracture 

environment 
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Throughout the i-Geo Sensing code, the sensor data is requested/processed in the form of three-

dimensional coordinates, or a normalization from three-dimensional coordinates. Under the 

subsurface, the Micro Chips are supposed to be injected into the formation (the 1st assumption in 

6.2) Consequently, except for recording geo-location data, the distribution of the Micro Chips 

inside the fractures(s) shall have a similar look as Figure 112 for a single fracture (at any point of 

time within the lifetime of the reservoir) [32]. 

 

Figure 112: Distribution of the MicroChips subsurface (generated from the synthetic 

environment) 

Coupled with the nature of the proppant distribution inside the fractures, the following statements 

can be appropriately declared. 

1. Sensors are more concentrated at the locations close to the injection point, and the “density” 

of sensors during the lifetime of the reservoir shall follow the pattern of proppant existence 

inside the reservoir [32]. 

2. Since the fractures are propagated with a substantially long half-length and fracture height 

dimensions (in the degrees of ft) compared to the aperture (in the degrees of in), sensors are 

expected to locate around a planar surface in which their projection of the geo-location data to 

that planar surface reveals an approximation of the fracture aperture. 

3. Although some Micro Chips are “dead” during the lifetime of the reservoir because of 

subsurface environments, the amount of data transferred from the sensors is, naturally, 

proportional to a quantity that correlates with the proppant distribution (e.g., proppant volume 

fraction).  

These 3 statements serve as essential foundations that lead to all further development 

understanding and algorithmic thinking of the workflows that exist in the i-Geo Sensing. Each of 

the sub-sections below 6.3 reflects one or more of them and is further explained in the sub-section 

itself below.  

6.4. The unsupervised machine learning workflow 
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The unsupervised ML workflow is a stand-alone module inside i-Geo Sensing that receives the 

transmissible, 3D geolocation data. Its architecture is presented in Figure 113 [43, 60]. Reminded 

of intuitions 1 and 4 from the previous section, the unsupervised module is designed to characterize 

the fracture networks via fracture clusters. Three core algorithms contribute to this module include 

Uniform Manifold Approximation and Projection (UMAP) [34, 44], Hierarchical Density-Based 

Spatial Clustering of Applications with Noise (HDBSCAN) [35, 54], and Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) [35, 54, 56]. 

UMAP performs dimensional projection of the geo-location data from 3D into a 2D latent space 

(or sub-space) for unsupervised clustering. The couple DBSCAN – HDBSCAN forms the 

Ensemble Clustering and performs unsupervised clustering in the 2D latent space to identify the 

prospective fractures in the fracture network as “fracture clusters”, including propagation 

directions and branching complexity. During the unsupervised clustering by the Ensemble 

Clustering, the Mixture Clustering Epsilon coefficient is facilitated to control the clustering’s 

performance [54]. 

 

Figure 113: The unsupervised ML workflow 

An immediate challenge to control these hyperparameters in the unsupervised ML workflow is the 

fact that hyperparameters in both UMAP and HDBSCAN are typically controlled manually and 

empirically based on the specific nature of the input data [34, 44]. In the workflow, applying 

geometrical assumptions based on the specific nature of fracture networks’ geo-location data leads 

to the following hyperparameter estimations, referred to as Equations (7), (8), (9), and (10). 

𝐴 = [

𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

]           (7) 

𝑑𝑚 = 0.05 ± 5 × 10−3          (8) 

𝑘 = 0.1𝑁 ± 100           (9) 

𝐶𝑠𝑚 = 𝑆𝑚 = 0.01𝑁 + 𝑛𝑐         (10) 

In Equations (7) and (8), N is the number of functional Micro Chips (i.e. the Micro Chips that can 

transmit signals). In Equation (10), 𝑛𝑐 is a positive integer, defined as the additional number of 

samples to avoid the critical “tiny cluster” and “condensed tree failure” errors while executing 

HDBSCAN. 𝑛𝑐 physically represents a control to avoid small clusters of Micro Chips can be 
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grouped as a fracture cluster (in fact they belong to another fracture cluster). Additionally, the 

existence of 𝑛𝑐 contributes to minimizing the “noise” classification for the input in HDBSCAN, 

since HDBSCAN naturally considers a certain amount of noise in its input data. However, noise 

from the geo-location data is minor because almost all transmissible Micro Chips are useful. The 

empirical process in this study indicates the value of 𝑛𝑐 ranging between 5 and 15. The evaluation 

noise score metric (𝑠𝑁) that is defined as Equation (11). 

𝑠𝑁 =
𝑁𝑛𝑜𝑖𝑠𝑒

𝑁
            (11) 

In Equation (11), 𝑁𝑛𝑜𝑖𝑠𝑒 is the number of noise data points classified by HDBSCAN. An optimal 

hyperparameter set for a specific value of N is the set that minimizes 𝑠𝑁, preferably a zero-

proximity value (to reflect the unavoidable presence of “minor clusters”). The value of N ranges 

between 1000-5000 as a practical measure for the number of injected Micro Chips. The target 

variable 𝑠𝑁 has a mixture of records between zero and non-zero values.  

     

Figure 114: Processing of the geo-location data for the 1st synthetic fracture network 

Figure 4 provides the visualization of the unsupervised ML workflow for the 1st synthetic case in 

this study, and all images in Figure 111 are 2D projections from the 3D realizations. From left to 

right in Figure 114, the following sub-images are presented: the synthetic fracture network 

transmissible data from the Micro Chips, the fracture network’s structure diagnostic, and one 

realization of the fracture network exported from the unsupervised ML workflow that has the 

closest visual compared to the original synthetic input.  

Table 7: Evaluation results for the unsupervised ML workflow (synthetic environment) 

Fracture 

network 

Evaluation criterion 

Prediction 

capability 

Robustness in 

execution 
Consistency 

1 Highly satisfied 100% 100% 

2 Satisfied  90% 100% 

3 Fairly satisfied 85% 100% 
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Table 7 reveals valuable insights into the unsupervised ML workflow’s performance. The 

consistency is achieved at 100% for all synthetic cases, indicating the workflow functionality is 

independent of the amount of transmissible Micro Chips. The robustness is achieved at 100% and 

90% for the 1st and 2nd synthetic cases, however, is capped at 85% for the 3rd synthetic case. 

Therefore, the use of assisted affine transformation is less effective for the high geometry 

complexity in the 3rd synthetic case. The rated prediction capability for the 3rd synthetic case falls 

behind the other 2 synthetic cases, which solidly prompts further reasoning for the impact of high 

geometry complexity on the workflow’s performance.  

Figure 115 compares the effect of the affine transformation [41] to the performance of UMAP, and 

consequently HDBSCAN in the workflow. As aforementioned, the coupled algorithm is implied 

as a matrix to scale the received geo-location data and alter the absolute distances between the 

Micro Chips. Affine transformation inherently does not modify the internal structure of the fracture 

network. Consequently, raw geo-location data processed by any affine transformations improves 

the low-dimensional projection result from UMAP since UMAP is very sensitive to the absolute 

distances between neighbors (i.e., the absolute distances between the Micro Chips). Figure 115 

compares the effect of using affine transformation and not using affine transformation for the 1st 

synthetic case. In figure 115 (left), UMAP with the coupled algorithm reflects the designed 

structure of the 1st synthetic fracture network. The projected subspace has viewed 4 clusters 

corresponding to the 4 fractures. In contrast, in Figure 115 (right), the standalone UMAP does not 

reflect the designed structure of the 1st synthetic fracture network, as the projected subspace is 

viewed as three clusters. The two fractures at the bottom of the 1st synthetic case have extreme 

proximity, and UMAP is not capable of separating them in the projected subspace without using 

affine transformation. A similar effect is observed in the 2nd and 3rd synthetic cases.  

   

Figure 115: Effect of assisted affine transformation on the performance of UMAP in the 1st 

synthetic fracture network (with transformation – left, without transformation – right) 

6.5. Sensor data profiling  

According to the foundations from 6.2, the geo-location data is received as a three-dimensional 

“point cloud” that has an arbitrary representative geometry. Although there exist processing 

approaches from this three-dimensional point cloud that map the local and/or global spatial 

characteristics of the points to the representation of the geometry, these approaches require 

extensive computational power to be trained and deployed as scalable proxy models (details about 

proxy modeling is later described in 6.9 and 6.10) [47, 48]. Additionally, these approaches are 

aimed at developing geometries that are, unfortunately, not representative of fractures subsurface. 
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Therefore, we implement a processing technique in the i-Geo Sensing code to process the sensor 

data that is robust and provides scalability for later proxy modeling in 6.9 and 6.10. This technique 

is named sensor data profiling. To better understand the technique, it is more illustrative to present 

the fracture geometry that comes from the ResFrac® software. This illustration is provided in 

Figure 116.  

 

Figure 116: The ground truth fracture geometry (reconstructed from ResFrac® software [50]) 

One noticeable observation from Figure 116 is that the presented fracture geometry has some 

degree of complexity in shapes as it is “curved” along the y-axis (the axis that has a contrast 

between the minimum horizontal stresses). This complexity is caused by the non-drastic difference 

between the horizontal stresses. Essentially, Figure 116 divides the ground-truth fracture geometry 

into uniform regions (namely, fracture elements in ResFrac®), and in each of these elements, there 

is a dynamic occupation of Micro Chips. Throughout the lifetime of the reservoir, it is not abnormal 

to observe that some of these elements may not have an occupation of Micro Chips. Across the 

dimensions of the fracture, the density of Micro Chips per element, or propagation length (i.e., 

half-length), mainly depends on the fracture pressure (which impacts the “dead rate” of the Micro 

Chips) and fracture aperture (which determines the cumulation of Micro Chips within the fractures, 

similar to conventional proppants). Consequently, i-Geo Sensing creates sensor data profiles that 

summarize the fracture aperture (i.e., the y-dimension recording in Figure 116) along the half-

length propagation and the fracture height propagation at any time it receives geo-location data.  

Within each time step that i-Geo Sensing receives the geo-location data, it deploys the 

unsupervised machine learning workflow to recognize the fracture plane per cluster. Per the 

fracture plane, i-Geo Sensing successively determines the smallest dimension in geolocation value 

(after normalization to the centroid of the data). For example, Figure 116 indicates the smallest 

dimension is the Y dimension, and consequently, X and Z are the larger dimensions. Reminded 

that the fracture aperture is a fraction in value compared to the fracture half-length or fracture 

height (a fraction of an inch versus hundreds of feet), the smallest dimension is the dimension 

holding the fracture aperture information. Per the larger dimension, it is divided into uniform 

intervals, and per interval, the average value of the smaller dimension of which the sensors’ larger 
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dimension falls into that interval is computed and averaged. Consequently, the larger dimension 

provides a 1D array of values with size [N, 1], in which N is the number of divided intervals, or 

namely, the resolution of the profile. There is a maximum of 2 sensor data profiles per time step.  

Figure 117 presents a sensor data profile for the half-length dimension between -600 ft and 600 ft 

(normalized in ResFrac® around the centroid which is at 0 ft), and with a resolution of 50 intervals.  

 

Figure 117: Sample sensor data profiling  

To further illustrate the validity of the information the sensor data profiles provide to the i-Geo 

Sensing, Figure 118 presents the sensor data profiling for one larger dimension at two different 

time steps. Figure 118 clearly shows that the fracture propagation at the later time step (right) has 

a growth on the two “tails” of the profile compared to the initial time step in which the two “tails” 

of the profile remain flat (i.e., zero or significantly low value of aperture). Additionally, the later 

time step presented in Figure 118 (right) indicates that the fracture is entering its closing phase 

(since the profile is lower at the centroid and is higher expanding from the centroid). Sensor data 

profiles contribute their usefulness at the proxy deployment phase, which is again, further 

described in 6.8 and 6.9.  

 

Figure 118: Sample sensor data profiles at two different time steps 

6.6. Calibration of the fracture geometry and history matching from the unsupervised 

machine learning workflow 
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As described in 6.3, the unsupervised ML workflow is responsible for suggesting an initial 

diagnostic of the fracture geometry. This initial diagnostic is purely based on the geo-location data 

and is not informed any further by the reservoir’s characteristics.  Consequently, this initial 

diagnosis needs to be corrected in realistic scenarios in which field data is available (besides the 

geo-location data) [51].  

In fracture model calibration, the conventional approach involves matching typical parameters 

such as the Initial Shut-In Pressure (ISIP) and “early” after-shut-in pressure. After being calibrated, 

the fracture geometry is coupled with a reservoir simulator (in terms of grid/mesh refinement) for 

further history matching with the field production data. Under the addition of near-wellbore 

fracture geometry data from the Smart Microchips, information about the initial fracture aperture 

(𝑤𝑓0) and initial fracture height (𝐻𝑓0) is available. 𝑤𝑓0 and 𝐻𝑓0 are estimated using Single Value 

Decomposition (SVD). Consequently, fracture model calibration in the i-Geo Sensing additionally 

includes the match for these parameters besides the match for typical parameters mentioned above 

(which are conducted once).  

 

Figure 119:  Fracture calibration workflow in i-Geo Sensing 

In history matching, the conventional approach involves uncertain parameters (e.g., porosity, 

permeability & relative permeability curves, and saturation profile), providing the one-time 

calibration for the fracture model. Under the addition of sensor data profile(s) per simulation time 

step, history matching in i-Geo Sensing uses the sensor data profiles to calibrate the uncertain 

parameters. Since i-Geo Sensing facilitates proxy modeling techniques (i.e., estimation of the 

response parameter(s) via a surrogate model in replacement of a local derivative estimation), 

history matching in the i-Geo Sensing is performed using the global-space optimization algorithm 

via Tree Parzen Estimator’s Bayesian Optimizer [63, 64, 66]. 

The objective function for history matching in i-Geo Sensing is defined as the BHP, flow-

back/production data misfit function(s) (for example, Mean Square Error). After the sensitivity 
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study for all uncertain parameters and initial manual tuning (if necessary), a global search space is 

initialized. Per iteration of the optimization loop, the objective function’s metrics are compared 

against the previous iteration, and the Tree Parzen Estimator (TPE) measures the Estimation of 

Improvement (EI) between the subsequent iterations. The EI further determines the search 

direction of all uncertain parameters within the initial search space, until a convergence in the EI 

is satisfied. Schematic of the optimization loop is presented in Figure 120.  

 

Figure 120: The Bayesian Optimizer engine used in the i-Geo Sensing  

Within the scope of history matching, traditionally simulations are required to run for the 

uncertainty quantification metrics and the misfit evaluation. In i-Geo Sensing, this task is speeded 

up by using the surrogate modeling inside the supervised ML workflow (quantile-loss Extreme 

Gradient Boosting/Gradient Boosting Machine). Details about the proxy models and the 

supervised ML workflow are in 6.8 and 6.9. 

6.7. Design of Experiment 

Through 6.2-6.6, proxy modeling is mentioned as an effective surrogate to estimate the response 

parameters without running the specific simulation case at the time of performing fracture 

calibration or history matching task. To fully leverage the proxy modeling in the i-Geo Sensing, 

Design of Experiment (DoE, [67]) combined with ResFrac® is used. ResFrac® offers the multi-

physics Linear Elastic Fracture Model (LEFM) that is field-scalable, and it has a fracture 

propagation simulator coupled with a reservoir flow simulator. Therefore, in this project, 

ResFrac® is selected to serve as i-Geo Sensing backend simulators, in a semi-automated manner. 

Figure 121 presents the scheme Design of Experiments embedded inside i-Geo Sensing.   

The DoE code in the i-Geo Sensing exists as a standalone module, which is responsible for 

processing base simulation files from ResFrac®. A ResFrac simulation run requires two simulation 

files, named “settings” and “input” text files, both are human readable. ResFrac defines the 

simulation model via a system of multiple “entry” variables (in both settings and input files). Each 

entry variable holds the variable name, the variable length, and the variable data in this sequential 

order. To generate DoE cases in batches and perform fracture model calibration/history matching 

studies, i-Geo Sensing’s DoE module is capable of: 
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1. Parse the two simulation files in ResFrac per simulation run into encoded entries and their 

corresponding data. 

2. Diagnose the optimal variable data type per entry. 

3. Connect a DoE case data to the correct entry variable (regardless of its location inside 

settings or input files) 

4. Re-write the settings and/or input files and batch-run the simulation after the re-written 

process.  

 

Figure 121: Design of Experiment generator in i-Geo Sensing  

i-Geo Sensing provides the DoE for ResFrac in a semi-automatic because of the limitation of the 

ResFrac academic license, and users are still required to submit the simulation jobs to the 

ResFrac® server.  An illustration of the DoE outcome for fracture geometry realizations is 

provided in Figure 122.  

 

Figure 122: An illustration of the DoE for fracture geometry in i-Geo Sensing  

The fracture calibration in i-Geo Sensing fully leverages the sensor data sensor data profiles at 

(synthetically) recorded time steps. Consequently, the fracture calibration proxy processes the 

sensor data profiles, additional fracture propagation properties (if requested by the users), and the 

recorded time (converted to dimensionless) as proxy input variables, and a pressure quantity (e.g., 

BHP) as the output variable. The prediction of the pressure quantity is sequentially processed as 
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one of the inputs for the history-matching proxy. Table 8 provides selected parameters to be 

facilitated for the test case’s fracture calibration and history matching.  

Table 8: The test case’s DoE parameters’ distributions 

Parameter Corresponding ResFrac entry Distribution 

Residual water 

saturation 
matrixcurvesets norm (0.2, 0.05) 

Residual oil 

saturation 
matrixcurvesets norm (0.2, 0.05) 

Residual gas 

saturation 
matrixcurvesets 

norm (0.03, 

0.005) 

Relative fracture 

toughness 

relativefracturetoughnesspersqrt 

fracturelengthscale 
uniform (0.5, 1) 

 

 

Figure 123: Visual of the joint plot (DoE’s coverage) between distributions of two parameters 

“Sgr” and “Sor”  

Figure 123 illustrates a functionality in i-Geo Sensing to visualize 2 distributions of users’ selected 

variables simultaneously to determine the DoE efficacy in generating data. The example presented 

in Figure 123 indicates that there needs to be further coverage for the two variables at the four 

edges of the DoE experimental surface. Figure 124 demonstrates the in-place change of a ResFrac 

settings text file(s) (inside the DoE simulation cases) for the ResFrac’s variable named 

“relativefracturetoughnesspersqrtfracturelengthscale” after processed through the i-Geo Sensing’s 

DoE module.  
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Figure 124: In-place change of ResFrac’s “relativefracturetoughnesspersqrt 

fracturelengthscale” entry 

Using the DoE module in i-Geo Sensing and the trial parameters in Table 8, a total of 140 

realization cases for the 4 conventional DoE parameters and the 50-interval-resolution sensor data 

profile are generated to serve the training of the supervised machine learning model. 100 

realization cases are selected as the initial data batch to train, and the remaining 40 realization 

cases are maintained as the additional backup to Quality Control the training performance.  

Table 9: A snapshot of one DoE case 

 

Table 9 provides an overview of a DoE case generated from the i-Geo Sensing, in terms of the 

tabular data arrangement. Column-wise and from left to right, i-Geo Senning writes in the 

following sequential order: the simulation time (unit is similar to ResFrac result files, typically in 

hours), the DoE parameters, the dynamic sensor data profiles (in the X-Y-Z order per interval 

resolution, described in Algorithm 1), and the response parameters. For illustration, Table 9 shows 

a fraction of a DoE case, as a complete DoE case for the test in 6.2 shall have 150 X-Y-Z columns 
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for the sensor data profiles (a single sensor data profile is used for the test case in 6.2, and it has a 

50-interval-resolution, henceforth 150 columns).  

6.8. Synthetic data generation, wrangling, and tabulation processing 

As a figurative description, the complete data generation and processing for the proxy modeling 

using ResFrac® as the back-end simulator is outlined in Figure 125.  Provided that the simulation 

data stored in ResFrac® for the test case serves as the base case, i-Geo Sensing accesses the 

corresponding ResFrac® folder, parses the simulation data files (i.e., settings text file and input 

text file in Figure 125) and extracts the ResFrac® entries (i.e., ResFrac® components defining a 

specific property in the simulation) that define the complete simulation.  

 

Figure 125: The semi-coupling between ResFrac® and i-Geo Sensing  

Per entry defining the simulation, i-Geo Sensing reads the name of the variable representing the 

entry, its length, and its value (an example is presented in Figure 124). To create realizations via a 

Design of Experiment study, i-Geo Sensing requests the distributions and written location from 

the users, in case an entry does not hold a single value (e.g., relative permeability curves). Using 

the distributions and write locations provided by the users, i-Geo Sensing creates and stores a 

desirable number of simulation realizations locally. Typically, the entries that hold feasible “Design 

of Experiment” properties (e.g., fracture propagation properties, fracture confinement properties, 

layer-based properties, rock physics) are located in the settings text file and not the input text file. 

Therefore, users are strongly discouraged from selecting the entries that belong to the input text 

file.  

As i-Geo Sensing utilizes the academic license of ResFrac, users need to run simulations in 

ResFrac® manually. Fortunately, i-Geo Sensing readily performs in-place changes for the Design 

of Experiment properties, therefore users are not required to use the ResFrac® builder interface to 

make necessary changes. Users are only required to use the ResFrac® builder interface to import, 

save, and run/batch run the realizations created in i-Geo Sensing [63, 65].  

After all realizations are finished in ResFrac®, users shall provide the directory in which all 

simulations for the realizations are stored locally (similar to Figure 126). i-Geo Sensing accesses 
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all realizations and reads the data files that have fracture elements and flow back/production data. 

By default, the fracture elements are stored in the “RawRes” folder, and the flowback/production 

data is stored in the “Results” folder. As fracture elements in ResFrac® are recorded at all 

simulation time steps, sensor data profile(s) are sampled from the fracture elements as described 

in 6.5 and arranged as a 1D data array. Combined with the Design of Experiment data that is stored 

previously, i-Geo Sensing generates tabular data that has the columns ordered sequentially as all 

the DoE data in the order the users request, the sensor data profile(s), and the calibration/history 

matching data. For test case 6.2, the final tabular data (main training source) has a total of 5572 

rows and 57 columns.  

 

Figure 126:  Sample of a directory in which simulation results for realizations are stored 

6.9. Supervised machine learning workflow 

Figure 127 presents the complete supervised ML workflow in i-Geo Sensing. In Figure 127, the 

“PDFinput” component represents the outcomes from the DoE module, and the grey-shaded 

components represent the intervention of the Bayes Optimizer engine (detailed in Figure 120 in 

6.6). The remaining and central component of this workflow, “Quantile Boosted Trees”, is further 

detailed in 6.9-6.13. As briefly mentioned in 6.2, 6.4, and 6.6, the “Quantile Boosted Trees” 

component serves as the proxy modeling that backs the supervised ML workflow.  

Recalled from 6.7 and 6.8, the proxy data generation process inside i-Geo Sensing returns tabulated 

dataset(s). Consequently, the ML model that backs the supervised ML workflow in i-Geo Sensing 

shall have the following characteristics. 

1. Highly robustness to tabulated data learning and prediction. 

2. Behave consistently in the existence of outliers and abnormality in data.  

3. Being resistant to the different scales between input variables (i.e., scaling effect) 

4. Highly visualizable and highly explainable. 

Under the context that pre-processing for tabulated data is conducted appropriately, classical ML 

models are proven to outperform DL models.  Besides, several classical ML models have a trait to 

be highly explainable to practitioners, in contrast to DL models which are both not highly efficient 

and hardly explainable for tabular datasets. Among classical ML models, the model family that 

satisfies all three criteria above is the Ensembled Boosted Trees algorithm family (e.g., Gradient 

Boosting Machine, XG-Boost). In i-Geo Sensing, GBM and XGB are implemented as the ML 

model to back the supervised proxy, and XGB is the default option [68, 69].  
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Figure 127: The supervised machine learning workflow 

 

Figure 128: Visual of a decision tree’s mechanism  

GBM and XGB are both foundational from decision tree models, and an example of a decision 

tree is presented in Figure 128. Essentially, a decision tree determines internal criteria formed by 

the input variable(s) (“f1” and “f4” notations in Figure 128) to split toward the predive traits of the 

output variable(s), until no further split is achievable (i.e., a leaf in Figure 128). Decision tree 

models are highly interpretable however are prone to unstable behaviors in predictive capabilities. 

To mitigate the unstable behaviors from decision trees, ensemble tree models are found, e.g., 

Random Forest (RF), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGB). 

These ensemble tree models have a higher level of robustness and are proven to extract meaningful 

traits from tabular datasets. In practice, an ensemble tree model may contain hundreds of sub-trees 
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and subsequent learning enhancements to perform a better overall learning outcome (i.e., 

bagging/voting algorithms, as implemented in RF), or to improve the learning outcome from initial 

“weak” sub-trees (i.e., boosting algorithms, as implemented in GBM/XGB).  

Although GBM and XGB have multiple hyperparameters that control their learning performance, 

i-Geo Senning preserves specific hyperparameter controls internally to avoid the “over-boosting 

effect” [68]. They include the number of estimators, fraction of sub-samples, learning rate, and the 

number of boosting rounds (specific to XGB). Except for the restriction above, the i-Geo Sensing 

code provides both a default hyperparameter selection and a customizable approach for 

hyperparameter selection from the users. 

6.10. ML experimenting in the supervised workflow  

Regardless of the ML models that are deployed for prediction, it is never guaranteed that a single 

training and validation for a model will lead to deployment. To adopt this philosophy, i-Geo 

Sensing implements ML experimenting in joint with the supervised ML workflow, using the 

MLflow API [72]. ML experimenting, which is a different concept than DoE mentioned in sub-

section 6, refers to the practice of creating, registering, storing, and deploying ML models through 

the versioning control that is similar to code versioning control. A high overview of the ML 

experimenting in i-Geo Sensing is provided in Figure 129.  

 
Figure 129: Overview of ML model experimenting design in i-Geo Sensing 

In i-Geo Sensing, the code relies on the selected model(s), the provided hyperparameter inputs (if 

any), and the number of experiments required to run. Since all ML models in i-Geo Sensing are 

regressors, i-Geo Sensing automatically manages all experiments within a local directory named 

“mlruns”, and default reloads and deploys the ML model with the optimal evaluation metric(s). 

For example, provided that a proxy in i-Geo Sensing is served for history matching purposes, i-
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Geo Sensing reloads the ML model that has its correct serving purpose and the lowest Mean Square 

Error (MSE). 

6.11. Probabilistic and continual-training capabilities of the supervised machine learning 

proxy  

Several ML proxy modeling workflows predict deterministic outputs (i.e., a single output per 

input). In i-Geo Sensing, all the ML models that are deployed from the supervised ML workflow 

predict probabilistic values based on the predictive distribution of the output variable(s). 

Embedded in both GBM and XGB as the i-Geo Sensing central proxy modeling backends, the 

supervised ML workflow always predicts a lower bound output (the 5% quantile), a mean output 

(the 50% quantile), and a higher bound output (the 95% quantile). This scheme of predictive ability 

is possible via the optimization of Pinball Loss, which is formulated as Equation 12 as a conditional 

loss function [71]. 

𝐿𝛼 =   (𝑑 − 𝑓) 𝛼 𝒊𝒇 𝑑 ≥ 𝑓, 𝐿𝛼 =   (𝑓 − 𝑑) (1 − 𝛼) 𝒊𝒇 𝑑 < 𝑓        (12) 

Besides the probabilistic predictive ability as mentioned above, i-Geo Sensing leverages the geo-

location data at the received time via a technique named continual training (which occurs during 

the deployment phase of the supervised ML workflow). The synthetic environment is designed to 

reflect the reality that geo-location data, once received, becomes ground-truth data that can be used 

as training data. Therefore, i-Geo Sensing leverages this benefit to perform the following during 

the deployment phase of the supervised ML workflow.  

1. As soon as the geo-location data is received, the ML model(s) inside the supervised ML 

workflow is deployed for prediction. 

2. An immediate computation of the evaluation metric between the prediction and ground-truth 

response data is performed.  

3. In case the evaluation metric exceeds a tolerance, the incident is reported to i-Geo Sensing.  

4. The geolocation data and ground-truth response data are joined with previously trained data, 

and the ML model(s) are re-trained and registered for the upcoming time steps.  

Typically, continual training is performed at the early time steps, since the deployed ML model(s) 

are expected to encounter data drift in reality. As enhancement in continual training progresses, 

the re-trained ML model(s) shall adapt to reality and improve their dynamic performance at the 

later time steps. Consequently, the number of incident reports to i-Geo Sensing decreases over the 

lifetime of deployment.  

6.12. Refinement of the supervised proxy inside i-Geo Sensing 

In i-Geo Sensing, both fracture calibration and history matching proxies that back the supervised 

ML workflow are sequentially refined to optimize their prediction validity. The refinement 

progresses through three stages: the initial deterministic model (first round), the optimized quantile 

model (second round), and the optimized & continual-trained quantile model (final round). 

Provided the test environment for the supervised ML workflow in 6.2, Figures 130, 131, and 132 

present the refinement for the fracture calibration proxy which predicts the BHP as an output 

variable from the following input variables: geo-location data received time and the sensor data 

profiles. Recalled from 6.7, the total number of input variables is 51.  
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Figure 130: BHP proxy, first-round refinement 

 

Figure 131: BHP proxy, second-round refinement 

 

Figure 132: BHP proxy, final-round refinement 

In Figures 130-132, the x-axis presents the time (dimensionless), and the y-axis presents the BHP 

(dimensionless). i-Geo Sensing automatically pre-processes all input and output variables before 
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training any ML models, commonly via standardization/normalization/scaling methods, 

Henceforth, it explains the notation “normalized” and the y-axis scale provided in Figures 130-

133. Figures 130-133 validate that the supervised ML workflow progressively improves to follow 

the physical behavior of the output variable. Compared to Figure 130, Figure 131 demonstrates 

that the quantile-loss ML model in i-Geo Sensing (specifically in this test, XGB) narrows the 

differences between the ground-truth output data and the prediction confidence (the 95% 

confidence in Figure 131 at the early time). Compared to Figures 130 and 131, Figure 132 

demonstrates that continual training brings benefits later in which there is a drastic drop in the 

output variable (the 5% confidence in Figure 132). 

The evaluation metric, MSE, is progressively reduced through the optimization rounds from 

0.0221 to 0.01382 and eventually to 0.0052 for the first, second, and final rounds, respectively. 

Figures 133, 134, and 135 present the refinement for the history matching proxy which predicts 

the oil production rate as an output variable from the following input variables: BHP (predicted 

from the fracture calibration proxy) and the DoE parameters. Recalled from 6.7, the total number 

of input variables is 5. 

In Figures 133-135, axes have similar representations as Figures 130-132, and similar observations 

are deducted from them compared to Figures 130-132. Compared to Figure 133, Figure 134 

demonstrates that the quantile-loss ML model in i-Geo Sensing (specifically in this test, XGB) 

narrows the differences between the ground-truth output data and the prediction confidence (the 

95% confidence in Figure 134 at the early time). Compared to Figures 130 and 131, Figure 132 

demonstrates that continual training brings benefits later in which there is a drastic increase in the 

output variable (the 95% confidence in Figure 135 at the later time). The 95% confidence is greatly 

improved in the final round refinement, and this improvement covers the failure to predict the oil 

rate at the later times (compared to the previous refinement rounds).  

The evaluation metric, MSE, is progressively reduced through the optimization rounds from 

0.16609 to 0.17814 and eventually to 0.01 for the first, second, and final rounds, respectively. 

 

Figure 133: Oil rate proxy, first-round refinement 
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Figure 134: Oil rate proxy, second-round refinement 

 

Figure 135: Oil rate proxy, final-round refinement 

6.13. Supervised workflow explainability  

As mentioned in 6.9, GBM and XGB are implemented as the backbone of the supervised module 

in i-Geo Sensing. To exceed the explainable capability of these models in i-Geo Sensing, Shapley 

Additive Explanation (referred to as SHAP [70]) is embedded as the additional criteria. In i-Geo 

Sensing, there are two levels of mode explainability, as outlined in Figure 136.  

 
Figure 136: Different levels of model explainability in i-Geo Sensing 
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The first level of explainability is the training-based level [70]. Since GBM and XGB are used in 

i-Geo Sensing, this level of explainability is directly extracted via the ranking plot for Key 

Performance Indicators (presented in Figures 137a and 137b for the fracture calibration task). In 

Figures 137a and 137b, the x-axis presents the absolute value of an input variable’s weight to the 

decision by the boosted trees, and the y-axis presents the names of all input variables. Both Figures 

137a and 137b indicate that time is a dominant factor, however, this phenomenon is observable in 

case the sensor data profile(s) are not used.  

Henceforth, the interest in the model’s explainability comes from the other input variables, i.e., the 

variables forming the data sensor profile(s). The input variables for the data sensor profiles in i-

Geo Sensing are encoded in the format of the dimension name followed by the resolution interval 

number. In Figures 137a and 137b, the encoding means that the z-dimension data is used (and as 

described in 6.3, this dimension discloses information about the fracture aperture). Although there 

is not a clear pattern for the base model (Figure 137a), the pattern in Figure 137b is insightful. The 

top-ranked profile variables are z0 and z1, indicating that the most-left edge of the fracture 

contributes the highest impact to the BHP.  The second-top-ranked profile variables are z20 , z17, 

z16, z23, z21, z31 , and z35. These profile variables are located approximately in the middle of the 

propagated fracture, indicating that the central area of the fracture contributes the second-highest 

impact to the BHP.  

Albeit different refinements (as in 6.9) may change the order of the resolution interval indexes 

slightly, this observation complies with the fracture propagation physics. At the beginning of 

propagation, the edges of the fractures tend to open because of an increase in BHP. During the 

middle-late propagation, the central area of the fractures, in which the proppant is primarily settled, 

holds the fracture pressure and eventually the BHP. 

 

Figure 137a: Key Performance Indicators, the base BHP model 
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Figure 137b: Key Performance Indicators, the final BHP model 

Figures 138a and 138b present the Key Performance Indicators for the model that is responsible 

for the history-matching task). The axes and their representations in Figures 138a and 138b are 

similar to Figures 137a and 137b. For the history-matching task, the model still complies with the 

physics during the well production phase, however, the explanation is more straightforward 

compared to the fracture-calibration task. BHP plays a major role in controlling the oil rate after 

the proppant injection is finished and the well is no longer an injector. Furthermore, the relative 

permeability variables contribute more than the fracture propagation variable during production. 

Therefore, the ranking for the variable “relative fracture toughness” is lower compared to the 

relative permeability variables, and this observation is reflected better in the final model (Figure 

138b, in which relative fracture toughness ranked the least important).  

 

Figure 138a: Key Performance Indicators, the base oil rate model 
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Figure 138b: Key Performance Indicators, the final oil rate model 

The second level of explainability is the inference-based level [70]. Different from the training-

base level which extracts the feature importance after the model is trained, the inference-based 

level extracts the influence direction that a variable embeds into the model when the model is 

deployed for a blind test or a new input sample. The influence direction in the context of i-Geo 

Sensing includes both the direction and the magnitude.  

i-Geo Sensing provides the interpretation for the second-level explainability through two types of 

plots: the bee-swarm plot (Figures 139a and 140a) and the waterfall plot (Figures 139b and 140b). 

Figures 139a and 139b present the second-level explainability for the fracture calibration proxy. 

Per the definition of the second-level explainability, both the fracture calibration and history-

matching proxies are readily trained using the datasets in 6.7 and are now deployed for the 

simulation data in the synthetic environment defined in 6.2. 

In Figure 139a, the x-axis presents the mean SHAP impact value, and the input variable contributes 

to the model’s predictive decision of the output variable (in this case, BHP and oil production rate). 

A similar dominance of the time variable is observed in Figure 139a, as this is readily observed in 

Figures 137a and 137b. A closer look at the “Feature value” color map, the direction of impact for 

the time variable is explained as follows. When the time value is small (blue dots), it positively 

influences the BHP, and the magnitude of the influence is moderate.  When the time value is high 

(magenta dots), it negatively influences the BHP, and the magnitude of influence is lower. A 

reflection of the reservoir dynamics in the synthetic environment discloses a similar description. 

Within the synthetic environment, at the early times, a change in time value determines a moderate 

change in the BHP (since proppant injection and fracture propagation occur at the early times). At 

later times when the well enters the producer mode, a smaller or larger change in time value 

fluctuates the BHP slightly. Figure 139a, henceforth, highly correlates with Figure 108 in which 

the BHP plot from ResFrac® simulator is presented.  
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Figure 139a: – SHAP’s bee-swarm plot for the BHP model 

Figure 139b provides a quantitative model inference for the fracture calibration task. The gist 

of Figure 139b reveals the contribution of each input variable to the expectation shift of the 

model’s prediction from its baseline prediction (reflected by the expected value “E(x)” in the 

x-axis). Figure 139b emphasizes the importance of the fracture central area (i.e., the input 

variables z29, z14, and z16), as this area almost balances the expectation shift of the model’s 

prediction from its baseline to the expectation shift caused by time.  

Similar interpretations can be deducted from Figures 140a and 140b, which present the second-

level explainability for the history-matching proxy. An additional insight from Figures 140a 

and 140b is that, under the synthetic environment, the DoE parameters play an almost 

insignificant role in the predictive behavior of any models. Henceforth it is strongly suggested 

that, in the case a user requests these DoE parameters to the i-Geo Sensing, he/she may need 

to re-consider a better selection to interpret the dynamics of the studied reservoir.  
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Figure 139b: SHAP’s waterfall plot for the BHP model 

 

Figure 140a: SHAP’s bee-swarm plot for the oil rate model 

 

Figure 140b: SHAP’s waterfall plot for the oil rate model 
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7. SUCCESSFUL FINAL FIELD TESTING (PILOT) IN THE EOG RESOURCES 

OPERATED WELL IN NEW MEXICO 

Summary 

This section of the report details the successful field testing of a novel "Smart Microchip 

Proppants" technology for high-precision diagnostics of hydraulic fracture networks. Developed 

under Department of Energy award DE-FE0031784, the project was led by the University of 

Kansas in partnership with UCLA, MicroSilicon Inc., and field trial operator and cost share 

provider EOG Resources Inc.  

The pilot test, conducted in August 2024 in Lea County, New Mexico, validated the ability of the 

Smart Microchip technology to provide unprecedented high-resolution insights into proppant 

placement and fracture mapping. The success of this field trial marks a major milestone in the 

development of next-generation direct fracture diagnostic techniques and opens transformative 

possibilities for characterizing and managing subsurface systems. 

7.1 Pilot Testing Details 

 The "Smart Microchip Proppants" technology leverages Smart Microchips that are injected during 

a small-scale hydraulic fracturing. These engineered Microchips are designed to withstand the 

harsh downhole environment. The built specialized downhole tool is later deployed to remotely 

power the embedded microchips and receive their transmitted signals. This enables detailed 

mapping of proppant placement and fracture geometry at a resolution of one foot, an unparalleled 

level of detail compared to conventional fracture diagnostic methods. 

Field Testing Methodology The field trial was executed in the Capella BOP Fed #1 well operated 

by EOG Resources in Lea County, New Mexico. Fig.141 is the satellite imagery of the pilot testing 

site. 

The testing process involved the following key steps: 

1. Site Preparation: The well was deepened via a workover rig to the target stimulation 

interval of 8765'-8800' in preparation for hydraulic fracturing and Smart Microchip 

injection. 

The workover rig was deployed on August 13, 2024, to prepare the well for the trial. EOG's 

operation team performed several crucial steps, including pulling tubing, deepening the well by 

drilling out the shoe, and running a packer and work string. The open hole was drilled with a 4.75" 

bit, targeting the interval from 8765' to 8800' for hydraulic fracturing and smart Microchip 

injection.  

Figure 141(a) and (b) illustrate the wellbore diagram before and after deepening for the pilot 

testing.  
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Figure 141: satellite imagery of the pilot testing site (Capella BOP Fed #1) 
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Figure 141: (a: left) and (b: right) - the wellbore diagram before and after deepening for the pilot 

testing. 

2. Small-scale hydraulic fracturing and Smart Microchip Injection:  

Hydraulic fracturing was conducted on August 19, 2024. Over 200 lab-verified Smart Microchip 

samples were injected during the stimulation, which involved pumping 56 barrels of fluid at rates 

up to 2.2 barrels per minute. Breakdown pressure was approximately 3700 psi, and the well was 

shut in at 3300 psi. 

To increase robustness against misalignment during deployment, two types of Printed Circuit 

Boards (PCBs) were utilized: 

1. First Version: Designed and injected for general alignment robustness. 

2. Second Version: Featured an upgraded Surface-Mount Device (SMD) inductor serving as 

the coil. 

The resonance frequencies of the microchips, specifically at 13.56 MHz and 40.68 MHz, were 

verified using a Vector Network Analyzer (VNA). Prior to deployment, all samples were validated 

using a spectrum analyzer and signal source to ensure optimal performance and reliability. 
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The epoxy encapsulating the microchips was custom ordered to withstand high temperatures and 

high pressure, ensuring durability under the well conditions. Over 100 samples of each Smart 

Micochips PCBs version were injected into the formation. 

Injection Process Details: 

• The injection rate was gradually increased to 2.2 barrels per minute (bpm). 

• A total of 56 barrels (bbl) of fluid was pumped, which included 5 bbl more than the 

calculated well displacement. 

• The injection pressure was carefully controlled, avoiding a maximum surface pressure of 

4,000 psi to ensure that the bottom hole pressure remained below 9,000 psi. 

The details of the HF job and operation are illustrated in Figure 142. 

 

Figure 142: Smart Microchips ready for the injection (200 microchips were injected) (left), Shut-

in pressure of 3300 psi (the middle), and Recorded 3700 psi formation break-down pressure 

during the hydraulic fracturing (right) 

3. Extended Shut-In Period: To rigorously test microchip resilience, the well was left shut-in 

for ten days before initiating chip activation and data collection on August 28, 2024. 

On August 19, 2024, the hydraulic fracturing operation was successfully completed, and Smart 

Microchips were injected into the formation. Following this, a ten-day silence period was 

implemented to allow the well and the system to stabilize fully before proceeding with the 

activation of Smart Microchips. This silence period was a deliberate measure to ensure that the 
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microchips were exposed to the harsh downhole environment for a sufficient duration, providing 

an opportunity to validate their functionality and durability. 

The decision to delay the activation of the Smart Microchips was made to address potential 

concerns regarding their long-term survivability. Activating the microchips immediately after 

injection would not have provided a complete demonstration of their ability to withstand extreme 

conditions over time. By scheduling the activation for August 28, 2024, the team ensured that the 

microchips endured realistic downhole conditions, which allowed for a more robust evaluation of 

their performance and resilience. 

4. Downhole Tool Deployment: A custom-designed downhole tool, encased in 3-5/8" tubing, 

was deployed on slickline to TD at 8800 ft. The tool was raised and lowered in three 50 ft 

sweeps to activate and collect data from the Smart Microchips. 

4.1 Preparation Phase 

The preparation for the deployment involved assembling and configuring key components to 

ensure a smooth operation. The chassis was securely loaded into a 3 5/8” pipe, a critical step in 

preparing the downhole tool for deployment. The lower crossover was torqued into place using 

spanner wrenches, providing a firm and reliable connection. At the top end of the assembly, a 

small sub equipped with threads and O-rings was installed, ensuring a final pressure seal. This sub 

also featured a thread profile supplied by EOG, designed for easy attachment to the rope socket on 

the slickline unit. 

Figure 143 illustrates the details of the downhole tool preparation for the field deployment.  

 

Figure 143: The chassis was loaded into the 3 5/8” pipe (left), and the lower cross-over was 

torqued in place with spanner wrenches. (the middle), and at the top-end, we provided another 

small sub with threads and o-rings that can be torqued in place and provide the final pressure 

seal. At the top of that sub is a thread whose profile was provided by EOG for attachment to the 

rope socket on slickline unit. (right) 
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4.2 Transportation to the Site 

The well site was located approximately 30 miles east of Carlsbad, New Mexico, accessible only 

by a dirt road. The journey to the site was challenging due to the poor condition of the road, which 

caused several vehicles to become stuck and require towing on two separate occasions. Despite 

these difficulties, the team successfully reached the wellhead and began the setup process   

(Fig.144). 

 

Figure 144: Downhole tool transportation to the wellsite 

4.3 Setup and Assembly 

Upon arrival, the slickline crew initiated their preparations by verifying the rope socket thread and 

mating components on the MicroSilicon tool, ensuring all connections were secure and properly 

aligned. The downhole tool was successfully activated during this phase.  

However, a minor challenge arose when it was discovered that the lubricator on-site was designed 

for a 2 7/8” tool, whereas the deployed tool had a diameter of 3 5/8”. After consulting with the 

EOG operations team, it was determined that the well could remain open for a brief period without 

risk, allowing the lubricator to be adjusted for proper fit. The lubricator was then carefully placed 

above the tool, which was lowered into the well and securely fastened (Fig.145). 

 

Figure 145: Downhole Tool Setup and Assembly Onsite 
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4.4 Well Deployment 

The deployment process began with the tool being lowered into the well using the lubricator. As 

the lubricator was opened, the wellhead emitted a noticeable "hiss," indicating air was being drawn 

into the well. This sound confirmed the safety of proceeding with the deployment.  

Once the tool was running, the crew monitored the wire and periodically checked the pressure 

gauge to ensure there was no buildup of internal pressure. The descent slowed as the tool 

approached the total depth (TD) of 8,800 feet, with the weight on the wire signaling that the tool 

had reached the bottom (Figures 146 and 147). 

 

Figure 146: Well deployment of the downhole tool 
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Figure 147: Well deployment of the downhole tool 

4.5 Activation of Smart Microchips and Signal Reception 

The Smart Microchips were activated successfully during the deployment process. The tool was 

maneuvered in the well with sweeps of 50 feet up and down, each lasting approximately 12 

minutes. After completing three such sweeps, the crew pulled the tool out of the well and 

disconnected it. Upon inspection, the tool's bottom was found to have some mud, but the fiberglass 

antenna housing remained completely undamaged, confirming the structural integrity of the tool 

(Figure 148). 

 

Figure 148: Downhole tool after the operation is complete. 
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Further analysis revealed no Smart Microchips present in the mud, suggesting that all the 

microchips had successfully entered the fractures as intended. When the rope-socket joint was 

opened, a page of memory was successfully read, demonstrating that signals had been recorded 

during the deployment. Data was downloaded from the tool, and the signal reception was verified, 

confirming the effectiveness of the operation. 

On the activation date, August 28, 2024, the Smart Microchips transitioned from a zero-energy, 

inactive state to a fully powered and operational state (Figure 149). During this activation process, 

the microchips were remotely powered and began transmitting signals as designed. This transition 

marked a significant milestone, as it demonstrated the microchips' ability to function effectively 

in challenging environments while maintaining their structural integrity and operational 

capabilities. The ten-day silence period and the subsequent activation of the Smart Microchips 

successfully validated their robustness and reliability. This methodical approach ensured that the 

microchips could perform as intended under demanding conditions, addressing any potential 

concerns about their functionality and long-term durability. 

 

Figure 149: Transition of Smart Microchips from Passive to Active State: Remote Power 

Activation and Signal Transmission 

7.2 Smart Microchip Signal Reception and Analysis  

7.2.1 Successful Signal Reception from Smart Microchip Proppants in the Field 

The activation of Smart Microchips in the field yielded significant results, confirming their 

successful placement in the created hydraulic fractures. Signals were detected during multiple 

sweeps of the downhole tool, validating the robust performance of the microchips under field 

conditions. Notably, the microchips were observed at the same location during some sweeps but 

not consistently in every sweep. This variation was attributed to the antenna's directional 

limitations and potential tool rotation during operation. 

A spectrogram analysis revealed three main clusters of signals corresponding to three primary 

hydraulic fractures. The y-axis represented frequency, while the x-axis denoted time, highlighting 

the distribution and strength of the detected signals (Figure 150). 
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Figure 150: The Most Exciting News: We Received Signals!!!. Three main clusters of signals 

transmitted by the Smart Microchips were detected, indicating the presence of three primary 

hydraulic fractures. 

7.2.2 Interpreted Smart Microchips’ Signal Results 

The initially filtered signals from the Smart Microchips demonstrated strong correlations across 

eight sweeps. Each sweep corresponded to a different angular position of the downhole tool, 

enabling comprehensive 360-degree data capture (Figure 151).  

This thorough coverage confirmed the successful placement of the microchips within the hydraulic 

fractures. The signal strength, indicative of a high concentration of microchips, provided further 

evidence of their distribution within the fractures. 
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Figure 151: Initially filtered frequency versus depth data (y-axis: Frequency, x-axis: Depth) 

for all eight sweeps. 

The processed signals from Smart Microchips highlight their amplitude versus depth for all eight 

sweeps (Figure 152). This data demonstrates strong correlations and consistency, confirming the 

successful activation and functionality of the microchips. The consistent patterns reveal hydraulic 

fractures with high precision, achieving detailed characterization with an accuracy of just a few 

feet. This level of detail signifies a breakthrough in high-resolution hydraulic fracture 

characterization. 

 

Figure 152: Processed signals amplitude versus depth for all eight sweeps 
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The processed signals analyzed through the iGeoSensing platform identify key hydraulic fractures. 

Using Chebyshev Type I low-pass filters, bandwidth frequency analysis, and adaptive depth 

filtering, three main signal clusters were detected at depths of 8,766 ft, 8,780 ft, and 8,788 ft. These 

clusters correspond to the primary hydraulic fractures, with the strongest amplitude observed in 

the third interval, indicating a higher concentration of microchips (Figure 153). 

 

Figure 153: An example of raw and processed signals (Left and right) for one of the sweeps 

These fractures are typically represented as homogeneous and simple in most fracture diagnostic 

tools and models, especially for a few feet stimulated intervals. 

These insights are typically difficult for operators to achieve, as indirect fracture measurements 

often fail to provide this level of high-resolution detail.  
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Such details could not have been observed or diagnosed previously without obtaining core samples 

from the hydraulically fractured well which is very unlikely to be obtained in normal operations. 

However, this is now possible to get this valuable information at less than 1 ft resolutions with our 

Smart Microchips technology. 

To demonstrate the importance of the data generated by Smart Microchips, a "base" high-

resolution fracture and numerical simulation model was developed. This model was created using 

the ResFrac Simulator, seamlessly integrated with iGeoSensing as its backend. 

The models were built using a fine-scale grid size of 1x1x1 foot, enabling simulations of a 

100x100x100-foot reservoir volume, amounting to one million grid blocks. The fluid model 

applied to the reservoir was a saturated black oil model, ensuring realistic fluid behavior. The 

open-hole hydraulic fracture spanned depths between 8,765 feet and 8,800 feet. 

The pumping schedule was designed to align with field data, functioning as a mini-fracture 

operation. This schedule involved injecting a total slurry volume of up to 55 barrels at a rate of 2.2 

barrels per minute to deploy the microchips. The hydraulic fracture properties included a fracture 

half-length (Xf) of 10 feet, fracture conductivity (FC) ranging between 8,236 and 8,312 millidarcy-

feet, and fracture height (Hf) of 35 feet.  

The simulation accounted for various operational phases, including the mini-fracture, a shut-in 

period, and field-informed flow-back stages. Critical fracture geometry parameters, such as 

fracture toughness (K), were made adjustable through iGeoSensing’s advanced back-end module, 

allowing for fine-tuning and precise modeling. 

The base model indicated a homogeneous distribution of the stimulated rock volume across the 

entire treated interval. This is typically the standard output reported by simulation engineers for 

hydraulic fracturing jobs. However, such models may not fully or accurately capture the 

complexity of actual hydraulic fractures, potentially leading to significant overestimations or 

underestimations of the predicted flow behavior. 

However, the Smart Microchips signals indicate that fracture growth is primarily restricted to the 

active and detected depth intervals where hydraulic fractures are generated, with signals detected 

at approximately 8766 ft, 8780 ft, and 8788 ft. This suggests non-uniform fracture propagation 

across the entire stimulated interval. A similar phenomenon was observed in another project, where 

core samples from a hydraulically fractured well revealed heterogeneous fracture initiation. This 

included both bi-wing and complex fracture networks within a few feet intervals, which typically 

cannot be characterized using conventional fracture diagnostic tools and are often treated as 

homogeneous in hydraulic fracturing simulations. 

The updated model (Figure 154) leveraged Smart Microchip data to showcase heterogeneous 

proppant distributions, replacing the simplified homogeneous assumptions of the base model. The 

transmitted signals from microchips allowed adjustments to the fracture model, creating a more 

realistic depiction of stimulated intervals. This advanced modeling demonstrates the value of 

integrating Smart Microchip data for accurate fracture mapping. 
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Figure 154: Base model: Stimulated interval profile without knowing the Smart Microchips 

signals shows homogenous distributions of proppants (left), Simulated heterogeneous proppant 

distributions in the updated model, as observed from the Smart Microchips, transmitted signals 

(right), and fracture toughness (right) for the high-resolution updated model 

New diagnostic plots generated from the iGeoSensing platform highlighted the differences 

between the base model (without Smart Microchip input) and the updated model. Dimensionless 

flowback type curves demonstrated how microchip-derived data significantly impacted fracture 

characterization. The plots showed that higher initial fracture toughness influenced flowback 

behavior, with its effect diminishing over time. This diagnostic approach underscores the 

importance of incorporating advanced data analytics into hydraulic fracture modeling. 

 

Figure 155: Fracture geometry profiling diagnostic by dimensionless flow back type curves 
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 In summary, the field trial achieved a critical milestone: the successful transmission and reception 

of data signals from the downhole Smart Microchips. The key outcomes were: 

1. Smart MicoChips Signal Detection: Raw signal data revealed three distinct clusters of 

microchip transmissions, indicating the presence and location of hydraulic fractures at 

specific depth intervals. The consistent signal detection across multiple tool sweeps at 

various orientations confirmed the effective placement and survivability of the microchips. 

2. Smart MicoChips Data Processing and Modeling: The raw microchip data was processed 

and integrated into a physics-informed AI modeling platform called iGeoSensing. Detailed 

analysis of signal amplitudes enabled the resolution of proppant distribution and fracture 

geometry at each depth interval at a scale of 1ft which revealed significant vertical 

heterogeneity in the proppant distribution, a level of detail previously obtainable only 

through extensive coring which is very unlikely to obtain during normal operation. 

Conventional fracture diagnostics typically lack the resolution to capture such fine-scale 

variability. 

3. Diagnostic plots based on Smart MicoChips data: The Smart Microchip data was used to 

develop new diagnostic tools, including fracture geometry profiles and dimensionless 

flowback curves. These powerful visualizations illustrate the transformative impact of 

integrating high-resolution proppant distribution Smart Microchips data into fracture 

modeling and simulation. 

7.3 Future Applications and Alignment with DOE Priorities 

The successful field validation of the Smart Microchip Proppants technology has opened up a wide 

horizon of potential applications that align with the strategic priorities of the Department of 

Energy's Office of Fossil Energy and Carbon Management: 

1. Near wellbore Fracture mapping: Enhance characterization by enabling Smart Microchips 

to communicate with each other, amplifying power and signal strength. 

2. CCUS (Carbon Capture, Utilization, and Storage): Upgrade Smart Microchips with 

chemical sensing capabilities to detect low concentrations of CO2 in monitoring wells. This 

early detection of leakage minimizes contamination of underground sources of drinking 

water (USDWs) and supports compliance with DOE and EPA Class VI permit 

requirements.  

3. Hydrogen, CO2, and Natural Gas Transmission Leak Monitoring and Surveillance: 

Enhance monitoring and surveillance capabilities for detecting leaks and emissions in 

hydrogen, CO2, and natural gas transmission systems with AI-powered unmanned aerial 

surveillance equipped with Smart Microchip chemical sensors. 

4. Natural Hydrogen Production and Underground Storage Integrity: The next generation of 

Smart Microchips, equipped with chemical sensing capabilities, can detect gases such as 

CH4, CO2, and H2 in the wellbore. These microchips can be integrated with downhole 

membranes for efficient bottom-hole separation of H2 from impurities.  

5. Critical Mineral Characterization: Integrating Smart Microchips with advanced EPR, 

hyperspectral, and THz spectroscopy could revolutionize in-situ mineral characterization 

for optimized critical mineral recovery. 
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8. CONCLUSION  

The resoundingly successful field trial of the Smart Microchip Proppants technology represents a 

major leap forward in our ability to understand and characterize subsurface fracture systems and 

proppant distribution. By enabling proppant mapping and fracture diagnostics at the scale of 

individual feet, this novel technology has unlocked an unprecedented level of reservoir insight. 

The results of this field test strongly validate Smart Microchips' ability to withstand harsh 

downhole conditions while successfully transmitting valuable data to the surface as a novel direct 

fracture mapping technology. By integrating this granular data into the open-source, physics-

informed, AI-empowered iGeoSensing modeling platform, comprehensive signal processing was 

achieved. These signals were seamlessly converted into meaningful fracture characterization and 

flow simulation outcomes through its backend simulators. This approach uncovered previously 

unresolvable heterogeneity in hydraulic fracture geometry and proppant placement, providing 

unprecedented insights into the complexity of hydraulic fracturing. 

The foundational capabilities demonstrated in this field trial will serve as a launch pad for the 

development of next-generation subsurface diagnostic technologies aligned with the United States 

evolving energy and resource priorities. 

With further refinement and adaptation, Smart Microchip technology is poised to play a 

transformative role. This includes enhancing near-wellbore fracture mapping, improving wellbore 

integrity, and ensuring the security of geologic carbon storage. Additionally, their role in 

optimizing the recovery of critical minerals, pipeline integrity, and hydrogen production, storage, 

and transport integrity is expected to be game-changing. 

This comprehensive capability underscores the versatility and transformative impact of Smart 

Microchips, making them an indispensable technology for addressing modern energy challenges. 
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APPENDIX A: EOG CORE SAMPLES AND LOGS FROM A PLUG-BACK PILOT 

BOYD X STATE X STATE #15H – API 30-015-42223-00-00, PADDOCK FORMATION. 

 

 

Figure A.1.2507-2510 ft interval 

 

Figure A.2. 2507-2510 ft interval 
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Figure A.3 2507-2510 original core and logs in box_IMG_5627 
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Figure A.4 2597-2600 
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APPENDIX B 

BOYD STATE #15H (PADDOCK FORMATION) 

QUALITY ASSURANCE AND MINERALOGY 

 

Table B.1: Mineralogy testing of the Paddock Formation 
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Figure B.1 2507.50 feet (Top and Side View) 

 

- : ) 
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Figure B.2 2507.50 feet (Top and Side View) 

 

  2507.75 feet (Top and Side View ) 
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Figure B.3. 2508.25 feet (Top and Side View) 

 

  2508.25feet (Top and Side View ) 
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Figure B.4. 2808.50 feet (Top and Side View) 

 feet (Top and Side View ) 
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Figure B.5. 2808.75 feet (Top and Side View) 

 2808.75 feet (Top and Side View ) 
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Figure B.6. 2809.50 feet (Top and Side View) 

 :  2809.50 feet (Top and Side View ) 



 

161 
 

 

Figure B.7. 2509 feet (Top and Side View) 

 2509.75 feet (Top and Side View ) 
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Figure B.8. 2597 feet (Top and Side View) 

 2597.10 feet (Top and Side View ) 
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Figure B.9. 2597.4 feet (Top and Side View) 

 2597.40 feet (Top and Side View ) 
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Figure B.10. 2597.9 feet (Top and Side View) 

2597.90  feet (Top and Side View ) 
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Figure B.11. 2600.2 feet (Top and Side View) 

2600.20  feet (Top and Side View ) 
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Figure B.12. 2600.6 feet (Top and Side View) 

2600.60  feet (Top and Side View ) 
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Figure B.13. 2600.9 feet (Top and Side View) 

2600.90  feet (Top and Side View ) 
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APPENDIX C 

SHEAR AND COMPRESSIONAL VELOCITY 

TESTING PROCEDURES AND RESULTS  

BOYD STATE #15H (PADDOCK FORMATION) 

Dynamic moduli can be derived from sonic measurement. In this approach, compressional 

velocity, Vp, and shear velocity, Vs, are measured with a Pulse Transmission technique with 

nominal velocities of 300-500 KHz. The bulk density of each core sample is measured and the 

Young’s Modulus, E, Shear Modulus, and Poisson’s Ratio, n, are calculated from the following 

equations. 

 

The procedures for conducting laboratory shear and compressional velocity tests are, for the most 

part, relatively standardized. The assembled sample and instrumentation fixtures are installed in a 

pressure vessel. After this, typical procedures might include the following steps: 

• The core plugs are cleaned, evacuated, and allowed to come to thermal and vapor equilibrium 

with the atmosphere. 

• The sample is then saturated with 25,000 ppm NaCl brine under a pressure of 1,000 psi for 12 

hours. 

• The samples are then placed in a pressure vessel, confining pressure and pore pressure 

increased to 250 psi for five minutes and then released. 

• Velocities are measured using the Pulse Transmission technique. The nominal frequency of 

the measurements is 500 KHz for the compressional wave velocity and 350 KHz for the shear 

wave velocity. 
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Table C.1. Compressional and Shear Wave Velocity Analysis 
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Figure C.1: Dynamic E vs Static E  
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APPENDIX D 

BOYD STATE #15H (PADDOCK FORMATION) 

UN-PROPPED CRACK TESTING 

 

Figure D.1: Un-Propped Crack Test: Paddock Core Set 2, ID-11, (2600.20’) 
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Table D.1: Procedures: Paddock Formation, Core Set 2, ID-11 (2600.20 ft) 

 

Table D.2: Laboratory Data: Paddock Formation, Core Set 2, ID-11 (2600.20 ft) 
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Appendix E Boyd State #15H (Paddock Formation) 

Fluid Sensitivity Testing 

 

Figure E.1: Fluid Sensitivity Test: Paddock Formation, Core Set 1, ID-7 (2509.75’) 
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Table E.1 Procedures: Boyd State #15H (Paddock Formation) Core Set 1, ID-7 
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Table E.2: Lab Data: Boyd State #15H (Paddock Formation) Core Set 1, ID-7 
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Figure E.2: Embedment Test: Paddock Formation, Core Set 1, ID-7 (2509.75’) 

 

Table E.3: Procedures: Embedment Test: Core Set 1, ID-7 (2509.75’) 
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APPENDIX F: 

CONSTRUCTING MULTIPLE SYNTHETIC FRACTURE NETWORK MODELS TO 

BUILD SYNTHETIC CORES USING 3D PRINTING TECHNOLOGY TO TEST THE 

FUNCTIONALITY OF SMART MICROCHIPS FOR FRACTURE MAPPING IN THE 

LAB 

Synthetic fracture networks are designed based on the 2D scanned core images (JPG format) of 

fracture networks subsurface at different measured depths (9490-9493 ft, 9560-9563 ft, 9566-9569 

ft) and different levels of geometry complexity. To generate inputs for the i-Geo Sensing, the 

format of the input data is required to be Cartesian coordinates or transformable to Cartesian 

coordinates (preferably TXT format). As a result, additional image processing steps are further 

conducted to achieve the desirable TXT input format.  

Core samples’ images are imported and transformed into grayscale, which is further capable of 

separating irrelevant pixels from fracture networks’ pixels (i.e. “fractured” pixels). In a gray-sale 

image, pixels are scaled in their intensity values, which vary in a scale between 0-255. Initial 

analysis for a gray-scale image typically starts with its histogram of pixel intensity. The separation 

process is performed by Otsu image segmentation. Otsu algorithm chooses the optimal value from 

an image’s histogram of pixel intensity and further detaches the image into two fragments: the 

main fracture network (which has pixel intensity 255 - white) and irrelevant pixel body (which has 

pixel intensity 0 - black). Albeit Otsu segmentation can extract the closest version to the desired 

base fracture networks, supporting algorithms are necessary to extract the desirable and complete 

synthetic fracture networks. The supporting algorithms include pixel filling (i.e. filling fractured 

pixels into desired voids), pixel sampling (i.e. dividing a fracture network into smaller fragments 

to perform more effective pixel filling), and pixel tracking (i.e. recovering a group of fractured 

pixels in a fracture’s network fragment). 

 Desirable base fracture networks extracted from the scanned core images are maintained as 2D 

images (PVG format). Under the assumption that the propagation of a fracture network is uniform 

along the remaining dimension, commercial 3D editing & printing software as Blender® conducts 

extension of the 2D imaging base fracture networks into 3D imaging fracture networks (STL 

format).  

The stored format of 3D imaging fracture networks is capable of being seamlessly processed from 

Blender® and randomly sampled to create synthetic input geo-sensor data from Smart Microchip 

Proppants as Cartesian coordinates. Figure 4 provides the projected 2D overviews of synthetic 3D 

imaging fracture networks used in this study. For design purposes, the synthetic fracture networks 

in Figure F.2 increase complexity from left to right. The 1st synthetic network (left) is composed 

of 4 fractures with almost uniformity in shape. The 2nd synthetic network (middle) is composed of 

3 fractures and one smaller network with moderate non-uniformity in shape and low complexity 

in branching. The 3rd synthetic network (right) is composed of 1 fracture and two smaller networks 

with non-uniformity in shape and high complexity in branching. 
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Figure F.1: Projected 2D overviews of the synthetic fracture networks 

 

Figure F.2: 3D synthetic fracture network from core sample 2 

The following final setup of the complex fracture geometry is 3D printed using the high-

temperature material and will be used for the next level laboratory testing of MicroChips with 

varying sizes. The 3D-printed synthetic core dimensions are 0.115 m × 0.115 m × 0.15 m (4.5 inch 

× 4.5 inch × 5.9 inch). 
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Figure F.3 – 3D printed Synthetic Core with the complex fracture geometry for the Microchips 

Testing 
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APPENDIX G: 

I-GEO SENSING GRAPHICAL USER INTERFACE  

As described throughout in section 6 of this report, i-Geo Sensing contributes two major 

algorithmic workflows and one supportive Design of Experiments module. i-Geo Sensing, 

additionally, comes with a Graphical User Interface (GUI) that allows users to interact and 

analyzes the technical aspects of the embedded workflows. This Appendix G provides a walk-

through of the GUI in i-Geo Sensing.  

Inside the code package includes a README.txt file that reads the instructions to install the 

appropriate environment (preferably Anaconda 3) to run i-Geo Sensing. As i-Geo Sensing is 

written in Python 3.10 and has a web-based interactive interface, the initial launch of the i-Geo 

Sensing brings a user a similar capture as in Figure G.1. 

 

Figure G.1: Welcome interface in i-Geo Sensing 

The welcome interface in i-Geo Sensing loads the Design of Experiments module by default 

(corresponds to 6.7 and 6.8). As seen in the left-sided task bar, users may find the two other 

modules: “Fracture Calibration Proxy” and “Receive Sensor & deploy”. The module “Fracture 

Calibration Proxy” corresponds to 6.9, 6.10 and 6.11. The module “Fracture Calibration Proxy” 

loads the processing of the Micro Chips’ geo-location data in the synthetic environment (presented 

as local directory with necessary data as the geo-location data). 

 Within the “Design of Experiments” module, users are required to input the module’ project main 

directory and the directory which contains the simulation files in ResFrac® (and is considered as 

the location of the base case in this module). A base case is provided in the code package for 

convenience, named “doe_simulation_2 SOP”. This folder contains all simulation results that are 

downloadable from ResFrac® server for the synthetic environment described in 6.2. Users now 

may click “Import base file” to allow i-Geo Sensing the access ability to the base case’s folder and 
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click “Read base file” to allow i-Geo Sensing parsing the settings and input text files that define 

the base case. (referred to 6.7).  The following notification shall pop-up: 

 

Figure G.2: Reading report in -Geo Sensing for the base case 

Users are notified, similarly to Figure G.2, that i-Geo Sensing parses the text files successfully and 

recognizes the entries encoded in them (referred to 6.7 about the definition of an entry in 

ResFrac®). At this point, users may move to the “Identifiable parameters from the base files” 

section in the module. In the “Setting file” tab on the left, users now can select the entries that are 

preferable to conduct a Design of Experiments study/data generation for the supervised ML 

workflow in i-Geo Sensing. For example, selecting the entry “maxtrixcurvesets” brings the users 

to Figure G.3.  

 

Figure G.3: An example pop-up window to request the entry’s necessary inputs for data generation 

In this pop-up, users are allowed to select an entry (in case more than one entry is selected for data 

generation, users are required to select all entries in any order) and select the location that writes 

the changes to create new Design of Experiments case. In most of the entries, the location to write 

is -1, however some specific entries have multiple locations to write. i-Geo Sensing supports 

displaying certain specific entries’ written locations for the users’ convenience (referred to Figure 

G.3).  In this pop-up, user may see an input named “Input the Design of Experiment parameters”. 
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Users may enter the names of the parameters that are later read by i-Geo Sensing as the parameters 

to be used in the supervised ML workflow. For example, in case the users need to study the water 

saturation, they may enter “S_wr” in the input box named above. Users shall click “Confirm write 

location” per entry to enable the recording of the written locations to i-Geo Sensing. After 

completing, users may close this pop-up.  

Now users shall move to the “Setting file” tab on the right (Figure G.4) and select the entries one 

more time. Note that, under this selection, users shall see the entry list that is selected previously 

on the “Setting file” tab on the left, as now i-Geo Sensing limits the selection options to the entries 

that users request as being further used for data generation (referred to 6.7). After clicking on 

“Select distribution”, a pop-up window as Figure G.5 appears.  

 

Figure G.4: Distribution section in the Design of Experiments module  

The list of supported distributions (e.g., normal, log-normal, gamma, beta) are provided as 

dropdown in the pop-up window as Figure G.5. As a reminder, an entry may come with multiple 

DoE parameters, therefore users shall pay attention in choosing the correct entry and its DoE 

parameters, one at a time. In the input box “Input parameters for the distribution”, users have to 

provide all required parameters that define the distribution of interest. For example, a normal 

distribution must require an input of 2 numbers, i.e., mean and standard deviation, separated by a 

comma between the numbers. I-Geo Sensing shall parse the numbers for the users appropriately.  

After providing all necessary inputs to define a distribution for a specific DoE parameter, users 

shall click “Confirm distribution” to complete the process (per entry, per DoE parameter).  

 

Figure G.5: Pop-up window for distribution of a DoE parameter 
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At this time, i-Geo Sensing receives all required inputs to deploy a batch data generation for a 

DoE. Users shall proceed to click on “Generate cases” in the module to open the pop-up for the 

DoE execution. This pop-up is similar to Figure G.6. The information displayed in Figure G.6 shall 

be straight-forward enough for the users to follow. In Figure G. 6, the input boxes for “Amount” 

refers to the amount of DoE cases to be generated in a single batch. The input boxes for “Last 

case” and “Batch number” receive any non-negative number, although users are recommended to 

input them in a sequential manner when referenced to the previous batch run. For example, in case 

a DoE batch run was previously executed to generate 100 cases indexed from 0-100 (batch 0), the 

next batch run is expected to generate an additional 100 cases indexed from 101 to 200 (batch 1). 

Therefore, users shall input 0 in the box “Ast case” and 1 in the box “Batch number” (provided 

that the batch 0 was run previously). After entering all inputs in this pop-up window, users click 

“Generate” and expect a wait time for the batch run to finish. After a batch run is executed, users 

may find inside the directory provided to save the DoE files, a similar look as Figure G.7.  

As described in 6.7, the support of i-Geo Sensing to ResFrac® is semi-automatic, and therefore 

users are required to import all generated settings/input files into ResFrac® GUI and batch run the 

corresponding simulations to ResFrac® server. Users have to save changes in ResFrac® GUI prior 

to submitting the files to the server, otherwise simulations may not  be completed properly.  

 

Figure G.6. The pop-up to execute a batch data generation  

After all simulations are completed and downloaded from the ResFrac® server, users shall find 

simulation results for all generated cases from the current batch run in i-Geo Sensing, under the 

folders having naming conventions that are similar to Figure 126. Users may keep those folders 

in-place or move to another directory of interest, however users have to provide i-Geo Sensing the 

directory of which the folders are located/moved into later in the “Fracture Calibration” module.  
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Figure G.7. An example of generated files post DoE batch run execution 

At the bottom of the Design of Experiments module, users find the “Coverage” section. In this 

section, users may input the DoE parameters that were previously inputted to generate the recent 

batch run, and generate the coverage plot (i.e., a “joint” plot as in Figure 123). This section is 

designed to provide users an overview of the current batch run’s efficacy in covering the expected 

DoE area for the parameters of study.  

Below the “Design of Experiments” module is the “Fracture Calibration Proxy” module (Figure 

G.8). This module is essentially central to the supervised ML workflow. Similar to the “design of 

Experiments” module, users require to input the project main directory in which all proxy models 

are stored and re-loaded, if necessary, and select the task that the supervised ML workflow shall 

be trained and deployed for (e.g., fracture calibration or history-matching, referred to 6.9). The 

look of the “Fracture Calibration Proxy” module is practically similar to the “Design of 

Experiments” module. Therefore, users have a better view of the module’s functionality at this 

point. 

 

Figure G.8: The “Fracture Calibration Proxy” module 
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As recalled in the “Design of Experiments” module, users input certain DoE parameters to execute 

a batch run. Since the “Fracture Calibration Proxy” module uses the information from the “Design 

of Experiments” module, it receives those DoE parameters. Therefore, users shall see them in the 

“Select parameter” tab. Next to the “Select parameter” tab is the “Select dataset” tab, in which 

users may find all folders that are within the provided project main directory above. Users may 

select any of those folders and click “Confirm selection” to request to i-Geo Sensing that the 

selected folder(s) shall be used as training and/or validation data.  

To ensure that the selected folder(s) mentioned above do have the ResFrac® simulation results 

needed to the module, users may click “Validate dataset directory” to confirm. In case the folder 

contains necessary data, the pop-up as Figure G.9 appears.  

 

Figure G.9: A successful validation for the selected folder(s) 

Recalled in 6.5 regarding the sensor data profiles, the Fracture Calibration Proxy” module provides 

a button named “Fracture profile resolution” for the users to click and input the necessary 

parameters that define a sensor data profile. They include the minimum & maximum values of the 

larger dimensions, and the resolution interval. As common sense in i-Geo Sensing, users shall click 

to confirm the inputs prior to existing the pop-up window. At this point, i-Geo Sensing receives 

enough information to generate the complete dataset to train and validate the proxy. Users need to 

click “Generate proxy dataset” and prompt to wait for a while before this process is complete.  

 

Figure G.10: Input pop-up window for the sensor data profile(s) 

After the proxy dataset is generated, users may visualize the properties of the dataset via the 

“Validate parameter” and “Validate dataset” tabs. Under the “Validate parameter” tab users may 

open a pop-up window to visualize distributions of the DoE parameters, and time series data for 

the response parameters (e.g., BHP, production rate). An example is provided in Figure G.12. The 

“Validate dataset” is used to provide the users with any abnormality in the generated dataset. In 



 

189 
 

case the dataset has missing values, i-Geo Senning automatically in-place imputes those missing 

values.   

 

Figure G.11: Completion notification for the proxy dataset generation  

 

Figure G.12: An overview of the functional hidden in the “Validate parameter” tab 

The “Proxy configuration” and “Proxy explanation” sections all refer to 6.9-6.11. Users have the 

option to select either the GBM or XGB to back the supervised ML workflow. As mentioned in 

6.9,  i-Geo Sensing limits certain hyperparameters to be tuned by the users, and consequently users 

may only see a subset of the model’s hyperparameters compared to the official model’s 

documentation (for example, referred to XGB: https://xgboost.readthedocs.io/en/stable/ ). For the 

ML experimenting functionality (found in “Proxy experiment” and “Proxy visual” tab, users may 

select either the “Fit” mode or the “Optimize” mode. The “Fit” mode essentially does not optimize 

the hyperparameters via a optimization space, in contrast the “Optimize” mode performs the 

optimization for the hyperparameters via an optimization space. Users may expect to access the 

model’s explainability in the “Proxy explanation” section, in which plots similar to Figures 137-

140 are provided.  

The module “Receive sensor & deploy proxy” module shall automatically process outputs from 

both the “Design of Experiments” and the “Fracture Calibration Proxy” modules. Users only need 

to provide this module with the directory in which the synthetic Micro Chips’ geo-location data is 

stored, and the module shall update periodically. The final proxy performance may look similar to 

Figures 133 and 135. 

https://xgboost.readthedocs.io/en/stable/
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APPENDIX H: 

I-GEO SENSING CODE EXCERPTS  

.fa-chevron-right { 

  transition: transform 0.2s ease-in-out 0s; 

} 

 

/* rotate the chevron when the open class is applied */ 

li.open .fa-chevron-right { 

  transform: rotate(90deg); 

} 

 

.nav li { 

  font-size: 18px; 

} 

 

.sidebar .nav-link { 

  width: 100%; 

  max-width: 100%; 

  overflow: hidden; 

  white-space: nowrap; 

  display: flex; 

  padding-right:1rem; 

  padding-left:1rem; 

  padding-top:1rem; 

} 

import dash 

import dash_bootstrap_components as dbc 
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from dash import dcc 

from dash import html, dash_table 

from dash import Input, Output, State 

from dash import callback, callback_context 

from dash import DiskcacheManager 

 

from dash.exceptions import PreventUpdate 

from dash import callback_context as ctx 

from dash import register_page 

 

from dash_bootstrap_components import Tab, Table, InputGroup, Col, Row 

from dash_bootstrap_components import Modal, ModalTitle, ModalBody, ModalHeader, 

ModalFooter 

from dash_bootstrap_components import Placeholder 

 

import diskcache 

import os, shutil, time, timeit 

import pickle, joblib, jsonpickle 

import numpy as np 

import pandas as pd 

 

import scipy 

from scipy.stats import distributions 

 

from matplotlib import pyplot as plt 

import seaborn as sns 

import plotly 

from plotly import express as px 

from plotly import graph_objects as go 
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import hyperopt 

from hyperopt import hp, space_eval 

from hyperopt.pyll.base import scope 

 

cache = diskcache.Cache("./cache") 

background_callback_manager = DiskcacheManager(cache) 

from base.base import * 

from gui_utils.utils import * 

 

from simulator.base import utils 

from simulator.base import regex_templates 

from simulator.base import parse 

from simulator.simulation.simulation_helpers import * 

 

from DoE.doe.doe_v1 import * 

 

 

##############################################################################

############# 

################################ Page's main UI callbacks 

################################# 

##############################################################################

############# 

 

 

@callback( 

    [Output("doe_main_dir_placeholder", "data")], 

    [Input("doe_main_dir_gui", "value"), 
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     Input("doe_import_base_file", "n_clicks")], 

    prevent_initial_call=True) 

def get_doe_main_directory(main_dir, n_clicks): 

    if n_clicks > 0: 

        print("Main dir: ", main_dir) 

        return [main_dir] 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    [Output("doe_base_file_placeholder", "data")], 

    [Input("doe_base_file_gui", "value"), 

     Input("doe_import_base_file", "n_clicks")], 

    prevent_initial_call=True) 

def get_doe_main_directory(base_file, n_clicks): 

    if n_clicks > 0: 

        print("Base file: ", base_file) 

        return [base_file] 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    [Output("doe_settings_entry_placeholder", "data"), 

     Output("doe_input_entry_placeholder", "data"), 

     Output("doe_settings_var_names", "data"), 

     Output("doe_input_var_names", "data")], 
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    [Input("doe_main_dir_placeholder", "data"), 

     Input("doe_base_file_placeholder", "data"), 

     Input("doe_read_base_file", "n_clicks")], 

    prevent_initial_call=True) 

def read_base_file(main_dir, base_file, n_clicks: int): 

    if n_clicks > 0: 

        settings_file_name = 'settings_' + base_file + '.txt' 

        input_file_name = 'input_' + base_file + '.txt' 

        base_file_dir = os.path.join(main_dir, base_file) 

        settings_file_dir = os.path.join(base_file_dir, settings_file_name) 

        input_file_dir = os.path.join(base_file_dir, input_file_name) 

        all_settings_entries = utils.parse_file(file_name=settings_file_dir) 

        all_input_entries = utils.parse_file(file_name=input_file_dir) 

        # 

        parsed_settings_entries = list() 

        parsed_input_entries = list() 

        for (_, setting_entry) in enumerate(all_settings_entries): 

            parsed_ = parse.parse_entry(setting_entry) 

            parsed_settings_entries.append(parsed_) 

        for (_, input_entry) in enumerate(all_input_entries): 

            parsed_ = parse.parse_entry(input_entry) 

            parsed_input_entries.append(parsed_) 

        # 

        settings_file_size = len(all_settings_entries) 

        input_file_size = len(all_input_entries) 

        # 

        settings_var_names = [parse.parse_entry(all_settings_entries[_]).variable_name for _ in 

                              range(settings_file_size)] 
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        input_var_names = [parse.parse_entry(all_input_entries[_]).variable_name for _ in 

range(input_file_size)] 

        return jsonpickle.encode(value=parsed_settings_entries), jsonpickle.encode( 

            value=parsed_input_entries), settings_var_names, input_var_names 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("doe_settings_entry_input", "options"), 

    Input("doe_settings_var_names", "data"), 

    config_prevent_initial_callbacks=True 

) 

def parse_all_settings_entries(settings_var_names): 

    if settings_var_names is not None: 

        return settings_var_names 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("doe_input_entry_input", "options"), 

    Input("doe_input_var_names", "data"), 

    config_prevent_initial_callbacks=True 

) 

def parse_all_settings_entries(input_var_names): 

    if input_var_names is not None: 

        return input_var_names 

    else: 
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        raise PreventUpdate 

 

 

@callback( 

    [Output("doe_notify_settings", "children"), 

     Output("doe_notify_input", "children")], 

    [Input("doe_settings_var_names", "data"), 

     Input("doe_input_var_names", "data")], 

    State("doe_read_base_file", "n_clicks"), 

    config_prevent_initial_callbacks=True 

) 

def write_doe_read_base_file_report(settings_var_names, input_var_names, n_clicks): 

    if n_clicks == 0: 

        raise PreventUpdate 

    else: 

        setting_report = "Total of " + str(len(settings_var_names)) + " entries are parsed." 

        input_report = "Total of " + str(len(input_var_names)) + " entries are parsed." 

        return setting_report, input_report 

 

 

@callback( 

    Output("doe_settings_write_loc_placeholder", "data"), 

    Input("doe_settings_entry_input", "value"), 

    config_prevent_initial_callbacks=True 

) 

def update_settings_write_loc_placeholder(settings_var_names): 

    if settings_var_names is not None: 

        return settings_var_names 



 

197 
 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("doe_settings_write_loc_dropdown", "options"), 

    Input("doe_settings_write_loc_placeholder", "data"), 

    config_prevent_initial_callbacks=True 

) 

def update_settings_write_loc_dropdown(settings_var_names): 

    if settings_var_names is not None: 

        return settings_var_names 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("doe_settings_write_loc_entry", "children"), 

    [Input("doe_settings_write_loc_dropdown", "value"), 

     Input("doe_settings_entry_placeholder", "data")], 

    config_prevent_initial_callbacks=True 

) 

def display_settings_write_loc_entry(settings_var_name, settings_entries): 

    if settings_var_name is not None: 

        settings_entry = None 

        settings_entries_ = jsonpickle.decode(settings_entries) 

        for (_, settings_entry_) in enumerate(settings_entries_): 

            if settings_entry_.variable_name == settings_var_name: 
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                settings_entry = settings_entry_ 

        if settings_var_name == 'matrixcurvesets': 

            matrix_rel_perm = settings_entry.value_struct.value_struct[0]['matrixrelperm'][-1] 

            return convert_numpy_to_data_table(matrix_rel_perm, columns=['S_p_full_max', 

                                                                         'exponent', 'k_r multiplier']) 

        elif settings_var_name == 'facieslist': 

            facies_list = settings_entry.value_struct.value_struct 

            return convert_dict_to_data_table(facies_list, columns=None) 

        elif settings_var_name not in irregular_variable_names: 

            return str(settings_entry.value_struct.value_struct) 

        else: 

            # TODO: Complete this to display correct data 

            return dash.no_update 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("doe_params_dist_placeholder", "data"), 

    [Input("doe_settings_dist_confirm", "n_clicks"), 

     Input("doe_settings_dist_entry_dropdown", "value"), 

     Input("doe_settings_dist_params_dropdown", "value"), 

     Input("doe_settings_dist_dropdown", "value")], 

    State("doe_params_dist_placeholder", "data"), 

    config_prevent_initial_callbacks=True 

) 

def update_all_distributions(n_clicks, entry_name, param_name, dist_name, all_dists): 

    print('All distributions: ', all_dists) 
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    if callback_context.triggered_id == "doe_settings_dist_confirm" and n_clicks: 

        if bool(all_dists) is False: 

            all_dist = {'entry_name': [entry_name], 'param_name': [param_name], 'dist_name': 

[dist_name]} 

            return all_dist 

        else: 

            all_dists_ = all_dists 

            if 'entry_name' in all_dists_.keys(): 

                all_dists_['entry_name'] = all_dists['entry_name'] + [entry_name] 

            if 'param_name' in all_dists_.keys(): 

                all_dists_['param_name'] = all_dists['param_name'] + [param_name] 

            if 'dist_name' in all_dists_.keys(): 

                all_dists_['dist_name'] = all_dists['dist_name'] + [dist_name] 

            return all_dists_ 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("doe_params_write_locs_placeholder", "data"), 

    [Input("doe_settings_write_loc_confirm", "n_clicks"), 

     Input("doe_settings_write_loc_dropdown", "value"), 

     Input("doe_settings_write_loc_input", "value"), 

     Input("doe_settings_params", "value")], 

    State("doe_params_write_locs_placeholder", "data"), 

    config_prevent_initial_callbacks=True 

) 

def update_all_write_locations(n_clicks, entry_name, write_loc, param_names, all_write_locs): 

    print('All write locations: ', all_write_locs) 
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    if callback_context.triggered_id == "doe_settings_write_loc_confirm" and n_clicks: 

        param_names_ = param_names.split(sep=",") 

        if bool(all_write_locs) is False: 

            return {'entry_name': [entry_name], 'write_loc': [write_loc], 'param_names': 

[param_names_]} 

        else: 

            all_write_locs_ = all_write_locs 

            if 'entry_name' in all_write_locs_.keys(): 

                all_write_locs_['entry_name'] = all_write_locs['entry_name'] + [entry_name] 

            if 'param_name' in all_write_locs_.keys(): 

                all_write_locs_['write_loc'] = all_write_locs['write_loc'] + [write_loc] 

            if 'dist_name' in all_write_locs_.keys(): 

                all_write_locs_['param_names'] = all_write_locs['param_names'] + [param_names_] 

            return all_write_locs_ 

    else: 

        raise PreventUpdate 

 

 

##############################################################################

############# 

################################ Page's modal callbacks 

################################### 

##############################################################################

############# 

 

 

@callback( 

    Output("doe_settings_write_loc_modal", "is_open"), 

    [Input("doe_settings_entry_write_loc", "n_clicks"), 

     Input("doe_settings_write_loc_button", "n_clicks")], 
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    [State("doe_settings_write_loc_modal", "is_open")], 

) 

def toggle_doe_settings_write_loc_modal(n_write_loc, n_write_loc_modal, 

                                        is_open): 

    if n_write_loc or n_write_loc_modal: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("doe_notify_read_base_file_modal", "is_open"), 

    [Input("doe_read_base_file", "n_clicks"), 

     Input("doe_notify_read_base_file_button", "n_clicks")], 

    [State("doe_notify_read_base_file_modal", "is_open")], 

) 

def toggle_doe_notify_read_base_file_modal(n_read_base_file, n_read_base_file_modal, 

                                           is_open): 

    if n_read_base_file or n_read_base_file_modal: 

        return not is_open 

    return is_open 

 

 

@callback( 

    Output("doe_settings_dist_modal", "is_open"), 

    [Input("doe_settings_entry_dist", "n_clicks"), 

     Input("doe_settings_dist_button", "n_clicks")], 

    State("doe_settings_dist_modal", "is_open"), 
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) 

def toggle_doe_settings_dist_modal(n_dist, n_dist_modal, 

                                   is_open): 

    if n_dist or n_dist_modal: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("doe_case_generator_modal", "is_open"), 

    [Input("doe_generate_cases", "n_clicks"), 

     Input("doe_case_generator_button", "n_clicks")], 

    State("doe_case_generator_modal", "is_open"), 

) 

def toggle_doe_case_generator_modal(n_case, n_case_modal, 

                                    is_open): 

    if n_case or n_case_modal: 

        return not is_open 

    else: 

        return is_open 

from base.base import * 

from gui_utils.utils import * 

from gui_utils.experimental import * 

 

from workflow.surrogate import * 

from workflow.objective_function import * 

from workflow.calibrate_fracture import * 
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from workflow.history_match import * 

 

from proxy.proxy_experiment import * 

 

 

##############################################################################

############# 

################################## Page's modal callbacks 

################################# 

##############################################################################

############# 

 

 

@callback( 

    Output("frac_cal_frac_profile_modal", "is_open"), 

    [Input("frac_cal_profile_res", "n_clicks"), 

     Input("frac_cal_frac_profile_button", "n_clicks")], 

    [State("frac_cal_frac_profile_modal", "is_open")], 

    config_prevent_initial_callbacks=True 

) 

def toggle_fracture_profile_modal(n_profile_res, n_profile_button, is_open): 

    if n_profile_res or n_profile_button: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("frac_cal_val_data_dir_modal", "is_open"), 
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    [Input("frac_cal_validate_data_dir", "n_clicks"), 

     Input("frac_cal_val_data_dir_button", "n_clicks")], 

    [State("frac_cal_val_data_dir_modal", "is_open")], 

    config_prevent_initial_callbacks=True 

) 

def toggle_validate_data_dir_modal(n_val_dir, n_val_dir_button, is_open): 

    if n_val_dir or n_val_dir_button: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("frac_cal_generate_data_modal", "is_open"), 

    [Input("frac_cal_generate_data", "n_clicks"), 

     Input("frac_cal_generate_data_button", "n_clicks")], 

    [State("frac_cal_generate_data_modal", "is_open")], 

    config_prevent_initial_callbacks=True 

) 

def toggle_generate_proxy_data_modal(n_gen_data, n_gen_data_button, is_open): 

    if n_gen_data or n_gen_data_button: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("frac_cal_validate_params_modal", "is_open"), 
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    [Input("frac_cal_proxy_config_right_params_validate", "n_clicks"), 

     Input("frac_cal_validate_params_button", "n_clicks")], 

    [State("frac_cal_validate_params_modal", "is_open")], 

    config_prevent_initial_callbacks=True 

) 

def toggle_validate_proxy_params_modal(n_val_params, n_val_params_button, is_open): 

    if n_val_params or n_val_params_button: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("frac_cal_validate_datasets_modal", "is_open"), 

    [Input("frac_cal_proxy_config_right_sources_validate", "n_clicks"), 

     Input("frac_cal_validate_datasets_button", "n_clicks")], 

    [State("frac_cal_validate_datasets_modal", "is_open")], 

    config_prevent_initial_callbacks=True 

) 

def toggle_validate_proxy_datasets_modal(n_val_data, n_val_data_button, is_open): 

    if n_val_data or n_val_data_button: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("frac_cal_proxy_hyper_params_modal", "is_open"), 
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    [Input("frac_cal_proxy_params_left_confirm", "n_clicks"), 

     Input("frac_cal_proxy_hyper_params_button", "n_clicks")], 

    [State("frac_cal_proxy_hyper_params_modal", "is_open")], 

    config_prevent_initial_callbacks=True 

) 

def toggle_proxy_hyper_params_modal(n_proxy_params, n_proxy_params_button, is_open): 

    if n_proxy_params or n_proxy_params_button: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("frac_cal_train_proxy_modal", "is_open"), 

    [Input("frac_cal_train_proxy", "n_clicks"), 

     Input("frac_cal_train_proxy_button", "n_clicks")], 

    [State("frac_cal_train_proxy_modal", "is_open")], 

    config_prevent_initial_callbacks=True 

) 

def toggle_train_proxy_modal(n_train, n_train_button, is_open): 

    if n_train or n_train_button: 

        return not is_open 

    else: 

        return is_open 

 

 

@callback( 

    Output("frac_cal_proxy_exp_modal", "is_open"), 
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    [Input("frac_cal_proxy_exp_right_confirm", "n_clicks"), 

     Input("frac_cal_proxy_exp_button", "n_clicks")], 

    [State("frac_cal_proxy_exp_modal", "is_open")], 

) 

def toggle_proxy_expriment(n_exp, n_exp_button, is_open): 

    if n_exp or n_exp_button: 

        return not is_open 

    else: 

        return is_open 

 

 

##############################################################################

############# 

################################ Page's storage callbacks 

################################# 

##############################################################################

############# 

 

 

@callback( 

    Output("frac_cal_project_main_dir_store", "data"), 

    Input("frac_cal_proxy_main_dir", "value"), 

    config_prevent_initial_callbacks=True 

) 

def store_project_main_dir(main_dir): 

    return main_dir 

 

 

@callback( 
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    Output("frac_cal_frac_profile_res_store", "data"), 

    Input("frac_cal_frac_profile_confirm", "n_clicks"), 

    [State("min_hf_length_input", "value"), 

     State("max_hf_length_input", "value"), 

     State("resolution", "value")], 

    config_prevent_initial_callbacks=True 

) 

def store_fracture_profile_resolution(n_clicks, min_hf, max_hf, res): 

    if n_clicks: 

        print(min_hf, max_hf, res) 

        return {"min_hf": min_hf, "max_hf": max_hf, "res": res} 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_proxy_input_params_store", "data"), 

    [Input("frac_cal_proxy_config_input_params_dropdown", "value"), 

     Input("frac_cal_proxy_config_input_params_confirm", "n_clicks")], 

    config_prevent_initial_callbacks=True 

) 

def store_proxy_input_params(input_params, n_clicks): 

    if n_clicks: 

        if experimental_mode: 

            return experimental_doe_params 

        else: 

            return input_params 

    else: 
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        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_proxy_output_params_store", "data"), 

    [Input("frac_cal_proxy_config_output_params_dropdown", "value"), 

     Input("frac_cal_proxy_config_output_params_confirm", "n_clicks")], 

    config_prevent_initial_callbacks=True 

) 

def store_proxy_output_params(output_params, n_clicks): 

    if n_clicks: 

        if experimental_mode: 

            return experimental_response_params 

        else: 

            return output_params 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_data_sources_store", "data"), 

    Input("frac_cal_proxy_config_left_sources_confirm", "n_clicks"), 

    State("frac_cal_proxy_config_left_sources_dropdown", "value"), 

    config_prevent_initial_callbacks=True 

) 

def store_proxy_data_sources(n_clicks, data_sources): 

    if n_clicks: 

        return data_sources 
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    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_proxy_hyper_params_store", "data"), 

    Input("frac_cal_proxy_params_left_confirm", "n_clicks"), 

    State("frac_cal_proxy_params_left_dropdown", "value"), 

    config_prevent_initial_callbacks=True 

) 

def store_proxy_hyper_params(n_clicks, hyper_params): 

    if n_clicks: 

        return hyper_params 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_proxy_hyper_params_dist_store", "data"), 

    Input("frac_cal_proxy_hyper_params_confirm", "n_clicks"), 

    [State("frac_cal_proxy_hyper_params_name", "value"), 

     State("frac_cal_proxy_hyper_params_dist", "value"), 

     State("frac_cal_proxy_hyper_params_dist_params", "value"), 

     State("frac_cal_proxy_hyper_params_dist_store", "data")], 

    config_prevent_initial_callbacks=True 

) 

def store_proxy_hyper_params_dist(n_clicks, param_name, param_dist, param_dist_params, 

all_hyper_params_dists): 

    if n_clicks: 
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        param_dist_params_ = param_dist_params.split(sep=",") 

        print(param_dist_params_) 

        if bool(all_hyper_params_dists) is False: 

            all_hyper_params_dists_ = {'param_name': [param_name], 'param_dist': [param_dist], 

                                       'param_dist_params': [param_dist_params_]} 

            print("All proxy's hyper-parameters' distributions: ", all_hyper_params_dists_) 

            return all_hyper_params_dists_ 

        else: 

            all_hyper_params_dists_ = all_hyper_params_dists 

            if param_name not in all_hyper_params_dists['param_name']: 

                all_hyper_params_dists_['param_name'] = all_hyper_params_dists['param_name'] + \ 

                                                        [param_name] 

                all_hyper_params_dists_['param_dist'] = all_hyper_params_dists['param_dist'] + \ 

                                                        [param_dist] 

                all_hyper_params_dists['param_dist_params'].append(param_dist_params_) 

                all_hyper_params_dists_['param_dist_params'] = 

all_hyper_params_dists['param_dist_params'] 

            else: 

                pass 

            print("All proxy's hyper-parameters' distributions: ", all_hyper_params_dists_) 

            return all_hyper_params_dists_ 

    else: 

        raise PreventUpdate 

 

 

##############################################################################

############# 

################################ Page's main UI callbacks 

################################# 
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################################ Parameter selection 

###################################### 

##############################################################################

############# 

 

 

@callback( 

    Output("frac_cal_proxy_config_left_sources_dropdown", "options"), 

    Input("frac_cal_project_main_dir_store", "data"), 

    config_prevent_initial_callbacks=True 

) 

def extract_proxy_data_sources(main_dir): 

    """ 

 

    :param main_dir: 

    :return: 

    """ 

    print('Main dir to extract: ', main_dir) 

    workflows_dir = os.path.join(main_dir, "workflows") 

    if os.path.exists(workflows_dir) is True: 

        return [f for f in os.listdir(workflows_dir)] 

    else: 

        return dash.no_update 

 

 

@callback( 

    Output("frac_cal_data_main_dir_text", "children"), 

    [Input("frac_cal_project_main_dir_store", "data"), 

     Input("frac_cal_data_sources_store", "data")], 
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    config_prevent_initial_callbacks=True 

) 

def validate_proxy_data_sources(main_dir, data_sources): 

    """ 

    Validate whether the provided data sources have data for the proxy 

    :param main_dir: 

    :param data_sources: 

    :return: 

    """ 

    print('Data sources to extract: ', data_sources) 

    workflows_dir = os.path.join(main_dir, "workflows") 

    validate_text = "" 

    if main_dir is None or data_sources is None: 

        raise PreventUpdate 

    else: 

        for (_, data_source) in enumerate(data_sources): 

            data_source_valid = validate_res_frac_workflows_dir(workflows_dir, data_source) 

            if data_source_valid: 

                validate_text += data_source + " is valid. \n" 

            else: 

                validate_text += data_source + "is NOT valid. \n" 

        return validate_text 

 

 

@callback( 

    Output("frac_cal_generate_data_text", "children"), 

    [State("frac_cal_project_main_dir_store", "data"), 

     State("frac_cal_frac_profile_res_store", "data"), 
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     State("frac_cal_proxy_input_params_store", "data"), 

     State("frac_cal_proxy_output_params_store", "data"), 

     State("frac_cal_data_sources_store", "data")], 

    Input("frac_cal_generate_data", "n_clicks"), 

    background=True, 

    running=[(Output("frac_cal_generate_data", "disabled"), True, False), 

             (Output("frac_cal_generate_data_button", "disabled"), True, False) 

             ], 

    config_prevent_initial_callbacks=True 

) 

def generate_proxy_datasets(main_dir, fracture_profile, 

                            doe_params, response_params, data_sources, n_clicks): 

    generate_proxy_datasets_text = "" 

    if callback_context.triggered_id == "frac_cal_generate_data" and n_clicks > 0: 

        fracture_profile_resolution = [float(fracture_profile["min_hf"]), 

float(fracture_profile["max_hf"]), 

                                       int(fracture_profile["res"])] 

        for (_, data_source) in enumerate(data_sources): 

            proxy_data_file = data_source + "_data.csv" 

            proxy_data_dir = os.path.join(main_dir, proxy_data_file) 

            if os.path.exists(proxy_data_dir): 

                proxy_df = pd.read_csv(proxy_data_dir, index_col=0, header=0) 

            else: 

                result_dir = os.path.join(main_dir, "workflows") 

                result_dir = os.path.join(result_dir, data_source) 

                result_dir = os.path.join(result_dir, "simulations") 

                surrogate_manager = SurrogateDirectory(result_dir=result_dir) 

                surrogate_manager.experimental_doe_params = doe_params 
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surrogate_manager.init_fracture_profile(fracture_profile_resolution=fracture_profile_resolution) 

                

surrogate_manager.init_reservoir_response(reservoir_response_var_names=response_params) 

                if experimental_mode: 

                    surrogate_manager.init_experimental_doe_data() 

                proxy_df = 

surrogate_manager.assemble_surrogate_directory(surrogate_dir=proxy_data_dir) 

            generate_proxy_datasets_text_ = "Generate proxy data from source " + data_source + ", " 

            generate_proxy_datasets_text_ += " containing " + str(proxy_df.shape[0]) + " rows and " 

+ \ 

                                             str(proxy_df.shape[-1]) + " columns. " 

            generate_proxy_datasets_text += generate_proxy_datasets_text_ 

        return generate_proxy_datasets_text 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_proxy_config_right_params_dropdown", "options"), 

    [Input("frac_cal_proxy_input_params_store", "data"), 

     Input("frac_cal_proxy_output_params_store", "data")], 

    config_prevent_initial_callbacks=True 

) 

def retrieve_proxy_input_params(doe_params, response_params): 

    if experimental_mode: 

        return experimental_doe_params + experimental_response_params 

    else: 

        return doe_params + response_params 
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@callback( 

    Output("frac_cal_proxy_config_right_sources_dropdown", "options"), 

    Input("frac_cal_data_sources_store", "data"), 

    config_prevent_initial_callbacks=True 

) 

def retrieve_proxy_data_sources(data_sources): 

    if experimental_mode: 

        return experimental_data_sources 

    else: 

        return data_sources 

 

 

@callback( 

    Output("frac_cal_datasets_store", "data"), 

    [Input("frac_cal_data_sources_store", "data"), 

     Input("frac_cal_project_main_dir_store", "data")], 

    config_prevent_initial_callbacks=True 

) 

def retrieve_datasets(data_sources, main_dir): 

    datasets = dict() 

    for (_, data_source) in enumerate(data_sources): 

        dataset_file = data_source + "_data.csv" 

        dataset_dir = os.path.join(main_dir, dataset_file) 

        if os.path.exists(dataset_dir): 

            df = pd.read_csv(dataset_dir, index_col=0, header=0).to_dict("records") 

            datasets[data_source] = df 

        else: 
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            pass 

    return datasets 

 

 

@callback( 

    Output("frac_cal_validate_doe_params_dropdown", "options"), 

    Input("frac_cal_proxy_config_right_params_dropdown", "value"), 

    config_prevent_initial_callbacks=True 

) 

def retrieve_validated_doe_params(params): 

    if experimental_mode: 

        doe_params_ = list() 

        for p in params: 

            if p not in experimental_response_params: 

                doe_params_.append(p) 

        return doe_params_ 

    else: 

        return params 

 

 

@callback( 

    Output("frac_cal_validate_res_params_dropdown", "options"), 

    Input("frac_cal_proxy_config_right_params_dropdown", "value"), 

    config_prevent_initial_callbacks=True 

) 

def retrieve_validated_res_params(params): 

    if experimental_mode: 

        res_params_ = list() 
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        for p in params: 

            if p not in experimental_doe_params: 

                res_params_.append(p) 

        return res_params_ 

    else: 

        return params 

 

 

@callback( 

    Output("frac_cal_validate_case_dropdown", "options"), 

    Input("frac_cal_proxy_config_right_sources_dropdown", "value"), 

    State("frac_cal_datasets_store", "data"), 

    config_prevent_initial_callbacks=True 

) 

def retrieve_cases(data_source, datasets): 

    dataset = pd.DataFrame(data=datasets[data_source]) 

    cases = dataset['case'].to_numpy() 

    cases = list(np.unique(cases)) 

    print('All cases: ', cases) 

    return cases 

 

 

@callback( 

    Output("frac_cal_validate_doe_params_content", "children"), 

    [Input("frac_cal_validate_doe_params_dropdown", "value"), 

     Input("frac_cal_proxy_config_right_sources_dropdown", "value"), 

     Input("frac_cal_validate_doe_params_radio_items", "value")], 

    State("frac_cal_datasets_store", "data"), 
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    config_prevent_initial_callbacks=True 

) 

def visualize_doe_distributions(params, data_source, plot_type, datasets): 

    if datasets is None: 

        raise PreventUpdate 

    else: 

        print('DoE params: ', params) 

        dataset = datasets[data_source] 

        if plot_type == "Single parameter": 

            fig = px.histogram(dataset, x=params[0]) 

            graph_id = params[0] + '_dist_plot' 

            return dcc.Graph(figure=fig, id=graph_id) 

        elif plot_type == "Two parameters": 

            param_0 = params[0] 

            param_1 = params[1] 

            graph_id = params[0] + '_' + params[1] + '_joint_plot' 

            fig = px.scatter(dataset, x=param_0, y=param_1, marginal_x="histogram", 

                             marginal_y="histogram") 

            return dcc.Graph(figure=fig, id=graph_id) 

        else: 

            raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_validate_res_params_content", "children"), 

    [Input("frac_cal_proxy_config_right_sources_dropdown", "value"), 

     Input("frac_cal_validate_res_params_dropdown", "value"), 

     Input("frac_cal_validate_case_dropdown", "value")], 
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    State("frac_cal_datasets_store", "data"), 

    config_prevent_initial_callbacks=True 

) 

def visualize_res_distributions(data_source, params, case, datasets): 

    dataset = pd.DataFrame(datasets[data_source]) 

    dataset = dataset[dataset['case'] == case] 

    if len(params) != 1: 

        raise PreventUpdate 

    else: 

        print('Response params: ', params) 

        fig_title = 'Response variable plot, ' + params[0] 

        graph_id = params[0] + '_res_plot' 

        fig = go.Figure() 

        fig.add_trace(go.Scatter(x=dataset.loc[:, 'surrogate_time'], 

                                 y=dataset.loc[:, params[0]], mode='lines')) 

        fig.add_trace(go.Scatter(x=dataset.loc[:, 'surrogate_time'], 

                                 y=dataset.loc[:, params[0]], mode='markers')) 

        fig.update_layout(title=fig_title) 

        fig.update_xaxes(title_text='Surrogate time') 

        fig.update_yaxes(title_text=params[0]) 

        return dcc.Graph(figure=fig, id=graph_id) 

 

 

@callback( 

    Output("frac_cal_validate_datasets_content", "children"), 

    Input("frac_cal_proxy_config_right_sources_dropdown", "value"), 

    [State("frac_cal_project_main_dir_store", "data"), 

     State("frac_cal_datasets_store", "data")], 
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    config_prevent_initial_callbacks=True 

) 

def validate_datasets(data_source, main_dir, datasets): 

    dataset = pd.DataFrame(datasets[data_source]) 

    validate_text = "" 

    if dataset.isnull().values.any(): 

        num_na = dataset.isna().sum().sum() 

        dataset_ = dataset.fillna(value=0, inplace=False) 

        dataset_file_ = data_source + '_data_.csv' 

        dataset_dir_ = os.path.join(main_dir, dataset_file_) 

        dataset_.to_csv(dataset_dir_) 

        validate_text += "Data source at " + data_source + " has " + str(num_na) + " nan values. " \ 

                                                                                   "In-place correction is made." 

        return validate_text 

    else: 

        dataset_ = dataset 

        dataset_file_ = data_source + '_data_.csv' 

        dataset_dir_ = os.path.join(main_dir, dataset_file_) 

        dataset_.to_csv(dataset_dir_) 

        raise PreventUpdate 

 

 

##############################################################################

############# 

################################ Page's main UI callbacks 

################################# 

################################ Proxy configuration 

###################################### 

##############################################################################

############# 
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@callback( 

    Output("frac_cal_proxy_params_left_dropdown", "options"), 

    Input("frac_cal_proxy_model_confirm", "n_clicks"), 

    State("frac_cal_proxy_model_left_dropdown", "value"), 

    config_prevent_initial_callbacks=True 

) 

def retrieve_proxy_hyper_params(n_clicks, model_name): 

    if n_clicks: 

        if model_name == "GBM": 

            return gbm_hyper_params 

        elif model_name == "XGB": 

            return xgb_hyper_params 

        else: 

            return default_hyper_params 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_proxy_hyper_params_name", "options"), 

    Input("frac_cal_proxy_hyper_params_store", "data"), 

    config_prevent_initial_callbacks=True 

) 

def update_proxy_hyper_params(hyper_params): 

    return hyper_params 
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@callback( 

    Output("frac_cal_proxy_hyper_params_content", "children"), 

    Input("frac_cal_proxy_hyper_params_confirm", "n_clicks"), 

    [State("frac_cal_proxy_hyper_params_name", "value"), 

     State("frac_cal_proxy_hyper_params_dist", "value"), 

     State("frac_cal_proxy_hyper_params_dist_params", "value")], 

    config_prevent_initial_callbacks=True 

) 

def visualize_proxy_hyper_params_dist(n_clicks, param_name, param_dist, param_dist_params): 

    if n_clicks: 

        print("Dist for: ", param_name, param_dist) 

        param_dist_params_ = param_dist_params.split(sep=",") 

        param_dist_params_ = [float(_) for _ in param_dist_params_] 

        if param_dist == "uniform": 

            param_dist_generator = distributions.uniform(param_dist_params_[0], 

param_dist_params_[-1]) 

            param_dist_data = param_dist_generator.rvs(1000) 

        elif param_dist == "normal": 

            param_dist_generator = distributions.norm(param_dist_params_[0], 

param_dist_params_[-1]) 

            param_dist_data = param_dist_generator.rvs(1000) 

        else: 

            param_dist_generator = distributions.lognorm(param_dist_params_[0], 

param_dist_params_[-1]) 

            param_dist_data = param_dist_generator.rvs(1000) 

        param_dist_data = pd.DataFrame({param_name: param_dist_data}) 

        fig = px.histogram(data_frame=param_dist_data, x=param_name) 

        graph_id = param_name + '_distribution' 

        return dcc.Graph(figure=fig, id=graph_id) 
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    else: 

        raise PreventUpdate 

 

 

@callback( 

    [Output("frac_cal_proxy_exp_inputs", "options"), 

     Output("frac_cal_proxy_exp_outputs", "options")], 

    Input("frac_cal_proxy_config_right_params_validate", "n_clicks"), 

    State("frac_cal_proxy_config_right_params_dropdown", "value"), 

    config_prevent_initial_callbacks=True 

) 

def retrieve_proxy_exp_params(n_clicks, proxy_params): 

    if n_clicks: 

        return proxy_params, proxy_params 

    else: 

        raise PreventUpdate 

 

 

@callback( 

    Output("frac_cal_proxy_exp_content", "children"), 

    # Button to execute the proxy experiment run(s) 

    Input("frac_cal_proxy_exp_exec", "n_clicks"), 

    [   # Type of proxy task 

        State("task_to_use_proxy", "value"), 

        # Type of proxy 

        State("frac_cal_proxy_exp_proxy_type", "value"), 

        # Fit or Optimize this experiment 

        State("frac_cal_proxy_exp_right_dropdown", "value"), 
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        # Proxy's hyper-parameter distributions 

        State("frac_cal_proxy_hyper_params_dist_store", "data"), 

        # Define the experiment 

        State("frac_cal_proxy_exp_dir", "value"), 

        State("frac_cal_proxy_exp_name", "value"), 

        State("frac_cal_proxy_exp_description", "value"), 

        # Define the run 

        State("frac_cal_proxy_exp_run_name", "value"), 

        State("frac_cal_proxy_exp_model_folder", "value"), 

        State("frac_cal_proxy_exp_artifact_folder", "value"), 

        # Data sources, inputs and outputs 

        State("frac_cal_proxy_exp_inputs", "value"), 

        State("frac_cal_proxy_exp_outputs", "value"), 

        State("frac_cal_data_sources_store", "data"), 

        State("frac_cal_project_main_dir_store", "data") 

    ], config_prevent_initial_callbacks=True 

) 

def run_proxy_exp(n_clicks, proxy_task, proxy_type, 

                  exp_mode, hyper_params_dists, 

                  exp_dir, exp_name, exp_description, 

                  run_name, model_folder, artifact_folder, 

                  input_variables, output_variables, data_source, main_dir): 

    if n_clicks: 

        # Create data object (XGBDataset) 

        print('Create data object ...') 

        dataset_file = data_source + '_data_.csv' 

        dataset_dir = os.path.join(main_dir, dataset_file) 

        df = pd.read_csv(dataset_dir, index_col=0, header=0) 
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        df_cols = list(df.columns) 

        data_object = XGBDataset(df=df) 

        fracture_profile_cols = list() 

        for col in df_cols: 

            if 'z_' in col: 

                fracture_profile_cols.append(col) 

        if proxy_task == "Fracture geometry calibration": 

            data_object.x_cols = data_object.time_param + fracture_profile_cols 

        else: 

            data_object.x_cols = input_variables 

        data_object.y_cols = output_variables 

        # Create proxy object (QuantileXGBRegressor) 

        print('Create proxy object ...') 

        proxy_object = QuantileXGBRegressor(xgb_data=data_object) 

        # Create MLFlowProxyWrapper 

        print('Create proxy wrapper object ...') 

        proxy_wrapper = MLFlowProxyWrapper(proxy=proxy_object) 

        # Create hyper-parameter space 

        print('Create space ...') 

        space, proxy_exp_mode = create_proxy_hyper_params_space(hyper_params_dists, 

proxy_type, exp_mode) 

        # Create experiment object 

        print('Create experiment object ...') 

        experiment_object = ProxyExperiment(mlflow_proxy_wrapper=proxy_wrapper) 

        experiment_object.experiment_dir = exp_dir 

        experiment_object.experiment_name = exp_name 

        experiment_object.experiment_description = exp_description 

        experiment_object.experiment_mode = proxy_exp_mode 

        print('Execute the experiment & run ...') 
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        # Execute experiment & corresponding run 

        if proxy_exp_mode == 'fit': 

            experiment_object.log_new_fit_experiment(run_name, model_folder, artifact_folder, 

space) 

        else: 

            experiment_object.log_new_opt_experiment(run_name, model_folder, artifact_folder, 

space) 

    else: 

        raise PreventUpdate 

 

 

##############################################################################

############# 

################################ Page's main UI callbacks 

################################# 

################################## Proxy explanation 

###################################### 

 

from base.base import * 

 

 

def toggle_collapse(n, is_open): 

    if n: 

        return not is_open 

    return is_open 

 

 

def set_navitem_class(is_open): 

    if is_open: 

        return "open" 
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    return "" 

 

 

def set_sidebar(app: dash.Dash): 

    app.callback( 

            Output("doe_sidebar_collapse", "is_open"), 

            [Input("doe_sidebar", "n_clicks")], 

            [State("doe_sidebar_collapse", "is_open")], 

    )(toggle_collapse) 

 

    app.callback( 

            Output("doe_sidebar", "className"), 

            [Input("doe_sidebar_collapse", "is_open")], 

    )(set_navitem_class) 

 

    app.callback( 

            Output("frac_cal_sidebar_collapse", "is_open"), 

            [Input("frac_cal_sidebar", "n_clicks")], 

            [State("frac_cal_sidebar_collapse", "is_open")], 

    )(toggle_collapse) 

 

    app.callback( 

            Output("frac_cal_sidebar", "className"), 

            [Input("frac_cal_sidebar_collapse", "is_open")], 

    )(set_navitem_class) 

 

    app.callback( 

            Output("proxy_deploy_sidebar_collapse", "is_open"), 
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            [Input("proxy_deploy_sidebar", "n_clicks")], 

            [State("proxy_deploy_sidebar_collapse", "is_open")], 

    )(toggle_collapse) 

 

    app.callback( 

            Output("proxy_deploy_sidebar", "className"), 

            [Input("proxy_deploy_sidebar_collapse", "is_open")], 

    )(set_navitem_class) 

from DoE.doe.utils import * 

from simulator.base.entry import * 

 

 

######################################################################### 

# "Connection" classes to create and write new ResFrac simulation files 

# Using the classes: 

# 1. Entry: allow integrating with ResFrac entry system 

# 2. ValueStruct: allow altering the data in a specific entry 

######################################################################### 

 

 

class Distribution(object): 

    # TODO: Set-up class to manage all DoE distributions (that alter value_struct 

    # in a ResFrac's entry 

    def __init__(self, entry: Entry): 

        super(Distribution, self).__init__() 

        self.entry = entry 

 

    def verify_entry(self, expected_variable_name: str): 
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        try: 

            assert self.entry.variable_name == expected_variable_name 

        except AssertionError: 

            warnings.warn('Incorrect entry.') 

            sys.exit(1) 

 

    def verify_value_struct(self, expected_value_struct): 

        try: 

            assert type(self.entry.value_struct.value_struct) == expected_value_struct 

        except AssertionError: 

            warnings.warn('Incorrect value struct.') 

            sys.exit(1) 

 

    def generate_sample(self, *args, **kwargs): 

        pass 

 

 

class SingleValueDistribution(Distribution): 

    # Distribution class for an entry with single value 

    def __init__(self, entry: Entry): 

        super(Distribution, self).__init__() 

        self.entry = entry 

 

        self.value_type = None 

        self.dist = None 

 

    def set_value_type(self, value_type: str): 

        self.value_type = value_type 
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    def set_dist(self, dist): 

        self.dist = dist 

 

    def generate_sample(self): 

        sample_value = ' '  # TODO: ? Sampling a single value here 

        new_value_struct = self.entry.value_struct.value_struct 

        new_value_struct['Value(s):'] = sample_value 

        self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct) 

 

 

class MatrixValueDistribution(Distribution): 

    # Distribution class for an entry with matrix value (e.g., facies list) 

    def __init__(self, entry: Entry): 

        super(Distribution, self).__init__() 

        self.entry = entry 

 

        self.value_type = None 

        self.dist = None 

 

    def set_value_type(self, value_type: str): 

        self.value_type = value_type 

 

    def set_dist(self, dist): 

        self.dist = dist 

 

    def generate_sample(self, *args, **kwargs): 

        pass 
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class LayerValueDistribution(MatrixValueDistribution): 

    """ 

    Distribution class for an entry with "matrix" value, as follows: 

    - Rows: number of layers for a property (as a col) 

    - Cols: number of properties (a col is a property) 

    """ 

    def __init__(self, entry: Entry): 

        super(MatrixValueDistribution, self).__init__() 

        self.entry = entry 

        # Additional parameters to indicates layers and property names 

        self.value_type = None 

        self.dist = None 

        self.property_names = None 

        self.layer_names = None 

 

    def set_property_names(self, property_names: list): 

        self.property_names = property_names 

 

    def set_layer_names(self, layer_names: list): 

        self.layer_names = layer_names 

 

    def generate_sample(self, loc: dict): 

        for layer_name, property_name in loc.items(): 

            try: 

                assert layer_name in self.layer_names 

                assert property_name in self.property_names 
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            except AssertionError: 

                warnings.warn('Input layer name: ' + layer_name + ' is incorrect.') 

                warnings.warn(' OR ') 

                warnings.warn('Input property name: ' + property_name + ' is incorrect.') 

                sys.exit(1) 

        for layer_name, property_name in loc.items(): 

            property_idx = self.property_names.index(property_name) 

            sample_value = ' '  # TODO: ? Distribution sampling here 

            new_value_struct = self.entry.value_struct.value_struct 

            new_value_struct[layer_name][property_idx] = sample_value 

            self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct) 

 

 

######################################################################### 

# Distribution classes for fracture model calibration entries 

######################################################################### 

 

 

class RelativeFracToughnessDistribution(SingleValueDistribution): 

    def __init__(self, entry: Entry): 

        super(SingleValueDistribution, self).__init__() 

        self.entry = entry 

        self.value_type = ' ' 

        self.dist = ' '  # TODO: ? Set-up uniform distribution here 

 

 

class FracGradientDistribution(LayerValueDistribution): 

    def __init__(self, entry: Entry): 
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        super(LayerValueDistribution, self).__init__() 

        self.entry = entry 

 

 

class VerticalKDistribution(LayerValueDistribution): 

    def __init__(self, entry: Entry): 

        super(LayerValueDistribution, self).__init__() 

        self.entry = entry 

 

 

class HorizontalKDistribution(LayerValueDistribution): 

    def __init__(self, entry: Entry): 

        super(LayerValueDistribution, self).__init__() 

        self.entry = entry 

 

 

class NWComplexityDistribution(LayerValueDistribution): 

    def __init__(self, entry: Entry): 

        super(LayerValueDistribution, self).__init__() 

        self.entry = entry 

 

    def generate_sample(self): 

        pass 

 

 

class VerticalPropHolUpDistribution(SingleValueDistribution): 

    # Distribution class to manage vertical prop flow holdup factor 

    def __init__(self, entry: Entry): 
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        super(SingleValueDistribution, self).__init__() 

        self.entry = entry 

 

 

class MaxImmobilePropMassDistribution(SingleValueDistribution): 

    # Distribution class to manage maximum immobilized prop mass per area 

    def __init__(self, entry: Entry): 

        super(SingleValueDistribution, self).__init__() 

        self.entry = entry 

 

 

######################################################################### 

# Distribution classes for production data HM entries 

######################################################################### 

 

 

class GlobalPermMultiplierDistribution(SingleValueDistribution): 

    def __init__(self, entry: Entry): 

        super(SingleValueDistribution, self).__init__() 

        self.entry = entry 

        self.value_type = ' ' 

        self.dist = ' '  # TODO: ? Set-up uniform distribution here 

 

 

class PorosityDistribution(LayerValueDistribution): 

    def __init__(self, entry: Entry): 

        super(LayerValueDistribution, self).__init__() 

        self.entry = entry 



 

236 
 

 

    def generate_sample(self): 

        self.verify_entry('facieslist') 

 

 

class InitialSwDistribution(LayerValueDistribution): 

    def __init__(self, entry: Entry): 

        super(LayerValueDistribution, self).__init__() 

        self.entry = entry 

 

    def generate_sample(self): 

        self.verify_entry('facieslist') 

 

 

class RelPermCurveDistribution(Distribution): 

    # Distribution class to manage rel perm curve (RelPermStruct) 

    def __init__(self, entry: Entry): 

        super(Distribution, self).__init__() 

        self.entry = entry 

        # Additional parameters for relative perm curves 

        self.max_Sr = np.zeros(3)  # S_wr, S_or, S_gr 

        self.kr_multipliers = np.zeros(3)  # k_rw, k_ro, k_rg 

        self.Sr_dist = None 

        self.kr_dist = None 

 

    def set_saturation_dist(self, Sr_dist): 

        self.Sr_dist = Sr_dist 
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    def set_kr_dist(self, kr_dist): 

        self.kr_dist = kr_dist 

 

    def generate_sample(self): 

        self.verify_entry('matrixcurvesets') 

        self.max_Sr = ' '  # TODO: ? Implement distribution sampling here 

        self.kr_multipliers = ' '  # TODO: ? Implement distribution sampling here 

        rel_perm_curve = np.zeros([3, 3]) 

        rel_perm_curve[:, 0] = self.Sr_dist 

        rel_perm_curve[:, 1] = np.array([2, 2, 1.2]) 

        rel_perm_curve[:, -1] = self.kr_dist 

        new_value_struct = self.entry.value_struct.value_struct 

        new_value_struct['matrixrelperm'][-1] = rel_perm_curve 

        self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct) 

 

 

class PDPDistribution(Distribution): 

    # Distribution class to manage Pressure Dependent Permeability (RelPermStruct) 

    def __init__(self, entry: Entry): 

        super(Distribution, self).__init__() 

        self.entry = entry 

        # Additional parameters for relative perm curves 

        self.pressures = np.zeros(3)  # S_wr, S_or, S_gr 

        self.multipliers = np.zeros(3)  # k_rw, k_ro, k_rg 

        self.pressure_dist = None 

        self.multiplier_dist = None 

 

    def set_pressure_dist(self, pressure_dist): 



 

238 
 

        self.pressure_dist = pressure_dist 

 

    def set_kr_dist(self, multiplier_dist): 

        self.multiplier_dist = multiplier_dist 

 

    def generate_sample(self): 

        self.verify_entry('matrixcurvesets') 

        self.pressures = ' '  # TODO: ? Implement distribution sampling here 

        self.multipliers = ' '  # TODO: ? Implement distribution sampling here 

        pdp_data = np.zeros([3, 2]) 

        pdp_data[:, 0] = self.pressures 

        pdp_data[:, -1] = self.multipliers 

        new_value_struct = self.entry.value_struct.value_struct 

        new_value_struct[('pressuredependentpermeability', 'reversible')][0] = pdp_data 

        self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct) 

 

 

class StressAnisotropyDistribution(LayerValueDistribution): 

    # Layers' Sh_max - Sh_min 

    def __init__(self, entry: Entry): 

        super(LayerValueDistribution, self).__init__() 

        self.entry = entry 

 

 

class NetToGrossDistribution(LayerValueDistribution): 

    # Layers' net to gross ratios 

    def __init__(self, entry: Entry): 

        super(LayerValueDistribution, self).__init__() 
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        self.entry = entry 

from DoE.doe.utils import * 

from simulator.base.entry import * 

from simulator.simulation import simulation_helpers, simulation_files 

 

 

######################################################################### 

# "Connection" classes to create and write new ResFrac simulation files 

# Using the classes: 

# 1. Entry: allow integrating with ResFrac entry system 

# 2. ValueStruct: allow altering the data in a specific entry 

######################################################################### 

 

 

class Connector(object): 

    def __init__(self, entry: Entry): 

        """ 

        Base connector class, inherit this class to: 

        1. Connect data from a DoE case to the correct entry's value struct 

        2. Write data from a DoE case to the correct entry's value struct 

        (depend on the type of the value struct) 

        :param entry: 

        """ 

        super(Connector, self).__init__() 

        self.entry = entry  # The entry the connector shall write data into 

        """ 

        :param case_loc: type int, the case number in DoE data (2D np.ndarray) 

        :param data_loc: type int, the DoE parameter location in the DoE data 
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        :param write_loc: denote as follows: 

        1. For single value: -1  

        2. For value(s) in a list/1D array: list(int) 

        3. For values(s) in a list of list/2D array: list(list(int)) 

        4. For value(s) in layer: list(layer name, property index) 

        5. For irregular value structs: 

            5.1. Relative perm: list(list(int)) for relative perm curve(s) & curve location 

            5.2. PDP curve: list(list(int)) for pressure dependent perm curve(s) & curve location 

        """ 

        self.case_loc = None  # The case number the DoE data shall locate 

        self.data_loc = None  # The location(s) of the data in the DoE data 

        self.write_loc = None  # The location(s) of the data in the entry's value struct 

 

    def set_doe_loc(self, case_loc: int, data_loc): 

        # Set the case location & data location in the DoE data 

        self.case_loc = case_loc 

        self.data_loc = data_loc 

 

    def set_write_loc(self, write_loc): 

        # Set the written location in the entry's value struct 

        self.write_loc = write_loc 

 

    def verify_entry(self, expected_variable_name: str): 

        # Verify the correct entry the connector shall connect 

        # If incorrect entry, exit 

        try: 

            assert self.entry.variable_name == expected_variable_name 

        except AssertionError: 
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            warnings.warn('Incorrect entry.') 

            sys.exit(1) 

 

    def verify_value_struct(self, expected_value_struct): 

        # Verify the correct value struct type the connector shall connect 

        # If incorrect value struct type, exit 

        try: 

            assert type(self.entry.value_struct.value_struct) == expected_value_struct 

        except AssertionError: 

            warnings.warn('Incorrect value struct.') 

            sys.exit(1) 

 

    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        # Write data from DoE (doe_data) to the entry's value_struct 

        # Must override 

        pass 

 

 

class SingleValueConnector(Connector): 

    def __init__(self, entry: Entry, data_type): 

        """ 

        Connector class to connect DoE data of a single value (i.e., str, float, int) 

        :param entry: 

        """ 

        super(Connector, self).__init__() 

        self.entry = entry 

        self.write_loc = -1 

        self.data_type = data_type 
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    def verify_data_type(self, value): 

        if self.data_type in [int, float]: 

            try: 

                value_ = self.data_type(value) 

                return True 

            except ValueError: 

                return False 

        elif self.data_type == bool: 

            try: 

                assert value.lower() in ['true', 'false'] 

                return True 

            except AssertionError: 

                try: 

                    assert self.data_type == str 

                    return True 

                except AssertionError: 

                    return False 

 

    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif not self.verify_data_type(doe_data[self.case_loc, self.data_loc]): 

            warnings.warn('Incorrect data type for a single value.') 

            sys.exit(1) 

        else: 

            new_value_struct = doe_data[self.case_loc, self.data_loc] 
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            self.entry.change_values(new_value_struct=self.data_type(new_value_struct)) 

 

 

class ListValueConnector(Connector): 

    def __init__(self, entry: Entry): 

        """ 

        Connector class to connect DoE data of a list value 

        (i.e., str, float, int) 

        :param entry: 

        """ 

        super(Connector, self).__init__() 

        self.entry = entry 

        self.write_loc = None  # Location(s) in the value struct the connector shall write into 

 

    def set_write_loc(self, write_loc: List[int]): 

        self.write_loc = write_loc 

 

    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        self.verify_value_struct(expected_value_struct=list) 

        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif self.write_loc is None: 

            warnings.warn("Entry value' struct written location is required.") 

            sys.exit(1) 

        else: 

            new_value_struct = self.entry.value_struct.value_struct 

            assert len(self.write_loc) == len(self.data_loc) 
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            for (_, loc) in enumerate(self.write_loc): 

                new_value_struct[self.write_loc[_]] = doe_data[self.case_loc, self.data_loc[_]] 

            self.entry.change_values(new_value_struct=new_value_struct) 

 

 

class ListOfListValueConnector(Connector): 

    def __init__(self, entry: Entry): 

        """ 

        Connector class to connect DoE data of a list of list value 

        (i.e., str, float, int) 

        :param entry: 

        """ 

        super(Connector, self).__init__() 

        self.entry = entry 

        self.write_loc = None  # Location(s) in the value struct the connector shall write into 

 

    def set_write_loc(self, write_loc: List[List[int]]): 

        self.write_loc = write_loc 

 

    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        self.verify_value_struct(expected_value_struct=list) 

        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif self.write_loc is None: 

            warnings.warn("Entry value' struct written location is required.") 

            sys.exit(1) 

        else: 
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            assert type(self.write_loc) == list 

            assert len(self.write_loc) == 2 

            assert type(self.data_loc) == list 

            assert len(self.write_loc[0]) == len(self.write_loc[-1]) 

            assert len(self.write_loc[0]) == len(self.data_loc) 

            new_value_struct = self.entry.value_struct.value_struct 

            for _ in range(len(self.write_loc[0])): 

                new_value_struct[self.write_loc[0][_]][self.write_loc[-1][_]] = \ 

                    doe_data[self.case_loc, self.data_loc[_]] 

            self.entry.change_values(new_value_struct=new_value_struct) 

 

 

class Array1DValueConnector(Connector): 

    def __init__(self, entry: Entry): 

        """ 

        Connector class to connect DoE data of a 1D numpy array value 

        (i.e., str, float, int) 

        :param entry: 

        """ 

        super(Connector, self).__init__() 

        self.entry = entry 

        self.write_loc = None 

 

    def set_write_loc(self, write_loc: List[int]): 

        self.write_loc = write_loc  # Location(s) in the value struct the connector shall write into 

 

    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        self.verify_value_struct(expected_value_struct=np.ndarray) 
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        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif self.write_loc is None: 

            warnings.warn("Entry value' struct written location is required.") 

            sys.exit(1) 

        else: 

            new_value_struct = self.entry.value_struct.value_struct 

            assert len(self.write_loc) == len(self.data_loc) 

            for (_, loc) in enumerate(self.write_loc): 

                new_value_struct[self.write_loc[_]] = doe_data[self.case_loc, self.data_loc[_]] 

            self.entry.change_values(new_value_struct=new_value_struct) 

 

 

class Array2DValueConnector(Connector): 

    def __init__(self, entry: Entry): 

        """ 

        Connector class to connect DoE data of a 2D numpy array value 

        (i.e., str, float, int) 

        :param entry: 

        """ 

        super(Connector, self).__init__() 

        self.entry = entry 

        self.write_loc = None 

 

    def set_write_loc(self, write_loc: Union[List[int], List[List[int]]]): 

        self.write_loc = write_loc  # Location(s) in the value struct the connector shall write into 
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    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        self.verify_value_struct(expected_value_struct=np.ndarray) 

        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif self.write_loc is None: 

            warnings.warn("Entry value' struct written location is required.") 

            sys.exit(1) 

        else: 

            assert type(self.write_loc) == list 

            assert len(self.write_loc) == 2 

            assert type(self.data_loc) == list 

            assert len(self.write_loc[0]) == len(self.write_loc[-1]) 

            assert len(self.write_loc[0]) == len(self.data_loc) 

            new_value_struct = self.entry.value_struct.value_struct 

            for _ in range(len(self.write_loc[0])): 

                new_value_struct[self.write_loc[0][_], self.write_loc[-1][_]] = \ 

                    doe_data[self.case_loc, self.data_loc[_]] 

            self.entry.change_values(new_value_struct=new_value_struct) 

 

 

class LayerValueConnector(ListOfListValueConnector): 

    def __init__(self, entry: Entry, layer_names: List[str], prop_names: List[str]): 

        """ 

        Connector class to connect DoE data of a "layer data" value struct 

        (i.e., static data per layer, modulus properties, initial Sw per layer) 

        :param entry: 

        :param layer_names: 
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        :param prop_names: 

        """ 

        super(ListOfListValueConnector, self).__init__(entry=entry) 

        self.num_layers = None 

        # Additional attributes to define layer & property names 

        self.prop_names = prop_names 

        self.layer_names = layer_names 

        self.connected_prop_names = None 

        self.connected_layer_names = None 

 

    def set_number_of_layers(self, num_layers: int): 

        self.num_layers = num_layers 

 

    def set_connected_data(self, connected_prop_names: List[str], 

                           connected_layer_names: List[str]): 

        self.connected_prop_names = connected_prop_names 

        self.connected_layer_names = connected_layer_names 

 

    def set_write_loc(self, write_loc=None): 

        # Re-write this function to intake connected layer names & property names 

        assert len(self.connected_layer_names) == len(self.connected_prop_names) 

        write_loc_ = list() 

        for (_, layer_name) in enumerate(self.connected_layer_names): 

            prop_name = self.connected_prop_names[_] 

            try: 

                prop_idx = self.prop_names.index(prop_name) 

                write_loc_.append([layer_name, prop_idx]) 

            except ValueError: 



 

249 
 

                warnings.warn('Provided property is not correct.') 

                sys.exit(1) 

        self.write_loc = write_loc_ 

 

    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        self.verify_value_struct(expected_value_struct=dict) 

        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif self.write_loc is None: 

            warnings.warn("Entry value' struct written location is required.") 

            sys.exit(1) 

        else: 

            assert len(self.write_loc) == len(self.data_loc) 

            new_value_struct = self.entry.value_struct.value_struct 

            for (_, [layer_name, prop_idx]) in enumerate(self.write_loc): 

                new_value_struct[layer_name][prop_idx] = doe_data[self.case_loc, self.data_loc[_]] 

            self.entry.change_values(new_value_struct=new_value_struct) 

 

 

def init_connector(entry: Entry, param_name: str): 

    """ 

    # TODO: Return the correct connector class for an entry 

    :param entry: 

    :param param_name: 

    :return: connector_object: the connector class object 

    """ 

    try: 
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        assert entry.is_doe is True 

    except AssertionError: 

        warnings.warn('This is not a DoE entry.') 

        sys.exit(1) 

    if entry.length == 0: 

        warnings.warn('An entry with 0 length can not be a DoE entry.') 

        sys.exit(1) 

    elif entry.length == 1: 

        if type(entry.value_struct) is SingleValueStruct: 

            connector_object = SingleValueConnector(entry=entry, data_type=None) 

        elif type(entry.value_struct) is MatrixValueStruct: 

            if type(entry.value_struct.value_struct) == np.ndarray: 

                connector_object = Array1DValueConnector(entry=entry) 

            else: 

                connector_object = ListValueConnector(entry=entry) 

        else: 

            rel_perm_curve = -1 

            if 'pdp' not in param_name: 

                connector_object = RelPermCurveConnector(entry=entry, 

rel_perm_curve=rel_perm_curve) 

            else: 

                connector_object = PDPConnector(entry=entry, rel_perm_curve=rel_perm_curve) 

    else: 

        if type(entry.value_struct) is FaciesListStruct: 

            layer_names_ = [''] 

            prop_names_ = [''] 

            connector_object = LayerValueConnector(entry=entry, layer_names=layer_names_, 

prop_names=prop_names_) 

        else: 
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            if verify_1d_list(entry.value_struct.value_struct) is True: 

                connector_object = ListValueConnector(entry=entry) 

            elif verify_1d_array(entry.value_struct.value_struct) is True: 

                connector_object = Array1DValueConnector(entry=entry) 

            elif verify_1d_list(entry.value_struct.value_struct) is False: 

                connector_object = ListOfListValueConnector(entry=entry) 

            elif verify_1d_array(entry.value_struct.value_struct) is False: 

                connector_object = Array2DValueConnector(entry=entry) 

            else: 

                warnings.warn('The entry value struct is not supported by any connectors. Set to base 

connector.') 

                connector_object = Connector(entry=entry) 

    return connector_object 

 

 

######################################################################### 

# Distribution classes for production data HM entries 

######################################################################### 

 

 

class RelPermCurveConnector(Connector): 

    def __init__(self, entry: Entry, rel_perm_curve: int): 

        """ 

        Connector class specified for rel perm curve (as np.ndarray) 

        :param entry: 

        """ 

        super(Connector, self).__init__() 

        self.entry = entry 

        self.rel_perm_curve = rel_perm_curve 
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    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 

        # This function to write rel perm curve at the correct location in 'matrixcurvesets' entry 

        self.verify_entry(expected_variable_name='matrixcurvesets') 

        new_value_struct = self.entry.value_struct.value_struct 

        rel_perm_curve = new_value_struct[self.rel_perm_curve]['matrixrelperm'][-1] 

        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif self.write_loc is None: 

            warnings.warn("Entry value' struct written location is required.") 

            sys.exit(1) 

        else: 

            assert type(self.write_loc) == list 

            assert type(self.data_loc) == list 

            for _ in range(len(self.write_loc)): 

                rel_perm_curve[self.write_loc[_][0], self.write_loc[_][-1]] = doe_data[self.case_loc, 

self.data_loc[_]] 

            new_value_struct[self.rel_perm_curve]['matrixrelperm'][-1] = rel_perm_curve 

        self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct) 

 

 

class PDPConnector(Connector): 

    def __init__(self, entry: Entry, rel_perm_curve: int): 

        super(Connector, self).__init__() 

        self.entry = entry 

        self.rel_perm_curve = rel_perm_curve 

 

    def write_doe_data(self, doe_data: np.ndarray, *args, **kwargs): 
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        # This function to write rel perm curve at the correct location in 'matrixcurvesets' entry 

        self.verify_entry(expected_variable_name='matrixcurvesets') 

        new_value_struct = self.entry.value_struct.value_struct 

        pdp_curve = new_value_struct[self.rel_perm_curve][('pressuredependentpermeability', 

'reversible')][0] 

        if self.case_loc is None or self.data_loc is None: 

            warnings.warn('Case location and data location are required.') 

            sys.exit(1) 

        elif self.write_loc is None: 

            warnings.warn("Entry value' struct written location is required.") 

            sys.exit(1) 

        else: 

            assert type(self.write_loc) == list 

            assert len(self.write_loc) == 2 

            assert type(self.data_loc) == list 

            assert len(self.write_loc[0]) == len(self.write_loc[-1]) 

            assert len(self.write_loc[0]) == len(self.data_loc) 

            for _ in range(len(self.write_loc[0])): 

                pdp_curve[self.write_loc[0][_], self.write_loc[-1][_]] = \ 

                    doe_data[self.case_loc, self.data_loc[_]] 

        new_value_struct[self.rel_perm_curve][('pressuredependentpermeability', 'reversible')][0] = 

pdp_curve 

        self.entry.value_struct.change_value_struct(new_value_struct=new_value_struct) 

 

 

######################################################################### 

# Design of Experiments classes/functions using pyDOE, scipy and numpy 

######################################################################### 
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class DesignOfExperiments(object): 

    def __init__(self, design: str): 

        # TODO: ? Design of Experiments class that is integrated to the connector classes above 

        super(DesignOfExperiments, self).__init__() 

        self.data_locs = None 

        self.data = None 

        self.design = design 

 

    def verify_design(self, design: str): 

        try: 

            assert self.design == design 

        except AssertionError: 

            warnings.warn('Incorrect design.') 

            sys.exit(1) 

 

    def set_data_locs(self, data_locs: Dict[Tuple[str, str], 

                                            Union[int, List[int], List[List[int]]]]): 

        """ 

        Set up the correlation between DoE data and the connector classes 

        :param data_locs: correlate the data location in DoE data to the DoE parameter name & entry 

        (eventually correlate to the written location in the entry's value struct) 

        :return: self.data_locs (type dict) 

        self.data_locs.keys(): type tuple (property name, entry name) 

        self.data_locs.values(): int (list/1D array), list(int) (list of list/2D array), -1 (single value) 

        """ 

        self.data_locs = data_locs 
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    def generate(self, num_cases: int, *args, **kwargs): 

        pass 

 

 

class CCC(DesignOfExperiments): 

    def __init__(self, design='ccc'): 

        super(DesignOfExperiments, self).__init__() 

        self.design = design 

 

    def generate(self, num_cases=100, *args, **kwargs): 

        pass 

 

 

class LHS(DesignOfExperiments): 

    def __init__(self, design='lhs'): 

        super(DesignOfExperiments, self).__init__() 

        self.dist = None 

        self.design = design 

 

    def set_distributions(self, dist: list): 

        self.dist = dist 

 

    def generate(self, num_cases=100, *args, **kwargs): 

        props = list(self.data_locs.keys()) 

        try: 

            assert self.dist is not None 

        except AssertionError: 

            warnings.warn('Distributions are required.') 
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            sys.exit(1) 

        lhs_data = pyDOE.lhs(len(props), samples=num_cases, criterion='center') 

        for _ in range(len(props)): 

            # Customize the distributions here via scipy 

            lhs_data[:, _] = self.dist[_].ppf(lhs_data[:, _]) 

        self.data = lhs_data 

 

 

######################################################################### 

# Interface classes to 

# 1. Couple DesignOfExperiments class & Connector class 

# 2. Record DesignOfExperiments in ResFrac files via comment lines 

######################################################################### 

 

 

class DesignOfExperimentsAssembly(object): 

    def __init__(self, base_entries: List[Entry]): 

        super(DesignOfExperimentsAssembly, self).__init__() 

        self.base_entries = base_entries 

        self.doe_params = None  # DoE parameter names 

        self.doe_entry_var_names = None  # DoE entry names 

        self.doe_distributions = None  # DoE distributions 

        self.write_locs = None  # Written locations inside the entries' value structs 

        self.doe_data = None # DoE data 

        # 

        self.doe_batch = 0 

        self.doe_dir = None 
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    def reset_all_entries(self): 

        # Reset all entries to non-doe entries 

        for (_, entry) in enumerate(self.base_entries): 

            if entry.is_doe is True: 

                self.base_entries[_].is_doe = False 

            else: 

                pass 

 

    def set_main_dir(self, doe_dir): 

        self.doe_dir = doe_dir 

 

    def set_doe_params(self, doe_params: List[str]): 

        self.doe_params = doe_params 

 

    def set_doe_entry_var_names(self, doe_entry_var_names: List[str]): 

        all_entry_var_names = [e.variable_name for e in self.base_entries] 

        for (_, var_name) in enumerate(doe_entry_var_names): 

            if var_name not in all_entry_var_names: 

                warnings.warn('Incorrect entry variable name(s).') 

                sys.exit(1) 

            else: 

                for e in self.base_entries: 

                    if e.variable_name == var_name: 

                        e.is_doe = True 

                    else: 

                        pass 

        self.doe_entry_var_names = doe_entry_var_names 
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    def set_doe_distributions(self, doe_distributions: list): 

        self.doe_distributions = doe_distributions 

 

    def set_data_locs(self): 

        data_locs = dict() 

        for (_, param) in enumerate(self.doe_params): 

            if param not in data_locs.keys(): 

                data_locs[(param, self.doe_entry_var_names[_])] = self.write_locs[_] 

            else: 

                pass 

        return data_locs 

 

    def set_write_locs(self, write_locs): 

        self.write_locs = write_locs 

 

    def verify_doe_interface(self): 

        # Verify the number of doe parameters equal the number of entries (two parameters can 

belong to one entry) 

        try: 

            assert self.doe_params is not None 

            assert self.doe_entry_var_names is not None 

            assert self.doe_distributions is not None 

            assert self.write_locs is not None 

        except AssertionError: 

            warnings.warn('Design of Experiments interface is not defined.') 

            sys.exit(1) 

        try: 

            assert len(self.doe_params) == len(self.doe_entry_var_names) 

            assert len(self.doe_params) == len(self.write_locs) 
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            assert len(self.doe_params) == len(self.doe_distributions) 

        except AssertionError: 

            warnings.warn('Incorrect Design of Experiments interface.') 

            sys.exit(1) 

 

    def generate_doe_object(self, design: str, num_cases: int): 

        self.verify_doe_interface() 

        data_locs = self.set_data_locs() 

        doe_object = LHS(design=design) 

        doe_object.data_locs = data_locs 

        doe_object.verify_design(design=design) 

        doe_object.set_distributions(self.doe_distributions) 

        doe_object.generate(num_cases=num_cases) 

        return doe_object 

 

    def write_doe_entries(self, doe_object: DesignOfExperiments, last_case: int): 

        doe_data_ = doe_object.data 

        # Loop through all doe cases to write settings/input files 

        for case_loc in range(doe_data_.shape[0]): 

            case_doe_entries = list() 

            # Loop through all doe entries (using their variable names) 

            for (_, (param_name, entry_var_name)) in enumerate(doe_object.data_locs): 

                # Loop through all base entries to find the correct doe entries 

                for entry in self.base_entries: 

                    if entry.variable_name == entry_var_name: 

                        # The doe entry, init connector & modify using entry's variable name & write loc 

                        entry_connector = init_connector(entry=entry, param_name=param_name) 

                        if type(entry.value_struct) == SingleValueStruct: 
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                            # SingleValueConnector 

                            entry_connector.data_type = float  # TODO: ? Fix me 

                        elif type(entry.value_struct) == RelPermStruct: 

                            # RelPermConnector or PDPConnector 

                            entry_connector.set_write_loc(write_loc=self.write_locs[_]) 

                            entry_connector.rel_perm_curve = 0 

                        elif type(entry.value_struct) == FaciesListStruct: 

                            # LayerValueConnector 

                            num_layers = len(entry.value_struct.value_struct.keys()) 

                            connected_layer_names = [i[0] for i in self.write_locs[_]] 

                            connected_prop_names = [i[-1] for i in self.write_locs[_]] 

                            entry_connector.layer_names = layer_names 

                            entry_connector.prop_names = layer_props 

                            entry_connector.set_number_of_layers(num_layers=num_layers) 

                            

entry_connector.set_connected_data(connected_layer_names=connected_layer_names, 

                                                               connected_prop_names=connected_prop_names) 

                            entry_connector.set_write_loc() 

                        else: 

                            # List/ListOfList/Array1D/Array2D-Connector 

                            entry_connector.set_write_loc(write_loc=self.write_locs[_]) 

                        entry_connector.set_doe_loc(case_loc=case_loc, data_loc=[_]) 

                        entry_connector.write_doe_data(doe_data=doe_data_) 

                        case_doe_entries.append(entry_connector.entry) 

                    else: 

                        # The non-doe entry, remain 

                        case_doe_entries.append(entry) 

            # 

            doe_settings_file_name = 'doe_settings_case_' + str(case_loc) + '.txt' 
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            doe_settings_file_dir = os.path.join(self.doe_dir, doe_settings_file_name) 

            simulation_file = simulation_files.SimulationFile(entries=case_doe_entries, 

                                                              file_type='settings') 

            simulation_file.write_file(file_name=doe_settings_file_dir) 

        # Loop through all doe cases to write data for surrogate assembly 

        doe_data_file_name = 'doe_data_' + str(self.doe_batch) + '.csv' 

        doe_data_file_dir = os.path.join(self.doe_dir, doe_data_file_name) 

        doe_data = list() 

        for case_loc in range(doe_data_.shape[0]): 

            case_data = dict() 

            if 'case' not in case_data.keys(): 

                case_data['case'] = case_loc + last_case 

            for _ in range(doe_data_.shape[-1]): 

                if self.doe_params[_] not in case_data.keys(): 

                    case_data[self.doe_params[_]] = doe_data_[case_loc, _] 

            doe_data.append(case_data) 

        doe_data = pd.DataFrame(data=doe_data) 

        self.doe_data = doe_data 

        doe_data.to_csv(doe_data_file_dir, header=True) 

        return doe_data 

from src.base.base_libs import * 

 

 

######################################################################### 

# Design of Experiments helper variables 

######################################################################### 
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layer_props = 'top bottom xperm yperm zperm curvesetname ' \ 

              'porositycompressibility referenceporosity ' \ 

              'stressdeviation dualporosity fractureporositycompressibility ' \ 

              'fracturereferenceporosity shapefactor matrixpermeability rockdensity ' \ 

              'rockheatcapacity thermalconductivity coefficientoflinearexpansion dphidT ' \ 

              'biotcoefficient Tstr horizontalfracturetoughness verticalfracturetoughness ' \ 

              'E0max sn90percentclosure Eresmax maximumflowingmolarmass ' \ 

              'optionalinitialwatersaturation langmuirpressure langmuirvolume' \ 

              'showinvisualizationtool proppant embedment' 

layer_props = layer_props.split(sep=' ') 

layer_names = ['Layer ' + str(_) for _ in range(60)] 

 

 

######################################################################### 

# Design of Experiments helper functions 

######################################################################### 

 

 

def modify_layer_names(original_layer_names: List[str], locs: List[int], 

                       loc_layer_names: List[str]): 

    mod_layer_names = deepcopy(original_layer_names) 

    for (_, layer_name) in enumerate(layer_names): 

        if _ in locs: 

            mod_layer_names[_] = loc_layer_names[locs.index(_)] 

    return mod_layer_names 

 

 

def verify_single_value_type(data: Union[int, float, bool, str]): 
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    try: 

        value = int(data) 

        return int 

    except AssertionError: 

        try: 

            value = float(data) 

            return float 

        except AssertionError: 

            if data.lower() in ['true', 'false']: 

                return bool 

            else: 

                return str 

 

 

def verify_1d_list(data: list): 

    assert type(data) == list 

    assert len(data) > 0 

    if type(data[0]) is not list: 

        return True 

    else: 

        return False 

 

 

def verify_1d_array(data: np.ndarray): 

    assert type(data) == np.ndarray 

    if type(data[0]) is not np.ndarray: 

        return True 

    else: 
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        return False 

 

 

def layer_location(layer_name_: str, layer_names_: List[str]): 

    try: 

        assert layer_name_ in layer_names_ 

    except AssertionError: 

        warnings.warn('Incorrect input layer name.') 

        sys.exit(1) 

    return layer_names_.index(layer_name_) 

 

 

######################################################################### 

# Design of Experiments helper variables (modified if necessary) 

######################################################################### 

 

 

layer_names = modify_layer_names(original_layer_names=layer_names, 

      from base.base import * 

 

 

experimental_doe_params = ['S_wr', 'S_or', 'S_gr', 'relative_frac_toughness'] 

experimental_response_params = ['BHP', 'Oil prod rate'] 

experimental_data_sources = ['Proxy_cases'] 

 

experimental_mode = True                           locs=[41], loc_layer_names=['Target depth']) 

from base.base import * 
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##################################################################### 

# Helper variables to support validating Res-Frac file structure 

##################################################################### 

 

res_frac_required_folders = ['Additional_Files', 'Input_Files', 'Settings_Files', 'Results'] 

 

res_frac_required_files = ['cpuinfo.txt', 'dmesg.txt', 'matrix_prop_names.txt', 

                           'misc_visualization_data.txt', 'static_matrix.bin', 

                           'static_wellfrac.bin', 'stderr.txt', 'stdout.txt', 'syslog.txt'] 

 

default_hyper_params = ['max_depth', 'gamma', 'reg_alpha', 'reg_lambda', 

                        'colsample_bytree', 'min_child_weight', 

                        'learning_rate', 'random_rate', 'max_bin'] 

 

gbm_hyper_params = ['max_depth', 'gamma', 'reg_alpha', 'reg_lambda', 

                    'colsample_bytree', 'min_child_weight', 'n_estimators' 

                    'learning_rate', 'random_rate', 'max_bin'] 

 

xgb_hyper_params = ['max_depth', 'gamma', 'reg_alpha', 'reg_lambda', 

                    'colsample_bytree', 'min_child_weight', 

                    'learning_rate', 'random_rate', 'max_bin'] 

 

int_hyper_params = ['max_depth', 'n_estimators', 'random_state', 'tree_method'] 

 

objective_hyper_params = ['objective'] 

 

quantile_hyper_params = ['quantile_alpha'] 
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##################################################################### 

# Helper functions for Dash callbacks and interfaces 

##################################################################### 

 

 

def convert_numpy_to_data_table(arr: np.ndarray, columns): 

    data = pd.DataFrame(columns=columns, data=arr) 

    data_table = dash_table.DataTable( 

        data=data.to_dict('records'), 

        columns=[{"name": i, "id": i} for i in data.columns]) 

    return data_table 

 

 

def convert_dict_to_data_table(arr: dict, columns): 

    data = list() 

    for _ in arr.values(): 

        data.append(_) 

    data = np.array(data) 

    if columns is not None: 

        data = pd.DataFrame(columns=columns, data=data) 

    else: 

        columns_ = ['Column ' + str(_) for _ in range(data.shape[-1])] 

        data = pd.DataFrame(columns=columns_, data=data) 

    data_table = dash_table.DataTable( 

        data=data.to_dict('records'), 

        columns=[{"name": i, "id": i} for i in data.columns]) 

    return data_table 
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def validate_res_frac_workflows_dir(workflows_dir, simulations_dir): 

    """ 

    Validate the provided folder simulations_dir follows Res-Frac file structure 

    :param workflows_dir: 

    :param simulations_dir: 

    :return: 

    """ 

    simulation_runs_dir = os.path.join(workflows_dir, simulations_dir) 

    if os.path.exists(simulation_runs_dir) is False: 

        return False 

    else: 

        simulation_runs_data = os.listdir(simulation_runs_dir) 

        if 'simulations' not in simulation_runs_data or \ 

                'metadata.json' not in simulation_runs_data: 

            return False 

        else: 

            simulation_runs = os.path.join(simulation_runs_dir, 'simulations') 

            simulation_run_folders = os.listdir(simulation_runs) 

            num_simulation_runs = len(simulation_run_folders) 

            simulation_run_folder_valid = 0 

            # 

            for simulation_run_folder in simulation_run_folders: 

                simulation_run_dir = os.path.join(simulation_runs, simulation_run_folder) 

                simulation_run_files = os.listdir(simulation_run_dir) 

                if all(_ in simulation_run_files for _ in res_frac_required_files) is True \ 

                        and all(_ in simulation_run_files for _ in res_frac_required_folders) is True: 

                    simulation_run_folder_valid += 1 
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            if simulation_run_folder_valid == num_simulation_runs: 

                return True 

            else: 

                return False 

 

 

def create_distribution_object(param_name: str, param_dist: str, 

                               param_dist_params, object_wrapper='scipy'): 

    if object_wrapper == 'scipy': 

        if param_dist == 'uniform': 

            dist_object = distributions.uniform(param_name, float(param_dist_params[0]), 

                                         float(param_dist_params[-1])) 

        elif param_dist == 'normal': 

            dist_object = distributions.norm(param_name, float(param_dist_params[0]), 

                                        float(param_dist_params[-1])) 

        else: 

            dist_object = distributions.lognorm(param_name, float(param_dist_params[0]), 

                                           float(param_dist_params[-1])) 

        return dist_object 

    elif object_wrapper == 'hyperopt': 

        if param_name in int_hyper_params: 

            if param_dist == 'uniform': 

                dist_object = scope.int(hp.uniform(param_name, 

                                         float(param_dist_params[0]), 

                                         float(param_dist_params[-1]))) 

            elif param_dist == 'normal': 

                dist_object = scope.int(hp.normal(param_name, 

                                         float(param_dist_params[0]), 
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                                         float(param_dist_params[-1]))) 

            else: 

                dist_object = scope.int(hp.lognormal(param_name, 

                                         float(param_dist_params[0]), 

                                         float(param_dist_params[-1]))) 

        else: 

            if param_dist == 'uniform': 

                 dist_object = hp.uniform(param_name,float(param_dist_params[0]), 

                                                       float(param_dist_params[-1])) 

            elif param_dist == 'normal': 

                dist_object = hp.normal(param_name, float(param_dist_params[0]), 

                                                      float(param_dist_params[-1])) 

            else: 

                dist_object = hp.lognormal(param_name, float(param_dist_params[0]), 

                                                         float(param_dist_params[-1])) 

        return dist_object 

    else: 

        return None 

 

 

def create_proxy_hyper_params_space(hyper_params_dists, proxy_type: str, exp_mode: str): 

    hyper_params_space = {} 

    hyper_param_names = hyper_params_dists['param_name'] 

    # 

    if proxy_type == "Normal": 

        pass 

    else: 

        hyper_params_space['objective'] = 'reg:quantileerror' 
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        hyper_params_space['quantile_alpha'] = np.array([0.05, 0.5, 0.95]) 

    # 

    if exp_mode == "Fit": 

        # Sample randomly a space 

        for (_, name) in enumerate(hyper_param_names): 

            dist = hyper_params_dists['param_dist'][_] 

            dist_params = hyper_params_dists['param_dist_params'][_] 

            dist_object = create_distribution_object(name, dist, dist_params) 

            if name in int_hyper_params: 

                val = np.round(dist_object.rvs(size=1)[0]).astype(int) 

            else: 

                val = dist_object.rvs(size=1)[0] 

            if name not in hyper_params_space.keys(): 

                hyper_params_space[name] = val 

        exp_mode_ = "fit" 

        return hyper_params_space, exp_mode_ 

    elif exp_mode == "Optimize": 

        # Create a optimization space 

        for (_, name) in enumerate(hyper_param_names): 

            dist = hyper_params_dists['param_dist'][_] 

            dist_params = hyper_params_dists['param_dist_params'][_] 

            dist_object = create_distribution_object(name, dist, dist_params, 

                                                     object_wrapper='hyperopt') 

            if name not in hyper_params_space.keys(): 

                hyper_params_space[name] = dist_object 

        exp_mode_ = "opt" 

        return hyper_params_space, exp_mode_ 

    else: 
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        return None, None 

from DoE.doe.doe_v1 import * 

 

import dash 

import dash_bootstrap_components as dbc 

 

from dash import dcc 

from dash import html 

from dash import Input, Output, State 

from dash import callback, callback_context 

 

from dash.exceptions import PreventUpdate 

from dash import callback_context as ctx 

from dash import register_page 

 

from dash_bootstrap_components import Tab, Table, InputGroup, Col, Row 

from dash_bootstrap_components import Modal, ModalTitle, ModalBody, ModalHeader, 

ModalFooter 

from dash_bootstrap_components import Placeholder 

 

import json, jsonschema 

from proxy.proxy_data import * 

 

 

class QuantileGBRegressor(object): 

    def __init__(self, proxy_data: ProxyData): 

        super(QuantileGBRegressor, self).__init__() 

        self.proxy_data = proxy_data 

        self.regressor_trait = GradientBoostingRegressor 
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        self.eval_metric = mean_pinball_loss 

        self.eval_index = 1 

        # 

        self.response_param_index: int = 0 

        self.test_size = 0.1 

        # 

        self.quantiles = [0.05, 0.5, 0.95] 

 

    def validate(self): 

        assert self.proxy_data.proxy_data.empty is False 

 

    def set_evaluation_metric(self, eval_metric): 

        self.eval_metric = eval_metric 

 

    def split(self, response_param_index: int, test_size: float): 

        x_cols = list() 

        for col in list(self.proxy_data.proxy_data.columns): 

            if col not in ['case'] and col not in self.proxy_data.reservoir_response_params: 

                x_cols.append(col) 

        y_cols = self.proxy_data.reservoir_response_params 

        x = self.proxy_data[x_cols] 

        y = self.proxy_data[y_cols[response_param_index]] 

        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size, 

                                                            shuffle=True, random_state=0) 

        return x_train, x_test, y_train, y_test 

 

    def __fit__(self, params): 

        x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size) 



 

273 
 

        quantile_models = {} 

        eval_metrics = {} 

        for quantile in self.quantiles: 

            model = self.regressor_trait(loss='quantile', alpha=quantile, 

                                         **params) 

            if quantile not in quantile_models.keys(): 

                quantile_models[quantile] = model.fit(x_train, y_train) 

                eval_metrics[quantile] = self.eval_metric(model.predict(x_test), y_test, 

                                                          alpha=quantile) 

        return quantile_models, eval_metrics 

 

    def __fit_cross_validation__(self, params, num_folds=5): 

        x_cols = list() 

        for col in list(self.proxy_data.proxy_data.columns): 

            if col not in ['case'] and col not in self.proxy_data.reservoir_response_params: 

                x_cols.append(col) 

        y_cols = self.proxy_data.reservoir_response_params 

        x = self.proxy_data.proxy_data[x_cols].to_numpy() 

        y = self.proxy_data.proxy_data[y_cols[self.response_param_index]].to_numpy() 

        # 

        k_fold = KFold(n_splits=num_folds, shuffle=True, random_state=0) 

        k_fold_metrics = [] 

        # 

        model = self.regressor_trait(loss='quantile', 

                                     alpha=self.quantiles[self.eval_index], **params) 

        for train_index, test_index in k_fold.split(x): 

            x_train, x_test = x[train_index], x[test_index] 

            y_train, y_test = y[train_index], y[test_index] 
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            model.fit(x_train, y_train) 

            y_pred = model.predict(x_test) 

            k_fold_metric = self.eval_metric(y_test, y_pred, 

                                             alpha=self.quantiles[self.eval_index]) 

            k_fold_metrics.append(k_fold_metric) 

        return model, k_fold_metrics 

 

    def __optimize__(self, opt_space: dict): 

        model = self.regressor_trait(**opt_space, loss='quantile', 

                                     alpha=self.quantiles[self.eval_index]) 

        x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size) 

        # 

        model.fit(x_train, y_train) 

        y_pred = model.predict(x_test) 

        test_metric = self.eval_metric(y_pred, y_test) 

        return {'loss': test_metric, 'status': STATUS_OK, 'model': model} 

 

    def __optimize_cross_validation__(self, opt_space: dict): 

        model, k_fold_metrics = self.__fit_cross_validation__(opt_space) 

        k_fold_metric = sum(k_fold_metrics) / len(k_fold_metrics) 

        return {'loss': k_fold_metric, 'status': STATUS_OK, 'model': model} 

from proxy.proxy_data import * 

 

 

class NonQuantileRegressor(object): 

    def __init__(self, proxy_data: ProxyData): 

        super(NonQuantileRegressor, self).__init__() 

        self.proxy_data = proxy_data 
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        self.regressor_trait = XGBRegressor 

        self.eval_metric = mean_squared_error 

        # 

        self.response_param_index: int = 0 

        self.test_size = 0.1 

 

    def validate(self): 

        assert self.proxy_data.proxy_data.empty is False 

 

    def set_evaluation_metric(self, eval_metric): 

        self.eval_metric = eval_metric 

 

    def split(self, response_param_index: int, test_size: float): 

        x_cols = list() 

        for col in list(self.proxy_data.proxy_data.columns): 

            if col not in ['case'] and col not in self.proxy_data.reservoir_response_params: 

                x_cols.append(col) 

        y_cols = self.proxy_data.reservoir_response_params 

        x = self.proxy_data[x_cols] 

        y = self.proxy_data[y_cols[response_param_index]] 

        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size, 

                                                            shuffle=True, random_state=0) 

        return x_train, x_test, y_train, y_test 

 

    def __fit__(self, params): 

        x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size) 

        self.regressor_trait(**params).fit(x_train, y_train) 

        return self.eval_metric(x_test, y_test) 
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    def __fit_cross_validation__(self, params, num_folds=5): 

        x_cols = list() 

        for col in list(self.proxy_data.proxy_data.columns): 

            if col not in ['case'] and col not in self.proxy_data.reservoir_response_params: 

                x_cols.append(col) 

        y_cols = self.proxy_data.reservoir_response_params 

        x = self.proxy_data.proxy_data[x_cols].to_numpy() 

        y = self.proxy_data.proxy_data[y_cols[self.response_param_index]].to_numpy() 

        # 

        k_fold = KFold(n_splits=num_folds, shuffle=True, random_state=0) 

        k_fold_metrics = {} 

        if self.regressor_trait == XGBRegressor: 

            model = self.regressor_trait(**params, eval_metric=self.eval_metric) 

        else: 

            model = self.regressor_trait(**params) 

        # 

        _ = 0 

        for train_index, test_index in k_fold.split(x): 

            x_train, x_test = x[train_index], x[test_index] 

            y_train, y_test = y[train_index], y[test_index] 

            model.fit(x_train, y_train) 

            y_pred = model.predict(x_test) 

            score = self.eval_metric(y_test, y_pred) 

            if 'fold_' + str(_) not in k_fold_metrics.keys(): 

                k_fold_metrics['fold_' + str(_)] = score 

            _ += 1 

        return model, k_fold_metrics 
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    def __optimize__(self, opt_space: dict): 

        model = self.regressor_trait(**opt_space) 

        model.eval_metric = self.eval_metric 

        x_train, x_test, y_train, y_test = self.split(self.response_param_index, self.test_size) 

        # 

        evaluation = [(x_train, y_train), (x_test, y_test)] 

        model.fit(x_train, y_train, eval_set=evaluation, verbose=False) 

        y_pred = model.predict(x_test) 

        test_metric = self.eval_metric(y_pred, y_test) 

        return {'loss': test_metric, 'status': STATUS_OK, 'model': model} 

 

    def __optimize_cross_validation__(self, opt_space: dict): 

        model, cross_val_metrics = self.__fit_cross_validation__(opt_space) 

        cross_val_metric = sum(cross_val_metrics) / len(cross_val_metrics) 

        return {'loss': cross_val_metric, 'status': STATUS_OK, 'model': model} 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

 

import os 

import shutil 

from typing import List, Deque, Union, Dict, Any 

from tqdm import tqdm 

 

import sklearn 

from sklearn.utils.validation import check_is_fitted 
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from sklearn.model_selection import train_test_split, KFold 

from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler 

from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_pinball_loss 

from sklearn.ensemble import GradientBoostingRegressor, HistGradientBoostingRegressor 

 

import xgboost as xgb 

from xgboost import XGBRegressor, QuantileDMatrix, DeviceQuantileDMatrix 

 

from hyperopt.pyll.base import scope 

from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval 

 

import mlflow 

import mlflow.sklearn 

import mlflow.xgboost 

 

from mlflow.models import infer_signature 

from mlflow import log_metric, log_param, log_artifacts, log_input, log_text 

from mlflow.tracking import MlflowClient 

 

from mlflow import pyfunc 

from mlflow.pyfunc import PythonModel, PythonModelContext, PyFuncModel, \ 

    PyFuncInput, PyFuncOutput 

from mlflow.pyfunc import log_model, load_model 

from proxy.proxy_base import * 

from workflow.surrogate import * 

 

 

class ProxyRawData(object): 
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    def __init__(self, project_dir: str, proxy_data_dir: str): 

        super(ProxyRawData, self).__init__() 

        self.project_dir = project_dir 

        self.proxy_data_dir = proxy_data_dir 

        self.proxy_data = pd.DataFrame() 

        # 

        self.num_doe_cases = None 

        self.doe_assembler = None 

        # 

        self.fracture_profile_resolution = None 

        self.doe_params = None 

        self.reservoir_response_params = None 

        # 

        self.experimental_mode = True 

 

    def init_data_properties(self, fracture_profile_resolution, doe_params, 

                             reservoir_response_params): 

        self.fracture_profile_resolution = fracture_profile_resolution 

        self.doe_params = doe_params 

        self.reservoir_response_params = reservoir_response_params 

 

    def write_proxy_raw_data(self, proxy_raw_data_dir): 

        proxy_data_manager = SurrogateDirectory(result_dir=self.project_dir) 

        proxy_data_manager.experimental_doe_params = self.doe_params 

        

proxy_data_manager.init_reservoir_response(reservoir_response_var_names=self.reservoir_resp

onse_params) 

        

proxy_data_manager.init_fracture_profile(fracture_profile_resolution=self.fracture_profile_resol

ution) 
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        # 

        if self.experimental_mode: 

            proxy_data_manager.init_experimental_doe_data() 

            proxy_raw_data = 

proxy_data_manager.assemble_surrogate_directory(surrogate_dir=self.proxy_data_dir) 

        else: 

            assert self.doe_assembler is not None 

            proxy_raw_data = 

proxy_data_manager.assemble_surrogate_directory(surrogate_dir=self.proxy_data_dir) 

        self.proxy_data = proxy_raw_data 

        proxy_raw_data.to_csv(proxy_raw_data_dir) 

        return proxy_raw_data 

 

 

class ProxyData(object): 

    def __init__(self, proxy_raw_data: pd.DataFrame, proxy_raw_data_dir: str): 

        super(ProxyData).__init__() 

        self.proxy_raw_data = proxy_raw_data 

        self.proxy_raw_data_dir = proxy_raw_data_dir 

        self.proxy_data: pd.DataFrame = pd.DataFrame() 

        # 

        self.doe_params = None 

        self.reservoir_response_params = None 

        self.fracture_profile_params = None 

        self.proxy_time = ['surrogate_time'] 

        # 

        self.experimental_mode = True 

        self.experimental_Swr = [0.2, 0.01] 

        self.experimental_Sor = [0.2, 0.01] 
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        self.experimental_Sgr = [0.03, 0.001] 

        self.experimental_K = [0., 0.5] 

 

    def validate(self): 

        assert self.proxy_raw_data_dir is not None or self.proxy_raw_data.empty is True 

 

    def init_data_properties(self, doe_params, reservoir_response_params): 

        self.doe_params = doe_params 

        self.reservoir_response_params = reservoir_response_params 

        # 

        if self.proxy_raw_data.empty is False: 

            proxy_raw_data_ = self.proxy_raw_data.fillna(value=0., inplace=False) 

        else: 

            proxy_raw_data_ = pd.read_csv(self.proxy_raw_data_dir, index_col=0, header=0) 

            proxy_raw_data_ = proxy_raw_data_.fillna(value=0., inplace=False) 

        # 

        fracture_profile_params_ = list() 

        for col in list(proxy_raw_data_.columns): 

            if 'z_' in 'col': 

                fracture_profile_params_.append(col) 

        # 

        self.fracture_profile_params = fracture_profile_params_ 

        self.proxy_raw_data = proxy_raw_data_ 

 

    def scale_proxy_time(self): 

        scaled_proxy_time_ = 

MinMaxScaler().fit_transform(self.proxy_raw_data[self.proxy_time]) 

        scaled_proxy_time = pd.DataFrame(data=scaled_proxy_time_, columns=self.proxy_time) 

        return scaled_proxy_time 
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    def scale_fracture_profile(self): 

        scaled_frac_profile_ = np.zeros([self.proxy_raw_data.shape[0], 

                                         len(self.fracture_profile_params)]) 

        for (_, param) in enumerate(self.fracture_profile_params): 

            scaled_fp = StandardScaler().fit_transform(self.proxy_raw_data[[param]])[:, 0] 

            scaled_frac_profile_[:, _] = scaled_fp 

        scaled_frac_profile = pd.DataFrame(data=scaled_frac_profile_, 

columns=self.fracture_profile_params) 

        return scaled_frac_profile 

 

    def scale_reservoir_response_params(self): 

        scaled_response_ = np.zeros([self.proxy_raw_data.shape[0], 

                                    len(self.reservoir_response_params)]) 

        for (_, param) in enumerate(self.reservoir_response_params): 

            scaled_rs = StandardScaler().fit_transform(self.proxy_raw_data[[param]])[:, 0] 

            scaled_response_[:, _] = scaled_rs 

        scaled_response = pd.DataFrame(data=scaled_response_, 

columns=self.reservoir_response_params) 

        return scaled_response 

 

    def scale_doe_params(self): 

        if self.experimental_mode: 

            scaled_doe_ = np.zeros([self.proxy_raw_data.shape[0], len(self.doe_params)]) 

            scaled_doe_[:, 0] = (self.proxy_raw_data[['S_wr']].to_numpy()[:, 0] - 0.2) / 0.1 

            scaled_doe_[:, 1] = (self.proxy_raw_data[['S_or']].to_numpy()[:, 0] - 0.2) / 0.1 

            scaled_doe_[:, 2] = (self.proxy_raw_data[['S_gr']].to_numpy()[:, 0] - 0.03) / 0.001 

            scaled_doe_[:, -1] = (self.proxy_raw_data[['relative_frac_toughness']].to_numpy()[:, 0] - 

0.) / 0.5 
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            scaled_doe = pd.DataFrame(data=scaled_doe_, columns=self.doe_params) 

            return scaled_doe 

        else: 

            return pd.DataFrame() 

 

    def scale_proxy_raw_data(self, proxy_scaled_data_dir): 

        scaled_time = self.scale_proxy_time() 

        scaled_doe = self.scale_doe_params() 

        scaled_frac_profile = self.scale_fracture_profile() 

        scaled_response = self.scale_reservoir_response_params() 

        proxy_scaled_data = pd.concat([scaled_time, scaled_doe, 

                                       scaled_frac_profile, scaled_response], axis=1) 

        proxy_scaled_data.insert(0, 'case', self.proxy_raw_data['case'].to_numpy(dtype=np.int8)) 

        self.proxy_data = proxy_scaled_data 

        proxy_scaled_data.to_csv(proxy_scaled_data_dir) 

        return proxy_scaled_data 

from proxy.gb_proxy import * 

from proxy.xgb_proxy import * 

 

from proxy.proxy_opt import * 

from proxy.proxy_utils import * 

 

 

class MLFlowProxyWrapper(PythonModel): 

    def __init__(self, proxy: QuantileXGBRegressor): 

        super(MLFlowProxyWrapper, self).__init__() 

        self.proxy = proxy 
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    def load_context(self, context): 

        pass 

 

    def predict(self, context: PythonModelContext, 

                model_input: np.ndarray, params: Optional[dict[str, Any]]): 

        return self.proxy.__predict__(model_input) 

 

 

class ProxyExperiment(object): 

    def __init__(self, mlflow_proxy_wrapper: MLFlowProxyWrapper, 

                 mlflow_client=mlflow.MlflowClient()): 

        super(ProxyExperiment, self).__init__() 

        self.mlflow_client = mlflow_client 

        self.mlflow_proxy_wrapper = mlflow_proxy_wrapper 

        # 

        self.experiment_dir = None 

        self.experiment_name = None 

        self.experiment_description = None 

        # 

        self.proxy_name = type(self.mlflow_proxy_wrapper.proxy).__name__ 

        self.experiment_mode = 'fit' 

        self.proxy_registry_name = self.experiment_mode + '_' + self.proxy_name 

 

    def set_expriment_mode(self, experiment_mode): 

        self.experiment_mode = experiment_mode 

 

    def set_experiment(self, experiment_dir, experiment_name, experiment_description): 

        self.experiment_name = experiment_name 
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        self.experiment_dir = experiment_dir 

        self.experiment_description = experiment_description 

        if mlflow.get_experiment_by_name(name=experiment_name) is None: 

            mlflow.create_experiment(name=experiment_name, tags=experiment_description) 

        else: 

            mlflow.set_experiment(experiment_name=experiment_name) 

 

    def log_new_fit_experiment(self, run_name, model_dir, artifact_dir, params): 

        try: 

            assert self.experiment_mode == 'fit' 

            with mlflow.run(experiment_name=self.experiment_name, run_name=run_name): 

                model, eval_metrics = self.mlflow_proxy_wrapper.proxy.__fit__(params) 

                eval_metrics_ = read_xgb_eval_metrics(eval_metrics) 

                mlflow.log_params(params=params) 

                # 

                mlflow.log_metrics(metrics=eval_metrics_) 

                log_model(python_model=self.mlflow_proxy_wrapper, 

                          artifact_path=model_dir, 

                          registered_model_name=self.proxy_registry_name) 

                artifact_file = os.path.join(artifact_dir, 'experiment_mode.txt') 

                mlflow.log_text(text=self.experiment_mode, artifact_file=artifact_file) 

                mlflow.end_run(status='FINISHED') 

        except AssertionError: 

            warnings.warn("Incorrect experiment mode. Fatal model error.") 

 

    def log_new_opt_experiment(self, run_name, model_dir, artifact_dir, opt_space): 

        try: 

            assert self.experiment_mode == 'opt' 
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            with mlflow.run(experiment_name=self.experiment_name, run_name=run_name): 

                proxy_optimizer = 

ProxyOptimization(proxy_object=self.mlflow_proxy_wrapper.proxy) 

                proxy_optimizer.init_optimizer(opt_space=opt_space) 

                opt_instance = 

proxy_optimizer.exec_optimizer(opt_func_attr="__optimize_cross_validation__") 

                opt_params = proxy_optimizer.eval_optimizer(opt_instance=opt_instance) 

                # 

                model, eval_metrics = self.mlflow_proxy_wrapper.proxy.__fit__(opt_params) 

                eval_metrics_ = read_xgb_eval_metrics(eval_metrics) 

                # 

                mlflow.log_params(params=opt_params) 

                mlflow.log_metrics(metrics=eval_metrics_) 

                log_model(python_model=self.mlflow_proxy_wrapper, 

                          artifact_path=model_dir, 

                          registered_model_name=self.proxy_registry_name) 

                artifact_file = os.path.join(artifact_dir, 'experiment_mode.txt') 

                mlflow.log_text(text=self.experiment_mode, artifact_file=artifact_file) 

                mlflow.end_run(status='FINISHED') 

        except AssertionError: 

            warnings.warn("Incorrect experiment mode. Fatal model error.") 

 

    def load_experiment(self, experiment_name: str): 

        if experiment_name is not None: 

            experiment_name_ = experiment_name 

        else: 

            experiment_name_ = self.experiment_name 

        experiments = mlflow.search_experiments() 

        experiment_dir = [exp.name for exp in experiments if 
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                          experiment_name_ in exp.name][0] 

        experiments = dict(mlflow.get_experiment_by_name(experiment_dir)) 

        experiment_id = experiments['experiment_id'] 

        experiment_runs = mlflow.search_runs(experiment_id) 

        return experiment_runs 

 

    def load_criteria_run(self, experiment_name: str, criteria: str): 

        runs = self.load_experiment(experiment_name=experiment_name) 

        criteria_cols = [col for col in runs.columns if col.startswith('params.') or 

col.startswith('metrics.')] 

        criteria_runs = runs[runs['status'] == 'FINISHED'][criteria_cols].dropna() 

        runs_indices = criteria_runs.sort_values(f"metrics.{criteria}", ascending=False).index 

        runs = runs.loc[runs_indices, :] 

        best_run_id = runs['run_id'].tolist()[0] 

        return best_run_id 

 

    @staticmethod 

    def load_criteria_model(run_id: str): 

        return pyfunc.load_model(run_id) 

from proxy.proxy_base import * 

 

 

class ProxyOptimization(object): 

    def __init__(self, proxy_object, trial=Trials()): 

        super(ProxyOptimization, self).__init__() 

        self.trials = trial 

        # 

        self.proxy_object = proxy_object 

        self.opt_space = None 
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        self.opt_algo = tpe.suggest 

        self.max_evals = 500 

 

    def init_optimizer(self, opt_space): 

        self.opt_space = opt_space 

 

    def exec_optimizer(self, opt_func_attr): 

        opt_func = getattr(self.proxy_object, opt_func_attr) 

        opt_instance = fmin(fn=opt_func, space=self.opt_space, 

                            algo=self.opt_algo, max_evals=self.max_evals, 

                            trials=self.trials) 

        return opt_instance 

 

    def eval_optimizer(self, opt_instance): 

        return space_eval(self.opt_space, opt_instance) 

from proxy_base import * 

 

 

mlflow.set_tracking_uri("sqlite:///mlruns.db") 

mlflow.set_registry_uri("models") 

from proxy.proxy_base import * 

 

 

def read_xgb_eval_metrics(eval_metrics: dict): 

    """ 

    Function to custom the mlflow log for eval_results in xgboost 

    Structure of xgboost eval_results: dict("eval": dict(metric_name, metric_val)) 

    :param eval_metrics: 



 

289 
 

    :return: 

    """ 

    eval_metrics_: dict = eval_metrics['eval'] 

    return eval_metrics_ 

from proxy.proxy_data import * 

 

 

class XGBDataset(object): 

    def __init__(self, df): 

        super(XGBDataset, self).__init__() 

        self.df = df 

        self.time_param = ['surrogate_time'] 

        self.doe_params = [None] 

        self.fracture_profile_params = [None] 

        self.response_params = [None] 

        # 

        self.x_cols = [None] 

        self.y_cols = [None] 

 

    def set_up_params(self, doe_params_, fracture_profile_params_, response_params_): 

        self.doe_params = doe_params_ 

        self.fracture_profile_params = fracture_profile_params_ 

        self.response_params = response_params_ 

 

    def set_up_columns(self, mode: str, response_index: int): 

        if mode == 'default': 

            self.x_cols = self.time_param + self.doe_params + self.fracture_profile_params 

        elif mode == 'exclude_doe': 
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            self.x_cols = self.time_param + self.fracture_profile_params 

        elif mode == 'exclude_time_doe': 

            self.x_cols = self.fracture_profile_params 

        self.y_cols = [self.response_params[response_index]] 

 

    def split(self): 

        x = self.df[self.x_cols] 

        y = self.df[self.y_cols] 

        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=0) 

        x_train, x_test, y_train, y_test = x_train.to_numpy(), x_test.to_numpy(), y_train.to_numpy(), 

y_test.to_numpy() 

        xy_train = QuantileDMatrix(x_train, x_train) 

        xy_test = QuantileDMatrix(x_test, y_test, ref=xy_train) 

        return {'train_set': [xy_train, x_train, y_train], 'test_set': [xy_test, x_test, y_test]} 

 

    def split_cross_validation(self, num_folds: int = 5): 

        x = self.df[self.x_cols].to_numpy() 

        y = self.df[self.y_cols].to_numpy() 

        k_fold = KFold(n_splits=num_folds, shuffle=True, random_state=0) 

        train_test = dict() 

        i = 0 

        for train_index, test_index in k_fold.split(x): 

            x_train, x_test = x[train_index], x[test_index] 

            y_train, y_test = y[train_index], y[test_index] 

            key_train, key_test = 'train_set_' + str(i), 'test_set_' + str(i) 

            xy_train = QuantileDMatrix(x_train, y_train) 

            xy_test = QuantileDMatrix(x_test, y_test, ref=xy_train) 

            if key_train not in train_test.keys(): 

                train_test[key_train] = [xy_train, x_train, y_train] 
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            if key_test not in train_test.keys(): 

                train_test[key_test] = [xy_test, x_test, y_test] 

            i += 1 

        return train_test 

 

 

class QuantileXGBRegressor(object): 

    def __init__(self, xgb_data: XGBDataset): 

        super(QuantileXGBRegressor, self).__init__() 

        self.xgb_data = xgb_data 

        self.num_folds = 5 

        # 

        self.eval_metric = mean_squared_error 

        self.eval_index: int = 1 

        self.quantiles = np.array([0.05, 0.5, 0.95], dtype=np.float32) 

        # 

        self.model: xgb.Booster = None 

 

    def __fit__(self, params: dict): 

        train_test = self.xgb_data.split() 

        eval_metrics: Dict[str, Dict] = {} 

        params_ = params 

        if 'quantile_alpha' not in params_.keys(): 

            params_['quantile_alpha'] = self.quantiles 

        else: 

            pass 

        params_['objective'] = "reg:quantileerror" 

        # 
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        model = xgb.train(params_, train_test['train_set'][0], 

                          num_boost_round=32, 

                          evals=[(train_test['train_set'][0], "train"), 

                                 (train_test['test_set'][0], "test")], 

                          evals_result=eval_metrics, verbose_eval=False) 

        self.model = model 

        return model, eval_metrics 

 

    def __fit_cross_validation__(self, params: dict): 

        train_test = self.xgb_data.split_cross_validation(num_folds=self.num_folds) 

        model = None 

        mean_metrics = {} 

        params_ = params 

        if 'quantile_alpha' not in params_.keys(): 

            params_['quantile_alpha'] = self.quantiles 

        else: 

            pass 

        params_['objective'] = "reg:quantileerror" 

        # 

        for _ in range(self.num_folds): 

            eval_metrics: Dict[str, Dict] = {} 

            xy_train, x_train, y_train = train_test['train_set_' + str(_)] 

            xy_test, x_test, y_test = train_test['test_set_' + str(_)] 

            model = xgb.train(params_, xy_train, 

                              num_boost_round=32, 

                              evals=[(xy_train, "train"), 

                                     (xy_test, "test")], 

                              evals_result=eval_metrics, verbose_eval=False) 
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            y_pred = model.inplace_predict(x_test) 

            mean_metric = self.eval_metric(y_pred[:, self.eval_index], y_test) 

            if 'fold_' + str(_) not in mean_metrics.keys(): 

                mean_metrics['fold_' + str(_)] = mean_metric 

        self.model = model 

        return model, mean_metrics 

 

    def __predict__(self, x: np.ndarray): 

        try: 

            assert self.model is not None 

            return self.model.inplace_predict(x) 

        except AssertionError: 

            warnings.warn('Model instance is not set, may cause fatal prediction.') 

            return None 

 

    def __optimize_cross_validation__(self, opt_space: dict): 

        model, mean_metrics = self.__fit_cross_validation__(opt_space) 

        mean_metric = sum(mean_metrics.values()) / len(mean_metrics.keys()) 

        return {'loss': mean_metric, 'status': STATUS_OK, 'model': model} 

from proxy_explainer_base import * 

 

from proxy.proxy_data import * 

from proxy.proxy import * 

from proxy.gb_proxy import * 

from proxy.xgb_proxy import * 

 

 

class ProxyExplainer(object): 
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    def __init__(self, model, new_proxy_data: ProxyData): 

        super(ProxyExplainer, self).__init__() 

        self.model = model 

        self.new_proxy_data = new_proxy_data 

        # 

        self.mode = 'tree' 

        self.x_cols = None 

 

    def validate(self): 

        if check_is_fitted(self.model) is True and \ 

                self.new_proxy_data.proxy_data.empty is False: 

            return True 

        else: 

            return False 

 

    def init_explainer(self, mode, x_cols, sample=100): 

        sampled_x = self.new_proxy_data.proxy_data[x_cols].sample(sample, random_state=0) 

        if mode == 'default': 

            return Explainer(self.model, sampled_x), sampled_x 

        else: 

            return TreeExplainer(self.model, sampled_x), sampled_x 

 

    def plot_bee_swarm(self): 

        fig = plt.figure() 

        explainer, sampled_x = self.init_explainer(self.mode, self.x_cols) 

        shap_values = explainer.shap_values(sampled_x) 

        shap.summary_plot(shap_values, sampled_x) 

        return fig 
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    def plot_bar(self): 

        fig = plt.figure() 

        explainer, sampled_x = self.init_explainer(self.mode, self.x_cols) 

        shap_values = explainer.shap_values(sampled_x) 

        shap.summary_plot(shap_values, sampled_x, plot_size='bar') 

        return fig 

 

    def plot_water_fall(self, instance_index: int, max_display=20): 

        fig = plt.figure() 

        explainer, sampled_x = self.init_explainer(self.mode, self.x_cols) 

        shap_values = explainer.shap_values(sampled_x) 

        shap.waterfall_plot(shap_values[instance_index], max_display=max_display) 

        return fig 

 

    def plot_scatter(self, instance: str): 

        fig = plt.figure() 

        explainer, sampled_x = self.init_explainer(self.mode, self.x_cols) 

        shap_values = explainer.shap_values(sampled_x) 

        shap.plots.scatter(shap_values[:, instance]) 

        return fig 

 

    @staticmethod 

    def display_to_gui(fig): 

        return plotly_tools.mpl_to_plotly(fig) 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 
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import pandas as pd 

 

import os 

import shutil 

from typing import List, Deque, Union, Dict 

from tqdm import tqdm 

 

import shap 

from shap import Explainer, TreeExplainer, DeepExplainer 

 

import plotly.tools as plotly_tools 

from base.base import * 

 

 

# the style arguments for the sidebar. We use position:fixed and a fixed width 

SIDEBAR_STYLE = { 

    "position": "fixed", 

    "top": 0, 

    "left": 0, 

    "bottom": 0, 

    "width": "16rem", 

    "padding": "2rem 1rem", 

    "background-color": "#f8f9fa", 

} 

 

 

doe_sidebar = [ 

    html.Div( 
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        dbc.Row( 

            [ 

                dbc.Col("Design of Experiments"), 

                dbc.Col( 

                    html.I(className="fas fa-chevron-right me-3"), 

                    width="auto", 

                ), 

            ], 

            className="doe_sidebar_row", 

        ), 

        style={"cursor": "pointer"}, 

        id="doe_sidebar", 

    ), 

    dbc.Collapse( 

        [ 

            dbc.NavLink("ResFrac", href="/res_frac"), 

        ], 

        id="doe_sidebar_collapse", 

    ), 

] 

 

frac_cal_sidebar = [ 

    html.Div( 

        dbc.Row( 

            [ 

                dbc.Col("Fracture Calibration"), 

                dbc.Col( 

                    html.I(className="fas fa-chevron-right me-3"), 
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                    width="auto", 

                ), 

            ], 

            className="frac_cal_sidebar_row", 

        ), 

        style={"cursor": "pointer"}, 

        id="frac_cal_sidebar", 

    ), 

    dbc.Collapse( 

        [ 

            dbc.NavLink("Fracture Calibration Proxy", href="/frac_cal_proxy"), 

        ], 

        id="frac_cal_sidebar_collapse", 

    ), 

] 

 

proxy_deploy_sidebar = [ 

    html.Div( 

        dbc.Row( 

            [ 

                dbc.Col("Deploy the proxy"), 

                dbc.Col( 

                    html.I(className="fas fa-chevron-right me-3"), 

                    width="auto", 

                ), 

            ], 

            className="hist_match_sidebar_row", 

        ), 
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        style={"cursor": "pointer"}, 

        id="proxy_deploy_sidebar", 

    ), 

    dbc.Collapse( 

        [ 

            dbc.NavLink("Receive sensor & deploy", href="/deploy_proxy"), 

        ], 

        id="proxy_deploy_sidebar_collapse", 

    ), 

] 

 

 

sidebar = html.Div( 

    [ 

        html.H1("i-Geo Sensing", style={'textAlign': 'center'}), 

        html.Hr(), 

        html.P( 

            "A sensor processing platform for fracture calibration", className="lead", 

            style={'textAlign': 'center'}), 

        dbc.Nav(doe_sidebar + frac_cal_sidebar + proxy_deploy_sidebar, 

                vertical=True), 

    ], 

    style=SIDEBAR_STYLE, 

    id="sidebar", 

) 

from simulator.simulation.simulation_helpers import * 

from simulator.base.utils import * 
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############################################################## 

# Base Entry & ValueStructs in ResFrac 

############################################################## 

 

 

class ValueStruct(object): 

    def __init__(self, value_struct: None): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

 

    def change_value_struct(self, new_value_struct): 

        if type(new_value_struct) != type(self.value_struct): 

            warnings.warn('Change the value structure.') 

            self.value_struct = new_value_struct 

        else: 

            self.value_struct = new_value_struct 

 

    def write_value_struct(self, file): 

        """ 

        TODO: ? Write the value structure into the opened file 

        Support np.array (most ResFrac values) and dict (Rel Perm 

        & Time PErm dependency values) 

        :param file: 

        :return: 

        """ 

        pass 
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class SingleValueStruct(ValueStruct): 

    def __init__(self, value_struct): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

 

    def write_value_struct(self, file): 

        if type(self.value_struct) != list: 

            file.write(str(self.value_struct)) 

            file.write('\n') 

        else: 

            write_list_values(file, self.value_struct) 

 

 

class MatrixValueStruct(ValueStruct): 

    def __init__(self, value_struct, length): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

        self.length = length 

 

    def write_value_struct(self, file): 

        if type(self.value_struct) == np.ndarray: 

            write_matrix_values(file=file, array=self.value_struct) 

        else: 

            write_list_of_list_values(file, values=self.value_struct) 

 

 

class Entry(object): 
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    def __init__(self, variable_name: str, length: int, 

                 value_struct: ValueStruct, is_doe: False): 

        super(Entry, self).__init__() 

        self.comments = None 

        self.variable_name = variable_name 

        self.length = length 

        self.value_struct = value_struct 

        self.is_doe = is_doe 

 

    def add_comments(self, comments): 

        self.comments = comments 

 

    def change_variable_name(self, new_variable_name): 

        if self.is_doe is True: 

            self.variable_name = new_variable_name 

        else: 

            pass 

 

    def change_length(self, new_length): 

        if self.is_doe is True: 

            self.length = new_length 

        else: 

            pass 

 

    def change_values(self, new_value_struct): 

        if self.is_doe is True: 

            self.value_struct.change_value_struct(new_value_struct) 

        else: 
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            warnings.warn('Not a DoE variable. Value structure is not altered.') 

            pass 

 

    def write_entry_values(self, file): 

        """ 

        TODO: ? Implement method to write entry's data 

        - Method is override by specific value structs (e.g., rel_perm) 

        - Method is supplemented by another method to change specific data in the 

        value struct (e.g, change rel perm kr in rel_perm) 

        :return: 

        """ 

        if self.is_doe is True: 

            self.value_struct.write_value_struct(file=file) 

        else: 

            warnings.warn('Not a DoE variable. Value structure shall not be altered.') 

            self.value_struct.write_value_struct(file=file) 

 

 

############################################################## 

# ValueStruct & Entry belong to settings in ResFrac 

############################################################## 

 

 

class RelPermStruct(ValueStruct): 

    def __init__(self, value_struct: List[dict]): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

        self.rel_perm_scope = '***' 



 

304 
 

 

    def write_value_struct(self, file): 

        """ 

        TODO: ? Fix this function to correlate with the parsing & regex templates 

        :param file: 

        :return: 

        """ 

        for (_, rel_perm_curve) in enumerate(self.value_struct): 

            for rel_perm_key, rel_perm_value in rel_perm_curve.items(): 

                if rel_perm_key == 'curvesetname': 

                    file.write(rel_perm_key) 

                    file.write('\n') 

                    file.write(rel_perm_value) 

                    file.write('\n') 

                elif rel_perm_key == 'matrixrelperm': 

                    file.write(rel_perm_key) 

                    file.write('\n') 

                    file.write(rel_perm_value[0]) 

                    file.write('\n') 

                    write_matrix_values(file=file, array=rel_perm_value[-1]) 

                    file.write('\n') 

                elif rel_perm_key == ('pressuredependentpermeability', 'reversible'): 

                    file.write(rel_perm_key[0]) 

                    file.write('\n') 

                    file.write(rel_perm_key[-1]) 

                    file.write('\n') 

                    write_matrix_values(file=file, array=rel_perm_value[0]) 

                    file.write('\n') 
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                    for _ in rel_perm_value[-1]: 

                        file.write(_)  # _ is '---' 

                        file.write('\n') 

                elif rel_perm_key == ('pressuredependentpermeability', 'irreversible'): 

                    file.write(rel_perm_key[0]) 

                    file.write('\n') 

                    file.write(rel_perm_key[-1]) 

                    file.write('\n') 

                    for _ in rel_perm_value: 

                        file.write(str(_))  # _ is '---' 

                        file.write('\n') 

                else: 

                    file.write(rel_perm_key) 

                    file.write('\n') 

                    for _ in rel_perm_value: 

                        file.write(str(_))  # _ is '---' 

                        file.write('\n') 

            file.write(self.rel_perm_scope) 

            file.write('\n') 

 

 

class FaciesListStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct).__init__() 

        self.value_struct = value_struct 

 

    def write_value_struct(self, file): 

        """ 
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        TODO: Write the facies list data into an opened file per line as follows: 

        Layer + layer_number + row data of value_struct 

        :param file: 

        :return: 

        """ 

        for (layer_name, layer_data) in self.value_struct.items(): 

            file.write(layer_name) 

            file.write('\t') 

            for data in layer_data: 

                file.write(str(data)) 

                file.write('\t') 

            file.write('\n') 

        file.write('\n') 

 

 

class BlackOilModelStruct(ValueStruct): 

    def __init__(self, value_struct: tuple): 

        super(ValueStruct).__init__() 

        self.value_struct = value_struct 

        self.size = 4 

 

    def write_value_struct(self, file): 

        """ 

        TODO: Write the black oil data into an opened file per line as follows: 

        - Initial bubble/dew point, co, cw, muw, Bwatbubblepoint, oilspecificgravity, 

gasspecificgravity, waterspecificgravity, 

        'unsaturated properties' method 

        - Number of rows in black oil property table 

        - Black oil property table 
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        (There is no keys in the value_struct) 

        :param file: 

        :return: 

        """ 

        write_list_values(file, self.value_struct[0]) 

        file.write(str(self.value_struct[1]))  # Number of rows in black oil property table 

        file.write('\n') 

        write_matrix_values(file=file, array=self.value_struct[-1]) 

        file.write('\n') 

 

 

class ClusterPerStageStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

        self.scope_str = '***' 

 

    def write_value_struct(self, file): 

        """ 

        TODO: ? Write prop types into an opened file per line as follows: 

        :param file: 

        :return: 

        """ 

        for (_, cluster_per_stage) in self.value_struct.items(): 

            file.write(self.scope_str) 

            file.write('\n') 

            for data in cluster_per_stage: 

                file.write(str(data)) 
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                file.write('\n') 

        file.write('\n') 

 

 

class WaterByLayerStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

        self.scope_str = '***' 

 

    def write_value_struct(self, file): 

        """ 

        TODO: ? Write prop types into an opened file per line as follows: 

        :param file: 

        :return: 

        """ 

        for (_, init_Sw) in self.value_struct.items(): 

            file.write(self.scope_str) 

            file.write('\n') 

            file.write(str(init_Sw)) 

            file.write('\n') 

        file.write('\n') 

 

 

class PropTypesStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 
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    def write_value_struct(self, file): 

        """ 

        TODO: ? Write prop types into an opened file per line as follows: 

        :param file: 

        :return: 

        """ 

        for (prop_name, prop_data) in self.value_struct.items(): 

            file.write(prop_name) 

            file.write('\t') 

            for data in prop_data: 

                file.write(str(data)) 

                file.write('\t') 

            file.write('\n') 

        file.write('\n') 

 

 

class PropMixtureStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

 

    def write_value_struct(self, file): 

        """ 

        TODO: ? Write prop mixtures into an opened file per line as follows: 

        :param file: 

        :return: 

        """ 
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        for (mix_name, mix_data) in self.value_struct.items(): 

            file.write(mix_name) 

            file.write('\t') 

            for data in mix_data: 

                file.write(str(data)) 

                file.write('\t') 

            file.write('\n') 

        file.write('\n') 

 

 

class PropPermModelStruct(ValueStruct): 

    def __init__(self, value_struct: np.ndarray): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

 

    def write_value_struct(self, file): 

        """ 

        TODO: ? Write prop mixtures into an opened file per line as follows: 

        :param file: 

        :return: 

        """ 

        write_matrix_values(file=file, array=self.value_struct) 

 

 

class FracPermModelStruct(ValueStruct): 

    def __init__(self, value_struct: np.ndarray): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 
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    def write_value_struct(self, file): 

        """ 

        TODO: ? Write prop mixtures into an opened file per line as follows: 

        :param file: 

        :return: 

        """ 

        write_matrix_values(file=file, array=self.value_struct) 

 

 

class WaterSoluteStruct(ValueStruct): 

    def __init__(self, value_struct: list): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

 

    def write_value_struct(self, file): 

        for water_solute_value in self.value_struct: 

            file.write(str(water_solute_value)) 

            file.write('\t') 

        file.write('\n') 

 

 

class FluidMixtureStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

 

    def write_value_struct(self, file): 
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        for (mix_name, mix_data) in self.value_struct.items(): 

            file.write(mix_name) 

            file.write('\t') 

            for data in mix_data: 

                file.write(str(data)) 

                file.write('\t') 

            file.write('\n') 

        file.write('\n') 

 

 

class WellSequenceStruct(ValueStruct): 

    def __init__(self, value_struct: list, sequence_type: str): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

        self.sequence_type = sequence_type 

        # Data within 2 sequence_scope_str is written for a sequence of a well (example: 

injection/production) 

        self.sequence_scope_str = '***' 

 

    def write_value_struct(self, file): 

        if self.value_struct is None: 

            pass 

        else: 

            # Write sequence_scope_str to start a sequence 

            file.write(self.sequence_scope_str) 

            file.write('\n') 

            if self.sequence_type == 'Shut-in': 

                file.write(self.value_struct[0]) 

                file.write('\n') 
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                write_list_values(file, self.value_struct[1:]) 

            elif self.sequence_type == 'Injection': 

                for _ in self.value_struct[: -1]: 

                    file.write(str(_)) 

                    file.write('\n') 

                write_list_of_list_values(file, self.value_struct[-1]) 

            elif self.sequence_type == 'Production': 

                file.write(self.value_struct[0]) 

                file.write('\n') 

                file.write(self.value_struct[1]) 

                file.write('\n') 

                write_list_values(file, self.value_struct[2: -1]) 

                file.write('\n') 

                write_list_of_list_values(file, self.value_struct[-1]) 

            else: 

                warnings.warn('Can not detect the sequence.') 

                sys.exit(1) 

            file.write('\n') 

 

 

class WellBoundaryConditionStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

        # Data within 2 well_scope_str is written for a well 

        self.well_scope_str = '********' 

 

    def write_value_struct(self, file): 
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        """ 

        TODO: Write the boundary condition control (for well(s)) into an opened file as follows: 

        - 

        :param file: 

        :return: 

        """ 

        for (well_name, well_sequences) in self.value_struct.items(): 

            # Write well_scope_str and well_name to start a well 

            file.write(self.well_scope_str) 

            file.write('\n') 

            file.write(well_name) 

            file.write('\n') 

            # Write all sequences for a well 

            shut_in_sequence = well_sequences['Shut-in'] 

            injection_sequence = well_sequences['Injection'] 

            production_sequence = well_sequences['Production'] 

            WellSequenceStruct(value_struct=shut_in_sequence, sequence_type='Shut-

in').write_value_struct(file) 

            WellSequenceStruct(value_struct=injection_sequence, 

sequence_type='Injection').write_value_struct(file) 

            WellSequenceStruct(value_struct=production_sequence, 

sequence_type='Production').write_value_struct(file) 

        # Write well_scope_str to end 

        file.write(self.well_scope_str) 

        file.write('\n') 

 

 

class WellTruncateSequenceStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 
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        super(ValueStruct, self).__init__() 

        self.value_struct = value_struct 

        self.begin_str = '***' 

 

    def write_value_struct(self, file): 

        for (_, truncate_data) in self.value_struct.items(): 

            file.write(self.begin_str) 

            file.write('\n') 

            for data in truncate_data: 

                file.write(str(data)) 

                file.write('\n') 

        file.write('\n') 

 

 

############################################################## 

# ValueStruct & Entry belong to input in ResFrac 

############################################################## 

 

 

class WellVerticesStruct(ValueStruct): 

    def __init__(self, value_struct: dict): 

        super(ValueStruct).__init__() 

        self.value_struct = value_struct 

        self.begin_str = '***' 

 

    def write_value_struct(self, file): 

        for (_, well_vertices) in self.value_struct.items(): 

            file.write(self.begin_str) 
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            file.write('\n') 

            for data in well_vertices: 

                write_list_values(file=file, values=data) 

        file.write('\n') 

 

 

############################################################## 

# Irregular ValueStruct list 

############################################################## 

 

 

irregular_value_structs = [RelPermStruct, FaciesListStruct, BlackOilModelStruct, 

                           ClusterPerStageStruct, WaterByLayerStruct, 

                           PropTypesStruct, PropMixtureStruct, 

                           PropPermModelStruct, FracPermModelStruct, 

                           WaterSoluteStruct, FluidMixtureStruct, 

                           WellBoundaryConditionStruct, WellTruncateSequenceStruct, 

WellVerticesStruct] 

from simulator.simulation.simulation_helpers import * 

from simulator.base.entry import * 

from simulator.base.regex_templates import * 

from simulator.base.utils import * 

 

 

############################################################## 

# Method to parse entry data from ResFrac files 

############################################################## 
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def parse_entry(entry: dict): 

    """ 

    TODO: ? Parse the entry's value(s) using ResFrac embedded format to obtain: 

    1. 

    :param entry: 

    :return: 

    """ 

    # Create entry_ (being parsed from entry) 

    value_struct_ = ValueStruct(value_struct=None) 

    entry_ = Entry(variable_name=' ', length=0, value_struct=value_struct_, is_doe=True) 

    # Extract the entry's variable name 

    variable_name_ = entry['Variable name:'][0] 

    variable_name_ = variable_name_.split(sep='\n')[0] 

    # Extract the entry's length 

    length_ = entry['Length:'][0] 

    length_ = int(length_.split(sep='\n')[0]) 

    # Extract the entry's value struct 

    raw_value_struct_ = entry['Value(s):'] 

    if length_ == 0: 

        # Entry has no value 

        entry_.change_values(None) 

    elif length_ == 1 and len(raw_value_struct_) == 1: 

        # Entry has one single value 

        parsed_value = parse_value(raw_value_struct_=raw_value_struct_) 

        entry_.value_struct = SingleValueStruct(value_struct=parsed_value) 

    elif variable_name_ in irregular_variable_names: 

        # Entry has irregular value 

        variable_name_idx_ = irregular_variable_names.index(variable_name_) 
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        variable_regex_ = 

irregular_regex_classes[variable_name_idx_](raw_str=raw_value_struct_) 

        parsed_value = variable_regex_.extract() 

        entry_.value_struct = irregular_value_structs[variable_name_idx_](value_struct=None) 

        entry_.change_values(parsed_value) 

    else: 

        parsed_value = ListOfListRegex(raw_str=raw_value_struct_).extract() 

        entry_.value_struct = MatrixValueStruct(value_struct=None, length=length_) 

        entry_.change_values(parsed_value) 

    # Complete the parsing 

    entry_.change_variable_name(variable_name_) 

    entry_.change_length(length_) 

    return entry_ 

 

 

def search_entry(entries: List[Entry], entry_name: str): 

    for (ie, entry) in enumerate(entries): 

        if entry_name in entry.variable_name: 

            return entry 

    return None 

 

 

def parse_value(raw_value_struct_): 

    # TODO: ? Test robustness of this function for common value_struct 

    # Common value struct has only 1 value (float, str, int, bool), no repeat. 

    parsed_data_ = raw_value_struct_[0] 

    if '\t' not in parsed_data_: 

        parsed_data_ = remove_new_line_char(parsed_data_) 

        return extract_primitive_data_type(parsed_data_) 
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    else: 

        parsed_data_ = remove_new_line_char(parsed_data_) 

        parsed_data_ = parsed_data_.split(sep='\t') 

        return extract_list_data_type(parsed_data_) 

import numpy as np 

 

from src.base.base_libs import * 

from simulator.base.utils import remove_new_line_char, remove_empty_in_block 

 

####################################################################### 

# Regular expression helpers to match data in ResFrac files 

####################################################################### 

 

# Regex existed in ResFrac 

blank_regex = '[BLANK]' 

default_regex = 'Default' 

 

# Pre-defined regexes to parse specific data (e.g, relative perm, well control) 

nan_regex = 'nan' 

sequence_scope_regex = '***' 

well_scope_regex = '********' 

split_regex = '---' 

repetition_regex = 'REPEAT' 

end_regex = 'END' 

 

# Pre-defined data types to parse specific data (i.e., relative perm, well control) 

repeated_int = {repetition_regex: int} 

repeated_float = {repetition_regex: float} 



 

320 
 

repeated_str = {repetition_regex: str} 

repeated_split = {repetition_regex: split_regex} 

 

repeated_list = {repetition_regex: list} 

repeated_list_int = {repetition_regex: (list, int)} 

repeated_list_float = {repetition_regex: (list, float)} 

 

 

# TODO: ? Use pair of keywords as tuple() if 2 keywords are required 

brooks_corey_regex = ['curvesetname', 'matrixrelperm', 

                      ('pressuredependentpermeability', 'reversible'), 

                      ('pressuredependentpermeability', 'irreversible'), 

                      'tenxreversiblepermeabilitylossperpressureincrement', 

                      'tenxirreversiblepermeabilitylossperpressureincrement', 

                      'lowerpressurethresholdforreversiblepermeabilityincrease', 

                      'upperpressurethresholdforreversiblepermeabilityincrease', 

                      'permmultiplierforreversiblepermeabilityincrease', 

                      'lowerpressurethresholdforirreversiblepermeabilityincrease', 

                      'upperpressurethresholdforirreversiblepermeabilityincrease', 

                      'permmultiplierforirreversiblepermeabilityincrease', 

                      'permeabilitymultiplier', 

                      'waterbankthicknesstorelpermincreasescalingthickness', 

                      'waterbankthicknesstorelpermdecreasescalingthickness', 

                      'waterbankimmobilefraction', end_regex] 

 

x_curve_regex = ['curvesetname', 'matrixrelperm', 

                 ('pressuredependentpermeability', 'reversible'), 

                 ('pressuredependentpermeability', 'irreversible'), 
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                 'tenxreversiblepermeabilitylossperpressureincrement', 

                 'tenxirreversiblepermeabilitylossperpressureincrement', 

                 'lowerpressurethresholdforreversiblepermeabilityincrease', 

                 'upperpressurethresholdforreversiblepermeabilityincrease', 

                 'permmultiplierforreversiblepermeabilityincrease', 

                 'lowerpressurethresholdforirreversiblepermeabilityincrease', 

                 'upperpressurethresholdforirreversiblepermeabilityincrease', 

                 'permmultiplierforirreversiblepermeabilityincrease', 

                 'permeabilitymultiplier', 

                 'waterbankthicknesstorelpermincreasescalingthickness', 

                 'waterbankthicknesstorelpermdecreasescalingthickness', 

                 'waterbankimmobilefraction', end_regex] 

 

brooks_corey_data = [str, (str, repeated_list_float), 

                     (repeated_list_float, repeated_split), 

                     repeated_str, 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str), 

                     (float, str)] 
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x_curve_data = [str, (str, repeated_list_float), 

                repeated_split, 

                repeated_split, 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str), 

                (float, str)] 

 

injection_sequence_data_regex = [str, str, str, str, float, float, repeated_list] 

production_sequence_data_regex = [str, str, list, repeated_list] 

shut_in_sequence_data_regex = [str, list] 

 

 

class RepeatedDataType(object): 

    def __init__(self, data_type: dict): 

        super(RepeatedDataType, self).__init__() 

        try: 

            assert type(data_type) == dict 

            assert list(data_type.keys())[0] == repetition_regex 
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            self.data_type = data_type 

        except AssertionError: 

            warnings.warn('Incorrect repeated data type.') 

            self.data_type = None 

 

    def value_error(self, raw_data: str): 

        data_type_ = self.data_type[repetition_regex] 

        raw_data_ = remove_new_line_char(raw_data) 

        if type(data_type_) != tuple: 

            # Repeated int, float, str, list (1 single value or 1 list per line) 

            if '\t' not in raw_data_: 

                if data_type_ in [int, float]: 

                    try: 

                        value_ = data_type_(raw_data_) 

                        return False 

                    except ValueError: 

                        return True 

                elif data_type_ in [split_regex]: 

                    return False 

                else: 

                    return False 

            else: 

                return False 

        else: 

            # Repeated list of all ints/floats (1 list per line) 

            try: 

                assert '\t' in raw_data_ 

                assert len(data_type_) == 2 
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                assert data_type_[0] == list 

                value_ = raw_data_.split(sep='\t') 

                for i in value_: 

                    if data_type_[-1] in [int, float]: 

                        try: 

                            i_ = data_type_[-1](i) 

                        except ValueError: 

                            return True 

                    else: 

                        return False 

                return False 

            except AssertionError: 

                return True 

 

    def extract(self, raw_data: str): 

        value_error = self.value_error(raw_data) 

        if value_error is True: 

            # Can not extract 

            return None, True 

        else: 

            # Can extract 

            data_type_ = self.data_type[repetition_regex] 

            raw_data_ = remove_new_line_char(raw_data) 

            if data_type_ != tuple: 

                if '\t' not in raw_data_: 

                    if data_type_ in [int, float]: 

                        value_ = data_type_(raw_data_) 

                    else: 
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                        value_ = raw_data_ 

                    return value_, False 

                else: 

                    value_ = raw_data_.split(sep='\t') 

                    value_ = extract_list_data_type(raw_data=value_) 

                    return value_, False 

            else: 

                assert '\t' in raw_data_ 

                assert data_type_[0] == list 

                value_ = raw_data_.split(sep='\t') 

                value_ = extract_list_data_type(raw_data=value_) 

                return value_, False 

 

 

def extract_between_keywords(current_keyword, next_keyword, raw_data): 

    current_keyword_loc = 0 

    next_keyword_loc = 0 

    for (j, j_line) in enumerate(raw_data): 

        if type(current_keyword) is not tuple: 

            if current_keyword == j_line.split(sep='\n')[0]: 

                current_keyword_loc = j + 1 

        else: 

            if (current_keyword[0] == raw_data[j].split(sep='\n')[0]) and \ 

                    (current_keyword[-1] == raw_data[j + 1].split(sep='\n')[0]): 

                current_keyword_loc = j + 2 

        if type(next_keyword) is not tuple: 

            if next_keyword == j_line.split(sep='\n')[0]: 

                next_keyword_loc = j 
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        else: 

            if (next_keyword[0] == raw_data[j].split(sep='\n')[0]) and \ 

                    (next_keyword[-1] == raw_data[j + 1].split(sep='\n')[0]): 

                next_keyword_loc = j 

    if next_keyword is end_regex: 

        raw_data_ = raw_data[current_keyword_loc:] 

    else: 

        raw_data_ = raw_data[current_keyword_loc: next_keyword_loc] 

    for (_, data_) in enumerate(raw_data_): 

        raw_data_[_] = remove_new_line_char(data_) 

    return raw_data_ 

 

 

def extract_primitive_data_type(raw_data): 

    # Extract for a single primitive data type (float, int, str) 

    try: 

        i = int(raw_data) 

        return i 

    except ValueError: 

        try: 

            i = float(raw_data) 

            return i 

        except ValueError: 

            if raw_data.lower() == 'true': 

                return True 

            elif raw_data.lower == 'false': 

                return False 

            else: 
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                warnings.warn('Not a primitive data type or keyword string.') 

                return raw_data 

 

 

def extract_list_data_type(raw_data: List[str]): 

    # Extract for a list of different primitive data types (float, int, str), 

    data = [None] * len(raw_data) 

    for (_, i) in enumerate(raw_data): 

        i_ = remove_new_line_char(i) 

        try: 

            i_ = int(i_) 

            data[_] = i_ 

        except ValueError: 

            try: 

                i_ = float(i_) 

                data[_] = i_ 

            except ValueError: 

                if i_.lower() == 'true': 

                    data[_] = True 

                elif i_.lower == 'false': 

                    data[_] = False 

                else: 

                    warnings.warn('Not a primitive data type or keyword string.') 

                    data[_] = i_ 

    data = remove_empty_in_block(data) 

    return data 
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def extract_repeated_data_type(raw_data: List[str], data_type: dict, current_extract_loc: int): 

    # Extract pre-defined data types, repeated >=2 lines 

    value_error = False 

    data = [] 

    while value_error is False and current_extract_loc < len(raw_data): 

        repeated_data_type = RepeatedDataType(data_type=data_type) 

        value, value_error = repeated_data_type.extract(raw_data=raw_data[current_extract_loc]) 

        # This if-else is to prevent adding None and stop counting current_extract_loc 

        if value is None and value_error is True: 

            pass 

        else: 

            data.append(value) 

            current_extract_loc += 1 

    if type(data_type[repetition_regex]) == tuple: 

        if data_type[repetition_regex][-1] in [int, float]: 

            data = np.array(data) 

        else: 

            pass 

    else: 

        pass 

    return data, current_extract_loc 

 

 

def extract_nested_data_type(raw_data: List[str], data_types: tuple, current_extract_loc: int): 

    # Extract multiple primitive/pre-defined repeated datatypes nested in a tuple 

    data = list() 

    for data_type in data_types: 

        if data_type in [int, float, str]: 
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            value = extract_primitive_data_type(raw_data[current_extract_loc]) 

            data += [value] 

            current_extract_loc += 1 

        elif data_type in [list]: 

            value = raw_data[current_extract_loc].split(sep='\t') 

            value = extract_list_data_type(value) 

            data += value 

            current_extract_loc += 1 

        else: 

            value, current_extract_loc = extract_repeated_data_type(raw_data, data_type, 

current_extract_loc) 

            data.append(value) 

    return data, current_extract_loc 

 

 

def extract_irregular_data_type(raw_data: List[str], data_types: list): 

    data = list() 

    current_extract_loc = 0 

    for (_, data_type) in enumerate(data_types): 

        if data_type in [int, float, str]: 

            value = extract_primitive_data_type(raw_data[current_extract_loc]) 

            data += [value] 

            current_extract_loc += 1 

        elif data_type in [list]: 

            value = raw_data[current_extract_loc].split(sep='\t') 

            value = extract_list_data_type(value) 

            data += value 

            current_extract_loc += 1 

        elif type(data_type) == dict: 



 

330 
 

            value, current_extract_loc = extract_repeated_data_type(raw_data, data_type, 

current_extract_loc) 

            data.append(value) 

        else: 

            value, current_extract_loc = extract_nested_data_type(raw_data, data_type, 

current_extract_loc) 

            data += value 

    return data 

import numpy as np 

 

from src.base.base_libs import * 

from simulator.base.regex_helpers import * 

 

 

####################################################################### 

# Regular expression templates to match data in ResFrac files 

####################################################################### 

 

 

class BaseRegex(object): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex).__init__() 

        self.raw_str = raw_str 

 

    def extract(self, pattern): 

        pass 

 

 

# TODO: ? Validate this class's robustness in extracting values from a list 
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class ListRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex).__init__() 

        self.raw_str = raw_str 

 

    def extract(self, pattern=None): 

        """ 

        Extract data from list(list) of values separated by \t or from a single value 

        (different primitive data types possible) 

        :param pattern: 

        :return: data: 

        """ 

        data_ = remove_new_line_char(self.raw_str) 

        if '\t' not in data_: 

            data_ = extract_primitive_data_type(data_) 

        else: 

            data_ = data_.split(sep='\t') 

            data_ = extract_list_data_type(data_) 

        return data_ 

 

 

class ListOfListRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex).__init__() 

        self.raw_str = raw_str 

 

    def extract(self, pattern=None): 

        """ 
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        Extract data from list(list) of values separated by \t or from a single value 

        (different primitive data types possible) 

        :param pattern: 

        :return: data: 

        """ 

        data = [None] * len(self.raw_str) 

        for (_, line) in enumerate(self.raw_str): 

            data_ = remove_new_line_char(line) 

            if '\t' not in data_: 

                data_ = extract_primitive_data_type(data_) 

            else: 

                data_ = data_.split(sep='\t') 

                data_ = extract_list_data_type(data_) 

            data[_] = data_ 

        return data 

 

 

class RelPermRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex).__init__() 

        self.raw_str = raw_str 

        self.rel_perm_regex = None 

        self.rel_perm_data = None 

 

    def set_rel_perm_model(self, raw_str): 

        if 'BrooksCorey' in raw_str[3]: 

            self.rel_perm_regex = brooks_corey_regex 

            self.rel_perm_data = brooks_corey_data 
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        else: 

            self.rel_perm_regex = x_curve_regex 

            self.rel_perm_data = x_curve_data 

 

    def extract(self, pattern=None): 

        """ 

        Extract data for relative permeability in ResFrac, using: 

        - rel_perm_keyword_regex: required keywords for relative permeability 

        - rel_perm_data_regex: required data types corresponding to the keywords 

        :param pattern: 

        :return: data 

        """ 

        pattern_separator = '***' 

        separator_locs = list() 

        separator_locs.append(0) 

        # Determine start/end locations of rel perm curves 

        for (_, line) in enumerate(self.raw_str): 

            if pattern_separator in line: 

                separator_locs.append(_) 

        raw_data = [None] * (len(separator_locs) - 1) 

        # Extract raw data for all rel perm curves 

        for i_rel_perm in range(len(separator_locs) - 1): 

            i_raw_data = self.raw_str[separator_locs[i_rel_perm]: separator_locs[i_rel_perm + 1]] 

            self.set_rel_perm_model(raw_str=i_raw_data) 

            assert len(self.rel_perm_regex) == len(self.rel_perm_data) + 1 

            i = 0 

            i_rel_perm_data = dict() 

            while i < len(self.rel_perm_data): 
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                # Extract raw data between 2 keywords 

                current_keyword = self.rel_perm_regex[i] 

                next_keyword = self.rel_perm_regex[i + 1] 

                current_keyword_data = extract_between_keywords(current_keyword, next_keyword, 

                                                                i_raw_data) 

                i_rel_perm_data[current_keyword] = current_keyword_data 

                i += 1 

            raw_data[i_rel_perm] = i_rel_perm_data 

        # Extract data for all rel perm curves from raw data 

        data = [None] * (len(separator_locs) - 1) 

        for i_rel_perm in range(len(separator_locs) - 1): 

            i_rel_perm_raw_data = raw_data[i_rel_perm] 

            i_rel_perm_data = dict() 

            for (i_regex, i_data_regex) in enumerate(self.rel_perm_data): 

                i_keyword_regex = self.rel_perm_regex[i_regex] 

                i_data_regex = self.rel_perm_data[i_regex] 

                i_data = i_rel_perm_raw_data[i_keyword_regex] 

                current_extract_loc = 0 

                while current_extract_loc < len(i_data): 

                    if i_data_regex in [int, float, str]: 

                        i_value = extract_primitive_data_type(i_data[current_extract_loc]) 

                        current_extract_loc += 1 

                    elif i_data_regex in [list]: 

                        i_value = i_data[current_extract_loc].split(sep='\t') 

                        i_value = extract_list_data_type(i_value) 

                        current_extract_loc += 1 

                    elif type(i_data_regex) == dict: 

                        i_value, current_extract_loc = extract_repeated_data_type(i_data, i_data_regex, 
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                                                                                  current_extract_loc) 

                    else: 

                        assert type(i_data_regex) == tuple 

 

                        i_value, current_extract_loc = extract_nested_data_type(i_data, i_data_regex, 

                                                                                current_extract_loc) 

                i_rel_perm_data[i_keyword_regex] = i_value 

            data[i_rel_perm] = i_rel_perm_data 

        return data 

 

 

class WellRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex).__init__() 

        self.raw_str = raw_str 

 

    def extract(self, pattern=None): 

        N = len(self.raw_str) 

        well_scopes = list() 

        well_sequences = dict() 

        for n in range(N): 

            if well_scope_regex in self.raw_str[n]: 

                well_scopes.append(n) 

        for iw in range(len(well_scopes) - 1): 

            well_data = self.raw_str[well_scopes[iw] + 1: well_scopes[iw + 1] + 1] 

            well_name = well_data[0].split(sep='\n')[0] 

            sequence_scopes = list() 

            for (iwd, well_line) in enumerate(well_data): 
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                if sequence_scope_regex in well_line: 

                    sequence_scopes.append(iwd) 

            sequences_ = {'Shut-in': None, 'Injection': None, 'Production': None} 

            for iq in range(len(sequence_scopes) - 1): 

                sequence_data = well_data[sequence_scopes[iq] + 1: sequence_scopes[iq + 1]] 

                sequence_data = [remove_new_line_char(data_) for data_ in sequence_data] 

                sequence_regex = SequenceRegex(sequence_data) 

                sequence_type = sequence_regex.get_sequence_type() 

                if sequence_type == 'Injection': 

                    sequence_ = sequence_regex.extract(injection_sequence_data_regex) 

                    sequences_['Injection'] = sequence_ 

                elif sequence_type == 'Production': 

                    sequence_ = sequence_regex.extract(production_sequence_data_regex) 

                    sequences_['Production'] = sequence_ 

                else: 

                    sequence_ = sequence_regex.extract(shut_in_sequence_data_regex) 

                    sequences_['Shut-in'] = sequence_ 

                well_sequences[well_name] = sequences_ 

        return well_sequences 

 

 

class SequenceRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex).__init__() 

        self.raw_str = raw_str 

 

    def get_sequence_type(self): 

        # Sequence type is always located at 1st line 
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        sequence_type = remove_new_line_char(self.raw_str[0]) 

        if 'Injection' in sequence_type: 

            return 'Injection' 

        elif 'Production' in sequence_type: 

            return 'Production' 

        else: 

            return 'Shut-in' 

 

    def extract(self, pattern): 

        # TODO: ? Re-write this function 

        data = extract_irregular_data_type(self.raw_str, pattern) 

        return data 

 

 

class FaciesListRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex).__init__() 

        self.raw_str = raw_str 

        self.num_layers = None 

 

    def get_number_of_layers(self): 

        self.num_layers = len(self.raw_str) 

 

    def extract(self, pattern='\t'): 

        data = dict() 

        self.get_number_of_layers() 

        try: 

            assert self.num_layers is not None 
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        except AssertionError: 

            warnings.warn('Can not extract due to incorrect number of layers.') 

            sys.exit(1) 

        for i in range(self.num_layers): 

            layer_data = remove_new_line_char(self.raw_str[i]) 

            layer_data = layer_data.split(sep=pattern) 

            layer_name = layer_data[0] 

            layer_data = layer_data[1:] 

            layer_data = remove_empty_in_block(layer_data) 

            layer_data = ListOfListRegex(raw_str=layer_data).extract() 

            data[layer_name] = layer_data 

        return data 

 

 

class BlackOilRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

 

    def extract(self, pattern=None): 

        black_oil_props = remove_new_line_char(self.raw_str[0]) 

        black_oil_props = ListRegex(raw_str=black_oil_props).extract() 

        prop_table_lines = remove_new_line_char(self.raw_str[1]) 

        prop_table_lines = int(prop_table_lines) 

        prop_table = self.raw_str[2:] 

        prop_table = ListOfListRegex(raw_str=prop_table).extract() 

        return [black_oil_props, prop_table_lines, np.array(prop_table)] 
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class ClustersPerStageRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

 

    def get_number_of_stages(self): 

        num_of_stages = 0 

        locs = list() 

        for (_, line) in enumerate(self.raw_str): 

            if '***' in line: 

                num_of_stages += 1 

                locs.append(_) 

        locs.append(len(self.raw_str)) 

        return num_of_stages, locs 

 

    def extract(self, pattern='\t'): 

        data = dict() 

        num_of_stages, locs = self.get_number_of_stages() 

        for _ in range(num_of_stages): 

            start_loc, end_loc = locs[_] + 1, locs[_ + 1] 

            _data = self.raw_str[start_loc: end_loc] 

            _data = ListOfListRegex(raw_str=_data).extract() 

            data['Stage_' + str(_+1)] = _data 

        return data 

 

 

class WaterByLayer(BaseRegex): 
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    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

        self.num_of_layers = None 

 

    def get_number_of_layers(self): 

        num_of_layers = 0 

        locs = list() 

        for (_, line) in enumerate(self.raw_str): 

            if '***' in line: 

                num_of_layers += 1 

                locs.append(_ + 1) 

        locs.append(len(self.raw_str)) 

        return num_of_layers, locs 

 

    def extract(self, pattern=None): 

        data = dict() 

        num_of_layers, locs = self.get_number_of_layers() 

        for _ in range(num_of_layers): 

            _data = remove_new_line_char(self.raw_str[locs[_]]) 

            data['Layer_' + str(_+1)] = float(_data) 

        return data 

 

 

class PropRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 
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        self.num_of_props = None 

 

    def get_number_of_props(self): 

        return len(self.raw_str) 

 

    def extract(self, pattern='\t'): 

        data = dict() 

        for prop in self.raw_str: 

            prop_data = remove_new_line_char(prop) 

            prop_data = prop_data.split(sep=pattern) 

            prop_name = prop_data[0] 

            prop_data = prop_data[1:] 

            prop_data = ListOfListRegex(raw_str=prop_data).extract() 

            data[prop_name] = prop_data 

        return data 

 

 

class PropMixtureRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

        self.num_of_mixtures = None 

 

    def get_number_of_mixtures(self): 

        return len(self.raw_str) 

 

    def extract(self, pattern='\t'): 

        data = dict() 
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        for mix in self.raw_str: 

            mix_data = remove_new_line_char(mix) 

            mix_data = mix_data.split(sep=pattern) 

            mix_name = mix_data[0] 

            mix_data = mix_data[1:] 

            mix_data = ListOfListRegex(raw_str=mix_data).extract() 

            data[mix_name] = mix_data 

        return data 

 

 

class WaterSoluteRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

        self.num_of_mixtures = None 

 

    def get_number_of_solutes(self): 

        return len(self.raw_str) 

 

    def extract(self, pattern=None): 

        data = dict() 

        for solute in self.raw_str: 

            solute_data = solute.split(sep='\n')[0] 

            solute_data = solute_data.split(sep=pattern) 

            solute_name = solute_data[0] 

            solute_data = solute_data[1:] 

            solute_data = ListOfListRegex(raw_str=solute_data).extract() 

            data[solute_name] = solute_data 
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        return data 

 

 

class FluidMixtureRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

        self.num_of_mixtures = None 

 

    def get_number_of_mixtures(self): 

        return len(self.raw_str) 

 

    def extract(self, pattern=None): 

        data = dict() 

        for mix in self.raw_str: 

            mix_data = mix.split(sep='\n')[0] 

            mix_data = mix_data.split(sep=pattern) 

            mix_name = mix_data[0] 

            mix_data = mix_data[1:] 

            mix_data = ListOfListRegex(raw_str=mix_data).extract() 

            data[mix_name] = mix_data 

        return data 

 

 

class PropPermModelRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 
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    def extract(self, pattern=None): 

        data = ListOfListRegex(raw_str=self.raw_str).extract() 

        return np.array(data) 

 

 

class FracPermModelRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

 

    def extract(self, pattern=None): 

        data = ListOfListRegex(raw_str=self.raw_str).extract() 

        return np.array(data) 

 

 

class DurationCutOffRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

 

    def get_num_of_wells(self): 

        num_of_wells = 0 

        locs = list() 

        for (_, line) in enumerate(self.raw_str): 

            if '***' in line: 

                num_of_wells += 1 

                locs.append(_) 
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        locs.append(len(self.raw_str)) 

        return num_of_wells, locs 

 

    def extract(self, pattern=None): 

        data = dict() 

        num_of_wells, locs = self.get_num_of_wells() 

        for _ in range(num_of_wells): 

            start_loc, end_loc = locs[_] + 1, locs[_ + 1] 

            _data = self.raw_str[start_loc: end_loc] 

            _data = ListOfListRegex(raw_str=_data).extract() 

            data['Well_' + str(_+1)] = _data 

        return data 

 

 

class WellVerticesRegex(BaseRegex): 

    def __init__(self, raw_str: List[str]): 

        super(BaseRegex, self).__init__() 

        self.raw_str = raw_str 

 

    def get_num_of_wells(self): 

        num_of_wells = 0 

        locs = list() 

        for (_, line) in enumerate(self.raw_str): 

            if '***' in line: 

                num_of_wells += 1 

                locs.append(_ + 1) 

        locs.append(len(self.raw_str)) 

        return num_of_wells, locs 
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    def extract(self, pattern=None): 

        data = dict() 

        num_of_wells, locs = self.get_num_of_wells() 

        for _ in range(num_of_wells): 

            start_loc, end_loc = locs[_], locs[_ + 1] - 1 

            _data = self.raw_str[start_loc: end_loc] 

            _data = ListOfListRegex(raw_str=_data).extract() 

            data['Well_' + str(_+1)] = _data 

        return data 

 

 

irregular_regex_classes = [RelPermRegex, FaciesListRegex, BlackOilRegex, 

                           ClustersPerStageRegex, WaterByLayer, 

                           PropRegex, PropMixtureRegex, 

                           PropPermModelRegex, FracPermModelRegex, 

                           WaterSoluteRegex, FluidMixtureRegex, 

                           WellRegex, DurationCutOffRegex, WellVerticesRegex] 

from src.base.base_libs import * 

 

 

def write_matrix_values(file, array: np.ndarray): 

    """ 

    The numpy array has dimensions (N, 1) or (N, 2) 

    :param array: 

    :param file: 

    :return: 

    """ 
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    for row in array: 

        if type(row) == np.ndarray: 

            for _ in row: 

                file.write(str(_)) 

                file.write('\t') 

            file.write('\n') 

        else: 

            file.write(str(row)) 

            file.write('\n') 

    file.write('\n') 

 

 

def write_ndarray_values(file, array: np.ndarray, length: int): 

    """ 

    The numpy array has dimensions (N, 1) or (N, 2) 

    :param array: 

    :param file: 

    :param length: 

    :return: 

    """ 

    if length == 0: 

        warnings.warn('Incorrect variable length for matrix values.') 

        sys.exit(1) 

    elif length == 1: 

        for _ in array: 

            file.write(str(_)) 

            file.write('\t') 

        file.write('\n') 
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    else: 

        for row in array: 

            if type(row) == np.ndarray: 

                for _ in row: 

                    file.write(str(_)) 

                    file.write('\t') 

                file.write('\n') 

            else: 

                file.write(str(row)) 

                file.write('\n') 

    file.write('\n') 

 

 

def write_list_values(file, values: list): 

    """ 

    TODO: ? Write a numpy array dimensions to an opened file object 

    values is a list of different data types 

    :param values: 

    :param file: 

    """ 

    for value in values: 

        file.write(str(value)) 

        file.write('\t') 

    file.write('\n') 

 

 

def write_list_of_list_values(file, values: List[List]): 

    for value in values: 
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        if type(value) != list: 

            file.write(str(value)) 

            file.write('\n') 

        else: 

            for value_ in value: 

                file.write(str(value_)) 

                file.write('\t') 

            file.write('\n') 

    file.write('\n') 

 

 

def parse_file(file_name): 

    """ 

    TODO: ? Scan and extract simulation data from a ResFrac's settings/input file 

    :param file_name: 

    :return: 

    """ 

    file = open(file=file_name, mode='r') 

    file_lines = file.readlines() 

    entry_begin_idx = list() 

    entry_end_idx = list() 

    file_entries = list() 

    for (i, line) in enumerate(file_lines): 

        if 'Begin entry' in line: 

            # Begin entry comment 

            entry_begin_idx.append(i) 

        elif 'End entry' in line: 

            # End entry comment 
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            entry_end_idx.append(i) 

        else: 

            # Entry comments or data 

            pass 

    try: 

        assert len(entry_begin_idx) == len(entry_end_idx) 

    except AssertionError: 

        sys.exit(1) 

    number_of_entries = len(entry_begin_idx) 

    for ie in range(number_of_entries): 

        entry = dict.fromkeys(['Comments:', 'Variable name:', 'Length:', 'Value(s):']) 

        entry['Comments:'] = list() 

        entry['Variable name:'] = list() 

        entry['Length:'] = list() 

        entry['Value(s):'] = list() 

        entry_line_data = file_lines[entry_begin_idx[ie]:entry_end_idx[ie]+1] 

        for (je, entry_line) in enumerate(entry_line_data): 

            if entry_line.__contains__("//"): 

                entry['Comments:'].append(entry_line) 

            elif 'Variable name:' in entry_line: 

                entry['Variable name:'].append(entry_line_data[je+1]) 

            elif 'Length:' in entry_line: 

                entry['Length:'].append(entry_line_data[je+1]) 

            elif 'Value(s):' in entry_line: 

                value_line_data = entry_line_data[je+1: -1] 

                remove_comment_in_block(value_line_data) 

                while '\n' in value_line_data: 

                    remove_new_line_char_in_block(value_line_data) 
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                for value_line in value_line_data: 

                    if value_line.__contains__("//"): 

                        pass 

                    else: 

                        entry['Value(s):'].append(value_line) 

            else: 

                pass 

        file_entries.append(entry) 

    file.close() 

    return file_entries 

 

 

def remove_new_line_char(line): 

    if line == '\n': 

        return None 

    elif '\n' in line: 

        return line.split(sep='\n')[0] 

    else: 

        return line 

 

 

def remove_new_line_char_in_block(block: List[str]): 

    for line in block: 

        if line == '\n': 

            block.remove(line) 

 

 

def remove_comment_in_block(block: List[str]): 
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    for line in block: 

        if line.__contains__("//"): 

            block.remove(line) 

 

 

def remove_empty_in_block(block: List[str]): 

    block_ = block 

    if '' in block_: 

        block_.remove('') 

    elif ' ' in block_: 

        block_.remove(' ') 

    else: 

        pass 

    return block_ 

 

 

def compare_two_txt_files(file_name_1, file_name_2, comp_file_1, comp_file_2): 

    f1 = open(file_name_1, 'r') 

    f2 = open(file_name_2, 'r') 

    file_data_1 = f1.readlines() 

    file_data_2 = f2.readlines() 

    for (_, line) in enumerate(file_data_1): 

        if '//' in line: 

            file_data_1.remove(line) 

        elif line in ['\n', '\r\n']: 

            file_data_1.remove(line) 

        else: 

            pass 
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    for (_, line) in enumerate(file_data_2): 

        if '//' in line: 

            file_data_2.remove(line) 

        elif line in ['\n', '\r\n']: 

            file_data_2.remove(line) 

        else: 

            pass 

    try: 

        assert len(file_data_1) == len(file_data_2) 

    except AssertionError: 

        warnings.warn('Compared files do not hold equal data.') 

    diff = 0 

    for (_, line) in enumerate(file_data_2): 

        if line not in file_data_1: 

            print(line) 

            diff += 1 

    print('Total number of different lines is ' + str(diff)) 

    with open(comp_file_1, 'w+') as cf1: 

        for line in file_data_1: 

            cf1.write(line) 

    with open(comp_file_2, 'w+') as cf2: 

        for line in file_data_2: 

            cf2.write(line) 

    f1.close() 

    f2.close() 

    cf1.close() 

    cf2.close() 

""" 
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    TODO: ? Store ResFrac comments in the settings or input files 

    - To support writing/reading ResFrac simulation files 

    - Comment files start with // (not scanned by ResFrac) 

""" 

 

 

entry_begin = '// ------------------ Begin entry ------------------------- ' 

entry_end = '// ------------------ End entry ------------------------- ' 

entry_describe = '// Description: ' 

entry_name = '// Name in builder interface: ' 

entry_internal_variable_name = '// ResFrac internal variable name ' 

from simulator.base.entry import * 

from simulator.simulation.simulation_headers import * 

from simulator.simulation.simulation_comments import entry_begin, entry_end 

 

 

class SimulationFile(object): 

    def __init__(self, entries: List[Entry], file_type: str): 

        super(SimulationFile, self).__init__() 

        self.entries = entries 

        self.file_type = file_type 

 

    def add_entry(self, entry: Entry): 

        self.entries.append(entry) 

 

    def write_file(self, file_name): 

        """ 

        TODO: ? Implement writing all entries to a .txt file 
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        :return: 

        """ 

        with open(file_name, mode='w+') as f: 

            if self.file_type == 'settings': 

                for header in settings_headers: 

                    f.write(header) 

                    f.write('\n') 

            elif self.file_type == 'input': 

                for header in input_headers: 

                    f.write(header) 

                    f.write('\n') 

            else: 

                warnings.warn('Not a ResFrac file type.') 

                sys.exit(1) 

            for e in self.entries: 

                # print('Write entry: ', e.variable_name) 

                f.write(entry_begin) 

                f.write("\n") 

                f.write("Variable name:") 

                f.write("\n") 

                f.write(e.variable_name) 

                f.write("\n") 

                f.write("Length:") 

                f.write("\n") 

                f.write(str(e.length)) 

                f.write("\n") 

                f.write("Value(s):") 

                f.write("\n") 
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                e.write_entry_values(f) 

                f.write("\n") 

                f.write(entry_end) 

                f.write("\n") 

                f.write("\n") 

            f.close() 

""" 

    ResFrac commands in settings/input files that does not belong to an entry 

""" 

 

settings_headers = ['validation passed', 'memory usage regular', 'using field units'] 

input_headers = ['using field units'] 

from src.base.base_libs import * 

 

##################################################################### 

# Helper variables to support parsing/writing ResFrac files 

##################################################################### 

 

 

rel_perm_keys = ['curvesetname', 'matrixrelperm', 

                 ('pressuredependentpermeability', 'reversible'), 

                 ('pressuredependentpermeability', 'irreversible'), 

                 'tenxreversiblepermeabilitylossperpressureincrement', 

                 'tenxirreversiblepermeabilitylossperpressureincrement', 

                 'lowerpressurethresholdforreversiblepermeabilityincrease', 

                 'upperpressurethresholdforreversiblepermeabilityincrease', 

                 'permmultiplierforreversiblepermeabilityincrease', 

                 'lowerpressurethresholdforirreversiblepermeabilityincrease', 
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                 'upperpressurethresholdforirreversiblepermeabilityincrease', 

                 'permmultiplierforirreversiblepermeabilityincrease', 

                 'permeabilitymultiplier', 

                 'waterbankthicknesstorelpermincreasescalingthickness', 

                 'waterbankthicknesstorelpermdecreasescalingthickness', 

                 'waterbankimmobilefraction'] 

 

irregular_variable_names = ['matrixcurvesets', 'facieslist', 'blackoil', 

                            'clustersperstage', 'initialwatersolutemassfractionsbylayer', 

                            'proppants', 'proppantmixtures', 

                            'proppantbedbrookscoreymodel', 'fracturebrookscoreymodel', 

                            'watersolutes', 'fluidmixtures', 

                            'nextgenboundaryconditioncontrols', 'durationcutoff', 'wellvertices'] 

import sys 

import os 

import shutil 

 

import math 

import csv 

import warnings 

 

from typing import Union, List, Optional, Tuple, Dict 

from itertools import permutations, combinations, product 

from copy import deepcopy 

from enum import Enum 

 

import regex 

import re 
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import pickle 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

import scipy 

from scipy.stats import distributions 

import pyDOE 

 

import plotly 

from plotly import graph_objects as go 

from src.dir.dir import * 

 

 

class OrientedBox(object): 

    """ 

    TODO: Class that manages an oriented box, i.e., a box representing the 3D fracture element in 

ResFrac 

    Description: 

    Functionality: 

    """ 

    def __init__(self, central_coors: np.asarray, dimensions: np.ndarray, oriented_angle: float): 

        super(OrientedBox, self).__init__() 

        self.central_coors = central_coors 

        self.dimensions = dimensions  # dimensions = [element dimensions and element aperture] 

        self.oriented_angle = oriented_angle 

        # 
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        self.central_plane_coors = np.zeros(shape=[4, 3])  # Coordinates of 'central' plane's corners 

        self.coors = np.zeros(shape=[8, 3])  # Coordinates of the oriented box's corners 

        # 

        self.normal = np.nan * np.ones((3, ))  # Normal vector of the oriented box and the central 

plane 

 

    def compute_central_corners(self): 

        # Compute the corners of the oriented box 

        center_x = self.central_coors[0] 

        center_y = self.central_coors[1] 

        center_z = self.central_coors[-1] 

        corners_x = [center_x + self.dimensions[0] / 2 * np.sin(self.oriented_angle), 

                     center_x - self.dimensions[0] / 2 * np.sin(self.oriented_angle)] 

        corners_y = [center_y + self.dimensions[0] / 2 * np.cos(self.oriented_angle), 

                     center_y - self.dimensions[0] / 2 * np.cos(self.oriented_angle)] 

        corners_z = [center_z + self.dimensions[1] / 2, 

                     center_z - self.dimensions[1] / 2] 

        coors_xy = list() 

        coors_z = corners_z 

        coors_xy.append((corners_x[0], corners_y[0])) 

        coors_xy.append((corners_x[-1], corners_y[-1])) 

        coors = list(product(coors_xy, coors_z)) 

        for i in range(4): 

            x = coors[i][0][0] 

            y = coors[i][0][-1] 

            z = coors[i][-1] 

            self.central_plane_coors[i, :] = [x, y, z] 

 

    def compute_corners(self): 
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        self.compute_central_corners() 

        for i in range(4): 

            central_x = self.central_plane_coors[i, 0] 

            central_y = self.central_plane_coors[i, 1] 

            central_z = self.central_plane_coors[i, -1] 

            self.coors[2 * i, :] = [central_x - self.dimensions[-1]/2 * np.cos(self.oriented_angle), 

                                    central_y + self.dimensions[-1]/2 * np.sin(self.oriented_angle), central_z] 

            self.coors[2 * i + 1, :] = [central_x + self.dimensions[-1]/2 * np.cos(self.oriented_angle), 

                                        central_y - self.dimensions[-1]/2 * np.sin(self.oriented_angle), central_z] 

 

    def compute_normal(self): 

        self.compute_central_corners() 

        p1 = self.central_plane_coors[0, :] 

        p2 = self.central_plane_coors[1, :] 

        p3 = self.central_plane_coors[2, :] 

        self.normal = np.cross(p2 - p1, p3 - p1) 

 

    def sample(self): 

        # Sample a random location inside the oriented box 

        loc = [0., 0., 0.] 

        min_x_coor, max_x_coor = self.coors[:, 0].min(), self.coors[:, 0].max() 

        min_y_coor, max_y_coor = self.coors[:, 1].min(), self.coors[:, 1].max() 

        min_z_coor, max_z_coor = self.coors[:, -1].min(), self.coors[:, -1].max() 

        loc[0] = np.random.uniform(min_x_coor, max_x_coor) 

        loc[1] = np.random.uniform(min_y_coor, max_y_coor) 

        loc[-1] = np.random.uniform(min_z_coor, max_z_coor) 

        return loc 
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class FractureElement(object): 

    def __init__(self, elem_center: np.ndarray, elem_dimensions: np.ndarray, 

                 elem_aperture: float, elem_angle: float): 

        super(FractureElement, self).__init__() 

        self.elem_center = elem_center 

        self.elem_dimensions = elem_dimensions 

        self.elem_aperture = elem_aperture / 12  # Convert in to ft 

        self.elem_angle = elem_angle / 180 * math.pi  # Convert deg to rad 

        # Attributes defining the element in 2D (central plane) and 3D (oriented box) 

        self.elem_corners = None 

        self.elem_coors = None 

        self.elem_box = None 

 

    def set_element_corners(self): 

        """ 

        TODO: ? Compute element corners from its dimensions and center 

        :return: 

        """ 

        elem_center_x = self.elem_center[0] 

        elem_center_y = self.elem_center[1] 

        elem_center_z = self.elem_center[-1] 

        elem_corners_x = [elem_center_x + self.elem_dimensions[0] / 2 * np.sin(self.elem_angle), 

                          elem_center_x - self.elem_dimensions[0] / 2 * np.sin(self.elem_angle)] 

        elem_corners_y = [elem_center_y + self.elem_dimensions[0] / 2 * np.cos(self.elem_angle), 

                          elem_center_y - self.elem_dimensions[0] / 2 * np.cos(self.elem_angle)] 

        elem_corners_z = [elem_center_z + self.elem_dimensions[-1] / 2, 

                          elem_center_z - self.elem_dimensions[-1] / 2] 
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        self.elem_corners = np.zeros([3, 2]) 

        self.elem_corners[0, :] = elem_corners_x 

        self.elem_corners[1, :] = elem_corners_y 

        self.elem_corners[-1, :] = elem_corners_z 

 

    def set_element_coordinates(self): 

        if self.elem_corners is None: 

            pass 

        else: 

            # This mode computes coordinate of the element's central 'plane' (i.e. 

            # not include aperture, replicate similar visual as in ResFrac) 

            self.elem_coors = np.zeros([4, 3]) 

            elem_coors_xy = list() 

            elem_coors_z = list(self.elem_corners[-1, :]) 

            elem_coors_xy.append((self.elem_corners[0, 0], self.elem_corners[1, 0])) 

            elem_coors_xy.append((self.elem_corners[0, 1], self.elem_corners[1, 1])) 

            elem_coors = list(product(elem_coors_xy, elem_coors_z)) 

            for i in range(4): 

                x = elem_coors[i][0][0] 

                y = elem_coors[i][0][-1] 

                z = elem_coors[i][-1] 

                self.elem_coors[i, :] = [x, y, z] 

 

    def generate_elem_2d_grid(self): 

        assert self.elem_coors.shape[0] == 4 

        elem_grid = np.zeros([5, 3]) 

        elem_grid[0, :] = self.elem_coors[0, :] 

        elem_grid[1, :] = self.elem_coors[1, :] 
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        elem_grid[2, :] = self.elem_coors[-1, :] 

        elem_grid[3, :] = self.elem_coors[2, :] 

        elem_grid[-1, :] = self.elem_coors[0, :] 

        return elem_grid 

 

    def set_oriented_box(self): 

        elem_box_dimensions = np.zeros(shape=(3,), dtype=np.float32) 

        elem_box_dimensions[:-1] = self.elem_dimensions 

        elem_box_dimensions[-1] = self.elem_aperture 

        self.elem_box = OrientedBox(central_coors=self.elem_center, 

dimensions=elem_box_dimensions, 

                                    oriented_angle=self.elem_angle) 

 

    def generate_elem_3d_grid(self): 

        pass 

from src.utils.read_data import * 

from src.data.properties.properties import * 

from src.data.element.element import * 

 

 

class FractureGeometry(SimulationProperty): 

    def __init__(self, raw_result_dir: RawResultDirectory): 

        super(SimulationProperty).__init__() 

        self.property_names = ['Elm center x', 

                               'Elm center y', 

                               'Elm center z (depth)', 

                               'Angle', 'Aperture', 

                               'Element number', 

                               'Fracture element number', 
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                               'Fracture number'] 

        self.property_dimensions = ['ft', 'ft', 'ft', 

                                    'Degrees clockwise from positive y-axis direction', 

                                    'in', 

                                    'unitless', 'unitless', 'unitless'] 

        self.raw_result_dir = raw_result_dir 

        self.time_step = None 

 

        self.fracture_elements = None 

        self.fracture_numbers = None 

        self.fracture_surface = None 

 

        self.element_dimensions = None 

        self.element_numbers = None 

 

    def set_raw_result_file(self, raw_result_file): 

        self.raw_result_dir.set_new_result_dir(raw_result_file) 

        raw_result_file_encoding = raw_result_file.split(sep="_") 

        self.time_step = raw_result_file_encoding[-1] 

 

    def set_fracture_geometry_data(self, file_data, file_data_format: DataFormat): 

        self.set_property_data(file_data, file_data_format) 

        if len(self.property_data) == 0: 

            pass 

        else: 

            fracture_numbers_data = np.array([n for n in self.property_data[:, -1]]) 

            self.fracture_numbers = np.unique(fracture_numbers_data) 

            self.element_dimensions = np.array( 
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                [file_data_format.data_header[-5], file_data_format.data_header[-2]]).astype( 

                float) 

            self.element_numbers = self.property_data.shape[0] 

            self.fracture_elements = list() 

            for elem_num in range(self.element_numbers): 

                elem_center = np.array(self.property_data[elem_num, :3]).astype(float) 

                elem_angle = float(self.property_data[elem_num, 3]) 

                elem_aperture = float(self.property_data[elem_num, 4]) 

                elem = FractureElement(elem_center=elem_center, 

elem_dimensions=self.element_dimensions, 

                                       elem_angle=elem_angle, elem_aperture=elem_aperture) 

                elem.set_element_corners() 

                elem.set_element_coordinates() 

                self.fracture_elements.append(elem) 

 

    def set_fracture_surface_data(self): 

        if self.fracture_elements is None or self.element_numbers is None: 

            pass 

        else: 

            self.fracture_surface = np.zeros(shape=[4 * self.element_numbers, 3]) 

            for elem_num in range(self.element_numbers): 

                self.fracture_surface[4 * elem_num:4 * (elem_num + 1), :] = 

self.fracture_elements[elem_num].elem_coors 

 

    def plot_fracture(self, fracture_number: Union[str, int], fig_name: str): 

        """ 

        TODO: ? Plot fracture as surface for the given fracture number in ResFrac 

        TODO: ? Consider moving this function out 

        :param fracture_number: 
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        :param fig_name: 

        :return: 

        """ 

        if fracture_number != -1: 

            fracture_number_geometry = self.property_data[self.property_data[:, -1] 

                                                          == fracture_number] 

            fracture_x = fracture_number_geometry[:, 0].astype(float) 

            fracture_y = fracture_number_geometry[:, 1].astype(float) 

            fracture_z = fracture_number_geometry[:, 2].astype(float) 

        else: 

            fracture_number_geometry = self.fracture_surface 

            if fracture_number_geometry is not None: 

                fracture_x = fracture_number_geometry[:, 0].astype(float) 

                fracture_y = fracture_number_geometry[:, 1].astype(float) 

                fracture_z = fracture_number_geometry[:, 2].astype(float) 

        fig_data = list() 

        if self.element_numbers is None: 

            pass 

        else: 

            for elem_num in range(self.element_numbers): 

                elem_grid = self.fracture_elements[elem_num].generate_elem_2d_grid() 

                fig_data.append(go.Scatter3d(x=elem_grid[:, 0], 

                                         y=elem_grid[:, 1], 

                                         z=elem_grid[:, -1], 

                                         mode='lines', marker=dict(color="black"), 

                                         name='')) 

            fig = go.Figure(data=fig_data) 

            fig.update_layout(scene=dict( 
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                aspectmode='manual', 

                aspectratio=dict(x=10, y=1, z=5))) 

            fig_dir = os.path.join(self.raw_result_dir.data_main_dir, fig_name) 

            fig.write_html(fig_dir) 

from src.utils.read_data import * 

from src.dir.dir import * 

 

 

class SimulationProperty(object): 

    def __init__(self): 

        super(SimulationProperty, self).__init__() 

        self.property_names = None 

        self.property_dimensions = None 

        self.property_units = None 

        self.property_data = None 

 

    def set_property_name(self, name): 

        self.property_names = name 

 

    def set_property_dimensions(self, dimensions): 

        self.property_dimensions = dimensions 

 

    def set_property_units(self, units): 

        self.property_units = units 

 

    def set_property_data(self, file_data, file_data_format): 

        self.property_data = property_reader(file_data, file_data_format, 

                                             self.property_names) 
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class SimulationTrackProperty(object): 

    def __init__(self): 

        super(SimulationTrackProperty, self).__init__() 

        self.property_names = None 

        self.property_dimensions = None 

        self.property_units = None 

        self.property_data = None 

 

 

class DailyProductionProperty(object): 

    def __init__(self): 

        super(DailyProductionProperty, self).__init__() 

        self.property_names = None 

        self.property_dimensions = None 

        self.property_units = None 

        self.property_data = None 

 

 

def property_reader(file_data, file_data_format: DataFormat, property_names): 

    searched_idx = search_properties(file_data_format, property_names) 

    property_data = list() 

    for i, data in enumerate(file_data): 

        property_data.append([data[idx] for idx in searched_idx]) 

    return np.array(property_data) 

from src.utils.read_data import * 

from src.data.properties.properties import * 
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from src.data.element.element import * 

 

 

class PropVolFrac(SimulationProperty): 

    def __init__(self, raw_result_dir: RawResultDirectory): 

        super(SimulationProperty).__init__() 

        self.property_names = ['Total proppant volume fraction'] 

        self.property_dimensions = ['unitless'] 

        self.raw_result_dir = raw_result_dir 

        # 

        self.time_step = None 

        self.fracture_numbers = None 

        self.element_dimensions = None 

        self.element_numbers = None 

 

    def set_raw_result_file(self, raw_result_file): 

        self.raw_result_dir.set_new_result_dir(raw_result_file) 

        raw_result_file_encoding = raw_result_file.split(sep="_") 

        self.time_step = raw_result_file_encoding[-1] 

 

    def set_vol_frac_data(self, file_data, file_data_format: DataFormat): 

        self.set_property_data(file_data, file_data_format) 

        if len(self.property_data) == 0: 

            pass 

        else: 

            fracture_numbers_data = np.array([n for n in self.property_data[:, -1]]) 

            self.fracture_numbers = np.unique(fracture_numbers_data) 

            self.element_dimensions = np.array([file_data_format.data_header[-5], 

file_data_format.data_header[-2]]).astype( 
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                float) 

            self.element_numbers = self.property_data.shape[0] 

 

    def plot_vol_frac(self): 

        pass 

from src.utils.read_data import * 

from src.data.properties.properties import * 

from src.data.element.element import * 

 

 

class Aperture(SimulationProperty): 

    # TODO: ? Define class to analyze fracture aperture data 

    def __init__(self, raw_result_dir: RawResultDirectory): 

        super(SimulationProperty).__init__() 

        self.property_names = ['Aperture'] 

        self.property_dimensions = ['in'] 

        self.raw_result_dir = raw_result_dir 

 

        self.time_step = None 

        self.fracture_numbers = None 

        self.element_dimensions = None 

        self.element_numbers = None 

 

    def set_raw_result_file(self, raw_result_file): 

        self.raw_result_dir.set_new_result_dir(raw_result_file) 

        raw_result_file_encoding = raw_result_file.split(sep="_") 

        self.time_step = raw_result_file_encoding[-1] 
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    def set_aperture_data(self, file_data, file_data_format: DataFormat): 

        self.set_property_data(file_data, file_data_format) 

        if len(self.property_data) == 0: 

            pass 

        else: 

            fracture_numbers_data = np.array([n for n in self.property_data[:, -1]]) 

            self.fracture_numbers = np.unique(fracture_numbers_data) 

            self.element_dimensions = np.array([file_data_format.data_header[-5], 

                                                file_data_format.data_header[-2]]).astype(float) 

            self.element_numbers = self.property_data.shape[0] 

 

    def plot_aperture(self): 

        pass 

from src.dir.dir import * 

from src.utils.read_data import * 

 

 

class TimeProperty(object): 

    def __init__(self, data_main_dir: str, data_type: str): 

        super(TimeProperty, self).__init__() 

        self.raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir) 

        self.file_type = data_type 

 

    def set_raw_result_file(self, raw_result_file: str): 

        self.raw_result_dir.set_new_result_dir(raw_result_file) 

 

    def get_raw_data(self, data_format: SimulationTrackDataFormat): 

        data_reader = SimulationTrackDataReader(data_dir=self.raw_result_dir, 

data_format=data_format) 
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        file_data, file_data_format = data_reader.read_data() 

        return file_data, file_data_format 

from src.base.base_libs import * 

 

 

class DataDirectory(object): 

    def __init__(self, data_main_dir): 

        super(DataDirectory, self).__init__() 

        self.data_main_dir = data_main_dir 

 

    def set_new_directory(self, new_data_main_dir): 

        self.data_main_dir = new_data_main_dir 

 

    def access_directory(self, accessed_dir): 

        return os.path.join(self.data_main_dir, accessed_dir) 

 

    def search_file(self, accessed_dir, searched_file_name): 

        searched_dir = self.access_directory(accessed_dir=accessed_dir) 

        for file_name in os.listdir(searched_dir): 

            if file_name == searched_file_name: 

                return True 

        return False 

 

    def search_file_end_with(self, accessed_dir, searched_file_name, end_str): 

        searched_dir = self.access_directory(accessed_dir=accessed_dir) 

        for file_name in os.listdir(searched_dir): 

            if file_name == searched_file_name: 

                if file_name.endswith(end_str): 
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                    return True 

                else: 

                    pass 

            else: 

                pass 

        return False 

 

    def search_file_include(self, accessed_dir, searched_file_name, include_str): 

        searched_dir = self.access_directory(accessed_dir=accessed_dir) 

        for file_name in os.listdir(searched_dir): 

            if file_name == searched_file_name: 

                if include_str in file_name: 

                    return True 

                else: 

                    pass 

            else: 

                pass 

        return False 

 

    def find_file_end_with(self, accessed_dir, end_str): 

        searched_dir = self.access_directory(accessed_dir=accessed_dir) 

        searched_file_names = list() 

        for file_name in os.listdir(searched_dir): 

            if file_name.endswith(end_str): 

                searched_file_names.append(file_name) 

        return searched_file_names 

 

    def find_file_include(self, accessed_dir, include_str): 
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        searched_dir = self.access_directory(accessed_dir=accessed_dir) 

        searched_file_names = list() 

        for file_name in os.listdir(searched_dir): 

            if include_str in file_name: 

                searched_file_names.append(file_name) 

        return searched_file_names 

 

    def move(self, new_dir): 

        shutil.move(self.data_main_dir, new_dir) 

 

 

class InputDirectory(DataDirectory): 

    def __init__(self, data_main_dir): 

        super(DataDirectory, self).__init__(data_main_dir) 

        self.input_dir = None 

 

    def set_new_input_directory(self, new_input_dir): 

        self.input_dir = self.access_directory(new_input_dir) 

 

 

class SettingDirectory(DataDirectory): 

    def __init__(self, data_main_dir): 

        super(SettingDirectory, self).__init__() 

        self.data_main_dir = data_main_dir 

        self.setting_dir = None 

 

    def set_new_setting_dir(self, new_setting_dir): 

        self.setting_dir = self.access_directory(new_setting_dir) 
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class RawResultDirectory(DataDirectory): 

    def __init__(self, data_main_dir): 

        super(DataDirectory, self).__init__() 

        self.data_main_dir = data_main_dir 

        self.result_dir = None 

 

    def set_new_result_dir(self, new_result_dir): 

        self.result_dir = self.access_directory(accessed_dir=new_result_dir) 

 

 

class ProcessedResultDirectory(DataDirectory): 

    def __init__(self, data_main_dir): 

        super(DataDirectory, self).__init__() 

        self.data_main_dir = data_main_dir 

        self.result_dir = None 

 

    def set_new_result_dir(self, new_result_dir): 

        self.result_dir = self.access_directory(new_result_dir) 

from src.base.base_libs import * 

 

##############################################################################

########################################## 

# "Experimental" classes/functions that are supposed not to be discarded in later fixes 

##############################################################################

########################################## 
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class ExperimentalResFracFiles(object): 

    def __init__(self, file_dir): 

        super(ExperimentalResFracFiles, self).__init__() 

        self.file_dir = file_dir 

 

    @staticmethod 

    def remove_new_line_char(line): 

        if line == '\n': 

            return None 

        elif '\n' in line: 

            return line.split(sep='\n')[0] 

        else: 

            return line 

 

    def read(self): 

        file_lines = list() 

        with open(self.file_dir, mode='r') as f: 

            file_lines = f.readlines() 

        for (_, line) in enumerate(file_lines): 

            if self.remove_new_line_char(line) == 'BrooksCorey': 

                Swr_line = file_lines[_+2] 

                Sor_line = file_lines[_+3] 

                Sgr_line = file_lines[_+4] 

                Swr_line = self.remove_new_line_char(Swr_line) 

                Sor_line = self.remove_new_line_char(Sor_line) 

                Sgr_line = self.remove_new_line_char(Sgr_line) 

                Swr = float(Swr_line.split(sep='\t')[0]) 

                Sor = float(Sor_line.split(sep='\t')[0]) 
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                Sgr = float(Sgr_line.split(sep='\t')[0]) 

            elif self.remove_new_line_char(line) == 

'relativefracturetoughnesspersqrtfracturelengthscale': 

                Kic_line = self.remove_new_line_char(file_lines[_+6]) 

                Kic = float(Kic_line) 

            else: 

                pass 

        return Swr, Sor, Sgr, Kic 

from src.dir.dir import * 

 

 

class DataFormat(object): 

    def __init__(self): 

        super(DataFormat, self).__init__() 

        self.data_header = None 

        self.property_names = None 

        self.units = None 

 

 

class SimulationTrackDataFormat(object): 

    def __init__(self): 

        super(SimulationTrackDataFormat, self).__init__() 

        self.unit_type = None 

        self.init_res_pres = None 

        self.data_header = None 

        self.track_locs = None 

        self.property_names = None 

        self.units = None 
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class DailyProductionDataFormat(object): 

    def __init__(self): 

        super(DailyProductionDataFormat, self).__init__() 

        self.time_and_locations = None 

        self.property_names = None 

        self.units = None 

 

 

class DataReader(object): 

    def __init__(self, data_dir: RawResultDirectory, data_format: DataFormat): 

        self.data_dir = data_dir 

        self.data_format = data_format 

 

    def read_data(self): 

        data = list() 

        with open(self.data_dir.result_dir, 'r') as file: 

            file_header = csv.reader(file) 

            for i, file_row in enumerate(file_header): 

                if i == 0: 

                    self.data_format.data_header = file_row 

                elif i == 1: 

                    self.data_format.property_names = file_row 

                elif i == 2: 

                    self.data_format.units = file_row 

                else: 

                    data.append(file_row) 

            file.close() 
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        return data, self.data_format 

 

 

class SimulationTrackDataReader(object): 

    def __init__(self, data_dir: RawResultDirectory, data_format: SimulationTrackDataFormat): 

        self.data_dir = data_dir 

        self.data_format = data_format 

 

    def read_data(self): 

        data = list() 

        with open(self.data_dir.result_dir, 'r') as file: 

            file_header = csv.reader(file) 

            for i, file_row in enumerate(file_header): 

                if i == 0: 

                    self.data_format.unit_type = extract_unit_type(file_row) 

                    self.data_format.init_res_pres = extract_init_res_pres(file_row) 

                elif i == 1: 

                    self.data_format.track_locs = file_row 

                elif i == 2: 

                    self.data_format.property_names = file_row 

                elif i == 3: 

                    self.data_format.units = file_row 

                else: 

                    data.append(file_row) 

            file.close() 

        return data, self.data_format 
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class DailyProductionDataReader(object): 

    def __init__(self, data_dir: RawResultDirectory, data_format: DailyProductionDataFormat): 

        self.data_dir = data_dir 

        self.data_format = data_format 

 

    def read_data(self): 

        data = list() 

        with open(self.data_dir.result_dir, 'r') as file: 

            file_header = csv.reader(file) 

            for i, file_row in enumerate(file_header): 

                if i == 0: 

                    self.data_format.time_and_locations = file_row 

                elif i == 1: 

                    self.data_format.property_names = extract_property_names(file_row) 

                    self.data_format.units = extract_units(file_row) 

                else: 

                    data.append(file_row) 

            file.close() 

        return data, self.data_format 

 

 

class DataManagement(object): 

    def __init__(self, simulation_dir): 

        super(DataManagement, self).__init__() 

        self.simulation_dir = simulation_dir 

 

    def transfer_data(self): 

        # TODO: ? Implement copy/move from the simulation directory to another preferable 

directory 
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        pass 

 

 

def search_properties(file_data_format: DataFormat, searched_property_names): 

    searched_idx = list() 

    for i, property_name in enumerate(file_data_format.property_names): 

        if property_name in searched_property_names: 

            searched_idx.append(i) 

    if len(searched_idx) == 0: 

        return None 

    else: 

        return searched_idx 

 

 

def extract_unit_type(file_row): 

    unit_type = file_row[0] 

    return unit_type 

 

 

def extract_init_res_pres(file_row): 

    init_res_pres = float(file_row[-1]) 

    return init_res_pres 

 

 

def extract_units(file_row): 

    units = list() 

    units.append(file_row[0]) 

    for (_, data_str) in enumerate(file_row[1:]): 
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        data = data_str.split(sep=' ') 

        if data[0] in ['WHP', 'BHP']: 

            units.append(data[-1]) 

        else: 

            units.append(data[0]) 

    return units 

 

 

def extract_property_names(file_row): 

    property_names = list() 

    property_names.append('Time elapsed') 

    for (_, data_str) in enumerate(file_row[1:]): 

        data = data_str.split(sep=' ') 

        if data[0] in ['WHP', 'BHP']: 

            property_names.append(data[-1]) 

        else: 

            property_name = '' 

            for __ in data[1:]: 

                property_name += __ 

                property_name += '_' 

            property_names.append(property_name) 

    return property_names 

 

 

def extract_time_step(file_name: str, prefix: str, suffix: str): 

    time_step = file_name.split(sep=prefix)[-1] 

    time_step = time_step.split(sep=suffix)[0] 

    return int(time_step) 
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from src.base.base_libs import * 

 

 

class Sample(object): 

    def __init__(self, frac_geometry, frac_aperture, prop_vol_frac): 

        super(Sample, self).__init__() 

        self.fracture_geometry = frac_geometry 

        self.fracture_aperture = frac_aperture 

        self.proppant_volume_fraction = prop_vol_frac 

        self.sampled_dimension = None 

 

    def set_sampled_dimensions(self, sampled_dim: str): 

        self.sampled_dimension = sampled_dim 

 

    def validate_inputs(self): 

        property_data = self.fracture_geometry.property_data 

        if len(property_data) == 0: 

            return False 

        else: 

            return True 

 

    def sample(self): 

        """ 

        Sample microchip signal data based on fracture aperture prop volume fraction 

        Scheme to sample per fracture grid: 

        1. Get the corresponding prop volume fraction from prop_vol_frac 

        2. Larger prop volume fraction = more microchips (TODO: TBD about correlation) 

        3. For one microchip, sample its location within the fracture grid 
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        using the fracture element's boundary coordinates in frac_geometry 

        4. All microchips within a fracture grid reports similar fracture 

        aperture using data from frac_aperture 

        :return samples for all fracture grids 

        """ 

        sample_data = list() 

        if self.validate_inputs() is False: 

            return np.array([], dtype=np.float32) 

        else: 

            for i in range(self.fracture_geometry.element_numbers): 

                frac_elem = self.fracture_geometry.fracture_elements[i] 

                frac_aperture = float(self.fracture_aperture.property_data[i, 0]) 

                prop_vol_frac_data = float(self.proppant_volume_fraction.property_data[i, 0]) 

                n = number_of_micro_chips(prop_vol_frac_data=prop_vol_frac_data) 

                sample_data_i = list() 

                for i_n in range(n): 

                    i_loc = random_location(frac_elem=frac_elem) 

                    i_frac_aperture = [frac_aperture] 

                    sample_data_i.append(i_loc+i_frac_aperture) 

                sample_data += sample_data_i 

            sample_data = np.array(sample_data) 

            return sample_data 

 

    def sample_inplace(self, sample_dir: str): 

        """ 

        Similar functionality to self.sample and include saving the sample 

        """ 

        sample_data = list() 
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        if self.validate_inputs() is False: 

            return np.array([], dtype=np.float32) 

        else: 

            for i in range(self.fracture_geometry.element_numbers): 

                frac_elem = self.fracture_geometry.fracture_elements[i] 

                frac_aperture = float(self.fracture_aperture.property_data[i, 0]) 

                prop_vol_frac_data = float(self.proppant_volume_fraction.property_data[i, 0]) 

                n = number_of_micro_chips_inplace(prop_vol_frac_data=prop_vol_frac_data) 

                sample_data_i = list() 

                for i_n in range(n): 

                    frac_elem.set_oriented_box() 

                    frac_elem.elem_box.compute_corners() 

                    i_loc = frac_elem.elem_box.sample() 

                    i_frac_aperture = [frac_aperture] 

                    sample_data_i.append(i_loc+i_frac_aperture) 

                sample_data += sample_data_i 

            sample_data = np.array(sample_data) 

            sample_data_file = open(sample_dir, 'wb') 

            pickle.dump(sample_data, sample_data_file) 

            return sample_data 

 

    def sample_profile_along_height(self, height_resolution: np.ndarray): 

        sample = self.sample() 

        profile = np.zeros([height_resolution.shape[0]-1, 3]) 

        for i in range(profile.shape[0]): 

            avg_aperture = list() 

            lower_height = height_resolution[i] 

            upper_height = height_resolution[i+1] 
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            if sample.size == 0: 

                profile = np.ones([height_resolution.shape[0]-1, 3]) * np.nan 

            else: 

                for s in sample: 

                    if lower_height <= s[2] < upper_height: 

                        avg_aperture.append(s[-1]) 

                    else: 

                        pass 

                if len(avg_aperture) == 0: 

                    avg_aperture = 0.0 

                else: 

                    avg_aperture = sum(avg_aperture)/len(avg_aperture) 

                profile[i, 0] = lower_height 

                profile[i, 1] = upper_height 

                profile[i, 2] = avg_aperture 

        return profile 

 

    def sample_profile_along_half_length(self, half_length_resolution: np.ndarray): 

        sample = self.sample() 

        profile = np.zeros([half_length_resolution.shape[0]-1, 3]) 

        for i in range(profile.shape[0]): 

            avg_aperture = list() 

            lower_hf = half_length_resolution[i] 

            upper_hf = half_length_resolution[i+1] 

            if sample.size == 0: 

                profile = np.ones([half_length_resolution.shape[0]-1, 3]) * np.nan 

            else: 

                for s in sample: 
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                    if lower_hf <= s[0] < upper_hf: 

                        avg_aperture.append(s[-1]) 

                    else: 

                        pass 

                if len(avg_aperture) == 0: 

                    avg_aperture = 0.0 

                else: 

                    avg_aperture = sum(avg_aperture)/len(avg_aperture) 

                profile[i, 0] = lower_hf 

                profile[i, 1] = upper_hf 

                profile[i, 2] = avg_aperture 

        return profile 

 

 

def number_of_micro_chips(prop_vol_frac_data: float): 

    # Sample number of microchips as constant (experimental) 

    micro_chips = 5 

    return micro_chips 

 

 

def number_of_micro_chips_inplace(prop_vol_frac_data: float): 

    # Sample number of microchips proportional to prop-pant volume fraction 

    min_vol_frac = 0. 

    max_vol_frac = 1. 

    micro_chips = (prop_vol_frac_data - min_vol_frac) / (max_vol_frac - min_vol_frac) * 100 

    return math.floor(micro_chips) 
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def random_location(frac_elem): 

    loc = [0, 0, 0] 

    loc[0] = np.random.uniform(frac_elem.elem_corners[0, 0], frac_elem.elem_corners[0, -1]) 

    loc[1] = np.random.uniform(frac_elem.elem_corners[1, 0], frac_elem.elem_corners[1, -1]) 

    loc[-1] = np.random.uniform(frac_elem.elem_corners[-1, 0], frac_elem.elem_corners[-1, -1]) 

    return loc 

 

 

def plot_sample_profile(sample_profile: np.ndarray): 

    plt.figure() 

    for i_profile in sample_profile: 

        plt.plot(i_profile[: -1], [i_profile[-1], i_profile[-1]], 'k') 

    plt.show() 

import sys 

import os 

import shutil 

 

import math 

import csv 

import warnings 

 

from typing import Union, List, Optional, Tuple, Dict 

from itertools import permutations, combinations, product 

from functools import partial, partialmethod 

 

from copy import deepcopy 

from enum import Enum 
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import numpy as np 

import pandas as pd 

 

import scipy 

import pyDOE 

 

import hyperopt 

from hyperopt import fmin, hp, tpe, Trials, space_eval 

from hyperopt import STATUS_OK, STATUS_NEW, STATUS_RUNNING, STATUS_FAIL 

 

from hyperopt.pyll import scope as hyperopt_scope 

from hyperopt.pyll.stochastic import sample as hyperopt_sample 

from base import * 

 

 

##############################################################################

########################################## 

# Components to perform fracture calibration and history match (Experimental) 

##############################################################################

########################################## 

 

 

class SurrogateWrapper(object): 

    def __init__(self, surrogate, pred_time_steps: List[float]): 

        """ 

        Wrapper to call surrogate 

        :param surrogate: 

        :param pred_time_steps: 

        """ 
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        super(SurrogateWrapper).__init__() 

        self.surrogate = surrogate 

        self.pred_time_steps = pred_time_steps 

        self.observation_indexes = range(len(pred_time_steps)) 

 

    def compute(self, input_params: dict, fixed_params: dict): 

        input_params_ = np.array([_ for _ in input_params.values()]) 

        fixed_params_ = np.array([_ for _ in fixed_params.values()]) 

        predictions = np.zeros([len(self.pred_time_steps), ]) 

        for _ in self.observation_indexes: 

            time_step_ = self.pred_time_steps[_] 

            params_ = np.concatenate([time_step_, input_params_, fixed_params_]) 

            predictions[_] = self.surrogate(params_) 

        return predictions 

 

 

class SingleObjective(object): 

    def __init__(self, surr_wrapper: SurrogateWrapper): 

        """ 

        Objective value for a single response variable 

        :param surr_func_wrapper: the wrapper that calls the surrogate function (i.e., proxy model) 

        """ 

        super(SingleObjective, self).__init__() 

        self.surr_wrapper = surr_wrapper 

 

    def compute(self, input_params: dict, fixed_params: dict, observation_indexes: List[int]): 

        surr_pred = np.zeros(shape=[len(observation_indexes), ]) 

        surr_pred_raw = self.surr_wrapper.compute(input_params, fixed_params) 
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        for _ in range(len(observation_indexes)): 

            surr_pred[_] = surr_pred_raw[observation_indexes[_]] 

        return surr_pred 

 

 

class MultiObjective(object): 

    def __init__(self, objective_list: List[SingleObjective], num_objectives: int, 

observation_indexes: List[int]): 

        """ 

        Objective value for multiple response variables 

        :param surr_func: List of SingleObjectiveSurrogate that calls all surrogate functions 

corresponding to all 

        response variables 

        :param num_objectives: Total number of response variables 

        :param num_observations: Total number of observation points for all response variables (i.e., 

each response 

        variable has equal number of observation points) 

        """ 

        super(MultiObjective, self).__init__() 

        self.objective_list = objective_list 

        self.num_objectives = num_objectives 

        self.observation_indexes = observation_indexes 

 

    def compute(self, input_params: dict, fixed_params: dict): 

        pred = np.zeros(shape=[self.num_objectives, len(self.observation_indexes)]) 

        for i in range(self.num_objectives): 

            surr_pred = self.objective_list[i].compute(input_params, fixed_params, 

                                                       observation_indexes=self.observation_indexes) 

            pred[i, :] = surr_pred 
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        return pred 

 

 

class ObjectiveFunction(object): 

    def __init__(self, data: np.ndarray, pred: np.ndarray): 

        """ 

        Objective function for single/multiple response variable(s) 

        :param data: 

        :param pred: 

        """ 

        super(ObjectiveFunction, self).__init__() 

        self.data = data 

        self.pred = pred 

        self.mean = None 

 

    def set_mean(self, mean: np.ndarray): 

        self.mean = mean 

 

    def compute(self): 

        objective = np.power((self.pred - self.data) / self.mean, 2) 

        return np.sum(objective, axis=0) 

 

 

def objective_function(input_params, fixed_params, num_objectives: int, observation_indexes: 

List[int], 

                       objective_list: List[SingleObjective], data, mean): 

    multi_object_surrogate = MultiObjective(objective_list=objective_list, 

num_objectives=num_objectives, 

                                            observation_indexes=observation_indexes) 
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    pred = multi_object_surrogate.compute(input_params=input_params, 

fixed_params=fixed_params) 

    objective_func = ObjectiveFunction(data=data, pred=pred) 

    objective_func.set_mean(mean=mean) 

    return objective_func.compute() 

 

 

def partial_objective_function(fixed_params: dict, num_objectives: int, observation_indexes: 

List[int], 

                               objective_list: List[SingleObjective], data, mean): 

    return partial(objective_function, fixed_params=fixed_params, 

num_objectives=num_objectives, 

                   observation_indexes=observation_indexes, objective_list=objective_list, data=data, 

mean=mean) 

from workflow.fracture_profile import * 

 

 

if __name__ == "__main__": 

    data_main_dir = r'C:\Users\v183p176\Desktop' 

    raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir) 

    height_resolution = [-600, 600, 51] 

 

    simulation_dir = os.path.join(data_main_dir, 'doe_simulation_2 SOP') 

    frac_profile_assembler = FractureProfileAssembly(resolution=height_resolution) 

    frac_profile_assembler.set_root_directories(simulation_dir=simulation_dir) 

    frac_profile_df = 

frac_profile_assembler.asemble_fracture_profile(save_fracture_profile=True) 

    frac_profile_df.to_csv('Fracture_profile.csv') 

from src.dir.dir import * 
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if __name__ == "__main__": 

    simulation_dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base 

HM\simulations' 

    new_dir = r'F:\PhD work (Fall 2024)' 

    data_dir_obj = DataDirectory(data_main_dir=simulation_dir) 

    data_dir_obj.move(new_dir=new_dir) 

from workflow.reservoir_response import * 

 

 

if __name__ == "__main__": 

    data_main_dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base 

HM\simulations' 

    raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir) 

 

    reservoir_response_assembler = ReservoirResponseAssembly() 

    reservoir_response_assembler.set_root_directories(simulation_dir=data_main_dir, 

                                                      simulation_file_name='doe_simulation_2 SOP', 

                                                      sim_track_file_name='sim_track_doe_simulation_2 SOP.csv', 

                                                      response_var_names=['Oil prod rate']) 

    res_response_df, time_steps_df = 

reservoir_response_assembler.assemble_reservoir_response() 

    res_response_df.to_csv('Reservoir_response.csv') 

    time_steps_df.to_csv('Time_steps.csv') 

from simulator.base import utils 

from simulator.base import regex_templates 

from simulator.base import parse 

 

from DoE.doe.doe_v1 import * 
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class ResFracFileParseTest(object): 

    def __init__(self): 

        super(ResFracFileParseTest).__init__() 

        simulation_dir = r'C:\Users\v183p176\Desktop' 

        simulation_case_name = 'doe_simulation_2 SOP' 

        settings_file_name = 'settings_' + simulation_case_name + '.txt' 

        input_file_name = 'input_' + simulation_case_name + '.txt' 

        simulation_case_dir = os.path.join(simulation_dir, simulation_case_name) 

        self.settings_file_dir = os.path.join(simulation_case_dir, settings_file_name) 

        self.input_file_dir = os.path.join(simulation_case_dir, input_file_name) 

 

    def test_rel_perm_parse(self): 

        all_entries = utils.parse_file(file_name=self.settings_file_dir) 

        entry = all_entries[1] 

        var_name = entry['Variable name:'][0] 

        var_length = entry['Length:'][0] 

        var_raw_data = entry['Value(s):'] 

        regex_temp = regex_templates.RelPermRegex(raw_str=var_raw_data) 

        var_data = regex_temp.extract(pattern=None) 

        return var_name, var_length, var_data 

 

    def test_well_control_parse(self): 

        all_entries = utils.parse_file(file_name=self.settings_file_dir) 

        entry = all_entries[-1] 

        var_name = entry['Variable name:'][0] 

        var_length = entry['Length:'][0] 
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        var_raw_data = entry['Value(s):'] 

        regex_temp = regex_templates.WellRegex(raw_str=var_raw_data) 

        var_data = regex_temp.extract(pattern=None) 

        return var_name, var_length, var_data 

 

    def test_settings_file_parse(self): 

        all_entries = utils.parse_file(file_name=self.settings_file_dir) 

        all_parsed_entries = list() 

        for (_, entry) in enumerate(all_entries): 

            parsed_entry = parse.parse_entry(entry=entry) 

            all_parsed_entries.append(parsed_entry) 

        for (_e, entry) in enumerate(all_parsed_entries): 

            if entry.variable_name in simulation_helpers.irregular_variable_names: 

                print('Entry: ', _e, ' with var_name: ', entry.variable_name, 

                      ' and length: ', entry.length) 

                print(entry.value_struct.value_struct) 

        return all_parsed_entries 

 

    def test_input_file_parse(self): 

        all_entries = utils.parse_file(file_name=self.input_file_dir) 

        all_parsed_entries = list() 

        for (_, entry) in enumerate(all_entries): 

            parsed_entry = parse.parse_entry(entry=entry) 

            all_parsed_entries.append(parsed_entry) 

        for (_e, entry) in enumerate(all_parsed_entries): 

            if entry.variable_name in simulation_helpers.irregular_variable_names: 

                print('Entry: ', _e, ' with var_name: ', entry.variable_name, 

                      ' and length: ', entry.length) 
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                print(entry.value_struct.value_struct) 

        return all_parsed_entries 

 

    def test_doe_settings_file(self): 

        doe_dir = r"E:\Vuong's ResFrac" 

        num_cases, last_case = 100, 0 

        base_entries = self.test_settings_file_parse() 

        doe_params = ['S_wr', 'S_or', 'S_gr', 'relative_frac_toughness'] 

        doe_entry_var_names = ['matrixcurvesets', 

                               'matrixcurvesets', 

                               'matrixcurvesets', 

                               'relativefracturetoughnesspersqrtfracturelengthscale'] 

        doe_distributions = [distributions.norm(loc=0.2, scale=0.1), 

                             distributions.norm(loc=0.2, scale=0.1), 

                             distributions.norm(loc=0.03, scale=0.001), 

                             distributions.uniform(loc=0.0, scale=0.5)] 

        write_locs = [[[0, 0]], [[1, 0]], [[2, 0]], -1] 

        # 

        doe_assembler = DesignOfExperimentsAssembly(base_entries=base_entries) 

        doe_assembler.doe_batch = 0 

        doe_assembler.doe_dir = doe_dir 

        # 

        doe_assembler.reset_all_entries() 

        doe_assembler.set_doe_params(doe_params) 

        doe_assembler.set_doe_entry_var_names(doe_entry_var_names) 

        doe_assembler.set_doe_distributions(doe_distributions) 

        doe_assembler.set_write_locs(write_locs) 

        doe_object = doe_assembler.generate_doe_object(design='lhs', num_cases=num_cases) 
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        doe_df = doe_assembler.write_doe_entries(doe_object, last_case=last_case) 

        return doe_df 

 

 

if __name__ == '__main__': 

    # 

    all_settings_entries = ResFracFileParseTest().test_settings_file_parse() 

    all_input_entries = ResFracFileParseTest().test_input_file_parse() 

    doe_df = ResFracFileParseTest().test_doe_settings_file() 

    # 

    sim_file = simulation_files.SimulationFile(entries=all_settings_entries, 

                                               file_type='settings') 

    sim_file.write_file(file_name='../Proxy_cases/Input_files/settings.txt') 

    sim_file = simulation_files.SimulationFile(entries=all_input_entries, 

                                               file_type='input') 

    sim_file.write_file(file_name='../Proxy_cases/Input_files/input.txt') 

from workflow.surrogate import * 

 

 

class SurrogateTest(object): 

    def __init__(self): 

        super(SurrogateTest).__init__() 

        simulation_dir = r"E:\Vuong's 

ResFrac\DoE_cases\workflows\Proxy_cases_batch_0\simulations" 

        simulation_case_name = 'doe_case_0' 

        settings_file_name = 'settings_' + simulation_case_name + '.txt' 

        input_file_name = 'input_' + simulation_case_name + '.txt' 

 

        self.simulation_dir = simulation_dir 
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        self.simulation_case_name = simulation_case_name 

 

        simulation_case_dir = os.path.join(simulation_dir, simulation_case_name) 

        self.settings_file_dir = os.path.join(simulation_case_dir, settings_file_name) 

        self.input_file_dir = os.path.join(simulation_case_dir, input_file_name) 

 

    def test_fracture_profile(self): 

        raw_result_dir = RawResultDirectory(data_main_dir=self.simulation_dir) 

        height_resolution = [-600, 600, 51] 

 

        simulation_dir = os.path.join(self.simulation_dir, self.simulation_case_name) 

        frac_profile_assembler = FractureProfileAssembly(resolution=height_resolution) 

        frac_profile_assembler.set_root_directories(simulation_dir=simulation_dir) 

        frac_profile_df = frac_profile_assembler.asemble_fracture_profile() 

        frac_profile_df.to_csv('Fracture_profile.csv') 

        return frac_profile_assembler 

 

    def test_reservoir_response(self): 

        raw_result_dir = RawResultDirectory(data_main_dir=self.simulation_dir) 

        reservoir_response_assembler = ReservoirResponseAssembly() 

        reservoir_response_assembler.set_root_directories(simulation_dir=self.simulation_dir, 

                                                          simulation_file_name=self.simulation_case_name, 

                                                          sim_track_file_name='sim_track_doe_case_0.csv', 

                                                          response_var_names=['BHP', 'Oil prod rate']) 

        res_response_df, time_steps_df = 

reservoir_response_assembler.assemble_reservoir_response() 

        res_response_df.to_csv('Reservoir_response.csv') 

        time_steps_df.to_csv('Time_steps.csv') 

        return reservoir_response_assembler 
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    def test_surrogate(self): 

        surrogate_dir_assembler = SurrogateDirectory(result_dir=self.simulation_dir) 

        surrogate_dir_assembler.num_cases = 1 

        surrogate_dir_assembler.init_fracture_profile(fracture_profile_resolution=[-600, 600, 51]) 

        surrogate_dir_assembler.init_reservoir_response(reservoir_response_var_names=['BHP', 

'Oil prod rate']) 

        surrogate_dir_assembler.experimental_doe_params = ['S_wr', 'S_or', 'S_gr', 

'relative_frac_toughness'] 

        surrogate_dir_assembler.init_experimental_doe_data() 

        surrogate_df = 

surrogate_dir_assembler.assemble_surrogate_directory('Test_surrogate_0.csv') 

        return surrogate_df 

 

 

if __name__ == "__main__": 

    test_surrogate_df = SurrogateTest().test_surrogate() 

from workflow.surrogate import * 

 

 

if __name__ == "__main__": 

    result_dir = r"E:\Vuong's ResFrac\DoE_cases\workflows\Proxy_cases\simulations" 

    surrogate_dir = r"E:\Vuong's ResFrac\surrogate_data.csv" 

    fracture_profile_resolution = [-600, 600, 51] 

    surrogate_manager = SurrogateDirectory(result_dir=result_dir) 

    surrogate_manager.experimental_doe_params = ['S_wr', 'S_or', 'S_gr', 

'relative_frac_toughness'] 

    

surrogate_manager.init_fracture_profile(fracture_profile_resolution=fracture_profile_resolution) 
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    surrogate_manager.init_reservoir_response(reservoir_response_var_names=['BHP', 'Oil prod 

rate']) 

    surrogate_manager.init_experimental_doe_data() 

    surrogate_df = surrogate_manager.assemble_surrogate_directory(surrogate_dir=surrogate_dir) 

from src.data.frac_geometry.frac_geometry import * 

from src.data.properties.total_aperture import * 

from src.data.properties.proppant_volume import * 

from src.utils.sample_by_distribution import * 

 

 

if __name__ == '__main__': 

    data_main_dir = r'F:\PhD work (Spring 2024)\ResFrac simulations\workflows\Base 

HM\simulations\doe_simulation_2 SOP\Results' 

    raw_result_dir = RawResultDirectory(data_main_dir=data_main_dir) 

 

    raw_result_file = r'Raw_Res' + '/frac_elms_512.csv' 

    raw_result_dir.set_new_result_dir(raw_result_file) 

 

    data_format = DataFormat() 

    data_reader = DataReader(data_dir=raw_result_dir, data_format=data_format) 

    file_data, file_data_format = data_reader.read_data() 

 

    frac_geometry = FractureGeometry(raw_result_dir=raw_result_dir) 

    frac_geometry.set_raw_result_file(raw_result_file=raw_result_file) 

 

    frac_geometry.set_fracture_geometry_data(file_data=file_data, 

                                             file_data_format=file_data_format) 

    frac_geometry.set_fracture_surface_data() 
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    frac_aperture = Aperture(raw_result_dir=raw_result_dir) 

    frac_aperture.set_raw_result_file(raw_result_file=raw_result_file) 

 

    frac_aperture.set_aperture_data(file_data=file_data, 

                                    file_data_format=file_data_format) 

 

    prop_vol_frac = PropVolFrac(raw_result_dir=raw_result_dir) 

    prop_vol_frac.set_raw_result_file(raw_result_file=raw_result_file) 

 

    prop_vol_frac.set_vol_frac_data(file_data=file_data, 

                                    file_data_format=file_data_format) 

 

    sample_by_dist = Sample(frac_geometry=frac_geometry, frac_aperture=frac_aperture, 

                            prop_vol_frac=prop_vol_frac) 

    height_resolution = np.linspace(-600, 600, 51) 

    height_profile = sample_by_dist.sample_profile_along_half_length(height_resolution) 

    plot_sample_profile(sample_profile=height_profile) 

 

    raw_result_file = 'sim_track_doe_simulation_2 SOP.csv' 

    raw_result_dir.set_new_result_dir(raw_result_file) 

    data_format = SimulationTrackDataFormat() 

    data_reader = SimulationTrackDataReader(data_dir=raw_result_dir, data_format=data_format) 

    sim_track_file_data, sim_track_file_data_format = data_reader.read_data() 

 

    raw_result_file = 'daily_prod_doe_simulation_2 SOP.csv' 

    raw_result_dir.set_new_result_dir(raw_result_file) 

    data_format = DailyProductionDataFormat() 

    data_reader = DailyProductionDataReader(data_dir=raw_result_dir, data_format=data_format) 
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    daily_prod_file_data, daily_prod_file_data_format = data_reader.read_data() 

from workflow.surrogate import * 

from workflow.objective_function import * 

 

from proxy.proxy import * 

from proxy.gb_proxy import * 

from proxy.xgb_proxy import * 

 

from proxy.proxy_opt import * 

 

 

##############################################################################

########################################## 

# Workflow to perform fracture calibration (TBD) 

##############################################################################

########################################## 

 

 

class FractureCalibrationAssembly(object): 

    def __init__(self, proxy, non_cal_params: dict, objectives: dict): 

        super(FractureCalibrationAssembly, self).__init__() 

        self.proxy = proxy 

        self.non_cal_params = non_cal_params 

        self.objectives = objectives 

        # 

        self.proxy_pred_method: str = "" 

        self.input_signature = None 

 

    def set_proxy_prediction_method(self, proxy_pred_method: str): 
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        self.proxy_pred_method = proxy_pred_method 

 

    def set_input_signature(self, input_signature): 

        self.input_signature = input_signature 

 

    def set_objective_function(self, cal_params: dict): 

        inputs: dict = self.non_cal_params 

        inputs.update(cal_params) 

        obj_func = ObjectiveFunction(inputs=inputs, objectives=self.objectives, 

                                     proxy=self.proxy) 

        try: 

            assert getattr(self.proxy, self.proxy_pred_method) is not None 

            return obj_func.compute(proxy_pred_method=self.proxy_pred_method) 

        except AssertionError: 

            warnings.warn("Proxy prediction method is not found. Fatal proxy object.") 

            return None 

 

    def assemble_fracture_calibration(self, opt_space: dict): 

        proxy_optimizer = ProxyOptimization(proxy_object=self.proxy) 

        proxy_optimizer.init_optimizer(opt_space=opt_space) 

        opt_instance = proxy_optimizer.exec_optimizer( 

            opt_func_attr=self.proxy_pred_method) 

        return space_eval(opt_instance) 

from src.base.base_libs import * 

from proxy.xgb_proxy import * 

from proxy.proxy_opt import * 
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##############################################################################

################ 

######################### Calibrate continually 

############################################## 

################ Proxy re-training when sensor data is received continuously 

################# 

# 

##############################################################################

############## 

 

 

class ContinualCalibration(object): 

    def __init__(self, new_X, new_Y, trained_xgb_regressor: QuantileXGBRegressor): 

        super(ContinualCalibration, self).__init__() 

        self.trained_xgb_regressor = trained_xgb_regressor 

        self.new_X = new_X 

        self.new_Y = new_Y 

 

    def fit(self, opt_quantile_hyperparams): 

        quantile_xgb_model, _ = 

self.trained_xgb_regressor.__fit__(params=opt_quantile_hyperparams) 

        return quantile_xgb_model 

 

    def train(self, opt_quantile_hyperparams): 

        hyperparams_ = opt_quantile_hyperparams 

        if 'quantile_alpha' not in hyperparams_.keys(): 

            hyperparams_['quantile_alpha'] = np.array([0.1, 0.5, 0.9]) 

        else: 

            pass 

        hyperparams_['objective'] = 'reg:quantileerror' 
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        hyperparams_['tree_method'] = 'hist' 

        # 

        quantile_xgb_model = self.fit(hyperparams_) 

        # 

        xgb_data = self.trained_xgb_regressor.xgb_data 

        org_x = xgb_data.df[xgb_data.x_cols].to_numpy() 

        org_y = xgb_data.df[xgb_data.y_cols].to_numpy() 

        it = 0 

        while it < self.new_X.shape[0]: 

            new_x_ = self.new_X[it:it + 1, :] 

            new_y_ = quantile_xgb_model.inplace_predict(new_x_) 

        if mean_squared_error(new_y_[:, 1], self.new_Y[it:it + 1]) >= 0.01: 

            err_str = 'MSE' 

            thres = 0.01 

            warnings.warn( 

                'continual prediction at time interval {} exceeds threshold {} at {}.'.format(it, err_str, 

thres)) 

        else: 

            pass 

        cont_x = self.new_X[:it + 1, :] 

        cont_y = self.new_Y[:it + 1].reshape([it + 1, 1]) 

        new_x_train = np.concatenate((org_x, cont_x), axis=0) 

        new_y_train = np.concatenate((org_y, cont_y), axis=0) 

        # 

        quantile_xgb_model: xgb.Booster = xgb.train( 

            hyperparams_, xgb.QuantileDMatrix(new_x_train, new_y_train), 

            num_boost_round=32) 

        it += 1 

        pred_new_y = quantile_xgb_model.inplace_predict(self.new_X) 
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        return pred_new_y 

from src.base.base_libs import * 

 

 

##############################################################################

########################################## 

################################### Fracture geometry (Unsupervised algorithms) 

######################################## 

##############################################################################

########################################## 

 

 

class SensorDataProjection(object): 

    """ 

    Class to determine planar surface for a set of sensor data via SVD decomposition 

    """ 

 

    def __init__(self, sensor_data: np.ndarray): 

        super(SensorDataProjection, self).__init__() 

        self.sensor_data: np.ndarray = sensor_data 

 

    def compute_centroid(self): 

        return self.sensor_data.mean(axis=0) 

 

    def compute_svd(self): 

        centroid = self.sensor_data.mean(axis=0) 

        U, S, Vh = np.linalg.svd(self.sensor_data - centroid) 

        return U, S, Vh, centroid 
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    def project(self): 

        _, _, Vh, centroid = self.compute_svd() 

        A, B, C = Vh[-1] / np.linalg.norm(Vh[-1]) 

        D = -np.dot(Vh[-1] / np.linalg.norm(Vh[-1]), centroid) 

        return A, B, C, D 

 

    def compute_planar_dimensions(self): 

        pass 

 

    def plot(self, fig_dir): 

        data_projection = np.zeros(shape=self.sensor_data.shape) 

        data_aperture = np.zeros(shape=[self.sensor_data.shape[0], 1]) 

        A, B, C, D = self.project() 

        normal = np.array([A, B, C]) 

        fixed_projection = np.array([0, 0, -D / C]) 

        for _ in range(self.sensor_data.shape[0]): 

            projection_vector = self.sensor_data[_, :] - fixed_projection 

            projection_vector = np.dot(projection_vector, normal) / np.dot(normal, normal) * normal 

            data_projection[_, :] = self.sensor_data[_, :] - projection_vector 

            # 

            d = np.absolute(self.sensor_data[_, 0] * A + self.sensor_data[_, 1] * B + self.sensor_data[_, 

-1] * C + D) 

            d = d / np.linalg.norm(normal) 

            data_aperture[_, 0] = d 

            data_projection = pd.DataFrame(data=data_projection, columns=['x', 'y', 'z']) 

            fig = px.scatter_3d(data_frame=data_projection, x='x', y='y', z='z') 

            fig.add_scatter3d(x=self.sensor_data[:, 0], y=self.sensor_data[:, 1], 

                              z=self.sensor_data[:, -1], mode='markers') 

            fig.update_layout(scene=dict( 
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                aspectmode='manual', 

                aspectratio=dict(x=10, y=1, z=5))) 

            fig.update_traces(marker_size=1) 

            fig.write_html(fig_dir) 

        return data_projection, data_aperture 

from src.dir.dir import * 

from src.utils import read_data, sample_by_distribution 

 

from src.data.frac_geometry import frac_geometry 

from src.data.properties import properties, proppant_volume, total_aperture 

from src.data.time_steps import * 

 

from simulator.base import utils 

from simulator.base import regex_templates 

from simulator.base import parse 

 

from DoE.doe.doe_v1 import * 

 

 

##############################################################################

########################################## 

# "Miscellaneous" workflows to assemble fracture profile (TBD) 

##############################################################################

########################################## 

 

 

class FractureProfileAssembly(object): 

    def __init__(self, resolution: List): 

        super(FractureProfileAssembly).__init__() 
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        self.resolution = resolution 

        self.simulation_results_dir = None 

        # 

        self.settings_file_dir = None 

        self.input_file_dir = None 

 

    def set_root_directories(self, simulation_dir): 

        simulation_results_dir = os.path.join(simulation_dir, 'Results') 

        self.simulation_results_dir = RawResultDirectory(data_main_dir=simulation_results_dir) 

 

    def wrap_fracture_profile(self, frac_elms_file_names, save_fracture_profile=False): 

        fracture_profile = dict() 

        fracture_profile_time = dict() 

        for frac_elms_file_name in frac_elms_file_names: 

            frac_elms_file_dir = r'Raw_Res' + '/' + frac_elms_file_name 

            self.simulation_results_dir.set_new_result_dir(new_result_dir=frac_elms_file_dir) 

            time_step = read_data.extract_time_step(file_name=frac_elms_file_name, 

prefix='frac_elms_', suffix='.csv') 

            # Read all raw data 

            data_format = read_data.DataFormat() 

            data_reader = read_data.DataReader(data_dir=self.simulation_results_dir, 

data_format=data_format) 

            file_data, file_data_format = data_reader.read_data() 

            # Extract time from the file header ( in hours ) 

            print('Process fracture profile time step ', time_step) 

            time = float(file_data_format.data_header[1]) 

            # Extract the fracture geometry 

            frac_geometry_obj = 

frac_geometry.FractureGeometry(raw_result_dir=self.simulation_results_dir) 
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            frac_geometry_obj.set_raw_result_file(raw_result_file=frac_elms_file_dir) 

            frac_geometry_obj.set_fracture_geometry_data(file_data=file_data, 

                                                         file_data_format=file_data_format) 

            frac_geometry_obj.set_fracture_surface_data() 

            frac_geometry_obj.plot_fracture(fracture_number=-1, fig_name='fracture_geometry_' + 

                                                                         str(time_step) + '.html') 

            # Extract the total aperture 

            frac_aperture_obj = total_aperture.Aperture(raw_result_dir=self.simulation_results_dir) 

            frac_aperture_obj.set_raw_result_file(raw_result_file=frac_elms_file_dir) 

            frac_aperture_obj.set_aperture_data(file_data=file_data, 

                                                file_data_format=file_data_format) 

            # Extract the prop volume fraction 

            prop_vol_frac_obj = 

proppant_volume.PropVolFrac(raw_result_dir=self.simulation_results_dir) 

            prop_vol_frac_obj.set_raw_result_file(raw_result_file=frac_elms_file_dir) 

            prop_vol_frac_obj.set_vol_frac_data(file_data=file_data, 

                                                file_data_format=file_data_format) 

            # Perform the sampling to generate sensor data 

            sample_by_dist = sample_by_distribution.Sample(frac_geometry=frac_geometry_obj, 

                                                           frac_aperture=frac_aperture_obj, 

                                                           prop_vol_frac=prop_vol_frac_obj) 

            height_resolution = np.linspace(self.resolution[0], self.resolution[1], self.resolution[-1]) 

            height_profile = sample_by_dist.sample_profile_along_half_length(height_resolution) 

            # Save the generated sensor data 

            if save_fracture_profile: 

                sample_dir = 'sensor_data_' + str(time_step) + '.pkl' 

                sample_by_dist.sample_inplace(sample_dir=sample_dir) 

            # Obtain the sampled sensor data per time step (x, y, z) 

            if time_step not in fracture_profile.keys(): 
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                fracture_profile[time_step] = height_profile 

            if time_step not in fracture_profile_time.keys(): 

                fracture_profile_time[time_step] = time 

        fracture_profile = {k: fracture_profile[k] for k in sorted(fracture_profile)} 

        fracture_profile_time = {k: fracture_profile_time[k] for k in sorted(fracture_profile_time)} 

        return fracture_profile, fracture_profile_time 

 

    def asemble_fracture_profile(self, save_fracture_profile=False): 

        """ 

        Assemble fracture profile for all recorded time steps as .csv 

        1. Call self.wrap_fracture_profile() 

        Per time step: 

            2. Extract fracture profile data  from fracture_profile 

            3. Arrange fracture profile dimensions as follows: 

            - Number of columns = 3 * fracture_profile.shape[0] 

            - Columns are named 'x_1, x_2, .... x_fracture_profile.shape[0]+1' (similar for y & z) 

            - Arrange the fracture profile data at ordered for x, y, z above 

        :return: fracture_profile_df 

        """ 

        frac_elms_file_names = 

self.simulation_results_dir.find_file_include(accessed_dir='Raw_Res', 

                                                                             include_str='frac_elms') 

        fracture_profile, fracture_profile_time = \ 

            self.wrap_fracture_profile(frac_elms_file_names=frac_elms_file_names, 

save_fracture_profile= 

                                       save_fracture_profile) 

        fracture_profile_df = list() 

        time_steps = list(fracture_profile.keys()) 

        for time_step in time_steps: 
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            fracture_profile_samples = fracture_profile[time_step].shape[0] 

            fracture_profile_data = dict() 

            fracture_profile_data['fracture_profile_time'] = fracture_profile_time[time_step] 

            for _ in range(fracture_profile_samples): 

                key_x = 'x_' + str(_) 

                key_y = 'y_' + str(_) 

                key_z = 'z_' + str(_) 

                if key_x not in fracture_profile_data.keys(): 

                    fracture_profile_data[key_x] = fracture_profile[time_step][_, 0] 

                if key_y not in fracture_profile_data.keys(): 

                    fracture_profile_data[key_y] = fracture_profile[time_step][_, 1] 

                if key_z not in fracture_profile_data.keys(): 

                    fracture_profile_data[key_z] = fracture_profile[time_step][_, -1] 

            fracture_profile_df.append(fracture_profile_data) 

        fracture_profile_df = pd.DataFrame(data=fracture_profile_df) 

        fracture_profile_df.index = time_steps 

        return fracture_profile_df 

from workflow.surrogate import * 

from workflow.objective_function import * 

 

from proxy.proxy import * 

from proxy.gb_proxy import * 

from proxy.xgb_proxy import * 

 

from proxy.proxy_opt import * 

 

 

##############################################################################

########################################## 
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# Workflow to perform history matching 

##############################################################################

########################################## 

 

 

class HistoryMatchAssembly(object): 

    def __init__(self, proxy, non_cal_params: dict, objectives: dict): 

        super(HistoryMatchAssembly, self).__init__() 

        self.proxy = proxy 

        self.non_cal_params = non_cal_params 

        self.objectives = objectives 

        # 

        self.proxy_pred_method: str = "" 

        self.input_signature = None 

 

    def set_proxy_prediction_method(self, proxy_pred_method: str): 

        self.proxy_pred_method = proxy_pred_method 

 

    def set_input_signature(self, input_signature): 

        self.input_signature = input_signature 

 

    def set_objective_function(self, cal_params: dict): 

        inputs: dict = self.non_cal_params 

        inputs.update(cal_params) 

        obj_func = ObjectiveFunction(inputs=inputs, objectives=self.objectives, 

                                     proxy=self.proxy) 

        try: 

            assert getattr(self.proxy, self.proxy_pred_method) is not None 

            return obj_func.compute(proxy_pred_method=self.proxy_pred_method) 
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        except AssertionError: 

            warnings.warn("Proxy prediction method is not found. Fatal proxy object.") 

            return None 

 

    def assemble_fracture_calibration(self, opt_space: dict): 

        proxy_optimizer = ProxyOptimization(proxy_object=self.proxy) 

        proxy_optimizer.init_optimizer(opt_space=opt_space) 

        opt_instance = proxy_optimizer.exec_optimizer( 

            opt_func_attr=self.proxy_pred_method) 

        return space_eval(opt_instance) 

from src.base.base_libs import * 

 

 

##############################################################################

########################################## 

################ Objective function for fracture calibration and history matching 

###################################### 

######################################## Single-objective, multi-point objective 

####################################### 

############################# Refer to task.experimental for multi-objective function 

################################## 

##############################################################################

########################################## 

 

 

class ObjectiveFunction(object): 

    def __init__(self, inputs: dict, objectives: dict, proxy): 

        """ 

        Objective function class for fracture calibration and history matching 

        Class attributes 
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            inputs: inputs to compute the objective function, dict("name" : value) 

            objectives: outputs to compute the objective function, dict("name", value) 

            proxy: the proxy object to deploy the prediction, must have a prediction method (e.g, 

QuantileXGBRegressor) 

            input_signature: the order of the input values to comply with the proxy object 

            weights: the weights for the objectives (optional, default 1.) 

        Class method: 

            compute: 

        """ 

        super(ObjectiveFunction, self).__init__() 

        self.inputs = inputs 

        self.objectives = objectives 

        self.proxy = proxy 

        # 

        self.input_signature = None 

        self.weights = np.array([1. for _ in range(len(objectives))], dtype=np.float32) 

 

    def set_input_signature(self, input_signature: str): 

        self.input_signature = input_signature 

 

    def set_weights(self, weights): 

        self.weights = weights 

 

    def compute(self, proxy_pred_method: str): 

        inputs_ = {} 

        for input_sig_ in self.input_signature: 

            if input_sig_ not in inputs_.keys(): 

                inputs_[input_sig_] = self.inputs[input_sig_] 

        inputs_ = np.array([_ for _ in inputs_.values()], dtype=np.float32) 
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        objectives_ = [_ for _ in self.objectives.values()] 

        objectives_ = np.array(objectives_, dtype=np.float32) 

        try: 

            assert getattr(self.proxy, proxy_pred_method) is not None 

            pred_objectives_ = getattr(self.proxy, proxy_pred_method)(inputs_) 

            obj_f = np.power(objectives_ - pred_objectives_, 2) * self.weights 

            return 1. / len(self.objectives) * obj_f.sum(axis=0) 

        except AssertionError: 

            warnings.warn("Proxy prediction method is not found. Fatal proxy object.") 

            return None 

import pandas as pd 

 

from src.dir.dir import * 

from src.utils import read_data, sample_by_distribution 

 

from src.data.frac_geometry import frac_geometry 

from src.data.properties import properties, proppant_volume, total_aperture 

from src.data.time_steps import time_properties 

 

from simulator.base import utils 

from simulator.base import regex_templates 

from simulator.base import parse 

 

from DoE.doe.doe_v1 import * 

 

 

##############################################################################

########################################## 
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# "Miscellaneous" workflows to assemble reservoir response parameters (i.e, BHP, oil/gas rate) 

(TBD) 

##############################################################################

########################################## 

 

 

class ReservoirResponseAssembly(object): 

    def __init__(self): 

        super(ReservoirResponseAssembly, self).__init__() 

        self.simulation_results_dir = None 

        self.sim_track_file_name = None 

        self.response_var_names = None 

 

    def set_root_directories(self, simulation_dir, simulation_file_name, sim_track_file_name, 

response_var_names): 

        simulation_results_dir = os.path.join(simulation_dir, simulation_file_name) 

        simulation_results_dir = os.path.join(simulation_results_dir, 'Results') 

        self.simulation_results_dir = RawResultDirectory(data_main_dir=simulation_results_dir) 

        self.simulation_results_dir.set_new_result_dir(sim_track_file_name) 

        self.response_var_names = response_var_names 

 

    def wrap_reservoir_response(self): 

        data_format = time_properties.SimulationTrackDataFormat() 

        data_reader = time_properties.SimulationTrackDataReader( 

            data_dir=self.simulation_results_dir, data_format=data_format) 

        sim_track_file_data, sim_track_file_data_format = data_reader.read_data() 

        return sim_track_file_data, sim_track_file_data_format 

 

    def wrap_time_steps(self, time_steps_file_name='timesteps.csv'): 
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        time_steps_dir = os.path.join(self.simulation_results_dir.data_main_dir, 

time_steps_file_name) 

        time_steps_df = pd.read_csv(time_steps_dir, header=None) 

        time_steps_df.columns = ['time_steps', 'time_steps_sec', 'time_steps_str'] 

        return time_steps_df 

 

    def assemble_reservoir_response(self): 

        """ 

        Assemble reservoir response for all time steps as .csv 

        1. Call self.wrap_reservoir_response() 

        Per time step: 

            2. Extract sim_track data for all recorded properties from sim_track_file_data 

            3. Find location of response_var_names in sim_track_file_data_format 

            4. Arrange corresponding value of a response variable name 

        :return: reservoir_data_df 

        """ 

        sim_track_file_data, sim_track_file_data_format = self.wrap_reservoir_response() 

        reservoir_response_df = list() 

        time_steps = len(sim_track_file_data) 

        property_names = sim_track_file_data_format.property_names 

        for _ in range(time_steps): 

            reservoir_response_data = dict() 

            for response_var_name in self.response_var_names: 

                try: 

                    assert response_var_name in property_names 

                    response_var_index = property_names.index(response_var_name) 

                    if 'reservoir_response_time' not in reservoir_response_data.keys(): 

                        reservoir_response_data['reservoir_response_time'] = sim_track_file_data[_][0] 

                    if response_var_name not in reservoir_response_data.keys(): 
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                        reservoir_response_data[response_var_name] = 

sim_track_file_data[_][response_var_index] 

                except AssertionError: 

                    warnings.warn('Incorrect reservoir response variable name. Assemble NaN') 

                    if response_var_name not in reservoir_response_data.keys(): 

                        reservoir_response_data[response_var_name] = np.nan 

            reservoir_response_df.append(reservoir_response_data) 

        reservoir_response_df = pd.DataFrame(data=reservoir_response_df) 

        time_steps_df = self.wrap_time_steps() 

        return reservoir_response_df, time_steps_df 

 

 

def interpolate_reservoir_response(reservoir_response_df: pd.DataFrame, time: float): 

    interp_reservoir_response = dict() 

    reservoir_response_time = [float(_) for _ in reservoir_response_df['reservoir_response_time']] 

    interp_lower_idx: int = -1 

    interp_upper_idx: int = -1 

    for _ in range(len(reservoir_response_time) - 1): 

        if reservoir_response_time[_] <= time <= reservoir_response_time[_ + 1]: 

            interp_lower_idx = _ 

            interp_upper_idx = _ + 1 

    for reservoir_var_name in list(reservoir_response_df.keys()): 

        reservoir_var_name_idx = list(reservoir_response_df.keys()).index(reservoir_var_name) 

        if reservoir_var_name not in interp_reservoir_response.keys() and \ 

                reservoir_var_name != 'reservoir_response_time': 

            lower_value = float(reservoir_response_df.iloc[interp_lower_idx, 

reservoir_var_name_idx]) 

            lower_time = reservoir_response_time[interp_lower_idx] 
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            upper_value = float(reservoir_response_df.iloc[interp_upper_idx, 

reservoir_var_name_idx]) 

            upper_time = reservoir_response_time[interp_upper_idx] 

            interp_value = lower_value + (time - lower_time) * (upper_value - lower_value) / 

(upper_time - lower_time) 

            interp_reservoir_response[reservoir_var_name] = interp_value 

    return interp_reservoir_response 

from workflow.fracture_profile import * 

from workflow.reservoir_response import * 

 

from src.utils.experimental import ExperimentalResFracFiles 

from smt import surrogate_models 

 

 

##############################################################################

########################################## 

# "Miscellaneous" workflows to form surrogate function(s) (TBD) 

##############################################################################

########################################## 

 

 

class SurrogateDirectory(object): 

    def __init__(self, result_dir): 

        super(SurrogateDirectory, self).__init__() 

        self.result_dir = result_dir 

        self.surrogate_case_prefix = 'doe_case_' 

        self.num_cases = 100 

        self.doe_assembler: DesignOfExperimentsAssembly = None 

        # Init the fracture profile 

        self.fracture_profile_resolution = None 
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        # Init the reservoir response 

        self.reservoir_response_prefix = None 

        self.reservoir_response_var_names = [None] 

        # Experimental, fix to remove in future 

        self.experimental_doe_params = None 

        self.experimental_doe_data: pd.DataFrame = pd.DataFrame() 

 

    def init_fracture_profile(self, fracture_profile_resolution): 

        self.fracture_profile_resolution = fracture_profile_resolution 

 

    def init_reservoir_response(self, reservoir_response_var_names): 

        self.reservoir_response_prefix = 'sim_track_' 

        self.reservoir_response_var_names = reservoir_response_var_names 

 

    def init_experimental_doe_data(self): 

        # Experimental, fix to remove in future 

        doe_df = list() 

        for _ in range(self.num_cases): 

            # Get the case name and its directory 

            case_name = self.surrogate_case_prefix + str(_) 

            case_dir = os.path.join(self.result_dir, case_name) 

            settings_file_name = 'settings_' + case_name + '.txt' 

            settings_file_dir = os.path.join(case_dir, settings_file_name) 

            exp_resfrac_file = ExperimentalResFracFiles(file_dir=settings_file_dir) 

            doe_values = exp_resfrac_file.read() 

            doe_dict = dict() 

            if 'case' not in doe_dict.keys(): 

                doe_dict['case'] = _ 
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            for (_, doe_param) in enumerate(self.experimental_doe_params): 

                doe_dict[doe_param] = doe_values[_] 

            doe_df.append(doe_dict) 

        doe_df = pd.DataFrame(data=doe_df) 

        self.experimental_doe_data = doe_df 

 

    def assemble_surrogate_directory(self, surrogate_dir): 

        fracture_profile_assemblers = list() 

        reservoir_response_assemblers = list() 

        for _ in range(self.num_cases): 

            # Get the case name and its directory 

            case_name = self.surrogate_case_prefix + str(_) 

            case_dir = os.path.join(self.result_dir, case_name) 

            # Create the fracture profile assembler 

            fracture_profile_assembler = FractureProfileAssembly(resolution= 

                                                                 self.fracture_profile_resolution) 

            fracture_profile_assembler.set_root_directories(simulation_dir=case_dir) 

            fracture_profile_assemblers.append(fracture_profile_assembler) 

            # Create the reservoir response assembler 

            reservoir_response_file_name = self.reservoir_response_prefix + case_name + '.csv' 

            reservoir_response_assembler = ReservoirResponseAssembly() 

            reservoir_response_assembler.set_root_directories(simulation_dir=self.result_dir, 

                                                              simulation_file_name=case_name, 

                                                              sim_track_file_name=reservoir_response_file_name, 

                                                              response_var_names=self.reservoir_response_var_names) 

            reservoir_response_assemblers.append(reservoir_response_assembler) 

        # Create the surrogate assembler 

        self.init_experimental_doe_data() 
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        if self.doe_assembler is None: 

            surrogate_assembler = 

SurrogateAssembly(frac_profile_assemblers=fracture_profile_assemblers, 

                                                    res_response_assemblers=reservoir_response_assemblers, 

                                                    doe_assembler=self.doe_assembler) 

            surrogate_assembler.experimental_doe_data = self.experimental_doe_data 

        else: 

            surrogate_assembler = 

SurrogateAssembly(frac_profile_assemblers=fracture_profile_assemblers, 

                                                    res_response_assemblers=reservoir_response_assemblers, 

                                                    doe_assembler=self.doe_assembler) 

        surrogate_df = surrogate_assembler.assemble_surrogate() 

        surrogate_df.to_csv(surrogate_dir) 

        return surrogate_df 

 

 

class SurrogateAssembly(object): 

    def __init__(self, frac_profile_assemblers: List[FractureProfileAssembly], 

                 res_response_assemblers: List[ReservoirResponseAssembly], 

                 doe_assembler: DesignOfExperimentsAssembly): 

        super(SurrogateAssembly, self).__init__() 

        self.frac_profile_assemblers = frac_profile_assemblers 

        self.res_response_assemblers = res_response_assemblers 

        self.doe_assembler = doe_assembler 

        self.surrogate_x_var_names = None 

        self.surrogate_y_var_names = None 

        # Experimental, fix to remove in future 

        self.experimental_doe_data = pd.DataFrame() 
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    def assemble_surrogate(self): 

        """ 

        Assemble surrogate data from FractureProfileAssembly, ReservoirResponseAssembly & 

DesignOfExperimentsAssembly 

        1. Call DesignOfExperimentsAssembly to generate settings/input files (ResFrac files) and the 

DoE data (.csv) 

        Per DoE case: 

            2. Call FractureProfileAssembly to generate sensor data (fixed parameters in the surrogate) 

            3. Call ReservoirResponseAssembly to generate surrogate data (.csv) & to train surrogate 

            4. Arrange surrogate data as follows: 

            - DoE data (from DesignOfExperimentsAssembly) 

            - Sensor data (from FractureProfileAssembly) 

            - Reservoir response data (from ReservoirResponseAssembly) 

        5. Return the surrogate data (.csv) & surrogate wrapper (further used in 

FractureCalibrationAssembly & 

        HistoryMatchingAssembly) 

        """ 

        try: 

            if self.doe_assembler is None: 

                assert self.experimental_doe_data.empty is False 

                num_cases = self.experimental_doe_data.shape[0] 

                doe_params = list(self.experimental_doe_data.columns)[1:] 

            else: 

                # assert self.doe_assembler.doe_data.shape[0] == len(self.frac_profile_assemblers) 

                # assert self.doe_assembler.doe_data.shape[0] == len(self.res_response_assemblers) 

                num_cases = self.doe_assembler.doe_data.shape[0] 

                doe_params = self.doe_assembler.doe_params 

            surrogate_data_df = list() 

            # Loop through all DoE cases 
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            for _ in range(num_cases): 

                print('Process case ', _) 

                # Extract the corresponding assemblers fo the case 

                frac_profile_assembler: FractureProfileAssembly = self.frac_profile_assemblers[_] 

                res_response_assembler: ReservoirResponseAssembly = 

self.res_response_assemblers[_] 

                # Assemble the fracture profile and reservoir response 

                fracture_profile_df = frac_profile_assembler.asemble_fracture_profile() 

                reservoir_response_df, time_steps_df = 

res_response_assembler.assemble_reservoir_response() 

                # Extract the recorded time steps for the surrogate ( always fracture profile time steps ) 

                fracture_profile_time_steps = list(fracture_profile_df.index) 

                surrogate_time_steps = fracture_profile_time_steps 

                # Loop through all similar recorded time steps 

                for time_step in surrogate_time_steps: 

                    surrogate_data = dict() 

                    surrogate_time = fracture_profile_df.loc[time_step, 'fracture_profile_time'] 

                    # Add DoE case number 

                    if 'case' not in surrogate_data.keys(): 

                        surrogate_data['case'] = _ 

                    # Add time step (in sec) 

                    if 'surrogate_time' not in surrogate_data.keys(): 

                        surrogate_data['surrogate_time'] = surrogate_time 

                    # Loop through all DoE params 

                    for doe_param in doe_params: 

                        # Add DoE params 

                        if doe_param not in surrogate_data: 

                            if self.doe_assembler is not None: 

                                surrogate_data[doe_param] = self.doe_assembler.doe_data.loc[_, doe_param] 
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                            else: 

                                # Experimental, fix to remove in future 

                                surrogate_data[doe_param] = self.experimental_doe_data.loc[_, doe_param] 

                    # Assemble the fracture profile and reservoir response per time step 

                    fracture_profile_time_step = fracture_profile_df.loc[time_step, :] 

                    # Need interpolation here 

                    reservoir_response_time_step = 

interpolate_reservoir_response(reservoir_response_df, 

                                                                                  surrogate_time) 

                    # Loop through all fracture profile params 

                    for frac_profile_param in list(fracture_profile_time_step.index): 

                        # Add fracture profile params 

                        if frac_profile_param not in surrogate_data.keys() and \ 

                                frac_profile_param != 'fracture_profile_time': 

                            surrogate_data[frac_profile_param] = 

fracture_profile_time_step[frac_profile_param] 

                    # Loop through reservoir response params 

                    for res_response_param in reservoir_response_time_step: 

                        # Add reservoir response params 

                        if res_response_param not in surrogate_data.keys(): 

                            surrogate_data[res_response_param] = 

reservoir_response_time_step[res_response_param] 

                    # Assemble the surrogate data 

                    surrogate_data_df.append(surrogate_data) 

                    self.surrogate_x_var_names = \ 

                        ['surrogate_time'] + doe_params + list(fracture_profile_time_step.index) 

                    self.surrogate_y_var_names = list(reservoir_response_time_step.keys()) 

            # Complete the assembly as pd.DataFrame 

            surrogate_data_df = pd.DataFrame(data=surrogate_data_df) 
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            return surrogate_data_df 

        except AssertionError: 

            warnings.warn('Number of Design Of Experiment cases and number of fracture 

profile/reservoir response' 

                          'do not match') 

            return pd.DataFrame() 

 

 

class Surrogate(object): 

    def __init__(self, surrogate_assembler: SurrogateAssembly): 

        super(Surrogate).__init__() 

        self.surrogate_assembler = surrogate_assembler 

        self.surrogate_backend = None 

 

    def train(self, surrogate_y_var_name): 

        # TODO: Implement method to train a surrogate 

        surrogate_data = self.surrogate_assembler.assemble_surrogate() 

        surr_backend = surrogate_models.KRG(theta0=[1e-2]) 

        surrogate_x_data = surrogate_data[self.surrogate_assembler.surrogate_x_var_names] 

        try: 

            assert surrogate_y_var_name in self.surrogate_assembler.surrogate_y_var_names 

            surrogate_y_data = surrogate_data[surrogate_y_var_name] 

            surr_backend.set_training_values(xt=surrogate_x_data.to_numpy(), 

yt=surrogate_y_data.to_numpy()) 

            surr_backend.train() 

            self.surrogate_backend = surr_backend 

        except AssertionError: 

            warnings.warn('Incorrect surrogate y variable name. Can not train.') 
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    def validate(self, surrogate_y_var_name): 

        # TODO: Implement method to validate a surrogate 

        surrogate_data = self.surrogate_assembler.assemble_surrogate() 

        surr_backend = surrogate_models.KRG(theta0=[1e-2]) 

        surrogate_x_data = surrogate_data[self.surrogate_assembler.surrogate_x_var_names] 

        try: 

            assert surrogate_y_var_name in self.surrogate_assembler.surrogate_y_var_names 

            surrogate_y_data = surrogate_data[surrogate_y_var_name] 

            surr_backend.set_training_values(xt=surrogate_x_data.to_numpy(), 

yt=surrogate_y_data.to_numpy()) 

            surr_backend.train() 

            self.surrogate_backend = surr_backend 

        except AssertionError: 

            warnings.warn('Incorrect surrogate y variable name. Can not validate.') 

 

    def __call__(self, params: np.array, *args, **kwargs): 

        try: 

            assert self.surrogate_backend is not None 

            return self.surrogate_backend(params) 

        except AssertionError: 

            warnings.warn('No surrogate backend set. Return None') 

            return None 

from sidebar.main_sidebar import * 

from callbacks.sidebar import * 

 

from callbacks.doe_gui import * 

from callbacks.frac_cal_gui import * 

 

app = dash.Dash(__name__, 
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                external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.icons.FONT_AWESOME], 

                background_callback_manager=background_callback_manager, 

                use_pages=True) 

 

app.layout = html.Div(children=[sidebar, dash.page_container], id='layout') 

set_sidebar(app) 

 

if __name__ == "__main__": 

    app.run_server(port=5000, debug=True) 


